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Kurzfassung

Aufstrebende Technologien wie organische Leuchtdioden oder organische Photovoltaik sind angewiesen auf

den effizienten Transport von angeregten elektrischen Zuständen, wie z. B. Exzitonen. In Pflanzen basiert

Exzitontransport auf geordneten Arrangements von Porphyrin-Molekülen. Dieses Konzept kann künstlich

angewandt werden, indem solche Moleküle mittels eines metall-organischen Gerüsts (metal-organic framework,

MOF) angeordnet werden, was entweder als MOF-Pulver oder in Form eines dünnen Films (surface-anchored

metal-organic framework, SURMOF) möglich ist.

Bei SURMOFs handelt es sich um kristalline molekulare Gerüste, die ein hohes Maß an innerer Ordnung

aufweisen und dabei einfach aus Lösungen herstellbar sind. Bei den untersuchten SURMOF-Proben handelt

es sich um Dünnschicht-Filme, in welchen Palladium-Porphyrin-Verbindungsmoleküle (PdP) sich zu dicht

gepackten, aufrecht stehenden Ebenen anordnen. Indem PdP-Moleküle als Bausteine eingesetzt werden kann

eine hohe Ausbeute an Triplett-Exzitonen erzielt werden. Die üblicherweise langen Lebensdauern von Tripletts

sind vorteilhaft in Bezug auf den Transport von angeregten Zuständen über große Distanzen.

Im Zentrum dieser Dissertation steht die Untersuchung des Transports angeregter Zustände in besagten

PdP-SURMOF-Dünnschicht-Filmen. Dazu wird eine Kombination experimenteller Techniken eingesetzt. Ein

eigener Messaufbau für transiente Absorptionsspektroskopie (TAS) wurde im Zuge dieser Arbeit entwickelt und

aufgebaut. Ergänzt werden die TAS-Messungen von zeitaufgelöster Elektronenspinresonanz, zeitaufgelöster

und stationärer Lumineszenz-Spektroskopie sowie Lumineszenz-Mikrokopie.

Es zeigt sich, dass der Transport von Triplett-Exzitonen innerhalb von PdP-SURMOF-Filmen tatsächlich

effizient ist. Sprung-Raten zwischen benachbarten Molekülen auf der Größenordnung von 1011 s−1 können

ermittelt werden. Zusammen mit der langen mono-molekularen Lebensdauer der Tripletts ermöglicht dies

Diffusionslängen von mehreren Mikrometern (etwa 6.3µm). Der Exzitonen-Transport ist dabei stark anisotrop,

da eindimensionale Diffusion zwischen benachbarten Porphyrin-Ebenen bevorzugt stattfindet.

Anhaltende Beleuchtung, selbst unter Vakuum, führt zu einer fotochemischen Reaktion, welche Fotoprodukt-

Moleküle innerhalb der SURMOF-Struktur entstehen lässt. Bei diesen Defekten handelt es sich mit hoher

Wahrscheinlichkeit um Chlorin-Moleküle. Bei Kontakt mit diesen dissoziieren die Triplett-Exzitonen. Die daraus

entstehenden Radikale können mittels zeitaufgelöster Elektronenspinresonanz nachgewiesen werden. Diese

Deaktivierung der Tripletts verringert die erreichbare Diffusionslänge. Dies ist abhängig von der Konzentration

der Fotoprodukt-Defekte, welche wiederum von der Anzahl absorbierter Photonen abhängt. So führt zum

Beispiel eine Belichtung mit dem Äquivalent von 110 h Sonneneinstrahlung zu einer Verringerung der Triplett-

Diffusionslänge auf 45 % des Wertes in einem unbelichteten Film.

Eine weitere Begrenzung der Transport-Distanz von Triplett-Exzitonen stellt die Größe der PdP-SURMOF-

Kristallite dar. Dies konnte in den vorliegenden Filmen durch Lumineszenz-Mikrokopie ermittelt werden.

Korngrößen unterhalb des optischen Auflösungslimits verhindern die direkte Beobachtung von Exziton-Diffusion

über mehrere Mikrometer hinweg. Der eindimensionale Transport innerhalb der Kristallite ist jedoch weiterhin

effizient.

Einige lohnende Herausforderungen bestehen noch: Diese sind vor allem das Ändern der Vorzugsrichtung

des Transports, die Verbesserung der Fotostabilität des Materials sowie die Erhöhung der Kristallit-Größe durch

neue Herstellungsverfahren. Allgemein können PdP-SURMOFs jedoch bereits jetzt vorteilhafte fotophysikalische
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Kurzfassung

Eigenschaften attestiert werden, insbesondere im Hinblick auf Anwendungen welche auf effizienter Erzeugung

und dem Transport von Triplett-Exzitonen basieren.
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Abstract

Efficient transport of excited states such as excitons is an important ingredient in rising technologies such as

organic light-emitting diodes or organic photovoltaics. Exciton transport in plants relies on ordered arrays

of porphyrin molecules. This concept can be mimicked synthetically by arranging porphyrin molecules in a

metal-organic framework (MOF) powder or a surface-anchored MOF (SURMOF) thin film.

SURMOFs are crystalline molecular scaffolds that possess a high degree of internal order and are at the same

time easy to deposit as thin films from solution. The investigated palladium porphyrin (PdP) SURMOF samples

are prepared as thin films (≈ 200 nm thick) in which the porphyrin linkers assemble into upright-standing

sheets that are closely spaced. By utilizing PdP linkers as building blocks, a high triplet exciton yield can be

achieved. The typically long lifetimes of triplets are beneficial for long-distance excited state transport.

This thesis focuses on investigating the excited state transport in PdP SURMOF thin films by a combination

of experimental methods. Notably, a custom transient absorption spectroscopy (TAS) setup was developed

for this task. Other methods include time-resolved electron paramagnetic resonance spectrosopy (trEPR),

time-resolved and steady-state photoluminescence (PL) spectroscopy and PL microscopy.

Triplet exciton transport inside PdP SURMOFs is indeed found to be efficient, with exciton hopping rates on

the order of 1011 s−1. In combination with the long monomolecular triplet lifetime, diffusion lengths of several

micrometers (around 6.3µm) are possible. Exciton transport is established to be strongly anisotropic, favoring

1D triplet transport between adjacent porphyrin sheets.

Prolonged illumination – even under vacuum conditions – leads to a photochemical reaction that produces

photoproduct sites inside the PdP SURMOF. These defects are likely to be identified with chlorin molecules.

Triplet excitons dissociate at these sites. The resulting radicals can be monitored via trEPR. The triplet quenching

reduces the achievable diffusion length. This depends on the concentration of photoproduct sites which in turn

depends on the number of absorbed photons per volume. For example, exposure to an equivalent of 110 h of

sunlight leads to a reduction in triplet diffusion length to 45 % of the value in a pristine film.

Another limiting factor on the exciton transport distance is the size of crystalline domains in the PdP

SURMOF. This could be established in the present samples via PL microscopy. Domain sizes below the optical

resolution limit prevent direct observation of multi-micron exciton diffusion. However, 1D transport inside

each crystal domain is still efficient.

Some open challenges remain. These are, most notably, changing the preferential transport direction,

improving the material’s photostability and increasing the size of crystal domains by novel deposition methods.

Overall, the PdP SURMOF material is found to have highly beneficial photophysical properties already in its

present state, especially with regard to applications that rely on efficient generation and transport of triplet

excitons.
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1 Introduction

Nature clearly has a head-start when it comes to the design of light-harvesting and energy-transporting systems.

The intricate molecular machinery that drives photosynthesis in plants and bacteria is the result of eons of

evolution. Hence, when science and engineering set out to accomplish similar tasks, they are well-advised to at

least seek inspiration from the natural world. Photosynthesis, for instance, is based on light absorption by a

conjugated molecule – chlorophyll, from the family of porphyrins – and subsequent exciton transport that is

enabled by an ordered arrangement of the molecules.

Such excited state transport is also relevant for many technical applications, for example in organic light

emitting diodes (OLEDs) or (organic) photovoltaic (PV) devices. In the latter, ideally, all incoming light is

absorbed and converted into electricity. Light absorption in any material can be described by the Beer-Lambert

law, according to which the light intensity I is attenuated exponentially over the material’s depth coordinate z:

I(z) = I0e−z/LA , (1.1)

where, I0 is the incoming light intensity and LA is the absorption length. After LA, around 63 % of all incoming

photons have been absorbed. This leads to the creation of excited states. In inorganic semiconductors, this may

be electrons and holes moving independently in the conduction and valence bands, respectively. In organic

semiconductors, the electron-hole pair is bound due to the larger Coulomb interaction in the low dielectric

environment. The electron and hole then move together, creating a quasi-particle called an exciton.

In order to be useful for electricity generation, the excited states need to be transported to an interface such

as an heterojunction. If the distance to an exciton’s origin is too big, the exciton cannot reach this interface

during its limited lifetime and it recombines. This loss mechanism reduces the solar cell’s efficiency. Hence, it

is crucial that the excitonic transport length (or diffusion length, LD) – defined as the average displacement of

an exciton during its lifetime – is sufficiently long: LD > LA.

Excitons are initially created as spin singlets. In the incoherent limit, when singlet excitons hop between

molecules via Förster resonance energy transfer (FRET), a theoretical upper bound of 200 nm can be placed on

their diffusion length [5]. However, in practical applications, such as organic solar cells based on semiconducting

polymers or small molecules, singlet exciton diffusion lengths on the order of 10 nm are typically measured [6].
The singlet’s transport length can be extended beyond the theoretical incoherent limit by designing systems

in which transport is assisted by coherent mechanisms (i. e. the excitation becomes delocalized over many

molecules). In this way, singlet exciton transport lengths on the micron scale have been achieved in self-

assembled organic systems such as nanotubes [7, 8] and nanofibers [9] as well as in a conjugated polymer

wire embedded in a crystal [10]. However, translating the impressive transport lengths into practical energy

harvesting devices based on these exotic material systems is a topic of ongoing research.

Another option for achieving large transport lengths while remaining reliant on incoherent diffusion is to

alter the spin state of the exciton to one of triplet character. In this case, the transport shifts from FRET to a

Dexter mechanism, which relies on the exchange of two electrons between neighboring molecules. Notably,

there is no theoretical upper limit to the diffusion length for triplet excitons [5]. It is, however, highly dependent

on the wave function overlap between adjacent molecules and on the mesoscale order within the system [11].
For example, the triplet diffusion length in single-crystal rubrene is around 4µm [12], whereas triplet transport

lengths in semiconducting polymer films typically do not exceed 100 nm [6, 13].
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1 Introduction

An advantage of Dexter transport over FRET is that the exciton transport pathways and their direction can

be better controlled via molecular arrangement and especially the inter-chromophore distances. Networks that

enable anisotropic 1D transport were suggested to be particularly desirable for light harvesting [14], as energy

transfer can be directed towards an interface or – similar to photosynthesis – a reaction center.

As mentioned above, the ratio between the transport length and the absorption length, LD/LA, is crucial

when it comes to designing efficient PV materials. This ratio is graphically reviewed in Figure 1.1 for a variety

of materials used in photon-harvesting applications. The larger the ratio, the better suited is the material for

photon harvesting. If the ratio is greater than 1, the majority of incident photons can be absorbed, and the

majority of the excited states created can be transported to the material’s surface where they can be used to

drive a reaction. If the ratio is less than 1, either a reduced fraction of the incident light can be absorbed or a

reduced fraction of the excited-states created can be transported to the material’s surface. Therefore, materials

whose transport length exceeds their photon absorption length are ideal for photon energy harvesting. Whereas

inorganic materials (such as silicon or copper indium gallium selenide (CIGS)), and hybrid materials (such

as methylammonium lead halide perovskite) fulfill this requirement, organic materials that can be used to

fabricate large area devices usually do not.

Because the processes involved in photosynthesis are similar to those in organic PV, it makes sense to look

to nature for inspiration. Ordered arrays of molecules from the family of porphyrins are used both as absorbing

chromophores and for efficient singlet exciton transport. One way to obtain such ordered arrangements of

(porphyrin) molecules, while retaining the ability to deposit the material on large areas, is the fabrication of

surface-anchored metal-organic frameworks (SURMOFs). These thin film materials consist of metal nodes that

are connected by organic linker molecules. They can be easily deposited from solution and self-assemble into

crystalline molecular scaffolds with a high degree of order. Moreover, choosing linker molecules with a high

triplet exciton yield allows to extend the transport length, as discussed above.

This thesis will demonstrate that a palladium-porphyrin-based SURMOF thin-film can achieve a LD/LA ratio

of around 60 by utilizing anisotropic (1D) triplet diffusion as its transport mechanism. This establishes that

0.01 0.1 1 10 100

transport length / absorption length

silicon

CIGS

perovskite

PbS QDs

thin films

thin films

nanowires/-tubes

PdP SURMOF

1,000

single crystals

   inorganic/hybrid materials

organic materials, by 
transport mechanism:
   singlet diffusion
   coherent singlet transport
   triplet diffusion

Figure 1.1: Comparison of typical ratios of excited state transport length to absorption length (in the visible and near-infrared) in
several materials. The transport mechanism in inorganic or hybrid materials (crystalline silicon [15, 16], perovskites [17,
18], CIGS [19, 20] and PbS colloidal quantum dots [21]) is charge carrier diffusion. In organic materials, excited states
move via incoherent singlet exciton diffusion [6, 13], incoherent triplet exciton diffusion (in thin films [6, 13, 22] or
molecular crystals [6, 12, 13, 23, 24]) or coherent singlet transport [7, 8, 10, 13]. This work establishes the ratio for
anisotropic triplet exciton diffusion in a PdP SURMOF as around 60 (for LA calculated at the absorption maximum).

2



such material systems should be of definite interest for photon harvesting applications. What distinguishes this

material from other organic systems with micron-scale transport length is the fact that the fabrication process

is scalable. Large area thin films of varying thickness and of good optical quality can be easily deposited [25].
Furthermore, this thesis looks into the film’s photostability and how film morphology affects the achievable

transport distance. The three key topics of this thesis are illustrated in Figure 1.2.

Outline

In chapter 2, the theoretical background of this work is established. First, relevant excitonic processes are

presented and discussed, followed by a closer look at porphyrin and its properties. Then, metal-organic

frameworks (MOFs) are introduced and an overview of relevant publications focusing on exciton transport

in MOFs and SURMOFs is given. Lastly, pump-probe spectroscopy is introduced, as this is one of the main

investigative methods used in this work. In chapter 3, relevant experimental techniques and setups are described

in detail.

The experimental results of this thesis are presented in chapter 4 to chapter 6. First, in chapter 4, basic

photophysical properties of the investigated SURMOF films are established. Furthermore, triplet exciton

transport is investigated by transient absorption spectroscopy (TAS) and found to be efficient and anisotropic.

In chapter 5, the effect of prolonged illumination on the film’s photoresponse is examined. The effect of

film morphology – more specifically, the size of crystalline SURMOF domains – is investigated in chapter 6.

An attempt to directly measure the triplet diffusion length via luminescence microscopy is presented, which

reveals that long-range exciton diffusion is limited in the present thin films by the crystal domain size. This is

corroborated in an independent steady-state PL experiment.

In chapter 7, the findings are summarized and discussed in the context of current literature. Potential

approaches to overcome the investigated material’s drawbacks and to increase its utility are presented as well.

exciton transport photostability morphology

Figure 1.2: Illustration of the key topics in this thesis: Anisotropic triplet exciton transport, photostability under extended illumination
and the impact of film morphology on the photoresponse (probed by direct observation via luminescence microscopy) in a
porphyrin-based SURMOF.
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2 Theoretical Background

This chapter introduces fundamental concepts used in this thesis.

2.1 Excitons in Organic Semiconductors

This section presents a brief fundamental background to excitonic processes in organic semiconductors. Further

details can be found in the textbooks Electronic Processes in Organic Semiconductors [26] and Electron Spin

Resonance Spectroscopy of Organic Radicals [27].

2.1.1 Electronic States in a Molecule

When atoms form a molecule, their orbitals combine to form new molecular orbitals (MOs). In the ground

state configuration, these are occupied by the electrons according to Hund’s rules, starting from the lowest

energy MO until the highest occupied molecular orbital (HOMO). The next-highest orbital is known as the

lowest unoccupied molecular orbital (LUMO). These two MOs – known as the frontier orbitals – play a critical

role in electrical and optical processes.

Absorption of light can excite an electron from the HOMO (or a lower orbital) to the LUMO (or a higher

orbital), while a “hole” is left in the MO where the electron originated. This hole can be described as a

quasi-particle with positive elementary charge. The recombination of electron and hole can occur via emission

of a photon. Typical energies for the HOMO-LUMO gap in organic semiconductors are 2 eV to 3 eV (about

600 nm to 400 nm in wavelength units).

Ignoring electron-electron interactions, the excited state lowest in energy is that of one electron in the

HOMO and one in the LUMO. However, such interactions are usually not negligible. A superior approximation

– known as configuration interaction – of the excited state(s) can be obtained by describing such states as

weighted linear combinations of different electron configurations. Here, a configuration is defined as one way

to distribute the molecule’s electrons on the MOs. Typically, the lowest excited state is composed of a 80 % to

95 % contribution of the configuration with one electron in both HOMO and LUMO, with other configurations

(e. g. one electron in the HOMO, none in the LUMO and one in the LUMO+1) making up the remaining 5 % to

20 %. Often, the state picture is more useful than the description of the molecule by orbitals.

2.1.2 Aggregates

When two molecules (with ground state energies E1 and E2) are close together, they can no longer be treated

as independent monomers. The ground state energy of this dimer system becomes

Eg = E1 + E2 + D , (2.1)

where D is a (negative) contribution due to van-der-Waals interaction [26]. If one of the molecules is excited

(E1→ E∗1), the energy of the dimer is given by [26]:

E± = E∗1 + E2 + D′ ± β . (2.2)
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Here, D′ represents the van-der-Waals interaction between one molecule in the ground and one in the excited

state (|D′|> |D|). The last term, β , is a resonance interaction, which leads to a splitting of the energies into E−
and E+.

Figure 2.1 shows how the energies change from monomer to dimer arrangement. Importantly, the optical

transitions depend on the relative alignment of the two transition dipole moments. When the molecules are

aligned side-by-side, the dipoles can be arranged parallel or anti-parallel. In the latter case, the resulting total

dipole moment is zero, therefore the transition has no oscillator strength and is optically forbidden. Only the

transition to the higher-energy state E+ is allowed, which shifts the absorption spectrum to a smaller wavelength.

Because of this hypsochromic shift, this molecular side-by-side configuration is called an H-aggregate. When

the dipole moments are aligned in a collinear or anti-collinear fashion, again, only the transition with a

non-vanishing net dipole moment is allowed. In this case it is the transition to E− and the absorption spectrum

shifts to longer wavelengths. Such dipole arrangements are called J-aggregates.1 When the dipoles are arranged

neither in H- nor in J-aggregate configuration, both transitions obtain oscillator strength and are allowed,

which leads to a splitting of the absorption spectrum.

2.1.3 Excitons

One of the major differences between inorganic and organic semiconducting materials is their relative per-

mittivity (also known as dielectric constant) εr. In inorganic semiconductors (such as silicon), the relative

permittivity can typically be as high as εr ≈ 11. Hence, the coulomb interaction between an electron and a hole

are efficiently screened. An electron that is lifted to the conduction band by light absorption can be considered

as “free”. The same goes for the resulting hole in the valence band. In contrast, the relative permittivity

is typically lower in organic semiconductors, with values of around εr ≈ 3.5. Upon absorption of light, an

electron-hole pair is created, which is bound by the unshielded coulomb attraction. Typical binding energies

are 0.5 eV to 1.0 eV. This bound electron-hole pair can be described by a single quasi-particle, an exciton.

In organic semiconductors, the typical distance between the electron and hole comprising an exciton is

below 1 nm, which is smaller than the typical intermolecular distance in organic crystals or polymers. This is

known as a Frenkel exciton. In inorganic semiconductors, Wannier-Mott excitons can be formed which have

electron-hole distances up to 10 nm and span several unit cells. A third type of exciton, the charge-transfer

exciton, is formed when absorption of light leads to the creation of electron and hole in adjacent unit cells. The

three exciton types are visualized in Figure 2.2. In the remainder of this thesis, the term exciton is used as

shorthand for a Frenkel exciton, unless otherwise specified.

2.1.4 Spin States

For a more complete picture, the spin states of the electrons have to be considered as well. For a multi-electron

system, the total spin quantum number S is the positive sum of all single-electron spin quantum numbers

(s = ±1/2). In other words, S is the eigenvalue of the spin operator ~S2. Likewise, the magnetic spin quantum

number MS is the eigenvalue of Sz , the projection of the spin vector ~S on the z-axis. A full orbital with paired

spins does not contribute to S, because the two spin components cancel each other out. Thus, only singly

occupied orbitals need to be taken into account. The magnetic spin quantum number can take the values

MS = S, S−1, . . . ,−S, which results in 2S+1 possible combinations. This value is known as the spin multiplicity.

For example, a single unpaired electron – also known as a radical – has S = 1/2, a multiplicity of 2 and

therefore two possible values for MS (+1/2 and −1/2). This is called a doublet state. It is visualized in

1 For terminological consistency with the H-aggregate, they should in theory be called B-aggregates due to the bathochromic shift. Instead,
the J-aggregate is named after E. E. Jelley, who first characterized such aggregates in 1936 [28]. Moreover, as they were discovered
independently by G. Scheibe [29], they are sometimes also called Scheibe aggregates.
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Figure 2.1: Energies and transitions for independent monomers (left) and dimers (right) in H-, J-, and arbitrary dipole configuration
(see text). The blue arrows indicate the transition dipole moments and their relative alignment. At the bottom of the figure,
the effect of the aggregation on the absorption spectrum over the wavelength λ is depicted schematically.

Frenkel Wannier-Mott charge-transfer

Figure 2.2: Schematic illustration of bound pairs of electrons (-) and holes (+) on a periodic lattice of molecules or atoms. The
electron-hole distance (indicated by a red circle) is smaller than the lattice constant for a Frenkel exciton, whereas it is
larger for a Wannier-Mott exciton. In a charge-transfer exciton, electron and hole are located on adjacent lattice sites.
Adapted with permission from Pope et al. [30].

