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Zusammenfassung 

Agrobacterium fabrum ist ein nicht photosynthetisch aktives, gramnegatives, 

stäbchenförmiges Bodenbakterium welches die Bildung von Wurzelhalsgallentumoren in 

mindestens 140 Arten von Dikotyledonen und Gymnospermen auslösen kann. Die 

Tumorbildung wird durch den Transfer der T-DNA, einem Bereich auf dem Ti-plasmid, 

in das Pflanzengenom initiiert. Für diesen Transfer von DNA wird das sogenannte Typ-

IV-Sekretionssystem verwendet. 

Frühere Ergebnisse unserer Gruppe zeigten, dass weißes Licht die Infektion des 

Stamms der Gurkenpflanzen (Cucumis sativus) mit A. fabrum unterdrückt. 

Lichtwahrnehmung wird über Photorezeptor-Proteine wie z.B. Phytochrome ermöglicht. 

Von diesen Rotlichtrezeptoren gibt es zwei in Agrobacterium fabrum, genannt Agp1 und 

Agp2. Auch die Konjugation, ein ähnlicher Prozess bei dem einzelsträngige Plasmid-

DNA an benachbarte Bakterien weitergegeben wird, sowie auch die Bewegung von A. 

fabrum zeigen eine Phytochrom-abhängige Regulation. Neben dem Typ-IV-

Sekretionssystem besitzt A. fabrum auch noch das Typ-VI-Sekretionssystem, welches für 

die interbakterielle Kompetition nötig ist. Das T6SS dient hierbei der Übertragung von 

toxischen Proteinen an benachbarte Bakterien.  

In dieser Arbeit wurden Wildtyp- und Phytochrom-Mutanten Stämme von A. 

fabrum genutzt, um die Funktion der beiden Phytochrome näher zu bestimmen. Es wurde 

herausgefunden, dass sowohl die Mutanten ohne Phytochrom, als auch die Mutanten mit 

nur einem Phytochrom schneller wachsen als der Wildtyp. Die gleichen Stämme wurden 

auch dafür verwendet, den Einfluss von Phytochrom auf die Infektion der Stämme und 

Blätter von Nicotiana Benthamiana in Dunkelheit und unter kontinuierlichem Rotlicht 

bei Raumtemperatur zu untersuchen. Die Phytochrom-Doppelmutante zeigte einen 

negativen Einfluss auf die Infektion. Zudem konnte ein Agp1 inhibierender, sowie ein 

Agp2 fördernder Effekt von Rotlicht gefunden werden.  

Um herauszufinden, ob es eine Interaktion zwischen den Phytochromen Agp1 und 

Agp2 gibt, wurden verschiedene Experimente, darunter 
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Größenausschlusschromatographie, Photokonversion, Dunkelreversion, 

Autophosphorylierung und Messungen bezüglich der Chromophorassemblierungskinetik, 

durchgeführt. In allen Ansätzen zeigten die von den Mixturen der beiden Phytochrome 

erhaltenen Daten Unterschiede gegenüber den unter der Annahme einer fehlenden 

gegenseitigen Beeinflussung der beiden Phytochrome erwarteten Einzelmessungen und 

deuten dadurch darauf hin, dass es eine direkte Interaktion in vitro gibt. Diese Interaktion 

legt ein in vivo Zusammenwirken der beiden Phytochrome nahe.  

Die Quantifizierung der Expressionslevel des Proteoms in WT A. fabrum und der 

Phytochrom-Doppelmutante zeigt, dass bei Anwesenheit von Phytochrom die Expression 

des für die Konjugation notwendigen Proteins traA (Atu5111) begünstigt wird. 

Zusätzlich konnten Einflüsse auf das an der Chemotaxis beteiligte Protein mcpC 

(Atu0872), das Flagellenprotein motC (Atu0570) und des Pilusprotein (Atu0220) 

nachgewiesen werden. Zudem wurden Effekte auf das Hämolysin-coregulierte Protein 

(Atu4345) und das Toxin Atu4347 des T6SS beobachtet. Es wurden 

Kompetitionsexperimente mit Wildtyp A. fabrum bzw. mit der Phytochrome-

Doppelmutante durchgeführt, indem sie mit Bodenbakterien inokuliert, die DNA 

extrahiert und anschließend die hypervariable Region V2 der 16S rRNA analysiert wurde, 

um die Zusammensetzung der Bakterienmixtur herauszufinden. Zusammengefasst legen 

die Ergebnisse der Proteomuntersuchung und der Kompetitionsexperimente nahe, dass 

das Vorhandensein von Phytochromen die interbakterielle Konkurrenzfähigkeit 

verbessert und dadurch die Überlebensrate von A. fabrum erhöht. 
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Summary 

Agrobacterium fabrum is a non-photosynthetic, gram-negative, rod-shaped soil bacterium 

that causes the formation of tumours known as the crown gall disease in at least 140 

species of dicotyledons and gymnosperms. The tumour formation is initiated by the 

transfer of the so-called T-DNA of the Ti plasmid from bacteria into the genome of plants. 

For this transfer of DNA the Type IV secretion system (T4SS) is utilized.  

Previous results from our group showed that white light suppresses the infection 

of cucumber (Cucumis sativus) stems with A. fabrum. Light perception is accomplished 

by photoreceptor proteins like e.g. the red light photoreceptors called phytochrome. A. 

fabrum contains two phytochromes, termed Agp1 and Agp2. Conjugation, a similar 

process in which single stranded plasmid DNA is transferred to adjacent bacteria, was 

shown to be regulated by the presence of phytochrome. The movement is also controlled 

by phytochrome. Additionally, A. fabrum contains the type VI secretion system (T6SS) 

for competition against other bacteria. The T6SS can be used to transfer toxic proteins to 

adjacent bacteria.  

In this work, A. fabrum wild type (WT) and phytochrome mutant strains were 

used to determine the function of both phytochromes. It was found that both single and 

double phytochrome mutants grow faster than the WT. The same strains were also used 

to check for an effect on the infection of the stem and the leaves of Nicotiana 

benthamiana in darkness and under continuous red light irradiation at room temperature. 

The double phytochrome mutants showed a negative effect on the infection. Moreover, 

red light could inhibit the effect of Agp1 and promote the influence of Agp2.  

In order to study whether there is an interaction between the phytochromes Agp1 

and Agp2, multiple experiments, including size exclusion chromatography, 

photoconversion, dark reversion, autophosphorylation and measurements of the 

chromophore assembly kinetics, were performed. In all assays, the data obtained from 

mixtures of the two phytochromes show differences to the data that were predicted based 

on the assumption that one phytochrome does not affect the respective other, indicating 
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that there is a direct interaction in vitro. This interaction partially explain a coaction of 

both phytochromes in vivo.  

Quantification of the expression levels of the proteome in WT A. fabrum and the 

double mutant strain showed that phytochromes could promote the expression of the 

protein traA (Atu5111) necessary for conjugation. Additionally, there were influences on 

the chemotaxis protein mcpC (Atu0872), the flagellar protein motC (Atu0570) and the 

pilus protein (Atu0220). Moreover, an effect on the haemolysin coregulated protein 

(Atu4345) and the protein toxin Atu4347 of the T6SS was observed. Competition assays 

with either A. fabrum WT or double phytochromes mutant inoculated together with soil 

bacteria followed by analysis of the hypervariable region V2 of the 16S rRNA gave 

insight into the composition of bacteria after letting them compete for a given time. 

Taken together, the results from proteomics and competition assays suggest that the 

presence of phytochromes could improve the interbacterial competitiveness and therefore 

the survival rate of A. fabrum. 
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Introduction 

1. Phytochromes 

The photoreceptor phytochrome was first found in plants. Later, proteins of the 

phytochrome were discovered in fungi and bacteria (Beattie et al., 2018). The common 

feature among phytochromes is photoconversion between two conformational states, the 

Pr form (red absorbing) and Pfr form (far-red absorbing). A typical phytochrome consists 

PAS domain (Aravind and Ponting, 1999), a GAF domain (Aravind and Ponting, 1997) 

and PHY domain at N-terminal, which are combined to become a photosensory core 

module (PCM). At the C-terminus, it contains a histidine kinase module (Figure 1) 

(Buchberger and Lamparter, 2015; Lamparter et al., 2017; Rockwell et al., 2006). 

Phytochromes regulate light effects in plants at many developmental stages such 

as germination of seeds, seedling de-etiolation or flowering (Kendrick and Kronenberg, 

1994; Li et al., 2011). In fungi, conidia germination, stress response and the balance 

between sexual and vegetative development are controlled by phytochromes (Bayram et 

al., 2010; Igbalajobi et al., 2019; Yu et al., 2016; Yu and Fischer, 2018). Phytochromes of 

some photosynthetic bacteria control pigments and proteins related to photosynthesis 

(Giraud et al., 2002; Giraud et al., 2004). In non-photosynthetic bacteria, phytochromes 

regulate the conjugation and DNA transport to plant cells (Bai et al., 2016; Oberpichler et 

al., 2008). As typical dimeric proteins, phytochromes consists of two identical subunits. 

Heterodimers formation is found in organisms with several phytochromes. For example, 

in the model plant Arabidopsis thaliana with five different phytochromes phyA to phyE, 

heterodimers can be formed between phyB, phyC, phyD and phyE (Sharrock and Clack, 

2004). In plants, many phytochrome interacting proteins are known, for example, 

phytochrome-interacting factors (PIFs) (Kami et al., 2012; Ni et al., 1998), phytochrome-

associated protein phosphatase 5 (PAPP5) (Ryu et al., 2005), phytochrome kinase 

substrate 1 (PKS1) (Fankhauser et al., 1999; Lariguet et al., 2006; Schepens et al., 2008), 

the cytosolic proteins nucleotide diphosphate kinase 2 (NDPK2) (Choi et al., 1999; Shen 

et al., 2005; Tanaka et al., 1998) or other related proteins (Al-Sady et al., 2006; Castillon 
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et al., 2007; Kircher et al., 1999). In fungi, phytochrome modulated the signal 

transmission through interacting with velvet A (VeA) and the blue light receptor system 

(LreA/LreB) (Igbalajobi et al., 2019; Purschwitz et al., 2008; Yu et al., 2016). Gene 

activation by the phytochrome-interacting transcription factor PpsR is triggered during 

phytochrome signal transmission in Rhodopseudomonas palustris and Bradyhizobium 

spec. (Jaubert et al., 2004; Penfold and Pemberton, 1994). Most bacterial phytochromes 

are histidine kinases, therefore, the phytochromes might have signal transmitting function 

(Esteban et al., 2005; Lamparter et al., 2002). The typical mechanism of a histidine 

kinase is that after autophosphorylation at a conserved His residue, phosphate is 

transferred from the His to a conserved Asp on a response regulator protein. For response 

regulator of bacterial phytochrome, the roles are still unclear and also the other 

interaction partners have not yet been discovered. In a given organism, knowing 

interaction partners and the interaction modes are a necessity to uncover the mechanism 

of signal transduction.   

 

Figure 1. Domain structures of different phytochromes. Vertical red lines indicate the position 

(Cys residues) of bilin attachment.  Modified figure from (Lamparter et al., 2017).   
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2. Soil bacterium Agrobacterium fabrum 

Agrobacterium fabrum is a non-photosynthetic, gram-negative and rod-shaped bacterium 

that causes the crown gall (tumor) disease (Figure 2A) in at least 140 species of 

dicotyledons or gymnosperms to utilize nutrients from the plants (Moore et al., 1997). It 

usually lives in the soil, preferably in cultivated fields with loose soil (Smith and 

Townsend, 1907). The bacterial movement is provided by four to six flagella on the side 

of cell (Figure 2B) (Chesnokova et al., 1997; Shaw et al., 1991).  

 

 

Figure 2. Crown gall (A) caused by Agrobacterium fabrum (B) in Platanus orientalis. Figure B 

from Alyssa Collins. 
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2.1 Conjugation 

Conjugation is a mechanism of horizontal gene transfer and therefore, it is very important 

for adapting to the environment or for gaining a selectional benefit, and then that it is also 

in A. fabrum. For example, it is responsible for the transfer of the Ti (tumour inducing) 

plasmid between A. fabrum strains (Holmes and Jobling, 1996a, b; Pan et al., 1995; Ray 

and Ryan, 2004). In A. fabrum, TraA proteins are supposed to initiate the process of 

conjugation through nicking double stranded DNA at the oriT position and covalently 

binding to the single stranded DNA (Cho and Winans, 2007). The transfer of DNA – 

protein adduct to the recipient cell is facilitated via the Type 4 secretion system (T4SS). 

