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Nature isn’t classical, dammit, and if you want to make a simulation of

nature, you’d better make it quantum mechanical, and by golly it’s a won-

derful problem, because it doesn’t look so easy.

— Richard P. Feynman, 1982

– 2 –



List of publications

This thesis is based on the research published in the following three papers:

[1] J.-M. Reiner, M. Marthaler, J. Braumüller, M. Weides, and G. Schön, Emulat-

ing the one-dimensional Fermi-Hubbard model by a double chain of qubits, Phys.

Rev. A 94, 032338 (2016).

[2] J.-M. Reiner, S. Zanker, I. Schwenk, J. Leppäkangas, F. Wilhelm-Mauch, G.
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mating the Error of an Analog Quantum Simulator by Additional Measurements,

Phys. Rev. Lett. 119, 240502 (2017).

[6] I. Schwenk, J.-M. Reiner, S. Zanker, L. Tian, J. Leppäkangas, and M. Mar-
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[7] J. Leppäkangas, J. Braumüller, M. Hauck, J.-M. Reiner, I. Schwenk, S. Zanker,

L. Fritz, A. V. Ustinov, M. Weides, and M. Marthaler, Quantum simulation of the

spin-boson model with a microwave circuit, Phys. Rev. A 97, 052321 (2018).

– 3 –



[8] S. Zanker, I. Schwenk, J.-M. Reiner, J. Leppäkangas, and M. Marthaler, Analyz-
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Chapter 1

Introduction

Today, the term computer is a synonym for the modern digital computer that became

omnipresent in our every day life. While the history of digital computers begins only as

recently as in the 20th century, the earliest computers date back millennia:

In abstract terms, a computer is an purposely build device which receives an input,

performs – based on that input – some calculation or operation, and yields the result as

output. The earliest examples of such devices are analog computers. During the first

millennium BC, the south-pointing chariot was invented in China [9]. It was a two-

wheeled carriage with a pointer on top that indicated the direction of south, even when

the carriage was turned, which was most likely deployed for navigation. Depending on

the difference of revolutions of the wheels when the carriage turned, differential gears

moved the pointer on top such that it compensated the angle the vehicle was rotated.

Hence, it calculated the rotation angle of the carriage based on the rotation of the

wheels. Another (more complicated) example is the Antikythera mechanism [10], an

ancient (∼ 100 BC) Greek orrery that, relying on an elaborate gear box, could predict

astronomical positions decades in advance.

The electronic era. Such mechanical analog computers were used throughout history

since then, but the technology of analog computers took a tremendous leap forward

with the emergence of electrical circuits. The linear electrical elements replaced the

mechanical elements of prior analog computers, and far more complex and versatile

designs could be achieved. For example, the similarity between electrical current flow

and the flow of a fluid made electronic analog computers useful for the simulation of fluid

dynamics. More generally, the behavior of electrical circuits is governed by differential

equations, hence, they can be employed to simulate such equations. A basic example

would be an LC-circuit that resembles a harmonic oscillator.

Electronic analog computers were used by large companies and research facilities un-

til the 1970s, when they were eventually replaced by digital computers [11]. Producing

computers that encode information into binary bits, and subsequently process that in-

formation by applying logical and arithmetic functions on it by the means of logic gates
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Chapter 1. Introduction

between the bits, is technologically far more demanding than the analog method. How-

ever, once the technology for digital computers became more and more accessible, the

digital computer was favored over its analog counterpart due to some clear advantages.

Digital computers were more versatile and – more importantly – resilient to noise. The

state of a bit can be flawlessly determined by a voltage signal even if the signal is noisy,

as long as the noise is below some threshold. For analog computers, the precise value of

an analog signal (such as voltage or current) for in- and output is meaningful; any noise

directly affects the analog computers accuracy, which becomes more and more tedious

when analog devices are scaled up.

Nowadays, analog computers are mostly forgotten; on the other hand digital com-

puters are all the more prevalent. With personal computers and laptops at home and at

work, smartphones in our pockets, and where for virtually any object in our every day

life a version with integrated chips exist, we became so accustomed to the technology

surrounding us, that we rarely truly appreciate how staggering the capabilities of these

devices actually are.

Fundamental limitations. However, despite all technological advances, and even

though computers keep improving, they do have their limitations. Some problems cannot

be solved efficiently by digital computers, since frequently the computation time or

required computational resources increase exponentially with the problem size. Many

optimization problems are examples for such exponentially scaling problems. Another

very difficult task for current computers is the simulation of a quantum-mechanical

system, in particular the simulation of fermionic systems:

Consider, e.g., a system of 50 fermionic orbitals. The quantum state of the system

is then described by an element of the corresponding Hilbert space, hence, a vector

containing 250 complex numbers. Expressing such an amount of complex numbers as

double-precision floating-point numbers would yield 18014 petabytes of data, which is

more than six times of the 2802 PB of RAM available in today’s (Nov. 2018) most pow-

erful supercomputer, the IBM Summit (or OLCF-4) [12]. Hence, a complete simulation

of 50 fermionic orbitals is unfeasible at this point, but 50 orbitals is still tiny in com-

parison to the number of electrons in chemicals or condensed matter systems. And the

underlying problem is clear: If one has constructed a supercomputer that is just able

to store the quantum state of 50 orbitals, in order to store 51 orbitals it’s capacity

has to double. Similarly, the computation time would also scale exponentially. Even if

Moore’s law [13] continues to hold and the computational capabilities of supercomput-

ers will double every one to two years, true large-scale fermionic simulations will remain

impractical on such devices.

At the moment, the solution to allow for larger scale simulations is to rely on pertur-

bative or approximative methods. Among the most popular of such approaches are those

derived from Hartree-Fock and mean field methods, as well as density functional the-

ory. However, when simulating strongly correlated systems, the full quantum mechanics

matter significantly and approximative methods are insufficiently accurate [14].
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Figure 1.1: On the left is a schematic of the phase diagram of the two-dimensional Fermi-Hubbard model
with respect to hole doping and temperature, including predicted phases. On the right, experimental
evidence for the antiferromagnetic phase is shown. Depicted are raw and processed microscopy images
of a quantum gas in an optical lattice. The particles’ interactions and lattice are such that the gas
represents a 2D Hubbard model. The pictures show the atomic distribution of a single experimental
realization. In the upper part, both spin components are present, in the lower part, the spin-down
particles were removed. The observed checkerboard structure indicates that the system was in an
antiferromagnetic phase. Figure from Ref. [16]. Reprinted with permission. Copyright 2017, Nature.

New technology emerges. The obstacle of simulating exponentially large Hilbert

spaces on classical computers calls for a new technology. Based upon precisely this

obstacle, Richard Feynman established over three and a half decades ago the notion

of harvesting the exponential size of Hilbert spaces as a computational resource, by

constructing quantum-mechanical hardware [15]:

What he had in mind, were (in today’s language) analog quantum simulators, quan-

tum counterparts of the classical analog computers. An analog quantum simulator is

an artificial device whose intrinsic quantum-mechanical behavior mimics that of a dif-

ferent quantum system of interest. The system of interest can then be studied with

the help of the artificial device that is more controllable and accessible to measurement.

Such quantum emulators have since become reality, e.g., via ultra-cold gases [16–19] or

ion traps [20–22]. In the latter technology, ions are trapped via electromagnetic fields.

The ions can then be manipulated such that the interactions among them can then be

modified. The former mentioned technology relies on cooling gases of up to hundreds of

particles down to ultra-low temperatures until quantum phenomena emerge. Then, the

particles can, e.g., be arranged in solid-state like structures via optical lattices formed by

lasers [17]. Particles sit in the minima of the potential created trough the optical lattice

and the particles’ interactions define a Hamiltonian that can be equivalent to that of

another system of interest. Currently, cold gases and ion traps are the leading platforms

for analog quantum simulation, with already impressive results that start challenging

classical simulation. An explicit example is the recent realization of a repulsive Fermi-

Hubbard model in an optical lattice with circa 80 sites, where doping and temperature

could be varied to analyze the phase diagram [16]. In this way, the transition towards

a long-range ordered antiferromagnet could be observed and studied, which is shown in

Fig 1.1.
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Chapter 1. Introduction

At the same time as Feynman’s proposal, pioneering work in the field of digital quan-

tum simulation (and quantum computing in general) was conducted by Paul Benioff,

Yuri Manin, and David Deutsch [23, 24]. Similar to the classical digital computers, dig-

ital quantum simulation relies on the application of gates: In conventional computers,

information is stored in a register of bits. Sequences of gates acting on a small number

of bits at a time implement arbitrary logic or arithmetic operations which allows for

generic information processing. In the quantum world, the register consists of quantum

bits, or qubits, whose state can not only be a certain sequence of zeros and ones, but

also be in a superposition or an entangled state. Quantum gates acting on a small num-

ber of qubits implement generic unitary transformations on the quantum state of the

qubit register. Soon after the introduction of digital quantum simulation, algorithms

were proposed that showed computational advantages of quantum hardware over con-

ventional computers. Probably the most famous example is Shor’s algorithm for finding

the prime factor of large integers [25], which was demonstrated by a small scale quantum

computer already in 2001 [26]. This algorithm has exponentially better scaling than all

known classical counterparts. Further examples of algorithms with (exponentially) su-

perior scaling in comparison to classical algorithms are database search algorithms [27],

or algorithms solving linear equations [28]. In particular, quantum computers can per-

form the simulation of quantum systems without exponential resource demands [29, 30].

As of today, several realizations of universal quantum hardware, i.e., hardware that in

principle allows performing any quantum algorithm, have been demonstrated, e.g., with

ion traps [31, 32], semiconductor quantum dots [33], or superconducting qubits [34–36].

However, there is one remaining obstacle for digital quantum simulators that needs

to be overcome in order to employ them as multi-purpose quantum computers. Unlike

classical bits which are resilient to noise, the quantum state of the qubits is affected by

finite errors due to decoherence and faulty control. These errors can never be avoided

completely, and they are non-trivial to detect since performing measurements would

alter the state. However, there are schemes for quantum error correction, that can

detect and correct errors [37]. Here, many (redundant) physical qubits are combined to

form a single logical qubit. For the physical qubits – which as quantum two level systems

can be represented as spins – errors are modeled by applications of Pauli matrices with

a small probability, e.g., the action of σx would cause a qubit flip, σz would cause

a sign change of the phase. One can then, for each specific error, measure operator

products of two physical qubits which effectively answer the question: “Has an error

of the specific type occurred in one of the qubits?”, hence, projecting the state onto a

subspace such that the application of the Pauli operator has in fact either happened or

not. No other information is gained, and the qubit state is not altered in any other way.

If an error occurred, by repeating the process with other pairs of physical qubits, one

can identify the faulty qubit and eventually correct the error. If the error rate for each

performed operation is below a certain threshold, this process reduces the overall error

in the system; otherwise the scheme would cause more errors than it corrects. Once the

threshold has been overcome, the error of the logical qubit can be suppressed further and
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further by combining more and more physical qubits. Quantum hardwares with error

rates below the threshold for quantum error correction have been demonstrated [34, 35,

38]. However, the devices are only barely below the threshold such that of the order 103

to 104 or more physical qubits would be needed to form an error-resilient logical qubit.

Unfortunately, this is unfeasible for at least the next several years [37, 39, 40].

On the other hand, current quantum hardware – even without error correction – is

beginning to enter a regime where it may soon challenge supercomputers. Quantum

simulators may even surpass their classical competitors in specific problems, achiev-

ing quantum advantage [41]. Especially superconducting qubits have made significant

progress in the last few years. A decade ago the technology was only at the point of

achieving interactions between two qubits [42], whereas now fully controllable quantum

processors with up to 20 qubits are accessible through IBM’s quantum experience cloud

service [43]. In late 2017 and early 2018, Intel, IBM and Google presented 49, 50, and 72

qubit chips, respectively [44, 45]. While these devices have yet to demonstrate their full

capabilities, they show that quantum hardware is now at a point where the size of the

Hilbert space they can potentially simulate becomes intractable for classical simulation.

Thesis aim and contents. The goal of this thesis is to study the prospects of near-

future quantum devices when operating them without quantum error correction. It

focuses on quantum simulation of fermionic systems because of their importance in na-

ture and the difficulties they pose for conventional simulation or analytic calculations.

For this purpose, both analog and digital quantum simulators based on qubits are stud-

ied. Specifically, superconducting qubits are considered with respect to their use as

analog quantum simulators. As for digital quantum simulation, the effects of gate errors

on the results of these simulations are studied. In extension to this, the performance of

so-called variational algorithms in the presence of gate errors is investigated.

In the following chapter, Chap. 2, the theoretical framework of the thesis is estab-

lished. At first, it is discussed how to simulate fermionic systems with qubits. The idea

is to represent fermionic orbitals – which can be occupied or unoccupied – by qubits as

quantum two level systems. However, qubit excitations are bosonic and a mapping of

fermions onto qubits is non-trivial. Specifically, the Jordan-Wigner transformation [46],

that is employed throughout this thesis, is discussed (with its complications). In the fol-

lowing section, Sec. 2.2, analog quantum simulators and their requirements are explained

in more detail. The methods for designing quantum emulators based on superconducting

qubits are introduced. These methods will be important for Chap. 3 and the calcula-

tions presented in Appx. A. Sec. 2.3 then deals with digital quantum simulation. It is

explained what quantum gates are and how they form the building blocks for quantum

algorithms. The Trotter expansion [47] is introduced as a tool that helps constructing

algorithms simulating complex Hamiltonians with digital quantum simulators. These

principles are employed in Chaps. 4 and 5. Finally, Sec. 2.4 explains the concept of

variational algorithms which are used in Chap. 5.

Chap. 3 presents a design for an analog quantum simulator of the one-dimensional
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Chapter 1. Introduction

Fermi-Hubbard model. The Fermi-Hubbard model has been studied with atoms in op-

tical lattices [16, 48]. In these experiments one can use actual fermionic particles, which

allows a straightforward mapping of the artificial system onto the fermionic model of

interest. On the other hand, in these systems the available range of coupling strengths,

or equivalently of effective temperatures, is limited [16, 49], and it is unclear how to scale

up optical traps much further. To avoid these restrictions, superconducting qubits are

considered in Chap. 3 as a scalable architecture with broad parameter range. When spin

is included, the 1D Fermi-Hubbard model can be mapped onto a double chain of qubits

via the Jordan-Wigner transformation. The corresponding qubit system contains XX

and ZZ interactions of neighboring qubits along and between the chains, respectively.

Two realizations based on superconducting qubits are presented. The first one relies on

charge qubits and offers, in principle, the simulation for a very wide parameter range.

The second realization utilizes the transmon qubit [50] that is less sensitive to charge

noise and is currently the favored superconducting qubit in experiments. Implementa-

tions of the necessary couplings on the hardware level are shown explicitly (with the

calculations carried out in Appx. A), and the achievable parameter range is analyzed.

Both realizations are reviewed with respect to the criteria which an analog quantum

simulator should satisfy.

Chap. 4 deals with simulations of fermionic systems based on digital quantum sim-

ulators without quantum error correction. While the use of such devices to simulate

quantum systems is highly anticipated [41], little research has been conducted to pre-

dict effects of unavoidable errors in digital quantum simulations without error correction.

In Chap. 4, the effects of gate errors on simulation results are investigated. An error

model is established, where gates are interpreted as rotations of the qubit state, and

unitary gate errors arise due to stochastic over-rotations (or under-rotations). Based

on this model, the physical meaning of gate errors in a simulation is analyzed. More

precisely, it is analyzed how gate errors lead to the simulation of an altered physical

system with a modified Hamiltonian. Depending on the particular algorithm, gate er-

rors may lead to effectively simulated disorder, or they may correspond to unphysical

errors, e.g., violating particle number conservation. The analysis is substantiated by

numerical simulations of model systems. In addition a relation is established between

the strength of the over-rotations and the gate fidelity, a widely used measure for the

quality of quantum gates. This allows providing estimates for the maximum number of

gates which can be performed with sufficient accuracy with present-day technology.

Chap. 5 investigates the performance of variational algorithms under the influence

of gate errors. Such algorithms can be used, e.g., to prepare and analyze the ground

state of a Hamiltonian. They are promising candidates for near-future applications of

digital quantum computing, because they have been shown to produce good results

with relatively low gate counts [51, 52]. On a small scale, successful applications of

variational algorithms have already been demonstrated [53, 54] (see Fig. 1.2). These

methods operate by introducing variational parameters to a specific algorithm, which

are then optimized to maximize the algorithms efficiency. It was expected that errors are
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Figure 1.2: Energy surface of H2 (left) and BeH2 (right) depending on the interatomic distance. The
dotted lines are the exact values. The black dots are the results of digital quantum simulations using a
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mitigated during this procedure [51], but this has never been shown explicitly. In Chap. 5

the gate error model of the preceding chapter is applied to variational algorithms. The

complete procedure of a variational ansatz involving up to 18 qubits is simulated. The

results show how quasi-static errors are suppressed within the algorithm. The considered

gate error strengths correspond to realistic gate fidelities. Therefore, one can conclude

that variational algorithms are indeed a promising application for near-future quantum

hardware.

Finally, Chap. 6 provides a summary of the work presented in this thesis, drawing

the conclusion and giving an outlook on upcoming developments.
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Chapter 2

Theoretical framework

This chapter is a compilation of the theory that is essential to the understanding of

the following chapters. Its contents are well known concepts among the community

of quantum information and quantum computing. In order to render this thesis more

accessible to a broader audience of physicists, the fundamental theory is presented briefly

to facilitates the understanding of the presented research.

The first of the below sections, Sec. 2.1, deals with a topic affecting all later chapters.

The main theme of the thesis is the quantum simulation of fermionic systems using

qubits, a task which requires to encode fermions into qubits. Sec. 2.1 describes the

underlying difficulties of this task, and how it is performed throughout this thesis.

The subsequent section, Sec. 2.2, addresses analog quantum simulation and estab-

lishes the foundation for Chap. 3 (and the corresponding Appx. A). There, analog quan-

tum simulators based on superconducting qubits are considered. In Sec. 2.2, analog

quantum simulators as well as their requirements are examined, and the theoretical

means to conceptualize analog quantum simulators based on superconducting qubits

are elucidated.

Sec. 2.3 explains the concepts of digital quantum simulation. Quantum gates as the

basic elements for digital quantum simulation are introduced, as well as the Trotter

expansion which enables handling the quantum simulation of complex systems. This

is relevant for Chap. 4, where effects of gate errors in digital quantum simulations are

studied.

Finally, Sec. 2.4 introduces variational algorithms, which can be used by digital

quantum simulators to prepare the ground state of a model and measure its ground

state properties. In Chap. 5, the performance of variational methods is analyzed in the

presence of gate errors, with the gate error model already established in the preceding

chapter.
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2.1. Quantum simulation of fermions via qubits

2.1 Quantum simulation of fermions via qubits

This thesis focuses on the simulation of fermionic systems, which of course are very

important in nature. Understanding fermionic systems is key to unravel a variety of

many-body physics or quantum chemistry problems. However, finding the analytic so-

lution of such systems pose an immense challenge, and, as mentioned in the introduction,

completely simulating large Hilbert spaces with conventional computers is intractable.

On the other hand, due to strong electron correlations, the quantum mechanics of the

systems matter to a great extent.

This thesis discusses quantum hardware that is in principle capable of efficiently

simulating fermionic systems. The most straightforward way is to perform analog quan-

tum simulations utilizing quantum hardware with actual fermionic excitations, e.g.,

fermionic ultra-cold gases [16–18]. In contrast, the following work is addressing qubits

with bosonic excitations. Examples are the superconducting qubits described in Chap. 3

and Appx. A.1, i.e., either the charge qubit where an excitation corresponds to the tun-

neling of an additional Cooper pair from a reservoir onto a superconducting island, or the

transmon for which excitations are those of an electromagnetic anharmonic oscillator.

It is tempting to directly represent a fermionic orbital that can be occupied or empty

by a qubit as a two level system. Here, “directly represent” means the annihilation and

creation operators of a fermion (which a fermionic Hamiltonian in second quantization

is composed of) would be directly replaced by the lowering and raising operators of a

qubit. In doing so one faces a difficulty:

The qubits can be described as spins and represented by Pauli matrices. Consider

a numbered set of qubits with the lowering and raising operators σ−j and σ+
j of the jth

qubit defined via σ±j = 1
2 (σxj ±iσyj ) where σxj and σyj are Pauli matrices. For one qubit we

find {σ−j , σ+
j } = 1 and {σ−j , σ−j } = {σ+

j , σ
+
j } = 0 which look like the anti-commutation

relations for fermionic annihilation and creation operators. However, for j 6= j′ it holds

that [σ−j , σ
+
j′ ] = [σ−j , σ

−
j′ ] = [σ+

j , σ
+
j′ ] = 0, i.e., the operators of different qubits commute,

whereas for fermions one would find anti-commuting behavior. Directly identifying

a qubit excitation with a fermion would therefore not yield the desired physics in a

quantum simulation. Fortunately, there are solutions to this problem.

2.1.1 Jordan-Wigner transformation

One way to map fermions onto qubits is given by the Jordan-Wigner transformation [46].

Here, considering again a numbered set of qubits, one defines the operators

cj =

j−1∏

k=1

(−σzk)σ−j . (2.1)

The product
∏j−1
l=k (−σzk) of Pauli matrices essentially gives a minus sign for each excited

qubit before the jth qubit and thus encodes a fermionic parity. The operator product can

be seen as a string of σz matrices and is consequently often referred to as Jordan-Wigner
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Fermions:

1 2 3 4

5 6 7 8

Qubits:

1 2 3 4

5 6 87

Figure 2.1: Illustration of the problem of non-locality when applying the Jordan-Wigner transformation:
On the left is a two-dimensional lattice of eight numbered fermionic orbitals. The Hamiltonian of the
system is considered to contain a hopping term between the nearest neighbor orbitals two and six (high-
lighted in green). On the right is the corresponding qubit lattice consisting of eight numbered qubits.
While in the fermionic system, the hopping term is only affecting two neighboring fermionic orbitals,
after the Jordan-Wigner mapping this term becomes a complicated five-qubit interaction (highlighted
in orange) that exceeds nearest-neighbor couplings.

string. One can check that the newly defined operators obey the relations

{cj , c†j′} = δjj′ and {cj , cj′} = {c†j , c†j′} = 0, (2.2)

i.e., they obey fermionic anti-commutation relations. Therefore, the Jordan-Wigner

transformation allows to encode fermionic operators onto qubits and enables the simu-

lation of fermionic systems using qubits while respecting the correct physical behavior.

However, encoding the fermionic parity in a product of σz operators has a particular

drawback: Consider the simulation of a system where the Hamiltonian contains hopping

terms of the form c†jcj′ + c†j′cj with j < j′. Mapping this two-orbital term onto qubits

yields

c†jcj′ = σ+
j

j′−1∏

k=j+1

(−σzk)σ−j′ , (2.3)

i.e., we obtain a residual Jordan-Wigner string
∏j′−1
k=j+1(−σzk) such that we end up

with an interaction involving not only qubit j and j′ but also the qubits with numbers

between j and j′. This creates non-locality with terms involving potentially a very

large number of qubits, as visualized in Fig. 2.1. In the worst case, a hopping between

the first and the last fermionic orbital leads to a qubit term involving all qubits, i.e.,

the non-locality is of the order of the total number of fermionic orbitals. Therefore,

after mapping the fermionic system onto qubits, the qubit Hamiltonian corresponding

to the initial fermionic problem may now contain complex multi-qubit interactions which

appears difficult to simulate using quantum hardware that usually only features two-

qubit interactions. In order to simulate the considered fermionic system one has to find

solutions to deal with this issue.

Regarding analog quantum simulation we show in Chap. 3 in the special case of one-

dimensional systems with nearest-neighbor hopping one can eliminate Jordan-Wigner

strings altogether. Chap. 4 shows explicitly how unavoidable Jordan-Wigner strings can
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be treated in digital quantum simulation, which is then also used in Chap. 5.