Figure 2.3A. In case of an exciton, there are two unpaired electrons and the total spin quantum number is

either S = 1/2− 1/2 = 0 or S = 1/2+ 1/2 = 1. The first case has a multiplicity of 1 and is called a singlet

(MS = 0), whereas the second case has a multiplicity of 3 and is called a triplet (MS = −1, 0,+1). These states

are visualized in Figure 2.3B and Figure 2.3C, respectively. When two excitons interact, there are four unpaired

electrons involved that form singlet (S = 0), triplet (S = 1) and quintet (S = 2) states (see also section 2.1.8).

It is instructive to note that both singlet and triplet state share the same electron configuration. Yet, due

to their spin alignment, their energy and wavefunction differ and they are two distinct excited states. This

highlights the importance of not confusing orbitals or configurations with states.

Most organic molecules are in a singlet ground state (with molecular oxygen being a notable exception),

denoted as S0. As electronic transitions that change the spin multiplicity are forbidden (the selection rule is

∆S = 0), absorption of a photon leads to an excited singlet state Sn. Due to nonradiative internal conversion,
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Figure 2.3: Precession of the spin vector ~S about a magnetic field ~B in the z-direction. (A) The two components of the doublet state of a
single unpaired electron (a radical). (B) The singlet state and (C) the three components of the triplet state for two unpaired
electrons (e. g. an exciton). Adapted with permission from Gerson & Huber [27].

this state quickly transitions to the lowest excited singlet state S1 on a typical timescale of picoseconds. This

state decays radiatively back to the ground state. The corresponding emission is called fluorescence, with typical

lifetimes on the order of 10 ns. A conversion between singlet and triplet states is spin-forbidden. However, the

transition from excited singlet to triplet state S1→ T1 – known as intersystem crossing (ISC) – can be enabled

if the change in spin angular momentum of an electron can be compensated by an opposite change in orbital

angular momentum (spin-orbit coupling). The presence of heavy atoms (such as palladium) can facilitate

this. As the return to the singlet ground state is again spin-forbidden, the rate of the radiative transition

T1 → S0 (called phosphorescence) is small. Hence, the triplet state’s lifetime is typically long and can range

from hundreds of microseconds up to several minutes. Furthermore, exchange interaction leads to an energy

difference between singlet and triplet states.

A Jablonski diagram illustrating the transitions between exciton states is shown in Figure 2.4A. The

respective configurations are depicted in Figure 2.4B. The Coulomb interaction leads to an increase in the

HOMO and a decrease in the LUMO of the singlet state. The exchange interaction has a similar additional

effect on the triplet’s frontier orbitals.
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Figure 2.4: Energy levels in an organic molecule. (A) Simplified Jablonski diagram of the radiative and nonradiative transitions be-
tween exciton states. (B) Orbital configuration of a singlet ground state and excited singlet and triplet states. Only the
dominant configuration of each state is shown and only one of the three triplet configurations is depicted. The effect of
Coulomb and exchange interactions on the HOMO/LUMO energies is indicated for the excited states.

2.1.5 Zeeman Splitting

The magnetic moment ~µe of an electron is proportional to the spin vector

~µe =
ge(−e)
2me

~S , (2.3)

where ge is the so called g-factor (ge = 2.0023 for a free electron), e = 1.6022× 10−19 C is the elementary

charge, and me = 9.1096× 10−31 kg the electron mass [27]. This magnetic moment enables interaction with

an external magnetic field ~B. The interaction energy E for a field in z-direction is

E = − ~µe · ~B = geµB MSB , (2.4)

with the Bohr magneton µB = ħhe/(2me) [27]. Thus, the energies of the spin substates of e. g. doublet or triplet

states split according to MS when an external magnetic field is applied. This is known as the Zeeman effect.

Notably, even without external field, the three triplet substates are not degenerate. Interaction between the

unpaired spins such as dipole-dipole coupling lead to zero-field splitting, which depends on the molecular

geometry. The effect of an external magnetic field on the energy levels of a doublet, singlet and triplet state are

depicted in Figure 2.5.

2.1.6 Exciton Transport Mechanisms

In a perfect, static molecular crystal, excitons can move coherently between lattice sites until they decay.

However, energetic disorder in the crystal as well as scattering at phonons (which occur in the crystal at

non-zero temperatures) lead to exciton localization and a loss of coherence. In this case, excitons motion in

the molecular crystal is an incoherent process and can either occur via a emission and absorption of a photon

(trivial transfer), nonradiative energy transfer (Förster process) or an electron exchange (Dexter process). The

three mechanisms are illustrated in Figure 2.6 for exciton transport from a donor molecule D to an acceptor

molecule A.

In case of trivial transfer, the excited donor decays to the ground state and emits a photon, which in turn

is absorbed by the acceptor. This two-step process requires overlap of the donor emission spectrum with the
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Figure 2.6: Visualization of exciton transport from an excited donor molecule D∗ to an acceptor molecule A via (A) trivial transfer,
(B) Förster resonance energy transfer (FRET), and (C) via the Dexter exchange mechanism.

acceptor absorption spectrum. No quantum chemical coupling of D and A is necessary. As this type of energy

transfer can cover large distances, it is frequently encountered in dilute solutions.

In more dense materials where the molecules are in close proximity, nonradiative exciton transfer occurs.

For molecules that are coupled via dipole-dipole interaction, FRET leads to simultaneous de-excitation of D

and excitation of A, effectively moving the exciton state between molecules (see Figure 2.6B). The rate of this

energy transfer can be expressed as

kFRET =
1
τD

�

R0

R

�6

, (2.5)

where τD is the excited state lifetime of the donor in absence of the acceptor, R is the distance between D and

A, and R0 is the so called Förster radius [26]. At R = R0, the probability of FRET and (non-)radiative decay are

equal. Typical R0 values are in the range of 1 nm to 4 nm. The Förster radius depends on the dipole-dipole

orientation, the donor’s quantum yield, and the spectral overlap integral J between donor emission and acceptor

absorption.
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Dexter transport occurs when the coupling between D and A is not due to dipole-interactions but caused

by an exchange interaction. Here, an excited electron (e. g. in the LUMO) is transferred from D to A, while

simultaneously a HOMO electron transfers from A to D (see Figure 2.6C). The transfer rate is

kDexter∝ J exp
�

−
2R
L

�

, (2.6)

where L is the sum of the donor’s and acceptor’s van-der-Waals radii [26]. For Dexter transport to occur, overlap

of the quantum mechanical wavefunctions of D and A is required.

FRET and Dexter transport can be present in a material at the same time. Because of the shorter range of

the Dexter interaction, energy transfer occurs preferentially via FRET for distances above 1 nm. However, in a

FRET process, the ground and excited states involved need to be of the same spin multiplicity. This is the case

for a singlet exciton, but a triplet exciton cannot be transferred to an acceptor in a singlet ground state via

FRET. Therefore, triplet transport is usually a Dexter process.2

2.1.7 Exciton Diffusion

In absence of an external gradient such as an electromagnetic field3 or a temperature or concentration difference,

a particle’s motion is undirected and can be described as a random walk. The average distance a particle has

traveled in the time t after its creation can be expressed as

L =
p

2Z Dt , (2.7)

where Z is the dimensionality of the diffusion process (e. g. Z = 3 for 3D diffusion). The factor D is known as

the diffusion coefficient.

In a molecular crystal with lattice spacing a, Equation 2.7 allows to calculate the time thop it takes an

exciton to perform a single “hop” between molecules by setting L = a. The hopping rate khop = t−1
hop is then

given by

khop =
2Z D
a2

. (2.8)

In case of pure FRET or Dexter transport, khop can be equated to kFRET or kDexter from above (Equation 2.5 and

Equation 2.6).

During an exciton’s lifetime τ, the average displacement due to diffusion is given by Equation 2.7 as

LD =
p

2Z Dτ . (2.9)

This distance is known as the diffusion length. An upper limit for the diffusion length of singlet excitons was

calculated by Yost et al. [5] as LD,S,max = 230 nm. The reason for this limit is that the FRET transfer rate

increases with the transition dipole moment µ (kFRET ∝ µ4), but so does the radiative decay rate, which

reduces the lifetime (τ ∝ µ−2). Hence, there exists an optimal value for µ which results in a maximum

diffusion length.4 Typical singlet diffusion lengths are in the range of 2 nm to 20 nm, which is well below the

fundamental limit [6]. In contrast, no intrinsic limit of the diffusion length exists for triplet excitons because

Dexter transport does not rely on dipole interactions. Additionally, the longer lifetime of triplets leads to larger

diffusion lengths, which can be well above 100 nm [6]. Moreover, even longer triplet exciton diffusion distances

2 Spin-orbit coupling can lead to a “mixing” of singlet and triplet wavefunctions, which enables FRET for triplet excitons. This is relevant
e. g. in organometallic compounds.

3 Notably, an exciton is electrically neutral and therefore not affected by external electric fields.
4 This limit exists for the incoherent transport of singlets. Exciton delocalization and coherent transport can lead to significantly longer

singlet transport distances of 1µm to 3µm [7–9] and even 20µm in a quantum wire cooled to 10 K [10]. However, these reports consider
single nanofibers or nanowires and have not yet been scaled up to macroscopic films.
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2 Theoretical Background

have been reported, such as 1.6µm (3D diffusion) in an anthracene-based MOF [31], 1.7µm to 3.9µm in a

ladder-type conjugated polymer [32], and 4µm along one crystal axis in a rubrene single crystal [12].

2.1.8 Triplet-Triplet Annihilation

During their diffusion, two triplets can collide an form an encounter complex. Depending on the total spin STT

of this complex, either a singlet, triplet or quintet state is formed:

T1 + T1→ (TT)∗→















S1 + S0 + heat, if STT = 0

T1 + S0 + heat, if STT = 1

Q1 + S0 + heat, if STT = 2

(2.10)

There are 32 possible combinations of spin states: one results in a singlet, three in a triplet and five in a quintet.

Therefore, the probability of forming a quintet should be highest. However, the quintet state is usually higher

in energy than two times the triplet energy and thus not accessible. Regardless, the probability that one triplet

exciton remains after the encounter is three times as high as for the case where a singlet remains. As in both

cases the number of triplet excitons is reduced in the system, this bimolecular process is called triplet-triplet

annihilation (TTA).

A general rate equation for triplet excitons that can decay both through monomolecular and bimolecular

decay channels is given by
d[T]
dt

= −kGS[T]− f γ(t)[T]2 , (2.11)

where [T] = [T](t) denotes the triplet concentration, and kGS the combined rate of all monomolecular decay

processes to the ground state, such as photoluminescence (PL). The factor f depends on the expectation value

for the number of remaining triplets after a pair encounter (e. g. f = 1 when exactly one triplet survives every

encounter). Finally, γ(t) is the bimolecular TTA rate coefficient.

Interestingly, the time-dependence of γ(t) is related to the dimensionality of the diffusion process. When

triplets can diffuse in all three spatial direction, the TTA rate coefficient is given by [33, 34]

γ3D(t) = 8πDR
�

1+
R

p
2πDt

�

. (2.12)

This model assumes that two triplets interact as soon as their distance is closer than the interaction radius R.

This distance is typically on the order of the lattice constant in a crystal.

If the diffusion of triplets is restricted to a single dimension, γ(t) is given by [34, 35]

γ1D(t) =
1
an

√

√8D
πt
=
γ0p

t
, (2.13)

where a is the distance between molecules along the transport direction and n is the 3D concentration of

molecules. The experimentally accessible parameter γ0 can be used to calculate the diffusion coefficient:

D =
π

8
(γ0an)2 . (2.14)

2.2 Porphyrin

Often called “the pigments of life”, porphyrins are a versatile class of molecules that is at the center of many

natural processes such as photosynthesis in plants (in the form of chlorophylls) or oxygen transport in the

blood of most vertebrates (in the form of hemes). As nature selected these molecules after billions of years of
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2.2 Porphyrin

evolutionary competition, porphyrins clearly have beneficial physical and chemical properties, which could be

used in the creation of novel organic systems, e. g. for artificial light-harvesting systems. This section describes

some basic derivatives of this class, their optical properties and presents some examples of how porphyrins

have been put to use – either by nature itself or by scientists in the lab.

2.2.1 Types of Porphyrins

The most basic porphyrin is porphin.5 It is a macrocyclic tetrapyrrole, which means it is a molecule that

consists of a conjugated ring of four pyrroles in four-fold symmetry. A metal ion can be bound in the molecule’s

center. An unmetalated porphyrin is labeled free-base (FbP) and has a lower symmetry than its metalated

counterpart. Reduction of one peripheral double bond leads to chlorin,6 which forms the macrocycle of

chlorophyll. Reducing another double bond yields – depending on the position of the reduced bonds –

bacteriochlorin or isobacteriochlorin. These molecules are shown in Figure 2.7. More complex porphyrins are

formed by modification of these fundamental molecules such as attachment of substituents. As an example,

Figure 2.7 also shows bacteriochlorophyll a, which is central to the photosynthesis mechanism in purple bacteria

(see page 15).

5 Sometimes also spelled porphine.
6 Not to be confused with chlorine!
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CH3

CH3CH3CH3CH3

H3C
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HNN

porphin (free-base) porphin (metalated) chlorin

bacteriochlorin isobacteriochlorin bacteriochlorophyll a

Figure 2.7: Different porphyrins. The letter M denotes the position of a metal ion. Please note that porphin, chlorin and the bacteri-
ochlorins differ in their number of double bonds. The structure of bacteriochlorophyll a is taken from the ChEBI database
[36, 37].
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2 Theoretical Background

2.2.2 Optical Properties of Porphyrin

The electronic properties of porphyrins can be described by the four-orbital model established by Gouterman [38,

39]. It considers the four frontier orbitals b1, b2, c1 and c2 as depicted in Figure 2.8A. In a metalloporphyrin

(with four-fold symmetry), the HOMO levels b1 and b2 are nearly degenerate and the LUMO levels are exactly

degenerate (see Figure 2.8B). The resulting states split due to configuration interaction into a low-energy

state with vanishing transition dipole moment and a high-energy state with a large transition dipole. The

corresponding optical absorptions are called the Q-band and the Soret band7, respectively. They are shown in

Figure 2.8C.

In chlorin, the molecule’s symmetry is lowered, which lifts the degeneracy of the b and c orbitals. Further-

more, the y polarization component of the Q-band (after the convention in Figure 2.8) is no longer forbidden by

configuration interaction and becomes significant. It is also shifted to lower energies, whereas the y-component

of the Soret absorption is blue-shifted. As the x-polarized transitions b1 → c2 and b2 → c1 remain (nearly)

degenerate, the Qx band is still suppressed. Going to bacteriochlorin continues the trend (blue-shifted Soret

band, red-shifted Qy band). These changes can be seen well in the absorption spectra in Figure 2.9.

The central metal ion in metalloporphyrins influences their electronic properties. For example, the metalation

affects the shape of the frontier orbitals slightly and influences their energies [42]. As another example, the

ISC yield depends on the mass of the central atom. Accordingly, it increases from free base over zinc- to

palladium-metalated porphyrin [43]. Notably, the ISC yield was determined as 1 in several palladium porphyrin

derivatives [43, 44].
7 Named after Jacques-Louis Soret who first described this absorption peak in 1883 [40]. Sometimes also called B-band.
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Figure 2.8: The four orbital model. (A) The frontier orbitals of porphyrin, labeled after the convention introduced by Gouterman [38].
Reproduced with permission from Otsuki [41]. (B) Schematical electronic transitions between the orbitals in metallated
porphyrin, chlorin and bacteriochlorin. (C) State diagram of the resulting electrical transitions. The Q-band transition is
forbidden in porphyrin, but partially allowed in chlorin and bacteriochlorin.
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Figure 2.9: Absorption spectra of naturally occurring chlorophylls with porphyrin, chlorin and bacteriochlorin macrocycles in THF.
Adapted with permission from Otsuki [41] and Wang & Tamiaki [42].

2.2.3 Porphyrins in Light Harvesting

Photosynthesis in phototrophical plants and bacteria is driven by absorption of light in antenna chromophores

followed by energy transfer to a reaction center where charge separation occurs. This allows the plant to store

chemical energy. To increase the yield of this process, hundreds of antennas are associated with one reaction

center to increase the transfer frequency of excitons to the reaction center [41]. Exciton transport from the

antennas is required to be efficient.

The LH2 Complex in Purple Bacteria

As just one of many possible example systems, the light harvesting complex LH2 in purple bacteria shall be

summarized here (based on Otsuki [41]). The LH2 complex of Rhodopseudomonas acidophila is depicted

in Figure 2.10A. This protein complex contains a ring of nine building units, which in turn contain three

bacteriochlorophylls (BChl a, see Figure 2.7) and a carotenoid. The BChl a chromophores are labelled B800

and B850, according to the wavelength of their Q-band absorption peak (800 nm and 850 nm, respectively).

The distance between B800 chromophores (measured between Mg atoms) is 21.3 Å and they are isolated. In

contrast, the B850 molecules are 9.2 Å apart and they are electronically coupled, which leads to a delocalization

of the exciton over 2-6 chromophores. Hence, the time constant for exciton transport among B800 molecules is

500 fs, whereas it is 100 fs to 200 fs for the B850 ring. Transfer between the rings (from B800 to B850) occurs

in around 1.2 ps. From here the excitons can transfer to another similar light harvesting complex, LH1, which

is also a ring of bacteriochlorophylls (B875). A final step from the LH1 complex to the reaction center occurs

on the timescale of 35 ps. The whole process is depicted in Figure 2.10B. The efficiency of the whole process is

high, as the lifetime of the excited state (1 ns to 2 ns in LH1) is long compared to the individual steps.
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B875
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B850

B800
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100-200 fs

35 ps
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100-200 fs

LH2

reaction
center

LH1

A B

Figure 2.10: Light harvesting in purple bacteria (Rhodopseudomonas acidophila). (A) Side and top view of the LH2 complex. The
B850 bacteriochlorophyll a molecules are colored pink and purple due to their different local environments. The B800
molecules are colored cyan. Reprinted with permission from Caprasecca et al. [45]. (B) Time constants in the LH2 and
LH1 complexes. Adapted with permission from Fleming & Grondelle [46] and Mirkovic et al. [47].

Synthetic Approaches

Synthetic light harvesting can mimic nature’s approach of photon absorption by antenna chromophores and

exciton transfer. Instead of using a reaction center and additional biochemical steps to store chemical energy,

electrodes can be used to extract electricity. A multitude of different approaches has been examined, especially

in the realm of supramolecular structures, such as self-assembled porphyrin rings and boxes, aggregates and

MOFs. Porphyrins have been even attached to viruses, DNA or existing natural light harvesting complexes. An

excellent overview is given in a review by Otsuki [41].
This thesis will focus on porphyrin-based MOFs. An overview of existing work on exciton transport in such

materials is given in section 2.3.2 on page 17.

2.3 Metal-Organic Frameworks

As order is beneficial for exciton transport, it is obvious that crystalline chromophore assemblies are a promising

research direction. One way to create such highly ordered structure is spontaneous self-assembly of molecular

building units into coordination networks. In case of metal-organic frameworks (MOFs), these units are metal-

based nodes and organic ligands (known as linkers). Together, they form nanoporous8 crystalline networks

via coordination bonds. The choice of ligands allows tuning of the network geometry. One way of applying

the material is by employing its porosity via incorporation of “guest” molecules into the pores (host-guest

architecture, also known as “guest@MOF”), putting these guests in a well-controlled local environment. The

first stable porous MOF (known as MOF-5) was synthesized by Li et al. in 1999 [49]. Since then, the versatility

and abundance of realized MOF structures has enabled a wide range of applications, such as gas storage [50–52],

8 The presence of voids in the material is a requirement for a coordination network to be called MOF [48].
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2.3 Metal-Organic Frameworks

separation [25, 51], catalysis [25, 53, 54] as well as electronic conductivity [54, 55], data storage [54, 56, 57],
photon upconversion [58–61], and light harvesting [25, 50, 54, 62–67].

2.3.1 Surface-Anchored Metal-Organic Frameworks

Typical MOFs are micro- or nano-crystalline powders. They can be deposited as films to coat surfaces [68].
However, the deposited crystallites do usually not have a common orientation. To overcome this issue and

achieve a higher degree of order, there exist preparation methods that result in MOFs which are directly

attached to the substrate. These materials are known as surface-anchored metal-organic frameworks (SURMOFs).

How the structure can be attached to a surface depends on the substrate and the building unit’s chemistry.

For example, the first reported SURMOF was connected to a substrate functionalized with a self-assembled

monolayer (SAM) [69], and this method remains widely used [70]. Other methods include oxygen plasma

treatment of substrates with a native oxide layer to form hydroxyl groups [70, 71].
The deposition of the SURMOF’s constituents has been performed by a wide range of different methods,

among them direct crystallization, spray-coating, dip-coating, spin-coating, evaporation and electrochemical

methdods [70, 72]. Exemplarily, the deposition process by liquid-phase epitaxy (LPE) shall be described

here. The metal nodes and the linker molecules are prepared in separate solutions. The previously functional-

ized/activated substrate is then coated in one of the solutions, e. g. the metal node solution. In this case, the

metal nodes attach to the functional groups on the surface. In a rinsing step, residual unreacted building units

are removed. Now the substrate is coated with the second solution and the organic linkers attach themselves

to the already present metal centers. This is followed by another rinsing step. The whole process is repeated

over several cycles (shown in Figure 2.11) to build up the SURMOF. This process allows to control the film

thickness by the number of deposition cycles [73]. Furthermore, it is easily automated and scaled up to coat

large substrates [74].
SURMOF growth by LPE is not an ideal layer-by-layer process, which means that more than one molecular

layer can be grown per deposition cycle. For example, Summerfield et al. observed growth rates of 5 to 10

layers per cycle in a HKUST-1 SURMOF [73]. This has been linked to the solution-mediated formation of

secondary building units from weakly absorbed precursor molecules that are not removed by the rinsing

step [75]. Especially when using a spraying technique – as opposed to a dip-coating process – larger growth

rates can be expected, as a sprayed solvent film is less effective in removing residual precursors than immersion

of the substrate in solvent [74].