Three TraA homologs have been found in A. fabrum, which are encoded by the Ti-

plasmid, the At-plasmid, and the linear chromosome, respectively (Cho and Winans, 

2007; Goodner et al., 2001; Wood et al., 2001). Donor cells without a Ti-plasmid have a 

lower conjugation rate than strains with (Krieger et al., 2008), meaning that the Ti 

encoded TraA protein may promote the conjugation predominantly. A lower conjugation 

rate is observed in single agp1 or agp2 gene mutant donor cells as compared to the wild 

type cells. Moreover, there is no conjugation in the double agp1 and agp2 gene mutant 

cells. Therefore, I speculate that both phytochromes Agp1 and Agp2 can interact with 

each other and also with TraA protein to regulate the conjugation. Here I tested whether 

there was an interaction between Agp1 and Agp2 in vitro. 
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2.2 Plant infection 

Under natural conditions, A. fabrum is chemotactically attracted to wounds of plants 

producing compounds such as L-arabinose, pyrogallic acid, vanillin and acetyl syringone 

that function as chemoattractants and inducers of the toxic region of virulence genes on 

the Ti plasmid that encode the virulence proteins in A. fabrum (Ashby, 1988; Gelvin, 

2000; Morris and Morris, 1990; Parke et al., 1987). The soil bacterium causes the tumors 

by transmission and subsequent insertion of the T-DNA, which contains genes like the 

onc-genes and the ops-genes originating from the Ti plasmid into the genome of plant 

cells (Figure 3). The onc-genes encode proteins which can induce additional growth by 

increasing the auxin and cytokinine levels locally, while the ops-genes encode for opsin. 

The T4SS is necessary for the T-DNA transfer (Alvarez-Martinez and Christie, 2009; 

Chilton et al., 1977; Gelvin, 2003; Nester, 2015). The tumors form optimally at 22 °C. 

However, a significant decrease in tumor formation at higher temperature or white light is 

observed in plants (Dillen et al., 1997; Oberpichler et al., 2008).  

 

 

Figure 3. Plant infection model of Agrobacterium fabrum. Modified figure is from Steven M. 

Carr and Griffiths. 

 



Introduction 

10 

 

2.3 Type IV secretion system 

The T4SS transports Ti and At plasmids during the process of conjugation to the recipient 

cell. Moreover, A. fabrum can use the T4SS to deliver T-DNA into plant cells and finally 

to cause the crown gall formation. The T4SS is composed of the proteins VirB1-11 and 

VirD4 (Figure 4) and therefore, it is also named VirB / VirD4 T4SS (Alvarez-Martinez 

and Christie, 2009; Beijersbergen et al., 1994; Shirasu et al., 1990; Ward et al., 1988). 

VirD2, a relaxase, initiates the infection process by nicking the oriT position of pTi 

plasmid and then helicase covalently binds with single stranded T-DNA (Yanofsky et al., 

1986). The process of the delivery of T-DNA-protein complexes via T4SS is driven by 

ATPases (VirD4, VirB4 and VirB11) which can also interact with each other (Atmakuri 

et al., 2004; Ripoll-Rozada et al., 2013).   

 

Figure 4. Type IV secretion system model of Agrobacterium fabrum. Modified figure from 

Kanehisa Laboratories (https://www.kegg.jp/kegg-bin/show_pathway?atu03070). 
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2.4 Type VI secretion system 

On the basis of abundant extracellular accumulation of haemolysin-coregulated protein 

(Hcp, Au4345) induced by pH 5.5, the type VI secretion system (T6SS) (Figure 5) of A. 

fabrum was detected (Lassalle et al., 2011; Wu et al., 2008). In the A. fabrum T6SS gene 

cluster, there are three operons, imp, hcp and vgrG which encode 14 genes (atu4343 to 

atu4330), 9 genes (atu4344 to atu4352) and 5 genes (atu3642 to atu3638), respectively 

(Lin et al., 2013). During interbacterial competition, T6SS of A. fabrum C58 launches 

DNase effectors into Escherichia coli DH10B cells to ultimately kill them, whereas the 

injection of effectors can cause the counteroffensive by Pseudomonas aeruginosa in vitro. 

However, in plant, competition between A. fabrum and P. aeruginosa would be won by A. 

fabrum. There are three prospective toxin / immunity pairs (Atu4350 / Atu4351, Atu3640 

/ Atu3639 and Atu4347 / Atu4346 proteins) of T6SS in A. fabrum. DNase activity was 

observed in the Atu4350 and Atu3640 proteins, and Atu4347 could be a peptidoglycan 

amidase. A. fabrum can used the toxin protein to kill other bacterium (English et al., 2012; 

Ma et al., 2014). Similarly, for a competitive in soil A. fabrum could also have advantage 

provided by the T6SS and the effectors.  
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Figure 5. Type VI secretion system model of Agrobacterium fabrum. Modified figure from 

Kanehisa Laboratories (https://www.kegg.jp/kegg-bin/show_pathway?atu03070). 
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3.  Phytochromes from A. fabrum 

Plants and cyanobacterium use phytochromobilin (Rüdiger and Thümmler, 1994) and 

phycocyanobilin (Hübschmann et al., 2001; Wu et al., 1997) as a chromophore, 

respectively. For fungal or bacterial phytochromes, biliverdin (BV) is used as a 

chromophore (Bhoo et al., 2001). The first prokaryotic phytochrome was found in 

cyanobacterium Synechocystis (Hughes et al., 1997). Later, in A. fabrum phytochromes 

Agp1 and Agp2 were discovered (Goodner et al., 2001; Karniol and Vierstra, 2003; 

Lamparter et al., 2002; Wood et al., 2001). The covalent binding sites of Agp1 and Agp2 

for BV are localized at the cysteine (Cys)-20 and -13, respectively (Karniol and Vierstra, 

2003; Lamparter et al., 2004; Lamparter et al., 2002). In darkness, Agp1 is in the Pr form 

and Agp2 is in the Pfr form (Karniol and Vierstra, 2003; Rottwinkel et al., 2010). Agp1 is 

a classical histidine kinase which has a conserved Phe residue, whereas Agp2 belongs to 

the HWE HK type which has a conserved histidine residue, a Trp-X-Glu motif and no 

recognizable “F box” (Bhoo et al., 2001; Karniol and Vierstra, 2004). Response regulator 

of Agp1 is a separate protein (Esteban et al., 2005; Lamparter et al., 2002), whereas Agp2 

response regulator is found at the phytochrome C-terminus which is also found in fungal 

and bacterial phytochromes. In the chromophore pocket of phytochromes, the 

chromophore interacts with amino acid residues, which can determine the spectral 

properties. Protein-protein interaction or environmental changes can also influence the 

UV-vis spectra which in turn indicate changes within this pocket. Moreover, the 

phytochrome spectrum is pH dependent (van Thor et al., 2001; Zienicke et al., 2013). 

Temperature effects spectral properties of Agp1 and other phytochromes (Njimona and 

Lamparter, 2011; Njimona et al., 2014). For Agp2, spectral changes could be caused by 

the cell extract of Agrobacterium agp1/2- double knockout mutant (Krieger et al., 2008).  
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Figure 6. The structure of Agp1-PCM and Agp2-PCM. PCM: photosensory core module. Figures 

were constructed by PyMOL using the protein data bank (PDB) codes (Agp1-PCM: PDB code 

5I5L; Agp2-PCM: PDB code 6G1Y) (Nagano et al., 2016; Schmidt et al., 2018).  

 

4. Aim of this project 

Researchers have mainly studied the biological functions of phytochromes in plants, 

fungi and photosynthetic bacteria, whereas little information is available on non-

photosynthetic bacteria. Here phytochromes Agp1 and Agp2 of non-photosynthetic 

bacterium A. fabrum was studied. I investigated the phytochrome roles by A. fabrum 

phytochrome single and double mutants. For their molecular mechanisms, tandem mass 

tags (TMT) based quantitative proteomics was used to study the differentially expressed 

proteins of white light and dark grown A. fabrum wild type and double agp1 / agp2- 

knockout mutants. Moreover, the possibility of protein interaction between the 

phytochromes Agp1 and Agp2 from A. fabrum was also tested in vitro. I performed size 

exclusion, photoconversion, dark reversion, phosphorylation and BV assembly kinetics 

with purified, recombinant Agp1 and Agp2 in mixed solutions in comparison with single 

proteins. 
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Results 

1 Distribution of phytochromes Agp1 and Agp2 in genus Agrobacterium  

Phytochromes are widely distributed among bacteria, whereas there are also many 

species without a phytochrome gene (Lamparter, 2004). The distribution among relatives 

can provide additional information about a function. The genes for the phytochromes 

Agp1 and Agp2 are from Agrobacterium fabrum C58, the first Agrobacterium strain that 

has been sequenced (Goodner et al., 2001; Wood et al., 2001). Meanwhile, genomes of a 

large number of closely related strains and species are known.  Here both Agp1 and Agp2 

homologs were searched in 22 genomes of Agrobacterium or Radiobacter, the closest 

species found in NCBI database searches. Quite interestingly, 21 strains contained the 

Agp2 homolog, and only four the Agp1 homolog (Table 1). Agp2 of A. fabrum and 

related phytochromes from Rhizobiaceae belong to the bathy phytochromes which have a 

Pfr dark state and absorb in the larger wavelength range, and I suppose that the Agp2 

homologs identified here are also bathy phytochromes. The distribution results showed 

that the long wavelength range could be even more closely related to survival and 

evolution of Agrobacterium. 
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Table 1. Distribution of Agp1, Agp2 and their homologs in Agrobacterium. Source of the 

secuqnces is from NCBI database searches. 

Genus Agrobacterium Agp1 Agp2 reference 

Agrobacterium fabrum + + 

(Goodner et al., 2001; 

Wood et al., 2001) 

Agrobacterium deltaense + + unknown 

Agrobacterium salinitolerans + + unknown 

Agrobacterium sp. YIC 4121 + - unknown 

Agrobacterium albertimagni - + (Trimble et al., 2012) 

Agrobacterium arsenijevicii - + (Kuzmanović et al., 2015) 

Agrobacterium bohemicum - + (Zahradník et al., 2016) 

Agrobacterium larrymoorei - + unknown 

Agrobacterium rhizogenes 
- + 

(Franco et al., 2016; Kajala 

et al., 2014) 

Agrobacterium rosae 
- + 

unknown 

Agrobacterium rubi - + (Davis II et al., 2016) 

Agrobacterium vitis - + (Slater et al., 2009) 

Agrobacterium genomosp. 13 - + unknown 

Agrobacterium sp. FDAARGOS_525 - + unknown 

Agrobacterium sp. 10MFCol1.1 - + unknown 

Agrobacterium sp. CNPSo 2736 - + unknown 

Agrobacterium sp. LAD9 - + unknown 

Agrobacterium sp. MS2 - + unknown 

Agrobacterium sp. NCPPB 925 - + unknown 

Agrobacterium sp. RS6 - + unknown 

Agrobacterium sp. RZME10 - + unknown 

Agrobacterium sp. SUL3 - + unknown 
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2 Analysis of functions of phytochromes Agp1 and Agp2 

2.1 The effect of Agp1 and Agp2 on growth 

To test the effects of phytochromes Agp1 and Agp2 on growth of A. fabrum, the growth 

rates of wild type (WT) and phytochrome single (agp1- or agp2-) and double (agp1/2-) 

knockout mutants were assayed at different temperatures and light conditions. In earlier 

reports (Oberpichler et al., 2006), there was no significant difference between WT and 

agp1- or agp2- single mutants after growth at 28 ℃ for 6 h. But longer times were not 

tested. After measurement of the growth in darkness at 28 ℃ for 51 h, I observed that 

growth rates of both single and double mutants had higher than that of WT (Figure 7). 

Therefore, phytochromes Agp1 and Agp2 have a negative impact on growth in A. fabrum.  

In order to investigate the impacts of light on the growth at 28 ℃, I compared the 

growth rates under darkness, white light, red light in which phytochromes Agp1 and 

Agp2 absorb (Karniol and Vierstra, 2003; Lamparter et al., 2002)  or blue light. No 

significant differences were found in the growth rates of WT and mutants under darkness, 

white light and red light. However, blue light did promote their growth as compared to 

the other light condition (Figure 8). In A. fabrum, there are two blue light photoreceptor 

photolyases PhrA and PhrB which repair the UV damaged DNA (Oberpichler et al., 2011; 

Zhang et al., 2013). I assume that blue light could led to increased growth via the 

photolyases. 

In a similar way like the conjugation research of A. fabrum WT and phytochrome 

mutants at various temperatures (Bai et al., 2016), the growth rates of WT and mutants 

were also studied at the same temperature range from 20 ℃ to 37 ℃ in darkness. The 

results showed that the bacterial growth rates at 25 ℃ had a maximum. From 20 ℃ to 32 ℃ 

all mutants had greater growth rates than WT, whereas at 37 ℃, growth rates of agp2- 

mutant and agp1/2- double mutant were lower than that of WT.  Furthermore, there was 

no significant different between WT and agp1- mutant (Figure 9). These results indicate 

that at higher temperature 37 ℃ the Agp2 could play an important role in the promotion 

of growth under dark.  
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Similar to the experiments at 28 ℃ (Figure 8), the effects of different light 

conditions on the growth rates at 37 ℃ were also performed in darkness, white light, red 

light or blue light. Again, the promotion of growth by blue light was observed in WT and 

mutants when incubation temperature was 37 ℃. At 37 ℃ growth of WT and agp1- or 

agp2- single mutants was promoted by white light but inhibited by red light (Figure 10), 

which were opposed to the results (at 28 ℃ incubation temperature) that white and red 

light could not impact the growth rate as compared to the control darkness (Figure 8).  