It should be noted that there are other methods to map fermions onto qubits. For

example, the Bravyi-Kitaev transformation uses an encoding with improved locality [55].

Here, the maximum number of interacting qubits per hopping term is of the order of the

logarithm of the total number of fermionic orbitals which is exponentially less compared

to the Jordan-Wigner transformation. This potentially reduces the requirements for the

quantum hardware. But there are the encoding’s downsides of being much less trans-

parent and creating overhead at other places, where the Jordan-Wigner transformation

does not do so.

The work in this thesis uses throughout the Jordan-Wigner transformation. Its

intuitive mapping is beneficial for the designing of analog quantum simulators, where

we explicitly show in Chap. 3 how interesting systems can be emulated that are not

impaired by Jordan-Wigner strings. The clarity of the transformation also aids the

comprehensibility of the analysis in Chap. 4. Finally, as we will argue later, the Jordan-

Wigner transformation is in fact very efficient for the digital quantum simulation of

Hubbard models considered in Chaps. 4 and 5.

2.2 Analog quantum simulation

As already mentioned in the introduction, analog quantum simulation refers to the

simulation of a quantum system of interest by an artificial quantum system that mimics

the behavior of the system of interest. In other words, the analog quantum simulator

emulates the system of interest which is why analog quantum simulation is often called

quantum emulation.

More precisely, the quantum mechanics of the artificial system used as emulator

are governed by a Hamiltonian that is equivalent to the Hamiltonian of the system

of interest. The quantum mechanics of the system of interest can thus be studied by

investigating the artificial system.

Since each simulator is purposely build for a specific system of interest, their use

appears limited as compared to digital quantum simulators (described below in Sec. 2.3)

which are much more versatile. However, this may actually be an advantage: By limiting

oneself to a specific system, the emulator may be much less demanding on the quantum

hardware, requiring lower overhead, and making the most out of the finite coherence

time available in near future quantum devices.

There are requirements one should impose on an analog quantum simulator. In order

to be useful an emulator should suffice four criteria [56]:

1. Relevance: The emulated systems should be of some relevance for applications or

our understanding.

2. Controllability: An analog quantum simulator should allow for broad control of the

parameters of the emulated system, and for control of preparation, initialization,

manipulation, evolution, and detection of the relevant observables of the system.
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3. Reliability: Within some prescribed error, one should be assured that the observed

physics of the quantum emulator corresponds faithfully to that of the ideal model

whose properties we seek to understand.

4. Efficiency: The quantum simulator should solve problems more efficiently than it

is practically possible on a classical computer or through analytical calculation.

Examples for analog quantum simulators are cold gases and ion traps. Here, physical

particles are manipulated in a controlled fashion such that their actual physical interac-

tions model a particular system of interest. Currently, such simulators are the leading

technology for emulation with already impressive results [16–22, 57].

However, at this point it is unclear how to scale up these systems much further, which

in the end restricts the size of the emulated systems, limiting their relevance, i.e., the

first of the above criteria. Also, even at the very low temperatures where these devices

operate the energy scale corresponding to these temperatures is still quite large, or at

least comparable, in relation to the intrinsic physical interactions among the particles.

Hence, they effectively emulate systems with (high) finite temperature [16, 49], and true

low temperature physics remain to be demonstrated. This limits the parameter range

available for simulation, i.e., affects criterion 2.

Superconducting circuits are a promising candidate for a scalable architecture that

can also operate in the regime of effectively low temperatures. In general, the technology

offers great versatility. This thesis focuses on superconducting devices. In Chap. 3 an

analog quantum simulator for the one-dimensional Fermi-Hubbard model based on su-

perconducting qubits is presented. There, the four criteria above will also be addressed.

The following section introduces the necessary theoretical techniques to construct an

emulator using superconducting hardware as presented in Chap. 3, and specifically in

Appx. A.

2.2.1 Tailoring quantum circuits

In order to build an emulator using a superconducting circuit, one has to design the

circuit first. Similar to classical electrical engineering one starts by planing the circuit

using the lumped element model where the circuit’s properties can be calculated.

In superconducting chips dissipative elements, i.e., resistors, will be neglected. We

find three different electric components: Placing wires close to each other without con-

tact forms a capacitance between them. A piece or loop of wire intrinsically possesses

a certain inductance. Connecting two superconducting wires by a weak link yields a

Josephson junction.

These junctions are crucial for qubit designs due to quantum tunneling processes and

the non-linear behavior of the junction. They are, e.g., fabricated on chips by applying

one layer of aluminium as one wire, letting it oxidize, and putting the aluminium of

the second wire on top. Aluminium oxide is an electrical insulator, however, with the

appropriate thinness of the oxide layer, tunneling processes are still possible, such that

the two superconducting wires are weakly coupled.
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Contributions to the Lagrangian:

φ

C

φ

C
L

φ

CJ

Kinetic energy: Potential: Potential:

TC = Φ2
0

1
2Cφ̇

2 VL = Φ2
0

1
2L (φ− φe)2 VJ = −Φ0Ic cos(φ)

Figure 2.2: Circuit diagrams of a capacitance C, an inductance L and a Josephson junction J (with
critical current Ic) with a phase difference of φ occurring across each element. The elements then
contribute a kinetic or potential term to the Lagrangian L = T − V as listed, where T is the sum of all
kinetic energies, and V is the sum of all potentials.

The quantum mechanics of non-dissipative circuits can be calculated in the following

way [58, 59]:

Every piece of wire in the lumped element circuit is assigned a distinct phase. This

phase represents the argument of the complex Ginzburg-Landau order parameter, an

appropriate variable for superconducting circuits. This yields a certain phase difference

φ between two wires that are connected to an electrical element.

Every element will then contribute a certain energy to the Lagrangian of the system

depending on the phase difference φ across the element, as summarized in Fig. 2.2. A

capacitance C gives the kinetic energy TC = Φ2
0
C
2 φ̇

2, an inductance L yields the potential

energy VL = Φ2
0

1
2L (φ− φe)2, and a Josephson junction contributes the potential energy

VJ = −Φ0Ic cos(φ). Here, Φ0 = ~
2e is the magnetic flux quantum, φe = Φe

Φ0
is the

external phase associated with an external flux Φe through the inductance, and Ic is the

critical current of the Josephson junction, a structural constant of the junction.

By summing up all kinetic contribution to T and all potential energies to V one

obtains the Lagrangian L = T −V which now depends on all the independent phases of

the circuit. The quantum mechanics are found by transforming the Lagrangian to the

Hamiltonian of the system, where the new canonical variables are regarded as operators

with canonical commutation relations.

The origins of the contributions from the electrical elements according to Fig. 2.2

can be motivated easily. We start by investigating the Josephson junction where the

voltage U across and the current I through it obey the Josephson equations

U = Φ0φ̇ and I = Ic sin(φ). (2.4)

The time integral over the power therefore yields the energy

VJ =

∫
UI dt = −Φ0Ic cos(φ), (2.5)

as stated above. The Josephson equation for the voltage gives – in combination with

the law of inductance Φ̇ = U – a relation between the phase φ and the (generalized) flux

Φ = Φ0φ. In fact, a junction in a loop effectively behaves like a (non-linear) inductance.
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CLU
⊗

Φe

Figure 2.3: Circuit diagram of an LC circuit with inductance L and capacitance C, with a voltage U
across the elements. An external magnetic flux Φe is passing through the loop.

With the relation for the flux and the first Josephson equation applied on the terms of

Fig. 2.2 one obtains the familiar energies VL = 1
2L (Φ− Φe)2 and TC = C

2 U
2. One finds

that the Lagrangian composed in the manner proposed above yields equations of motion

that represent Kirchhoff’s law for the currents.

As an example, consider a simple LC circuit depicted in Fig. 2.3. An inductance L

and capacitance C are connected to form a loop with an external flux Φe through the

loop. Assigning the upper wire the phase φ, and the lower (grounded) wire a phase of

zero, the above rules yield the Lagrangian

LLC = Φ2
0

C

2
φ̇2 − Φ2

0

1

2L
(φ− φe)2, (2.6)

which transforms to the Hamiltonian

HLC =
1

Φ2
0

1

2C
p2
φ + Φ2

0

1

2L
(φ− φe)2, (2.7)

with the canonical momentum pφ = ∂L
∂φ̇

.

Interpreting φ and pφ as operators with canonical commutation relations [φ, pφ] = i~,

one can immediately identify the expected result of an quantum harmonic oscillator

with eigenfrequency ω = 1√
LC

. Comparing the energy contribution of the capacitance,

1
Φ2

0

1
2C p

2
φ = ( 2e

~ )2 1
2C p

2
φ, to the familiar form Q2

2C with the charge Q one recognizes the

physical meaning of the canonical momentum; N =
pφ
~ counts the charge in units of 2e

and is therefore often called the (canonical) charge number operator.

Introducing Josephson junctions as non-linear elements to the circuit creates an-

harmonicity. This creates distinct distinguishable energy level transitions such that a

subspace of two computational levels for a qubit can be well-defined. Chap. 3 and

Appx. A rely on such qubits and describes them in more detail.

2.3 Digital quantum simulation

Unlike analog quantum simulators (see above in Sec. 2.2) that emulate one specific

quantum system as a whole with all its interactions, digital quantum simulators use a

more flexible approach:

The system of interest is encoded into the qubits of the simulator, e.g., the occupa-
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tions of fermionic orbitals are represented by excitations of qubits (with the complica-

tions described in Sec. 2.1.1). Quantum operations like the time evolution of the system

of interest are implemented by a sequence of quantum gates. Quantum gates, described

in more detail below in Sec. 2.3.1, are operations acting on usually only one or two

qubits. There exist sets with only a limited number of different gates that allow for the

approximation of any quantum operation to arbitrary accuracy, and multiple hardware

platforms possessing such complete gate sets have been demonstrated [31, 32, 34, 36].

The possibility to encode a variety of systems of interest onto a given number of qubits,

and to subsequently simulate the application of any sort of operator, yields the high

versatility of digital quantum simulations.

More generally, quantum gate-based calculation is what is usually referred to as

quantum computing. In a broader sense, any type of quantum information may be

encoded into qubits; complete gate sets allow for the execution of arbitrary arithmetic

calculations. The name digital quantum simulation stems from the analogy to conven-

tional, classical, digital computing. There, logic gates are performed on bit registers to

account for a given computation.

Quantum computers have the advantage over conventional computers that – unlike

classical bits – qubits can be entangled and a qubit register can be in a superposi-

tion of multiple states. This feature is employed, e.g., in Shor’s algorithm for factoring

integers [25]. This famous example provides an exponentially better scaling behavior

than any known classical algorithms for the – computationally hard – problem of find-

ing the prime factors of a large integer. The situation is similar for digital quantum

simulation. On classical computers, simulating quantum mechanics is computationally

hard due to the exponential growth of the Hilbert space with increasing system size.

Digital quantum simulators, on the other hand, are efficient at simulating quantum sys-

tems [29, 30], because they themselves pose a quantum mechanical system, and their

computational power lies within their (large) intrinsic Hilbert space. Since simulating

a quantum system with another quantum system has relatively low overhead compared

to more abstract gate-based quantum algorithms it is anticipated to be one of the first

meaningful applications of quantum hardware [41].

The following subsections describe quantum gates in more detail and introduce the

Trotter expansion as a key element to implement digital quantum simulation of large

and complex Hamiltonians. These concepts will play a role in Chaps. 4 and 5 which

consider digital quantum simulations without quantum error correction. The former

chapter establishes an error model for gates and investigates the effect of such errors on

a digital quantum simulation. The latter one is expanding the study of this error model

onto variational algorithms (see Sec. 2.4).

2.3.1 Quantum gates

Quantum gates are the building blocks of digital quantum simulators in analogy to logic

gates in conventional digital computing. Classical gates typically have one or two inputs,
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and one output with the result of a logical operation on the inputs. Examples are the

gates NOT, AND, OR, as well as NAND. Classical gates are not necessarily reversible. While

for a given output of a NOT gate, the input can be reconstructed, this is not true, e.g., for

the AND gate: If the output is 1, both inputs were 1, but for an output of 0, all remaining

three input scenarios – both inputs 0 or only one of them 1 – are possible. Quantum

gates on the other hand have always the same number of inputs as outputs, typically

one or two; the input qubits are the same as the output qubits. Quantum computation

is always reversible:

Qubits are a quantum two-level system. In gate-based quantum technologies like su-

perconducting circuits which are mostly considered in this thesis, the qubits are bosonic

degrees of freedom and can be denoted as spins, where one identifies the spin-up and

spin-down states as the computational basis, i.e.,

| ↑〉 = |1〉 and | ↓〉 = |0〉. (2.8)

Here, | ↑〉, | ↓〉 are the eigenstates of the σz Pauli matrix with σz| ↑〉 = | ↑〉 and

σz| ↓〉 = −| ↓〉.1 A register of qubits is therefore an ensemble of spins, the state of the

register is given by its wave function that lies in the Hilbert space spanned by the spin

ensemble. A quantum gate applies a unitary transformation to a register of qubits, i.e.,

to the wave function of the qubits, where the transformation acts only on the subspace

of the input qubits of the gate. As unitary transformations gates are of course reversible,

since an inverse transformation exists.

Applying quantum gates

The unitary transformation is realized by a time evolution of the quantum state of the

qubits. It performs the desired gate in the corresponding subspace and applies the

unity operation on the rest of the Hilbert space. The Hamiltonian defining the action

of the time evolution has to contain the corresponding single qubit terms or multi-qubit

interactions such that after a given time the single- or multi-qubit gate is executed.

Consider as an example the quantum NOT gate that inverses a qubit, i.e., maps |1〉 7→ |0〉
and |0〉 7→ |1〉. The quantum version, that also acts accordingly on superpositions, can

be written as a unitary 2×2 matrix, which in the basis {|1〉, |0〉} reads:

NOT =

(
0 1

1 0

)
. (2.9)

The depiction of a NOT gate in a quantum algorithm is given in Fig. 2.4. It holds that

NOT = σx = i · e−iπ2 σ
x

, (2.10)

1In the quantum information community |1〉 and |0〉 are often chosen the other way around such
that |1〉 has the eigenvalue −1 and |0〉 the eigenvalue 1, which has certain notational benefits. However,
this thesis consistently uses σz |1〉 = |1〉 and σz |0〉 = −|0〉, which might generally be more intuitive for
physicists.
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a0|0〉+ a1|1〉 a0|1〉+ a1|0〉

Figure 2.4: Examples of a gate depiction in quantum algorithms. The line represents a qubit, where a
NOT gate is applied (circled plus in the middle). In some cases, in- and output are given explicitly; here,
the input and output state is written to the left and right, respectively, where |a0|2 + |a1|2 = 1.

with the Pauli matrix σx of the qubit on which the gate should act. In a multi-qubit

space the matrix from Eq. (2.9) would be nested in a Kronecker product of identity

matrices accounting for the other qubits. Omitting the global phase,2 the exponential

in Eq. (2.10) can be realized by a time evolution e−iτNOTHNOT for a time τNOT = 1
g under

the Hamiltonian HNOT = gσx.3

Such a Hamiltonian could for instance be realized in a superconducting circuit based

on transmon qubits [50]. Coupling capacitively to a transmon couples to the qubit via

the operator σx which is also investigated in Chap. 3, resp. in Appx. A.3. Connecting

a transmission line by a capacitance allows realizing a Hamiltonian alike HNOT, when

a microwave pulse is send through the transmission line with a frequency resonant to

the level splitting of the transmon. The energy g in HNOT depends on the value of the

capacitance and the pulse strength, applying the pulse for the appropriate time τNOT = 1
g

yields the correct application of a NOT gate.

The NOT operation initializes of a qubit from its ground state |0〉 to the excited state

|1〉. Hence, quantum hardware should have some means to perform this operation. Note,

that the realization via an external pulse described above creates – by varying g or τNOT

– the means to implement an arbitrary rotation e−iϕ2 σ
x

around the x axis with angle

ϕ. In fact, quantum devices usually allow performing arbitrary single-qubit rotations

around different axes, i.e., performing an x, y, or z rotation gate with angle ϕ:

Rx,y,z(ϕ) = e−iϕ2 σ
x,y,z

. (2.11)

Two-qubit gates

In extension to single-qubit gates, quantum hardware should be able to perform two-

qubit gates. An example would be a controlled version of the above introduced NOT gate,

i.e., a controlled NOT or in short CNOT, depicted in Fig. 2.5: It applies NOT to a second

qubit (the target) if and only if a first qubit (the control) is in state |1〉. The unitary

2Typically, the global phase of a quantum state is not of particular interest. Also, qubits are usually
investigated in a rotating frame, rotating with the qubits eigenfrequency determined by the energy
difference of the two computational states. The global phase may be absorbed by a shift of the rotating
frame.

3Note, that ~ ≡ 1 is used throughout this thesis in the context of digital quantum computing for
convenient notation of time evolution operators.
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=
H Z H

Figure 2.5: Further examples of gate depictions and an example of a gate decomposition. The horizontal
lines again represent qubits. On the left, one can see a controlled NOT gate (CNOT), that applies NOT

to the lower qubit if and only if the upper qubit is in the state |1〉. This operation can entangle the
qubits (consider the situation where the first qubit is in a superposition). Note, that a CNOT is in
fact a controlled application of σx, or controlled X gate. On the right, an equivalent gate sequence
is presented. Here, a controlled Z gate is applied in the middle, nested in additional Hadamard gates
acting on the lower target qubit. The Hadamard gate rotates the lower qubit from the Z to the X basis
and back. Therefore, the controlled Z in the new basis is a controlled X (i.e., a CNOT) in the old basis.

operation can be written as a 4×4 matrix which in the basis {|11〉, |10〉, |01〉, |00〉} reads

CNOT =




0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1



. (2.12)

To see how such a gate would be applied as a time evolution, one again expresses it as

exponential:

CNOT = e−iπ
1+σz1

2

1−σx2
2 . (2.13)

Here, the indices 1 and 2 belong to the control and target qubit respectively. By ex-

panding the exponent, one can see that along a global phase, a z rotation of the first,

and an x rotation of the second qubit, and a σz1σ
x
2 interaction – or ZX interaction –

between the qubits needs to be realized.

However, a ZX interaction might not be available on the hardware level. Consider

the scenario where only a ZZ interaction is available. In this case, one is able to realize

a controlled Z gate, in short CZ: Here, instead of NOT, i.e., σx, the Pauli operator σz is

applied to the target if and only if the control is in state |1〉. The matrix reads

CZ =




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1



, (2.14)

and the gate has a similar exponential expression as the CNOT gate with

CZ = e−iπ
1+σz1

2

1−σz2
2 . (2.15)

By the means of additional single-qubit Hadamard gates H that transform from the σz
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eigenbasis to the σx eigenbasis and back with the matrix

H =
1√
2

(
1 1

1 −1

)
, (2.16)

one can transform a CZ into a CNOT gate, as shown in Fig. 2.5. The transformation

of the basis of the target qubit leads to the application of σz being equivalent to the

application of σx without the additional basis transformation, which can be checked by

explicit matrix multiplication: CNOT = (1 ⊗ H)CZ(1 ⊗ H), where 1 is the 2×2 identity

matrix and ⊗ the Kronecker product. The Hadamard gate is possible to implement if

one has full control over single-qubit rotations since H = i · Ry(π2 )Rz(π).

Gate decompositions and universal gate sets

The above translation between CZ and CNOT is an example of a gate decomposition, where

a gate that is not available on the hardware level is applied by a equivalent sequence of

gates that are directly implementable. This shows the versatility of the digital quantum

computing approach, which extents beyond two-qubit gates:

Consider first the analog in classical digital computing. Famously, any logic function

of a number of bits in a register can be implemented solely by a sequence of two-bit

operations, specifically NAND gates (or the NOR operations). This feature of the NAND (or

NOR) gate is called functional completeness. Another prominent example of a complete

set of gates is {AND, OR}, i.e., there is a variety of different possibilities for complete gate

sets. Note, that all logic functions are contained in the set of unitary transformations,

where additional in- and outputs may be necessary to store additional information such

that the gates are reversible [60, 61].

In the scope of quantum computing, a set of gates is called universal if any given

unitary transformation on a qubit register can be approximatively implemented to ar-

bitrary precision by a finite sequence of gates from that set of gates. A sequence with

efficient gate count is guaranteed [62]. There exist a handful of finite gate sets that are

explicitly proven to be universal [63]. Note, that finite gate sets can only approximate

an arbitrary unitary transformation with a finite gate sequence since the set of unitary

transformations is uncountable. There exist also gate sets restricted to only singe and

two-qubit gates that are exactly universal, i.e., they can represent an arbitrary unitary

transformation exactly. Probably the most important statement in this context is the

fact that the set of all single-qubit gates combined with the CNOT gate is exactly uni-

versal [64], which can even be generalized further where the CNOT can be exchanged

by any two-qubit gate that is not primitive, i.e., can generate entanglement between

qubits [65].4 Furthermore, the set of single-qubit gates can be represented by the set of

4Note that, e.g., CNOT 1√
2

(|1〉 + |0〉) ⊗ |0〉 = 1√
2

(|11〉 + |00〉), i.e., CNOT can map a product state (on

the left) to an entangled state (on the right-hand side of the equation).
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single-qubit rotations Rx,y,z(ϕ).5

A variety of quantum hardware platforms have been experimentally realized that

have single-qubit control via rotation gates and some physical interaction between two

qubits to realize a non-primitive two-qubit gate [31–34, 36]. Hence, these platforms each

offer a universal set of gates.

Gate errors

Unfortunately, the application of a quantum gate always contains some small error. The

error rate of current hardware is below the threshold for the utilization of quantum error

correction [34, 35, 38], where a large number of physical qubits is combined to form one

logical qubit, and errors of individual physical qubits may be detected and corrected

without destroying the quantum state encoded in the logical qubit. However, with the

error rates presently at hand, of the order of 103 to 104 qubits or more would need to be

combined into one logical qubit, which is unfeasible for at least several years [37, 39, 40].

There are two major sources of errors: Errors due to decoherence and errors due

to faulty control. Decoherence errors are non-unitary and stem from undesired, yet

inevitable coupling of a qubit to external degrees of freedom which affect the qubit state

during the time a gate is applied. Unitary control errors can, e.g., stem from imprecise

external pulses to apply a gate as described above. Such errors might cause over- or

under-rotations, an error model established and thoroughly investigated in Chap. 4, and

also Chap. 5 where a variational algorithm (see Sec. 2.4) is considered that reduces gate

count and mitigates gate errors.

The question that is addressed in these chapters is how digital quantum simulation

may be utilized before full quantum error correction becomes feasible. There, the sim-

ulation of quantum-mechanical systems is of particular relevance as a computationally

hard problem on conventional computers, that has comparatively low demands on quan-

tum hardware in contrast to general quantum computation and is considered to be one

of the first beneficial applications of quantum computing.

With a universal set of gates at hand, in order to simulate the time evolution of

complex Hamiltonians, one still has to derive gate sequences that implement such time

evolutions. The next section provides an important tool to aid with this task.

2.3.2 Trotter expansion

Consider the situation where one seeks to simulate the time evolution e−iHτ for the

time τ under the Hamiltonian H =
∑N
α=1Hα consisting of N sub-Hamiltonians Hα.

Assume that for each Hα a gate sequence implementing e−iHατ is known and applicable

on a given digital quantum simulator. This is a common situation where the local

5Actually, a universal gate set may contain even less gates, namely only one additional single qubit
gate in a addition to CNOT [66]. Ultimately, CNOT may be replaced to create a universal gate set consisting
of only a single two-qubit gate, since, in fact, almost all two-qubit gates are universal [67]. Such a gate
may, e.g., be realized by a controlled rotation with an angle irrationally related to π. However, it is not
beneficial to unnecessarily restrict the allowed gates if the hardware is capable of more, since otherwise
the gate counts of algorithms will increase, which makes calculations slower and more error-prone.
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summands of a Hamiltonian can be realized by interactions between some of the qubits

on the hardware. It is also the reason why digital quantum simulation has rather low

algorithmic overhead, since the terms of a Hamiltonian often look very similar to the

qubit interactions that realize a quantum gate (see Chap. 4).