2.3.2 Exciton Transport in Porphyrin-Based MOFs and SURMOFs

This section gives an overview of relevant developments related to energy transport in MOFs and SURMOFs,

with special focus on porphyrin-based materials.9

An early example of energy transfer in a porphyrin-based MOF is the work of Lee et al. [63]. They

presented a pillared-paddlewheel MOF wherein zinc porphyrin (ZnP) chromophores are connected by boron

dipyrromethene (BODIPY) pillars. Upon selective excitation of the BODIPY molecules, they observed singlet

exciton transfer to the ZnP chromophore (over a distance of around 16 Å) and subsequent ZnP fluorescence.

Son et al. presented a ZnP-based MOF (named DA-MOF) and observed singlet exciton transfer between

adjacent parallel as well as coplanar porphyrin linkers [64]. They calculated anisotropic transfer rates,

depending on the linker-to-linker distance in each transport direction. The fastest singlet transport was found

9 An attempt to present the complete literature on porphyrin MOFs is outside the scope of this thesis. To give some perspective on the
size of this growing field: Farha et al. counted 40 publications with 81 reported 2D and 3D porphyrin-based MOFs back in 2011 [76].
As of April 2019, a search on Web of Science yields over 400 publications for the search query “TOPIC: (porphyrin "metal-organic
framework") OR TOPIC: (porphyrin SURMOF) OR TOPIC: (porphyrin MOF)” in the Web of Science Core Collection, with roughly half
of these publications falling in the time range between the years 2017 and 2019.
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A B

C D

Figure 2.11: Schematic drawing of the deposition steps in the preparation of a SURMOF. (A) Metal nodes (red spheres) attach to an
activated substrate (with the dark blocks representing for example hydroxyl groups). (B) Linker molecules (white rods)
attach to the metal nodes. This cycle is repeated by (C) deposition of metal nodes and (D) linker molecules. Further cycles
increase the SURMOF film thickness.

between adjacent (11 Å apart) parallel ZnP linkers with a hopping rate of khop = 1.0× 1011 s−1 and a diffusion

length of LD = 38 nm, whereas the largest LD was calculated for the collinear direction as LD = 58nm. Notably,

in order to improve exciton transport, they suggested to shrink the inter-chromophore distance or to utilize

long-lived triplet excitons instead of singlets. Both suggestions will be addressed in this thesis.

The first porphyrin-based SURMOFs were presented by So et al. [62]. They fabricated a ZnP-SURMOF

based on the previously reported DA-MOF (see above) as well as a novel FbP SURMOF film. A bipyridine

linker is used to form vertical pillars with the porphyrin molecules being oriented parallel to the substrate.

To investigate the singlet exciton transport properties, a squaraine dye is attached to the surface of a roughly

35 nm thick DA-MOF film. This leads to a quenching of the ZnP fluorescence. Excitation of the ZnP linker leads

to almost exclusive emission from the squaraine dye, highlighting the efficiency of vertical singlet transport in

this thin film.

The FbP porphyrin SURMOF from that study was used again by Goswami et al. [77]. Instead of attaching

a dye, two additional deposition cycles of palladium porphyrin (PdP) linker were performed, leading to a

SURMOF heterojunction. Again, the top layer acts as a quencher an shows efficient vertical singlet exciton

transport in the film. The novel concept in this study was the in-place substitution of the bipyridine pillars with

shorter pyridine molecules, which leads to the collapse of the 3D structure into crystalline MOF layers. The

reduced distance between the layers results in an increase of the number of layers traveled by a singlet exciton

from 6-8 (before the collapse) to 9-11 (afterwards). However, taking into account the layer-to-layer spacing

(14.7 Å before, 6.9 Å after), the corresponding distance traveled (LD) actually gets shorter. This is due to the

fact that, although the layer distances are reduced by the SURMOF collapse, the nearest-neighbor distance

between porphyrin linkers remains similar (14.7 Å before, 14.3 Å after) because adjacent layers are shifted

laterally.

The impact of the MOF topology on the material’s photophysical properties was investigated by Deria

et al. [78]. They fabricated two MOFs with different network structures but the same linker chromophores

(FbP and ZnP). The different geometry in the two MOFs leads to different electronic interaction among linkers.
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Stronger interaction results in a more pronounced redshift in the absorption spectra and a shorter excited state

lifetime. These findings underline the tunability of physical MOF properties by choice of the network topology

alone.

Several reports exist of porphyrin-MOF based solar cells. Liu et al. fabricated SURMOFs based on either FbP

or PdP linkers, which show photovoltaic activity when used in a liquid electrolyte PV device. The SURMOF is

comprised of closely packed free-standing 2D sheets. Therefore, exciton/charge transport to the electrodes has

to occur inside the sheets, which might not be the ideal transport direction.10 Still, photoconversion efficiencys

(PCEs) of 0.2 % and 0.45 % could be observed for the FbP and PdP SURMOFs, respectively. The same group

fabricated also an all-solid-state solar cell based on the same SURMOF structure (albeit with ZnP linkers) [66].
The best device exhibits a PCE of 0.017 %. The current record for the best-performing porphyrin-MOF based

PV device is held by Gordillo et al. [65]. They presented a MOF-sensitized liquid electrolyte solar cell based on

a solvothermally grown pillared ZnP-MOF film. The PCE in the device was reported as 0.8 %.

Another interesting application of a porphyrin SURMOF was presented by Oldenburg et al. in the form

of a SURMOF heterostructure for photon upconversion [59]. The heterostructure is comprised of layers

of an anthracene-linker based SURMOF as emitter and a PdP SURMOF as sensitizer (either in an emitter-

sensitizer-emitter stack or in an emitter-sensitizer stack). Excitation of the PdP linker leads to the creation

of triplet excitons that could be shown to travel across the heterojunction into the emitter SURMOF, where

TTA upconversion occurs. As in the aforementioned work of Liu et al. [67], PdP triplets are required to move

perpendicular to the substrate, that is in the plane of the free-standing sheets, in order to reach the emitter.

2.4 Pump-Prope Spectroscopy

Electronic processes can occur on timescales from several seconds (phosphorescence) over nanoseconds

(fluorescence, ISC) down to the femtosecond regime (electron transfer) [79]. Investigation of the latter requires

sophisticated measurement techniques, such as femtosecond pump-prope spectroscopy. In the late 1980s,

Ahmed H. Zewail pioneered this technique as a method to investigate transition states of chemical reactions

and was awarded the Nobel Prize in Chemistry for this work in 1999 [80].
Generally, in pump-probe experiments, a sample is first excited from the ground to an excited state by a

pump event, for example via illumination with a pulsed laser. After a defined and tunable delay time ∆t, a

physical property of the excited sample is probed, for example transmittance/reflectance of a light pulse. By

tuning ∆t, the excited state evolution of the sample material can be tracked.

Pump and probe duration need both to be short compared to the timescale of the events under investigation.

Hence, to observe excitonic processes using optical spectroscopy, picosecond or even femtosecond light pulses

are required.

2.4.1 Transient Absorption Spectroscopy

A special incarnation of the pump-probe technique is transient absorption spectroscopy (TAS). This method uses

a probe light pulse which is directed through an absorptive sample and detected at a spectrometer. Excitation

by the pump light pulse is performed at half the probe frequency. Thus, the detector measures an alternating

sequence of transmission spectra that either correspond to a previously excited sample (“pump on” spectra Ton)

or an un-excited sample in the ground state (“pump off” spectra Toff). Notably, this scheme requires the time

between two probe pulses to be longer than the excited-state lifetimes in the sample, as otherwise the “pump

off” measurement does not represent the material in its ground state.

10 This will be investigated in the results chapter of this thesis, see section 4.2.
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Transmission is defined by the incident radiant flux Φi and the transmitted flux Φt :

T =
Φt

Φi
. (2.15)

TAS data is usually represented as the differential transmission. This is the dimensionless fraction ∆T/T ,

wherein ∆T = Ton − Toff and T in the denominator is shorthand for Toff. This representation will be used

throughout this thesis. A graphical summary of the measurement scheme is depicted in Figure 2.12A. The

practical realization of a TAS setup is described in section 3.5.

As the difference between two measurements is small (typical ∆T/T values are on the order of 10−4),

the measurement is repeated for several (102 to 104) probe pulse pairs and the individual ∆T/T values are

averaged. An important underlying assumption is that the probe light pulses for the “pump on” and “pump

off” measurements are identical in spectrum and intensity. Only then can all differences in transmission be

attributed to the pump-induced changes in the sample’s photoresponse. Otherwise, probe light fluctuations

introduce an error. This is the reason why shot-to-shot measurements as outlined above are often preferred

over averaging schemes, wherein a series of “pump on” pulses is averaged (Ton), followed by a series of “pump

off” pulses (Toff) and calculation of ∆T/T = (Ton − Toff)/Toff.

Figure 2.12B illustrates the possible signals in a TAS spectrum, which are explained below.

Ground-state bleach (GSB): The ground state is depopulated by the pump pulse and Ton > Toff. Therefore,

a positive feature is observed in the TAS spectrum. Its spectral shape corresponds to the ground state

absorption of the sample.

Photoinduced absorption (PIA): A negative signal occurs when the photo-excited sample shows an in-

creased absorption, that is Ton < Toff. This can be caused by the presence of excited states that can

absorb an additional photon to reach higher excited states (excited state absorption), or by absorption of

charged molecules after dissociation of the excited state (polaron absorption).

Stimulated emission (SE): Probe light photons can stimulate emission from the S1 state. This luminescence

leads to more light reaching the detector during the “pump on” measurement. Because Ton > Toff,

the corresponding TAS feature is positive. The SE signal’s spectrum and lifetime correspond to the

fluorescence.

An important advantage of TAS is that the dynamics of non-emissive excited states can be monitored.

Besides ∆T/T , TAS data is commonly represented as differential optical density, ∆OD, or differential

absorbance, ∆A. Transmission and absorbance are related via the decadic logarithm:

A= − log10 (T ) , (2.16)

and thus the relationship between the differential absorbance ∆A= Aoff −Aon and the differential transmission

is

∆A= − log10

�

∆T
T
+ 1

�

. (2.17)

As ∆T/T � 1 (typical values are below the percent level), Taylor expansion around ∆T/T = 0 can be

performed:

∆A≈ − log10(1)
︸ ︷︷ ︸

=0

−
1

ln(10)
∆T
T
+ . . . , (2.18)

which yields a useful linear approximation to convert between the two representations:

∆A≈ −0.4343×
∆T
T

. (2.19)
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Figure 2.12: Origin and shape of the signal in transient absorption spectroscopy. (A) A train of probe pulses is transmitted through
the sample. The transmission T is influenced by excitation of the sample into an excited state by a pump pulse. ∆T is
calculated from the difference in transmission between a “pump on” and “pump off” probe pulse. Tuning of the delay time
∆t allows to measure the excited state kinetics. (B) Possible features in a TAS spectrum as described in the text.

For the usual range of TAS signals (∆T/T < 0.01), this approximation deviates from the exact value by less

than 0.5 %.

2.4.2 Light Sources for TAS

As mentioned above, a requirement for pump-probe spectroscopy on picosecond timescales is the availability of

femtosecond laser pulses. Light sources that generate such short bursts of intense radiation are also necessary

to efficiently harness nonlinear optical effects such as supercontinuum generation. The following brief overview

on relevant concepts of textbook laser physics is based on the Springer Handbook of Lasers and Optics [81] and

Lasers in Chemistry [82].

Femtosecond Lasers via Mode Locking

The most common technique for the generation of light pulses on the femtosecond time scale is mode locking.

In a laser cavity of length L, the round-trip time τRT of a photon traveling at the speed of light c is

τRT =
2L
c

. (2.20)

In the cavity, only transverse modes of a wavelength λ can oscillate that fulfill the standing wave condition

2L
λ
= k , (2.21)

with k being an integer. In terms of frequency f , this becomes

2L f
c
= k , (2.22)

and the frequency difference between two cavity modes is

∆ f =
c

2L
=

1
τRT

. (2.23)

In a free-running laser, the phase between individual modes is arbitrary, which leads to an output in

which both intensity and wavelength fluctuate. By introducing a periodic gain or loss with a frequency of

1/τ in the laser cavity, the phase of all lasing modes can be synchronized. This results in intense, short laser
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2 Theoretical Background

pulses that are coupled out of the cavity after each round-trip time. Hence, the repetition rate of the laser is

frep = τ−1
RT = c/ (2L).

It is instructive to first consider an already mode-locked laser. The different modes are in phase and produce

a resonant pulse with a temporal width of τp, which is shorter than the round-trip time. This pulse performs

one round trip in the cavity during τRT. As a visualization, a shutter can be placed in the cavity that is opened

periodically for a short time interval (≈ τp). When its frequency matches τRT, the relative timing of the shutter

can be chosen so that the laser pulse oscillates undisturbed. This mode-locked end state is also reached when

the same shutter is placed in a free-running cavity. In this case, lasing of out-of-phase modes is suppressed

by the modulation. Only one pulse can survive in the cavity, which corresponds to the initial picture of a

mode-locked laser.

In active mode locking, the periodic loss modulation is performed by an active element, such as an intra-cavity

acousto-optic modulator (AOM) or a Pockels cell. The modulation frequency is driven by external electronics

and has to match the cavity length precisely. In passive mode locking, an optically nonlinear device, for example

a saturable absorber, is placed in the cavity. The periodic interaction of the light pulse with the nonlinear

material and the corresponding periodic loss lead to a modulation that intrinsically matches the cavity length

without the need for external electronics.

The minimal duration of the resulting light pulse, τp, depends on the number of modes N that contribute

to it and their spacing in the frequency domain. As the gain medium restricts which modes are amplified, τp is

ultimately defined by the gain bandwidth ∆ fgain. Approximately, τp is given by

τp ≈
1

N∆ f
≈

1
∆ fgain

. (2.24)

As an example, the gain bandwidth of an Ar+ laser is around 8 GHz [82]. Accordingly, the shortest possible

pulses using this material are τp ≈ 125ps long. In contrast, titanium-doped sapphire (Ti:Sa) can have a

bandwidth of up to 128 THz [82] and a corresponding pulse duration of only τp ≈ 8 fs, which is one of the

reasons why it is a commonly used material in femtosecond lasers.

Chirped Pulse Amplification

When trying to amplify an ultrashort light pulse, the high peak power can cause non-linear distortion or damage

to the amplifier optics. In order to overcome these problems and enable high-intensity femtosecond pulses, a

technique called chirped pulse amplification (CPA) can be employed. It utilizes the fact that ultrashort light

pulses have a broad spectral bandwidth. A pair of dispersive elements (such as prisms or gratings) is used to

introduce positive or negative group velocity dispersion (GVD). Thus, a variation in frequency over time is

introduced, which is called chirp. In a an up-chirped signal, the frequency increases over the pulse. Simply

speaking, the long-wavelength (red) components of the light pulse arrive before the short-wavelength (blue)

components. In a down-chirped pulse the situation is reversed: the blue components arrive first and the red

components last. The chirp leads to either stretching or compression of the temporal envelope of the light

pulse, depending on the sign of the GVD change. By stretching the pulse, the peak power is reduced and the

pulse can be amplified without the aforementioned problems. Afterwards, it is compressed back to its original

pulse duration. For this ingenious concept, introduced in 1985 [83], one half of the 2018 Nobel Prize in Physics

was awarded to Gérard Mourou and Donna Strickland [84].

White Light Generation

Femtosecond lasers are useful as both pump and probe sources in ultrafast pump-probe spectroscopy. The

pump wavelength needs to correspond to an absorption of the investigated material. For a monochromatic
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2.4 Pump-Prope Spectroscopy

probe pulse, only the kinetics (e. g. evolution of a TAS signal over delay time ∆t) at this specific wavelength

can be measured. By using a spectrally broad probe pulse combined with detection at a fast spectrometer, a

wider spectral range can be investigated. One technique to produce very broadband (“white”) light pulses

is called supercontinuum generation or white-light generation (WLG). This effect is a combination of several

nonlinear optical effects such as self- and cross-phase modulation, four-wave-mixing and stimulated Raman

scattering. As such, it depends strongly on the input laser power, which makes short but intense femtosecond

pulses as produced by CPA ideal sources for this technique. Such pulses are sent through a fiber (for example a

special photonic crystal fiber) or focused into a crystal (for example sapphire or calcium fluoride), where the

nonlinear effect leads to a significant spectral broadening of the pulse that can span multiple octaves.

Q-Switched Lasers

When the physical processes under investigation occur on the nanosecond timescale or above, it is no longer

necessary to employ a femtosecond laser as pump source. Pulse durations on the pico- to nanosecond scale

may be sufficient in those cases. These can be produced by a Q-switched laser.

When a laser cavity is pumped (by a pulsed or continuous wave (CW) source) and the population inversion

reaches the laser threshold, stimulated emission prevents further energy storage in the gain medium. This

limits the laser’s pulse energy. To overcome this, the cavity’s quality factor Q can be reduced, which prevents

the onset of efficient lasing and a much larger population inversion than before can be reached. Once the gain

material is saturated, the Q-factor is switched to a high value and a single pulse of high-intensity laser light is

emitted. To reach the maximum laser intensity, several (up to hundreds or even thousands) round-trips are

necessary. As an example, one round-trip takes τRT = 1 ns in a 15 cm cavity. Accordingly, typical pulse lengths

for Q-switched lasers range from nanoseconds to microseconds.

Similar to the situation in mode-locking, modulation of the Q-value can either be performed actively, for

example by placing an AOM or a Pockels cell in the cavity, or passively, by using a saturable absorber material.
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3 Methods and Materials

This chapter gives an overview over relevant experimental techniques, setups and devices that are used in this

thesis.

3.1 Light Sources

Several lasers are used throughout this thesis and presented in this section.

3.1.1 Femtosecond Pulsed Laser System

The femtosecond laser source used for the TAS setup is a SpectraPhysics Spitfire Pro XP system. The amplifier

uses CPA to generate femtosecond pulses. It is pumped by a SpectraPhysics Empower laser and seeded by a

SpectraPhysics Tsunami Ti:Sa laser, which in turn is pumped by a SpectraPhysics Millennia CW laser. Simply

speaking, the Tsunami provides femtosecond-short but weak pulses that are amplified with the Empower’s

pulse energy inside the Spitfire unit. In the following, the individual components are presented in more detail.

Pump Laser

The gain medium inside the Empower pump laser is a rod of neodymium-doped yttrium lithium fluoride

(Nd:YLF) that is uniformly pumped by diode lasers [85]. The excited neodymium emits infrared laser radiation

at 1053 nm, which is frequency-doubled inside the laser cavity in a heated lithium triborate (LBO) crystal to

527 nm. The laser is actively Q-switched by an AOM. The output pulses are 100 ns long and contain an energy

of 10 mJ to 20 mJ at a repetition rate of 1 kHz.

Seed Laser

The Tsunami is a mode-locked Ti:Sa laser [86]. The Ti:Sa rod is excited by the Millennia’s 532 nm CW output

and emits fluorescence at a broad wavelength range from 600 nm to 1000 nm. Inside the folded cavity is a

pair of prisms, which disperses the light and spatially spread out the different wavelengths, and a second

prism pair which mirrors the first one and reverses the effect. In between the two prism pairs is a slit, whose

user-adjustable position determines the center wavelength and whose width affects the spectral bandwidth. As

the “standard” mirror set is used, the center wavelength tuning range is 720 nm to 850 nm. An AOM inside the

cavity is used to generate a periodic loss. The Tsunami uses regenerative mode-locking, which means that the

frequency of the AOM is derived directly from the cavity by measuring the laser light intensity on a photodiode.

The usual round-trip time in the Tsunami is τ = 12.5ns, which results in a repetition rate of τ−1 = 80MHz.

The pulse length lies between 35 fs and 150 fs. The output power at 800 nm center wavelength was measured

at 440 mW (5.5 nJ per pulse), with a spectral bandwidth of 42 nm full width at half maximum (FWHM).

Chirped Amplifier

Inside the Spitfire unit, the nJ laser pulses from the Tsunami are amplified over six orders of magnitude to the

mJ scale. The working principle of a chirped amplifier is described in section 2.4.2. In short, a single fs-pulse

from the seed laser’s pulse train is selected and amplified by passing several times (≥ 10×) through a Ti:Sa
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crystal that has been excited by the pump laser. To prevent damage to the crystal caused by high light energies,

the pulse is stretched in the time-domain before the cavity and recompressed afterwards. Selecting a pulse

from Tsunami’s input is done by exploiting the light’s polarization: Vertically polarized light is trapped inside

the cavity, while horizontally polarized light can enter and exit the cavity through a polarization filter. By

controlling the laser polarization with Pockels cells (one inside and another one outside the cavity), precisely

one pulse can be accepted into the cavity from the 80 MHz train and kept inside for the required number of

passes through the crystal, before being ejected. The Spitfire’s 1 kHz output has a specified pulse energy of

> 3.5 mJ,1 and a pulse width of < 120 fs. [87]

Wavelength Tuning

The femtosecond pulses of the Spitfire system have a fundamental wavelength of 800 nm. However, certain

applications (e. g. as a pump beam in TAS) require different wavelengths. To this end, optical nonlinear effects

can be utilized to change the pulse’s wavelength.

Sum-frequency generation (SFG) is a process that can occur in a medium with a quadratic nonlinearity,

i. e. with a non-vanishing second-order susceptibility χ(2). This requirement can be fulfilled in materials that

have no inversion symmetry [81]. In SFG, two light waves with frequencies f1 and f2 generate a signal at

the frequency f3 = f1 + f2. If f1 = f2 = f , the resulting frequency is 2 f , the second harmonic of f . Second

harmonic generation (SHG) of laser light is easily realized by placing a suitable material such as a beta barium

borate (BBO) or LBO crystal in the beam path. This allows to convert the Spitfire output wavelength from

800 nm to 400 nm. However, the conversion is not complete and the resulting beam contains a mix of the

fundamental and the second harmonic wavelength. To obtain a clean SHG beam, the residual fundamental

needs to be removed, e. g. with a hot mirror or shortpass filter.

To have even more control over the wavelength, a two-stage optical parametric amplifier (OPA) is available

(Light Instruments TOPAS). In this device, a small fraction of the Spitfire’s output is used for WLG in a sapphire

crystal. The white light is overlapped non-collinearly with another fraction of the Spitfire output in a non-linear

crystal, where parametric amplification occurs. Briefly, this splits the incoming photons with frequency f

into two (called signal and idler), according to the energy conservation relation f = fsignal + fidler. The actual

value of fsignal can be tuned by adjusting the timings between the two light pulses in the crystal. Next, the

signal is amplified by overlapping it collinearly with the bulk of the input light in a second nonlinear crystal.