 

 

Figure 7. Growth curves of WT and mutants of A. fabrum. The cell concentration was measured 

as OD600 after 0, 6, 12, 27 or 51 h. Values are means ± SE of 3 replicates. 
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Figure 8. Effects of white, red and blue light on growth of A. fabrum at 28 ℃ . The cell 

concentration was measured as OD600 after 51 h. Values represent means ± SE of 3 replicates. 
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Figure 9. Effects of temperature on growth of A. fabrum. The cell concentration was measured 

after 51 h as OD600. Incubation temperatures were 20, 25, 28, 32, and 37 °C. Mean values ± SE 

of 3 replicates. 
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Figure 10. Effects of white, red and blue light on growth of A. fabrum at 37 ℃. The cell 

concentration was measured as OD600 after 51 h. Values represent means ± SE of 3 replicates. 
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2.2 The effect of Agp1 and Agp2 on the plant infection  

Previous results from our group showed that white light suppressed the infection of 

cucumber (Cucumis sativus) stems with A. fabrum (Oberpichler et al., 2008). The 

question whether photoreceptor phytochromes Agp1 and Agp2 control the infection was 

addressed. In this research, I mainly used the WT, agp1-, agp2- and agp1/2- A. fabrum to 

infect the stems and leaves of Nicotiana benthamiana in darkness and red light at room 

temperature, respectively. Elisabetha Averbukh contributed to the experiments of plant 

infection. 

In the stem study, tumors were not observed in the plants infected by agp1/2- A. 

fabrum under darkness or red light, whereas tumors were observed in the plants infected 

by WT, agp1-or agp2- A. fabrum under same light condition. In addition, I found that 

after infection by WT or agp2- A. fabrum in darkness tumors of the stems were bigger 

than those induced in red light. In contrast, the tumors caused by agp1- A. fabrum in 

darkness were smaller than in red light (Figure 11).  

For the plant infection, the leaves were used as infected tissue. The β-

glucuronidase (GUS) activity of infected leaves was estimated by staining and 

fluorometric assays. If the ability of infection was stronger, more GUS gene from A. 

fabrum carrying a pBIN-GUS plasmid could be transformed into the leaves, therefore the 

higher GUS activity would be observed in the infected leaves. After reaction with 5-

bromo-4-chloro-3-indolyl glucuronide (X-Gluc, Thermo Fisher), apparent blue stains 

were just found in the transgenic leaves infected by WT or agp2- A. fabrum in darkness 

or by agp1- A. fabrum in red light (Figure 12). To compare the difference in GUS activity 

between the transgenic leaves, we used the fluorometric GUS assay. There was no 

significant difference in the leaves having the apparent blue stains (Figure 13). 

Finally, I conclude that phytochromes Agp1 and Agp2 play a positive impact on 

infection in A. fabrum. Red light could inhibit the Agp1 but promote the Agp2. 
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Figure 11. Comparison of WT and phytochrome mutants A. fabrum virulence in dark and red 

light. 6 weeks old Nicotiana benthamiana stems were infected with WT and phytochrome 

mutants (agp1-, agp2- and agp1/2-) A. fabrum collected from LB agar plates at room temperature. 

3 independent infected stems with A. fabrum WT or the mutants. For the stem infection of A. 

fabrum WT and double mutant agp1/2-, Elizaveta Averbukh has done similar experiment in her 

master thesis before me (Averbukh, 2018).  
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Figure 12. Virulence of WT and phytochrome mutants A. fabrum in dark and red light. WT and 

phytochrome mutants (agp1-, agp2- and agp1/2-) A. fabrum containing pBIN-GUS plasmid 

were used to infect 6 weeks old Nicotiana benthamiana leaves at room temperature. Blue β-

glucuronidase (GUS) stains were indicated by red arrows. 3 independent infected leaf with A. 

fabrum WT or the mutants. For the leaf infection of A. fabrum WT and double mutant agp1/2-, 

Elizaveta Averbukh has done similar experiment in her master thesis before me (Averbukh, 2018). 
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Figure 13. Fluorescent quantitative analysis of β-glucuronidase (GUS) activity of Nicotiana 

benthamiana leaves infected by WT and phytochrome mutants A. fabrum in dark and red light. 

Mean values of 3 independent infected leaves ± SE. 
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3 Evidence for weak interaction between Agp1 and Agp2 proteins 

 

 

 

 

Figure 14. Domain structures of phytochromes Agp1 and Agp2. The PAS, GAF and PHY 

domains are included in the photosensory chromophore module. The red lines indicate BV 

binding sites (cysteines). In the response regulator of Agp2, the phosphoaccepting Asp residue 

(D783) indicated by an orange line was mutated to Ala or Asn. 
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3.1 Size exclusion chromatography 

The possible protein – protein interaction could directly affect the size exclusion 

chromatography (SEC) pattern. Because the rate of protein movement may be inhibited 

by the interaction with the other phytochrome protein in the SEC column. Therefore, 

SEC profiles of Agp1 and Agp2 alone were compared with those of a mixture sample of 

Agp1 and Agp2. I tested all four different combinations. Each profile had one dimer 

peaks (260 kDa in Agp1, 280 kDa in Agp2) and three oligomer peaks (443 kDA to void 

volume) (Figure 15). The formation of oligomer was only observed in slow separations 

(0.1 ml / min flow rate). However, at high flow rate of 0.5 ml / min, only one dimer peak 

was observed, as in earlier studies (Noack et al., 2007). Therefore, the difference between 

low flow rate and high flow rate could be caused by the reduction of NaCl in the gel. 

As compared with dimer peak of Agp1, that of Agp2 was always broader with 

longer elution times (Figure 15A-D), showing that a fraction of Agp2 eluted as monomer. 

I compared SEC profiles of Agp1 and Agp2 mixtures with those of mathematical 

addition between Agp1 and Agp2. A shift of Agp1 and Agp2 dimer peaks to earlier 

elution times would be caused by their stronger interaction. The dimer peaks of Agp1 and 

Agp2 were always observed at identical elution times. However, at elution times 

corresponding to the Agp2 monomer, the absorbances of the mixture were lower than 

those of added profiles, indicating that there could be an interaction between Agp2 

monomer and Agp1. Each separation was repeated three times. A difference was found in 

all six runs when Agp2 was Pr form (Figure 15F and H, replicates). When Agp2 was Pfr 

form, I also observed that there was a difference in 4 out of 6 runs (Figure 15E and G, 

replicates). According to the SEC profiles, there could be a weak interaction between 

Agp1 and Agp2, especially with Pr form of Agp2.  
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Figure 15. Size exclusion chromatography of Agp1 (A, B), Agp2 (C, D) and comparison between 

mixture profiles of Agp1 / Agp2 samples (mixture, red lines) and profiles of added Agp1 and 

Agp2 (control, black lines) (E, F, G, H). For Pfr of Agp1 and Pr of Agp2, the samples of dark 

states were irradiated with 2 min red or far-red light before the mixing, respectively. Either 200 μl 

mixture (4 μM Agp1, 4 μM Agp2) or as single Agp1 (4 μM) or Agp2 (4 μM) was used to the 

SEC column. The absorbance was measured at 280 nm. The elution times of marker proteins are 

indicated by arrows.  
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3.2 Dark conversion and UV/vis spectra 

To test whether the possible interaction between Agp1 and Agp2 could affect their dark 

conversion, I compared the dark conversion of Agp1 or Agp2 with their mixture. The 

experiments were performed by mixing basic buffer or Agp2 with red irradiated Agp1 

and then with time course measurements at 700 nm. Similarly, far-red irradiated Agp2 

was measured at 750 nm after mixing with basic buffer or Agp1. Triexponential decay 

functions could be used to fit all dark reversion kinetics (Figure 16 and Table 2). 

Compared with control (far-red irradiated Agp2 and basic buffer), time constants t1, t2 

and t3 of the mixture (far-red irradiated Agp2 and Agp1) were smaller. For the assay with 

red irradiated Agp1, the t1 and t2 of the mixture were smaller than those of the control 

(Agp1 alone), whereas there was no difference between their t3.    

UV/vis spectra could also be affected by the possible protein–protein interaction. 

Therefore, the difference spectra between far-red or red irradiated Agp1 / Agp2 mixture 

and the dark states was compared with mathematically added control. For the 

experiments of far-red irradiation, Agp2 was mainly influenced, whereas the effect of 

Agp1 was small. There was a clear difference between the mixture and added samples.  

In the range of 700 nm, the difference spectrum of mixture was positive, whereas that of 

the control was negative (Figure 17A). Moreover, a maximum at ~700 nm is observed in 

the double difference spectrum which looks like a Pr spectrum from 600 nm to 800 nm. 

For the similar experiments with red light, the a major extent of Agp1 conversion 

from Pr to Pfr and a minor extent of Agp2 Pfr to Pr  conversion were caused by red light. 

Also, the difference between difference spectra of Agp1/Agp2 mixture and that of added 

was observed (Figure 17B). A shoulder at ~750 nm with maximum at ~700 nm is found 

in a double difference spectrum which resembles a Pfr spectrum from 600 nm to 800 nm. 

Both dark conversion and UV/vis spectra show protein – protein interactions between 

phytochromes Agp1 and Agp2.  
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Figure 16. Dark conversion of red irradiated Agp1 (A), without and with Agp2, recorded at 700 

nm (Pr increase) (C). Dark reversion of far-red irradiated Agp2 (B), without and with Agp1, 

measured at 750 nm (Pfr increase) (D). Samples were irradiated before mixing. Three replicates 

were performed in the experiments. In Table 2, the method of curves fitted to the experimental 

data is shown. 
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Table 2. Exponential fit for dark conversion of Agp1 and Agp2. t1, t2, t3: time constants; A1, A2, 

A3: amplitudes. All error values are obtained from the fit. Here one example is shown, which 

similar to results of the other two repetitions. 

Equation: y = -A1*exp(-x/t1) - A2*exp(-x/t2) - A3*exp(-x/t3) + y0 

 

Agp1 Agp2 

 

in buffer in Agp2 in buffer in Agp1 

A1 0.042 + 0. 002 0.051 + 0.002 0.046 + 0.002 0.034 + 0.003 

A2 0.13 + 0.002 0.094 + 0.001 0.041 + 0.004 0.029 + 0.003 

A3 0.16 + 0.0004 0.15 + 0.0005 0.057 + 0.005 0.069 + 0.002 

t1 (s) 208 + 9 160 + 6 45 + 3 34 + 6 

t2 (s) 870 + 20 790 + 20 250 + 30 130 + 20 

t3 (s) 7500 + 200 7700 + 200 790 + 50 540 + 10 

R-Square 0.99985 0.9997 0.99854 0.99799 
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Figure 17. Difference absorbance spectrum of “far-red (A)” or “red (B) irradiated” minus “dark” 

state (above) and the double difference absorbance spectrum of “mixture” (Agp1 and Agp2) 

minus “control” (added; below). The final concentrations of agp1 and agp2 were 5 µM. Mixture 

and control are shown by red and black lines, respectively. The spectrum is also found in the 

other two replicates. 

 

3.3 Histidine kinase autophosphorylation 

Both Agp1 and Agp2 have a histidine kinase domain, and, an additional response 

regulator was found at C-terminus of Agp2 (Karniol and Vierstra, 2003; Lamparter et al., 

2002). I tested whether their phosphorylation activities could be influenced by possible 

protein interaction. For Agp1, several phosphorylation studies has been performed in our 

group (Lamparter et al., 2002; Njimona and Lamparter, 2011), whereas agp2 

phosphorylation has not yet been performed before. Here a weak phosphorylation band 

was just observed in the Agp2 sample with residual ammonium sulfate, but in the sample 
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without ammonium sulfate, no autophosphorylation band was detected (Figure 18A). For 

this observation of Agp2, I speculated that a fast transphosphorylation and 

dephosphorylation was catalyzed by the response regulator which was an example for 

another histidine kinase (Immormino et al., 2016) and this turnover would be suppressed 

by ammonium sulfate. Therefore, Agp2 mutants of response regulator at Asp783 were 

used to test the hypothesis. Homology analysis of response regulators indicated that the 

phosphate would be accepted by the Asp783 from His residue in the His kinase (Karniol 

and Vierstra, 2003). For the mutant Agp2_D783A, the autophosphorylation signal was 

higher as compared to WT Agp2. Moreover, the highest signal was observed in 

Agp2_D783N mutant (Figure 18B). Free phosphate would be detected if there was a ATP 

turnover in the proteins. Therefore, an assay of malachite green was chosen to detect free 

phosphate. After incubation of Agp1 (Pr), Agp2 (Pfr), Agp2_D783A (Pfr) or 

Agp2_D783N (Pfr) protein with ATP, I have not detected free phosphate (Figure 19). 