However, the sequences may not be applicable at once. For example, H1 could

contain interactions between qubits one and two, H2 between qubits two and three.

Since the gate sequences implementing H1 and H2 would now involve interactions with

qubit number two, they cannot be executed simultaneously. On the other hand, applying

the exponentials sequentially rather than simultaneously in general yields a different

result since H1 and H2 do not necessarily commute.

More precisely, it holds that

e−iHτ = e−i
∑N
α=1Hατ =

N∏

α=1

e−iHατ +O
(
(gτ)2

)
, (2.17)

where g = maxα ||Hα|| is the largest energy scale of the Hamiltonian. This is a corollary

of the Baker-Campbell-Hausdorff formula, resp. of the Zassenhaus formula. If the Hα

do not commute among each other, we find that applying the time evolution under

the whole Hamiltonian differs from sequentially applying the sub-Hamiltonians’ time

evolutions by a term that grows quadratically for larger times τ .

The Trotter expansion allows to simulate the time evolution by decomposing the

system into the sub-Hamiltonians without introducing large errors [47]. Here, one splits

the time τ into n time slices τ
n . For each time slice one decomposes the time evolution

into gate sequences for the individual Hα. This process yields an error that scales

linearly with 1
n :

e−iHτ =

(
e−iH τ

n

)n
=

(
e−i

∑N
α=1Hα

τ
n

)n
=

( N∏

α=1

e−iHα
τ
n +O

((gτ
n

)2)
)n

=

( N∏

α=1

e−iHα
τ
n

)n
+O

( (gτ)2

n

)
. (2.18)

Hence, for large n, the error is suppressed. The application of the decomposed time

evolution for the time τ
n is called a Trotter step; therefore, the number n is typically

referred to as the number of Trotter steps.

Other names for the Trotter expansion are Trotter decomposition, Trotterization,

and also Trotter-Suzuki expansion. The latter stems from Suzuki’s work on generalizing

the decomposition to enhanced schemes such that the error is of arbitrarily high order

in 1
n [68, 69]. Most prominently, for an even number n, by taking the evolution

e−iH1
τ
n e−iH2

τ
n . . . e−iHN

τ
n e−iH1

τ
n e−iH2

τ
n . . . (2.19)

– 27 –



Chapter 2. Theoretical framework

and reversing the order of the sub-Hamiltonians every other Trotter step, i.e.,

e−iH1
τ
n e−iH2

τ
n . . . e−iHN

τ
n e−iHN

τ
n e−iHN−1

τ
n . . . , (2.20)

one reduces the Trotter error from O( 1
n ) to O( 1

n2 ). This alternation is often possi-

ble without large effort. However, higher order decompositions generate cumbersome

overhead, i.e., significantly increase the number of gates that need to be performed.

While the Trotter expansion in principle allows for large scale simulations with arbi-

trary precision, this is only true for error corrected quantum devices. On noisy hardware,

increasing the number of Trotter steps leads to longer simulation time and the applica-

tion of more gates. At some point, the impact of decoherence and gate errors outweigh

the benefit of lower Trotter errors such that an optimal number of Trotter steps ex-

ists [70]. Chap. 4 studies this in more detail, where, using a particular error model, the

effects of gate errors on a Trotterized time evolution are examined.

2.4 Variational ground state preparation

As already mentioned above in Sec. 2.3, quantum gates suffer from finite error rates.

Therefore, optimal utilization of near future digital quantum simulators requires the em-

ployment of efficient algorithms that make the most out of the limited amount of gates

one is able to run without quantum error correction; before the fidelity of the quantum

state drops below an acceptable threshold. Variational algorithms are a promising can-

didate to achieve remarkable results with relatively low requirements on the quantum

hardware. Their aim is to prepare the ground state of a system of interest in a quantum

simulator. Subsequently, one can extract properties of the ground state, such as the

energy, from the quantum device. This is evidently useful for the simulation of quantum

mechanical systems, e.g., in quantum chemistry, but also more abstract problems could

be encoded into a problem of finding the ground state of a particular Hamiltonian, e.g.,

optimization problems [71].

The idea behind variational algorithms is the following: Starting point is a quantum

state |ψ0〉 that is easy to prepare in the quantum simulator. A unitary operator U(θ)

depending on a set of parameters θ is applied and the energy

E(θ) = 〈ψ0|U†(θ)HU(θ)|ψ0〉 (2.21)

is measured, where H is the Hamiltonian of the system of interest. The procedure is

repeated while varying the parameters in order to minimize the energy. Minimizing the

energy from equation (2.21) with respect to θ yields θmin such that E(θmin) = min
θ
E(θ).

Since per definition the ground state is the state with the lowest energy, this should yield

U(θmin)|ψ0〉 to be (a good approximation of) the ground state of H – that is under the

condition that |ψ0〉 and U(θ) are chosen such that an evolution towards the ground state

is in principle possible given a suitable set of parameters θ. Hence, the choice of initial
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state and unitary operator should have some physical motivation.

There is a multitude of variational methods. The most prominent example of (quan-

tum) variational algorithms is the variational quantum eigensolver [51]. It is based on

unitary coupled cluster theory for quantum chemistry problems [72, 73]. Here the ini-

tial state is usually the Hartree-Fock state and the unitary operator is effectively a time

evolution containing the action of all possible types of hopping terms and interactions.

Note, that this ansatz is beneficial even for classical computing and widely used, but

the computation time scales exponentially with the number of orbitals in the quantum

system. On quantum hardware on the other hand it scales polynomial offering the

possibility to simulate much larger systems.

The benefit of variational algorithms for noisy quantum simulators lies in a short

runtime on the actual quantum hardware. Only initialization of |ψ0〉, application of

U(θ) and measurement of E(θ) need to be executed. Afterwards the quantum device

is reset. The minimization protocol of adjusting the parameters for a next iteration

can be carried out on conventional (super) computers in a quantum-classical hybrid

approach. Once optimal parameters θmin are found one has – by preparing U(θmin)|ψ0〉
– a protocol for rapid ground state preparation using only marginal resources, such that

ground state properties other than the energy may be studied efficiently.

Variational methods are expected to be particularly valuable for quantum simulators

without error correction. It is believed that they perform well only using very few

gates [52] and errors alike in a Trotter expansion using only a limited number of gates

are calibrated out during the optimization of θ. Also errors due to faulty gates should

be suppressed [51], which would be very important for noisy simulators.

Chap. 5 analyzes the performance of a variational algorithm inspired by an adiabatic

evolution from the non-interacting to the interacting ground state of a system. The

algorithm uses particularly few resources and is therefore a viable candidate for near

future application. The analysis has a specific focus on the performance under the

influence of gate errors with the error model for faulty gates established in Chap. 4.
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Chapter 3

Emulating the one-dimensional

Fermi-Hubbard model

This chapter is based on the the publication

[1] J.-M. Reiner, M. Marthaler, J. Braumüller, M. Weides, and G. Schön, Emulat-

ing the one-dimensional Fermi-Hubbard model by a double chain of qubits, Phys.

Rev. A 94, 032338 (2016).

Reprinting of copyrighted material from this publication is explicitly permitted within

this thesis by the American Physical Society (APS).

This thesis revolves around the simulation of quantum systems. As already mentioned in

the introduction, this is a difficult task for classical computers because of the exponential

growth of the Hilbert space for increasing particle number. This chapter addresses the

potential solution for this problem by using analog quantum simulators (AQS), or emu-

lators. For this purpose one needs to design artificial systems governed by Hamiltonians

which can be mapped onto those of the quantum systems to be studied. An example

with more than 300 artificial spins with sufficient coherence properties has been realized

recently in experiments [57]. In spite of such progress, the strategy of emulating further

model Hamiltonians by artificially created systems remains a challenging task.

Of particular interest and in the focus of this thesis, because of the difficulties they

pose, are fermionic systems. Great progress in the simulation of such systems has been

made by using cold atom gases [74] or trapped ions [75–77]. Specifically, the Fermi-

Hubbard model has been studied with atoms in optical traps [16, 48]. In these experi-

ments one can use actual fermionic particles, which allows a straightforward mapping of

the artificial system onto the fermionic model of interest. On the other hand, in these

systems the available range of coupling strengths, or equivalently of effective tempera-

tures, is limited [16, 49]. In addition, the individual control and readout of atoms still

poses problems, which makes it difficult to, e.g., read out correlation functions.

– 30 –



3.1. Mapping the Fermi-Hubbard model onto Qubits

Controlled access to individual “particles” is routinely achieved for systems consisting

of superconducting qubits. In one dimension, the properties of (spin-less) fermions

can be mapped by the Jordan-Wigner transformation onto those of a chain of qubits.

In extension to this, the on-site interaction and the hopping of a spin-full 1D Fermi-

Hubbard model can be modeled by using a double chain (ladder) structure of qubits

with XX (more precisely transversal) and ZZ couplings of neighboring qubits along the

chains and between the chains, respectively [78]. This mapping has been exploited in

numerical treatments of the problem [79]. Here, we discuss how these systems can be

used for the purpose of quantum emulations and analyze different physical realizations of

the qubits, including charge qubits and transmons. Josephson junction arrays of charge

qubits [80–84] are conceptually the simplest model and allow all needed operations, but

they are known to suffer from the random offset charge problem. Transmon qubits

[50] are more stable against noise and, therefore, are frequently favored. Their energy

splitting can be tuned via a SQUID loop providing the effective Josephson coupling;

the ZZ interaction arises due to a mutual inductance, and the XX interaction via a

capacitive interaction. On the other hand, when using transmons we find restrictions

on the accessible range of parameters of the Fermi-Hubbard model. For both systems it

is routinely possible to measure local operators and correlators. By performing several

of such measurements one can also gain confidence in the quality of the simulation.

The chapter is organized as follows: In the next section we review how the Hamil-

tonian of the spin-full one-dimensional Fermi-Hubbard model can be mapped onto the

double chain of qubits. Then we discuss the physical realizations of the qubit double

chain by superconducting qubits. Finally, we suggest methods of read-out and ini-

tialization as well as measurements which allow testing the quality of the emulation.

Physical properties of transmon qubits and their coupling required for the simulation

are discussed in detail in Appx. A.

3.1 Mapping the Fermi-Hubbard model onto Qubits

Sec. 2.1 already explained how a mapping between fermions and qubit has to respect the

different commutation relations between the fermions and the bosonic qubit excitations.

We introduced the Jordan-Wigner transformation in Sec. 2.1.1 as a possible mapping of

fermionic orbitals that can be occupied or unoccupied onto qubits as quantum two-level

systems. Here, for a numbered set of qubit with raising and lowering operators σ±j one

defines

cj =

j−1∏

k=1

(−σzk)σ−j . (3.1)

The operators cj are now fermionic with the corresponding anticommutation relations.

However, Sec. 2.1.1 also made clear how using this approach, simple hopping terms

(in the fermionic language) may translate to complicated multi-qubit interactions. On
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σz σz σz σz

· · ·

· · ·

1, ↓ 2, ↓ 3, ↓ n, ↓

1, ↑ 2, ↑ 3, ↑ n, ↑σ± σ± σ± σ±

σ± σ± σ± σ±

Figure 3.1: Layout of a qubit system consisting of two chains (labeled ↑, ↓) of n qubits, where the
neighboring qubits of each chain are coupled via a SWAP interaction of the form σ+

j,sσ
−
j+1,s + H.c. The

two chains from a ladder, with qubits belonging to the same rung coupled through terms involving
σzj,↑σ

z
j,↓. With the resulting Hamiltonian HQS (3.3) the qubit system can serve as an analog quantum

simulator (AQS) of the 1D Fermi-Hubbard model HFH (3.7).

the other hand, the Jordan-Wigner transformation can be very efficient for one-dimen-

sional systems. From Eq. (3.1) follows, that

c†jcj = σ+
j σ
−
j =

1

2
(σzj + 1),

c†jcj±1 = σ+
j σ
−
j±1.

(3.2)

This allows for an easy mapping of 1D spinless fermionic systems onto a chain of spins

as long as the exchange interaction couples only nearest neighbors [85, 86].

Emulating n interacting fermions with spin-1/2 is possible by using the ladder-type

array of qubits displayed in Fig. 3.1 [78, 79]. The qubit system consists of two chains

of qubits of length n, with exchange interactions expressed by σ± operators between

neighboring qubits in each chain. In addition, the two qubits of the different chains

belonging to the same rung of the ladder are coupled by σz operators. Assuming that

the qubit level spacings ε are all the same, and similarly the coupling strengths gx of

the σ±-type couplings as well as the strengths gz of the σz-type couplings, we arrive at

the Hamiltonian

HQS =

n∑

j=1

∑

s=↑,↓

1

2
εσzj,s + gz

n∑

j=1

σzj,↑σ
z
j,↓ + gx

n−1∑

j=1

∑

s=↑,↓
(σ+
j,sσ

−
j+1,s + σ+

j+1,sσ
−
j,s). (3.3)

The index (j, s) ∈ {1, . . . , n} × {↑, ↓} refers to the qubit at the jth position in the

upper or lower chain. In order to perform the Jordan-Wigner transformation we need

a consecutive, strictly one-dimensional numbering. It can be generated by the bijection

(j, ↓) 7→ j and (j, ↑) 7→ j + n. Using this and Eqs. (3.2) we can transform the three

contributions in the Hamiltonian (3.3). The first sum is easy to treat since

σzj,↓ 7→ σzj = 2c†jcj − 1,

σzj,↑ 7→ σzj+n = 2c†j+ncj+n − 1.
(3.4)
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The ZZ interactions between nonconsecutive qubits is therefore also unproblematic to

map onto fermions since

σzj,↓σ
z
j,↑ 7→ σzjσ

z
j+n = 4(c†jcj −

1

2
)(c†j+ncj+n −

1

2
). (3.5)

The exchange interaction, on the other hand, only occurs between nearest neighbors in

our chosen order, and we find

σ+
j,↓σ

−
j±1,↓ 7→ σ+

j σ
−
j±1 = c†jcj±1,

σ+
j,↑σ

−
j±1,↑ 7→ σ+

j+nσ
−
j±1+n = c†j+ncj±1+n.

(3.6)

Using these relations in the Hamiltonian (3.3) and transforming the indices back through

j 7→ (j, ↓) and j+n 7→ (j, ↑), one finds that the qubit system is equivalent to the Fermi-

Hubbard model in one dimension with the Hamiltonian

HFH = −µ
n∑

j=1

∑

s=↑,↓
c†j,scj,s + U

n∑

j=1

c†j,↑cj,↑c
†
j,↓cj,↓ − t

n−1∑

j=1

∑

s=↑,↓
(c†j,scj+1,s + c†j+1,scj,s).

(3.7)

The chemical potential µ, the on-site energy U and the transfer energy t are related to

the parameters of the qubit system via

µ = −ε+ 2gz, U = 4gz, and t = −gx. (3.8)

At this stage we conclude that the considered qubit system with the described XX

and ZZ nearest-neighbor interactions is equivalent to the 1D Fermi-Hubbard model (3.7)

including spin and should allow emulating the latter. We draw attention to the fact that

spin flip processes are not allowed (which will be different in Chap. 4). In the following

sections we will investigate specific physical realizations of the qubits, including the

questions what are the accessible ranges of parameters and what are the available tools

for manipulation and measurement.

3.2 Physical realizations of the qubit chains

The spin system shown in Fig. 3.1 with Hamiltonian HQS given by Eq. (3.3), which

can serve as an emulator of the 1D spin-full Fermi-Hubbard model, can be realized

by superconducting circuits. One possibility is a realization based on an array formed

by Josephson charge qubits [80, 81] as pictured in Fig. 3.2. Two nearly degenerate

charge states of the superconducting islands are the basis of the charge qubit [82–84].

The islands are coupled via Josephson junctions and capacitances to neighboring ones.

The capacitances Cz between islands belonging to the same rung give rise to the ZZ

interactions, while the Josephson junctions provide the exchange interactions along the

two chains. The junctions have to be designed such that their intrinsic capacitances,
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V1,↓ V2,↓ V3,↓

V1,↑ V2,↑ V3,↑

Figure 3.2: Circuit diagram for a physical realization of the quantum simulator of Fig. 3.1 by a ladder
array of charge qubits (gray box). Superconducting islands (gray circles) within the same chain are
coupled via Josephson junctions J , neighboring islands belonging to the two different chains are coupled
via capacitances Cz . Each islands is connected via a capacitance C to a control voltage Vj,s. Two charge
states of the islands form the basis of the qubit. The circuit provides the desired couplings of Fig. 3.1
and allows tuning the chemical potential without further restriction, thus allowing any occupation of
the fermionic states.
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Figure 3.3: Superconducting circuit based on tunable transmon qubits (gray box). Each transmon
consists of two Josephson junctions J forming a loop with geometric inductance L; the junctions are
shunted by capacitances C. Each individual transmon is tunable via applied magnetic fluxes Φj,s
threading the loop. Additional capacitances Cx create an XX coupling between two qubits. Coupling
the inductances of two qubits via the mutual inductance M produces a ZZ interaction. The circuit is
therefore a realization of the qubit system of Fig. 3.1 (within the rotation wave approximation).
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which would lead to unwanted ZZ interaction along the chains, are much smaller than

Cz. Each island is further connected via a capacitance C to a gate voltage Vj,s, which

allows adjusting the level spacing of each qubit to the same value ε. According to

the relation (3.8) this allows tuning the chemical potential µ of the simulated Fermi-

Hubbard model (3.7). Equilibrium properties can thus be measured for a wide range

of the chemical potential, which also allows studying the important case of half-filling.

The values of U and t are fixed during fabrication, but they can be chosen in a wide

range. Furthermore, by replacing the Josephson junctions by tunable SQUIDs, one can

tune the parameter t.

While the realization via ideal Josephson charge qubits would allow the emulation of

the Fermi-Hubbard model in the interesting parameter regime, and conceptually is most

easily understood, it suffers from a serious problem. The charge qubits are very sensitive

to uncontrolled offset charges and background charge fluctuations. As a consequence it is

very difficult to tune the system to a homogeneous chemical potential. This problem has

been recognized in the field on superconducting qubits, and the strategy was developed

to explore other designs.

An alternative design makes use of qubits with junctions based on phase slip pro-

cesses [87, 88]. Such phase slip qubits have been fabricated and have been shown to

behave in a quantum coherent way [89]. For arrays built of such devices the disorder

effects should be much weaker [90]. However, at this time it is too early to judge the

quality and potential of these setups. Perhaps the prospects of using them for emulations

will encourage further engagement into this new technology.

A successful qubit design, favored nowadays by many experimentalists, is the trans-

mon [50]. It is optimized to be less sensitive to charge noise. We therefore proceed to

analyze a circuit based on transmon qubits as shown in Fig. 3.3. In this setup the XX

exchange interaction is provided by a capacitative coupling between transmons, and the

ZZ-type interaction by a coupling via mutual inductances between the transmons.

In order to explain these couplings we shortly review the properties of a transmon;

a detailed derivation is given in the Appendices A.1, A.2, and A.3. One single tunable

transmon is built from two Josephson junctions with critical current Ic (here assumed

to be equal) and phase differences φl and φr across them. Each junction is shunted by

a capacitance C, and they form a loop with low geometric inductance L. We introduce

the external phase φe = 2e
~ Φe associated with the external flux Φe through the loop

containing the junctions, and the energy scales EC = e2

2C , EJ = ~
2eIc, and EL = ~2

e2L .

For small geometric inductance L, such that EL � EJ , the difference φ− of the

phases across the two junctions is confined in a very steep potential well and effectively

fixed at the value of the external phase. Through this mechanism, the energy difference

of the two logical states of the transmon ε =
√

8ECEJ cos(φe/2) is tunable via the

external flux.

By coupling the inductances of two qubits (labeled ↑ and ↓) to form a mutual in-

ductance M as shown in Fig. 3.3, we couple their potentials, and attain an effective
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Figure 3.4: For a quantum simulator realized by transmon qubits, the parameter U/t of the Fermi-
Hubbard model (3.7) to be emulated is plotted against the external phase φe (assuming all external
fluxes to be equal). The shaded area indicates the accessible range for φe, and γ is a scaling factor (see
main text).

interaction of the form gzσz↑σ
z
↓ . The resulting coupling energy scale is

gz = − 1

16

M

L
tan(

φ↑
2

) tan(
φ↓
2

)
ε↑ε↓
EL

, (3.9)

where φ↑,↓ are the phases associated with the external fluxes through the qubits. The

coupling energy gz is now tunable through the external phases φ↑,↓, and even the sign

of gz can be changed. Since gz ∝ ε↑ε↓/EL ∝ EJ/EL, the coupling energy is very low.

For it to be above the qubit linewidth one has to use transmon designs with not too

low inductance. A possible experimental realization with substantial inductance is the

concentric transmon qubit [91] (see Appx. A.4 for details).

To achieve the XX-type interaction between two transmons we suggest a coupling

via the charge operators through the capacitances Cx (see Fig. 3.3). For low coupling

capacitances, Cx � C, we find an interaction of the form gxσxj σ
x
j+1 between nearest

neighbor qubits with

gx =
1

4

Cx

C
ε . (3.10)

Since |gx| � ε the rotating wave approximation can be used, and we reproduce the

exchange interaction in Eq. (3.3).1

The AQS built in this way has an important feature: The tunability of gz through

external fields enables to tune the ratio U/t of the parameters of the Fermi-Hubbard

model. Figure 3.4 displays a plot of |U/t| over the external phase (which is assumed to

1Note that this result is only valid in first order, and terms in O((Cx/C)2) have been dropped. They
would lead to finite-range interactions decaying proportional to (Cx/C)kσxj σ

x
j+k. While it appears

interesting to include interactions beyond nearest neighbors, one should note that such couplings in the
qubit system do not map to a meaningful interaction in the fermionic system through the Jordan-Wigner
transformation.
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be equal for all qubits). After absorbing the parameters of the circuit elements into the

scaling factor γ = C
Cx

M
L

√
8ECEJ
EL

we find a universal behavior. The shaded area indicates

(roughly) the allowed range of values of the external phase: If we choose φe too small the

value of gz will drop below the qubit linewidth, if we choose it too large, the transmons’

susceptibility to noise increases. The sign of U can be switched by reversing the external

flux in either the upper or the lower chain of qubits, hence, we can simulate repulsive

or attractive on-site interactions.

Both types of couplings discussed here have energies that are small compared to

the qubit energy splitting, i.e., |gx|, |gz| � ε. For transmons this restriction is needed,

since they are effectively anharmonic oscillators and the coupling strengths have to be

weaker than the anharmonicity. Otherwise excitations of energy levels higher than the

two logical states of the qubits play a role. This imposes a serious restriction on the

parameters of the Fermi-Hubbard model (3.8), namely it effectively amounts to µ ∼ −∞.

This means we can explore equilibrium properties of the system only in the limit of very

low particle number.

We are, however, able to excite in a controlled way some of the qubits in the sys-

tem and therefore initiate particles in the AQS. If the frequencies of the qubits to be

excited are initially tuned far from the other ones in the AQS, and then tuned again to

degeneracy adiabatically after the excitation, we should arrive in the ground state of the

Fermi-Hubbard model with a given number of particles. Furthermore, after initiating

specific excitations in the AQS, we can study the resulting non-equilibrium properties.

This is especially interesting, as such properties are hard to treat either analytically or

numerically. For these nonequilibrium dynamics there is no restriction on the filling of

the system; i.e., we cover a wider range of parameters than in the equilibrium case.

