

Toxicity of fine and quasi-ultrafine particles: focus on the effects of extractable and non-extractable matter fractions

<u>Ghidaa BADRAN^{1,2,3}</u>, Frédéric LEDOUX¹, Anthony VERDIN¹, Imane ABBAS³, Mohamed ROUMIE³, Paul GENEVRAY⁴, Jean-Marc LO GUICIDE², Guillaume GARÇON² and Dominique COURCOT¹

Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France
 (2) CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France

(3) Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon

(4) Centre Commun de Mesures, Maison de la Recherche en Environnement Industriel, Univ. du Littoral Côte d'Opale, Dunkerque, France

Outline

- 1. Introduction
- 2. Objectives
- 3. Methodology of work
- 4. Results & Discussion
- 5. Conclusion

Methodology

Results

Conclusion

Fine atmospheric particles (PM_{2.5})

Mixture of:

1. Inorganic compounds (e.g. metals, ions)

2. Organics : e.g. volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs)

3. Biological materials: (e.g. pollen, bacteria, fungi)

The toxicity of PM depends on their composition

Not constant

Varies according to the geographical location and several factors (climate...)

This variation makes the determination of the toxic effects very complex.

- To date, a lot of research work has been done to identify the toxicological response of the total PM
- There is still a lack of knowledge about the specific **chemical components and/or fractions** within airborne PM, which could be mainly responsible for these effects

OBJECTIVES

1. Determine what is responsible in the PM for the observed toxic effects?

2. Comparison of composition & toxicity between **fine** and **ultrafine** PM

Sampling of fine $(PM_{2.5-0.3})$ and quasi-ultrafine $(PM_{0.3})$ atmospheric particulate matter

Chemical characterization

Extraction of the PM organic extractable matter (OEM) and recovery of the PM non-extractable matter fraction (NEM)

In-vitro toxicological studies on Beas-2B cells

W

Sampling of fine (PM_{2.5-0.3}) and quasi-ultrafine (PM_{0.3}) atmospheric particulate matter

- 1. Typical road traffic site
- 2. Main axis between the capital and the airport
- 3. Surrounded by a strong residential area

Back-up filter

PM_{0.3}

back-up filter

Principle of impaction

7

Chemical characterization

- 1. Determination and quantification of major and trace elements and water soluble ions (ICP-AES , IC)
- 2. Quantification of PAHs (GC-MS)

Preparation of PM Organic Extractable Matter and Non-Extractable Matter

Methodology

Results

Samples for toxicological studies

Evaluation of PM_{2.5}- induced oxidative stress and oxidative lesions

Results

Chemical characterization of PM

Major and trace elements and ions

- **PM**_{0.3} NO3-Fe CI-Na C total; Ca; 25% 🔳 Cu 31% Ba NO3-; 7% P Mn Pb Na; 10% V 4% 🔳 Ni SO42-; 1% Co AI; 2% Cl-; 5% 4% Cd 2% Mg; 4% Fe: 3%
- Predominant elements :
 Ca, Al, Fe, Mg → Resuspenion of soil dust (Hans Wedepohl, 1995)
- <u>Trace elements :</u>

Ba, Zn & Cu \rightarrow Emission from engine's oil, tires and car brakes.

- <u>Predominant lons:</u> $NO_3 \stackrel{2}{\otimes} SO_4 \stackrel{2}{\longrightarrow}$ Conversion of NO₂ and SO₂ precursor gases and long-range transport. (Borgie et al., 2016; Luria et al., 1989)
- <u>Total carbon :</u>
 PM_{0.3} >> PM_{2.5-0.3} : Combustion process and PM_{0.3} emission

PAH concentration (µg/g)

OEM_{2.5-0.3} <<< OEM_{0.3}

→ Significant influence of *anthropogenic activities* and *combustion sources* (industries, road traffic and electric generators) on the emission of quasi-ultrafine particles and organic compounds.

Results

Study of oxidative stress and oxidative lesions

ROS production, antioxidant defense, stress damages

1) Dihydroethidium (H₂O₂)

ROS generation = dose and time dependent ROS generation was more important after 24 H and $C_2=12 \ \mu g/cm^2$

2) Carboxy-H2DCFDA (O₂-)

■ 6h ■ 24h

- Metal and water soluble ions in NEM
- Organic compouds (PAH) in OEM

Can both contribute to **ROS overproduction.**

Defense against cellular stress: NRF2 antioxidant pathway

ROS = High level

2. Evaluation of cellular defense against oxidative stress a. <u>NRF2, KEAP1and NQO1 gene expression</u>

DNA, proteins, and lipids damages

c.8-isoP

0 12 12 12 Т 3 3 3 12 3

 \rightarrow Increase was more important after 24 H to $C=12\mu g/cm^2$ when ROS are more produced with less antioxidant defense