Therefore, the assumption of dephosphorylation was rejected. There was an obvious 

mobility differences of proposed dimers between Agp2 WT and the mutants according to 

their SEC results. The apparent molecular mass of Agp2, Agp2_D783A and 

Agp2_D783N were 280 kDa, 292 kDa and 318 kDa, respectively (Figure 20). These 

significant differences indicate that the Agp2 form is significantly influenced by the 

protein mutations. When the negatively charged amino acid of Asp is changed to neutral 

amino acids of Ala and Asn, there will be ionic interactions. The Agp2 mutant of Asn has 

biggest phosphorylation signal and also the maximum impact on SEC, which is positively 

related to the fact that Asn acid residue can play roles of donor or acceptor of hydrogen 

bonds. Finally, I suppose that the response regulator domain of Agp2 protein screens the 

histidine of HWE module, resulting in the inhibition of autophosphorylation, and that the 

reduction of ionic interactions of mutations can cause detached response regulator. For 

the Asn783 of Agp2_D783N, the side chain maybe maintain an obviously different 

structure as compared with Agp2_D783A.     
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Figure 18. Phosphorylation of wild type Agp2 (A) and the mutants D783A and D783N (B). In (A, 

B) the concentration of (NH4)2SO4 was always 50 mM. Typical autoradiograms are shown in 

above panels. In the rectangle area including a stained band, the whole pixel intensity without 

background was expressed as means ± SE of 5 replicates (staining intensities). All proteins were 

always incubated with ATP32P for 20 minutes and films were exposed for 20 hours. The below 

panels show Coomassie stains. 
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Figure 19. Free phosphate determination with the malachite green phosphate assay. (A) The 

standard curve of free phosphate. (B) Variations in amounts of free phosphate in the mixture of 

Agp1 (Pr), Agp2 (Pfr), Agp2_D783A (Pfr) or Agp2_D783N (Pfr) with ATP after different 

incubation times (0, 30, 60, 90 or 120 min). The absorbance was recorded at 620 nm. Three 

biological replicates were performed. 
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Figure 20. Size exclusion chromatography analysis of Pr and Pfr forms of Agp2 (A, B), 

Agp2_D783A (C, D) and Agp2_D783N (E, F). All protein concentrations were always 4 μM. 

The SEC elution profile was recorded at 280 nm. The dimer (Di) positions of Agp1 and Agp2 and 

the positions of four marker proteins are indicated by different color arrows, respectively.  
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I analyzed all forms combinations of Agp1 and Agp2 in the phosphorylation of 

mixture of Agp1 / Agp2 proteins and compared them with Agp1 or Agp2 alone, 

respectively. There was no visible phosphorylation of Agp2 when all ammonium sulfate 

was eliminated. Therefore, I just could know the effect of Agp2 on the Agp1 

autophosphorylation. For Agp1 in the Pr form, the relative phosphorylation signal 

decreased significantly from 72 ± 1 (Agp1 alone) to 52 ± 3 (mixed with Pfr Agp2) or 55 

± 2 (mixed with Pr Agp2), respectively. Agp1 in the Pfr form had a lower signal than the 

Pr form, which was similar to earlier studies (Lamparter et al., 2002; Njimona and 

Lamparter, 2011).  However, for Agp1 in the Pfr form, the signal was not influenced by 

Agp2 in the Pfr form or Pr form (Figure 21A). The mutant protein Agp2_D783N had 

high phosphorylation activity, and was therefore used to study the influence of Agp1 on 

the Agp2 phosphorylation activity. The effect of Agp2_D783N on the Agp1 activity in 

the Pr form was similar to wild type Agp2, the phosphorylation of Agp1 always 

decreased. In contrast to wild type Agp2, the Pfr activity of Agp1 could be inhibited by 

the mutant Agp2_D783N. The  Pfr and Pr signals of  Agp2_D783N, when mixed with Pr 

or Pfr of Agp1, was reduced from 38 ± 1 to 32 ± 2 and from 39 ± 3 to 30 ± 3, respectively. 

After incubation with Agp1-Pfr or Agp1-Pr, the Pr signal of Agp2_D783N was decreased 

to 31 ± 1 and increased to 44 ± 4, respectively. These results showed that Agp1 and Agp2 

protein can slightly influence phosphorylation activities of Agp2 and those of Agp1, 

respectively. The influence of Pfr or Pr Agp2 on the Pr Agp1 was most obvious (Figure 

21B). Because the concentration of ATP and each phytochromes was ca. 50 µM and 2.5 

µM, respectively, I concluded that there was no competition influence between 

phytochromes Agp1 and Agp2. 
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Figure 21. Change in phosphorylation of wild type Agp1 / wild type Agp2 assay (A) or wild type 

Agp1 / mutant Agp2_D783N assay (B). Typical autoradiogram images and Coomassie stained 

bands were shown on upper panels and below panels, respectively. For Agp1-Pr and Agp2-Pfr, 

we directly used dark states of them. For Agp1-Pfr and Agp2-Pr, the Agp1 and Agp2 of dark 

states were irradiated by red and far-red light before mixing, respectively. All proteins were 

always incubated with ATP32P for 20 minutes and films were exposed for 20 hours. The 

positions at 82 kDa and 95 kDa refer to Agp1 and Agp2, respectively. In the rectangle area 

including a stained band, the relative staining intensities without background was expressed as 

mean values of 5 replicas ± SE. The sum of relative staining intensities of both Pr form of Agp1 

and Pfr form of Agp1 set to value of 100.  

 

 

 

 



Results 

39 

 

3.4 Chromophore assembly 

I also checked the influence of Agp1 and Agp2 on the chromophore assembly of each 

other. In the control experiments, after apo-proteins apo-Agp1 or apo-Agp2 was mixed 

with BV, their absorbance kinetics were measured by photometer at 700 nm or 750 nm, 

respectively. The spectra between 300 nm and 850 nm was also measured. In the mixture, 

the holo-Agp2 / BV sample was mixed with apo-Agp1 or the holo-Agp1 / BV sample 

mixed with apo-Agp2. The BV assembly of apo-Agp1 or apo-Agp2 was significantly 

effected by the other holo-protein. Earlier studies showed that the assembly of apo-Agp1 

were always finished during ca. 2 min (Lamparter et al., 2002), whereas it could 

apparently finish after 40 min in the presence of holo-Agp2 (Figure 22). However, the 

time of apo-Agp2 assembly was reduced from 1 h (Karniol and Vierstra, 2003) to 25 min 

by holo-Agp1 (Figure 23). I speculate that the changes of BV assembly time might be 

due to the possible interaction between Agp1 and Agp2. The apo-Agp1 conformation 

could be altered by holo-Agp2, therefore the BV accession is influenced. 
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Figure 22. (A) Absorbance spectra during BV assembly of apo-Agp1. (B) Absorbance during BV 

assembly of apo-Agp1 with holo-Agp2. (C) Changes of the absorbance at 700 nm during apo-

Agp1 assembly, black line: BV and apo-Agp1, red line:  BV, apo-Agp1 and holo-Agp2 (the holo-

Agp2 absorbance was set to value of 0). For both lines, the final absorbance value was scaled to 1. 
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Figure 23. (A) Absorbance spectra during BV assembly of apo-Agp2. (B) Absorbance during BV 

assembly of apo-Agp2 with holo-Agp1. (C) Changes of the absorbance at 750 nm during apo-

Agp1 assembly, black line: BV and apo-Agp2, red line:  BV, apo-Agp2 and holo-Agp1 (the holo-

Agp1 absorbance was set to value of 0). For both lines, the final absorbance value was scaled to 1. 
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4 Quantitative proteomics   

4.1 Protein identification and distribution of differentially expressed proteins 

In order to explore the molecular mechanism of the biological function of phytochromes 

in A. fabrum, experiment of TMT based quantitative proteomics was performed at the 

company of MtoZ-Biolabs Inc (United States). In this way, 2812 out of 5400 proteins 

were identified in the dark and light samples of A. fabrum WT and double mutant agp1/2-. 

Compared with dark samples of A. fabrum WT, 8 up-regulated proteins and 16 down-

regulated proteins were found in white light samples of A. fabrum WT and also 41 up-

regulated proteins and 111 down-regulated proteins were observed in dark samples of A. 

fabrum double mutant agp1/2-. 108 up-regulated proteins and 195 down-regulated 

proteins were detected in light samples of A. fabrum mutant as compared to those of A. 

fabrum WT. Compared to dark samples of A. fabrum mutant, only 26 up-regulated 

proteins and 4 down-regulated proteins were found in light samples of A. fabrum mutant. 

Moreover, no matter dark or white light, 16 up-regulated and 38 down-regulated proteins 

were always observed in mutant samples as compared to WT samples, indicating that 

phytochromes Agp1 and Agp2 could have white light independent regulation on those 

proteins in A. fabrum (Figure 24). 
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Figure 24. Distribution of differentially expressed proteins. WT (D): wild type (darkness); WT 

(L): wild type (white light); M (D): mutant agp1/2- (darkness); M (L): mutant agp1/2- (white 

light). Ratio (treated samples / control samples) > 1.5 (P < 0.05) and < 0.67 (P < 0.05) were set as 

significantly up-regulated (red numbers) and down-regulated (blue numbers) in treated samples, 

respectively. Black color number (3 + 9) means that 3 proteins were up-regulated in WT (L) 

samples as compared to WT (D) samples, but down-regulated in M (L) samples as compared to 

WT (L) samples and 9 proteins were down-regulated in WT (L) samples as compared to WT (D) 

samples but up-regulated in M (L) samples as compared to WT (L) samples. Black color number 

2 means that up-regulated in M (L) samples as compared to M (D) samples, however down-

regulated in M (L) samples as compared to WT (L) samples. Black color number 13 means that 

up-regulated in M (L) samples as compared to M (D) samples whereas down-regulated in M (D) 

samples as compared to WT (D) samples. The sum of differentially expressed proteins is 422 and 

that of identified protein is 2812. 353 and 134 proteins were only observed in both WT (L) and M 

(L) samples and both WT (D) and M (D) samples, respectively. 
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4.2 Analysis for differentially expressed proteins 

In A. fabrum, phytochromes play positive roles in the movement (unpublished data from 

Dr. Yingnan Bai), conjugation (Bai et al., 2016) and plant infection which were directly 

regulated by motility proteins, conjugation proteins and virulence proteins, respectively. 

Of the 28 chemotaxis proteins of flagellar system of bacterial motility proteins of A. 

fabrum, cheB (Atu0519), cheW (Atu2075), cheW (Atu2617), cheY (Atu0516), cheY 

(Atu0520), mcpA (Atu0646), mcpC (Atu0872) and mcpV (Atu1027) were detected 

(Table 3). Of the 34 flagellar assembly proteins of flagellar system of bacterial motility 

proteins of A. fabrum, fla (Atu0542), flaA (Atu0545), flaB (Atu0543), flaD (Atu0567), 

flgE (Atu0574), flgK (Atu0575), flgL (Atu0576), fliN (Atu0562), fliP (Atu0546), motB 

(Atu3746) and motC (Atu0570) were detected (Table 4). Of the 10 proteins of pilus 

system of bacterial motility proteins of A. fabrum, ctpA (Atu0224), ctpC (Atu0222), ctpD 

(Atu0221), ctpE (Atu0220) and Atu4732 were detected (Table 5). Of the 22 conjugation 

proteins, only 4 were detected, traC (Atu6126), traD (Atu5109), mobC (Atu4857) and the 

AT-plasmid encoded traA (Atu5111) (there are 3 different traA genes in A. fabrum) 

(Table 6). Of the 26 proteins of T4SS of A. fabrum, avhB1 (Atu5162), avhB4 (Atu5165), 

avhB5 (Atu5166), avhB7 (Atu5168), virB7 (Atu6173), avhB8 (Atu5169), avhB9 

(Atu5170) and avhB10 (Atu5171) were detected (Table 7). Of 26 virulence proteins 

without a protein of type IV secretion system of A. fabrum, only 2 virulence proteins 

virH1 (Atu6187) and acvB (Atu2522) were found (Table 8). However, proteins that 

regulate the infection of plant tissue such as VirA, VirG, VirD or VirE were lacking. Also, 

both phytochromes were not detected. Lack of detection is most likely due to low 

expression levels of proteins with regulatory functions or with rapid turnover. 

After analysis of differentially expressed proteins, changes in mcpC (Atu0872) of 

chemotaxis protein (Table 3), motC (Atu0570) of flagellar assembly (Table 4) and ctpE 

(Atu0220) of pilus system (Table 5) were closely related to changes of A. fabrum 

movement regulated by the phytochromes. I also found that decrease in the expression of 

AT-plasmid encoded conjugation protein traA (Atu5111) in A. fabrum agp1/2- mutant 

(darkness) as compared to A. fabrum WT (darkness) (Table 6) was consistent with the 
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reduced rate of conjugation, indicating that phytochromes could influence the expression 

of traA (Atu5111) to regulate the conjugation in A. fabrum. In addition, all compounds of 

T6SS and three toxin-immunity pairs playing an important role in the interbacterial 

competition (Ma et al., 2014) were also detected. Of the 5 proteins of T6SS, vgrG 

(Atu4348), hcp (Atu4345), impL (Atu4332), impK (Atu4333) and clpB (Atu4334) were 

detected. Of three toxin-immunity pairs of T6SS, Atu4350 (1-toxin), Atu4351 (1-

immunity), Atu3640 (2-toxin), Atu3639 (2-immunity), Atu4347 (3-toxin) and Atu4346 

(3-immunity) were detected. No matter in dark or white light, there was always a 

significant reduction of hcp (Atu4345) in A. fabrum agp1/2- mutant as compared to WT. 

