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Abstract. The detachment and calculation of functionalities from a vehicle into 

a cloud creates new chances. By linking different data sources with the in-

vehicle data in the cloud, an optimization of these functionalities in terms of en-

ergy efficiency can be applied. For example, the Heating, Ventilation and Air 

Conditioning (HVAC) consumes up to 30% of total energy in a vehicle. Electric 

vehicles in particular lead to these high values because they are not able to re-

cover the waste heat from combustion engines for interior heating.  Therefore, 

the optimization of energy efficient strategies with respect to the vehicle energy 

management system becomes more relevant. Forecasts of the interior vehicle 

temperature are directly related to the HVAC energy consumption. This work 

focuses on the implementation and accuracy evaluation of Recurrent Neural 

Networks (RNN) for interior vehicle temperature forecasting. 
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1 Introduction 

The integration of vehicles with the Internet of Things (IoT) enables a stream of rele-

vant sensor data into a cloud system [1]. The combination of different external data 

(e.g. weather forecasts, traffic conditions) with in-vehicle data in the cloud allows 

new strategies for the energy optimization of the HVAC system. Forecasts of the 

interior vehicle temperature enables the creation of optimized HVAC control (e.g. 

On/Off schedules). The resulting system predicts future peak loads and preconditions 

the vehicle according to the created schedules. Such forecasting problems have been 

an issue of great importance especially for the case of building HVAC systems [2]. 

Machine learning algorithms allow us to tackle these problems in a novel way as they 

are able to learn and predict patterns based on different inputs.  



2 State of the Art of Time Series Forecasting Methods 

2.1 Recurrent Neural Networks 

In feed-forward neural networks, outputs of one layer is fed as input into the subse-

quent layers and each unit does relatively simple computations. Outputs are inde-

pendent of each other i.e., output at time t is independent of output at t-1. This idea of 

independence considered above does not match with sequences such as time-series 

data which consists of short-long term temporal dependencies that should also be 

taken into account [3]. For any given sequential data, the output depends upon previ-

ous information as  

well as the current input as shown in the Architecture of RNNs in Figure 1. 

 

 

Fig. 1.  Architecture of Recurrent Neural Network Model [3] 

Still RNNs lag in learning as the gap between required previous information and 

the point of requirement increases to a large extent.  

2.2 Long Short Term Memory Networks 

LSTM is a special architecture of a recurrent neural network especially used in the 

field of deep learning. The LSTM contains special units called memory blocks in the 

recurrent hidden layer. The memory blocks contain memory cells with self-

connections storing the temporal state of the network in addition to special multiplica-

tive units called gates to control the flow of information [4].  

A schematic of a LSTM block can be seen in Figure 2. It features three gates (in-

put, forget and output), block input, a single cell (the constant error carousel), and an 

output activation function. The output of the block is recurrently connected back to 

the block input and all of the gates [5]. 
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Fig. 2. Detailed schematic of a LSTM block [5] 

A schematic of a LSTM block can be seen in Figure 2. It features three gates (in-

put, forget and output), block input, a single cell (the constant error carousel), and an 

output activation function. The output of the block is recurrently connected back to 

the block input and all of the gates [5]. 

3 Concept for vehicle HVAC optimization 

Modern vehicles are equipped with numerous sensors that create huge amount of data 

transmitted over the vehicle`s bus communication systems [6]. Modern digital com-

munication paves the way to send this data from Controller Area Network (CAN) and 

other bus systems out of the vehicle into a cloud (V2X). As the cloud is basically a 

high-performance computer it is able to handle computing-intensive tasks like ma-

chine learning. We want to use this data to perform machine learning algorithms in 

the cloud and return the calculation results back into the vehicle.  

In order to optimize the energy consumption of a HVAC system, vehicle sensor da-

ta correlated to the operation of the system needs to be streamed into the cloud. The 

control of HVAC systems is calculated based on different temperature or temperature 

correlated inputs. The data we used for our machine learning forecasts is described in 

the following chapter. 

4 Datasets and Setup 

The Living Lab Bus Project1 offers development opportunities utilizing the fleet of 

electric buses running in normal operation on a few of Helsinki Region Transport 

(HSL) lines. The buses serve as a mobile sensor platform providing extensive selec-

tion of real-time and accumulated history data from both existing and third-party de-

                                                           
1 Living Lab Bus project: http://livinglabbus.fi/ 



vices. We used the data from the sensors that were installed on the bus. The sensor 

data is measured with a sampling rate of T=1 s. However, in order to create better 

forecasting models, each time series is sub-sampled with a period of T’= 5 min.  

