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Alexander Nesterov-Mueller *

Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT),

76344 Eggenstein-Leopoldshafen, Germany

* Correspondence: Alexander.Nesterov-Mueller@kit.edu

Received: 21 May 2019; Accepted: 30 June 2019; Published: 2 July 2019
����������
�������

Abstract: Much of the experimental data, especially in life sciences, is considered to be useless if

it demonstrates a large standard deviation from the mean value. The Renaissance distribution, as

presented in this study, allows one to extract true values from such statistical data with large noise.

To obtain proof of the Renaissance distribution, high-throughput synthesis of deep substitutions

for a target amino acid sequence was performed, and the known epitope was identified in assay

with human serum antibodies. In addition, the Renaissance distribution was shown to approach the

epitope affinity maturation by the deep alanine substitution. The Renaissance distribution may have

an impact in the development of novel specific drugs.
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1. Introduction

Experimental science is based on well-established statistical tools used to estimate the quality of

the data measured. The determination of the mean value with a relatively small standard deviation

is considered a successful measurement. Nevertheless, there is much experimental data, especially

in life sciences, that has statistically failed but may be “interesting”. This failure is often caused by

poorly defined experimental conditions or some processes that are barely understood. Such results

are frequently observed, for example, in the case of novel multicomponent reactions [1], where the

product yield is not optimized, or, in the case of combinatorial synthesis, where novel molecules are

synthesized with unknown properties [2,3]. Frequently, enzymes demonstrate functional heterogeneity,

which cannot be represented by employing classical bulk reactions and classical statistics [4]. For

example, single-molecule experiments have revealed a dynamic disorder in the subsequent catalytic

cycles of cholesterol oxidase [5], horseradish peroxidase [6], and lipase B [7]. From this point of view,

the statistically unreliable experimental data may include valuable scientific information that can

help improve the experiment or understanding of those processes. The generally accepted opinion is

that the scientist has to improve his experiment to get better statistics before presenting the results

to the scientific community, but this very step remains a bottleneck in comparison with the modern

communication and possibilities of generating a large amount of experimental data. Dealing with their

own imperfect experiments, the scientist is limited in communicating about them because he will not

publish statistically failed results.

In this study, we presented a novel synthesis of substitutional peptide arrays and, using this

example, proposed a novel statistical distribution to interpret the data measured. The distribution

proposed in paper is called “Renaissance,” by analogy with the period in European history which is

related to several Italian cities, but that would not exhibit any Renaissance features in the case where

the development level over all European cities of that time is averaged. The Renaissance distribution is
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a novel statistical method for cases when the standard deviation from the mean value is higher than

30%. In general, the Renaissance distribution is suitable for automatically searching for artifacts and

providing a reliable comparison of the signals by varying parameters of a system with a high noise.

2. Results and Discussion

The principle of the stochastic array synthesized in this study is shown in Figure 1. The stochastic

array delivers all possible substitutions of a specific amino acid sequence with amino acid alanine. The

synthesis of all substitutional sequences occurs by stochastically assembling of the amino acid particles

(Figure 1a) on the cavities (Figure 1b) functionalized with amino groups.

 

 
Figure 1. Stochastic substitutional arrays with amino acids particles. (a) Each amino acid particle

carries a special amino acid with protecting groups. (b) Functionalized substrate is exposed to (c)

one kind amino acid particles. The particles fill in the cavities stochastically. (d) The particle pattern

is detected with a camera. (e) The amino acids are extracted from the particles and coupled inside

the cavities via peptide bonds. The particles are removed from cavities. (f) The slide is exposed to a

solution containing the amino acid alanine. After the removal of protecting groups (red half circles), a

new cycle can be started. The repetition of 5 cycles results in the synthesis of peptides with all possible

Ala substitutions in original sequences TEGGE.

The shape of the cavities was chosen so that only one particle fits inside. The particle patterns were

detected with a fluorescent scanner equipped with a visible light filter (Figure 1c,d). Then, amino acids

were extracted from the particles and coupled to the bottom of the corresponding cavities, building

peptide bonds with amino acid groups on the surface. After coupling, the particles were removed from

the cavities with an ultrasound (Figure 1e). Subsequently, in the wells that did not capture particles,

the amino acid alanine was coupled out of the solution. After the coupling of the amino acids from

the particles and solution, the protective groups were removed so that the cavities were ready for the

next coupling step. Using this principle, a stochastic alanine substitution array was synthesized for

the amino acid sequence KEVPALTAVETGAT. This peptide was reported to be reactive for 90% of the

European blood sera [8].