Moreover, under white light, the decrease of Atu4347 (3-toxin) protein was obvious in A. 

fabrum mutant as compared to WT (Table 9). These revealed that phytochromes of A. 

fabrum could control the interbacterial competition.  
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Table 3. The list of detected proteins of chemotaxis proteins of flagellar system of bacterial 

motility proteins of Agrobacterium fabrum. cheA (Atu0517), Atu0515, cheD (Atu0521), cheR 

(Atu0518), Atu4805, cheD (Atu2618), mcpA (Atu3094), mcpA (Atu6132), mcpG (Atu0738), 

mcpA (Atu2360), Atu0514, mcpA (Atu2173), Atu0373, mclA (Atu1912), mclA (Atu0526), mcpA 

(Atu0387), mcpA (Atu2223), Atu5442, Atu4736 and Atu3725 were not detected. WT (D): wild 

type (darkness); WT (L): wild type (white light); M (D): mutant agp1/2- (darkness); M (L): 

mutant agp1/2- (white light); Mean values of 3 biological replicates ± SE. 

Protein 
Abundances Fold change >1.5 or < 0.67; 

P < 0.1 (*) or P < 0.05 (**) 

WT (D) WT (L) M (D) M (L) 

cheB (Atu0519) 117 + 40 115 + 15 106 + 28 85 + 8 

 
cheW (Atu2075) 114 + 5 

 

100 + 25 

  
cheW (Atu2617) 99 + 10 118 + 8 84 + 2 82 + 10 

 
cheY (Atu0516) 95 + 8 102 + 6 112 + 25 98 + 10 

 
cheY (Atu0520) 114 + 2 113 + 11 80 + 3 87 + 8 

 

mcpA (Atu0646) 133 + 36 

 

67 + 10 

 

mcpC (Atu0872) 118 + 24 

 

47 + 10 

 

M(D) / WT(D)=0.40 * 

mcpV (Atu1027) 83 + 9 65 + 6 112 + 22 135 + 57   
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Table 4. The list of detected proteins of flagellar assembly proteins of flagellar system of 

bacterial motility proteins of Agrobacterium fabrum. flaF (Atu0577), flbT (Atu0578), flgA 

(Atu0551), flgB (Atu0555), flgC (Atu0554), flgD (Atu0579), flgF (Atu0558), flgG (Atu0552), 

flgH (Atu0548), flgI (Atu0550), flhA (Atu0581), flhB (Atu0564), fliE (Atu0553), fliF (Atu0523), 

fliG (Atu0563), fliI (Atu0557), fliL (Atu0547), fliM (Atu0561), fliQ (Atu0580), fliR (Atu0582), 

motA (Atu0560), motB (Atu0569) and motD (Atu0571) were not detected. WT (D): wild type 

(darkness); WT (L): wild type (white light); M (D): mutant agp1/2- (darkness); M (L): mutant 

agp1/2- (white light); Mean values of 3 biological replicates ± SE. 

Protein 
Abundances 

Fold change >1.5 or < 

0.67; P < 0.1 (*) or P < 

0.05 (**) 
WT (D) WT (L) M (D) M (L) 

fla (Atu0542) 103 + 3 85 + 6 99 + 9 115 + 17 

 

flaA (Atu0545) 82 + 6 71 + 2 131 + 16 129 + 25 

M(D) / WT(D)=1.60 **; 

M(L) / WT(L)=1.82 ** 

flaB (Atu0543) 81 + 8 72 + 4 133 + 8 129 + 21 

M(D) / WT(D)=1.64 **; 

M(L) / WT(L)=1.80 * 

flaD (Atu0567) 105 + 4 122 + 21 93 + 12 79 + 4 

 
flgE (Atu0574) 106 + 8 107 + 12 98 + 8 93 + 4 

 
flgK (Atu0575) 104 + 8 114 + 16 105 + 27 86 + 2 

 
flgL (Atu0576) 91 + 10 

 

109 + 11 

 
fliN (Atu0562) 99 + 8 86 + 2 134 + 36 114 + 5 

 
fliP (Atu0546) 93 + 17 

 

107 + 19 

 
motB (Atu3746) 88 + 20 81 + 3 114 + 38 120 + 16 

    

motC (Atu0570) 148 + 42 157 + 53 29 + 2 43 + 2 

M(D) / WT(D)=0.20 **; 

M(L) / WT(L)=0.27 * 
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Table 5. The list of detected proteins of pilus system of bacterial motility proteins of 

Agrobacterium fabrum. pilA (Atu3514), ctpB (Atu0223), ctpF (Atu0219), ctpG (Atu0218) and 

Atu4731 were not detected. WT (D): wild type (darkness); WT (L): wild type (white light); M 

(D): mutant agp1/2- (darkness); M (L): mutant agp1/2- (white light); Mean values of 3 

biological replicates ± SE. 

Protein 
Abundances 

Fold change >1.5 or < 

0.67; P < 0.1 (*) or P < 

0.05 (**) 
WT (D) WT (L) M (D) M (L) 

ctpA (Atu0224) 94 + 5 79 + 7 111 + 33 121 + 9 M(L) / WT(L)=1.53 ** 

ctpC (Atu0222) 82 + 20 118 + 13 78 + 6 82 + 5 

 

ctpD (Atu0221) 99 + 6 97 + 6 135 + 24 103 + 10 

 

ctpE (Atu0220) 175 + 23 130 + 13 58 + 15 70 + 3 

M (D) / WT (D)=0.33 

**; M (L) / WT 

(L)=0.54 ** 

Atu4732 93 + 12 99 + 4 101 + 3 101 + 14   
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Table 6: The list of detected proteins of conjugation of Agrobacterium fabrum. traA (Atu4855), 

traA (Atu6127), traB (Atu6129), traC (Atu5110), traF (Atu6128), traG (Atu5108), traG 

(Atu6124), traH (Atu6130), trbB (Atu6041), trbC (Atu6040), trbD (Atu6039), trbE (Atu6038), 

trbF (Atu6034), trbG (Atu6033), trbH (Atu6032), trbI (Atu6031), trbJ (Atu6037), trbL (Atu6035) 

were not detected. WT (D): wild type (darkness); WT (L): wild type (white light); M (D): mutant 

agp1/2- (darkness); M (L): mutant agp1/2- (white light); Mean values of 3 biological replicates 

± SE. 

Protein 
Abundances 

Fold change >1.5 or < 

0.67; P < 0.1 (*) or P < 

0.05 (**) WT (D) WT (L) M (D) M (L) 

mobC 

(Atu4857) 87 + 9 96 + 6 138 + 15 104 + 11 M (D) / WT (D)=1.59 ** 

traA (Atu5111) 147 + 22 

 

49 + 15 

 

M (D) / WT (D)=0.33 ** 

traC (Atu6126) 69 + 6 67 + 6 161 + 13 133 + 13 M (D) / WT (D)=2.34 **;  

M (L) / WT (L)=2 ** 

traD (Atu5109) 85 + 13 87 + 1 133 + 14 113 + 5 M (D) / WT (D)=1.56 * 
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Table 7. The list of detected proteins of type IV secretion system of Agrobacterium fabrum. virB1 

(Atu6167), avhB2 (Atu5163), virB2 (Atu6168), avhB3 (Atu5164), virB3 (Atu6169), virB4 

(Atu6170), virB5 (Atu6171), avhB6 (Atu5167), virB6 (Atu6172), virB8 (Atu6174), virB9 

(Atu6175), virB10 (Atu6176), avhB11 (Atu5172), virB11 (Atu6177), Atu4858 (traG), Atu5108 

(traG), Atu6124 (traG) and virD4 (Atu6184) of type IV secretion system were not detected. WT 

(D): wild type (darkness); WT (L): wild type (white light); M (D): mutant agp1/2- (darkness); M 

(L): mutant agp1/2- (white light); Mean values of 3 biological replicates ± SE. 

Protein 
Abundances 

Fold change >1.5 or < 

0.67; P < 0.1 (*) or P < 

0.05 (**) 
WT (D) WT (L) M (D) M (L) 

avhB1 

(Atu5162) 
59 + 4 88 + 9 145 + 19 112 + 3 

WT (L) / WT (D)=1.50 **; 

M (D) / WT (D)=2.46 ** 

avhB4 

(Atu5165) 
78 + 3 69 + 5 133 + 29 131 + 23 

M (L) / WT (L)=1.89 * 

avhB5 

(Atu5166) 
69 + 1 100 + 2 132 + 57 100 + 5 

 avhB7 

(Atu5168) 
82 + 11 79 + 11 121 + 23 121 + 4 M (L) / WT (L)=1.52 ** 

virB7 

(Atu6173) 
100 + 5 

 

133 + 21 

  avhB8 

(Atu5169) 
89 + 19 96 + 13 100 + 20 104 + 9 

 avhB9 

(Atu5170) 74 + 4 81 + 9 137 + 2 119 + 7 M (D) / WT (D)=1.85 **  

avhB10 

(Atu5171) 

74 + 5 66 + 5 136 + 1 134 + 4 M (D) / WT (D)=1.84 **; 

M (L) / WT (L)=2.01 ** 
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Table 8. The list of detected proteins of virulence proteins without a protein of type IV secretion 

system of Agrobacterium fabrum. virA (Atu6166), virC1 (Atu6180), virC2 (Atu6179), virD1 

(Atu6181), virD2 (Atu6182), virD3 (Atu6183), avhD4 (Atu4858), virD4 (Atu6184), virD5 

(Atu6185), virE0 (Atu6188), virE1 (Atu6189), virE2 (Atu6190), virE3 (Atu6191), virE3 

(Atu6186), virF (Atu6154), virG (Atu6178), virK (Atu6156), mviN (Atu0347), trlR (Atu6192), 

Atu6193, Atu6194, Atu6195, Atu6196 and Atu6197 were not detected. WT (D): wild type 

(darkness); WT (L): wild type (white light); M (D): mutant agp1/2- (darkness); M (L): mutant 

agp1/2- (white light); Mean values of 3 biological replicates ± SE. 

Protein 
Abundances Fold change >1.5 or < 0.67; 

P < 0.1 (*) or P < 0.05 (**) 
WT (D) WT (L) M (D) M (L) 

virH1 (Atu6187) 105 + 10 115 + 2 97 + 3 85 + 5 

 

acvB (Atu2522) 104 + 3 111 + 3 98 + 9 89 + 5 
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Table 9. The list of detected proteins of Type VI secretion system and three toxin-immunity pairs 

- Agrobacterium fabrum. WT (D): wild type (darkness); WT (L): wild type (white light); M (D): 

mutant agp1/2- (darkness); M (L): mutant agp1/2- (white light); Mean values of 3 biological 

replicates ± SE. 

Protein 
Abundances Fold change >1.5 or < 

0.67; P < 0.1 (*) or P < 

0.05 (**) WT (D) WT (L) M (D) M (L) 

Type VI secretion system 

vgrG 

(Atu4348) 
87 + 2 81 + 7 146 + 82 119 + 20 

 

hcp 

(Atu4345)  
114 + 9 126 + 9 76 + 1 74 + 4 

M (D) / WT (D)=0.67 **; 

M (L) / WT (L)=0.59 ** 

impL 

(Atu4332) 
86 + 4 84 + 4 115 + 12 116 + 12 

 impK 

(Atu4333) 
96 + 5 86 + 6 96 + 7 114 + 11 

 clpB 

(Atu4334) 
107 + 7 89 + 4 85 + 8 111 + 11 

 
Effectors of three toxin-immunity pairs of type VI secretion system 

Atu4350 (1-

toxin) 
105 + 5 101 + 1 98 + 9 99 + 8 

 

Atu4351 (1-

immunity) 
101 + 4 117 + 3 103 + 5 83 + 9 

 
Atu3640 (2-

toxin) 
93 + 7 103 + 14 106 + 24 97 + 3 

 Atu3639 (2-

immunity) 
94 + 11 97 + 2 113 + 15 103 + 8 

 

Atu4347 (3-

toxin) 114 + 2 123 + 7 85 + 1 77 + 3 M (L) / WT (L)=0.63 ** 

Atu4346 (3-

immunity) 
90 + 8 99 + 5 121 + 7 101 + 8 
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5 The effect of Agp1 and Agp2 on the interbacterial competition  

Here TMT-based quantitative proteomics results showed that there was a significant 

reduction of the T6SS haemolysin-coregulated protein (Au4345) and putative 

peptidoglycan amidase effector (Atu4347) in A. fabrum agp1/2- double mutant as 

compared with A. fabrum WT (Table 9). Earlier reports indicated that A. fabrum could 

inject DNase effectors into the E. coli DH10B to finally kill the cells through T6SS (Ma 

et al., 2014). Therefore, I tested the competition between A. fabrum WT, agp1-, agp2-, or 

agp1/2- mutant and E. coli DH5α on LB agar. Surprisingly, there was no different 

survival numbers of E. coli DH5α among control (E. coli DH5α), WT (E. coli DH5α + A. 

fabrum WT) and agp1/2- (E. coli DH5α + A. fabrum agp1/2-) assays. A. fabrum agp1- 

mutant could kill E. coli DH5α in darkness but the red or far-red light suppressed the 

attack. In contrast, E. coli DH5α could not be killed by A. fabrum agp2- in darkness, 

whereas in red light condition E. coli DH5α was killed (Figure 25).  

