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Abstract 

Water diffusion at the surface of a silica glass is increased when surface 
cracks are present which were inadvertently introduced by the surface 
treatment of samples. Due to the larger true surface exposed to the humid 
environment, an apparently increased diffusion constant must occur. 
With the help of a simple model the influence of the cracks for small 
water penetration depths is described. Simplified approximations are 
given which allow a continuous interpolation of two limit solutions over 
greater penetration depths or diffusion times. 

In the present report we restrict our considerations on unloaded cracks. 
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 1

1 Effect of surface cracks on the diffusion profile  

1.1 Crack modelling  
In ground silica surfaces cracks are present even in the case of finishing by mechanical 
polishing or chemical etching. This has been outlined by Suratwala et al. [1]. Such a 
surface state is schematically shown in Fig. 1a in side- and front view. The individual 
distributions of the depths a and the widths L are approximated in [1] by exponential 
distribution function. 
For a simple explanation of the effect of such cracks on diffusion, let us replace the 
distributions of a and L periodically arranged cracks, Fig. 1c, of average crack surface  

   LaS 2  (1) 

in the surface element of length A and width B, where the factor 2 counts for two crack 
faces of each crack. 

  

 
Fig. 1 a) Surface cracks due to surface treatment, front and side view, b) cracks of a) replaced by a 

periodical element with surface area AB containing a single crack of mean crack surface S. 

1.2 Diffusion profiles 
When the “unit cell” in Fig. 1b is exposed to a humid environment, water can diffuse 
into the whole surface given by the original surface area AB and the crack surface S, 
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AB+S, shown in Fig. 3a. The concentration of the water below the original surface, 
C(z), is given by the complementary error function 

  





b

z
CzC

2
erfc)( 0  (2) 

with the concentration C0 at the surface. The depth b, the diffusion length, at which the 
concentration decreased to 50%, depends on diffusivity D and time t via 

  tDb   (3) 

The water profile normal to the crack faces is the same with y instead of z in eq.(2). 
Deviations occur in the crack-tip region. In a FE-study [2], the diffusion problem for 
water-soaked specimens was solved.  

 

 

 
Fig. 2 Water diffusion through crack surfaces of a semi-infinite crack, a) contour lines for constant 

water concentration, b) concentration profiles in length and height directions. 
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The water concentration contours are shown in Fig. 2a. It can be seen that the zone 
size ahead of the tip is reduced. In contrast to the profiles by eq.(2), there is also a 
height reduction visible near the tip.  
Figure 2b gives the concentration profiles for the z-direction ahead of the crack tip and 
the profile by eq.(2) for larger distances behind the tip region. For reasons of simplici-
ty we approximate the water distribution in the diffusion zone by a layer of thickness b 
and a constant water concentration C0 as indicated by Fig. 2b. Near the crack tip, the 
missing water in y-direction is balanced by the water ahead the tip, resulting for 
C/C0=0.5 in the red step-shaped distribution in Fig. 2a.  
Figure 3a illustrates the water distribution in the unit cell after a short time with b << a.  

 
Fig. 3 Water diffusion into the crack surface containing a crack of depth a; a) water distribution for 
short times with diffusion zone b<<a, b) water diffusion zone according to eq.(2) replaced by a zone 
of thickness b and constant concentration showing the same amount of water, c) interacting diffusion 

profiles near the crack mouth (schematic), d) separation of overlapping diffusion profiles. 

The amount of water, penetrated into the glass is then approximated by a constant con-
centration of C=C0 in a layer of thickness b, Fig. 3b. For very short times, the profiles 
from the surface and from the crack faces interact only at the crack mouth, Fig. 3c. As 
long as this region is small, i.e. for b<<a, it holds for the total amount of water in the 
unit cell  

  ]2[0C LaABbCm   (4) 

In terms of an apparent layer thickness bapp for very short time t0, eq.(4) reads  

b b b 
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  






 
  BA

S
bbb tappapp 10,0,  (5) 

For a not too large layer thicknesses, let say b < 1/3 Min(a, B/2), the moderate diffusion 
interactions may be separated in diffusion layers from the specimen surface over the 
whole width B and from the crack surface over the reduced distance of a-b as illustrat-
ed in Fig. 3d. In this case we obtain  

  



















 )/1(1)(

2
1 ab

BA

S
bba

BA

L
bbapp  (6) 

This dependency is shown in Fig. 4. 
 

 
Fig. 4 Apparent diffusion layer thickness bapp as a function of time. 

2. Apparent diffusivity  

Equations (5) and (6) allow the determination of an apparent diffusivity Dapp, defined 
via 

  tDb app

def

app   (7) 

This diffusivity is for b < 1/3Min(a, B/2) 
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Two limit cases can be identified. For very short times, it results from eq.(8) 

  
2

0,0, 1 






 
  AB

S
DDD tappapp  (9) 

For long times t and thick zones b, the limit diffusivity is trivially 

  DDD tappapp   ,,  (10) 

Equation (8) makes clear that the apparent diffusivity resulting from measurements 
depends on time as is plotted in the representation of Fig. 5.  

 
 

 
Fig. 5 Apparent diffusivity Dapp as a function of time for several ratios of crack surface <S> to speci-

men surface AB, arrow indicates the asymptotically reached diffusivity Dapp. 

3. Interpolation of limit case solutions  
Having in mind that the crack sizes and distances are continuously distributed [1], the 
results from Section 2 may be “smoothed” and expressed by interpolation relations. 
Usual descriptions by exponential functions result in our case in 
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Figure 6a shows these interpolations for the case of <S>/(AB)=2. The straight lines are 
again the limit solutions for t0 and t. The dashed curve represents eq.(11) and 
the solid curve eq.(12). Use of (12) is recommended. Figure 6b shows the interpola-
tions for different parameters <S>/(AB). Finally, Fig. 6c gives the apparent diffusivity 
from eq.(12) as 

  
2

))/tanh(1(1 










 aDt

BA

S
bDapp  (13) 

  

 
Fig. 6 a) Interpolation of limit solutions according to eqs.(11) and (12), b) interpolations for different 

crack parameters, c) related apparent diffusivities. 
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4. Comparison with experimental results  

Results of the diffusivity as a function of time are available in the literature. Profiles of 
time-dependent residual water content by stepwise surface removal were measured by 
Davis and Tomozawa [3] under water vapour pressure of 355mm Hg at 350°C. The 
results, Fig. 7a, showed reduced diffusion depths with increasing soaking time. This 
result is plotted again in Fig. 7b in terms of an effective diffusivity Deff (red circles). 
 
 

 

 
Fig. 7 a) Profiles of residual water content during stepwise surface removal by Davis and Tomozawa 
[3], b) effective diffusivities by Davis and Tomozawa [3] (red circles) and by Oehler and Tomozawa 

[4] at 250°C and 39 bar water vapour pressure (blue circles).  
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Measurements of effective diffusivities by Oehler and Tomozawa [4] at 250°C and 39 
bar water vapour pressure are introduced by the blue circles. In both cases a clear de-
crease with time is evident. This effect was discussed in [5] in terms of swelling 
stresses. In the case of the results by Davis and Tomozawa [3] it has to be considered 
that under the rather low vapour pressure swelling stresses are not very high. As Fig. 
6c shows, the curves in Fig. 7a may also be interpreted as the consequence of surface 
cracks. That will partially hold for the results in [4], too. 
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