Theoretically, 211 = 2048 different peptides should be generated according to all possible

substitutions of the target peptide KEVPALTAVETGAT with alanine. By analyzing the particle

deposition, only 1142 different peptides were displayed on the chip. For the target sequence,

2672 copies were identified.



Int. J. Mol. Sci. 2019, 20, 3250 3 of 7

Figure 2 shows the distribution of the fluorescent signal intensity of the peptide spots across

these copies, whereby the peptides are arranged according to the descending signal. This curve was

approximated with the logarithmic function:

y(x) = −a·ln (x) + b, (1)

where a = 92, b = 834, and the coefficient of determination is R2 = 0.895. Formula (1) represents

a general function that is defined as the Renaissance distribution. In an ideal case, all the signals

would have the same fluorescent intensity. However, because of the statistically non-ideal amino acid

extraction from the particles, the majority of signals are close to the chip surface background value

of approx. 200 a.u., and only few high-intensity signals are demonstrated by the first 50 peptides.

Formula (1) fit the signal distributions for all substitutions of the target sequence very well, with

coefficients of determination > 0.8. Interesting to note is that removal of the signals with maximal

intensity significantly increased the coefficient of determination to R2 = 0.97. Such deleted points will

be considered as artifacts.

 

 
−

−

Figure 2. Distribution of the fluorescent signal intensity of the identical peptides (gray diamonds) and

its logarithmic approximation (black) on a chip. The curves represent the Renaissance distribution. y

= −92ln(x) + 834; R2 = 0.895. The inlet shows an increase of the R2 by deleting the copies from the

original distribution of the fluorescent intensity.

Apparently, the estimation of the mean value for the signal intensity over all peptide copies in

Figure 2 will give a false result, which is close to the background value. Instead of using mean value,

the coefficient b in the Formula (1) was considered to represent the true intensity signal. In this case,

the term −a·ln(x) is a negative entropy responsible for inefficient coupling. The crucial feature of the

Renaissance distribution (1) is that the true value, parameter b, is independent of the number of the

trials. If a set of x copies will be reduced, that would correspond to the set of xβ. Thus, the parameter

β will only modify the negative information entropy a to a·β. The smaller the number of trails, the

higher the coefficient a will be. The differential presentation of Formula (1)

δy = −δx/x (2)

reveals the meaning of the Renaissance distribution. Small changes of the feature parameter y of a

system is inversely proportional to the number of the non-ideal system states. In particularly, this law

means that the appearance of a small number of the non-ideal states in the system with the zero entropy

has a significant influence on the feature parameters. Vice versa, if the number of non-ideal states is

already large, the appearance of the additional non-ideal states will have only marginal influence on

the feature parameter y. Thus, the Renaissance distribution appears both as a statistical distribution

and as a law that describes the decay of a state with the zero entropy.
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To prove the Renaissance distribution, we applied an algorithm to all the substitutional peptides

to eliminate the copies (artifacts) until the remaining points could be fitted using the Renaissance

distribution, with R2 > 0.95 for each specific sequence (Figure 3).

 

−

Figure 3. Distribution of coefficient b for peptides representing multiple alanine substitutions of the

target sequence TAGTEVATLAPVEK (diamonds) and its approximation (black) with a Renaissance

distribution: a = −133, b = 1051, and R2 = 0.96.

Using the Renaissance distribution (1), the coefficient b (true value) was estimated for the single

alanine and double alanine substitutions of the target sequence to obtain the binding motif of the

serum antibodies (Figure 4). The alanine substitutions revealed the binding motif KXXXXXXVETGXT.

This result corresponds to the known epitope LTAVETG, which is part of the poliovirus and can also

be found in the human epitope database (iedb.org) [9]. The location of the target peptide in the capsid

protein VP1 of the poliovirus [10,11] is shown in the Supplementary Figure S5 online. By contrast, the

estimation of the fluorescent signals using classical distribution, which is based on the mean values

over all peptide copies, delivers significantly different results in which the fluorescent signal of the

target peptide was not distinguished from the background.

 

−

 
Figure 4. (a) Single and (b) double Ala substitutions of the target peptide KEVPALTAVETGAT. The

number indicates the fluorescence intensity. In the table (b), the position (x,y) means that Ala was

placed in position x and position y in the target peptide. The intensity of the signals reveals a binding

motif KXXXXXXVETGXT (c), indicating the location of the target peptide in the capsid protein VP1 of

the poliovirus.