To investigate whether phytochromes Agp1 and Agp2 regulates the competition 

between A. fabrum and other soil bacterium, interbacterial competition was performed by 

inoculating A. fabrum WT or agp1/2- mutant with other soil bacterium in LB for a given 

time. The quantitative proteomics results showed that abundance of hcp (Atu4345) of 

T6SS in A. fabrum agp1/2- mutant was decreased to 67 % as compared with that of wild 

type (Table 6). To know whether the mutant could compensate for the protein reduction 

by increasing the amount of bacteria, the initial amount ratio of A. fabrum WT / A. 

fabrum mutant agp1/2- was 0.67, 50 ml A. fabrum WT (OD600=2) or 50 ml A. fabrum 

mutant agp1/2- (OD600=3) to mix with 50 ml other soil bacterium (OD600=2). After 

quantitatively sequencing the hypervariable region V2 of 16S rRNA gene, composition of 

WT or agp1/2- mutant A. fabrum in the competition assay was obtained (Figure 26). 

Yuanyuan Ma from Zoological Institute, Kiel University (Germany), contributed to the 

16S rRNA experiment. For WT A. fabrum, the percentage was stable at 57 % after 12 h 

incubation under darkness or white light as compared with initial assay. However, the 

agp1/2- mutant A. fabrum decreased significantly from 65 % to 56% (darkness) and from 

65 % to 44 % (white light) during the 12 h competition (Figure 27). Alone, the growth 
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rate of agp1/2- mutant A. fabrum was higher than that of WT A. fabrum (Figure 7 and 8).  

Here an obvious reduction of A. fabrum agp1/2- mutant in the competition assay was 

detected. These data suggested that phytochromes improved the competition ability in the 

A. fabrum. 

 

 

Figure 25. Competition assays of A. fabrum-E.coli. For each treatment, there are 3 biological 

replicates. 
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Figure 26. Changes in bacterial composition. A. fabrum WT and agp1/2- mutant (M) competitive 

activity against other soil bacterium. There are 4 biological replicates for each treatment showed 

on the top of graph. The numbers between 0 and 1 of bar left mean the relative abudance of 

bacteria in each competition assay. WT_0 h: wild type_0 hour; M_0 h: mutant_0 hour; WT_12 

h_D: wild type_0 hour_darkness; M_0 h_D: mutant_0 hour_darkness; WT_12 h_L: wild type_0 

hour_white light; M_0 h_L: mutant_0 hour_white light; g: genus; f: family; c: class 
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Figure 27. Changes in percentage of A. fabrum WT or agp1/2- mutant in the competition assays 

under darkness or white light. Mean values of 4 biological replicates ± SE. **=P <0.01. 
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Discussion  

1 Importance of the phytochromes Agp1, Agp2 and their homologues in 

Agrobacterium species 

Two phytochromes termed Agp1 and Agp2 or AtBphP1 and AtBphP2 were discovered in 

A. fabrum (Goodner et al., 2001; Karniol and Vierstra, 2003; Lamparter et al., 2002; 

Wood et al., 2001). For a long time, the role of these photoreceptors has been unclear. 

Recently, it was described that the conjugation (Bai et al., 2016) and movement 

(unpublished data from Dr. Yingnan Bai) were under these two phytochromes control. 

The root infection assay of Arabidopsis thaliana with A. fabrum wild type and agp1/2- 

double knockout mutant indicated that plant infection could be under phytochromes 

Agp1 and Agp2 control (Rottwinkel, 2011). Here I show by mutant studies that also A. 

fabrum growth (Figure 7, 8, 9 and 10), plant stem or leaf infection (Figure 11, 12 and 13) 

and interbacterial competition (Figure 25, 26 and 27) are effected by these phytochromes.  

In order to know which phytochrome is more important for survival or evolution, 

I investigated the distribution of phytochromes Agp1, Agp2 and their homologues in 

genus Agrobacterium. This indicated that Agp2 could be more important than Agp1 

(Table 1). Moreover, the growth results implied that the high temperature tolerance in A. 

fabrum could be positively regulated by Agp2 (Figure 9). Therefore, Agp2 may be more 

important for survival as compared with Agp1 in Agrobacterium species. Maybe all 

Agrobacterium bacterium have a common ancestor with two phytochromes and in some 

strains either one of phytochromes was lost during evolution. 

Agp2 is a bathy phytochrome which dark state is Pfr and absorb maximally in the 

750 nm wavelength range (Karniol and Vierstra, 2003; Rottwinkel et al., 2010), whereas 

Agp1 has a Pr dark state and absorb maximally in the 700 nm wavelength range 

(Lamparter et al., 2002). Together these data show that the detection of the long 

wavelength red light seems to be more relevant for living and evolution of 

Agrobacterium. 
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2 Signal transduction of phytochromes Agp1 and Agp2 

In the process of conjugation, the TraA protein plays a central role. This relaxase (Figure 

28) cleaves firstly a single strand DNA in plasmid, and then binds covalently to the end 

of DNA and finally separates the two strands (Fuqua et al., 1995; Garcillan-Barcia et al., 

2009; Smillie et al., 2010). Both codistribution of phytochromes Agp1/2 and TraA 

(Figure 29) and Ti-plasmid mutant studies of A. fabrum indicated that those 

phytochromes may directly or indirectly interact with TraA protein to control the 

conjugation in A. fabrum (Bai et al., 2016; Lamparter, 2006). Analogously, the results of 

TMT-based quantitative proteomics also showed that phytochromes could influence the 

expression of TraA protein to regulate the conjugation.  

For the signal transduction of the plant infection controlled by phytochromes 

Agp1 and Agp2, there was no positive information from the results of quantitative 

proteomics. The process of plant infection is initiated by a relaxase termed VirD2 

(Atu6182) (Figure 30), which nicks the pTi plasmid at oriT position and covalently binds 

to single stranded T-DNA (Yanofsky et al., 1986). However, the VirD2 protein was not 

detected by quantitative proteomics. The VirD2 function in the plant infectionis similar 

with TraA in conjugation. Therefore, I assume that phytochromes may interact with 

VirD2 protein to regulate the plant infection in A. fabrum. 

According to the quantitative proteomics results, I also found that phytochromes 

of A. fabrum could affect the hcp (Atu4345) and Atu4347 (3-toxin) proteins of T6SS 

which plays an important role interbacterial competition. Therefore, it was tested by the 

interbacterial competition assays between A. fabrum WT or mutant agp1/2- and other soil 

bacterium. Finally, the speculation of interbacterial competition controlled by 

phytochromes in A. fabrum was proved. Other methods such as western blotting to verify 

quantitative proteomics were not tested. However, experiment of interbacterial 

competition could indicate that the results of differentially expressed proteins were 

reliable.  

In summary, our results helps understanding the role of phytochromes and their 

signal transduction in A. fabrum. 
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Figure 28. Schematic view of the process of bacterial conjugation. R: a relaxase; T4CP: a type 

IV coupling protein; T4SS: type IV secretion system. Figure from (Smillie et al., 2010). 

 

 

 

 

Figure 29. Codistribution of phytochromes Agp1 / Agp2 and conjugaton protein TraA in 

Rhizobiales. Figure from (Bai et al., 2016). 



Discussion 

60 

 

 

Figure 30. Schematic view of Ti-DNA transfer from Agrobacterium plasmid to plant 

chromosome in the process of plant infection. Figure from (Singer, 2018; Singer, 2013). 

 

 

 

3 Interaction between phytochromes Agp1 and Agp2 

Light controls the conjugation of A. fabrum via phytochromes Agp1 and Agp2. The 

contribution of Agp1 in the conjugation is similar with that of Agp2 (Bai et al., 2016). 

Therefore, the possible interaction between both phytochrome proteins was tested in vitro. 

For protein-protein interaction, one standard assay, SEC, was firstly used. When proteins 

enter the gel matrix of SEC, they will be quickly diluted. Therefore, there is a change in 

elution maxima of interacting proteins. Moreover, experiments of UV-vis spectra, dark 

conversion, autophosphorylation and BV assembly proved the theory. The one 

phytochrome protein could slightly change the properties of the other protein. 

In our researches, no phosphorylation signal was observed in Agp2 protein. The 

result conflicts with previous studies (Karniol and Vierstra, 2003) that observed a clear 

phosphorylation signal in Pr and Pfr forms of Agp2. There was a strong 

autophosphorylation signal in phytochrome FphA, which was a fungal phytochrome with 
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response regulator at the C-terminal. However, there was no obvious difference between 

Pfr and Pr forms (Brandt et al., 2008). In our researches of Agp2, I only obtained weak 

and strong autophosphorylation in mutants Agp2_D783A and Agp2_D783N, respectively, 

where the aspartic acid (putative receiver amino acid) of the Agp2 response regulator was 

mutated. I initially thought that there could be a rapid dephosphorylation in the response 

regulator, resulting in the missing Agp2 autophosphorylation signal. For many response 

regulators, dephosphorylation activity is reported (Immormino et al., 2016). In the Agp2 

sample incubated with ATP, no free phosphate was detected, therefore, the guess of rapid 

turnover of phosphate was rejected. SEC results showed that there was an obvious 

conformational shift between Agp2 WT and mutants. This conformational change is most 

probably dependent on the presence or absence of a charge at position 783 of Agp2. The 

relative extent of SEC mobility shifts of mutants Agp2_D783A and Agp2_D783N were 

closely related to their increased phosphorylation activities. Therefore, the increased 

autophosphorylation of the two mutants are probably caused by their conformational 

change. In the wild type Agp2, the conserved histidine of the HWE histidine kinase 

domain could be covered by response regulator which also block the autophosphorylation. 

Ionic interactions relating to Asp783 could stabilize this structure. Positive charge at the 

position as caused by mutagenesis could lead to a more open conformation, which could 

allow autophosphorylation. To test whether Agp1 has an effect on the Agp2 

autophosphorylation, the mutants Agp2_D783A and Agp2_D783N were generated. As 

side impact, the Agp2 phosphorylation mechanism also was partly explained by the 

mutants. There was no significant phosphorylation difference between Pfr and Pr of 

Agp2_D783N, and also no phosphotransfer from domain of HWE histidine kinase to 

domain of response regulator. However, I observed significant conformational changes of 

the mutant as caused by charge or the Asp783 loss of domain of response regulator. 

Therefore, there may be no signal pathway through the HWE His kinase domain of Agp2 

to response regulator domain. Combined physiological / molecular and structural 

researches (Schmidt et al., 2018) experiments should be performed to unravel details of 

Agp2 signal transduction.  
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In the BV assembly researches, a strong impact between Agp1 and Agp2 was found 

in the mixture samples.  To prevent competition impacts, only holo-proteins were used to 

test for an influence on the BV assembly. Chromophore assembly of phytochrome has 

been studied through time resolved spectroscopy (Borucki et al., 2003), however, the 

structural details are still unclear. Based on the protein structure, there is no access from 

the outside in the holo-protein chromophore pocket which likes a close container 

(Nagano et al., 2016). Although the apo-protein structure is still unknown, the 

chromophore pocket of holo-protein must be not the same as that of apo-protein which 

should have an open conformation to allow the chromophore entering from outside. The 

different assembly kinetics among Agp1, Agp2 and other phytochromes is found (Li et 

al., 1995; Nagano et al., 2016; Remberg et al., 1998).  These differences should be based 

on distinct openings of the apo-protein chromophore pockets. The obvious slow rate of 

apo-Agp1 assembly in the presence of holo-Agp2 might be caused by the closure of the 

Agp1 open chromophore pocket. As mentioned above, the weak interaction between 

phytochromes Agp1 and Agp2 shows that they can switch rapidly between the non-bound 

state (preferred state) and the bound state. However, other hypotheses are still necessary 

for the strong influence of Agp1 – Agp2 interaction on the BV assembly. If such as 

proteins Agp1 and Agp2 combine to each other for half the time, and also if in the Agp1 

bound state the chromophore pocket is shut, but switched on the Agp1 non-bound state, 

BV assembly could be half as quick as for Agp1 alone. Therefore, I must consider the 

possibility of BV assembly of Agp1 influenced in the Agp1 / Agp2 non-bound and in the 

bound state and of the BV pocket remaining shut for a period of time upon separation of 

both proteins. Similarly, the effect of holo-Agp1 on the apo-Agp2 assembly may also be 

discussed, even though the impact goes to the reverse direction: the addition of holo-

Agp1 quickens the apo-Agp2 assembly. BV pocket of Agp2 could be opened by Agp1, 

which caused a more fast BV incorporation. Three states of Agp2 chromophore pocket 

may be necessary: first stage-open BV pocket (apo-Agp2 when interaction with holo-

Agp1), second stage-partly open BV pocket (apo-Agp2) and third stage-closed BV 

pocket (holo-Agp2, as shown in the crystal structure (Schmidt et al., 2018)).  It is quite 
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interesting to observe that the rapid apo-Agp1 assembly is decelerated by holo-Agp2 and 

the slow apo-Agp2 assembly is accelerated by holo-Agp1.   