3.3 Initialization, Readout, Control of the quality

The fabrication process of the transmon Josephson junctions is not precise enough to

guarantee the Josephson energies to be exactly equal (on the energy scale of the cou-

plings). On the other hand, the qubit energies of the emulator’s qubits have to be

degenerate. For this reason, the proposed circuit in Fig. 3.3 includes separate magnetic

fields to tune individually each transmon. This extension should be manageable, adding

one DC connection for each of the transmons to create the local fields. In addition, the

individual tunability is useful for the initialization and readout, as well as for protocols

to be used as tests of the quality of the simulation.

As an initialization scheme we suggest to couple a part of the qubit system capac-

itively to a transmission line as a feed line for external signals. By pairwise detuning

the qubits in this part the XX interaction between the transmons can be suppressed,

which allows addressing every qubit individually through a resonant microwave pulse.

Hence, one can excite specific qubits to initialize a desired configuration of excitations

in the AQS. Note, that the ZZ interaction may only lead to an effective frequency shift

for the excitation of a qubit, depending on whether the partner qubit is already excited

– 37 –



Chapter 3. Emulating the one-dimensional Fermi-Hubbard model

or not. Bringing the transmons back to degeneracy turns the XX exchange interaction

back on, which will start the simulation.

Readout can be performed through the usual method of projective measurement in

the dispersive regime. We couple resonators to the system, with frequencies far from

the qubit frequencies during the simulation. Individual qubits are then tuned out of

degeneracy to enter the dispersive regime of a resonator. This way, we can measure the

time evolution of the operator σz for each transmon.

An important issue to address is the quality of the results produced by the AQS [56]

(see criterion 3 in Sec. 2.2). The Emulator does not have error correction implemented.

Deviations of the qubit system, where disorder effects cannot be avoided, from the ideal

model Hamiltonian (3.3) will modify conclusions to be drawn for the Fermi-Hubbard

system, a problem which is largely unexplored. Here we propose tests which may help

gaining confidence through several sorts of measurements.

(1) One option is to check symmetries of the system. In our case, it is easy to

see from the Hamiltonian (3.7) that the total number of excitations in the spin-up as

well as the spin-down chain should be conserved separately. Furthermore, both chains

should be equal, hence equal properties should be observed in both chains. In addition,

for a sufficiently large system with negligible boundary effects, we expect translational

symmetry along the chains.

(2) If one creates fermions only in one of the chains (by exciting the corresponding

qubits), one finds effectively a tight-binding model. In this case, the simulation results

could be easily compared to analytic results.

(3) Another option is to limit the system size of the AQS such that results could be

compared to simulations on a classical computer. To do this, one does not need to build

a small emulator. Rather, by tuning the coupling strengths it is possible to switch off

the exchange interaction along the chains at a specific position. This will localize the

excitations in one part of the simulator, and a comparison between the measurements

of the smaller subsystem with numerical simulations could be possible.

Such measurements help in evaluating the quality of the emulator’s results. Beyond

such tests one should investigate the effects of disorder in the parameters of the emula-

tor. First steps in this direction show for certain models (including the Fermi-Hubbard

model) a remarkable stability of the AQS against disorder, which arises due to the

symmetries [92].

A limitation of the proposed emulator arises due to the limited coherence time of

the qubits. But we estimate that qubit designs are available with sufficient quality to

simulate the quantum state evolution on interesting, long time scales before decoherence

dominates the dynamics. The effects of a bath coupled to a quantum emulator have

been investigated in part [5, 6, 8, 93] but need to be explored further. For a first

estimate we have to compare the microscopic time scales with the decoherence time, or

inversely, the coupling energies with the decoherence rate. For example, for the Xmon

qubit coherence times of the order of 10 µs to 100 µs were reported [94], corresponding

to rates from 100 kHz down to 10 kHz. These rates are orders of magnitude smaller
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than the capacitive coupling energies ranging from 10 MHz to 100 MHz. While this

ratio looks very promising, we have to note that it is unclear how the required magnetic

coupling can be realized with the Xmon design. Therefore, we concentrated in this

chapter on the concentric transmon [91], for which coherence times of the order of 10 µs

and capacitive coupling energies between 10 MHz and 100 MHz appear possible as well,

and which allows for the magnetic coupling. First estimates for the magnetic coupling

between two adjacent qubits yielded results only slightly above the decoherence rate,

but proper adjustments in the circuit could provide sufficiently strong coupling energies

(see Appx. A.4).

An actual quantity of interest in an emulation is a time- and space-dependent cor-

relation function of the Fermi-Hubbard model on time scales which significantly exceed

the microscopic time scales given by the inverse of the hopping matrix elements and the

interaction strength. Accordingly, the correlation functions of the qubit circuit should

be studied for times significantly exceeding the equivalent microscopic time scales de-

termined by the inter-qubit couplings (3.8). These time scales have to be compared

with the coherence time of the 2n-qubit double chain circuit. In the extreme case, if

we are interested in long-range correlation functions, say of sites at opposite ends of

the system, the relevant coherence time is reduced by a factor 2n as compared to the

single-qubit coherence time. Thus, even with very promising ratios between single-qubit

decoherence rates and coupling strengths, the study of long-range correlation functions

is more difficult. But for not too large n (say between 10 and 100) it should be possible

to study with present technology the time dependence of correlation functions in an in-

teresting regime. We finally note that with our proposed emulator we are potentially in

a more favorable situation than with a digital quantum computer (without error correc-

tion), where the simulation of the time evolution requires executing a very large number

of quantum gates making the limitations due to the finite coherence time much more

serious.

3.4 Chapter conclusion

A double chain of qubits with XX and ZZ couplings of neighboring qubits along and

between the chains, respectively, can be mapped via the Jordan-Wigner transformation

on a spin-full 1D Fermi-Hubbard model. The qubit system can thus be used to emulate

the quantum properties of this model. It constitutes a different approach to analog quan-

tum simulation with, e.g., fermionic ultra-cold gases [16, 48], or a recent effort with an

emulator based on dopant atoms in a semiconductor [95]. We analyzed different physical

implementations of such analog quantum simulators. The conceptually simplest, with

the broadest range of available parameters and highest flexibility is a realization based

on an array of Josephson charge qubits. It would also allow simulations corresponding to

half-filling of the fermionic problem. Unfortunately, Josephson charge qubits suffer from

the strong dependence on background charge fluctuations, which makes them difficult

to handle in experiments. An alternative would be provided by using junctions based on
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phase slip processes [87–89]. For arrays built with such devices disorder effects should

be much weaker [90] which should make it worthwhile investing into this new technol-

ogy. Because they are widely used nowadays, we discussed in detail tunable transmon

qubits, where the ZZ interaction arises due to an inductive coupling and the XX in-

teraction due to a capacitive interaction. This appears a promising approach as far as

the experimental realization is concerned, and therefore it is discussed in more detail

in Appx. A.4. Although for this realization the parameter range is restricted, we could

propose several interesting scenarios to be explored in an emulation, including protocols

which can provide confidence in the results of the simulation through measurements of

local operators.

We focused in this chapter on analog quantum simulation. One should note that

superconducting qubits are on the other hand also a prime candidate for digital quantum

simulation of the Fermi-Hubbard model [96, 97]. In the next chapter, we will switch from

studying emulators to investigating digital quantum simulation of fermionic systems.
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Effects of gate errors in digital

quantum simulations
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In comparison to analog quantum simulations as discussed in the previous chapter, the

approach of digital quantum simulation is in principle much more versatile. Another

benefit of digital quantum simulation is that, eventually, quantum error correction offers

a route to resolve the issue of decoherence [39], and qubits with fidelities at the threshold

for the implementation of quantum error correction have been demonstrated [34, 35,

38, 98]. Nevertheless at present the number of qubits required for full quantum error

correction appears prohibitive [37, 40].

In a situation where only small-size and imperfect quantum simulators are within

reach, it is crucial to gain a better understanding of the effect of errors on their per-

formance. For some examples, methods to estimate the quality of quantum simulators

with errors have been suggested [5, 99], and proposals for error reduction exist [6, 100].

However, all in all it remains largely unexplored how errors will affect the results of

quantum simulations, and even whether the results obtained in this way have a physical

meaning [56].

In this chapter, we evaluate the effect of gate errors on digital quantum simulations.

Digital simulations are highly esteemed due to their wide range of applicability [101–103],

e.g., for quantum chemistry or many-body physics. Specifically, we study simulations of

fermionic systems, such as the Hubbard model, which are considered to be prime targets

of quantum simulations [104, 105]. In a digital quantum simulation the time evolution
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operator of the system is evaluated by splitting the Hamiltonian into parts acting in

smaller subspaces via the Trotter expansion and, instead of a continuous time evolution,

the simulator implements a succession of short-time Trotter steps (see Sec. 2.3.2). This

short-time evolution in the appropriate subspace is then simulated by an algorithm

based on a sequence of quantum gates which are available on the hardware level. The

quality of the Trotter expansion requires short time steps, and for a many-particle

system the Hamiltonian consists of many terms. Hence, a very large number of gates

are needed [106]. It cannot be avoided that the gates are subject to some errors. Even

if they are small for each individual gate, due to their large number a substantial error

will accumulate, and the gain from implementing finer time steps will be limited [70].

In addition, we address here the question whether gate errors in a digital quantum

simulation have a physical meaning. Generally, the exact form of gate errors is not well

known. Standard gates perform a rotation of the many-qubit state. We, therefore, model

the gate errors as over-rotations (or under-rotations). For such gate errors we show that

the simulation, rather than modeling the time evolution under the original Hamiltonian

H, models the time evolution under an effective Hamiltonian H + δH. The added term

δH is proportional to the strength of the over-rotations; its specific details depend on

the chosen algorithm. We show that for some algorithms it can be interpreted as a

disorder term. With this knowledge one can interpret the results of the simulation, such

as, e.g., the spectral resolution. However, other algorithms may introduce contributions

δH such that the physical properties of the effective Hamiltonian are very different from

the original ones.

The magnitude of the over-rotation can be related to the gate fidelity, a widely used

measure for the quality of a quantum gate. Specifically, as shown in Sec. 4.4.1, an

over-rotation by an angle δϕ reduces the minimal gate fidelity Fmin (i.e., the fidelity

minimized with respect to all possible input states) to the value Fmin = cos(δϕ).1

Reversing this relation, |δϕ| ≈
√

2(1−Fmin), shows that the fidelity has to be very

close to 100 % to keep the gate errors small. Typically the over-rotation angles are

stochastic variables. Assuming that in independent runs of the experiment the over-

rotations vanish on average with a given variance Var(δϕ), we find for the average

minimal fidelity Fmin = 1−Var(δϕ)2/2. The fidelity can be determined experimentally

by examining each gate individually before the simulation.

The extra contribution to the Hamiltonian introduced by the over-rotations scales as

|δH| ∝ nVar(δϕ), i.e., it increases proportional to the number of Trotter steps n. Note,

that this property is a consequence of the fact that we chose the over-rotation variance

Var(δϕ) to be independent of the duration of the Trotter time steps ∝ 1/n, and errors

do not get weaker if we choose shorter time steps (in actual simulations the opposite

may be relevant, namely that the errors increase with increasing length of the Trotter

steps. Our model then covers the limit of short steps). In addition, with increasing

system size one has to perform an increasing number of gates per Trotter step. In the

1Here we follow the notation of Nielsen and Chuang [63], often the square of Fmin is called fidelity.
See Sec. 4.4.1 for a precise definition.

– 42 –



4.1. Error model and method

H algorithm

faulty algorithm H + δH

Trotter
expansion

Trotter
expansion

gate errors

Figure 4.1: The time evolution of a (fermionic) quantum system with Hamiltonian H is simulated
through digital quantum simulation based on the Trotter expansion. Gate errors in the algorithm arise
due to over-rotations with strength related to the fidelity of the gates. The resulting faulty algorithm
simulates – within the Trotter approximation – a system with Hamiltonian H + δH. The structure of
δH is sensitive to the specific algorithm and often describes disorder.

simulations a balance has to be found between the quality of the Trotter expansion and

the errors introduced by the gates. Labeling the number of gates per Trotter step by

Ng (as we discuss below this is roughly the number of two-qubit gates per Trotter step),

we arrive at the following limitation:

nNg <
1√

2(1−Fmin)
. (4.1)

Note, that this is a worst-case estimate. Depending on how errors of various gates add

up, the number Ng could effectively be much smaller. This is discussed in more detail

in Sec. 4.4.

The present chapter is organized as follows: In the following section we will state our

model assumptions and show how gate errors in a digital quantum simulation effectively

lead to a time evolution under a modified Hamiltonian. Fig. 4.1 gives a structural

overview of our approach and findings. Thereafter we illustrate the method and results

by considering a model system. We show that different choices of the algorithms lead to

different effective Hamiltonians. We substantiate our findings by a numerical analysis of

a minimal model system with varying error strengths which we compare to present-day

experimentally achieved gate fidelities. We also study the trade-off between between a

finer Trotterization, i.e., less Trotter expansion error, and the resulting necessity to run

more faulty gates. We add some comments on the effect of errors in the adiabatic state

preparation. We conclude with a summary and outlook.

4.1 Error model and method

4.1.1 Method and assumptions

We consider in the following algorithms simulating the time evolution under a Hamilto-

nian H, or in general H(t), making use of the Trotter expansion. The Trotter approx-
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imation was introduced in detail in Sec. 2.3.2, but we will review it here again briefly.

It assumes that the time evolution operator during time 0 ≤ t ≤ τ is broken into a

product of a large number of n short segments of length τ
n (which is a way to assure

the proper time order in the time-evolution operator). It further exploits the fact that

the usually complicated many-body Hamiltonian H can be decomposed into N parts,

H =
∑N
α=1Hα, each acting in a much reduced Hilbert space. If the Hamiltonian does

not depend on time (the generalization is obvious) we have

e−iHτ =

(
N∏

α=1

e−iHα
τ
n +O

((gτ
n

)2)
)n

=

(
N∏

α=1

e−iHα
τ
n

)n
+O

( (gτ)2

n

)
, (4.2)

where we denote g = maxα ||Hα||, the largest energy scale of the Hamiltonian. If

the number of Trotter steps is chosen sufficiently large, such that gτ
n � 1, the first

order Trotter expansion is sufficient. If, furthermore, each Hα can be implemented and

controlled by the hardware of the quantum simulator, the decomposition (4.2) describes

a sequence of gates which simulates the time evolution.

In order to make quantitative predictions on the effect of gate errors on the digital

quantum simulation we have to specify their nature. Our primary assumptions and

approximations are the following:

(i) The only type of errors in gates are over-rotations.

(ii) The strength (i.e., variance) of the gate errors is such that higher order contribu-

tions in the Trotter expansion can be neglected.

Additionally we assume – although this could be easily generalized:

(iii) Errors in single-qubit gates can be neglected as compared to those occuring in

gates between two or more qubits.

(iv) The over-rotations in each individual gate are independent and may vary with

time.

By assumption (i) we imply that the needed gates are performed with the correct

interaction between qubits, but there is, e.g., an uncertainty in the interaction time [107].

Since a gate (expressed as an exponential of Pauli operators or products thereof) can be

seen as a rotation of the state of the qubit register, an error causes an over-rotation (or

under-rotation). We also imply that the needed interaction is either realized intrinsically

as a physical interaction on the hardware-level, or that the gate (e.g., an off-axis rotation)

can be decomposed into several intrinsic gates. (In such cases the over-rotations in

individual gates, in general, cannot be combined to an over-rotation in the composite

one.) More explicitly, we write the gate as an exponential eiϕA, with an dimensionless

operator A with unit norm, ||A|| = 1 where || · || denotes the standard induced operator
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norm,2 characterizing the type of interaction of the gate, and an angle ϕ. An over-

rotation is characterized by an addition δϕ to the angle, such that the faulty gate is

ei(ϕ+δϕ)A.

Assumption (ii) implies bounds for δϕ. Rewriting the exponents in Eq. (4.2) as

−iHα
τ
n = −i gτn

Hα
g and noting that Hα

g has unit norm or less, shows that – in analogy to

what we discussed under assumption (i) – the Trotterization introduces angles of order
gτ
n . The over-rotation δϕ should be of smaller magnitude

|δϕ| ≤ gτ

n
. (4.3)

In this case, order O(δϕ2) terms and products between δϕ and gτ
n can be neglected

inside a Trotter step, consistent with the Trotter approximation.

The optional assumption (iii) is motivated by the observation that single-qubit gates

usually have a significantly better fidelity than two-qubit gates [34, 108–111]. In ad-

dition, there are examples, e.g., the Hubbard model with equal on-site energies, which

can be simulated using only two-qubit gates. Single-qubit gates are needed if only a

limited set of two-qubit gates is available (see the example of a gate decomposition in

Sec. 2.3.1). For instance, the hardware may allow only for XX interaction between

nearest-neighbor qubits. Examples are capacitively coupled transmon qubits [1, 50], or

trapped-ion architectures [112]. In these cases implementing a ZZ interaction requires

additional single-qubit rotations. All conclusion drawn in the following do not change

if a simulated interaction involves such additional (ideally error-free) single-qubit gates.

As expressed by assumption (iv) we allow the gate errors to vary with time. In the

numerical simulation performed below we assume that the errors are normal-distributed

with zero mean. Particularly, we will investigate the effect of errors after averaging over

many different runs of an algorithm, each one performed with a different realization of

the random errors. However, at no point in our discussion this is strictly necessary. A

constant error leads to a constant perturbative correction to the Hamiltonian, which can

be estimated, and on top of it, it should be possible to reduce its effect more efficiently.

4.1.2 Effects of gate errors

With the assumptions specified, we are now ready to analyze the effects of gate errors

due to over-rotations. There are two distinct cases:

Case 1: Consider a Hamiltonian H = H1 +H2, where Hα = gαAα with ||Aα|| = 1.

For simplicity of the notation in the following we assume g1 = g2 = g. Also the

generalization to a situation with more terms is straightforward. In this first, simple

case, we further assume that the quantum simulator allows performing directly – with

the available hardware by single gates – the Trotter steps arising from the interactions

2The normalization does not fix the angle of rotation but imposes an upper bound to it. Consider
Pauli operators σ+σ− and σz : Even though ||σ+σ−|| = ||σz || = 1, the first operator rotates half as

much as the second, since σ+σ− = σz

2
+ 1

2
. Below we ignore such constant factors (and global phases).

A more thorough definition of A is given in Sec. 4.4.1.
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Aα. In this case, the simulation of the time evolution under H is based on the Trotter

expansion,

e−iHτ =

(
e−i gτn A1e−i gτn A2 +O

((gτ
n

)2)
)n

. (4.4)

Gate errors due to independent over-rotations δϕ(1,2)m during the mth Trotter step lead

to the modification

e−i gτn A1e−i gτn A2

7→ e−i( gτn +δϕ1m)A1e−i( gτn +δϕ2m)A2

= e−i gτn A1e−i gτn A2e−iδϕ1mA1e−iδϕ2mA2 +O
((gτ

n

)2)
. (4.5)

In the last step we made use of Eq. (4.3). Comparing to the time-dependent general-

ization of Eq. (4.2), we find that the over-rotations lead to the simulation of the time

evolution under an effective Hamiltonian H + δH(t), where

δH(t) =
n

τ
δϕ1(t)A1 +

n

τ
δϕ2(t)A2 . (4.6)

with the fluctuating fields δϕj(t) = δϕjm for t ∈ [ τn (m − 1), τnm). We note that in

the simple case 1 the structure of the effective Hamiltonian is the same as the original

one, except that the interactions strengths fluctuate in time. We also note that the

contributions from the errors scale linearly with n, i.e., they become larger when the

Trotterization is based on more, finer steps. Thus, as noted in Ref. [70], the gain from a

finer Trotterization is limited. On the other hand, we note that the corrections are still

small compared to the largest energy scale of the original Hamiltonian, n
τ |δϕj(t)| ≤ g.

Case 2: The situation is more complex if an interaction, e.g., A1, cannot be im-

plemented directly by gates available on the hardware-level of the quantum simulator,

and a decomposition involving additional two-qubit gates is required. They are also

subject to errors due to over-rotations. An example could be a chain of qubits with

only nearest-neighbor XX-couplings. To simulate a Hamiltonian with XX interactions

between next-nearest neighbors one needs to introduce, e.g., SWAP gates before and after

the available nearest-neighbor XX interaction. Other examples for this scenario are

simulations of d-dimensional systems by a simulator with a d− 1-dimensional geometry.

Still another example, which we will encounter below, are long-range terms arising due

to the Jordan-Wigner transformation.

Let us assume that a Trotter step with interaction A1 is decomposed as

e−i gτn A1 = eiϕCe−i gτn B1eiϕ′C′ , (4.7)

where B1 and C(′) can be implemented on the hardware level. Sometimes, this describes

a unitary transformation where eiϕC and eiϕ′C′ are inverse operators. This case is
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relatively simple, and we return to it below. For the moment we consider the general

case where the two transformations are independent of each other. Again we choose

||B1|| = ||C(′)|| = 1. Note, that the angles ϕ(′) are typically of order O(1), i.e., much

larger than gτ
n . It is more difficult to treat gate errors now, since commutators between

exponentials with exponents of order O(δϕ) of the gate errors and exponential with

exponents of order O(1) have to be taken into account.

To calculate these commutators, we use the relation

eXeY e−X = eeXY e−X = eAdeX (Y ), (4.8)

where for later convenience we introduced the notation AdeX (Y ) = eXY e−X for the

adjoint representation. It follows that

eXeY = eAdeX (Y )eX ,

eY eX = eXeAde−X (Y ) . (4.9)

Errors due to over-rotations, δϕ, δϕ1, δϕ
′, in the gate (4.7) will enter in each of the three

exponents. To evaluate their effects we use the above relations to commute the errors

out of the original gate decomposition and arrive at

eiϕCe−i gτn B1eiϕ′C′

7→ ei(ϕ+δϕ)Ce−i( gτn +δϕ1)B1ei(ϕ′+δϕ′)C′

= eiδϕCeiϕCe−iδϕ1B1e−i gτn B1eiϕ′C′eiδϕ′C′

= eiδϕCeAd
eiϕC

(−iδϕ1B1) eiϕCe−i gτn B1eiϕ′C′

︸ ︷︷ ︸
=e−i

gτ
n
A1

eiδϕ′C′

= e−i gτn A1eiδϕCeiδϕ′C′e−iδϕ1Ad
eiϕC

(B1) +O
((gτ

n

)2)
. (4.10)

All the exponents are now of order O( gτn ) such that commuting the exponentials con-

tributes negligible errors of order O(( gτn )2). Hence, we can proceed with the Trotter

expansion (4.2) and find the effective time-dependent Hamiltonian H + δH(t) that is

simulated with

δH(t) = −n
τ
δϕ(t)C − n

τ
δϕ′(t)C ′ +

n

τ
δϕ1(t)AdeiϕC (B1). (4.11)

The presented scheme can be applied iteratively for higher stage gate decompositions.

Therefore, it is a scalable approach where algorithms can be analyzed piecewise.

The non-trivial addition AdeiϕC (B1) = eiϕCB1e−iϕC as compared to Case 1 can

be evaluated by using Hadamard’s lemma (related to the Baker-Campbell-Hausdorff

formula):

eXY e−X = Y + [X,Y ] +
1

2
[X, [X,Y ]] +

1

3!
[X, [X, [X,Y ]]] + . . . (4.12)
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However, since in the Trotter expansion we commute quantum gates, the exponen-

tials often have simple representations in terms of Pauli matrices. Hence, the product

eiϕCB1e−iϕC can be calculated by expressing e±iϕC and B1 in terms of Pauli matrices.

This is evident for B1, since it describes an interaction between qubits, but also for eiϕC ,

which might be a quantum gate like CNOT, (i)SWAP, CZ, and so forth.

In the cases where the unitary transformation eiϕC and eiϕ′C′ in eq. (4.7) are inverse

operators we simply have AdeiϕC (B1) = eiϕCB1e−iϕC = A1, and the disorder term in

eq. (4.11) simplifies accordingly.

We have now established our method to treat gate errors in a digital quantum sim-

ulation. In order to render the description less abstract we will apply it in the next

section to an example algorithm. We will explicitly show the structure of δH that is

generated by the different parts of the algorithm.