The Renaissance distribution fit the fluorescent signals from different peptides very well, with a

coefficient of determination of R2 = 0.96. Interestingly, that deep alanine substitutions cause the decay

of the epitope affinity, according to the Renaissance distribution. The deep alanine substitution reveals

that the difference in the fluorescence signal between epitopes and its substitutions was not more than
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40%. This fact could explain the off-target activity of antibodies which are simultaneously applied for

specific labeling of the proteins. From this point of view, the Renaissance distribution can be used for

the development of the novel specific drugs in silico. First, to increase the affinity of the initial scaffold,

novel building blocks should be tested according to the minimization of the binding energy. Then,

only those building blocks should be accepted, which increases the affinity of the scaffold along the

Renaissance distribution. Such an approach would mimic the natural maturation of the epitopes.

3. Materials and Methods

3.1. Synthesis of Peptide Sequences

The full-size microstructured substrates (75 mm × 25 mm × 1 mm) were made of fused silica using

photolithography and reactive ion etching (RIE). The array of cylindrical microwells, with diameter of

12 µm and the depth of 9 µm, has a pitch size of 20 µm.

The crosslinked poly(methyl methacrylate) (PMMA) microbeads (MICROBEADS®) were selected

as solid carriers for the amino acid derivatives. They were manufactured by emulsification

polymerization and crosslinking at 3%. The microspheres had a mean diameter of 10 µm with

an extremely narrow size distribution. The coefficient of variation was declared to be less than 5%. The

commercially available amino acid derivative (fluorenylmethoxycarbonylamino acid pentafluorophenyl

ester) was used as monomer. The amino acid derivative was introduced into the polymer matrix of

the microbeads. Crosslinked PMMA microspheres (1 g) were dispersed in 5 mL of the amino acid

derivative solution in dichloromethane (DCM). The mass per volume fraction (%, (w/v)) of amino acid

in the DCM solution was adjusted for each type of monomer. The dispersion was gently stirred until a

paste-like medium was obtained. The paste underwent drying overnight at normal conditions in an

open vessel in a fume hood. The resulting dry mass of microbeads was milled in a falcon tube with

two metal spheres (Ø 5 mm) on a vortex shaker.

Prior to applying the amino acid particles, the functional surface underwent Fmoc

(Fluorenylmethoxycarbonyl) deprotection in a solution of 20% (v/v) piperidine in Dimethylformamide

(DMF) for 30 min at room temperature. The residues of the deprotection solution were removed by

washing in DMF for 5 min twice, in methanol for 3 min twice, and in DCM for 1 min once. The slide

was dried in a flow of argon.

The deposition of the microbeads was performed in two steps. First, the dry mixture of the

microbeads was spread over the surface of the microstructured substrate with a soft lint-free tissue.

Although the microstructures were completely filled with the microbeads, the top surface of the

substrate still contained a monolayer of excessive microbeads. This excess was removed in the second

step with the flow of compressed air applied tangentially to the surface of the substrate. The air flow

totally removed the excessive microbeads from the top surface, whereas the microwells remained filled.

The imaging of the microbeads’ deposition pattern was performed using a fluorescence scanning with

optical density filters.

The extraction of the amino acid derivatives from the microbeads took place in a saturated vapor

of organic solvent inside a special chamber. The slide holders with the substrates were inserted into the

chamber for 1 min each. After taking the slides out of the chamber, the process was repeated 5 times to

enhance the extraction of the amino acid derivatives from the microbeads. The subsequent coupling

step was performed in an oven under argon for 60 min at 90 ◦C.

Removal of the microbeads from the microwells was performed in several steps by placing the

substrate in a mixture of 5% (v/v) MEA (2-aminoethanol) in acetone and exposing it to acoustic waves

in an ultrasonic bath for 2 min twice. Alanine (Fmoc-protected, OPfp (pentafluorophenyl)-activated)

was coupled to the remaining free amino groups of the substrate from 0.1 M solution in DMF for

60 min at room temperature.

The remaining free amino groups were capped in a solution of 10% (v/v) acetic anhydrate and 20%

(v/v) DIPEA (N,N-Diisopropylethylamine) in DMF for 10 min at room temperature repeated twice. The



Int. J. Mol. Sci. 2019, 20, 3250 6 of 7

residues of the capping solution were removed by washing in DMF for 5 min twice, in methanol for 3

min twice, and in DCM for 1 min once. The slide was dried in a flow of argon.

The steps of Fmoc deprotection, amino acid coupling, and capping were performed multiple

times until the full-length peptides were synthesized.

3.2. Immunostaining

The array was incubated with a blood serum from a healthy donor diluted 1:1000 in PBS-T

(Phosphate Buffered Saline with Tween) overnight at 4 ◦C and then stained with the secondary

anti-human-IgG antibodies. The fluorescent signals from the spots stained with secondary antibodies

were read out with a fluorescent scanner.