In summary, there is a weak Agp1-Agp2 proteins interaction according to the 

results gotten by several different ways. As far as I know, it is the first research of this 

type for bacterial phytochromes. For plant phytochromes, heterodimers formed between 

them are another case for phytochromes interaction. However, the previous studies 

showed that tight homodimers were formed by recombinant Agp1 that do probably not 

separate (Noack et al., 2007) and Agp1 Agp2 heterodimers may be not easily formed in 

solution. I could assume either interactions between Agp1 dimers / Agp2 monomers or 

complexes formed between dimers of Agp1 and those of Agp2. In vivo, another 

interaction with conjugation protein TraA maybe stabilize the interaction between 

phytochromes Agp1 and Agp2. 
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Materials and methods 

1 Growth tests 

Strains of A. fabrum C58 WT, single mutant agp1- or agp2- and double mutant agp1/2- 

harbouring Ti plasmid and pBIN-GUS plasmid (kanamycin resistance cassette) were used 

in the research (Bai et al., 2016; Oberpichler et al., 2006; Vancanneyt et al., 1990). 

Bacteria was inoculated in 100 ml LB medium with 86 μM Kanamycin (Kan) to 

OD600=0.05, which was grown in darkness, white light (40 μmol m-2s-1), red light (40 

μmol m-2s-1) or blue light (40 μmol m-2s-1) at different temperature (20 °C, 25 °C, 28 °C, 

32 °C or 37 °C) conditions for 51 h with shaking at 110 rpm. The concentrations were 

measured at OD600. 

2 Infection of Nicotiana benthamiana with A. fabrum 

The infection was performed using 6-week-old N. benthamiana and the four genotypes of 

A. fabrum harvested from LB agar plates or liquid LB. The plant stems and leaves were 

used as infected sites in the study. 

2.1 Stem 

The superficial sections (1-2 cm long) on stem of N. benthamiana was cut by sterile 

scalpel. Bacteria from the agar was applied directly onto the wound of plants with a 

pipette tip. The infected plants were then placed at room temperature in red light (0.8 

μmol m-2s-1), or with aluminium foil covering the wound for darkness treatment. The 

bacterial growth was terminated by 220 μM cefotaxime (few drop on each cut) after 24 h. 

Finally, the plants without aluminium foil were grown at room temperature under natural 

light conditions. After 6 weeks, tumors of the wound were observed and then the 

photographs were taken. 
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2.2 Leaf 

Bacteria was inoculated in liquid LB medium over night at 28 °C till OD600=2. After 

centrifugation at 5000 g for 15 min at room temperature, the supernatant was removed 

and then the pellet was  resuspended in 11 mM MES, 10 mM MgCl2, pH 7 to the final 

OD600 of 0.8. After incubation in sterile bench for 2 h at room temperature, the solution 

containing bacteria was infiltrated into the plant leaves by 2 ml syringe. The infected 

plants were then incubated at room temperature for 24 h in red light (0.8 μmol m-2s-1) or 

in darkness. After transformation, the GUS activity of leaves was measured by staining 

and fluorometric assays. 

2.2.1 GUS staining 

5-bromo-4-chloro-3-indolyl glucuronide (X-Gluc, Thermo Fisher) assay with minor 

modifications (Jefferson et al., 1987) was used to examine the expression of GUS gene in 

infected leaves. The leaves were cut off and placed into X-Gluc stain solution containing 

200 mM sodium phosphate (pH 7), 2 mM X-Gluc and 0.01 % (v/v) Triton X-100 at 37 °C 

for 17 h in darkness. After decolorization of the leaves by successively soaking in 70% 

(v/v), 80% (v/v), 90% (v/v), 100% (v/v) ethanol, the blue GUS stains were observed and 

photographed. 

2.2.2 GUS fluorometric assays 

The quantitative GUS activity in the leaves was determined by 4-Methylumbelliferyl-β-

D-glucuronide hydrate (4-MUG, Sigma) assay (Blázquez, 2007; Jefferson, 1987; 

Jefferson et al., 1987). The leaves were incubated in reaction mix containing 50 mM 

sodium phosphate, 10 mM EDTA, 0.1 % (w/v) SDS, 0.1 % (v/v) Triton X-100, 1 mM 4-

MUG, pH 7 for 17 h at 37 °C in darkness. The reaction was stopped by the addition of 1 

M Na2CO3 to final concentrations of 0.99 M. The fluorescence was measured with a 

Jasco FP 8300 fluorimeter. The excitation and emission wavelength was 365 nm and 455 

nm, respectively. Normalization of the GUS activity calculated as nmol of 4-MU per 

minute per leaf was performed using four 4-MU standards (0.5 nM, 5 nM, 50 nM, and 

500 nM).  
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3 Interaction between Agp1 and Agp2  

3.1 Protein preparation 

4.1.1 Expression vectors and site-directed mutagenesis of Agp2 

Expression plasmids pAG1 (Lamparter et al., 2002) and pSA2 (Lamparter and Michael, 

2005) were used for Agp1 and Agp2, respectively. After expression, all proteins contain 

6xHis affinity tags at their C-terminal. For the point mutation of Agp2, I used the pSA2 

expression vector as template. According the protocol of Quik Change Kit (Agilent), the 

construct of Agp2_D783A and Agp2_D783N mutants was performed. Primers used for 

each Agp2 mutant were shown in Table 10. 

 

 

Table 10. Primer sequences for site-directed mutagenesis of Agp2. FP: Forward primer; RP: 

Reverse primer 

Purpose Gene Primer sequence (5’ to 3’) 

Site-directed 

mutagenesis 

Agp2_D783A 
FP: GGAACCAAGATTGATGGCGAGAATGGCGACGTC 

RP: GACGTCGCCATTCTCGCCATCAATCTTGGTTCC 

Agp2_D783N 
FP: GGAACCAAGATTGATGTTGAGAATGGCGACGTCAG 

RP: CTGACGTCGCCATTCTCAACATCAATCTTGGTTCC 

 

 

 



Materials and methods 

67 

 

 

Figure 31. SDS-PAGE gels of purified protein Agp1 (left) or Agp2 (right) after coomassie stain. 

For marker proteins, the positions are shown on the right side or left side. 

 

4.1.2 Protein expression and purification, and holo-protein assembly 

Agp1 and Agp2 (apo-protein) were expressed with a His tag and purified as described 

previously in more detail (Inomata et al., 2006; Lamparter and Michael, 2005; Lamparter 

et al., 2002). The proteins were induced with IPTG at 18 °C over night, followed by 

French pressure. After centrifugation at 9000 g for 30 min, protein precipitation from 

supernatant was performed with 50 % ammonium sulfate. The pellet was then dissolved 

in 50 mM Tris/HCl, 10 mM Imidazol, 1 M NaCl, 100 mg/l cholic acid, pH 7.8. The Ni-

affinity chromatography was used to purify the proteins from mixture. Finally, collected 

protein, containing the fractions, was again performed with 50% ammonium sulfate 

precipitation, and dissolved in basic buffer (50 mM Tris/Cl, 300 mM NaCl, 5 mM EDTA, 

pH 7.8). After checking by SDS / PAGE, pure Agp1 and Agp2 was proved (Figure 31). 

After measurement by electric conductivity, I found that the concentration of ammonium 

sulfate was ca. 50 mM in the purified protein sample. At this stage of purification, typical 

protein concentrations were 20 µM. For the BV (Sigma) purification, BV in aqueous 
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solution was loaded to 1 ml Sep-Pak C18 cartridges (Waters), washed with ultra-pure 

water and eluted in methanol, and then evaporated to dryness, and cooled to room 

temperature. Finally, the purified BV was dissolved in DMSO at 2-10 mM concentrations. 

To get holo-protein, apo-protein was mixed with 2-fold molar excess concentration of 

BV and incubated at room temperature for 2 h. Ammonium sulfate and free BV could be 

removed by NAP 10 columns (GE healthcare). For the experiments of phosphorylation 

and assembly, residual ammonium sulfate in apo-protein was also removed by the NAP 

separation.  

To evaluate the assembly of apo-Agp1 or apo-Agp2 kinetically with BV, the apo-

protein was directly incubated with BV in a photometer cuvette. And then, the cuvette, 

containing 1 µM protein and 1 µM BV, was directly measured by photometer and the 

absorbance at 700 nm or 750 nm was recorded at 1-second intervals. Moreover, the 

mixture (1 µM apo-Agp1, 1 µM BV and 5 µM holo-Agp2) or (1 µM apo-Agp2, 1 µM 

BV and 5 µM holo-Agp1) were also measured by the same method. The concentrations 

of protein and biliverdin were evaluated by measuring at 280 nm in basic buffer and by 

measuring at 696 nm in methanic / HCl (0.8 mM-1cm-1 extinction coefficient was used), 

respectively (McDonagh, 1979). 

3.2 Irradiation and photometry 

To obtain the Agp1 at Pr form, the protein was incubated in dark during BV assembly or 

holo-protein was kept in dark for 2 h at room temperature. After dark incubation, more 

than 90 % Agp1 would be converted from Pfr form to Pr from. Similarly, the Agp2 and 

mutants at Pfr form were also achieved by this way. After dark incubation, Agp2 was 

almost entirely in the Pfr form. For the Pfr from of Agp1 or Pr form of Agp2 (also 

mutants), the protein was irradiated with emitting diodes of red light (λmax = 644 nm, 20 

μmol m-2s-1 or λmax = 655 nm, 32 μmol m-2s-1) or emitting diodes of far-red light (λmax 

= 780 nm, 1500 μmol m-2s-1) for 2 min, respectively (Karniol and Vierstra, 2003). UV/vis 

spectra (1000 nm min-1 scan speed) were always measured at 18 °C with a photometer 

(Jasco V550) (Krieger et al., 2008). Final volumes and concentrations of Agp1 or Agp2 

were 1 mL and 5 µM, respectively. 
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3.3 Size exclusion chromatography 

I used a Superdex 200 10/300GL column (GE Healthcare) in the experiments of size 

exclusion chromatography (SEC). The running buffer (50 mM Tris/HCl, 150 mM NaCl 

and 5 mM EDTA, pH 7.8) was used and the samples were separated at 0.1 ml/min flow 

rate in cold room (4 °C). Marker proteins blue dextran (2000 kDa), thyroglobulin (669 

KDa), apoferritin (443 KDa), β−amylase (200 KDa), alcoholdehydrogenase (150 KDa), 

bovine serum albumin (66 KDa) and carboanhydrase (29 KDa) (Sigma) were applied. 

200 µl samples with 4 µM concentration for each protein was added into the column. 

Protein elution was recorded at 280 nm. 

3.4 Phosphorylation 

Agp1 and Agp2 (also the mutants) autophosphorylation were performed and analyzed 

using the method of earlier experiments (Lamparter et al., 2002). In green light, the 

samples of phytochrome were added into phosphorylation buffer (final concentration 2.5 

µM phytochrome for each, 25 mM Tris-HCl, 4 mM ß-mercaptoethanol, 5 mM MgCl2, 50 

mM KCl, 5% ethylene glycol, ca. 50 µM ATP containing 0.37 MBq [γ-32P]ATP, pH 7.8) 

or with (NH4)2SO4 (final concentration 50 mM) and incubated in darkness for 20 min at 

room temperature. For the determination of free phosphate, I used the malachite green 

phosphate assay kit (Sigma) (Altmann et al., 1971). 80 μl test sample, 150 μl ‘Working 

Reagent’ and 780 μl water were added into 1.5 ml tube. After incubation at room 

temperature for 30 min, the color development was finished and then the mixtures were 

measured at 620 nm. 

3.5 Computer analyses 

The analysis of triexponential decay and figures were performed by Origin 2018. For 

calculations such as standard error calculations, mean values, and subtraction and 

addition of different spectra, Excel was used.  
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4 Proteome analysis 

4.1 Bacteria preparation  

The single colony of A. fabrum C58 WT or double mutant agp1/2- from LB agar plate 

was inoculated and grown in 100 ml LB with 86 μM Kan at 28 °C and 110 rpm over 

night. The WT and mutant cells from preculture were diluted with LB for final OD600 of 

0.6 and volume of 100 ml, respectively. After 24 h incubation at 28 °C and 110 rpm in 

darkness achieved by aluminium foil or white light (40 μmol m-2s-1), the 2 ml culture 

were centrifuged 12000 g for 5 minutes at 4 °C and then the cell pellet was washed thrice 

with cold 10 mM Tris, 1.4 mM PMSF, 1 mM EDTA, pH 7.5. The cells were stored at - 

80 °C. 