Finally, a mixing stage can be used to increase the output frequency by SFG or SHG, which extends the range

of accessible wavelengths. The tuning range of the TOPAS is 290 nm to 2600 nm. The pulse energy output

varies with the selected wavelength.

3.1.2 Picosecond Pulsed Laser

As a source for pico- to nanosecond pulses, a compact laser system from InnoLas Laser GmbH is used, the

Innolas picolo-1 MOPA. The acronym MOPA stands for master oscillator power amplifier. As such, the device

consists two stages. The first is a Q-switched neodymium-doped yttrium vanadate (Nd:YVO) oscillator which

provides short light pulses (< 0.8 ns) at a fundamental wavelength of 1064 nm. The repetition rate can be

tuned up to 5 kHz. The second stage is an amplifier that increases the pulse energy up to 152µJ. An integrated

harmonic generator module can be used to convert the fundamental wavelength to its second (532 nm) or

third harmonic (355 nm). This is done using a temperature-controlled LBO non-linear crystal. At 532 nm, the

maximum pulse energy is 65.8µJ.

The laser can be triggered electronically, which makes it ideally suited for application in the long-delay TAS

setup described in section 3.5.

1 Measured values for our setup were in the range of 2.7 mJ to 3.6 mJ.

26



3.2 Lifetime Determination via Multi-Channel Scaling

3.1.3 CW Laser Diodes

Besides the pulsed lasers, several CW laser sources are used throughout this thesis as well. Relevant device

specifications are given below.

(Q)CW Laser Diode 525 nm

As a source of CW light, a laser diode from Roithner LaserTechnik (LD-515-10MG) is used. This gallium nitride

(GaN) based diode has a typical center wavelength of 515 nm with a typical range of 510 nm to 530 nm and a

spectral width of 2 nm [88]. The actual center wavelength of our diode was measured as 525 nm. The typical

optical output power is 10 mW.

The laser diode is operated in a temperature-controlled mount (Thorlabs TCLDM9) by a laser diode and

temperature controller (Thorlabs ITC4001). With this controller, the diode can be run in CW mode or in pulsed

quasi continuous wave (QCW) mode. The latter periodically turns the CW output on and off, with a pulse

width in the range of 100µs to 1 s and a repetition rate between 0.2 Hz and 1 kHz [89].

CW Laser Diode 405 nm for PL experiments

For the extended illumination experiments in chapter 5, a GaN based laser diode with a typical center wavelength

of 405 nm from Roithner LaserTechnik (DL-7146-101S) is used [90]. The maximum optical output power is

85 mW.

CW Laser Diode 405 nm for microscopy experiments

As an excitation source for luminescence microscopy experiments (see section 3.7 and section 6.1), a diode

laser module from Vortran Laser Technology (Stradus 405-250) with a center wavelength of (405± 5)nm and

an output power of 250 mW is used [91].

3.2 Lifetime Determination via Multi-Channel Scaling

For the experimental determination of PL lifetimes, a setup consisting of a double monochromator, a photomul-

tiplier tube (PMT) and a multi-channel scaling (MCS) card is used, as shown in Figure 3.1. Briefly, laser light

(different sources can be used) is used to excite a sample, which can be kept at ambient conditions or in a

specially designed vacuum sample holder. The emitted PL from the sample is collected by a set of two lenses

and focussed on the slit of a double monochromator. This device acts as a narrow bandpass filter and allows to

select a single wavelength from the input light to be passed to the output at which a sensitive detector, the

PMT, is placed. The PMT’s electric output signal is passed to a MCS card inside a computer for processing. In

the following, each of the relevant steps are discussed in detail.

The intensity of the excitation light at the sample position can be controlled by a tunable neutral-density

filter in the beam path and monitored by a power meter placed after a beam splitter, so only a small amount of

light is sent to the power meter. The light intensity at the sample position and at the power meter scale linearly,

the scaling factor can be obtained by performing a power measurement at both positions. Thus, the power at

the sample position can be determined without blocking the excitation beam path.

The monochromator (Bentham DTMS300) is used as a variable bandpass filter to select a single wavelength

from the incoming light. In the common Czerny-Turner design [92], broadband light is focused on the

monochromator’s input slit. Inside the device, the slit is on the focal point of a curved mirror, which thus

collimates the light and directs it onto a planar diffraction grating. The reflected light is then focused by another

curved mirror on the monochromator’s output port. However, due to the diffraction grating, each wavelength

arrives at a different position and not all of them exit the device. By rotating the diffraction grating, the center
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Figure 3.1: Scheme of the MCS setup to measure PL lifetime. A CW laser is used in QCW mode to drive a sample’s PL periodically
into steady-state. The emission is collected into a double monochromator, where a single wavelength is selected to be sent
onto a PMT. The detector’s signal is processed by a MCS electronics board to obtain a temporal emission profile (see also
Figure 3.3).

wavelength that is able to pass (as well as its diffraction order) can be selected, and by changing the size of the

exit slit, the spectral bandwidth of the output light can be tuned.

To improve the rejection of stray light, our setup uses a double monochromator. This design essentially

consists of two monochromators connected in series and set to the same wavelength.

After the double monochromator, the filtered, monochromatic light is detected by a PMT. This type of

photodetector has a high sensitivity. Even single photons can be detected, which makes it especially interesting

for PL measurements of samples with a low emission intensity.

The basic working principle of a PMT is shown in Figure 3.2. Light enters the evacuated device through

a window and excites electrons in a photocathode, which are then emitted to the vacuum. Using an electric

field, the photoelectrons are accelerated onto a series of electrodes, usually referred to as “dynodes”. At each

electrode, the electron impact leads to the creation of secondary electrons, which are then accelerated onto the

next electrode and so on. The number of secondary electrons per primary electron, δ, usually ranges from 10

to 100, depending on the electrode material and the applied voltage [93]. In an n-stage dynode, the current

amplification (gain) is thus δn. After the last electrode, the electrons reach an anode, where they are collected

and output as an electron current to an external circuit.

The PMT in our setup (Hamamatsu R928P) uses a circular-cage layout for the 9-stage dynode, as shown in

Figure 3.2. It has the benefit of being very compact and having a fast time response [93, 94]. The typical gain

factor at a supply voltage of 1 kV is 107. A multialkali photocathode (consisting of a mixture of different alkali

metals) is used to enhance the width of the spectral response (185 nm to 900 nm) [94]. The electrical output

signal is amplified by a PicoQuant PAM-102P pre-amplifier module.

Finally, the electrical signal arrives at the MCS board (PicoQuant TimeHarp NANO), which is synchronized

to the laser controller. After each laser pulse, the incoming electrical pulses from the detector, which correspond

to single photons, are counted and binned according to their time of arrival. This data is then read out by a

computer and, over many excitation pulses, a histogram of the time distribution of photon counts is generated.

The process is schematically shown in Figure 3.3.

The benefit of MCS over “classical” time-correlated single photon counting (TCSPC) is the fact that multiple

events (photons) can be counted per excitation pulse. This greatly decreases the required acquisition time,

especially for samples with an emission lifetime on the scale of microseconds and above. One has to keep in

mind that the time-to-digital converter has an intrinsic dead time after each photon counting event, during

which no further events can be detected. The TimeHarp NANO has a dead time of < 2 ns [95]. This sets an
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Figure 3.2: Schematic drawing of a circular cage PMT with a 9-stage dynode, similar to the Hamamatsu R928P. Based on Photomulti-
plier Tubes – Basics and Applications [93].
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Figure 3.3: Schematic of a MCS measurement. A short light pulse excites the sample, which then emits light. At the detector (e. g. a
PMT) photons generate electric pulses which are then counted and assigned to timing bins by the MCS electronics, resulting
in the reconstruction of the emission decay profile.
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upper limit on the photon rate. If it is surpassed, the resulting decay curve is distorted, as not all photons

are counted. Therefore, the PL intensity has to be adjusted accordingly, e. g. by changing the intensity of the

excitation light.

3.3 Streak Camera Setup

Time-resolved PL measurements are performed using a streak camera setup, as depicted schematically in

Figure 3.4A. The Q-switched laser described above (see section 3.1.2) is used to excite a sample in a vacuum

holder (pumped dynamically to < 10−4 Pa). The PL is collected by a 2 inch lens and focused onto the input

slit of a grating-based spectrometer (Acton SpectraPro SP2300). The dispersed light is then coupled into the

actual streak unit (Hamamatsu Universal Streak Camera C10910).

Figure 3.4B illustrates the working principle of the streak unit [96]. Incoming light is focused onto a

photocathode, which leads to the emission of photoelectrons. These are accelerated in an electric field and

deflected vertically by a second field. The latter field is synchronized to the laser’s electronic trigger signal

and performs a fast sweep in field strength. Electrons that arrive at different times during the sweep cycle

are deflected by a different angle. Subsequently, they are multiplied by a micro-channel plate (MCP). A MCP

consists of an array of thin glass capillaries (10µm to 20µm in diameter, 0.5 mm to 1 mm long) coated with

an electron-emitting material. Secondary electrons are created by repeated impact on the walls of a primary

electron traveling through a capillary. This process can lead to the multiplication of a single electron to as

many as 104 electrons. On a phosphorescent screen, impacting electrons lead to the emission of light, which is

then imaged on a CMOS area camera (OrcaFlash 4.0 V2).

slit

tim
e

spacephotocathode

accelerating
mesh MCP
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screen

sweep
electrodes

input light

image on 
screen/camera

light to camera

trigger signal sweep
electronics
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Q-switched ps laser spectrometer streak
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Figure 3.4: Streak camera setup. (A) Schematic overview of the setup. A Q-switched laser is used to excite a sample. The emitted PL is
collected and focused into a spectrometer, which is coupled to a streak unit and finally a camera module. The streak unit is
synchronized to the laser through a digital delay generator. (B) Working principle of the streak unit. See text for detailed
description. Based on Guide to Streak Cameras [96].
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As the light is split into its spectral components horizontally by the spectrometer, one axis of the resulting

image corresponds to the wavelength of the light. Due to the vertical orientation of the electric sweep field, the

vertical image dimension contains information about the light’s arrival time. Thus, the streak camera allows to

track the evolution of the PL spectrum over time. By changing the sweep speed, different time ranges can be

accessed. The sweep unit’s trigger signal can be delayed using a digital delay generator (Stanford Research

Systems DG645).

3.4 UV/Vis Absorption

Absorption spectra are measured using a PerkinElmer LAMBDA 950 UV/Vis/NIR spectrophotometer [97]. In

this device, a deuterium lamp (for the ultraviolet range) or a tungsten-halogen lamp can be used as light

sources. The illumination wavelength is scanned by a grating-based monochromator. The light is split into a

reference beam and a sample beam by a rotating reflective chopper wheel. The sample is placed inside an

integrating sphere coated with Spectralon (a broadband reflective material produced by Labsphere, Inc.). A

PMT is used as a detector for wavelengths in the range from 200 nm to 860 nm. For measurements further in

the infrared region (860 nm to 2500 nm), an InGaAs detector is available. In this work, only the combination

of the tungsten lamp with the PMT is used.

The sample beam directly hits the sample inside the integrating sphere, whereas the reference beam is

directed at the sphere’s wall and its light reaches the sample only indirectly, as illustrated in Figure 3.5. The

transmittance T can be calculated from the detected light intensity with (Isample,1) and without (Isample,0)

sample:

T =
Isample,1

Isample,0
. (3.1)

The reference beam is used to compensate fluctuations in the light intensity:

T =
Isample,1 Ireference,0

Isample,0 Ireference,1
. (3.2)

Additionally, the reference beam measurement includes absorption of scattered light by the sample. Thus, only

absorption by the direct hit of the sample beam is included in the resulting value of T when calculated by

Equation 3.2. The sample’s absorbance A can be derived from T by

A= − log10 T . (3.3)

sample beam
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Figure 3.5: Schematic overview of an transmission/absorbance measurement inside an integrating sphere.
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3.5 Transient Absorption Spectroscopy

As part of my work, I developed and built a TAS setup, with the goal of investigating triplet exciton dynamics

in PdP SURMOFs. Additionally, the setup was conceived as being a versatile tool, aiding other researchers in

their investigations. As a result, the setup has been used in six peer-reviewed publications so far [1–4, 98, 99],
with another paper2 currently being under review.

The system was planned with experimental flexibility in mind. It allows for measurements over a wide

range of time ranges (pico- to milliseconds), for reflective or transmissive samples in air, solution or under

dynamic vacuum and with a range of different pump wavelengths to choose from. Furthermore, the whole

experimental process from the actual data-taking until the analysis of the TAS data matrices was taken into

account and graphical user interfaces (GUIs) were created to enable a frictionless workflow.

3.5.1 Hardware

This section describes how the TAS system is set up on the optical table and presents the different modes of

operation. A schematic overview of the generation of pump and probe pulses can be found in Figure 3.6.

Probe light

The setup uses a femtosecond amplifier (SpectraPhysics Spitfire Pro XP, see section 3.1.1), that outputs a train

of 800 nm laser pulses with a pulse width of < 120 fs at a repetition rate of 1 kHz. A fraction of the output is

focused into a sapphire crystal, where it is transformed into a broadband white light pulse. This nonlinear

process is very sensitive to the position and orientation of the 3 mm thick sapphire crystal. Therefore, it is

mounted on a linear translation stage (Thorlabs PT1) that can be moved with micrometer precision along the

light propagation direction. Additionally, the crystal can be rotated to ensure the front surface is perpendicular

to the light path. A hot mirror is used after the WLG stage to reduce the intensity of residual 800 nm light in

the white light spectrum, which is necessary to prevent detector saturation in this spectral region. The 1 kHz

femtosecond white light pulse is used as the probe beam.

Pump Light and Delay

Regarding the pump light, two modes of operations are possible for the TAS system: short delay and long delay.

In the former, a fraction of the Spitfire’s femtosecond output is used for generating the pump pulse. The tunable

pump-probe delay is realized using a retro-reflector on a mechanical delay stage (Thorlabs ODL600/M). The

stage has a minimum step size of 0.1µm, which translates to a minimum delay step of 0.67 fs (for a single pass

back and forth on the stage). The range of motion is 600 mm, which means that the maximum delay time is

4 ns. Even considering two or three passes over the stage, which makes the system more difficult to align, this

value can be increased only to 8 ns or 12 ns.

To increase the delay time by orders of magnitude, a different approach is necessary. Hence, in the long

delay mode, the pump source is no longer the same femtosecond laser as used for WLG. Instead, a Q-switched

pump laser (Innolas picolo-1 MOPA, see section 3.1.2) is used that is synchronized to the femtosecond amplifier.

A digital delay generator (Stanford Research Systems Digital Delay/Pulse Generator DG535) is used to adjust

the relative timing between of the two light sources.

Pump Light Wavelength Tuning

In short delay, the femtosecond laser pulses at 800 nm can directly be used as a pump source. When another

wavelength is required to excite the sample, this can be done by using an OPA (Light Instruments TOPAS),

2 Delgado, D. R. et al., Solution-Processed and Evaporated C60 Interlayers in Perovskite Photovoltaics.
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Figure 3.6: Schematic overview of the generation of pump and probe pulses in the TAS setup. The probe light is generated by WLG in a
sapphire crystal. Short delay pump pulses are generated from a fraction of the femtosecond amplifier’s output. Wavelength
tuning can be performed by an OPA or a BBO crystal. A rotating chopper wheel (synchronized to the amplifier) blocks
every second pulse. A motorized delay stage is used to vary the pump-probe delay time. A variable ND filter can be used
to control the pump fluence. The long delay pump light comes from a Q-switched laser that is triggered from the amplifier
through a digital delay generator.

which enables access to wavelengths from 290 nm to 2600 nm (see section 3.1.1 for details). Alternatively, a

BBO crystal can be placed in the beam path to convert the wavelength to 400 nm via SHG.

When the OPA is used, it introduces around 2 m of additional path length into the pump beam path. This

corresponds to 6.7 ns of added delay between pump and probe pulses. Hence, the temporal overlap between

the pulses (zero time) at the sample position is shifted outside the 4 ns wide time window that is accessible by

the delay stage in short delay mode. Thus, if the OPA is used, the probe beam path needs to be extended by

2 m.

In long delay mode, the available pump wavelengths are determined by the Q-switched pump laser, which

can be operated at 1064 nm, 532 nm or 355 nm.

Pump Light Repetition Rate

As the repetition rate of the probe beam is 1 kHz, the rate for the pump beam has to be 500 Hz. In the short

delay setup, the repetition rate is reduced by a mechanical chopper wheel (Thorlabs MC2000). Its rotation

speed is synchronized to the Spitfire amplifier in such a way, that every second pulse is blocked by the chopper

blades. In long delay mode, a special feature of the digital delay generator is used to trigger only on every

second signal from the Spitfire’s electronic trigger output.

Sample Conditions

Pump and probe beam are focused and brought into overlap on the sample. Importantly, the pump spot has to

be larger than the probe spot on the sample, in order to provide a constant excited state density over the probed

region. The sample can be a solution in a cuvette or a solid. Often, experiments under oxygen-containing

atmosphere are undesired. For solutions, custom-made cuvettes are available that can be filled and sealed

under nitrogen atmosphere in a glovebox. Solid samples can be placed in a custom-built sample holder that
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is connected to a vacuum pump (Pfeiffer Vacuum HiCube 80 Eco) which allows to keep the sample at low

atmospheric pressure (typically below 10−4 Pa). In all cases, the samples are at room temperature. The sample

holder has two windows that allow transmission of the probe beam.

Detection

After the sample, the pump light is blocked and the probe light passes a slit into a custom-built spectrometer (see

Figure 3.7A). The light is dispersed by a equilateral flint glass prism (Thorlabs F2) and the spectrum is detected

on a 512 px linear image sensor (Hamamatsu S3904-512Q). The sensor data is read out by a preamplifier (tec5

DZA-S3901-4 1M), digitized (tec5 FEE-1M, bit depth: 16 bit) and sent to a computer (interfaced via a PCI

Express card tec5 PD-PCIe01V1). The electronics allow for integration times down to 0.6 ms. Thus, the system

allows to detect each probe pulse’s spectrum individually. This shot-to-shot method is beneficial compared to

averaging over multiple pluses (see section 2.4.1). The readout electronics are synchronized to the 500 Hz rate

of the probe pulses, so that the order of “pump on” and “pump off” spectra is ensured to be always the same.

Otherwise, potential missing of one trigger pulse would lead to an undesired flip in sign of the TAS signal.

Detecting the transmission behind the sample is the typical way a TAS experiment is performed. However,

some samples (for example thin films on silicon substrates) cannot be measured this way. For these cases, the

setup can also be used in a reflection mode, as illustrated in Figure 3.7B. Probe light is transmitted through the

sample and reflected at the substrate. It is then focused into an optical fiber, to which a compact off-the-shelf

spectrometer (Zeiss MMS1) is connected. The grating-based spectrometer has only a 256 px wide sensor

(Hamamatsu S8381-256Q). It uses the same readout electronics as the custom spectrometer (namely, the A/D
converter tec5 FEE-1M and the PCI card tec5 PD-PCIe01V1) and can accordingly achieve the same shot-to-shot

readout rate.

Whereas the fiber-coupled Zeiss spectrometer is factory-calibrated, the custom spectrometer requires manual

wavelength-calibration. This process is semi-automated using a motorized filter wheel (Thorlabs FW102C)

which is placed directly in front of the spectrometer’s input opening. It houses five narrow band-pass filters at

different wavelengths, covering the available white light spectrum (typically the center wavelengths of these

filters are 480 nm, 532 nm, 633 nm, 730 nm and 850 nm). The filters are consecutively rotated into the probe

beam path. An automated fit of a Gaussian distribution to the resulting spectrum at the detector allows to
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Figure 3.7: Schematic overview of the detectors in the TAS setup for transmission and reflection measurements. (A) In transmission
mode, a custom spectrometer is used. After the probe beam has passed through the sample, it enters the spectrometer
box, where the white light is dispersed by a prism and detected on a line detector. The filter wheel is used for wavelength
calibration (see text). (B) In reflection mode, the probe beam is transmitted through the sample and reflected on the
substrate. The light is then coupled into an optical fiber connected to a grating-based spectrometer.
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3.5 Transient Absorption Spectroscopy

locate the center pixel which corresponds to the center wavelength of each filter. This way, a look-up table

with five pixel-wavelength pairs is built up and used later to translate the sensor data into wavelength units.

The sixth position of the filter wheel is used during the measurements. It is either left empty or equipped with

a suitable notch filter to prevent stray pump light from entering the spectrometer housing.

3.5.2 Measurement and Control Software

As the TAS system was intended to be used by a wide user base, special care was taken to create user-friendly

control software. A single LabVIEW GUI (“TA Control”) needs to be launched on the control computer. From

this, all necessary features and tools can be accessed. The workflow of a typical TAS experiment is briefly

outlined below.

Before the measurement

In the software’s “Live View” mode, bursts of several pulses are taken repeatedly and the individual spectra are

displayed continuously. This allows to check the quality and stability of the probe white light. The “live” spectra

are useful feedback for optimizing the white light by adjusting the position and orientation of the sapphire

crystal.

Additionally, averaged spectra for Ton and Toff are displayed as well as ∆T and ∆T/T spectra. The user

can quickly assess whether a TAS signal is present and optimize the spatial overlap between pump and probe

beams, as better overlap leads to a stronger signal. By changing the delay, the effect on the TAS spectrum can

be directly observed. Thus, zero time (timing overlap between pump and probe pulses) can be determined

exactly. Additionally, the lifetime of the TAS signal can be roughly estimated, which is useful information for

deciding on the delay time range that is required for the experiment.

The delay times that are to be sampled during the experiment can be defined by the user in a GUI. Typically,

the spacing between the delay time points is not uniform but logarithmically stretched, with short intervals at

early times (around zero time) and longer intervals later on.

To measure the dependence of the TAS signal on the excitation fluence, a motorized neutral density (ND)

filter wheel can be placed in the pump beam path. It can be controlled directly from the TAS control software.

A list of filter positions can be defined in a GUI.