Three sensor signals were taken into consideration: 

 Interior temperature in degrees Celsius. This is the interesting forecasting 

variable. 

 Air pressure measured in kPa 

 Humidity in mass of water vapor mH20 

 

The data handled needed further preparation as there were missing datapoints and 

busses didn’t have the same operating times each day. The training and testing dataset 

were created with consecutive days, where each day included the same operating 

times. 

Table 1 displays the training and testing dataset used for further processing. 

Table 1. Description of Training and Testing Datasets 

Dataset Number of Days Operating time Time interval 

Training 34 12 hours 5 mins 

Testing 9 12 hours 5 mins 

5 Experimental Results 

5.1 Evaluation Measures and Network Architecture 

The performance of the described forecasting methods is measured with two different 

error functions: Mean Average Error (MAE) and Root Mean Square Error (RMSE) 

[7]. The error is computed comparing target values for the time series st+1, st+2,…, st+z 

and its corresponding time series prediction ŝt+1, ŝt+2,…, ŝt+z. 

The network architecture consists of an input shape according to the shape of the 

training data, followed by 32 LSTM blocks and an output layer that makes a single 

value prediction. 

5.2 Evaluation Results 

The following is a summary of the results based on the above-mentioned measures. 

Two different models were created, one model was trained with all three mentioned 

features (sensor signals as described in section 4), the other model only used interior 

temperature as an input. Table 2 shows the results of the multiple features model, 

whilst Table 3 presents the results of the single feature model. Changing hyperparam-

eters like learning rate (lr), dropout (do) and recurrent dropout (rdo) had significant 

impact on MAE and RMSE.  
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Table 2. Evaluation measures of LSTM Model with multiple features and different 

Hyperparameters 

Hyperparameter MAE RMSE 

lr=0.0001, do=0.1, rdo=0.1 0.316055 0.383337 

lr=0.0001, do=0.2, rdo=0.3 0.282314 0.349757 

lr=0.05, do=0.1, rdo=0.1 0.498570 0.637318 

Table 3. Evaluation measures of LSTM Model with a single feature and different 

Hyperparameters 

Hyperparameter MAE RMSE 

lr=0.0001, do=0.1, rdo=0.1 0.308752 0.378731 

lr=0.001, do=0.1, rdo=0.1 0.223504 0.296546 

lr=0.05, do=0.1, rdo=0.1 0.498570 0.637318 

 

 

The training and validation loss (MAE) over 20 epochs corresponding to the best 

model from Table 3 are displayed in Figure 3. It can be seen that training loss is less 

than half of validation loss. Training loss seems to improve with the number of 

epochs while validation loss shows volatility. 

 

 

Fig. 3. Training and validation loss (MAE) single feature (LR=0.001, DO=0.1, 

RDO=0.1) 

 

Figure 4 shows the 12-hour prediction of the interior temperature of the best single 

and multiple feature models presented in Tables 2 and 3. The models are displayed 

adjoining ground truth. The plot of the single feature model adapts to trends but clear-

ly doesn’t show spikes as ground truth. The MAE and RMSE values for the multiple 

feature model were appropriate but the plot of this model doesn’t seem to fit ground 

truth. The graph doesn’t show trends and basically stays within a range of 0.2 degrees 

Celsius.  

 

 



 

Fig. 4. Prediction of the LSTM model with single and multiple features and ground 

truth 

6 Conclusion 

The research in this paper has been focused on how to predict the interior temperature 

of a vehicle (in this case a city bus), as this is directly related to the HVAC system 

energy consumption. Both a multiple and a single feature model were followed and 

their performances were examined with MAE and RMSE. The single feature model 

(only interior temperature) has shown promising results with a MAE ≈ 0.224 degrees 

Celsius. The addition of two other features in the multiple feature model didn’t show 

improvements. Air pressure and humidity covariates seem to not add new information 

to the model in order to improve forecasts.  

The results of this work are promising but further research has to be done especial-

ly when it comes to the already discussed combination of in-vehicle data with public 

data. While the overall best result was achieved with only one feature, this is clearly 

not said for the integration with several other data sources and needs to be examined. 

For the purpose of generating HVAC energy optimization, these forecasts have to be 

used for proactive settings of the HVAC system. Usual set points that can be influ-

enced are temperature set point and fan speed. By calculating an optimized HVAC 

schedule including the time constants of the HVAC control, the potential energy sav-

ings need to be evaluated. 
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