4.2 Example system: Fermi-Hubbard model

4.2.1 Fermi-Hubbard model with spin-flip interaction

We will investigate now in detail the Fermi-Hubbard model including spin-flip interaction

for a small system consisting only of two degenerate sites. This minimal model already

allows us to illustrate several of the important issues. The Hamiltonian is

H = U

2∑

j=1

c†j↑cj↑c
†
j↓cj↓ − t1

∑

s=↑,↓
(c†1sc2s + c†2sc1s)− t2

2∑

j=1

(c†j↑cj↓ + c†j↓cj↑) , (4.13)

where c
(†)
j,s stands for the fermionic annihilation (creation) operator of site j with spin s.

The on-site interaction energy is U , the hopping amplitude between the sites is t1, and

spin-flips on each site occur with amplitude t2. To perform the simulation we map the

fermionic system on a system of spins/qubits via the Jordan-Wigner transformation.

Because of the spin-flip interaction in addition to the hopping this mapping is non-

trivial even for the small (one-dimensional) system considered, i.e., non-local terms as

discussed in Sec. 2.1.1 will occur in the qubit system.

We first relabel the fermionic operators,

c1 = c1↑, c2 = c2↑, c3 = c2↓, c4 = c1↓, (4.14)

such that we can map them on Pauli matrices σx,y,z and the ladder operators σ± =
1
2 (σx ± iσy) via the Jordan-Wigner transformation

cj =

j−1∏

k=1

(−σzk)σ−j , (4.15)
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U U

t1

t1

t2 t′2

Figure 4.2: One Trotter step of an algorithm simulating the time evolution under the Hamiltonian (4.16).
The horizontal lines represent the qubits and the boxes the gates of the algorithm. A qubit line connected
to a gate is an in-/output of that gate. If a line is interrupted at a gate the corresponding qubit is
not influenced by that gate. The two-qubit U gates implement the on-site interaction, the t1 gates the
hopping terms, the t2 gate a part of the spin-flip interactions. The four-qubit gate t′2 accounts for the
non-local term which arises due to the Jordan-Wigner transformation.

as introduced in Sec.2.1.1. The Hamiltonian thus becomes

H = U(σ+
1 σ
−
1 σ

+
4 σ
−
4 + σ+

2 σ
−
2 σ

+
3 σ
−
3 )

− t1
(
(σ+

1 σ
−
2 + σ−1 σ

+
2 ) + (σ+

3 σ
−
4 + σ−3 σ

+
4 )
)

− t2
(
(σ+

2 σ
−
3 + σ−2 σ

+
3 ) + (σ+

1 σ
z
2σ

z
3σ
−
4 + σ−1 σ

z
2σ

z
3σ

+
4 )
)
. (4.16)

We mentioned already in Sec. 2.1.1, that there exist alternative mappings between

fermions and spins, e.g., the Bravyi-Kitaev transformation. In detail the effects of

gate errors will depend on the transformation used and – as we show below – on aspects

of the specific algorithm used. Here we have chosen the Jordan-Wigner transformation

as it leads to an intuitive interpretation of the results. In addition it is known that

algorithms based on the Jordan-Wigner mapping are very efficient for Hubbard-type

models [113]. Note that, similar to Chap. 3, because σ+
j σ
−
j = 1

2 (σzj + 1), the on-site

terms are effectively a ZZ interaction, and within the rotating wave approximation the

terms σ+
j σ
−
k + σ+

k σ
−
j are equivalent to an XX interaction.

We consider the situation where the hardware allows for XX and ZZ interactions

between each pair of qubits (note that the two are related to each other via single-qubit

gates, which we assume to be error free). In this case every term in H can be realized

by a two-qubit gate, except for the non-local terms −t2σ±1 σz2σz3σ∓4 . They contain a

residual Jordan-Wigner string and arise in the considered model as a consequence of the

Jordan-Wigner transformation. The terms are labeled in the following as t′2 gate. They

need to be decomposed into multiple two-qubit gates.

4.2.2 Algorithm and effects of gate errors

We implement the time evolution of the Hamiltonian (4.16) by a Trotter expansion,

where the gates needed for one Trotter step are depicted in Fig. 4.2. It involves two-

qubit gates labeled U, which account for the on-site interaction, two-qubit gates labeled
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t1 for the hopping terms, and a two-qubit gate t2 which implements the first part of

the spin-flip interaction. The non-local terms of the spin-flip interaction introduced by

the Jordan-Wigner string are represented by a four-qubit gate t′2. We now will use the

method laid out in Sec. 4.1.2 to analyze the effects of gate errors in the various parts of

this algorithm and also propose an explicit decomposition of the four-qubit gate.

U gates. The first U gate in Fig. 4.2 has the representation

U1,4 = e−iU τ
nσ

+
1 σ
−
1 σ

+
4 σ
−
4 , (4.17)

where the indices indicate that the interaction occurs between qubit one and four. The

effect of over-rotations is covered by Case 1 of Sec. 4.1.2, leading to

U1,4 7→ e−i(U τ
n+δϕU1,4)σ+

1 σ
−
1 σ

+
4 σ
−
4 ,

i.e., the Hamiltonian that will actually be simulated in the presence of over-rotation is

H 7→ H +
n

τ
δϕU1,4(t)σ+

1 σ
−
1 σ

+
4 σ
−
4

= H +
n

τ
δϕU1,4(t)c†1c1c

†
4c4, (4.18)

and likewise for the second gate U2,3. Hence, δH(t) has the same structure as the original

Hamiltonian but with a fluctuating strength of the on-site interactions.

t1 and t2 gates. The t1 and t2 gates of the algorithm in Fig. 4.2 apply similar

exchange interactions. We label them by t1,2, t3,4, and t2,3, where the first two have

amplitude t1 while the third has amplitude t2. For instance we have

t1,2 = eit1
τ
n (σ+

1 σ
−
2 +σ−1 σ

+
2 ). (4.19)

Again, errors in these gates are described by Case 1 of Sec. 4.1.2, i.e., they lead to

contributions of the form

H 7→ H − n

τ
δϕt11,2(t)(σ+

1 σ
−
2 + σ−1 σ

+
2 )

= H − n

τ
δϕt11,2(t)(c†1c2 + c†2c1), (4.20)

and likewise for the hopping gate t3,4 and the spin-flip gate t2,3. Again δH(t) has

the same structure as the original Hamiltonian but with a fluctuating strength of the

hopping and spin-flip terms.

t′2 gate. We assume that the hardware allows performing two-qubit ZZ and XX gates.

But because of the Jordan-Wigner strings the t′2 gate involves four different spins, an

interaction which is usually not contained on the hardware level. Accordingly, this gate

has to be decomposed into further gates, i.e., it falls into the scope of Case 2 of Sec. 4.1.2.
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t′2 =

Z Z

t2

Z Z

Figure 4.3: The four-qubit gate t′2 can be decomposed into a two-qubit t2 gate and additional CZs
accounting for the Jordan-Wigner string.

Z Z

t2 δt2

Z Z

=

Z Z

t2

Z Z Z Z

δt2

Z Z

Figure 4.4: The gate t2 gate and the error δt2 are analyzed by writing the identity as a string of virtual
CZ gates.

One possible decomposition is shown in Fig. 4.3. A central t2 gate is performed involving

qubits one and four, while the Jordan-Wigner string σz2σ
z
3 is implemented by strings of

controlled Z (CZ) gates. This can be understood as follows: The Jordan-Wigner strings

introduce a sign change to the σ+
1 σ
−
4 + σ+

4 σ
−
1 interaction for every qubit between one

and four that is excited (see Eq. (4.15), this encodes the fermionic parity). The action

of σz on qubit four via the CZs with control on qubits two and three does exactly that;

for every excited qubit we get a product σz4σ
±
4 σ

z
4 = −σ±4 , hence, a minus sign in the

interaction term.

A CZ gate between the control qubit j and the target qubit k has the form CZj,k =

eiπσ+
j σ
−
j σ
−
k σ

+
k . The CZ gates are diagonal and commute among each other. I.e., exponen-

tials arising due to over-rotations are trivially shifted to the left and right of the original

gate composition. Hence, errors in the CZ gates contribute to the simulated Hamiltonian

terms of the form

H 7→ H − n

τ
δϕCZ

j,k(t)σ+
j σ
−
j σ
−
k σ

+
k

= H − n

τ
δϕCZ

j,k(t)c†jcjckc
†
k. , (4.21)

i.e., they introduce additional interaction terms beyond the original on-site interaction.

Errors in the t2 interaction do not commute with the surrounding CZ gates, however.
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Figure 4.5: Instead of using CZ chains between far separated qubits for implementing the Jordan-Wigner
string, one can use chains of CNOTs between nearest neighbors.

They require a more complicated analysis based on Eq. (4.10) with an evaluation of the

adjoint. Here, instead of two embracing gates eiϕ(′)C(′)
we have four, namely the CZ gates

in Fig. 4.3. Therefore, Eq. (4.10) would have to be applied twice. On the other hand,

in the present case there exists an easier approach to this iterative process: We label

the gate errors δt2 and use the fact that (CZj,k)2 = 1 to introduce additional (virtual)

gates, depicted in Fig. 4.4. The figure illustrates that for the t2 as well as for the

δt2 gate (compare to Fig. 4.3) the implementation of the Jordan-Wigner strings is the

same. Accordingly, both are transformed in the same way by the inverse Jordan-Wigner

transformation. Hence, the Hamiltonian effectively simulated is

H 7→ H − n

τ
δϕt21,4(t)(σ+

1 σ
z
2σ

z
3σ
−
4 + σ−1 σ

z
2σ

z
3σ

+
4 )

= H − n

τ
δϕt21,4(t)(c†1c4 + c†4c1). (4.22)

Adding up the various contributions discussed in this subsection, we find that due

to the effect of over-rotations we effectively simulate a disordered Hamiltonian with

fluctuating hopping and spin-flip terms and strength of the on-site interaction, and in

addition fluctuating interactions between different sites.

4.2.3 Scaling up to larger systems

In this subsection, we comment on the issue that emerges when scaling up the model

system to more sites. A potential drawback of the implementation of Jordan-Wigner

strings by CZ gates (see Fig. 4.3) are interactions between qubits that are far apart in

the circuit. In devices where, e.g., qubits are arranged in chains with nearest-neighbor

interaction only, this may become tedious.

Jordan-Wigner strings using CNOTs. One possible solution is to employ instead of

CZs the gates CNOT, as depicted in Fig. 4.5. A CNOT with control and target qubit j and

k has the form

CNOTj,k = σ+
j σ
−
j σ

x
k + σ−j σ

+
j = eiπ2 σ

+
j σ
−
j (1−σxk). (4.23)

When using CNOT gates we encounter the following problems:
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. . .

. . .

1
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3

m−1

m

...
...

Figure 4.6: A chain of CNOT gates in an array of m qubits, as it appears in Fig. 4.5.

(1) In a circuit with ZZ and XX interaction the CNOT requires an XZ-type mixture

of these interactions. This can be achieved by adding extra single-qubit gates, which

are assumed to have a negligible error (see the example in Sec. 2.3.1).

(2) Unlike CZ gates, the CNOT gates do not commute among each other. Consider a

chain of CNOTs in an array of m qubits as depicted in Fig. 4.6. We allow for an over-

rotation δϕ in the rightmost gate, which we would like to commute to the far left. This

requires an analysis as discussed in Case 2 of Sec. 4.1.2. We commute the error gate by

gate using Eq. (4.9). The first step yields the exponent

AdCNOTm−2,m−1(iδϕσ+
m−1σ

−
m−1(1− σxm))

= iδϕ(1− σxm)AdCNOTm−2,m−1
(σ+
m−1σ

−
m−1)

= iδϕ(1− σxm)(σ+
m−1σ

−
m−1 − σ+

m−2σ
−
m−2)2 . (4.24)

Here, we calculated the adjoint AdA(B) = ABA−1 by writing the CNOT gate in terms

of Pauli operators (see Eq. (4.23), left representation), and evaluating the products of

Pauli matrices. Commuting the result one gate further gives a term

AdCNOTm−3,m−2((σ+
m−1σ

−
m−1 − σ+

m−2σ
−
m−2)2)

= (σ+
m−1σ

−
m−1 −AdCNOTm−3,m−2

(σ+
m−2σ

−
m−2))2

=
(
σ+
m−1σ

−
m−1 − (σ+

m−2σ
−
m−2 − σ+

m−3σ
−
m−3)2

)2
. (4.25)

We can iteratively continue this process until we commuted the error to the far left. On

the Hamiltonian level this procedure leads to the extra contribution

δH(t) =
n

τ
δϕ(t)(1− σxm)Σ±m−1, (4.26)

with the nested operator Σ±m−1 defined via Σ±1 = σ+
1 σ
−
1 and Σ±k = (σ+

k σ
−
k − Σ±k−1)2

(for integers k ≥ 2). Thus, we succeeded analyzing errors due to over-rotations in

Jordan-Wigner strings by using CNOT gates and writing down the spin Hamiltonian that

is simulated in the presence of gate errors. However, we still are left with a 3rd problem,

namely:
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Figure 4.7: If the interaction of a CZ cannot be applied directly between two qubits that are far apart
on the hardware, one can use chains of ±iSWAPs to circumvent the problem.
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Figure 4.8: A chain of iSWAP gates in an array of m qubits, as it appears in Fig. 4.7.

(3) To interpret the result we should transform back into a fermionic representa-

tion. We apply the inverse Jordan-Wigner transformation σ+
m =

∏m−1
k=1 (2c†kck − 1)cm

to Eq. (4.26) using σxm = σ+
m + σ−m and σ+

j σ
−
j = c†jcj . This leads to a product of

many fermionic operators in the effective Hamiltonian, i.e., it introduces effective many-

particle interactions involving many sites. On top of it, we find terms containing an odd

number of fermionic operators and therefore – unlike the original Hubbard model – vi-

olating particle number conservation. This can be seen from Eq. (4.26): Σ±m−1 contains

operator products σ+
j σ
−
j = c†jcj , which conserve the number of excitations, but also the

operator σxm = σ+
m + σ−m that breaks particle number conservation.

Because of this problem we proceed with an alternative modeling of the CZ gates

between distant qubits.

iSWAP chains. An alternative way to deal with a CZ gate where control and target are

far apart, is to insert ±iSWAPs as displayed in Fig. 4.7. An iSWAP between qubits j and

k can be written as

iSWAPj,k = σ+
j σ
−
j σ

+
k σ
−
k + σ−j σ

+
j σ
−
k σ

+
k + i(σ+

j σ
−
k + σ−j σ

+
k )

= eiπ2 (σ+
j σ
−
k +σ−j σ

+
k ). (4.27)

Errors due to over-rotations appear in each gate. The contribution to the Hamiltonian

from errors in the central CZ gate is not modified due to the chain of ±iSWAPs. This can
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be seen by introducing additional ±iSWAPs between the CZ gate and its errors, in analogy

to the discussion presented above and illustrated in Fig. 4.4. Novel contributions arise

due to over-rotations in the iSWAPs. Similar to the case of CNOT chains we consider a

chain of iSWAPs as shown in Fig. 4.8. We allow for an over-rotation δϕ in the rightmost

gate and, following the prescription explained in Sec. 4.1.2 (Case 2) commute it to the far

left. Again, we commute the error gate by gate using Eq. (4.9). The first commutation

yields

AdiSWAPm−2,m−1(iδϕ(σ+
m−1σ

−
m + σ−m−1σ

+
m)) = i

(
σ+
m(−σzm−1)σ−m−2 − σ−m(−σzm−1)σ+

m−2

)
.

(4.28)

Proceeding iteratively until the error is shifted to the far left, one obtains the effective

contribution to the simulated Hamiltonian,

δH(t) =
n

τ
δϕ(t) im−2

(
σ+
m

m−1∏

k=2

(−σzk)σ−1 + (−1)m−2σ−m

m−1∏

k=2

(−σzk)σ+
1

)
. (4.29)

While this looks like a complicated product of many operators, one finds after trans-

forming it back to fermionic representation,

σ+
m

m−1∏

k=2

(−σzk)σ−1 + (−1)m−2σ−m

m−1∏

k=2

(−σzk)σ+
1 = c†mc1 + (−1)m−2c†1cm, (4.30)

i.e., the gate errors contribute hopping terms of the form δtjkc
†
jck to the effective Hamil-

tonian. Analogous results follow for the chain of -iSWAP gates when reversing the swap

operations. This means that in the case of faulty iSWAPs we again introduce disorder to

the simulated Hamiltonian. However, generalizing the original Hamiltonian, the errors

introduce hopping terms between every pair (j, k).

In summary: Errors occurring while performing the U, t1 or t2 gates introduce

disorder terms that are of the same form as the interaction, hopping or spin-flip terms

which were already contained in the Hamiltonian, except that they introduce further

interactions and transitions between the fermionic levels. Hence, the physical meaning

was clear; we effectively simulate a disordered system. In the algorithm required to

handle the Jordan-Wigner strings based on CNOT gates, over-rotation errors take us out

of the scope of the unperturbed Hamiltonian and even introduce unphysical features such

as violating the particle number conservation. A remedy is to handle the Jordan-Wigner

strings using ±iSWAPs, which leads to a Hamiltonian consistent with conservation laws,

but the price is that a much larger number of gates are needed, which may introduce

quantitatively larger errors.
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Figure 4.9: In the left panel a part of the Fourier spectrum 〈n1(ω)〉 is shown, where the green sharp
peak is calculated with the ideal Hamiltonian H (and artificially broadened, see main text). The orange
line is the calculation using the algorithm with gate errors by over-rotation, where we chose a large
variance Var(δϕ) = 1

2
gτ
n

for the statistical gate errors. Under the orange line is a slightly deviating
blue line representing the time evolution using the effective Hamiltonian H + δH(t). In the right panel
the difference ∆〈n1(ω)〉 between faulty algorithm and effective Hamiltonian calculation is shown on a
much finer scale.

4.3 Numerical analysis

4.3.1 Verification of the method

The minimal model we have chosen is also suitable for a numerical analysis. For this

purpose we choose in the Hamiltonian (4.16) the following parameters: U = t1 = t2 = g

and evaluate the time evolution of the initial state chosen as |ψ(t=0)〉 = c†2c
†
1|0〉, where

|0〉 is the vacuum state, up to the time τ = 1000/g. We evaluate the probability of level

1 being occupied, 〈n1(t)〉 = 〈c†1(t)c1(t)〉, and its Fourier transform 〈n1(ω)〉. The time

evolution is calculated in several ways:

(1) We use a Trotter expansion according to the algorithm depicted in Fig. 4.2,

with the t′2 decomposition using CZ gates depicted in Fig. 4.3. We Trotterize the time

evolution with a fine step size gτ
n = 0.05. After each Trotter step we evaluate 〈n1(t)〉,

such that every step defines a time slice. In each step we allow for each gate random

over-rotations that are normally distributed with zero mean and given values of the

variance.

(2) We use the effective disordered Hamiltonian H+δH, with H from Eq. (4.16) and

the disorder terms δH(t) derived in Sec. 4.2.2. We take the same time slices as in (1),

and also the time-dependent disorder is chosen in accordance with the over-rotations in

the respective Trotter steps.

(3) For comparison we also calculate numerically exact the discretized time evolution

under the error-free Hamiltonian H.

In Fig. 4.9 we plot the result for a single run of the time evolution, where the

random gate errors have a variance Var(δϕ) = 1
2
gτ
n . On the left, a part of the Fourier

spectrum 〈n1(ω)〉 is shown. The green sharp peak corresponds to the ideal time evolution

without errors. In this case the peak is artificially broadened; 〈n1(t)〉 is calculated and

multiplied by a Gaussian window function to ensure better convergence of the applied
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Figure 4.10: The Fourier spectrum 〈n1(ω)〉 averaged over many runs of the calculation with different
realizations of the random gate errors. The variance of the over-rotations Var(δϕ) differs in the four
plots. The green curves are the spectrum for the ideal case with artificial broadening (see text), the
orange ones show the results of the faulty algorithms. In this case, calculations based on the effective
disordered Hamiltonian yield indistinguishable results. We find a broadening of the spectrum which
scales with the strength of the over-rotations, corresponding to a system with disorder.

fast Fourier transform. The orange curve shows the distorted spectrum based on the

Trotter expansion with gate errors. It strongly deviates from the ideal result since we

have chosen a rather high variance of the gate errors. The orange line lies nearly on

top of a blue line which represents the result following from the effective disordered

Hamiltonian H + δH(t). The small difference ∆〈n1(ω)〉 between faulty algorithm and

effective Hamiltonian with disorder is depicted on the right panel (note the difference in

the scale). The comparison shows the equivalence of the faulty gates and the description

by an effective disordered Hamiltonian.

While for the considered strong gate errors we find a strongly fluctuating distorted

result for a single run, averaging over many runs with different random over-rotations

produces smoother results. Fig. 4.10 shows the averaged result 〈n1(ω)〉 for different

variances of the normally distributed errors. We averaged over 1000 runs to garantee

for a smooth curve even for larger error variances. In green we depict again the ideal

(artificially broadened) spectrum, in orange the result of the Trotterization with gate

errors. After averaging, the description by the effective disordered Hamiltonian and

by the Trotterization yield numerically indistinguishable results. As one could expect,

errors lead to a broadening of the ideal spectrum which grows with the error variance.
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The numerical analysis showed that strong statistically distributed over-rotations in

the algorithm lead to a very distorted spectrum for individual runs, but averaging over

many runs yields a spectrum with features equivalent to broadening by disorder. Overall

we find that gate errors in the algorithm due to over-rotations are well described by an

effective Hamiltonian with disorder as derived in Sec. 4.1.2 even for large gate errors.

4.3.2 Comparison of different implementations

We continue with the same model system as in the previous subsection and investigate

now how gate errors in the different implementations of the Jordan-Wigner string dis-

cussed in Sec. 4.2.3, based either on CNOTs or on CZs with iSWAPs, influence the results.

As discussed above we are prepared to discover different physics. We also vary the

Trotter step size, as the effective disorder δH grows linearly with the number of Trotter

steps (see Eqs. (4.6), (4.11), and Sec. 4.2).

Specifically we evaluate the spatial variance of excitations, 〈σ2(t)〉, with

σ2 =

4∑

j=1

r2
j ñj −

( 4∑

j=1

rj ñj

)2

, (4.31)

where ñj = c†jcj/(
∑4
k=1 c

†
kck). The normalization is needed since for one of the algo-

rithms the particle number is not conserved. We chose r1 = 0, r2 = r4 = 1, and r3 = 2.3

The spatial variance tells us how far excitations in the system are spread out, and thus

provides information about charge diffusion [114, 115].

The time evolution under the Hamiltonian (4.16) is simulated with parameters as

chosen before U = t1 = t2 = g, but for the initial state |ψ(t = 0)〉 = c†1|0〉. We

plot 〈σ2(t)〉 over t/g, i.e., the averaged result over many runs with random gate errors

(normally distributed with zero mean). In this simulation, the errors are chosen to be

quasi-static, i.e., for each run and gate a random over-rotation is chosen which does

not vary for the different Trotter time steps, but different runs have different errors.

Quasi-static errors are a valid noise model, e.g., for superconducting qubits where the

noise spectrum is dominated by low frequencies [116]. The variance of the over-rotations

Var(δϕ) and the Trotter step size gτ
n are parameters to be varied.