A constant background signal on the detector (for example room light) affects Ton and Toff equally and

cancels out in ∆T . In contrast, background signals such as PL from the sample or scattered pump light

only affect Ton and lead to a constant delay-independent offset in the TAS spectra. To compensate this, two

background spectra Bon and Boff are measured (averaged over many pulses, typically on the order of 104) with

the white light blocked. During the measurement, they are subtracted from the detector signal.

Finally, the automated wavelength calibration as described above is performed. Now all requirements for

the measurement are met and the experiment can be started.

During the measurement

During the measurement, no user interaction is required. For all delay timings a certain (user-defined) number

of pump on/off spectra pairs is taken and an average ∆T/T calculated. After all delay positions have been

accessed, the data are saved as a 2D matrix (∆T/T over delay time) in a binary file format and (for compatibility

reasons) as MATLAB file (.mat). Then, the ND filter wheel rotates automatically to access the next pump

fluence and a new run over all delay timings is initiated. After the TAS data for the last fluence have been

measured, the experiment starts again from the first fluence value. This cycle repeats until stopped by the user.

Finally, the individual 2D data matrices with identical pump fluence are averaged to increase signal-to-noise

ratio and saved. The following pseudo-code summarizes these steps:
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LOOP1: Repeat until stopped

LOOP2: Excitation fluences (ND filter)

LOOP3: Delay timings (delay stage/generator)

Take several spectra pairs

Calculate dT/T spectrum at this delay time

END LOOP3

Create 2D matrix with dT/T spectra over time

Save matrix to file

END LOOP2

END LOOP1

Average individual matrices and save to files

It is beneficial to perform short measurements repeatedly instead of taking one long measurement,3

especially when the setup is left unsupervised. For one, this makes the system more fail-safe because partial

data are saved regularly. Thus, unforeseen interruptions of the experiment e. g. by a computer crash or a

power failure do not result in complete loss of already recorded data. Drifts in laser power, stability or ambient

conditions can disturb the sensitive non-linear WLG process, which can result in unstable, fluctuating probe light

(leading to noisier ∆T/T data) or even the total loss of white light. In such cases, having several consecutive

∆T/T data sets taken allows to selectively average the “good” ones and ignore all measurements with bad

probe light conditions. Lastly, some samples undergo photochemical changes during extended illumination,

which can lead to a change in the TAS signal over time. Comparing the individual experiments can unveil these

changes. In such cases, averaging over all individual data sets should be avoided, as it distorts the resulting

kinetics and spectra.

During the measurement, the user is presented with a GUI that allows them to view the dataset as it is

recorded and perform some simple analysis steps (see screenshots in Figure 3.8). For example, the whole

2D data surface can be visualized or kinetic and spectral slices can be plotted. This gives the user valuable

information that can be used to asses the quality of the data that are taken and – if necessary – stop the

measurement and restart it with different parameters. Data from the individual experiments can be compared

(for example to check for degradation) and data from previous measurements can be loaded and compared

on-the-fly, without interrupting the measurement process.

After the measurement

The averaged (or individual) 2D TAS matrices are saved in a custom binary file format. For analysis, a MATLAB

GUI (“Surface Explorer”) is provided to the user that can load these binary files and plot the 2D TAS matrix.

A screenshot of the GUI is shown in Figure 3.9. Besides visualization, one of the most common tasks in the

analysis of this kind of data is extraction of kinetics and spectra, which is made easy by the GUI and was the

original motivation for its creation. The extracted data can be further analyzed directly in MATLAB or copied

to other commonly used tools such as Origin or Excel. When working with several data files, recurring tasks

(such as extraction of the same set of integrated spectra) can be automated with a simple scripting language.

Moreover, semi-automatic chirp-correction of short delay TAS data can also be performed directly in Surface

Explorer. This becomes necessary because the probe white light pulse is chirped, i. e. zero time is slightly

shifted for different wavelengths. In order to properly compare kinetics at different spectral positions, the data

need to be rectified before analysis. A GUI module of the program assists the user in this. It shifts the data at

each wavelength to have a common zero time and saves the it to a new file. A comparison of an affected TAS

dataset before and after chirp correction is shown in Figure 3.10.

3 As in TAS very small quantities are measured (∆T/T ® 10−3), typical measurement times are on the order of hours.
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A

B

Figure 3.8: Screenshots of the TA Control LabVIEW GUI during a measurement. (A) The TAS data is interactively visualized as it is
taken and can be compared to other data sets. (B) Quick analysis and comparison can be performed by plotting (averaged)
kinetics and spectra without interrupting the measurement process.
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Figure 3.9: Screenshots of the Surface Explorer MATLAB GUI. The tool can be used to read TAS data, visualize it (top panel), extract
kinetics (middle panel) and spectra (bottom panel). All data can be easily transfered to other software for further analysis.
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Figure 3.10: Chirp correction of short delay TAS data. (A) Raw data shows the chirp of the white light pulse. The shorter wavelengths
show signal earlier than the longer wavelengths. The zero time edge appears tilted. (B) After chirp-correction with the
Surface Explorer MATLAB GUI, the zero time edge is rectified, i. e. the signal at all wavelengths rises at the same time.
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Surface Explorer is not restricted to TAS data. All data that can be represented as a 2D data surface can

be loaded and processed. Notable examples include time-resolved PL data (streak camera) or time-resolved

electron paramagnetic resonance spectrosopy (trEPR) data. Hence, the GUI is a highly versatile and useful tool

that integrates seamlessly into the workflow of analyzing time-resolved spectroscopic data.

3.5.3 Current and future development

Several changes have been made by me to the setup recently, in order to increase its utility and versatility.

The whole system was moved to a new state-of-the-art femtosecond laser system that can provide higher

repetition rates (up to 20 kHz), which reduces the measurement time. Accordingly, a new spectrometer has

been developed to obtain shot-to-shot spectra at these higher repetition rates. Furthermore, the updated

spectrometer includes an additional NIR line camera to extend the sensitivity of the system into the infrared.

Also, WLG inside a calcium fluoride (or YAG) crystal will be implemented, which yields a white light spectrum

with a stronger ultraviolet (infrared) component as compared to WLG in sapphire. Finally, the updated

setup allow the sample to be placed inside a closed-cycle helium cryostat, which opens up new experimental

possibilities.

3.6 Steady-State PL

To measure the PL emission in steady state, the sample is kept under dynamic vacuum (< 10−4 Pa) and is

excited by the focused output of a 525 nm CW diode laser (see section 3.1.3). The emitted light from the

sample is fibercoupled into a spectrometer (Avantes SensLine AvaSpec-ULS-RS-TEC). Scattered excitation light

is blocked by a 550 nm longpass filter (Thorlabs FEL0550). Depending on the signal intensity, integration times

are varied between 6 s and 90 s, respectively.

The intensity of the excitation light can be tuned by rotating a continuously variable ND filter (with a

range from ND0 to ND2). A fraction of the excitation light is diverted before reaching the sample and directed

onto a photodiode to measure its power. Using the ratio between this power and the respective value at the

sample position (measured earlier), the actual excitation power at the sample are tracked. This corrects for

any fluctuations in the laser diode’s output as well as inaccuracies in the rotation of the variable ND filter.

To increase the range of excitation power densities, measurements are performed using two different

lenses to focus the excitation light onto the sample, resulting in spot areas of 0.01 mm2 and 0.52 mm2. As the

collection area is the same in both cases (and much larger), the measured spectrometer signal (proportional to

the photon flux) needs to be corrected for the smaller emissive area in the better focused sample. This is done

by multiplying it with the ratio between the excitation areas (≈ 52).

3.7 Luminescence Microscopy

Steady-state PL microscopy experiments are performed on a widefield inverted microscope (Zeiss Axio Ob-

serverZ1). The output of a 405 nm CW laser (Stradus 405-250, Vortran Laser Technology, see section 3.1.3)

is passed through an acousto-optical tunable filter (AOTF) (AOTFnC-400.650, A-A Opto-Electronic), which

is used to control the beam’s intensity. The light is coupled into a fiber for spatial filtering and the fiber’s

output is collimated by a convex lens and focused by an oil immersion objective (Zeiss alpha Plan-Apochromat

63×/1.46 Oil Corr M27) into the sample. The phosphorescence signal or the scattered light from the excitation

light are collected by the same objective, passed through bandpass filters (Thorlabs FB405-10, 405/10 nm

(center/FWHM), for the excitation light; AHF BrightLine HC 698/70 for phosphorescence) and imaged onto an

electron multiplying charge-coupled device (EMCCD) camera (Andor Ixon Ultra X-7759). A schematic drawing
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of the microscopy setup is shown in Figure 3.11. The resolution limit for this setup can be calculated using the

Abbe-criterion

d =
λ

2NA
=

λ

2× 1.46
. (3.4)

To prevent triplet quenching by atmospheric oxygen, the sample is encapsulated in a glovebox under

nitrogen atmosphere.

3.8 Electron Paramagnetic Resonance

In an electron paramagnetic resonance (EPR) experiment, an external magnetic field is used to split the spin

energy sublevels (Zeeman effect, see section 2.1.5) in a previously photo-excited (e. g. by a short laser pulse)

material. A microwave source can drive transitions between these sublevels. Depending on the applied field

strength and the spin polarization, absorption or stimulated emission can be observed and used to identify

excited states such as radicals (doublets) or triplet excitons. In contrast, singlet excitons cannot be detected by

EPR, because they do not exhibit sublevel transitions.

Time-resolved electron paramagnetic resonance spectrosopy (trEPR) experiments are performed at

Helmholtz Zentrum Berlin. The custom-built setup allows for measurement at X band (9.6 GHz, Bruker

ER 4118X-MD5 cavity resonator) and Q band (9.6 GHz, custom cavity resonator) microwave frequencies. The

resonators are housed inside a helium gas-flow cryostat and placed between the poles of an electromagnet. The

samples are excited at a wavelength of 532 nm using the SHG output of a diode-pumped pulsed neodymium-

doped yttrium aluminum garnet (Nd:YAG) laser (Atum Laser Titan AC compact 15MM). The pulse energy is

2 mJ at 100 Hz repetition rate with a pulse duration of 5 ns and a spot size of around 1 cm2.

Time-resolved absorption and emission of microwave radiation by the excited sample inside the cavity is

recorded using a digital oscilloscope (LeCroy WaveRunner 104MXi). The recorded time span is 20µs for X and

10µs for Q band experiments. Additionally, the magnetic field strength is swept. Thus, microwave absorption

and emission data are obtained as a function of both time and magnetic field. To improve signal-to-noise

ratio, experiments are repeated several times for each magnetic field strength. Correction for background

signal is done by performing a measurement far from the resonant signal and subtracting it from each EPR

transient. The magnetic field axis is calibrated using a NMR Gaussmeter (Bruker ER 035M). The (constant)

offset between Gaussmeter and the sample position is determined using a reference sample (C60 encapsulated

in nitrogen).
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Figure 3.11: Schematic drawing of the PL microscopy setup. See text for detailed description.
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3.9 MALDI-ToF Mass Spectrometry

Mass spectrometry is an analytical method to measure the mass-to-charge ratio m/z of a material. Here, m is

the atomic mass and z the charge number. This is a common notation in mass spectroscopy.

Typically, a sample is bombarded with electrons or illuminated with an intense laser beam. In either case,

the material releases ionized molecules, which are then separated by their m/z ratio. This can be accomplished

using electric and/or magnetic fields to separate the ions spatially according to their m/z. Another method is

to separate the ions in the time domain by accelerating them in an electric field and measuring the time it

takes for them to reach a detector. This is called the time-of-flight method.

Electron bombardment can lead to undesired fragmentation of larger molecules. To circumvent this problem,

the investigated material can be embedded in a matrix of a second type of molecule. This leads to so called

“soft ionization” of analyte molecules. The combination of this method with the time-of-flight scheme is known

as matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-ToF-MS).

The setup used for MALDI-ToF-MS experiments is a 4800 Plus MALDI-ToF/ToF mass spectrometer (Applied

Biosystems/MDS SCIEX) equipped with a Nd:YAG pulsed laser (wavelength 355 nm, pulse length < 500ps,

repetition rate 200 Hz). The 4000 Series Explorer software (V3.5.3, Build 1017) and the Data Explorer software

(V4.9, Build 115) are used for analysis. For each mass spectrum, 500 laser shots are averaged. Before the

experiment, samples are digested in a solution of acetic acid (5 %) in ethanol. The matrix substance is DCTB

(trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile).

3.10 Preparation of PdP SURMOF Thin Films

The PdP SURMOF films used in this work are based on the established SURMOF-2 isoreticular series [100]. In

this specific analogue, zinc paddle-wheel nodes are coordinated to four ditopic palladium porphyrin linkers

(15-bis(4-carboxyphenyl)-10,20-diphenylporphyrinato)-palladium(II), in this work abbreviated as PdP). The

molecules assemble into free-standing 2D sheets perpendicular to the substrate (see Figure 3.12). The center-

to-center distance of PdP molecules inside a sheet is 2.5 nm, whereas the distance between adjacent sheets is

0.6 nm [67].
The PdP SURMOF films used in this work are prepared by the spray-coating method as described exemplarily

by Oldenburg [71] and briefly outlined below. The first preparation step is the cleaning of glass substrates in

an acetone-ethanol (1:1) solution in an ultrasonic bath for around 5 min. In the next step, the native oxide

layer is functionalized with hydroxy groups. This is done either in an oxygen plasma oven or by illumination

with ultraviolet light (in both cases for 15 min).

The synthesis of the linker molecule 15-bis(4-carboxyphenyl)-10,20-diphenylporphyrinato)-palladium(II)

(in this work abbreviated as PdP) is described in detail by Adams et al. [1]. Zinc acetate and ethanol were

purchased from VWR and used as received. The linker is dissolved in ethanol in a concentration of 20µmolL−1.

Zinc acetate is dissolved in ethanol as well (200µmol L−1). First, the zinc acetate solution is sprayed on the

substrate (15 s), followed by a waiting time (15 s) and rinsing with ethanol (5 s) to remove unreacted material.

Then, the linker solution is sprayed (25 s), which is again followed by a waiting time (35 s) and a rinsing step

(5 s). This process is repeated several times to build up the SURMOF. The number of spray cycles determines

the film’s thickness, as can be seen in Figure 3.12B. The growth rate of this deposition protocol was reported as

around 16 nm per cycle [59, 71].
Crystallinity of each sample film is ensured by X-ray diffractometry (XRD): The sample is illuminated by

X-ray radiation and the reflected intensity is measured. The incident angle θ of the incoming (and accordingly

the detected) beam is varied in a plane, either parallel to the substrate (“out-of-plane” measurement) or
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Figure 3.12: The PdP SURMOF. (A) Chemical structure of the SURMOFs building blocks: the PdP linker molecule (orange) and zinc
acetate metal nodes (black). (B) Photograph of three PdP SURMOF thin film samples on glass substrates fabricated
with increasing number of spraying cycles (from left to right: 2, 4 and 15 cycles). (C) Schematic drawing showing the
arrangement of the building blocks into free-standing sheets with the crystallographic axes indicated in square brackets.
The top view highlights that crystal domains with different alignments are formed in the substrate plane. Adapted with
permission from Adams et al. [2].

perpendicular (“in-plane”). X-rays reflected on different crystal planes interfere according to Bragg’s law for

constructive interference:

nλ= 2d sin(θ ) , (3.5)

with n being the diffraction order, λ the X-ray wavelength and d the distance between crystal planes. Thus, the

diffractogram allows to calculate the dimensions of the crystal’s unit cell. This is how the dimensions shown in

Figure 3.12 have been determined.

The measurements were carried out using a Bruker D8-Advance diffractometer equipped with a position

sensitive detector (Lynxeye) in θ -θ geometry.4 The X-ray source is a Cu-anode (Kα1,2 radiation at λ =
0.154018 nm). Out-of-plane XRD is performed routinely on all PdP SURMOF samples after preparation. The

data of such a measurement is exemplarily shown in Figure 3.13. From the peak positions, the crystal plane

distance d = 2.5 nm can be derived. The inter-sheet distance can be extracted from in-plane XRD, which is

experimentally more difficult to perform, especially for thin films with thicknesses on the oder of only 100 nm.

The value of 0.6 nm was determined by Liu et al. for PdP SURMOF thin films that were prepared in an identical

fashion as in this work [67].
An important caveat of this method that should be kept in mind is that, on the one hand, the absence of an

XRD signal in a film suggests that the material is not crystalline. On the other hand, the presence of such a

signal signifies only that at least part of the sample is crystalline. Notably, it does not imply that the whole film

is defect-free or without non-crystalline regions.

4 This means that the sample is fixed and both X-ray tube and detector move by an angle θ . In contrast, in θ -2θ geometry, the X-ray tube
is fixed, the sample rotates by an angle θ and the detector by an angle 2θ .
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Figure 3.13: Out-of-plane XRD data of a PdP SURMOF thin film sample showing the first three diffraction orders.
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4 Exciton Transport in PdP SURMOFs

In this chapter, basic photophysical properties of PdP SURMOF films are established and anisotropic triplet

exciton motion inside such films is investigated.

4.1 Creation and Lifetime of Excitons in a PdP SURMOF

The first step in understanding the excitonic processes inside PdP SURMOFs is to look at which types of excitons

are created upon illumination and how long their intrinsic lifetimes are. This establishes a basis for further

experimentation and analysis.
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4.1.1 Absorption

Excitons are created by the absorption of light in the PdP linker molecules. The absorbance spectra of the

linker in solution and inside the SURMOF structure are shown in Figure 4.1. Their difference indicates,

that the SURMOF structure alters the molecule’s photoresponse. In ethanol solution, the PdP linker exhibits

characteristic absorbance peaks at 415 nm (Soret band) and 520 nm (Q band). In the SURMOF, these peaks are

red-shifted to 435 nm and 530 nm, respectively. The changes are consistent with those observed in palladium

tetraphenyl-porphyrin (PdTPP) based 2D and 3D conjugated microporous polymers (CMPs) [101].
These bathochromic shifts are caused by J-type aggregation and increased π-π interaction of the porphyrin

molecules [102]. Furthermore, the Soret band is significantly broadened, which is caused by long-range

dipole-dipole interactions [102, 103]. The energy shifts can be understood by quantum chemical calculations,

which show that strong noncovalent interactions between the closely packed PdP molecules affect the electron

density localization on the PdP frontier orbitals. This changes the energy difference between HOMO and LUMO,

which leads to the observed bathochromic shift in the absorbance spectrum [2].

4.1.2 Photoluminescence

Upon absorption of light in the PdP SURMOF film, singlet excitons are created. Metal centers in organic

molecules induce spin-orbit coupling [104] and enable efficient ISC. Hence, the ISC yield is close to unity in

the case of PdP [43, 44] and the singlet excitons convert quickly to the triplet state. This process leads to a

singlet exciton lifetime of less than 15 ps [67].
Ignoring non-radiative processes, the fraction of the singlets that does not cross over to the triplet state

can decay radiatively via fluorescence. This emission’s center wavelength is 610 nm for the linker molecule

in ethanol solution and 620 nm for the PdP SURMOF, as can be seen in Figure 4.1 (the sample is excited at
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Figure 4.1: Normalized absorbance and PL spectra of the a deaerated solution of PdP linker in ethanol (concentration 10µmol L−1)
and of a PdP SURMOF thin film on glass. The absorbance is normalized to the Soret band maximum, whereas the PL is
normalized to the fluorescence around 525 nm. For the PL spectra, the samples were excited with a 123 456789 nm CW
laser and the SURMOF was kept under dynamic vacuum (< 10−4 Pa at room temperature). Adapted with permission from
Adams et al. [2].

525 nm, see section 3.1.3). The triplet excitons decay via phosphorescence, which can be observed as two

broad peaks centered roughly around 700 nm and 770 nm in solution or 710 nm and 780 nm in the SURMOF.

The difference between the PL spectra in solution and the SURMOF can again be attributed to a shift in the

energies of the frontal orbitals caused by the close stacking of the porphyrin molecules.

The assignment of the PL peaks to fluorescence and phosphorescence is consistent with literature [101,

105]. Additionally, streak camera measurements of a PdP SURMOF thin film confirm this as well. The sample is

excited by the Q-switched pulsed laser (see section 3.1.2) at 532 nm with 280µJ cm−2 and a repetition rate of

333 Hz. The sample is kept under dynamic vacuum of < 10−4 Pa. The measured data are shown in Figure 4.2.

The emission at 620 nm (fluorescence) is very short-lived, the decay is faster than the 6 ns instrument response

time. The signal above 660 nm (phosphorescence) decays more slowly over several hundred microseconds.

The intensity difference between fluorescence and phosphorescence in the streak camera measurement is due

to the difference in lifetime and photoluminescence quantum yield (PLQY) of the two processes.

The low intensity and long lifetime of the phosphorescence makes streak camera measurements of the

PdP SURMOFs a difficult endeavor, as long integration times are necessary. For example, the data shown in

Figure 4.2 was taken over the course of more than 65 h. We will see in chapter 5 that extended exposure

to intense light alters the photoresponse of the PdP SURMOF drastically, which prevents us from analyzing

pristine samples with the streak camera. This is also connected to the available streak camera setup. The

spectral response of the streak tube is optimized for the IR region and not the visible wavelength range of the

above measurements. This makes the spectral response more than one to two orders of magnitude lower than

with other commercially available streak tubes. Changing this component could aid in shortening experiment

time. In this thesis, however, alternative experimental methods will be employed to bypass the shortcomings

of the available streak setup. MCS and TAS will be used to monitor the time-dependent behavior of triplet

excitons in PdP SURMOFs.

4.1.3 Triplet Exciton Lifetime

In contrast to the short-lived singlet excitons (< 15ps), the triplet lifetime is on the microsecond scale, which

is established experimentally by tracking the phosphorescence decay of a PdP SURMOF thin film after low-
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Figure 4.2: PL time evolution of a PdP SURMOF thin film obtained from a streak camera experiment. The sample was excited at
532 nm with 280µJ cm−2. The fluorescence is integrated from 610 nm to 630 nm, whereas the phosphorescence is inte-
grated from 660 nm to 850 nm. The inset shows the PL spectra at different times after the excitation pulse. The data for
50µs, 100µs and 200µs are smoothed (sliding window average with a window size of 10 pixel) for better visibility.

intensity excitation. The light source is a 525 nm laser diode (see section 3.1.3) in QCW mode (laser on

for 1 ms, laser off for 4 ms). The sample is kept under dynamic vacuum (< 10−4 Pa) at room temperature.