3.3. Statistical Analysis

The general function of the Renaissance distribution is presented by a logarithmic formula (1). To

fit this formula, a Python program (Python 3.7) was used. The Python codes are available as a separate

file in the Supplementary Materials online. The initial data included approximately 78,000 peptides

and their corresponding immunostaining signals. The program (a) separates unique sequences;

(b) generates the Renaissance distribution for each unique sequence and calculates coefficients a

(negative entropy) and b (true signals) with a defined minimum coefficient of determination R2
min.

The increasing of the initial R2 (if R2 < R2
min) is realized by searching for single peptide copies that

are responsible for the low R2 and their deletion. The program also shows how many copies were

deleted to reach R2
min and the resulting R2. Python is an open source programming language and was

download at https://www.anaconda.com/distribution/.

In the scope of this program, a common method of logarithmic fitting was used: all initial signals

xi were replaced with Xi = ln(xi) and a linear regression with the (Xi,yi) was performed to get a

logarithmic fitting. An additional simple example of fitting experimental data with a large standard

deviation using the Renaissance distribution is demonstrated in the Supplementary Materials online.

All data processing (calculation of mean value, standard deviation, and logarithmic approximation)

was performed using an Excel program (Supplementary Figures S1–S4).

4. Conclusions

The stochastic high-throughput synthesis of deep substitutions for a target amino acid sequence

was presented. Deep substitution peptide chips were used for studying interactions with antibodies in

a high-density-array format. Renaissance distribution was developed to analyze the fluorescent signals

from the peptide–serum antibody interactions. Renaissance distribution differs substantially from the

statistics based on calculations of the mean values. This allows for identification of the artifact signals

which deviate from the Renaissance distribution. In contrast to the other statistical distributions, the

Renaissance distribution represents the law of the decay of states with zero entropy. Its application

was demonstrated for the known polio epitope.

The Renaissance distribution may have an impact in life sciences and organic chemistry for

the analysis of experimental data produced under poorly defined stochastic conditions with a large

number of trials. The example with deep substitutions for the target epitope demonstrates the principle

of Renaissance increasing of the binding affinity, which can be used in the development of novel

specific drugs.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/13/
3250/s1.
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An example of Renaissance distribution with EXCEL 
 
1. Open an a EXCEL sheet. Copy your data into a column;  
2. Generate the graph (Fig. S1, the signals from 100 identical experiments have been 

taken); 
3. Calculate the mean value M and its standard deviation STDV (For the data in Figure S1: 

M = 173.7; STDV = 106.2). 
The experiment has failed statistically because STDV is very high. 

4. Apply to the column the command “Sort and Filter” and “from largest to smallest”. The 
graph gets the form presented in Figure S2. 
 

 
Figure S1: The distribution of the signal over 100 identical experiments. 
 



 
Figure S2: The distribution of the signal over 100 identical experiments after sorting the signal 
from Figure 2 “from largest to smallest”. 
 

5. Open the menu with the right mouse click on the dotted line and choose the button 
“Insert trend line”. A window “Trend line options” appears. Choose “logarithmic “ and 
the last two options “Show the formula in diagram” and “Show the approximation rate 
in diagram”. After performing these options, Renaissance distribution is generated 
(Figure S3, black line). 

 
Figure S3: The distribution of the signal over 100 identical experiments and corresponding 
Renaissance distribution (black line) with R2 = 0.66. (R2  (0:1)). 
 

6. Improve Renaissance approximation – R2 by deleting critical points. One point S = 1065 is 
identified as artifact. Its deletion leads to significantly better approximation (Figure S4): R2 = 
0.9719.  
 

y = -93,43ln(x) + 513.58 

R2 = 0.6661 



 
 
Figure S4: The distribution of the signal over 99 identical experiments and corresponding 
Renaissance distribution (black line) with R2 = 0.9719.  
 

7. Thus, the truth value is 404.48 with a approximation precision R2  0.97. In contrast, the 
mean value of the original signals is 173.7 with standard deviation of 106.2. While the 
deletion of the point S = 1065 (artifact) from the original data is justified by reaching 
higher R2 in the case of Renaissance distribution, its deletion would be a voluntary 
action in the case of the classical statistics based on the calculation of mean value and its 
deviations. 
 
 
 

 

Figure S5: The location of the target peptide in the capsid protein VP1 of the poliovirus. The location 
was obtained using VMD: Visual Molecular Dynamics [10]. The 3D structure of the capsid protein VP1 
of the poliovirus is available online in the Protein Data Bank [11]. 

 

y = -65,26ln(x) + 404.48 

R2 = 0.9719 
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