Fig. 4.11 shows the results. The dashed green line shows the error-free analytic result,

where an excitation spreads across the system but then oscillates back due to the finite

system size. The orange line represents a faulty algorithm using CZ and iSWAP gates for

the Jordan-Wigner string (see Sec. 4.2.3). The induced disorder leads to a damping of

the oscillation after averaging, i.e., it induces decoherence. The blue line displays the

result of a faulty algorithm using CNOT gates for modeling the Jordan-Wigner string (see

Sec. 4.2.3). As expected from the discussion in Sec. 4.2.3, in this algorithm the over-

rotations lead to physics which differs from that produced by other algorithms. While

3Note that this choice for ri represents the minimal number of hoppings to get an excitation from
orbital 1 to orbital i. Applied to the minimal Hubbard model (with spin) discussed earlier one might
choose the site locations r1 = r4 = 0, r2 = r3 = 1. The qualitative conclusions remain unchanged.
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Figure 4.11: Simulation of the time evolution of the averaged spatial variance 〈σ2(t)〉 (see main text)
using different algorithms with random quasi-static gate errors. The Trotter step size gτ

n
and the

variance of the over-rotations Var(δϕ) differ for each plot. The green line shows the ideal analytic
result. The orange line represents a faulty algorithm using CZ and iSWAP gates for the Jordan-Wigner
string. The blue line displays the result using CNOT gates for the Jordan-Wigner string. One can see
how gate errors occuring in different algorithms lead to different physics, and how the influence of gate
errors increases for shorter Trotter step size.
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we find damping in all cases, the lines converge towards different values.4 The difference

arises since the implementation based on CNOTs violates particle number conservation,

and the system makes a transition from having a single excitation towards half filling.

Responsible for this transition are errors which randomly excite or relax qubits and reach

equilibrium at half filling (similar to classical noise leading to infinite temperature).

The results of this subsection illustrate how the choice of algorithm may affect the

results of a digital quantum simulation. Another aspect illustrated in Fig. 4.11 is the

fact that under the influence of gate errors it is – up to a certain point – advantageous

to reduce the number of Trotter steps and thus of the gate numbers. The disorder of

the effectively simulated Hamiltonian scales with their number (see Eqs. (4.6), (4.11),

and Sec. 4.2). On the other hand, a coarse Trotterization leads to a large error from

the Trotter expansion. Hence, there is an optimal number of Trotter steps to minimize

the simulation error [70]. One should keep in mind that a finer Trotterization requires

higher gate fidelities.

4.4 Gate fidelity and adiabatic state preparation

We extend the analysis of the above section with two remarks: One about the relation

between gate fidelities and errors arising in the numerical simulations, the other about

adiabatic state preparation [117] under the influence of disorder. In order to do this,

let us first introduce the concept of gate fidelities and show their relation with over-

rotations.

4.4.1 Fidelity of over-rotated gates

Before we derive the relation between the minimal gate fidelity Fmin of faulty gate due

to an over-rotation and the angle of over-rotation δϕ, we first give a precise definition

how we model an over-rotated gate. The gate is denoted by the unitary operator

U(ϕ) = eiϕA, (4.32)

where A is a Hermitian operator with a finite spectrum consisting of the eigenvalues

λ1, . . . , λd, where |λj | ≤ 1, λ1 = 1, and λn = −1. Note, that this is the case if A is a

product of Pauli operators. In general, every finite Hermitian operator can be cast into

this form through rescaling and shifting by constants. The faulty gate is represented

by U(ϕ+ δϕ), with an over-rotation angle δϕ. Also the faulty gate error is therefore a

unitary transformation.

Next, let us introduce fidelities: Consider two quantum states, denoted ψ and φ. In

general they can be mixed states and characterized by their density matrices ρψ and ρφ,

4Note that the apparent different strength of the damping is due to a different total number of
gates in the algorithm. Fewer gates result in fewer disorder terms in the effective Hamiltonian. This
discrepancy disappears if one scales for the number of gates accordingly.
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respectively. The fidelity Fψ,φ between the two states is defined as

Fψ,φ = Tr

(√√
ρψρφ

√
ρψ

)
, (4.33)

where Tr(·) denotes the trace, and
√
ρψ is an operator such that

√
ρψ

2 = ρψ (which

exists for density matrices, since they are positive semi-definite). Note, that this follows

the notation of Nielsen and Chuang [63] and that often the square of Fψ,φ is called

fidelity. The fidelity is also symmetrical with respect to interchanging ψ and φ, which is

not obvious. The fidelity is an abstract, but widely used measure (with values between

zero and one) to identify how close two quantum states are, where the fidelity is zero for

orthogonal states, and one for identical states. We will now proceed with the definition

of the gate fidelity.

With a unitary error model it is sufficient to regard pure states as input states. The

fidelity between two pure states |ψ〉 and |φ〉, i.e., with ρψ = |ψ〉〈ψ| and ρφ = |φ〉〈φ|,
is given by their overlap |〈ψ|φ〉|. This can be seen be using

√
|ψ〉〈ψ| = |ψ〉〈ψ| for

normalized states. Given an input state |ψ0〉, the application of the gate would ideally

yield the final state U(ϕ)|ψ0〉 whereas the application of the over-rotated gate yields

U(ϕ+ δϕ)|ψ0〉. The minimal gate fidelity Fmin is given by the overlap of the ideal and

faulty final state, minimized over all input states, hence:

Fmin = min
|ψ0〉
|〈ψ0|U†(ϕ)U(ϕ+ δϕ)|ψ0〉|

= min
|ψ0〉
|〈ψ0|eiδϕA|ψ0〉|. (4.34)

Note, that this is again consistent with the definition of Nielsen and Chuang [63] and

that often the square of Fmin is called minimal gate fidelity.

We investigate the quantity to be minimized: One can diagonalize the Hermitian

matrix A = diag(λ1, . . . , λd) and find its eigenbasis {|λ1〉, . . . , |λd〉}. By writing |ψ0〉 =∑d
j=1 aj |λj〉 with

∑d
j=1 |aj |2 = 1 results in

|〈ψ0|eiδϕA|ψ0〉| = |
d∑

j=1

|aj |2eiδϕλj |. (4.35)

Making use of the fact that the absolute value of a complex number is smaller than the

magnitude of its real part for the expression eiδϕλj = cos(δϕλj) + i sin(δϕλj), we arrive

at

|〈ψ0|eiδϕA|ψ0〉| ≥ |
d∑

j=1

|aj |2 cos(δϕλj)|. (4.36)

It is reasonable to restrict |δϕ| ≤ π/2, since an over-rotation as a gate error should be
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small. As |λj | ≤ 1 it follows that cos(δϕλj) ≥ cos(δϕ) ≥ 0, therefore

|〈ψ0|eiδϕA|ψ0〉| ≥ cos(δϕ)

d∑

j=1

|aj |2 = cos(δϕ). (4.37)

This establishes a lower bound of Fmin ≥ cos(δϕ). For the special state

|ψmin〉 =
1√
2

(|λ1〉+ |λd〉) (4.38)

we indeed find

|〈ψmin|eiδϕA|ψmin〉| = cos(δϕ), (4.39)

since λ1 = 1 and λd = −1. Hence, the lower bound is actually tight and we obtain

Fmin = cos(δϕ). (4.40)

This concludes our derivation. Note, that the magnitude of the over-rotation |δϕ| =
arccos(Fmin) is in fact a metric, namely the Bures metric (resp. the Fubini-Study metric).

In an experiment δϕ is not fixed but rather a statistical variable. In this case it is

sensible to consider the average minimal gate fidelity Fmin, i.e., the expectation value

of Fmin for a given distribution of δϕ. For small δϕ one can expand Eq. (4.40), Fmin ≈
1− δϕ2

2 , such that for a normally distributed δϕ with zero mean and variance Var(δϕ)

we find Fmin = 1− Var(δϕ)2

2 .

4.4.2 Error size in the numerics

With the technicalities covered above, we study how large the errors assumed in the

numerics of Sec. 4.3 are in terms of gate fidelities in order to estimate the applicability

in actual experiments.

We have chosen the gate error strength to be independent of the Trotter step length.

This covers, e.g., the case when the errors mostly arise from switching the control pulses.

In addition, gate errors may increase with step length, e.g., if errors accumulate over

time during the activation of a gate. These details depend on the actual hardware used

in the experiment and what we described above represents an important limit. As a

result of our assumption that the gate errors do not scale with the step size, the error-

induced disorder scales linearly with n (see Eqs. (4.6), (4.11), and Sec. 4.2). Note, that

this result is independent of the time dependence of the over-rotations δϕ(t), and hence

of the time dependence of the disorder. Random gate errors with zero mean in the

Trotter steps influence the simulation less severely than static errors.

Regardless of the error type, the gate errors have to be compared with errors arising

from a non-vanishing Trotter step length. In our numerical simulations, the variance of

the over-rotations Var(δϕ) was usually chosen to be comparable to the Trotter step size
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Figure 4.12: The left panel shows the over-rotation magnitude |δϕ| plotted over the minimal gate fidelity

Fmin of a faulty gate. The steep slope of |δϕ| = arccos(Fmin) ≈
√

2(1−Fmin) as Fmin approaches one
requires gate fidelities to be very close to unity for the disorder in the effectively simulated Hamiltonian
to be sufficiently low (the disorder strength scales linearly with |δϕ|). The right plot shows the total
number of faulty gates Ngn that can be run for a given average minimal gate fidelity Fmin according
to Eq. (4.42). Ng is the number of faulty gates per Trotter step and n the number of Trotter steps.

gτ
n , i.e., rather large. But as we chose a small step size to ensure the Trotter expansion

to be valid, the resulting requirements on the gate fidelities are in fact rather high.

The strength of over-rotation is related to the minimal gate fidelity Fmin. This was

carefully derived in Sec. 4.4.1, but we can also make the connection more intuitive. As

argued before, the application of a gate can be seen as a rotation of the state vector.

In the worst case, a state vector orthogonal to the axis of rotation is over-rotated by

an angle δϕ. In this case, the absolute value of the inner product between ideal state

vector and over-rotated state after the application of the gate is cos(δϕ) (state vectors

have unit norm). Hence, the magnitude of over-rotation and the minimum gate fidelity

are related by |δϕ| = arccos(Fmin). In our error analysis the value |δϕ| is the more

useful measure for gate errors,5 since it linearly contributes to the strength of disorder

in the effectively simulated Hamiltonian, and it has to be compared with the Trotter

step size gτ
n . In contrast, for the minimal gate fidelity Fmin the question is how close

it is to 100 %. For illustration we plot the relation between both in Fig. 4.12: It holds

that |δϕ| = arccos(Fmin) ≈
√

2(1−Fmin) for Fmin ≈ 1. The diverging slope requires

Fmin to get increasingly close to one to further reduce the disorder strength of the

effective Hamiltonian. In the numerical results of Sec. 4.3.1 and Sec. 4.3.2 we used, e.g.,

Var(δϕ) = 0.025 and Var(δϕ) = 0.0125, which corresponds to an averaged minimal gate

fidelity Fmin of 99.969 % and 99.992 %, better than the values reached by present-day

devices [34, 35, 38].

Averaging over the errors δϕ with a normal distribution and zero mean we find

Var(δϕ) =

√
2(1−Fmin), (4.41)

where Fmin denotes the averaged minimal gate fidelity. With this we can derive an

estimate for the maximum number of Trotter steps for a given algorithm and gate

5As stated already in the above, the absolute value |δϕ| is in fact a metric called the Bures metric.
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fidelity: As mentioned above (see Eqs. (4.6), (4.11), and Sec. 4.2), the disorder terms in

the Hamiltonian have magnitude n
τ Var(δϕ). If there are a total of Ng faulty (two-qubit)

gates per Trotter step the total disorder is of magnitude Ng
n
τ Var(δϕ).6 The disorder

strength should be (much) lower than the Hamiltonian energy scale g. If we set τ ∼ 1
g

(see below), and use Eq. (4.41) for the over-rotation variance we arrive at

nNg <
1√

2(1−Fmin)
. (4.42)

This sets a limit on the maximum number of Trotter steps n and the maximum system

size, which determines the number of faulty (two-qubit) gates Ng per Trotter time step.

What we found here is a rough and worst-case estimate, but it illustrates that gate

fidelities must be well above 99.9 % to allow for a large number of gates (see Fig. 4.12).

There is a natural time scale of the dynamics of the Hamiltonian associated with its

energy scale g. To resolve the relevant dynamics one has to simulate for times up to

τ ∼ 1
g . This yields a Trotter step size gτ

n ∼ 1
n . For a gate fidelity of 99.0 %, which can be

reached by present day technology, it means Var(δϕ) ≈ 0.142, therefore the error quickly

becomes stronger than 1
n for increasing n. Accordingly, the number of Trotter steps is

very limited for current experimental gate fidelities [70]. In fact, for the algorithm of the

previous subsection (Sec. 4.3.2) we found that a gate fidelity above 99.99 % is necessary

to allow for enough Trotter steps before the simulation shows the expected relaxation

to an overdamped limit.

4.4.3 Adiabatic state preparation

An important problem to solve for digital quantum simulators is how to prepare non-

trivial states in these devices. With the relation between gate fidelity and over-rotations

at hand, we have also studied how adiabatic state preparation – as a possible solution

to this problem – would perform with current state-of-the-art fidelities. Unfortunately,

we found the time-dependent disorder induced by the gate errors to be very problematic

during an adiabatic time evolution. During the adiabatic evolution the system is required

to stay in an eigenstate while the system parameters are slowly changing (e.g., the on-site

interaction U is adiabatically turned on). Gaps in the spectrum protect from crossings

to different eigenstates as long as the time scale of the evolution is long enough. If the

time evolution is influenced by time-dependent disorder, level crossings may occur if the

energy scale of the disorder is comparable to the gap size in the spectrum.

In numeric calculations we found that even very low disorder hinders an adiabatic

evolution to a final state with the correct properties. Due to the large number n of Trot-

ter steps in a (slow) adiabatic time evolution, increasingly high fidelities would be needed

to keep the disorder negligibly low, since it grows linearly with n (see Eqs. (4.6), (4.11),

6Note that this estimate involves using the triangle inequality ||
∑Ng

j=1 Aj || ≤
∑Ng

j=1 ||Aj || = Ng

(here ||Aj || = 1 for all j). It is therefore a worst-case scenario where all gate errors of independent gates
add up adversely. The number Ng could effectively be much lower.
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and Sec. 4.2). In fact even for the small system under consideration and a gate fidelity

of 99.9 % (i.e., slightly better than currently available devices), simulations of the adia-

batic evolution did not show an improvement from the initial state (the non-interacting

ground state) towards the ground state of the interacting system (with on-site interac-

tion). By improvement we mean an increase in the state overlap with the actual ground

state. Rather, the initial situation was made worse; regardless of whether or not we

tried to trade gate errors for Trotter errors by reducing n.

Hence, different approaches should be used for the state preparation in a digital quan-

tum simulation without error correction, such as e.g., variational approaches [51, 52].

These algorithms need significantly less gates than an adiabatic time evolution. The

much lower number of Trotter steps required reduces the disorder introduced in the

simulation. Furthermore, these approaches can generally mitigate gate errors [118]. In

the next chapter, we will investigate the performance of variational algorithms and com-

pare with the adiabatic evolution. As we will see, it appears promising that variational

methods could allow for efficient ground state preparation even with faulty gates.

4.5 Chapter conclusion

In this chapter we analyzed the effect of gate errors occurring during a digital quan-

tum simulation of the time evolution of a quantum system with Hamiltonian H using

algorithms based on the Trotter expansion. We showed that gate errors due to over-

rotations effectively introduce an extra term δH(t) in the Hamiltonian, which in many

cases can be interpreted as a time-dependent disorder term. However, we also demon-

strated that the nature of these contributions depends on the choice of the algorithms

and that different algorithms may introduce different physics in a faulty simulation. The

method was then applied to an explicit example, a Fermi-Hubbard model with spin-flip

interaction, analyzed by algorithms based on various two-qubit gates. The example also

demonstrates how the effects of over-rotations depend on the choice of algorithms. For

instance in the example of Sec. 4.2.2 we showed that replacing CZ gates by a chain of

CNOTs introduces unphysical multi-particle interactions violating particle conservation.

We also illustrated our findings by a numerical analysis of a small model system.

The method can be extended beyond the small system. In such cases the algorithms

can be performed and analyzed piecewise. In particular, the findings of Sec. 4.2.2 are

valid for a large class of Hubbard-like Hamiltonians with general hopping terms tjkc
†
jck

and density-density interactions Vjkc
†
jcjc

†
kck. This covers a wide variety of problems in

quantum chemistry and solid state physics.

The method can also be extended to higher order Trotter expansions. For the second

order expansion one has to require that over-rotations are restricted to |δϕ| ≤ ( gτn )2.

We established a connection between the errors due to over-rotation of gates and

their fidelities in Sec. 4.4. This enables us to quantify the strength of the disorder in

the effective Hamiltonian for a given fidelity and Trotter step size. We have to conclude

that fidelities as presently achieved in experiments impose severe limitations on useful
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applications. The quality of gates has to improve, i.e., the strength of error should

decrease by orders of magnitude to allow for a useful number of Trotter steps without

introducing too much disorder in the simulation. The induced disorder is particularly

harmful to adiabatic state preparation.

Following Eq. (4.42), we find that gate fidelities of 99 % only allow for approximately

10 gates to run in an algorithm. To allow for 100 gates, fidelities should improve towards

99.99 %. But we would like to stress again that our modeling provides a worst-case

estimate. For instance, the effective number of faulty gates Ng per Trotter step in

Eq. (4.42) may be smaller than the number of two-bit gates since errors of independent

gates do not need to add up adversely. In addition, our estimates are based on the

assumption that gate errors are solely caused by over-rotations. In reality, there is a

variety of error sources that reduce the measured gate fidelities. Other sources of errors

and a combination of different errors might lead to a different scaling behavior, especially

when gates could, e.g., be run in parallel. While parallelization would not make any

difference in the case of pure over-rotation errors, it could greatly reduce the impact of

environmentally induced decoherence.

An alternative route would be to combine digital quantum simulations with analog

quantum emulations. For this purpose a part of the simulator should have a Hamiltonian

which coincides with a part of the Hamiltonian of the system to be simulated. This block

of the Hamiltonian evolves by itself, without the need of employing a Trotter expansion

and applying appropriate gates [1, 119]. In this way the overall gate count can be lowered

substantially.

Finally, we like to mention that the disorder arising from faulty gates in principle

could correspond to disorder in natural systems which one might want to simulate.

On the other hand, in realistic setups the disorder due to faulty gates may usually be

stronger than what one intents to simulate.

Overall, we demonstrated in this chapter that the effects of gate errors in a digital

quantum simulation of (fermionic) systems can be understood on the level of modi-

fied effective Hamiltonians, and the strength of the contributions from errors can be

quantified for a given Trotter step size and gate fidelity.

The following chapter will analyze another promising approach for the application

of imperfect quantum devices without error correction, namely variational algorithms.

They show great performance despite a low number of necessary Trotter steps and

the potential to mitigate errors. In the next chapter we will investigate explicitly the

performance of a particular variational algorithm under the influence of over-rotation

gate errors as presented in this chapter.
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Variational ground state

preparation with gate errors

This chapter is based on the the publication

[3] J.-M. Reiner, F. Wilhelm-Mauch, G. Schön, and M. Marthaler, Finding the

ground state of the Hubbard model by variational methods on a quantum computer

with gate errors, Quantum Sci. Technol. 4, 035005 (2019).

Reprinting of copyrighted material from this publication is explicitly permitted within

this thesis by IOP Publishing Ltd.

In the previous chapter we investigated the effect of over-rotation gate errors on dig-

ital quantum simulation. One result was that, unfortunately, assuming realistic gate

fidelities the total gate count that is feasible in a static simulation based on a Trotter

expansion is very limited. Particularly, adiabatic preparation of the ground state of a

small Hubbard model proved to be impossible as long as the gate fidelities were assumed

to be within reach for state-of-the-art quantum devices. However, the preparation of

non-trivial ground states, e.g., of model systems like the Hubbard model, is precisely

one of the highly anticipated applications of digital quantum simulators. To utilize

near-future quantum hardware – without quantum error correction – one has to find

algorithms with very efficient gate count and a certain resilience to noise.

For the simulation of the ground state of a quantum system, it has been suggested

and demonstrated in few-qubit experiments that variational algorithms require only a

relatively low number of gates and, in addition, variational methods intrinsically sup-

press the impact of errors [51, 118, 120]. Such algorithms were described already in

Sec. 2.4, but we repeat the main concept here again briefly. In general, variational ap-

proaches apply a unitary operator to an initial state |ψ0〉 that is easy to prepare. The

unitary operator U(θ) depends on a set of parameters θ that is varied to minimize the

energy

E(θ) = 〈ψ0|U†(θ)HU(θ)|ψ0〉 (5.1)
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where H is the Hamiltonian of the system of interest.

In this chapter we study explicitly the effect of gate errors on a variational algorithm

for finding the ground state of the Hubbard model. We will use a specific variational

ansatz, namely the variational Hamiltonian ansatz (VHA) [52]. It is inspired by the

adiabatic ground state evolution as explained in more detail below. Specifically, we

address the following questions: How close can E(θ) get to the ground state energy Eg

of the Hamiltonian H, and how close can U(θ)|ψ0〉 approximate the true ground state

of H, if gate errors occur during the implementation of the unitary operator U(θ).

Generally the specific nature of gate errors is not known, therefore we work with

the simple but representative model from Chap. 4. Every gate can be interpreted as a

rotation of the qubit register. In our model gate errors are modeled as over-rotations

(or under-rotations). As discussed in Chap. 4, specifically Sec. 4.4.1, the over-rotation

angle δϕ can be related to the minimal gate fidelity Fmin of the gate via Fmin = cos(δϕ).

Because of the vanishing slope of the cosine at the maximum (i.e., |δϕ| = arccos(Fmin) ≈√
2(1−Fmin) for Fmin ≈ 1) gate fidelities need to get very close to 100 % to significantly

limit the magnitude of the over-rotations.

Below we also compare the VHA to the adiabatic state preparation based on the

Trotter expansion. We find that the VHA produces a better approximation to the

ground state with far fewer steps, and therefore gates, than adiabatic state preparation.

For adiabatic state preparation, even for weak gate errors, upon increasing the number

of steps, the states created have decreasing overlap with the actual target ground state.

In contrast, the VHA achieves high overlap with the exact ground state; even with gate

errors. This is due to the error mitigation capabilities of variational approaches. For

the (still small-size) Hubbard model considered as an example in the following we find

that a gate fidelity of Fmin = 99.9 % is sufficient for a meaningful simulation.

5.1 From the adiabatic evolution to the variational

Hamiltonian ansatz (VHA)

The unitary operator U(θ) of the variational Hamiltonian ansatz is based on the Hamil-

tonian itself: The different terms of H are separated and grouped into N sub-operators

H1, . . . ,HN such that H =
∑N
α=1Hα. The unitary operator for the VHA with n steps

is

U(θ) =

n∏

k=1

N∏

α=1

eiθα,kHα , (5.2)

where θ collects all the variational parameters θα,k. The optimization criterion is the

minimization of the energy expectation value (5.1) of the final state |ψf〉 = U(θ)|ψ0〉
with respect to the n ·N variation parameters θ (the ground state is, per definition, the

state with minimal energy).

The ansatz (5.2) is inspired by the adiabatic time evolution under the influence of
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the Hamiltonian H = H0 + V composed of, e.g., a non-interacting part H0 and the

interaction V . If the interaction is turned on slowly on the time scales given by the

inverse energy scales of the Hamiltonian, the initial ground state |ψ0〉 of H0 develops

adiabatically into the ground state |ψg〉 of H (if the conditions of the adiabatic theorem

are fulfilled). To simulate this evolution in a Trotter expansion the time τ of the evolution

is divided into a large number n of Trotter time steps τ
n , each shorter than the inherent

time scales, leading to

Uad =

n∏

k=1

e−i τnH0e−i τn
k
nV . (5.3)

During each of the short time steps one further decomposes the Hamiltonian into sub-

operators. In a simulation using an available quantum computer the sub-operators are

chosen such that the short time evolution can be realized by the available gate operations.