The power density is kept low at 58 mW cm−2 in order to reduce the influence of TTA. The phosphorescence

decay at 700 nm was measured using a double monochromator, a PMT, and multi-channel scaling electronics

synchronized to the laser source (see section 3.2). A 550 nm longpass filter in front of the monochromator is

used to block excitation light. Due to the low phosphorescence intensity, the measurement time is 22 min.

The resulting data are shown in Figure 4.3. Before zero-time, the CW laser drives the phosphorescence into

steady state. At t = 0, the laser is turned off and the signal decays. The initial part of the signal (until around

200µs) decays slightly faster than the subsequent part. This can be explained by TTA. At lower excited state

concentrations, which are reached after around 1 ms, this contribution to the triplet decay vanishes. By fitting

a mono-exponential function to the tail of the decay, the monomolecular triplet lifetime τ= (729± 2)µs can

be extracted.
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Figure 4.3: Phosphorescence decay of a PdP SURMOF thin film after 1 ms excitation at 525 nm with a power density of 58 mW cm−2.
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The triplet lifetime of PdP in the SURMOF configuration is longer than the corresponding value of a

similar compound, PdTPP, dissolved in toluene, for which a phosphorescence lifetime of (498± 40)µs was re-

ported [106]. The extended lifetime in the SURMOF can be explained by the suppression of non-radiative decay

pathways due to the rigid structure of the molecular framework and the absence of solvent molecules [107].

4.2 Triplet Exciton Transport

Having established how excitons are formed and determined the intrinsic lifetime of the triplet exciton in the

PdP SURMOF, we turn to investigating their motion inside the organic framework by means of TAS.
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The experiments in this section were conceived by the author and Ian A. Howard. The PdP linkers were

designed and synthesized by Ganapathi Emandi and Mathias O. Senge. Nicolò Baroni and Michael Oldenburg

prepared PdP SURMOF samples with the guidance of Christof Wöll. TAS and absorbance experiments were

performed by the author. Data analysis and modeling were performed by the author with support by Ian A.

Howard.

4.2.1 Transient Absorption Experiments

During the TAS experiments, the thin film sample is kept at room temperature under dynamic vacuum

(< 10−4 Pa). The Q-switched pulsed laser (see section 3.1.2) is used to excite the sample at 532 nm and the

TAS system is used in long delay and transmission mode.

The whole spectrum can be attributed to the porphyrin triplet exciton state. The broad, negative signal is

caused by PIA, i. e. excitation of triplet excitons to higher excited states. This signal is strongest where triplet

excited-state absorption is highest, in our case between 450 nm and 500 nm. The spectral shape is consistent

with the reported absorption cross-section of the lowest triplet state in meso-tetrakis(4-N-methyl-pyridiniumyl)

porphyrin (TMPyP) in different solvents [108]. Additionally, a small cusp is visible in the TAS spectra around

530 nm, which is caused by a positive GSB contribution: the pump laser partially depletes the porphyrin ground

state, which absorbs here (see Figure 4.1), leading to increased transmission. As both the positive GSB and the

negative PIA are linked to the same excited state species (the triplets excitons) their relative weight does not

change and the resulting net negative TAS spectra at each delay time have identical shape.

The decay kinetics of the triplets differ from the PL measurements in that the lifetime is significantly shorter.

This can be explained by TTA, which competes with radiative decay and thus reduces the effective triplet

lifetime. The effect can best be observed by performing TAS measurements at different pump intensities and

comparing the normalized kinetics (integrated from 460 nm to 500 nm for best signal strength), as shown in

Figure 4.5. As TTA requires two triplets to meet, the process depends non-linearly on the triplet concentration

and the decay rate becomes faster with increasing pump power.

Furthermore, we can conclude from this data, that the porphyrin chromophores in the SURMOF are

overall well-connected. Structural defects, such as an uneven surface, residual individual linkers, growth

inhomogeneities or not-aggregated MOF sheets can lead to isolated linker molecules (see Figure 4.6). Triplet

excitons on such chromophores are immobile and thus cannot participate in TTA. Instead, they decay with

their monomolecular lifetime of 730µs, which would result in a long-lived contribution to the PIA signal on

that timescale. The absence of such a contribution is clear evidence that the majority of the PdP molecules in

the system are well-connected in the SURMOF bulk. This is consistent with the significant difference between

the absorption spectra of linker solution and SURMOF. If a large fraction of PdP molecules in the SURMOF
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Figure 4.4: (A) 2D TAS data of a pristine PdP SURMOF thin film excited at 532 nm (70µJ cm−2). (B) Transient absorption spectra
obtained from (A) by integrating over short time intervals at the given delay times.
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Figure 4.5: Normalized kinetic traces of the PdP SURMOF PIA signal (integrated from 460 nm to 500 nm) for different excitation
fluences. A curve with the monomolecular triplet lifetime in the SURMOF is drawn in gray for comparison.
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4 Exciton Transport in PdP SURMOFs

were isolated, the absorption spectra should be more similar to the solution. From the noise-level of the TAS

data an upper limit of 5 % for the fraction of trapped triplets can be estimated.

4.2.2 Calculation of Initial Concentrations

To perform a more quantitative analysis of the TAS dataset, the relative∆T/T values can be converted to triplet

concentrations. This requires knowledge of the excitation fluence H, the film thickness d, and the photon

energy E as well as the absorbance A at the pump wavelength. This allows to calculate the amount of absorbed

photons per volume, which is identical to the concentration of created singlet excitons per pulse:

[S]0 =
H
�

1− 10−A
�

Ed
. (4.1)

This calculation uses the thin film approximation, namely, that the excitation light is attenuated only weakly

while passing through the film. Thus, the resulting singlet concentration is assumed to be constant over the

whole thickness. To examine whether the thin film approximation is valid in this case, we can calculate the

actual exciton concentration profile over the thickness of a film. Absorption in the film causes an exponential

attenuation in light intensity (known as the Lambert-Beer law). Accordingly, the generation of excitons follows

the same profile and the singlet exciton concentration [S] can be written as

[S](z) = [S]0
A ln(10)
1− 10−A

10−Az/d , (4.2)

where A is the absorbance and z is the depth coordinate, i. e. the position along the light propagation direction,

with z = 0 at the front interface of the film and z = d after the film’s thickness has been traversed. This can

be expressed by the dimensionless quantities z̃ = z/d and [S̃](z̃) = [S](z̃)/[S]0. The depth profile of [S̃](z̃)
is shown in Figure 4.7 for several absorbances (typical values for the PdP SURMOF samples in this work are

between A= 0.2 and A= 0.3). The deviation from the thin film approximation increases with the material’s

absorbance. However, as the approximation underestimates the concentration at the top of the sample, it

likewise overestimates the values at the bottom. Considering the material’s bulk, the deviations do roughly

cancel out. We will return to this discussion later and estimate the potential impact on the results of our

analysis (see page 53).

mobile triplets
trapped triplets

1 2

3

4

Figure 4.6: Schematic drawing of different defects in a SURMOF structure (shown as a side-view of sheets) that can result in isolated
linker molecules. Triplet excitons that form on such linkers (black circles) are trapped and immobile, as opposed to the
highly mobile triplets in the bulk (red circles). Isolated linkers can for example occur because of a jagged, uneven top
surface caused by unequal growth (1), residual unconnected linkers that have not been washed off (2), inhomogeneities in
SURMOF growth (3), and free-standing or unaggregated MOF sheets (4).
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Figure 4.7: Comparison of the depth profile of the dimensionless singlet exciton concentration [S̃] to the thin film approximation.

Because the ISC rate in PdP is close to unity, we can assume the initial triplet exciton concentration to be

identical to the singlet concentration: [T ]0 ≈ [S]0. Therefore, [T ]0 should be proportional to H. Experimentally,

however, the relationship between the pump fluence and the initial PIA signal height is not linear, as shown in

Figure 4.8. The data can be fit well with a power function f (H)∝ H b, where b = 1 would correspond to the

linear case. However, we find b = 0.71, so the triplet concentration is below the linear expectation at high

pump intensities. This fluence-dependent deviation is caused by losses in triplet concentration via TTA during

the instrument response time. To obtain the actual value of [T]0 after these initial losses, we quantify the

deviation from linearity by comparing a linear extrapolation of the lowest two excitation fluences with the

experimental data (dashed line in Figure 4.8). Dividing these two values gives a correction factor ξ(H), which

we can use to correct the values from Equation 4.1:

[T]0 = ξ(H)[S]0 . (4.3)

The correction factor can be understood as the survival fraction of triplet excitons during the instrument

response time. For example at the highest fluence in Figure 4.8, the correction factor is ξ(280µJ cm−2) = 0.51,

so roughly half of the initially created triplets recombine via TTA.

The TAS signal is proportional to the concentration in case of a single excited state species. Therefore, the

TAS kinetics can be rescaled by normalizing them to their initial maximum and multiplying them with [T]0.

The resulting kinetics correspond to the triplet concentration over time, [T](t).

4.2.3 Dimensionality of the Transport

The dimensionality of the transport process can be determined from the TTA rate coefficient γ(t). The triplet

concentration [T](t) is known from the TAS experiment and d[T]/dt can be calculated from it. Hence, the

TTA rate can be determined experimentally after solving the system’s rate equation (Equation 2.11 on page 12)

for γ(t), which yields

γ(t) = −
�

d[T]
dt
+ kGS[T]

�

[T]−2 ≈ −
�

d[T]
dt

�

[T]−2 . (4.4)

The last step is a simplification which is valid when the monomolecular decay is much slower than the pairwise

annihilation rate (kGS� γ(t)[T ]), as is the case for our data. The factor f in Equation 2.11 was chosen as f = 1.
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Figure 4.8: Determination of the correction factor ξ for calculating the triplet exciton concentrations. The initial maximum of the

triplet PIA signal does not scale linearly with excitation intensity. Instead, a power law with an exponent of 0.71 best
describes the relationship.

As described in section 2.1.8 and assuming that the quintet state is inaccessible, in 3/4 of all triplet-triplet

encounters one triplet decays while the other survives ( f = 1), whereas in the remaining 1/4 no triplets survive

the encounter ( f = 2) and one singlet exciton remains. However, as the ISC yield in PdP is close to unity [43,

44], this singlet can quickly convert to a triplet again:

T1 + T1→







T1 + S0

S1 + S0→ T1 + S0

(4.5)

In both cases, one triplet exciton survives the bimolecular encounter, therefore f ≈ 1.

Figure 4.9 shows a plot of Equation 4.4 for the TAS data, which reveals that γ(t) is decreasing over time.

This suggests that triplet exciton transport is 1D and not a 3D process, as in the latter case γ(t) would tend to a

constant non-zero value. Only data for the two highest excitation fluences are shown and used in the analysis

as they have the best signal-to-noise ratio. The 1D and 3D equations (Equations 2.13 and 2.12) are fit to the

experimental data. The 3D model fits poorly,1 whereas the 1D model matches the data well for the optimized

parameter γ0 = (8.2± 0.2)× 10−16 cm3s−1/2. Thus, triplet diffusion occurs preferentially in the direction of

closest chromophore spacing, that is between adjacent SURMOF sheets.

The parameter γ0 allows to validate the simplification in Equation 4.4. The monomolecular rate is kGS =
1.37× 103 s−1, whereas, for example, at t = 100 ns the TTA rate is γ(t)[T] = 3.34× 105 s−1. Overall, the

condition kGS < γ(t)[T] holds true until roughly 60µs.

4.2.4 Diffusion Constant, Hopping Rate and Diffusion Length

From γ0, some interesting material parameters can be derived. For instance, the diffusion coefficient can

be calculated from Equation 2.14 as D = 2.7× 10−4 cm2 s−1 and the triplet exciton hopping rate as khop =
1.5× 1011 s−1, which are excellent values for an organic material system (see discussion in section 7.1).

Another figure of merit is the diffusion length, which can be calculated using Equation 2.9 as LD = 6.3µm.

This assumes that 1D hopping at the rate khop continues for the monomolecular triplet lifetime of 730µs. In

1 The interaction radius R in Equation 2.12 is set to a reasonable value of 1 nm. However, values up to R= 100 nm can be chosen without
observing a significant deviation from the shape shown in Figure 4.9. Only for even higher values of R of several 100 nm does the 3D
function fit the data adequately. As R describes the distance at which two particles react (here: two triplets annihilate) such large values
are highly implausible and we thus consider the 3D function to not fit the data sufficiently under realistic conditions.
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Figure 4.9: Calculated values for the TTA rate coefficient γ(t) for two excitation fluences based on the TAS data shown in Figure 4.5.
Both a 1D and a 3D diffusion model are fitted to the data.

other words, this is the average distance a triplet exciton travels during its lifetime, unless it is quenched (e. g.

by TTA) or otherwise “stopped” (e. g. by lattice defects such as crystal grain boundaries).

4.2.5 Discussion of Uncertainty Boundaries

As mentioned earlier (page 50), the value of the initial triplet concentration [T]0 was assumed to be uniform

over the whole film thickness by the thin film approximation. As the actual value deviates (depending on

the depth in the film) from this approximation, the values for γ0, D, khop and LD extracted above are average

values, which are representative for the bulk of the material. However, we can recalculate these parameters for

initial triplet concentrations that are 30 % above or below the thin-film-approximation value. For example, as

D∝ γ2
0∝ [T ]

−2
0 , an increase of 30 % in [T ]0 leads to a 40 % decrease in D. Upper and lower limits calculated

this way are listed in Table 4.1. Even at the extreme limits of [T]0 deviations of ±30 %, the impact on the

extracted parameters is sufficiently minor, as the most relevant information lies in their order of magnitude,

which is only slightly affected.

4.3 Summary

This chapter established that triplet excitons are the only long-lived excited state species in a PdP SURMOF thin

film. Triplets can efficiently move between porphyrin molecules in adjacent SURMOF sheets due to the high

degree of order in the metal-organic framework. The porphyrin chromophores are well-connected, with less

than 5 % of triplets excitons being located on isolated chromophores. Due to the long monomolecular triplet

lifetime (τ≈ 730µs) and fast hopping rate (khop ≈ 1.5× 1011 s−1), triplet excitons are able to travel several

Table 4.1: Extracted values for the diffusion coefficient D, the triplet hopping rate khop and the diffusion length LD as well as the upper
and lower limit assuming a deviation of ±30 % of the initial triplet concentration from the thin-film approximation.

parameter unit lower limit value upper limit

D 10−4 cm2 s−1 1.6 2.7 5.5

khop 1011 s−1 0.9 1.5 3.1

LD µm 4.8 6.3 9.0
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micrometers along 1D paths in the material. This is an exciting result, however, mechanisms that reduce the

triplet lifetime (for example quenching at impurities or by TTA) or restrict exciton movement (such as small

crystal grains) can negatively affect the diffusion length. Such mechanisms will be discussed in the following

sections.
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PdP SURMOFs have exciton transport properties which make them interesting for application in organic

electronics or photon harvesting devices. However, a relevant criterion for the applicability of the material is its

long-term stability and the effect of environmental conditions (such as exposure to light, heat or humidity) on

its properties. In this chapter, the effect of prolonged illumination on the photoresponse of the PdP SURMOF

material is investigated.
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5.1 Changes Caused by Prolonged Illumination

Experiments already performed on a pristine PdP SURMOF thin film – namely absorbance, PL and TAS – are

repeated for extended illumination times. Again, the samples are kept under dynamic vacuum (< 10−4 Pa) and

at room temperature during the illumination. In each case, prolonged light exposure clearly has an impact on

the results, which will be discussed below.

Photoluminescence

During continuous excitation with a 525 nm CW laser diode at a power density of 5.6 W cm−2, the SURMOF’s PL

spectrum changes drastically over the course of 32 h, as shown in Figure 5.1. The phosphorescence signal drops

over time between 650 nm and 810 nm, whereas it rises for longer wavelengths. In contrast, the fluorescence

peak at 615 nm is not affected by these changes. Therefore, the observed effects cannot be explained by

ablation, framework disintegration or any other form of physical destruction of the SURMOF. To put the amount

of illumination into perspective: During the 32 h exposure, around 380× 1026 cm−3 photons were absorbed

by the sample. This corresponds to over 500 days of continuous solar illumination (considering the visible

absorption spectrum of a 200 nm thick PdP SURMOF film under AM1.5 conditions [109]).

Absorbance

A more subtle change is observed in the absorbance spectrum in Figure 5.2. Here, the SURMOF is exposed to

0.1 W cm−2 of 405 nm CW. After 17 h, the illumination is interrupted, the thin film removed from the vacuum

container, and an absorbance measurement is taken. Subsequently, the illumination is continued for another

16 h, followed by a final absorbance measurement.
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Figure 5.1: Changes in the PL intensity of a PdP SURMOF thin film over the course of 32 h of continuous CW excitation at 525 nm
(5.6 W cm−2).
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Figure 5.2: Changes in the absorption of a PdP SURMOF thin film over the course of 33 h of continuous CW illumination at 405 nm
(0.1 W cm−2).

For the most part, the spectrum remains unaltered. Only two regions exhibit a change: The Soret band’s

absorbance slightly decreases during the illumination, whereas the region between 600 nm and 620 nm exhibits

a small increase. The loss of absorption in the Soret band maximum amounts to 5.1 %. Hence, at least this

percentage of porphyrin molecules have been lost during illumination.

The absorption increase at 620 nm can be interpreted as the appearance of a previously absent substance,

whereas the Soret band’s decrease hints at a loss of a fraction of the PdP linker molecules. This seems to be at

odds with the observation that the fluorescence intensity remains unchanged during illumination. A possible

explanation is that the newly introduced substance emits in the same wavelength region and compensates the

loss of PdP fluorescence.

Transient Absorption

Lastly, the TAS experiment are repeated under extended illumination. The PdP SURMOF thin film is excited by

a 532 nm pulsed laser at 120µJ cm−2 for 15.4 h. As acquisition of a full 2D TAS data surface takes 33 min, the

experiment is repeated 28 times.
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As described earlier (see e. g. Figure 4.4), in the pristine sample the decay of a single PIA-dominated triplet

spectrum is observed (see Figure 5.3A). After 15.4 h of illumination, a new positive GSB feature has appeared

around 615 nm (see Figure 5.3B). The temporal evolution of this feature is clearly distinct from the triplet

exciton: The 615 nm signal starts negative before it increases, turns positive and then decays to zero. In

Figure 5.3C the kinetic traces in this (450 nm to 500 nm, labeled (2)) and the triplet-dominated wavelength

region (450 nm to 500 nm, labeled (1)) are shown before and after the extended light exposure. In the pristine

material, both regions exhibit the same decay, which is consistent to the earlier assertion that the whole

spectrum is linked to these excitons. Furthermore, the triplet kinetics remain unchanged during illumination.

Only the 615 nm kinetic change and exhibit the aforementioned rise from a negative PIA-dominated to a

positive GSB signal, crossing zero after 100 ns. Interestingly, at late times (> 1µs), the new feature decays

with the same time constant as the triplet excitons, as can be seen by the comparison of the absolute values in

Figure 5.3D. This observation will be of importance later on.

Furthermore, it is worth noting that the GSB appears in the same wavelength region as the change in

the absorption spectrum above. This can best be seen in Figure 5.3E, where the TAS spectrum integrated

from 100 ns to 300 ns is tracked over illumination time. The GSB feature grows over time, which mirrors the

light-induced increase of the absorbance peak in this very wavelength region. Both effects are indicative of the

same material change. In other words, the introduction of a new substance – or photoproduct – is reflected by

its absorption and the transient bleach of this ground-state absorption.

Rate of Change

For application purposes it is useful to know how fast this change in material composition occurs. The actual

concentration of photoproduct sites is unknown. However, the changes in PL intensity and the GSB signal can

be taken as proxy values, as they reflect the increase of photoproduct concentration. In Figure 5.4, the relative

changes in the TAS GSB region and the steady-state phosphorescence intensity are shown over the cumulative

concentration of absorbed photons n. As before, this can be compared to the corresponding duration of solar

illumination under AM1.5 conditions [109] (considering the visible part of the absorption spectrum only and

assuming a 200 nm thick PdP SURMOF film): A value of n= 1026 cm−3 corresponds to 32.4 h of continuous

illumination by sunlight.

The PL experiments were performed in a high (5.6 W cm−2 at 525 nm CW) and low (0.1 W cm−2 at 405 nm

CW) excitation density regime. In both cases, the decay in phosphorescence intensity as a function of n is

similar. Therefore, the creation of photoproduct sites does not depend on the power density or wavelength

but rather the number of absorbed photons. This holds also true compared to the GSB data, which was taken

under pulsed excitation.

The signals in the PL experiments exhibit an initial fast component followed by a much slower decay.

The TAS data only tracks the former process. It is reasonable to empirically quantify the rate of change by

fitting a mono-exponential function f (n)∝ exp (n/ν) + f0 to all three datasets. The offset f0 approximates

the long decay component, whereas the parameter ν corresponds to the photon dose required for the fast

component to decay to 1/e of its magnitude. A global fit over the TAS and both PL datasets (for absorbed

photon concentrations up to 6× 1026 cm−3) results in ν= 1.53× 1026 cm−3. This corresponds to around 50 h

under solar irradiation.

As the actual dynamics of photoproduct creation are not understood, the choice of an exponential function

is arbitrary. However, the global fit shows that the rate of change is independent of the excitation regimes

(pulsed, high-intensity CW, low-intensity CW).

It is also noteworthy that a mono- or bi-exponential fit does not match the slow decay component. Instead, it

is described well by power-law function f (x)∝ xα with a fit coefficient of α = −0.13283± 0.000 04≈ −0.13,
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Figure 5.3: Effects of prolonged illumination of a PdP SURMOF thin film monitored by TAS in a (A) pristine film and (B) after 15.4 h
of continuous excitation with the 532 nm pulsed pump laser at 120µJ cm−2. (C) Normalized TAS kinetic traces integrated
over the triplet-dominated region 450 nm to 500 nm (1) and the photoproduct-dominated region 605 nm to 620 nm (2) for
the pristine and illuminated samples from panels (A) and (B). (D) Comparison of the absolute values of the kinetic traces in
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et al. [1].
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as can be seen in the inset of Figure 5.4B. Interestingly, a power-law function does not match to the early decay.