> PM_{2.5-0.3} > NEM_{2.5-0.3} = OEM_{2.5-0.3} OEM_{0.3} > OEM_{2.5-0.3}

- All PM fractions, NEM and OEM were able to induce oxidative stress and damages to the cellular macromolecules

OEM_{0.3} was able to induce toxicological effects more than the OEM_{2.5-0.3}, due to its higher concentration in PAH

Less ROS More antioxidant defense Less damages

More ROS Less antioxidant defense More damages

Toxicity of fine and quasi-ultrafine particles: focus on the effects of extractable and non-extractable matter

Ghidaa Badran Ghidaa.badran@univ-littoral.fr

Conclusion

Study of the metabolic pathway of PAHs

Aryl hydrocarbon receptor pathway

Conclusion

Study of the metabolic pathway of PAHs

			PM _{2.5-0.3}		NEM _{2.5-0.3}		-OEM _{2.5-0.3}		OEM _{0.3}		BaP	NPyr	9-FluO	PM • induction de la voie de
(č		Control	C1	C2	C1	C2	C1	C2	C1	C2	25 μΜ	25 μΜ	25 μΜ	restablication des LADs surges (
6 h	AHR	1	+	+	-	-	-	-	-	t.	-	+	+	et 24 heures d'exposition.
	AhRR	1	+	+	-	-	-	-	-	+	-	+	+	
	ARNT	1	+	+	-	-	-	-	-	.+	-	+	+	EOM _{2.5-0.3} << PM _{2.5-0.3}
	CYP1A1	1	+	+	н	-	-	+	+	Т	-	+	+	Cinétique de
	CYP1B1	1	+	+	н	-	-	+	+	+	-	+	+	
	EPHX-1	1	-	Т	н	-	-	-	+	1+	-	+	+	
	GSTA-4	1	-	+	-	-	=	-	-	+	-	+	+	métabolisation (< 6H ?)
24 h	AhR	1	-	+	-	-	=	-	Ξ	+	+	+	+	pour OEM _{2.5-0.3}
	AhRR	1	+	+	-	-	-	-	Ξ	+	+	+	+	
	ARNT	1	+	+	-	-	-	-	-	+	+	+	+	NEM_{2.5-0.3} : pas d'induction→ absence des composés organiques
	CYP1A1	1	+	T.	1	-	-	+	+	+	+	+	+	
	CYP1B1	1	+	+	1	-	-	-	-	+	+	+	+	
	EPHX-1	1	+	÷	-	-	- 1	-	+	+	+	+	+	EOM _{0.3} >>> EOM2.5-0.3: ++
	GSTA-4	1	-	-	-	-	- :	-	+	+	-	+	+	composés organiques

Gene expression of aryl hydrocarbon receptor (AHR), Aryl-Hydrocarbon Receptor Repressor (AHRR) and aryl hydrocarbon receptor nuclear translocator (ARNT), cytochrome P4501A1 (CYP1A1), cytochrome P4501B1(CYP1B1), epoxide hydrolase 1 (EPHX), glutathione S-transferase alpha 4 (GSTA4) enzymes in BEAS-2B cells exposed 6 and 24 h to $PM_{2.5-0.3}$, $OEM_{2.5-0.3}$, $NEM_{2.5-0.3}$ and and positive controls (B[*a*]P, 1-NP and 9-FLO). These values are depicted as mean values and standard deviations of 3 replicates for controls and 3 replicates for exposed cells (Mann–Whitney U-test; vs. Controls, +: P<0.05).

Evaluation of PM_{2 5} toxicity Beas-2b Cells

- Human Bronchial epithelial cells
- **Non-cancerous cells :** The cell line was originally isolated from the normal human bronchial epithelium of a cancer-free individual
- Immortalized and transformed with Ad12-SV40 2B
- Beas-2B has been used extensively as an in vitro model of pulmonary epithelium in many experimental contexts, including toxicology testing, respiratory injury, wound healing, and neoplastic transformation (Zhao and Walter T. Klimecki ,2015).

This is reflected in almost 1,200 publications referring to BEAS-2B in NCBI PubMed

Evaluation of cellular defense against oxidative stress

b. NRF2 binding activity

Nrf2 binding activity

🔳 6h 📕 24h

Cellular surrender after 24 hours has been revealed at the protein level, with an important increase in the activity of Nrf2 at 6h

 \rightarrow Significant increase after 6 and 24 H Increase was more important after 6H to C=12µg/cm²

> $PM_{2.5-0.3} > EOM_{2.5-0.3} > NEM_{2.5-0.3}$ $EOM_{0.3} > EOM_{2.5-0.3}$