

Long-term exposure to ultrafine particles and incidence of cardiovascular and cerebrovascular disease in the **EPIC-NL** cohort

GEORGE DOWNWARD

INSTITUTE FOR RISK ASSESSMENT SCIENCES (IRAS)

UTRECHT UNIVERSITY

Air pollution & CVD

CesaroniG, ForastiereF, StafoggiaM, AndersenZJ, BadaloniC, BeelenR, et al. 2014. Longter mexposure to ambient air pollution and incidence of a cute coro- nary events: prospective cohorts tudy and meta-analysis in 11 European cohorts from the ESCAPE project. BMJ348: f7412, PMID: 24452269, https://doi.org/10.1136/bmj.f7412.

Beelen R, Stafoggia M, Raaschou-Nielsen O, Andersen ZJ, Xun WW, Katsouyanni K, et al. 2014. Long-term exposure to air pollution and cardiovascular mortality: an analysisof22Europeancohorts. Epidemiology 25(3): PMID: 24589872, https://doi.org/10.1097/EDE.0000000000000076.

UFPs

UFPs & CVD

High alveolar deposition

Experimental & animal studies
Biological plausibility

Some epi studies performed

- Short term effect
- Limited spatial scale
- Existing illness

Project goals

Investigate the association between long-term UFP exposure & CVD

- EPIC-NL cohort
- High spatial scale

Compare to other pollutants

Methods – study population

EPIC-NL

- Prospect
 - 17,357 women
 - 49 70 yrs
 - Enrolled from breast cancer screening program
- MORGEN
 - 23,100 men & women
 - 20 65 yrs
 - Population enrolment
- Recruitment 1993 1997

Methods – UFP modelling

UFP predicted as per LUR models by van Nunen et.al.

- •6 European countries
- 242 monitoring sites (NL)
- 3 x 30 minutes per site
- LUR models developed
 - Traffic/industry etc.
 - $^{\circ} R^2 = 51\%$

Methods – other pollutants

LUR models developed for ESCAPE project • 40 (PM) to 80 (NO) sites • 3 x 14d period per site • R² of LURs: 51% (PM_{coarse}) to 92% (BC)

PM_{2.5}
PM_{coarse}
NO_x
NO₁₀
NO₂

Beelen R, HoekG, VienneauD, EeftensM, DimakopoulouK, PedeliX, etal. 2013. Developmentof NO2 and NOxland useregression models for estimating air pollution exposure in 36 study areas in europe - the ESCAPE project. Atmos Environ 72:10–23, https://doi.org/10.1016/j.atmosenv.2013.02.037.

EeftensM,BeelenR,deHooghK,BellanderT,CesaroniG,CirachM,etal.2012. DevelopmentoflanduseregressionmodelsforPM(2.5),PM(2.5)absorbance, PM(10)andPM(coarse)in20Europeanstudyareas;resultsoftheESCAPEpro- ject.EnvironSciTechnol46(20):11195–11205,PMID: 22963366, https://doi.org/10. 1021/es301948k.

Outcomes – incident disease

Endpoints	N. events	ICD9	ICD10
All cardiovascular disease	4,304	410-414, 427.5, 428, 415.1, 443.9, 430-438, 440-442, 444, 798.1,798.2, 798.9	120-126, 146, R96, G45, 160-167, 169, 170-174, 150
Coronary heart disease	2,399	410-414	120-125
Acute myocardial infarction	797	410	121, 122
Heart failure	369	428	150
Cerebrovascular event	1,283	430-438	160-167, 169, G45
Ischemic CVA (including TIA)	846	433-435	163, 165, G45
Haemorrhagic CVA	241	430, 431, 432	160-162

Methods – Cox models

Cox proportional hazards

• Age as time scale

One & two pollutant models

Pollutants predicted at baseline address

Models adjusted for:

- Sex
- Year of enrolment
- Smoking status, intensity, and duration
- Fruit and vegetable intake

Sensitivity tests of model robustness

- BMI
- Education
- Marital status
- Area-level SES

Results – population overview

Characteristic	N (%), or mean ± SD	Characteristic	N (%), or mean ± SD
	(min - max)		(min - max)
No. of participants	33,831	Marital Status	
Age at baseline	50 ± 11	Single	4,789 (14)
Years of follow-up	15 ± 2.4	Married/with partner	24,328 (72)
Gender		Divorced/separated	2,646 (8)
Male	7,846 (23)	Widowed	1,892 (6)
Female	25,985 (77)	Education level	
Smoking status		Primary school	5,678 (17)
Current	10,025 (30)	Secondary school	21,426 (64)
Former	10,837 (32)	University	6,508 (19)
Never	12,832 (38)		

Results – pollutants

Results – internal correlation

Results - CVD

HRs for the following increments: 10,000 particles/cm₃ for UFP, 5 μ g/m³ for PM_{2.5}, 5 μ g/m³ for PM_{coarse}, 10 μ g/m³ for PM₁₀, 1×10⁻⁵m⁻¹ for BC, 20 μ g/m³ for NO_x, and 10 μ g/m³ for NO₂.

Selected Bipollutant models - CVD

HRs for the following increments: 10,000 particles/cm₃ for UFP, 5 μ g/m³ for PM_{2.5}, 5 μ g/m³ for PM_{coarse}, 10 μ g/m³ for PM₁₀, 1×10⁻⁵m⁻¹ for BC, 20 μ g/m³ for NO_x, and 10 μ g/m³ for NO₂.

Results - CVA

HRs for the following increments: 10,000 particles/cm₃ for UFP, 5 μ g/m³ for PM_{2.5}, 5 μ g/m³ for PM_{coarse}, 10 μ g/m³ for PM₁₀, 1×10⁻⁵m⁻¹ for BC, 20 μ g/m³ for NO_x, and 10 μ g/m³ for NO₂.

Sensitivity analysis

Findings generally robust across multiple sensitivity tests

- Residential stability
- •Urban/rural separation
- Complete confounder information

Limitations

Temporal application of LUR models

- UFP measured in 2017
- Only one prediction per person
- Recruitment for EPIC began in 1990s

Exposure misclassification
 R² for UFP: 50%

Collinearity of measurements

Summary

CVD risk may not be adequately/completely explained by larger PM fractions

UFP gives additional insight into CVD risk

Issues relating to model performance and temporal application need further assessment.

Acknowledgements

Universiteit Utrecht

Rijksinstituut voor Volksgezondheid en Milieu Ministerie van Volksgezondheid, Welzijn en Sport

Roel Vermeulen	Jules Kerckhoffs
Erik van Nunen	Bert Brunekreef
Gerard Hoek	Ananya Roy
Jolanda Boer	John Gulliver
Monique Verschuren	Ivonne Sluijs
Yvonne van der Schouw	Kyle Messier
Paolo Vineis	

Imperial College London

EPIC nl

Contact: g.s.downward@uu.nl