This difference in the time dynamic shows that the fast and slow component are likely linked to two distinct

photochemical processes, that, however, lead to the same photoproduct.

Rank of the TAS Data Matrix

So far, only one additional species was considered to be present in the illuminated SURMOF. To confirm that this

is correct and that not more excited-state species are introduced, the rank of the TAS data matrix is tracked over

illumination time. This can be done by calculating the singular value decomposition (SVD) of each matrix,1

as the effective rank equals the number of non-vanishing singular values σ1, σ2, . . .σn. This is shown in

Figure 5.5. In the pristine film, triplet excitons are the sole excited-state species and, accordingly, only the

first singular value σ1 is above the noise level: the rank of the matrix is 1. During the illumination, σ2 rises

constantly and therefore the data matrices can be considered as having rank 2. Higher-order singular values

remain at the noise floor. Thus, only one additional excited-state species is necessary to explain the data. As σ2

stays below 10 % of σ1, the photoproduct state has a limited impact on the overall photoresponse. Please note

that this purely mathematical analysis does not exclude the possibility that additional species are introduced

that share the same decay kinetic as either the triplets or the photoproduct state, as that would make them

indistinguishable in this analysis. Thus, further examination is necessary.

5.2 A Possible Candidate for the Photoproduct

So far, the exact nature of the photoproduct remains open. Under illumination, porphyrin can undergo a

photolytic reaction that leads to the reduction of one double bond in the porphyrin macrocycle. This process

creates either the unstable product phlorin or the stable chlorin [110, 111]. The latter is a good candidate

for the photoproduct observed in the PdP SURMOF. Notably, palladium chlorin (PdC) in different solutions

was reported to absorb around 603 nm [112] or 612 nm [110], which matches well to the emergent feature in

the PdP SURMOF absorption and the GSB. This absorption corresponds to the Q-band component which is

suppressed in metalloporphyrin but is significant in metallochlorin (see section 2.2.2). Furthermore, PdC does

not exhibit steady-state emission below 750 nm. Instead, it emits more light than PdP above 850 nm [112].
This matches the observed change in PL shown in Figure 5.1.

1 The computation is performed using MATLAB’s built-in svd() function.
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Figure 5.5: Singular values obtained by SVD from TAS data matrices repeatedly taken over the course of 15.4 h illumination time. Only
the first six singular values σ1. . .σ6 are shown, as higher order singular values (starting from σ3) stay consistently at the
noise level and can be neglected.
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The light-induced reduction of porphyrin to chlorin relies on the presence of a proton source. In an idealized

SURMOF under vacuum conditions, no such source exists. However, there might be residual solvent (ethanol)

or water being trapped in the SURMOF’s pores. It is known that water molecules form hydrogen bonds to the

paddlewheel’s axial positions [113]. These are difficult to remove, even under extended dynamic vacuum

as in the experiments presented here. Alternatively (or additionally), traces of ethanol might be directly

photo-oxidized to acetaldehyde, providing the hydrogen atoms required for the reduction of porphyrin to

chlorin.

In an attempt to prove that the photoproduct can indeed be identified with PdC, MALDI-ToF-MS mea-

surements were performed on a pristine and an illuminated PdP SURMOF film. MALDI-ToF-MS is a sensitive

method able to detect small material quantities (see section 3.9).

A pristine PdP SURMOF is prepared and illuminated for 33 h by a 405 nm CW laser at 0.1 W cm−2 (1027 cm−3

absorbed photons). Illumination was performed at room temperature under dynamic vacuum (< 10−4 Pa).

MALDI-ToF mass spectra of the PdP SURMOF before and after degradation are shown in Figure 5.6. They are

compared to the theoretical spectra of PdP and PdC.2 The isotopic m/z distribution for PdP (m/z = 807.075 Da)

obtained for a pristine PdP SURMOF resembles the calculated pattern (m/z = 807.155Da). The mass spectrum

of the irradiated SURMOF exhibits only a small increase at m/z = 809.967Da and remains otherwise very

similar to the pristine film. This is consistent with the above observation that only a small fraction of PdP

molecules form photoproducts.

As the calculated m/z distributions for PdP and PdC overlap significantly, identification of a small quantity

of PdC in the illuminated sample is not straightforward. The change in the m/z intensity distribution is at least

2 Theoretical spectra are calculated using the web service ChemCalc [114].
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consistent with PdC formation. This, together with the spectroscopic measurements, lends strong support to

the hypothesis that chlorin is the photoproduct introduced into the PdP SURMOF during illumination. However,

as no conclusive proof of this hypothesis was possible, the material introduced by illumination continues to be

called “photoproduct” throughout this text.

5.3 Influence of the Photoproduct on the SURMOF’s Photoresponse

We have seen earlier in the TAS data (Figure 5.3) that the creation of photoproduct sites inside the PdP

SURMOF introduces a new excited state. The spectral position of this GSB feature coincide with the ground

state absorption of the photoproduct. Thus, the new state is an excited state of the photoproduct.

Time-Resolved EPR

To identify the nature of this new state, trEPR experiments are performed on an photoreacted PdP SURMOF

thin film (accumulated absorbed photon dose on the order of 1027 cm−3). Due to long measurement times

under constant illumination, it was not possible to perform trEPR experiments on a pristine film. Instead, a

solution of 0.5 mmolL−1 PdTPP in toluene is used as reference. For the SURMOF sample, the thin film on

glass was broken into cm-long shards to fit into a quartz capillary tube, which was then deaerated and sealed

under helium atmosphere. Experiments are performed using microwave radiation at X (9.6 GHz) and Q band

(34 GHz) frequencies. The samples were kept at 20 K to improve the signal-to-noise ratio.

A detailed analysis of the trEPR data was previously published [1]. Below, the most relevant results relating

to this thesis are summarized.

A comparison of X and Q band data for both the photoreacted PdP SURMOF thin film and the PdTPP linker

is shown in Figure 5.7. The EPR signal of the linker solution shows a pattern that has emissive and absorptive

components. They represent microwave-driven transitions between different spin sub-levels separated by

Zeeman splitting due to the external magnetic field. The data are consistent with a population of triplet

excitons. A similar pattern – albeit with a decreased spectral width – appears in the SURMOF’s EPR signal.

The difference in width suggests that the PdP triplet excitons are spatially more extended in the SURMOF as

compared to the linker solution, which can be related to the more ordered environment of the chromophores.

Furthermore, the EPR signal of the photoreacted SURMOF has an additional sharp and strong emissive feature,

which corresponds to a particle with spin 1/2. This new feature indicates the presence of a radical species and

is likely linked to the excited state on the photoproduct. The spectra agree well with a model of the system

(red lines in Figure 5.7; for details on the model please refer to the original publication [1]).

The temporal evolution of the radical signal (see Figure 5.7E) can be modeled by a mono-exponential

function (convoluted with the instrument response) with a lifetime of 3.5µs. Although this measurement was

performed at 20 K, this value will be found to be in good agreement with the effective lifetime of the radical

population obtained by TAS at room temperature. The triplet’s trEPR signal changes sign over time, which

indicate that the spin polarization of the triplet population is driven by the microwave field. Hence, the true

triplet lifetime is likely longer than in the trEPR trace.

Transient Absorption

So far, it is unclear whether the radical states are populated directly by the excitation pulse or whether they

are created over time by quenching of porphyrin triplet excitons at a porphyrin:photoproduct interface. This

question can be answered by comparing the TAS kinetics of the triplet-dominated PIA and the radical-featuring

GSB region for different excitation fluences, as shown in Figure 5.8.
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Figure 5.7: (A) X band and (B) Q band EPR spectra of PdTPP in solution. (C) X band and (D) Q band EPR spectra of a photoreacted
PdP SURMOF thin film. The inset in (C) highlights the strong negative radical peak. All spectra are obtained by integrat-
ing over the first 500 ns after the excitation pulse. (E) Time evolution of the X band trEPR signal of a photoreacted PdP
SURMOF. Adapted with permission from Adams et al. [1].

As before, the PIA signal shows a strong dependence on the excitation power density, which can be attributed

to TTA. In the wavelength region from 605 nm to 620 nm, the triplet’s negative PIA and the radical’s positive

GSB are superimposed. As we are interested in the radicals, the curves in Figure 5.8B are normalized to the

maximum positive signal. The initial signal (up to 30 ns) shows the TTA-induced fluence-dependence of the

triplets. In contrast, the normalized kinetics are identical from there on. This shows that the radicals do not

partake in bi-molecular processes such as radical-radical or radical-exciton annihilation.

Therefore, the concentration of radical states should scale linearly with excitation pulse energy if the radical

are directly created by light absorption. However, tracking the maximum of the GSB reveals a clearly non-linear

behavior. The maxima (shown in Figure 5.8C) can be described well with a square-root function f (x)∝
p

x .

This is consistent with a bimolecular deactivation pathway. As such a pathway was just excluded for the radicals

but is clearly present in the triplet exciton population, it is straightforward to infer that triplet excitons have to

be the precursors to the radical states. In other words, once a mobile triplet diffusing through the SURMOF

encounters a photoproduct site, it is quenched and a radical on said photoproduct is formed.

At late times, the decay of the radical population matches the triplet decay, as depicted in Figure 5.3D

on page 58. This suggests that the lifetime of the radical state is short compared to that of the triplets. A

mono-exponential fit to the four kinetic traces in Figure 5.3D yields a lifetime of (3.7± 0.3)µs. This is the

effective lifetime of triplet excitons at 120µJ cm−2, which is much shorter than the monomolecular decay rate

due to TTA. The slightly smaller radical population lifetime of 3.5µs obtained from the trEPR experiment at
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Figure 5.8: Normalized TAS kinetics in a photoreacted PdP SURMOF for different excitation fluences, integrated over (A) the triplet-
dominated PIA (450 nm to 500 nm) and (B) the radical-featuring GSB (605 nm to 620 nm). (C) The maxima of the GSB
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2 mJ cm−2 matches this observation well. Furthermore, it is noteworthy that this effective lifetime is the same

before and after extended illumination. Thus, quenching of triplet excitons at photoproduct sites constitutes

only a minor loss channel, especially in competition with TTA.

The creation of a radical by triplet quenching supports the above-mentioned hypothesis of chlorin being

the photoproduct. For example, in zinc-metallated porphyrin and chlorin, the LUMO energy levels are nearly

isoenergetic, whereas the HOMO levels are higher in chlorin than in porphyrin [115]. Presumably, this

enables porphyrin-to-chlorin hole transfer. In fact, free-base chlorin has reportedly been used as a hole

acceptor in combination with free-base porphyrin [116]. This behavior is likely similar in palladium-metallated

porphyrin/chlorin and is in agreement with the observed radical generation.

The population dynamics of the radicals can be modeled by the following rate equation:

d[R]
dt
= +kR[T]− kR,GS[R] , (5.1)
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where [T ] and [R] are the concentrations of triplets and radicals, respectively, kR is the rate of radical generation

by triplet quenching and kR,GS is the rate at which photoproduct sites with a radical on them return to the

ground state. This equation can be solved analytically:

[R](t) = kRe−kR,GS t

∫ t

0

e−kR,GSξ[T](ξ)dξ . (5.2)

The triplet concentration [T](t) is proportional to the kinetic trace of the PIA as shown in Figure 5.8A.

Hence, Equation 5.2 makes it possible to model the TAS kinetic at each wavelength as the (weighted) sum

of [T](t) and [R](t). This model can then be fit to the experimental data, which results in an optimized

value for the radical recombination rate kR,GS = 12.5× 106 s−1, corresponding to a lifetime of 80 ns. However,

the triplet-to-radical rate kR, which acts as a mere scaling factor in Equation 5.2, cannot be fit properly. It is

insufficiently constrained because the absorption cross section of the radical is unknown.

The modeled concentration profiles are shown in Figure 5.9A. Initially, only the triplet state is populated

(after fast ISC during the instrument response), and no radicals are present. As the triplet excitons diffuse,

some encounter a photoproduct site, are subsequently quenched and thus populate the radical state. The

radical concentration increases until around 100 ns, followed by its decay.
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The optimized model fits the experimental kinetics well, as can be seen in Figure 5.9B. The residuals of this

fit (Figure 5.9C) are small and do not show a systematic trend.

Besides comparing the kinetics, the data and model can also be compared in terms of their spectra. The two-

dimensional TAS data matrices Dn for each of the three excitation fluences (n ∈ {1, 2, 3}) are M × N matrices,

where M is the number of discrete time values and N the number of wavelength values. These matrices can be

decomposed into their spectra Sn (N × R) and the concentrations kinetics Cn (M × R)

Dn = CnST
n , (5.3)

where R is the rank of the matrix (here R= 2, see section 5.1). The concentration matrices Cn for each Dn are

known from the model and fit of the TAS data (see Figure 5.9A). Thus, the spectra Sn can be calculated via

Equation 5.3. As the shape of the spectra does not depend on the excitation fluence (Sn = S), the matrices Dn

and Cn can be concatenated to form matrices D123 and C123:

D123 = C123ST . (5.4)

However, the necessary inversion of this formula to find S does not have an exact solution. Instead, the MATLAB

function mrdivide() is used to find an approximate least-square optimized solution.

The resulting single-component spectra for the triplets and radicals are shown in Figure 5.9D. The most

prominent feature in the radical spectrum is the positive GSB around 610 nm, which was used so far to track

this state. In this wavelength region, the triplet PIA is non-zero, which is consistent with the observation that

the early TAS kinetic is triplet-dominated before the radical signal becomes relevant. Furthermore, the triplet

spectrum is dominated by the negative PIA. It is strongest below 520 nm. Importantly, the radical’s contribution

to the spectrum is relatively small in this wavelength region, which makes it ideal for tracking solely the triplet

population and validates the choice of this wavelength region as a proxy for [T](t).
One way to compare the fitted matrix CnST to the original Dn is by extracting spectra at different times, as

depicted in Figure 5.9E. The spectra are in good agreement at all times. Their difference (Figure 5.9F) is small

and does not show a systematic trend.

5.4 Summary

This chapter has established that extended illumination of a PdP SURMOF in vacuum leads to the formation

of photoproduct sites in the SURMOF. Mobile triplet excitons that encounter such a defect during their 1D

diffusion can dissociate and form a radical. All observations – spanning several experimental methods – support

the conclusion that the photoproduct is PdC. However, no direct proof was possible.

Around 5 % of the porphyrin molecules in the SURMOF are converted into photoproduct sites after around

1027 cm−3 absorbed photons. The conversion process is independent of photon energy or excitation power

density. Instead, it appears to depend on the amount of absorbed photons. The phosphorescence decreases over

illumination time due to triplet quenching with a fast initial exponential-like decay followed by a much slower

power-law-like decay. Accordingly, the photochemical conversion slows down over time. Radical creation at

photoproduct sites is a loss process for triplet excitons. However, at the observed excited state concentrations it

is negligible compared to TTA.
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6 Film Morphology and Exciton Transport

The efficient transport of long-lived triplet excitons and especially their large diffusion length make the PdP

SURMOF an exciting material for light harvesting applications. Hence, the question arises whether micron-scale

diffusion is practically realizable. A 1D diffusion length of LD = 6.3µm implies that each triplet exciton has

an average displacement of 1000 porphyrin units during its lifetime. This should be the case in an ideal

single-crystal SURMOF. However, the spray-coating technique produces a polycrystalline film (as illustrated in

Figure 3.12C). Are the crystal grains of sufficient size to support micron-scale diffusion? If that is not the case:

is transport across grain boundaries possible?

6.1 Direct Observation of Triplet Exciton Transport

Earlier reports on micron-scale exciton diffusion showed, that transport processes can be directly observed

by luminescence microscopy [7, 12, 24]. Therefore, this method should prove useful in answering the above

questions.
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6.1.1 Data Collection and Preprocessing

As the microscopy setup (see Figure 3.11) does not allow for measurements under dynamic vacuum or inert

atmosphere, the PdP SURMOF thin film sample used in this experiment is encapsulated under nitrogen

atmosphere to prevent triplet quenching by atmospheric oxygen. Furthermore, the experiments are conducted

at room temperature.

The sample is excited with a focused 405 nm CW beam. Images of the phosphorescence emission are

recorded through a 698 nm bandpass filter (FWHM: 70 nm). Seven different excitation fluences (0, 0.3, 1.4, 8.2,

19.3, 41.3, and 69.3 W cm−2) are used. Each experiment is performed on a pristine region of the sample and

repeated for 7 different durations of local photodegradation (5, 10, 15, 20, 30, 45, and 60 min of illumination

at 1.2 W cm−2 using the same 405 nm CW laser with an increased beam size of ≈ 70µm) on the same position.

Finally, the whole process is repeated at two additional regions on the sample. To make sure that no degradation

occurs during image-taking, each measurement (for a given excitation fluence, degradation time and sample

position) is repeated 10 times, using an integration time of 1 s. In total, 3×8×7×10 = 1680 phosphorescence

images are taken; a graphical summary of the whole data collection process is shown in Figure 6.1. As no

degradation is visible during each of the 10 consecutive exposures, these sets could be averaged to yield 168

images with an effective integration time of 10 s.

67



6 Film Morphology and Exciton Transport
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Figure 6.1: A graphical summary of all phosphorescence images that are taken in the luminescence microscopy experiment: 10 expo-
sures of 1 s were made for each of the 7 excitation powers, which was repeated at 8 different illumination durations and at
3 positions on the encapsulated PdP SURMOF thin film sample.

As background correction, the images taken with the laser blocked (excitation density of 0 W cm−2) are

subtracted from all other images in their respective set (sharing degradation time and position). Potential

sources of background signal are light leakage and dark counts on the EMCCD camera. After this step, 144

phosphorescence images remain to be analyzed. Exemplary, such an image is shown in Figure 6.2C.

Furthermore, using a 405 nm bandpass filter with FWHM 10 nm, the scattering/reflection of the excitation

light is also imaged. As before, at each of the 3 positions, 10 exposures with 1 s integration time are averaged

and a background image with the laser off was subtracted, yielding one image per position (see Figure 6.2B).

Additionally, the excitation light’s reflection is also imaged on a flat mirror surface in the same fashion (see

Figure 6.2A).

The intensity distributions on all phosphorescence and excitation images are radially symmetric and,

therefore, radial averaging is performed. For this purpose, the pixel location with the maximum intensity is

located, which is taken to be the center of the radially symmetric distribution. Then, the signal per area as a

function of the radius is determined by iterating over all pixels, finding the intensity contained within all pixels

at a given radial distance (rounded to integer values) divided by the number of pixels at that distance.

It is noteworthy that the datasets taken at different sample positions are consistent and almost identical.

Therefore, in the following figures only data from one sample position will be shown for clarity’s sake. However,

all calculations are repeated with the respective data from each of the three sample positions. Because none of

the calculations shows significant differences between the positions, the resulting parameters are averaged

over these three values.

6.1.2 Qualitative Data Analysis

Comparing the shape of the phosphorescence images and profiles to those of the excitation light reveals that

the former appear broadened (see Figure 6.2). A conceivable explanation for this observation is diffusion of

triplet excitons through the film. However, the radial symmetry is at odds with the 1D nature of the diffusion

process, as it should result in an anisotropic luminescence spot, extended along the fast axis of the crystal –
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Figure 6.2: Micropscopy images of the excitation light’s reflection on (A) a mirror and (B) the PdP SURMOF thin film sample. Further-
more, the phosphorescence images are shown at an excitation intensity of 41.3 W cm−2 in a (C) pristine sample and after
(D) 5 min, (E) 20 min and (F) 60 min of illumination. (G) Radial profiles of the images (A)-(F).

at least for an ideal crystal. As this is not the case, there exist three possible explanations for the isotropic

broadening of the PL:

H1 Anisotropic 1D diffusion in small crystal domains leads to effective isotropic diffusion, wherein the triplets

cross domain boundaries,

H2 no micron-scale diffusion occurs, the excitation profile matches the measured profiles in Figure 6.2A and

B, and the phosphorescence light is scattered inside the SURMOF isotropically,

H3 no micron-scale diffusion occurs and the broadening comes from scattered or waveguided (inside the

glass substrate) excitation light, that is not properly represented in the excitation scatter profile in

Figure 6.2B.

Based on the following detailed analysis, both hypothesis H1 and H2 will be eliminated, while H3 is

consistent with the data.

First, a discussion of the spatial distribution of TTA will help in ruling out H2. As before, the effects of TTA

can be visualized by tracking the PL intensity for different excitation fluences. The microscopy data allow to

analyze the scaling of PL intensity with excitation fluence at virtually every image pixel or – more practically –

at each center-distance in the radially averaged dataset. The results are shown in Figure 6.3. At each radial

position, a power-law fit ( f (x)∝ xα, with α as free parameter) is performed on the PL intensity over excitation
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6 Film Morphology and Exciton Transport

power density data. Two of these fits are shown exemplary in the inset of Figure 6.3. The power coefficient α

is the value of interest: In case of linear scaling α = 1, whereas in case of purely TTA-dominated exciton

deactivation α = 0.5. This TTA-dominated scaling is visible close to the center (≈ 1µm) of the phosphorescence

spot. Going further away from the center, the power fit coefficient increases, and linear scaling is observed for

center-distances of > 10µm. Even further out, α decreases again, as the PL signal becomes weak. Obviously,

in regions without phosphorescence, there is no power-dependence of the signal, α ≈ 0. Very close to the

center (radial distance around 1µm), the power-dependence appears more linear, which is the result of exciton

generation by the excitation laser.

An important conclusion can be drawn from this data: If the origin of the detected emission was scattered

phosphorescence from the center region (hypothesis H2), the power-dependence and α would be independent

of the distance from the center. This is obviously not the case. Thus, H2 can be rejected. Instead, the

phosphorescence emission is linked to an actual presence of triplets in the emissive region and proportional to

their concentration.

Repeating the power-dependence analysis for the illuminated sample shows the effects of triplet quenching

by photoproduct molecules, as discussed in chapter 5. The increasing concentration of such photoproduct sites

in the PdP SURMOF opens an alternative deactivation pathway, which reduces the efficiency of TTA. Thus,

the fit coefficient α in the center region increases with illumination time (see Figure 6.3). Because the overall

signal is reduced in the illuminated samples, the decrease towards zero starts at smaller center-distances.