The similarity between the operators (5.2) and (5.3) justifies the expectation that

the VHA can produce the evolution from a ground state |ψ0〉 of the non-interacting

system to the ground state |ψg〉 of the full Hamiltonian. In addition, by introducing

variational parameters the VHA can deviate from the adiabatic path and follow, through

optimization, a more efficient one. Having a more efficient evolution via VHA allows

for greatly reducing the necessary number of steps n, as compared to the number of

Trotter steps in an adiabatic evolution, while still achieving high accuracy.1 Moreover,

by optimizing the variational parameters one also mitigates the error introduced by

faulty gates, an effect which had been termed variational error suppression.

5.2 Model Hamiltonian and its decomposition

The model system we investigate in this chapter is again the Hubbard Hamiltonian of

spin- 1
2 fermions

H = −t
∑

〈j,j′〉
s=↑,↓

(c†j,scj′,s + c†j′,scj,s) + U
∑

j

c†j,↑cj,↑c
†
j,↓cj,↓, (5.4)

with hopping amplitude t between nearest neighbors 〈j, j′〉, on-site energy U , and c
(†)
j,s

being the annihilation (creation) operator of a fermion on site j with spin s. In the

following we consider two-dimensional square lattices and focus on the parameter values

U = 2t with repulsive on-site interaction, U > 0.

For the implementation of the variational unitary operation of Eq. (5.2) we separate

the Hamiltonian into N = 5 parts: The non-interacting part is split into four terms,

H1, . . . ,H4, as illustrated by Fig. 5.1. We distinguish between hopping terms in hori-

zontal and vertical direction and for each direction we group even and odd terms, i.e.,

1Note that to a certain degree the ansatz also helps us to cope with the so called Trotter error, which
is the error introduced by decomposing the time evolution operator using a finite number of Trotter
steps and grows as the number of steps is reduced.
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Figure 5.1: Sketch of the 2D Hubbard model on a square lattice. The arrows indicate the hopping terms
between neighboring sites. For the simulation we divide them into four sets: First in horizontal (solid
lines) and vertical (dashed lines) directions. Then we subdivide for each direction into even (green) and
odd (orange) terms. Summing up all hopping terms for each of the four sets yields the sub-Hamiltonians
H1, . . . , H4. Note that the hopping terms within a set commute among each other.

every other term in each direction of the 2D system. The on-site interaction terms are

collected in H5. Note, that all terms collected within one Hα commute among each

other. Hence, the execution of an exponential eiθα,kHα in Eq. (5.2) can be performed

exactly by sequentially applying the gates that account for the individual terms, without

introducing an error associated with the Trotter expansion.

As written explicitly above we introduce a manageable number of 5 variational pa-

rameters per step and – as the example below shows – we reach high-quality results

already for 10 steps or less.

5.3 Mapping to qubits and gate sequence

The mapping of the fermionic system onto qubits and the gate sequence to implement the

VHA evolution is very similar to the methods used in Chap. 4. The mapping onto a qubit

system is performed again via the Jordan-Wigner transformation. Gates performing on-

site interaction terms are realized by ZZ-type interactions between qubits, hopping

terms require XX+Y Y interactions (similar to XX interactions in the rotating frame).

In addition the transformation introduces Jordan-Wigner strings which are implemented

by additional chains of controlled Z gates. To be more precise, we will show the gate

sequence producing the unitary transformation eiθα,kHα from Eq. (5.2):

The different Hα, introduced above, contain either hopping terms −t(c†j,scj′,s +

c†j′,scj,s) or on-site interactions Uc†j,↑cj,↑c
†
j,↓cj,↓. We assume that the hardware of the

quantum computer allows for ZZ-like and XX+Y Y interaction and, for simplicity, un-

restricted connectivity between the qubits. As mentioned above, the terms summarized

in each of the Hα commute among each other making their ordering irrelevant.
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. . . . . .

. . . . . .
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j′ − 2

j′ − 1

j′

...
...

Z Z Z

t
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Figure 5.2: A t gate implementing an XX + Y Y interaction between qubits j and j′ is nested be-
tween controlled Z gates. The CZ gates introduce a Jordan-Wigner string such that the gate sequence
implements a fermionic hopping term between the orbitals j and j′.

For the following discussion it is convenient to absorb the spin index in a consecutive

numbering of the lattice sites via (j, ↑) 7→ j and (j, ↓) 7→ j + M where M is the total

number of sites, similar to our approach in Chap. 3. We apply again the Jordan-Wigner

transformation (introduced in Sec. 2.1.1):

cj =

j−1∏

k=1

(−σzk)σ−j . (5.5)

The on-site terms now read Uσ+
j σ
−
j σ

+
j+Mσ

−
j+M . In the variational approach the gate

eiθUσ+
j σ
−
j σ

+
j+Mσ

−
j+M (5.6)

needs to be implemented with some parameter θ. This is essentially a U gate from

Sec. 4.2.2. It embodies a ZZ interaction (up to some single-qubit phases, which one can

see by using σ+σ− = 1
2 (σz + 1)). To account for the gate errors we add an over-rotation

δθ to the parameter, the size of which depends on the assumed gate fidelity.

The hopping terms (where, say, j < j′) transform to −t
(
σ+
j σ
−
j′
∏j′−1
l=j+1(−σzl )+H.c.

)
.

We do not assume the hardware to allow for more than two-qubit interactions. A

hopping term without residual Jordan-Wigner string
∏j−1
k=1(−σzk), can be modeled by

the XX + Y Y interaction, i.e.,

e
−iθt(σ+

j σ
−
j′+σ

+

j′σ
−
j )
. (5.7)

This we denote as t gate (see Sec. 4.2.2). Again, gate errors lead to an over-rotation δθ to

be added to the parameter θ. Residual Jordan-Wigner strings can then be implemented

by sandwiching the t gate with controlled Z gates (CZ) as displayed to Fig. 5.2, which

is similar to the t′2 gate in Sec. 4.2.2. The CZ gate has again ZZ-like interaction, and

we implement it as e
iπσ+

j σ
−
j σ
−
j′σ

+

j′ for the control qubit j and the target qubit j′. Over-

rotations are introduced as an addition δϕ to the angle π.
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5.4 Error model and procedure

The goal is to prepare the ground state |ψg〉 of the Hubbard model (5.4) on a quantum

computer. We start from the ground state |ψ0〉 of the non-interacting model (U = 0),2

which – in principle – can be prepared efficiently on a quantum computer [121], and

we apply the variational Hamiltonian ansatz in order to evolve this state towards |ψf〉,
which should be close to the ground state |ψg〉. We modeled the algorithm and the

quantum gates including the gate errors on a classical computer. For the system sizes

considered, |ψ0〉 and |ψg〉 (without errors) can also be found exactly through classical

numerical diagonalization. This allows us to test the quality of the results.

The unitary evolution is implemented by the gate based algorithm described in the

preceding section. Each gate can be written in the form eiϕA with a real angle ϕ and

an operator A composed of Pauli operators. Hence, it can be interpreted as a rotation

of the quantum state. We use the gate error model from Chap. 4 and represent unitary

gate errors by over-rotations δϕ (which may be positive of negative), such that the faulty

gate reads ei(ϕ+δϕ)A. The magnitude of the random δϕ is given by the minimal gate

fidelity Fmin, where Fmin = cos(δϕ), as derived in Sec. 4.4.1. Performing a sequence

of gates with random normally distributed over-rotations with zero mean and variance

Var(δϕ) one finds – for weak over-rotations, i.e., fidelities close to one – an averaged

minimal gate fidelity Fmin = 1 − Var(δϕ)2/2. When we introduce gate errors in the

following, we assume a certain gate fidelity Fmin and add random over-rotations to each

gate according to the above relation. However, once the over-rotation for a specific gate

is chosen, this value is kept constant during the consecutive stages of the optimization

process. This accounts for quasi-static errors, which are considered an appropriate

noise model for superconducting qubits, where the noise spectrum is dominated by low

frequencies [116].

Finally, for given gate fidelities, we measure the performance of the VHA by eval-

uating the final state fidelity. This quantity is defined as the absolute value of the

overlap |〈ψg|ψf〉| between the exactly known ground state |ψg〉 and the final state

|ψf〉 = U(θ)|ψ0〉 of the VHA according to Eq. (5.2), after the optimization of the pa-

rameters θ.3

5.5 VHA versus adiabatic evolution

We first study the quality of the variational Hamiltonian ansatz, Eq. (5.2), in comparison

to the adiabatic evolution, Eq. (5.3). In both cases we start from the same initial state

|ψ0〉. For the comparison, the same number of steps n (steps of the VHA or Trotter

steps) and the same gate sequence is used (with appropriately different parameters).

2Note that the non-interacting system has a degenerate ground state. We hand-picked the correct
ground state |ψ0〉 that evolves towards |ψg〉 when performing the VHA or the adiabatic evolution. To
do this, we analyzed the spectrum where we lifted the degeneracy by applying a small perturbation
through on-site interactions of negligible strength.

3Note that frequently the square of the overlap is denoted as state fidelity. We chose it such that it
is consistent with our definition of the gate fidelity (see Sec. 4.4.1).
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Adiab. evo., 2×2
Fmin [%]

100.0 99.99 99.90
2 98.87 98.73 97.43

n
3 99.15 98.85 96.28
4 99.23 98.95 96.51
5 99.55 99.14 95.62

VHA, 2×2
Fmin [%]

100.0 99.99 99.90 99.90∗

2 99.68 99.63 99.24 94.44

n
3 100.0 99.95 99.56 93.54
4 100.0 99.96 99.68 88.77
5 100.0 99.98 99.82 83.69

Table 5.1: The final state fidelity |〈ψg|ψf〉| for a given initial state |ψ0〉 in percent for different numbers
of (Trotter) steps n and different values of the average minimal gate fidelity Fmin for a 2×2 Hubbard
system. The left side shows the results of the adiabatic evolution, the right side of the VHA. Note the
significantly better performance of the VHA as compared to the adiabatic evolution. For the data of
the rightmost column denoted with 99.90∗, instead of optimizing the parameters for the faulty gates,
we used the parameters as obtained for optimizing with 100 % fidelity. The comparison demonstrates
the capabilities of the VHA in mitigating the errors.

For low n, the gate sequence introduces an error while implementing the exponential

e−i τnH0 for the adiabatic evolution, since the summands of H0 do not commute. But for

the comparison with the VHA at equal gate count we did not introduce finer Trotter

time steps. On the other hand, the time τ in the adiabatic evolution was optimized for

the given number of Trotter steps n.

Table 5.1 shows the results for a two-dimensional Hubbard lattice with 2×2 sites.

We present the final state fidelity |〈ψg|ψf〉| in percent after performing, on one hand, the

adiabatic evolution and, on the other hand, the VHA for different numbers of (Trotter)

steps n and different averaged minimal gate fidelities Fmin. The algorithm we used

requires 20 two-qubit gates per (Trotter) step, i.e., in total we perform from 40 to 100

two-qubit gates.

Even for perfect gate fidelities of 100 % the adiabatic evolution does not improve

the state fidelity significantly if we increase n. (Note, that the initial state fidelity

|〈ψg|ψ0〉| = 98.87 % is already high due to the small system size; no improvement could

be achieved for n = 2.) For a lower gate fidelity of 99.99 % the adiabatic evolution

barely increases the final state fidelity above 99 %. For still lower gate fidelity of 99.9 %

the adiabatic evolution fails to improve the final overlap altogether. This was to be

expected from the results of the previous chapter, where we – following Eq. (4.42) –

provided estimates for the maximum number of gates that can be handled for a given

gate fidelity in a quantum simulation with fixed parameters. Indeed for a gate fidelity

of 99.9 % the gate count for the adiabatic evolution exceeds this limit (of roughly 10

gates).

On the other hand, we observe significantly better performance for the VHA. For

perfect gates two steps give already a very high final state fidelity; only three steps are

necessary to achieve essentially a perfect result (an error of about 10−12 was observed,

which is within numerical inaccuracies). Even with gate errors present we achieve high

final state fidelities. The numbers clearly show that introducing more steps helps sup-

pressing the quasi-static errors considered here.

The rightmost column, labeled by 99.90∗, illustrates the error mitigation provided by
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the VHA. For the data in this column we took the optimized parameters for perfect gates

and used them in the evolution according to Eq. (5.2) with faulty gates with Fmin =

99.9 % without any further optimization. This procedure does not take advantage of

the potential of the VHA for error mitigation. The low performance of this method

illustrates the power of variational error suppression.

The set of gate errors are chosen random but fixed (static) for both methods. How-

ever, in different runs they are chosen independent corresponding to the given gate

fidelities. The results of Table 5.1 are averaged over many runs with different sets of

errors. We can add that the error suppression of the VHA also reduces the standard

deviation of the results for different error sets significantly. For the adiabatic evolution

and lower gate fidelities we needed of the order of 105 runs in order to reach the shown

accuracy of the average. The VHA, on the other hand, needs only a low number of

runs for larger n (of the order of 10), even for low gate fidelities, to achieve the same

accuracy, and even a single run is already quite reliable.4

5.6 Scaling up

Next we extend the analysis of the variational Hamiltonian ansatz to larger systems.

Table 5.2 shows the final state fidelity |〈ψg|ψf〉| for various step numbers n and gate

fidelities Fmin, now for the VHA applied to a 3×2 and a 3×3 Hubbard model. Here we

show the results obtained for a single realization of the gate errors for each gate fidelity

and step number. Statistical fluctuations are reduced due to the large number of gates

per step. Averaging would introduce only small differences to the data presented. It

can be ignored, especially for n > 6 where the variational error suppression is strong.

For the 3×2 and 3×3 systems the algorithm requires 44 and 81 two-qubit gates per

iteration step, respectively, i.e., overall up to 810 two-qubit gates were applied to the

initial state.

We find again that the VHA produces very high final state fidelities. However, we

also notice how high gate fidelities are necessary for a good performance of the algorithm.

For a gate fidelity of Fmin ≤ 99.9 % which should be accessible in the next few years,

we did not reach final state fidelities above 99 %.

Further investigations showed that the limited final state fidelities are not necessarily

a flaw of the VHA itself but rather of the required optimization. For increasing system

size we found the results to be more and more sensitive to the choice of start parameters

for the optimization problem. This suggests that the optimizer does not find the global

optimum for the parameters but gets trapped in local extrema. The data of Table 5.2

(and Table 5.1) were obtained with a rather limited set of start parameters. We will

now state how we chose the initial parameters in the above and give a larger set of start

parameters that will be tested below in Sec. 5.6.2.

4This also alleviates the optimization overhead of the VHA; the algorithm has to be reinitiated
hundreds of times in order to optimize the variational parameters.
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VHA, 3×2
Fmin [%]

100.00 99.999 99.990 99.900 99.500
4 99.65 99.58 99.34 97.93 94.86

n
6 99.81 99.85 99.74 98.24 97.26
8 99.98 99.91 99.61 98.98 96.12

10 100.0 99.95 99.82 98.83 97.78

VHA, 3×3
Fmin [%]

100.00 99.999 99.990 99.900 99.500
4 99.10 98.97 98.23 95.60 86.24

n
6 99.59 99.46 99.27 95.55 90.06
8 99.93 99.74 99.01 97.35 90.14

10 99.97 99.89 99.77 98.04 90.69

Table 5.2: Again the final state fidelity |〈ψg|ψf〉| in percent for different values of n and Fmin, this time
for the variational Hamiltonian ansatz in a 3×2 and a 3×3 system.

5.6.1 Choice of start parameters

When using the VHA, in order to minimize the energy according to Eq. (5.1), one has

to start with an initial guess for the parameters θ. In Table 5.1 and Table 5.2 for each

value of n and Fmin we tried three different sets of start parameters, motivated by some

physical reasoning:

(1) Since the VHA is inspired by the adiabatic evolution one of our choices of pa-

rameters θα,k from Eq. (5.2) was to mimic the adiabatic evolution. We set θα,k = 1
t for

α ∈ {1, . . . , 4} (i.e., the hopping elements) and θ5,k = k
n

1
t (i.e., the interaction terms),

with t being the hopping energy of the Hamiltonian (5.4). This represents the adiabatic

evolution (5.3) during time τ = n
t .

(2) We chose a parameter set where not only the interaction but also the hopping is

turned on gradually, i.e., θα,k = k
n

1
t for all α.

(3) We noticed that the optimized parameters of the VHA usually do not resemble an

adiabatic path or show steady growth, rather they are more evenly distributed. Hence,

we chose a set where θα,k = 1
n

1
t for all α. This set represents a Trotter expansion with

n steps for a time evolution for the duration τ = 1
t .

For all choices of initial parameters, after the optimization the final values were vastly

different. This is why we concluded that for the larger systems we often gets stuck in a

local optimum. For this reason, we tried further sets of initial parameters in Table 5.3:

Firstly, we added initial parameters recreating an adiabatic evolution alike in above

point (1), but for τ = 1
t . Secondly, we chose an even distribution, similar to point (3),

but with θα,k = r
t where we varied r ∈ {0.1, 0.2, . . . , 1.0}. We noticed that usually the

magnitude of the final parameters were between zero and ∼ 1
t . These additional start

parameters improved the data of Table 5.2 towards the results of Table 5.3, as we will

see below.
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Improved start parameters

VHA, 3×2
Fmin [%]

99.90 99.50
6 98.91 97.26

n 8 99.31 98.65
10 99.52 98.91

VHA, 3×3
Fmin [%]

99.90 99.50
6 96.76 90.81

n 8 98.02 94.18
10 98.91 92.55

Table 5.3: The final state fidelities in percent after reruns of the VHA for some values for Fmin and n
from Table 5.2, this time with improved sets of start parameters. One can see a significant enhancement
of the final state fidelity for the new start parameters.

We realize that a deeper understanding how to deterministically find suitable initial

parameters should be acquired. However, this is out of the scope of this work. We will

see below that the tested parameter sets already helped to show the capabilities of the

VHA, achieving remarkable results in the considered small systems.

5.6.2 Improved results

To substantiate our conclusion that the initial parameters have a great effect on the

results, we performed the VHA for some values of Fmin ≤ 99.9 % and n ≥ 6, exploring

a larger set of start parameters, as states in Sec. 5.6.1. Table 5.3 displays the final

state fidelity of the 3×2 and 3×3 systems for the optimized start parameters, showing

a significant improvement of the final state fidelity over the results of Table 5.2. We

emphasize that this was not because of a favorable set of random gate errors; once better

start parameters were found the results are changing little with varying the gate errors.

To give more perspective on the scale of improvement, we can look at different

measures for the quality of the final state other than the final state fidelity. While the

fidelity is a commonly used measure, it is quite abstract.

Another way to quantify the performance of the VHA is to look at the value of the

ground state energy. This is a quantity one might be particularly interested in when

applying variational algorithms. For the 3×3 Hubbard model with U = 2t > 0 the exact

value is Eg = −9.67 t. For the chosen initial state the state fidelity is already 96.18 %,

but the expectation value of the Hamiltonian is only 〈ψ0|H|ψ0〉 = −9.29 t. After 10

steps of the VHA for a gate fidelity of 99.90 % the final state fidelity has improved close

to 99 %, and the expectation value of the Hamiltonian reaches 〈ψf |H|ψf〉 = −9.60 t.

5.7 Chapter conclusion

In this chapter we studied in detail the quantum simulation of relatively small lattice

Hubbard models with a specific type of gate errors, but our analysis still allows drawing

several conclusions:

(1) The variational Hamiltonian ansatz (VHA) produces the ground state wave func-

tion of the Hubbard model in good approximation with a number of steps which is much
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lower than the number of Trotter steps needed in an adiabatic approach.

(2) The effects of (static) gate errors are strongly mitigated by the variational meth-

ods.

(3) For the considered system size gate fidelities of the order of 99.9 %, which should

be within reach for state-of-the-art digital quantum computers, allow preparation of the

ground state with a final state fidelity above 99 %.

(4) This performance can be reached with a low number of variational parameters

per step (5 in our case for the 2D Hubbard model).

It is clear that introducing more variational parameters, up to one parameter per

gate, would enhance the variational error suppression of quasi-static errors. Eventually it

leads to approaches like the variational quantum eigensolver [51]. However, introducing

more parameters poses a challenge to the classical optimization routines. We found

that even for our small set of parameters, the emerging optimization problem poses

a substantial obstacle, since with growing system size the gradients with respect to

the variation of the parameters decrease [122]. The difficulties with the optimization

algorithms appear a stronger limitation of the performance of variational algorithms

than a limited set variational parameters.

Better optimization algorithms could help with further issues. One could consider

non-static portions of gate errors and statistical measurement errors. Such fluctuating

errors are difficult to manage for optimizers, particularly for gradient based optimization

protocols. We also noted the need for a good choice of the initial set of variational

parameters as well as of the initial state. The latter could be obtained, e.g., from mean

field theory. Finally more advanced quantum gate sequences implementing the terms

of the Hamiltonian can lower the gate count and reduce the impact of gate errors. We

applied up to 810 two-qubit gates in our examples of rather small systems. Algorithms

with superior scaling behavior for Hubbard models [113, 123] should be considered to

improve the performance of the VHA for larger systems.

Overall, however, we obtained a rather promising outcome regarding useful applica-

tions of variational algorithms on near-future quantum hardware. Our analysis showed

good performance of the VHA through efficient use of few resources (in terms of gate

count) and great error mitigation capabilities. With the room for improvement consid-

ering gate fidelities, classical optimization algorithms and choice of start parameters,

the variational Hamiltonian ansatz might soon be able to produce exciting results in

experiments.
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Chapter 6

Summary and outlook

In this thesis we studied analog and digital quantum simulations of fermionic systems.

The work was motivated by the vast improvements of quantum hardware – in partic-

ular superconducting qubits – which allow for such simulations. We investigated the

perspectives of applications of near-future quantum devices, which do not posses means

for full quantum error correction. Specifically, we considered in detail three topics:

• Analog quantum simulation with superconducting circuits

• The effects of specific gate errors on digital quantum simulation

• The performance of variational quantum algorithms under the influence of such

gate errors

In Chap. 3 we studied a particular setup for performing analog quantum simulation of

fermionic systems. Currently, the leading technology for such emulations are ultra-cold

fermionic gases [16–18]. However, these simulators are facing two major challenges. On

the one hand, they are difficult to scale up much further. On the other hand, the strength

of the particles’ interactions is weak in comparison to (or at most of the order of) the

finite temperatures of the gas [16, 49]. Hence, large-scale simulations or simulation of

low-temperature physics are difficult to conduct.

We explored possibilities for analog quantum simulation of fermionic systems with

superconducting qubits: A double chain of qubits with XX and ZZ couplings of neigh-

boring qubits along and between the chains, respectively, can be mapped via the Jordan-

Wigner transformation on a spin-full 1D Fermi-Hubbard model. The qubit system can

thus be used to emulate the quantum properties of this model. Chap. 3 established the

relations between the parameters of the fermionic system and the qubit system, and

presented two superconducting circuits as possible realizations.

The conceptually simpler realization is based on Josephson charge qubits. It offers

a broad parameter range and high flexibility. Unfortunately, charge qubits are very

susceptible to charge noise, which makes them difficult to handle in experiment. A
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superconducting qubit design that is less sensitive to charge fluctuation is the transmon

qubit. For this reason it is widely used nowadays. We discussed in detail an emulator

realization based on tunable transmon qubits. Here, the ZZ interaction arises due to

an inductive coupling and the XX interaction due to a capacitive interaction. This

appears a promising approach as far as the experimental realization is concerned, when

transmons with relatively large geometric inductance are considered. An example of

such a transmon design is given in Appx. A.4.

The transmon realization has the downside of a restricted parameter range, specifi-

cally considering the chemical potential. Equilibrium simulations can only be performed

at very low filling, unlike with the charge qubit realization where, e.g., also half-filling

could be achieved. Still, we proposed several interesting scenarios to be explored in

a transmon based analog quantum simulation, including protocols which help gaining

confidence in the results of the emulation through measurements of local operators.