Another – more direct – way of looking at this illumination-induced change is by plotting PL profiles for all

excitation intensities normalized to their values at 10µm (a compromise between being close to the linear

regime and still having a good signal-to-noise ratio after extended illumination), as shown in Figure 6.4. In the

pristine sample, the center region exhibits a different (sublinear) scaling behavior than the profile’s tail region.
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Figure 6.3: Power-dependence of the phosphorescence signal in the pristine PdP SURMOF thin film (black circles) and after 10 min
(dark gray triangles) and 60 min (light gray squares) of illumination. Power-law fits are performed at each center-distance.
For two data points (at 2µm, highlighted orange, and at 10µm, highlighted blue) the underlying PL data and the power
fits are shown in the inset. Data for the illuminated sample are shown until 9µm only, as for larger center-distances the
power fit becomes less reliable due to low PL signal intensity. Specifically, the fit values become noisy and tend towards zero
instead of one.
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6.1 Direct Observation of Triplet Exciton Transport

At high excitation power density, the center intensities are – relative to the tail – smaller than at low power

density. This is caused by TTA, which enables triplet exciton deactivation at high triplet concentrations. In

contrast, this difference vanishes after extended illumination, because TTA now has to compete with radical

pair generation.

6.1.3 Modeling the PL Profiles

For further analysis, it is instructive to introduce a model which describes the PL profiles. Introducing the rate

of triplet generation G, we can express the triplet concentration dynamics as follow:

∂ T (~x , t)
∂ t

= G(~x , t)− kT (~x , t)− γ(~x , t)T (~x , t)2 +∇ (D(~x , t)∇T (~x , t)) . (6.1)

Under steady-state conditions this expression equals zero. To simplify, γ can be assumed to be constant over

time and space. TTA has been shown to be an important process in the thin film, however, it is not yet clear

if exciton diffusion is observed in the microscopy experiment. Thus, as a first step, a simplified model is

considered wherein no diffusion occurs. In combination with the radial symmetry of the PL data (distance

from center: r) this leads to a simplified differential equation

∂ T (r)
∂ t

= G(r)− kT (r)− γT (r)2 = 0 , (6.2)

which can be solved analytically:

T1,2(r) = −
k

2γ

�

1±

√

√

1+
4G(r)γ

k2

�

. (6.3)

The total generation rate Gtotal (absorbed photons per second) is calculated from the excitation power P,

absorbance A, and the photon energy E = hc/λ:

Gtotal =
P(1− 10−A)

E
. (6.4)

Figure 6.4: Phosphorescence profiles normalized at 10µm for several excitation power densities of a (A) pristine and (B) degraded
(60 min) encapsulated PdP SURMOF thin film sample.
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The last piece of information that is required to calculate the radial triplet concentration profiles using

Equation 6.3 is the shape of G(r). It can be derived from the previous discussion of TTA and Figure 6.4. After

60 min of illumination, TTA does no longer play a significant role and can be neglected in Equation 6.2, yielding

G(r) = kT (r)∝ I(r) . (6.5)

Therefore, the shape of G(r) can be extracted from the radially averaged PL intensity profiles I(r) as measured

in arbitrary units on the EMCCD for the sample with the longest illumination time.1

Comparing the shape of G(r) in Figure 6.2G (as the “60 min” curve) with the excitation profiles shows a

clear deviation: Triplet excitons are created much farther away from the center than excitation light is detected.

A possible explanation is that excitation light is scattered in the sample in such a way that it does not meet the

detector but still excites the SURMOF. Similarly, excitation light might be waveguided either in the thin film or

the substrate, thus exciting a wider area without being detected by the EMCCD. This would be consistent with

hypothesis H3.

6.1.4 Calculation of the PL Profiles

To test the assumptions made in setting up the model above and to gain further insight into the PdP SURMOF

photophysical characteristics, the calculated triplet concentrations from Equation 6.3 are fit to the experimental

data. As motivated above, the generation rate G(r) is derived by averaging the PL profiles of the most-degraded

samples over all three sample positions. The profile for 8.2 W cm−2 excitation is used as it offers the best

trade-off between low excitation power (for the least influence of TTA) and a good signal-to-noise-ratio.

Pristine Film

Optimizing the unknown steady-state TTA rate γ for the PL profiles from the pristine sample (while fixing the

monomolecular rate k = 1.37× 103 s−1 as established in section 4.1.3) yields γ = 6× 10−17 cm3 s−1. Using this

parameter, the modeled curves match well to the experimental data for all excitation power densities, as can

be seen in Figure 6.5A.

It is noteworthy that the inclusion of a diffusion term into the model can only reduce the overall fit quality

because it would decrease the central PL intensity while increasing the signal at larger center-distances. In

contrast, the TTA term is not only necessary for the model to correctly describe the data (especially the power

dependence in Figure 6.3), it is also sufficient. Thus, the diffusion hypothesis H1 can be rejected and – as H2

was already dismissed above – hypothesis H3 can be accepted.

Of course, triplet diffusion is a prerequisite for TTA and therefore certainly does take place in the SURMOF.

However, the exciton’s motion is restricted to its crystal domain. The absence of observable long-range diffusion

thus reveals that the domain size is below the resolution limit of the microscopy setup, which is 240 nm for

700 nm phosphorescence light (see Equation 3.4).

1 Some care has to be taken when converting I(r) (arbitrary units) to G(r) (in units of s−1 cm−3), as the data are discretized and radially
averaged. One option is to divide the image’s pixel values by their sum over the whole image before radial averaging, thus obtaining an
area-normalized radial average Ĩ(r) and

G(r) = Ĩ(r)× Gtotal . (6.6)

Dividing this by the pixel area (Apixel = 109nm× 109nm) and sample thickness d results in G(r) having the correct units. When starting
from the already radially averaged intensity profiles I(r), the number of pixels that were averaged for each discrete position of r have to
be taken into account:

Ĩ(r) =
I(r)

∑

r (I(r)×σ(r))
, (6.7)

where σ(n) is the “[n]umber of integer Cartesian grid points covered by a ring around the origin with width 1 and outer radius n + 1/2.”
[117].
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6.1 Direct Observation of Triplet Exciton Transport

Figure 6.5: Experimental data (colored circles) and optimized models (solid lines, see text for details) of the radial phosphorescence
profiles for different excitation power densities in (A) a pristine sample and for photodegraded samples after (B) 5 min,
(C) 20 min and (D) 60 min of illumination. Profiles in each panel are normalized to the maximum value at the highest
excitation power, maintaining their relative ratios while facilitating easy comparison between the illumination times.
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Figure 6.6: Radical generation rate kR for different illumination durations. Values are determined for each of the three sample positions
and averaged. The error bars represent the respective standard deviations. The absorbed photon density of the most-
illuminated film corresponds to roughly 110 h of exposure to the sun at AM1.5 conditions.

73



6 Film Morphology and Exciton Transport

Illuminated Film

In the measurements on illuminated samples, the process of radical generation needs to be taken into account.

This can be done by substituting k in Equation 6.2 with a new rate k = k0 + kR, wherein kR is the radical

formation rate and k0 the monomolecular decay rate. This rate depends on the concentration of photoproduct

sites in the SURMOF. Thus, in a pristine film kR = 0 and k = k0. Thus, the analysis of the pristine sample,

which considered only the monomolecular rate, remains valid.

The PL model fits are repeated for the illuminated SURMOF film with γ fixed to the value in the pristine

sample and kR as the free parameter. Again, the model describes the data well for all positions and excitation

power densities (exemplarily shown in Figure 6.5B-D for three illumination times at one sample position).

The extracted values (averaged over the three measurement positions) for kR are shown in Figure 6.6 for

each illumination time. The radical generation rate, being initially zero, increases over the first 20 min of

illumination and subsequently levels out. After 60 min, which corresponds to a concentration of absorbed

photons of 3.4× 1026 cm−3, it reaches kR = (5± 2)× 103 s−1. For comparison: The monomolecular decay rate

is k0 = 1.4× 103 s−1. Thus, k increases by roughly a factor 3.5 during the 1 h illumination. This is still small

compared to the effective inverse lifetime of 2.7× 105 s−1 observed in the TAS experiment (see page 63). At

excited state densities as in the TAS experiments, radical generation is a minor process, which is consistent

with the previous analysis.

The effective diffusion length in an illuminated PdP SURMOF film can be calculated with Equation 2.9

using the effective lifetime τ = (k0 + kR)−1 and the previously established diffusion coefficient D. For the

most-illuminated sample above, this computes to LD = 2.8µm, which is around 45 % of the value in the

pristine material. This is well above the limit given by the crystal domain size and still highly competitive in

comparison to other materials from literature [12, 31]. The light-induced formation of photoproduct defects in

the SURMOF is therefore no obstacle in achieving micron-range exciton diffusion.

6.2 Steady-State PL

Another experiment that can be performed to investigate the photoresponse of a PdP SURMOF thin film is the

measurement of the steady-state PL emission for different excitation fluences. This experiment independently

corroborates the findings established in the previous section.
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Steady-State PL experiment

Measuring the steady-state PL for different excitation fluences is conceptually similar to the power-dependent

measurements in the microscopy experiment, with the major difference being that the excitation power is

swept over a wider range and with smaller steps and the emission is detected by a spectrometer. The latter

allows for simultaneous detection of fluorescence (integrated from 600 nm to 640 nm) and phosphorescence

(integrated from 700 nm to 850 nm).

The resulting data are shown in Figure 6.7. At low laser intensities, both fluorescence and phosphores-

cence scale linearly with excitation power. In contrast, the phosphorescence signal begins to deviate from

a linear behavior and scales sublinearly for excitation power densities above 0.1 W cm−2. There, it scales

74



6.2 Steady-State PL

with the square root of the power density. Absorption saturation of the sample can be excluded, because the

fluorescence is measured simultaneously and still exhibits a linear dependence at high excitation intensities.

The phosphorescence’s linear scaling at low, and square-root scaling at high excitation intensities is a clear

indication of TTA and therefore consistent with our earlier findings.

The data can be modeled in a similar way as the microscopy PL data (Equations 6.2-6.5). The phosphores-

cence signal Iph can be expressed as

Iph = α

�

−1+

√

√

1+
4[G]γ

k2

�

, (6.8)

where α is an unknown scaling factor and [G] is the generation rate (here as the concentration of absorbed

photons per second):

[G] =
P(1− 10−A)

Ed
. (6.9)

Fitting the model from Equation 6.8 to the data with α and γ as open parameters and k set to the monomolecular

decay rate, an excellent match to the experimental data is obtained. This confirms once more the assertion

that TTA plays a relevant role in the SURMOF’s photoresponse. The extracted value of the steady-state TTA

rate is γ= 5.6× 10−18 cm3 s−1. This is an order of magnitude below the value extracted in the luminescence

microscopy experiment. The difference can be explained by the fact that here, the PL signal is integrated

over the whole emission area. Because the excitation beam profile has long tails, regions with lower triplet

concentration are included, which in turn leads to an underestimation of the TTA rate.

Furthermore, an interesting observation can be made by a back-of-the-envelope calculation based on the

onset of TTA. The phosphorescence signal begins to deviate from linearity roughly between 0.01 W cm−2 and

0.1 W cm−2. Whereas the signal already scales sublinearly at the latter value, the former can be considered
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Figure 6.7: Dependence of the steady-state PL signal on the excitation power density and the triplet generation rate G in a PdP SUR-
MOF thin film sample excited at 525 nm (CW). The scaling between phosphorescence and fluorescence is arbitrary and
chosen to facilitate visual comparison. Linear and square root scaling are shown as a guide to the eye. Details of the model
fit are described in the text.
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as a “critical” power density, at which TTA is about to become possible. In this linear, TTA-free regime, the

differential equation 6.2 solves to

[T] = [G]/k . (6.10)

At an excitation power density of 0.01 W cm−2, this results in a critical triplet concentration of [T]crit =
7.6× 1017 cm−3. By comparing [T ]crit to the maximum concentration of PdP linker molecules in the SURMOF,2

it can be estimated that around 0.3 % of all porphyrin molecules are in an excited triplet state. Furthermore,

using the intra-sheet linker-to-linker distance of b = 2.5 nm, the average linear distance lcrit between two triplet

excitons can be calculated as lcrit = (b2[T]crit)−1 = 210nm.

This distance is much smaller than the calculated triplet diffusion length in the SURMOF. Consistent with

the luminescence microscopy experiment, the difference can be understood as the effect of small crystal

domain sizes, which prevent triplet excitons from realizing their potential diffusion distances. For lcrit,D =
LD = 6.3µm, the critical generation rate in this experiment at which TTA barely does not occur would be

[G]crit,D = 3× 1019 cm−3 s−1. Because TTA starts only at higher concentrations, this means that a triplet exciton

can only reach other triplets that are closer than lcrit/2= 105 nm. Therefore, the average crystal domain size

in the PdP SURMOF can be estimated to lie roughly on the order of 100 nm, which agrees with the observation

in the luminescence microscopy experiment that the domain dimensions are below the instrument’s resolution

of 240 nm.

6.3 Summary

This chapter established that no micron-scale exciton diffusion could be directly observed in the available PdP

SURMOF thin films. This is caused by the limited size of crystalline domains in the polycrystalline SURMOF.

Inside each domain, however, transport remains efficient, as demonstrated by TTA. These findings were

corroborated by an independent steady-state PL experiment. Increasing the size of the crystal domains should

enable direct observation of the predicted micron-scale diffusion length.

Comparative experiments with samples that have undergone photoproduct formation by extended illumi-

nation allowed the extraction of the radical generation rate kR for different illumination times. Even in the

most-illuminated sample, the theoretically achievable transport distance of 2.8µm is still competitive.

2 Based on the SURMOF structure and the linker-to-linker distances, the maximum porphyrin (and thus the maximum triplet) concentration
is [T]max = (0.6nm× 2.5 nm× 2.5 nm)−1 = 2.7× 1020 cm−3.
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7 Conclusion

This thesis presented a SURMOF comprised of PdP chromophores as linkers and investigated the excited states

in this ordered material, with special focus on the motion of triplet excitons.

7.1 Summary and Discussion

Below, the three main results are briefly summarized and discussed. Additionally, a short outlook is presented

in each section, outlining promising directions for future research.

Triplet Excitons Move Efficiently Along 1D Paths Between SURMOF Sheets

As the ISC yield in PdP is close to unity [43, 44], it could be shown that the only long-lived excited state in

pristine PdP SURMOF thin films is the triplet exciton state. Due to the high degree of order in the SURMOF,

these triplets move efficiently between MOF sheets that are spaced 0.6 nm apart. These investigated thin films

are defect-poor and well connected, as less than 5 % of the triplet excitons were found to be immobilized on

isolated chromophores.

Because triplets move exclusively by incoherent hopping between MOF sheets, triplet diffusion is restricted

to one dimension and exciton motion inside the MOF sheets is unfavorable Lin et al. argued that the combination

of Dexter transport with 1D hopping would be advantageous for energy collecting materials [14]. Notably, the

investigated PdP SURMOF fulfills both criteria. Moreover, the Dexter electron exchange process was found by

density functional theory (DFT) calculations to be enhanced by virtual intermediate charge-transfer states [2].
This results in a hopping rate on the order of 1011 s−1.

To put this into perspective: The triplet transfer rate in conjugated polymers can be on the order of

106 s−1 [118], while rates similar to the PdP SURMOF are found in tetracyanoquinodimethane (TCNQ) salts

(107 s−1 to 1011 s−1) [119], tetracene crystals (1010 s−1 to 1011 s−1) [24], or triisopropylsilylethynyl acetylene

(TIPS) pentacene thin films (1011 s−1) [120]. To compare with more similar materials, a MOF based on Ru-

trisbipyridyl linkers (separated by> 8Å) was reported with a 1D triplet transfer rate on the order of 108 s−1 [14].
Furthermore, 3D triplet diffusion was reported in an anthracene-based MOF with D = 7.7× 10−6 cm2 s−1 and a

linker distance of 5.6 Å [31], which results in khop ≈ 109 s−1 (using Equation 2.8).

In combination with the long monomolecular lifetime of 730µs, the efficient hopping between porphyrin

molecules leads to a triplet exciton diffusion length around 6µm. This is on the same scale and slightly larger

than the values reported for an anthracene-based MOF (1.6µm) [31] or for 1D triplet diffusion in single-crystal

rubrene (4µm) [12].
These comparisons highlight that the PdP SURMOF is a highly competitive material system, outperforming

other MOF systems while offering its own advantages, such as being easily deposited as thin film from solution.

Indeed, PdP SURMOFs have already been used in a liquid electrolyte photovoltaic cell with a power

conversion efficiency of 0.45 % [67] and as sensitizer in a photon-upconversion SURMOF multilayer with an

upconversion quantum yield of ηUC ® 0.1% [59]. In both cases, efficient triplet transport should be beneficial.

However, both systems require the excitons to travel inside the SURMOF sheets instead of between them. As

only the latter direction was found to exhibit highly efficient 1D transport, this could explain the low values for

the respective figures of merit in both publications.
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7 Conclusion

Hence, flipping the 1D transport direction in the SURMOF to be perpendicular to the substrate appears to

be an obvious next step in the development of the material. This could be achieved by rotating the porphyrin

sheets to be parallel to the substrate. A pillar-type SURMOF similar to the ZnP SURMOF presented by So et al.

or Gordillo et al. (see Figure 7.1A) could make this possible [62, 65]. However, the efficient triplet transport

in the PdP SURMOF presented in this thesis relies on close spacing of the sheets, with an inter-chromophore

distance of 0.6 nm. The bipyridine pillar linkers chosen by Gordillo et al. are likely too long for this purpose

and need to be substituted by a shorter molecule. Alternatively, Goswami et al. collapsed a similar SURMOF

(comprised of both PdP and FbP linkers with bipyridine pillars) to achieve an inter-layer spacing of 0.7 nm [77].
However, the porphyrin center-to-center distance remained 1.4 nm, because adjacent layers are shifted laterally

during the collapse (as shown in Figure 7.1B). Preventing these shifts while maintaining the small inter-layer

distance in a PdP-based SURMOF would yield an ideal framework for efficient vertical 1D triplet transport that

is well-suited to be integrated in typical device geometries.

Triplet-Quenching Photoproduct Sites are Introduced in the SURMOF During Prolonged
Illumination

Extended illumination of a PdP SURMOF in vacuum leads to the formation of a stable photoproduct, which

is likely PdC. Photoproduct concentration scales with the amount of absorbed photons. At these defect sites,

triplets are quenched and dissociate into radicals. This leads to a reduction in the achievable diffusion length:

By illumination equivalent to 110 h under sunlight, the calculated diffusion length is reduced from 6.3µm to

2.8µm.

A

B

Figure 7.1: Porphyrin-based SURMOFs in which the porphyrin plane is parallel to the substrate. (A) Illustration of a pillar-type ZnP
SURMOF. Reproduced with permission from Gordillo et al. [65]. (B) Illustration of a pillar-type ZnP/PdP (gray/red) SUR-
MOF before and after collapse of the bipyridine pillars (green). Reproduced with permission from Goswami et al. [77].

78



7.1 Summary and Discussion

Although this is still a good value for an organic material system, slowing down the degradation process or

altogether preventing formation of triplet quenching sites has to be an important goal for future research. A

good starting point could be to change the metalation of the porphyrin linker. For example, both platinum

porphyrin (PtP) and ZnP are known to have a lower chlorin yield than PdP [110, 111]. Alternatively, the

proposed reaction pathway from PdP to PdC requires a proton source such as residual water or solvent. By

optimizing the deposition process to prevent accumulation of such residuals or efficiently removing them after

film fabrication could thus block the photochemical pathway that leads to photoproduct formation. Yet another

research direction would be the synthesis of an isoreticular SURMOF based on a different non-porphyrinic

linker with a high ISC yield and a long triplet lifetime, but without a comparable photochemical degradation

pathway.

Triplet Diffusion is Limited by the SURMOF’s Crystal Domain Size

An attempt was made to assess whether multi-micron triplet diffusion can be observed directly by luminescence

microscopy. This was found not to be the case. Although effective triplet transport does take place (established

via the observation of efficient TTA), excitonic motion is restricted to individual SURMOF crystal domains,

whose average size is below the resolution limit of the microscope (around 240 nm for the phosphorescence).

As the efficient transport behavior is enabled by the close spacing between SURMOF sheets, a disruption of this

ordered system at domain boundaries effectively stops the excitonic motion. The maximum distance a triplet

exciton can travel is no longer determined by its lifetime and hopping rate, but by the size of the crystal domain.

Based on data of a steady-state PL experiment, the grain SURMOF’s crystal domain size was independently

estimated to be on the order of 100 nm, which is consistent with the microscopy results.

This practical limitation prevents triplets in the PdP SURMOF to achieve their potential 1D diffusion length

of 6.4µm as extracted above. This needs to be overcome by increasing the size of crystalline domains in

the SURMOF thin films. Notably, MOF single crystals with diameters on the millimeter scale have already

been reported [121, 122], as shown in Figure 7.2. Whereas similar dimensions remain to be achieved in

SURMOFs, promising reports exist. For example, Makiura & Konovalov could increase the domain size in a

PdP single-sheet MOF from 140 nm to 220 nm by optimizing the injection process of the metal ions during

the fabrication step [123]. Likewise, Müller et al. could drastically reduce the defect density in an HKUST-1

SURMOF by performing the rinsing step during deposition in an ultrasonic bath [124]. While not explicitly

shown, this – or similar advancements of the fabrication process – could potentially be beneficial for creating

larger SURMOF crystal domains.

5 mm

Figure 7.2: Digital photographs of millimeter-sized MOF single crystals. Adapted with permission from Li et al. [122].
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7 Conclusion

7.2 Closing Remarks

Inspired by nature’s approach for efficient transport of excited states (i. e. by using ordered porphyrin ar-

rangements), the investigated PdP SURMOF thin films could be shown to exhibit beneficial exciton transport

properties. Although some practical issues have to be addressed before the material is application-ready, the

present thesis shows that SURMOFs can be a highly useful and versatile addition to the toolbox of device

architects and engineers.

As the old saying goes: “If all you have is a hammer, everything looks like a nail”. However, with a

well-equipped toolbox, the goals determine which tool to use, not the other way around. In this sense, to

some creative problems that scientists and engineers will come up with, materials such as the PdP SURMOF

presented in this thesis will surely be the solution. To use the words of Henry Ford [125]: “Progress happens

when all the factors that make for it are ready, and then it is inevitable.”
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