Chap. 4 was devoted to the analysis of digital quantum simulation. Specifically, we

studied the effects of gate errors occurring during a digital quantum simulation of the

time evolution of a quantum system with Hamiltonian H using algorithms based on

the Trotter expansion. The gate errors were modeled as over-rotations. We showed

that such errors effectively introduce an extra term δH(t) in the Hamiltonian, which in

many cases can be interpreted as a time-dependent disorder term. However, the nature

of these contributions depend on the choice of the algorithms, i.e., different algorithms

may introduce different physics in a faulty simulation.

As an explicit example we considered a Fermi-Hubbard model with spin-flip inter-

action. We applied our method to algorithms based on various two-qubit gates. The

examples demonstrate explicitly how the effects of over-rotations depend on the choice of

algorithms. For instance in the example of Sec. 4.2.2 we showed that replacing CZ gates

by a chain of CNOTs introduces unphysical multi-particle interactions violating particle

conservation.

The findings were substantiated by a numerical analysis of a small model system.

However, the method can be extended beyond small systems, since larger algorithms can

be analyzed piecewise. Particularly, the results of Sec. 4.2.2 are valid for a large class

of Hubbard-like Hamiltonians with general hopping terms tjkc
†
jck and density-density

interactions Vjkc
†
jcjc

†
kck. This covers a wide variety of problems in quantum chemistry

and solid state physics.

Another important result of Chap. 4 is the relation between gate errors due to over-

rotations and gate fidelities. This enables us to quantify the strength of the disorder

in the effective Hamiltonian for a given fidelity and Trotter step size. Unfortunately,

we find that fidelities as presently achieved in experiments impose severe limitations on

useful applications. According to the estimate of Eq. (4.42), gate fidelities of 99 % only

allow for approximately 10 gates to run in an algorithm. To allow for 100 gates, fidelities

should improve towards 99.99 %. However, we presented a worst case estimate, which

assumes errors of individual gate add up adversely. Effectively, the maximum gate count
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could be larger. On the other hand, we assumed over-rotations to be the only source

of gate errors. Other error types that lower the measured gate fidelities might lead to

different scaling behavior.

Still, the estimate indicates that in order to utilize digital quantum simulation in

the near future, we need to focus on algorithms with a relatively low gate count. Prime

candidates in this respect are variational algorithms. They show remarkable performance

regarding applications with low gate count, and are believed to mitigate errors [51, 52].

Chap. 5 then explicitly tested the capabilities of variational algorithms under the influ-

ence of gate errors, with the error model introduced in the preceding chapter. Specif-

ically, the variational Hamiltonian ansatz (VHA) was studied as a tool to prepare the

ground state of Fermi-Hubbard models. The algorithm was fully simulated on a classical

computer for two-dimensional models with up to 3×3 sites (represented by 18 qubits),

which is numerically demanding.

We found that the VHA produces the ground state of the Hubbard model in good

approximation with a number of steps which is much lower than the number of Trotter

steps needed in an adiabatic approach. Moreover, the variational algorithm suppresses

(static) gate errors, making it even more superior over the adiabatic approach.

We showed that – for the considered system sizes – gate fidelities of about 99.9 %

allow for the preparation of the ground state with a final state fidelity above 99 %. Such

gate fidelities are within reach for state-of-the-art quantum hardware.

The performance of the VHA can be reached despite a low number of variational

parameters per step (five in our case). It is clear how more variational parameters, up

to one parameter per gate, would increase the performance, especially with respect to

variational error suppression. This would be a similar approach to the variational quan-

tum eigensolver [51]. However, the optimization of these parameters (using a classical

computer) will quickly become tedious. We found that optimizing even our small set of

parameters poses a substantial obstacle to overcome. It appears that using a small set

of parameters is in fact more promising to achieve good overall performance.

In terms of an outlook for future research there is variety of aspects that should men-

tioned:

Regarding analog quantum simulation with superconducting circuits, one can explore

further qubit designs such as, e.g., the phase slip qubit [87–90], and consider additional

systems to emulate [7]. However, the options for fermionic systems which are feasible to

simulate seem limited because of the necessary mapping onto qubits. After a mapping

using, e.g., the Jordan-Wigner transformation, one may end with a qubit system with

complicated multi-qubit interactions that are unfeasible to implement on the hardware

level.

An interesting approach would be to combine analog and digital quantum simulation.

Parts of the simulated Hamiltonian could be solved through analog simulations (with

reduced complexity), which could serve as large gates of an algorithm [119]. In this way
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gate counts of digital simulations could be lowered substantially.

In terms of digital quantum simulation further sources of gate errors should be taken

into account. If the reduced experimental gate fidelities are not solely caused by over-

rotations, the estimate for the maximum feasible gate count could improve drastically.

Considering, e.g., decoherence as error source, parallelization should allow for much

higher overall gate count of algorithms.

Furthermore, the disorder arising from faulty gates in principle could correspond to

disorder in natural systems which one might want to simulate.

With respect to variational algorithms we identified certain aspects with potential

for improvement. The final state fidelity dependents strongly on the initial guess for the

variational parameters and methods for choosing suitable start parameters need to be

developed. Also we only used non-interacting initial states. Other states that are easy to

prepare (obtained, e.g., from Hartree-Fock solutions) should be considered, which should

improve the performance, as these states are already closer to the final state than the

non-interacting ground state. Finally, more sophisticated classical optimization routines

need to be used.

Overall, however, we found that our results concerning variational algorithms look

quite promising for near-future applications. If quantum hardware continues to improve

at a steady rate we could see meaningful utilization of quantum simulators in already a

few years – even though the scope of such utilization will probably remain limited for a

while.

Since the first ideas in the early 80’s, the prospect of multi-purpose quantum simu-

lation and quantum computing has stimulated an ever-growing field of research. With

the recent progress, it will be exciting to see if near-future quantum simulators will

achieve an advantage over their classical counterparts, and how much of an advantage

that becomes. We will see how this will affect further development, and how our means

for computation will change in the coming decades.
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Appendix A

Transmon circuit calculations

This Appendix is based on the the publication

[1] J.-M. Reiner, M. Marthaler, J. Braumüller, M. Weides, and G. Schön, Emulat-

ing the one-dimensional Fermi-Hubbard model by a double chain of qubits, Phys.

Rev. A 94, 032338 (2016).

Reprinting of copyrighted material from this publication is explicitly permitted within

this thesis by the American Physical Society (APS).

A.1 Tunable transmon

In order to demonstrate the ZZ and XX couplings between two transmons in the circuit

shown in Fig. A.1, we expound our model of tunable transmon qubits. The transmon

consists of a loop of two Josephson junctions J with critical current Ic. The loop has

an intrinsic geometric inductance L, with an external magnetic flux Φe passing through

the loop. A large capacitance C is shunted to each junction. The phases across the left

and right junctions are denoted φl and φr, and we introduce the external phase φe =
2e
~ Φe. We can derive the Hamiltonian by employing the methods explained in Sec. 2.2.1.

Using the addition theorem for the cosine potentials and defining φ = 1
2 (φl + φr), and

φ− = 1
2 (φl − φr) the Hamiltonian of the circuit reads

HT = 2EC(N2 +N2
−)− 2EJ cos(φ) cos(φ−) +

EL
2

(φ− −
φe

2
)2, (A.1)

where we introduced the canonical charge number operators N and N−, as well as the

energies EC = e2

2C , EJ = ~
2eIc, and EL = ~2

e2L .

The geometric inductance L is very small, leading to EL � EJ . Hence, we can

neglect excitations of the degree of freedom associated with φ−. We fix φ− at the

minimum of its steep potential, resulting in the effective transmon Hamiltonian

HT,eff = 2ECN
2 − 2EJ cos(

φe

2
) cos(φ). (A.2)
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⊗
ΦeJ JC C

L

φl φr

Figure A.1: Circuit diagram of a tunable transmon with Josephson junctions J, the capacitances C in
parallel, and the intrinsic inductance L of the loop. The phase differences across the junctions (and
capacitances) are labeled φl and φr, Φe denotes an external flux through the loop.

In the transmon limit, EJ � EC , we can treat this as an anharmonic oscillator. For

the lowest-lying states we can expand the cosine up to fourth order and obtain a Duffing

oscillator

HT,eff = ε(a†a+
1

2
)− 2EJ cos(

φe

2
)− EC

24
(a† − a)4 (A.3)

with ε =
√

8ECEJ cos(φe/2), and

φ = −i
1√
2

( 2EC

EJ cos(φe

2 )

) 1
4

(a† − a), (A.4)

N =
1√
2

(EJ cos(φe

2 )

2EC

) 1
4

(a† + a). (A.5)

A projection on the first two states casts the operators into the qubit basis, which

yields (up to a constant contribution)

HT,eff =
1

2
εσz, (A.6)

with

φ =
1√
2

( 2EC

EJ cos(φe

2 )

) 1
4

σy, (A.7)

N =
1√
2

(EJ cos(φe

2 )

2EC

) 1
4

σx, (A.8)

cos(φ) ≈ 1− φ2

2

=
(

1− 1

2

√
2EC

EJ cos(φe

2 )

)
1− 1

4

√
2EC

EJ cos(φe

2 )
σz. (A.9)

A.2 ZZ coupling

To achieve a ZZ coupling between two transmons, we make use of the previously ignored

degree of freedom associated with φ− in Eq. (A.1). It couples to the cosine potential of
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⊗
Φ1e

M

L

J JC C

φ1l φ1r

⊗
Φ2e

L

JJ CC

φ2lφ2r

Figure A.2: Circuit diagram of two inductively coupled transmons, where their inductances L form
a mutual inductance M = kML with kM ∈ (0, 1). The transmons should be built identically with
Josephson junctions J and shunt capacities C, but with individually controlled external fluxes Φ1e and
Φ2e for tuning. φ(1,2)l and φ(1,2)r denote the phase differences across the junctions (and capacitances).

the qubit states, thus to σz (see Eq. (A.9)). By coupling the loop inductances of two

transmons to form a mutual inductance M , the φ− of each transmon interact with each

other, mediating a ZZ interaction between the qubits.

For two inductances L coupled to form a mutual inductance M , we can express

M = kML, with kM ∈ (0, 1) being a measure how close the inductances are coupled.

We denote the currents through each inductance I(1,2), define the vector I = (I1, I2),

and the matrix

L =

(
L M

M L

)
. (A.10)

For the magnetic fluxes through the inductances we write Φ(1,2), and introduce Φ =

(Φ1,Φ2). With Φ = LI, the potential energy VM of the mutual inductance reads

VM =
1

2
ITLI =

1

2
ΦTL−1Φ

=
1

1− k2
M

1

2L
(Φ1 − Φ2)2 +

1

1 + kM

1

L
Φ1Φ2. (A.11)

Now we will derive the ZZ interaction for the transmon from Appx. A.1. Consider

two transmons coupled by their inductances L forming a mutual inductance M = kML

(kM ∈ (0, 1)), with the phases across the junctions (and capacitances) of the two trans-

mons being denoted φ(1,2)l and φ(1,2)r as shown in Fig. A.2. For the external magnetic

fluxes Φ(1,2)e we introduce the phases φ(1,2)e = 2e
~ Φ(1,2)e. The Lagrangian of this setup
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reads (using Eq. (A.11)):

Lz =
( ~

2e

)2 1

2
C(φ̇2

1l + φ̇2
1r + φ̇2

2l + φ̇2
2r)

+
~
2e
Ic(cos(φ1l) + cos(φ1r) + cos(φ2l) + cos(φ2r))

−
( ~

2e

)2 1

2L

( 1

1− k2
M

(
(φ1l − φ1r − φ1e)− (φ2l − φ2r − φ2e)

)2

+
2

1 + kM
(φ1l − φ1r − φ1e)(φ2l − φ2r − φ2e)

)
. (A.12)

Defining φ(1,2) := 1
2 (φ(1,2)l +φ(1,2)r) as well as φ± := 1

2 ((φ1l−φ1r

2 − φ1e

2 )±(φ2l−φ2r

2 − φ2e

2 )),

using that the external fields are constant, meaning φ̇(1,2)e = 0, and using the addition

theorem cos(φ(1,2)l) + cos(φ(1,2)r) = 2 cos(
φ(1,2)l+φ(1,2)r

2 ) cos(
φ(1,2)l−φ(1,2)r

2 ) for the cosine

terms one can find the Hamiltonian

Hz = 2EC(N2
1 +N2

2 +
1

2
N2

+ +
1

2
N2
−) +

1

2
ELξ+φ

2
+ +

1

2
ELξ−φ

2
−

− 2EJ cos(φ1) cos(
φ1e

2
+ φ+ + φ−)

− 2EJ cos(φ2) cos(
φ2e

2
+ φ+ − φ−), (A.13)

with the canonical charge numbers N(1,2,±), the energies EC , EJ , and EL as given in

Appx. A.1, as well as ξ+ = 2
1+kM

and ξ− = 4
1−k2M

− 2
1+kM

.

Recalling that L is very small, we find EL to be very large (compared to EJ). We

can therefore ignore terms proportional to EJφ
2
± towards those proportional to ELφ

2
±,

which justifies expanding the cosines for small φ± yielding

Hz = 2EC(N2
1 +N2

2 +
1

2
N2

+ +
1

2
N2
−) +

1

2
ELξ+φ

2
+ +

1

2
ELξ−φ

2
−

− 2EJ cos(φ1)
(

cos(
φ1e

2
)− sin(

φ1e

2
)(φ+ + φ−)

)

− 2EJ cos(φ2)
(

cos(
φ2e

2
)− sin(

φ2e

2
)(φ+ − φ−)

)
. (A.14)

We can identify the qubit energy terms 2ECN
2
(1,2) − 2EJ cos(

φ(1,2)e

2 ) cos(φ(1,2)) =
1
2ε(1,2)σ

z
(1,2), harmonic oscillators ECN

2
± + 1

2ELξ±φ
2
± = ~ω±(a†±a± + 1

2 ), with ω± =
1
~
√
ξ±2ECEL, and therefore φ± = 1√

2
( 2EC
ξ±EL

)
1
4 (a†± + a±). We know that cos(φ(1,2)) are

diagonal in the qubit basis (see Eq. (A.9)), hence cos(φ(1,2)) = αz(1,2)σ
z
(1,2) + β(1,2)1.

Following the above argument that φ± is very small, we neglect terms proportional to

EJ1φ± ≈ 0 and also leave out constant terms, resulting in

Hz =
1

2
ε1σ

z
1 +

1

2
ε2σ

z
2 + ~ω+a

†
+a+ + ~ω−a†−a−

+ (g1+σ
z
1 + g2+σ

z
2)(a†+ + a+)

+ (g1−σ
z
1 − g2−σ

z
2)(a†− + a−), (A.15)
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Figure A.3: The transmon’s level splitting ε depends on the phase φe related to the external flux
Φe = ~

2e
φe. Fluctuations ∆φ− of the phase across the inductance of the transmon vary the energy

splitting by an amount which depends on the slope of ε.

with g(1,2)± = 2EJα
z
(1,2) sin(

φ(1,2)e

2 ) 1√
2
( 2EC
ξ±EL

)
1
4 .

For the next step, we take the displacement operators D±(d) = eda
†
±−d†a± , and

define the unitary operator

U = D+(−g1+σ
z
1 + g2+σ

z
2

~ω+
)D−(−g1−σz1 − g2−σz2

~ω−
). (A.16)

By again neglecting constant terms, we transform the Hamiltonian to

U†HzU =
1

2
ε1σ

z
1 +

1

2
ε2σ

z
2

+ ~ω+a
†
+a+ + ~ω−a†−a− + gzσ

z
1σ

z
2 , (A.17)

with gz = −2( g1+g2+~ω+
− g1−g2−

~ω− ). Because of the small inductance of the transmons, the

energy ~ω± is very large compared to the qubit energies,thus, the oscillators’ excitations

can be ignored; however, they mediate an effective interaction between the qubits.

Finally, combining the findings of this section, the convenient identity ( 1
ξ+
− 1

ξ−
) =

kM , and the results from Appx. A.1 one can check that for our effective Hamiltonian

Hz
eff =

1

2
ε1σ

z
1 +

1

2
ε2σ

z
2 + gzσ

z
1σ

z
2 , (A.18)

it holds that

gz = −kM
16

tan(
φ1e

2
) tan(

φ2e

2
)
ε1ε2
EL

. (A.19)

The coupling strength is tunable through the external phases φ(1,2)e, including the

possibility of a sign change. This results from the fact, that the interaction is mediated

through displacements of the coupled phases φ(1,2)−. In a transmon, the extent to which
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⊗
Φje

L

J JC C

φjl φjr

⊗
Φ(j+1)e

L

J JC C

φ(j+1)l φ(j+1)r

CgCg Cg

Figure A.4: Circuit diagram of a chain of coupled identical transmons, with Josephson junctions J
(with critical current Ic), shunt capacitances C, and loop inductance L. They are individually tunable
though external fluxes Φje, and the phase differences across the junctions (and capacitances) of the jth

qubit are denoted φjl and φjr. The transmons are coupled by capacitances Cx between neighboring
transmons.

a displacement of φ− affects ε depends on the external flux (as illustrated in Fig. A.3).

Hence, the coupling strength is affected by the value of the external fluxes.

A.3 XX coupling

In a transmon the charge operator is proportional to σx (see Eq. (A.8)). We therefore

suggest coupling the n identical tunable transmons through capacitances Cx as depicted

in Fig. A.4. This way, an XX coupling should arise.

The phase differences across the junctions (and capacitances) of the jth qubit are

denoted φjl and φjr, and the external flux through the qubits are given by Φje = ~
2eφje.

Introducing φj = 1
2 (φjl + φjr), and φj− = 1

2 (φjl − φjr) yields the Lagrangian

Lx =

n∑

j=1

(( ~
2e

)2

C(φ̇2
j + φ̇2

j−) +
~
e
Ic cos(φj−) cos(φj)−

( ~
2e

)2 2

L
(φj− −

φje
2

)2

)

+

n−1∑

j=1

( ~
2e

)2 1

2
Cx
(
(φ̇j − φ̇j−)− (φ̇(j+1) + φ̇(j+1)−)

)2
. (A.20)

Regarding Appx. A.1, we already fix φj− = φje/2, φ̇j− = 0 due to the steep potential

created by the small value of L and, thus, find

Lx =

n∑

j=1

(( ~
2e

)2

(C + Cx)φ̇2
j +

~
e
Ic cos(

φje
2

) cos(φj)

)

−
n−1∑

j=1

( ~
2e

)2

Cxφ̇j φ̇j+1 −
( ~

2e

)2 1

2
Cx(φ̇2

1 + φ̇2
n). (A.21)

We denote C̃ = C + Cx and λ = Cx

2C̃
∈ (0, 1

2 ), also the tridiagonal n× n matrix

Aλ =




1 λ 0 · · ·
λ 1 λ · · ·
0 λ 1 · · ·
...

...
...

. . .



, (A.22)

– 88 –



A.4. Experimental realization

with ones on the diagonal and λ on the off-diagonals. Denoting the vector φ =

(φ1, . . . , φn) allows us to rewrite the Lagrangian as

Lx =
( ~

2e

)2

C̃φ̇TAλφ̇+

n∑

j=1

~
e
Ic cos(

φje
2

) cos(φj), (A.23)

where we neglected the boundary term 1
2C

x(φ̇2
1 + φ̇2

n). This is justified, as we will focus

on the limit of small coupling, i.e., Cx � C. This limit is needed to apply the rotating

wave approximation, as discussed in the main text.

It holds that |λ| < 1
2 and one can show that in this case the the matrixAλ is invertible

with A−1
λ = A−λ +O(λ2). In the limit of weak coupling, we can neglect terms of order

O(λ2), which allows us to easily transform the Lagrangian to the Hamiltonian

Hx = 2EC̃N
TA−λN −

n∑

j=1

2EJ cos(
φje
2

) cos(φj)

=

n∑

j=1

(
2EC̃N

2
j − 2EJ cos(

φje
2

) cos(φj)
)

+

n−1∑

j=1

4EC̃λNjNj+1. (A.24)

We can identify the qubit energies ε̃j =
√

8EC̃EJ cos(φje/2) with the findings of

Appx. A.1, and use Eq. (A.8) to obtain Nj = αxj σ
x
j with αxj = 1√

2
(
EJ cos(φje/2)

2EC̃
)

1
4 . This

yields

Hx =

n∑

j=1

1

2
ε̃jσ

z
j +

n−1∑

j=1

gxj σ
x
j σ

x
j+1, (A.25)

where gxj = 2EC̃λα
x
jα

x
j+1 = 1

2λ
√
ε̃j ε̃j+1.

For weak coupling we neglect the small change in the capacitative energy, especially

since the transmons are tunable. Hence, we drop the tilde in the notation. Furthermore,

we assume that the qubits are degenerate with respect to the energy ε. The second order

terms, O((C
x

C )2), will also be dropped, yielding λ = Cx

2C . We thus obtain

Hx =

n∑

j=1

1

2
εσzj + gx

n−1∑

j=1

σxj σ
x
j+1, (A.26)

with

gx =
1

4

Cx

C
ε. (A.27)

A.4 Experimental realization

We explore the concentric transmon qubit [91] as a potential candidate for the unit cell

of the circuit diagram depicted in Fig. 3.3. It features a central disk island and a con-

centrically surrounding ring, constituting the shunt capacitance C of the transmon. The
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(a)

σx, σz σx, σz

σx

σx

σx

σx

(b)

Figure A.5: (a) Schematic of the concentric transmon qubit: It consists of a large central disk elec-
trode (230 µm diameter) surrounded by a ring electrode, constituting the shunt capacitance for the two
Josephson junctions (orange) interconnecting the electrodes. (b) Possible implementation of the simula-
tor scheme depicted in Fig. 3.1 with concentric transmon qubits. In the vertical direction, the magnetic
ZZ coupling, mediated by a non-vanishing mutual inductance M , is relevant. The XX coupling can
effectively be suppressed by detuning vertically adjacent qubits. Transverse coupling is dominant in
horizontal direction, where the ZZ coupling is suppressed by exploiting the asymmetric gradiometry of
the qubits.

two qubit electrodes are interconnected by two Josephson junctions (see Fig. A.5(a)).

The formed gradiometric SQUID allows for a fast tuning of the qubit frequency by a

magnetic field gradient provided by an on-chip flux line.

The geometric inductance of the large ring electrode, with ∼340 µm diameter, pro-

vides a considerable magnetic dipole moment. Thereby, placing two devices near to

each other results in a considerable mutual inductance between the devices, that al-

lows for an inductive ZZ coupling to adjacent devices, as explained above in Appx. A.2

and in Sec 3.2. By exploiting its rotational asymmetry with respect to the location of

Josephson junctions, the concentric transmon architecture furthermore promises to sat-

isfy the proposed simulator scheme since it allows for a site-selective engineering of the

ZZ coupling. The XX coupling merely relies on the geometric dimensions of the qubit

electrodes and is in first order isotropic. For two adjacent concentric transmons, a ca-

pacitance is formed between the large rings and disks of the two qubits, which yields the

desired XX interaction, as derived in Appx. A.3. A proposal for the simulator scheme

reproduced with concentric transmon qubits is schematically depicted in Fig. A.5(b).

Using this scheme, we obtain – additional to a ZZ coupling – also an XX coupling

between two transmons of the same rung of the qubit ladder, which is not part of the

proposed design in Fig. 3.1. This effective dispersive coupling may be suppressed by a

mutual frequency detuning.

Estimates indicate a small ratio M/L between mutual and geometric inductance M

and L, respectively, resulting in a ZZ coupling strength close to measured dephasing

rates for the device. We are investigating design adaptations to increase the mutual

inductance as well as the overall geometric inductance of the qubit circuit. One possible
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route to achieve this could be an interlocking, i.e., overlapping, of the ring electrodes of

adjacent concentric transmons, leading to an increase in the mutual inductance while

suppressing the capacitive coupling due to proximity to the central island. The concen-

tric transmon may be considered as a viable starting point to further explore geometries

with longitudinal ZZ coupling eventually increased to an adequate strength.
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