4.2 Protein extraction and digestion 

Frozen cells (about 80 mg) were resuspended and homogenized in 0.3 ml lysis buffer (50 

mM Tris, 5% SDS, 0.1 mM EDTA, 150 mM NaCl, 1 mM MgCl2, 50 mM dithiothreitol, 

pH 8) (Chourey et al., 2010). The supernatant was collected after centrifugation at 10000 

g for 5 minutes at 4 °C. The protein concentration was measured with Pierce™ BCA 

Protein Assay Kit (Thermo Fisher Scientific). Sample from the supernatant (Table 11) 

was diluted with 50 mM triethylammonium bicarbonate (TEAB) (pH 8.5) for a final 

protein concentration of 1 μg/μl  and volume of 100 μl and then reduced by 10 mM 

tris(2-carboxyethyl)phosphine (TCEP) (pH 7) at 56°C for 1 h and alkylated by 20 mM 

iodoacetamide (IAA) in darkness for 1h at room temperature. After the addition of 600 μl 

pre-cooled (-20 °C) acetone and freeze at -20 °C, the mixture was centrifuged at 8000 g 

for 10 min at 4 °C. The acetone was removed and the pellet was dried for 2-3 min. 

Finally, the protein pellet was reconstitute with 100 μl 50 mM TEAB (pH 8.5) and then 

digested overnight at 37 °C by adding 2.5 μg trypsin (Madison, WI, USA).  
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Table 11. Concentration of different protein samples. WT_D: wild type_darkness; WT_L: wild 

type_white light; M_D: mutant_darkness; M_L: mutant_white light 

Group ID Sample Name Concentration (μg/μl) 

D M_D1 1.58 

D M_D2 1.97 

D M_D3 2.38 

D WT_D1 1.76 

D WT_D2 1.77 

D WT_D3 2.48 

L M_L1 2.8 

L M_L2 2.24 

L M_L3 2.48 

L WT_L1 2.91 

L WT_L2 2.21 

L WT_L3 2.45 
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4.3 Peptide labeling 

After labeling with TMT reagents as Table 12 (Thermo Fisher Scientific Inc.), six 

samples from darkness group (group ID: D) were mixed together for nanoscale liquid 

chromatography coupled to tandem mass spectrometry (nano LC-MS / MS) analysis. For 

white light group (group ID: L), it was similar with darkness group. 

 

Table 12. Labeling information of different protein samples. D: darkness; L: white light; WT_D: 

wild type_darkness; WT_L: wild type_white light; M_D: mutant_darkness; M_L: mutant_white 

light 

Group ID Sample Name Label Reagent 

D M_D1 TMT10-126 

D M_D2 TMT10-127N 

D M_D3 TMT10-127C 

D WT_D1 TMT10-128N 

D WT_D2 TMT10-128C 

D WT_D3 TMT10-130N 

L M_L1 TMT10-126 

L M_L2 TMT10-129N 

L M_L3 TMT10-129C 

L WT_L1 TMT10-130N 

L WT_L2 TMT10-130C 

L WT_L3 TMT10-131 
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4.4 Nano LC - MS / MS analysis  

The nano liquid chromatography (LC) - mass spectrum (MS) / MS analysis was 

performed by a Dionex Ultimate 3000 Nano liquid chromatography (LC) system with 

Obitrap Q Exactive™ mass spectrometer (Thermo Fisher Scientific, USA) with an 

electrospray ionization nanospray source. Nanoflow ultra high-performance liquid 

chromatography (UPLC): Easy-nLC1000 (ThermoFisher Scientific, USA) with 

nanocolumn: 100 μm×10 cm in-house made column packed with a reversed-phase 

ReproSil-Pur C18-AQ resin (3 μm, 120 Å, Dr. Maisch GmbH, Germany) was used in 

fractionation experiment. 5 μl sample was loaded into nanocolumn. Mobile phase was 0.1% 

formic acid in water (A) and 0.1% formic acid in acetonitrile (B). The peptides were 

separated at a flow rate of 600 nl/min with LC linear gradient: 15 min, from 6% to 9% B; 

20 min, from 9% to 14% B; 60 min, from 14% to 30% B; 15 min, from 30% to 40% B; 3 

min, from 40% to 95% B; 7 min, 95% B. For the mass spectrometry (MS) parameters, 

MS resolution and MS precursor m/z range were 60000 and 300-1650, respectively. 15 

most intense peptide ions from the MS scan were fragmented by collision-induced 

dissociation (40% normalized collision energy). We used the Orbitrap with a resolution 

of 15000 for MS / MS scan. 

4.5 Data analysis 

The raw MS dates were analyzed and searched with Proteome Discover 2.1 software 

(Thermo Fisher Scientific) against protein database of A. fabrum. The 

carbamidomethylation and oxidation were selected as fixed and variable modifications, 

respectively. The enzyme specificity, maximum missed cleavages, precursor ion mass 

tolerance and MS / MS tolerance were set to trypsin, 2, 10 ppm and 20 ppm, respectively. 

For identification analysis of downstream protein, only peptides with high confident 

identification were considered. 
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5 Bacterial competition 

5.1 Competition assays 

The competition assay between A. fabrum and E. coli DH5α was performed according to 

the method of (Ma et al., 2014). Before mixing, overnight culture of A. fabrum WT, 

agp1-, agp2-, or agp1/2- mutant and E. coli DH5α were sub-cultured at 28 °C and 37 °C 

for 5 h, respectively. In the mixture, the ratio was 10 (final OD600 of A. fabrum = 0.1) : 1 

(final OD600 of E. coli = 0.01). After spot of 10 µl mixture on plates of LB agar, the plates 

were incubated under different light condition at 25 °C for 16 h. The bacterial cells were 

collected from agar, followed by strongly vortexing for 3 minutes in 1ml LB, and then 

serially diluted by LB. After being plated in LB agar, the mixture cells were grown at 

37 °C for 16 h. Finally, the colony forming units (CFU) of plates were scored. 

For competition assay between A. fabrum and other soil bacterium, A. fabrum WT, 

double mutant agp1/2- (harbouring Ti plasmid) and other soil bacterium collected from 

the soil of forest soils at Karlsruhe (49° 0′ N, 8° 24′ E) (Figure 32) were cultured in LB at 

28 °C over night, respectively. A. fabrum WT (OD600 = 2) and double mutant (OD600 = 3) 

was mixed with same volume soil bacterium (OD600 = 2) at a 1:1 ratio and 1.5:1 ratio, 

respectively, and grown at 28 °C for 12 h with shaking at 110 rpm under darkness or 

white light (40 μmol m-2s-1).  



Materials and methods 

75 

 

 

Figure 32. Site of soil collection. Soil was collected from forest at Karlsruhe (49° 0′ N, 8° 24′ E). 

 

5.2 Genomic DNA extraction and sequencing of 16S rRNA  

Total genomic DNA was extracted from microbial cells using NucleoSpin® Microbial 

DNA kit (Macherey-Nagel). Forward primer 27 FP (AGAGTTTGATCMTGGCTCAG) 

and reverse primer 338 RP (TGCTGCCTCCCGTAGGAGT) were used for amplification 

of hypervariable region V2 of the 16S rRNA gene. The PCR was performed with 25 μl 

reactions containing Phusion High Fidelity DNA Polymerase (Thermo Fisher Scientific, 

Waltham, USA) and 15 ng of template DNA. The PCR parameters were: 1 cycle (98°C, 

180 s), 35 cycles (98°C, 10 s; 58°C, 30 s; 72°C, 60 s), 1 cycle (72°C, 300 s). After 

reaction, the 2 % agarose gel was used to check PCR products. If the amplified bands 

were correct and clear, the genomic DNA samples were used for sequencing of 16S 

ribosomal RNA gene. The sequencing of V2 region was performed on a MiSeq platform 

(Illumina). 
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5.3 Analysis of 16S rRNA sequencing data 

The QIIME package (1.9.0 version) was used to analyze the sequencing data (Caporaso 

et al., 2010). Assembly of paired end reads and identification of chimeric sequences were 

performed with SeqPrep and Chimera Slayer, respectively (Haas et al., 2011). 

Operational taxonomic unit (OUT) picking was conducted at 97% similarity level and 

UCLUST algorithm against GreenGenes (13.8 version) reference sequences was used to 

perform the annotation (DeSantis et al., 2006; Edgar, 2010). To avoid misinformation, I 

just kept the OTUs with at least 50 reads in the dataset (Faith et al., 2013). For the 

analysis, normalized 10000 reads was used and then the alpha-diversity was calculated 

with Chao1 metric. 
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Appendix 

Table 13. The list of differentially expressed proteins (FC>1.5 or < 0.67 and P < 0.05). WT (D): 

A. fabrum wild type (darkness); WT (L): A. fabrum wild type (white light); M (D): A. fabrum 

double mutant agp1/2- (darkness); M (L): A. fabrum double mutant agp1/2- (white light); FC: fold 

change. 

Protein Accession 

FC = WT 

(L) / WT (D) Function 

MW 

[kDa] 

calc. 

pI 

Score 

Sequest 

Up-regulated 

     

cobL Q7CW86 1.5 

Precorrin-6y 

methyltransferase 44.6 5.5 32.26 

avhB1 Q7D3S2 1.5 Type IV secretion protein 24.6 5.03 12.05 

Atu2197 A9CI69 1.98 Uncharacterized protein 34.7 6.02 9.22 

Atu8154 Q8U5C1 1.52 

Plasmid stabilization 

system protein 14 9.09 6.78 

Atu4555 Q7CV91 1.82 Uncharacterized protein 27.8 5.16 5.9 

Atu3117 A9CEP8 1.95 Uncharacterized protein 42.6 5.85 3.84 

Atu4876 A9CHA0 1.74 Putative oxidoreductase 38.2 6.19 3.58 

Atu6114 A9CKV5 1.59 Uncharacterized protein 8.7 10.81 1.96 

Down-regulated 

     
Atu0946 A9CJP4 0.61 Dehydrogenase 39.5 5.47 173.94 

rho A9CHB1 0.64 

Transcription termination 

factor  47 6.19 126.29 

clpP Q8UFY6 0.65 

ATP-dependent Clp 

protease proteolytic 

subunit 2 23.3 6.23 96.02 

nuoI Q8UFW9 0.63 

NADH-quinone 

oxidoreductase subunit I 18.8 7.58 54.72 

rpsI Q8UFZ8 0.65 30S ribosomal protein S9 16.7 11.21 51.1 

yajC A9CIX5 0.49 

Preprotein tranlocase 

protein 12.6 9.13 36.43 

rpsL Q8UE13 0.55 

30S ribosomal protein 

S12 14 11.49 27.8 
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rpmG Q8UFU8 0.66 

50S ribosomal protein 

L33  6.3 10.07 24.52 

cox15 Q7CZN9 0.64 Heme A synthase 40.9 8.72 13.56 

atpI A9CK04 0.54 ATP synthase protein I  12.9 5.31 12.74 

Atu4600 A9CGV8 0.57 

ABC transporter, 

nucleotide 

binding/ATPase protein 64 8.5 12.23 

cyoC A9CKN5 0.59 

Cytochrome o ubiquinol 

oxidase subunit III  23 6.6 10.96 

soxD A9CG07 0.53 

Sarcosine oxidase delta 

subunit  11.9 5.27 10.86 

Atu6048 A9CL00 0.64 Uncharacterized protein 91.9 7.06 6.74 

napE A9CGL2 0.59 

Periplasmic nitrate 

reductase protein 6.6 9.54 6.29 

Atu8036 Q8U4Y5 0.47 

Protein YBGT-related 

protein 4.7 5.02 0 

 

 

Protein 

Accessio

n 

FC = M 

(D) / WT 

(D) Function 

MW 

[kDa] 

calc. 

pI 

Score 

Seques

t 

Up-regulated 

     
ileS Q8UHJ6 1.60 Isoleucine--tRNA ligase  108.4 5.66 508.79 

Atu5296 A9CLE5 3.51 Arylester hydrolase  32.6 6.96 455.2 

rpmE Q8U9I5 1.53 50S ribosomal protein L31  8.1 8.56 220.9 

flaA Q7D187 1.59 Flagellin  31.6 4.97 214.31 

flaB Q7D188 1.65 Flagellin  33 4.88 212.65 

Atu3372 A9CF36 1.78 

ABC transporter, substrate 

binding protein (Sugar)  32.8 4.98 206.39 

Atu3032 A9CEK4 1.75 Uncharacterized protein  14.1 9.77 132.8 

iolB A9CGR8 1.54 Uncharacterized protein 30 5.49 120.79 

Atu5287 A9CLF0 3.34 Uncharacterized protein  19.9 4.89 119.67 
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rpmD P68995 1.73 50S ribosomal protein L30  7.7 

11.2

8 105.43 

Atu8119 Q8U5M3 1.54 Uncharacterized protein  15.5 4.89 103.26 

Atu5297 A9CLE4 2.51 Hydrolase  34.6 6.67 90.64 

Atu8118 Q8U5M6 1.50 Putative universal stress protein  17.7 4.94 76.99 

Atu3114 

Q7CRM

8 1.76 

ABC transporter, substrate 

binding protein (Sugar)  46.3 7.94 76.97 

Atu2014 A9CIE2 1.66 

ABC transporter, substrate 

binding protein  34.5 6.05 73.8 

Atu3095 Q7CRK9 1.58 Uncharacterized protein  17.1 5.2 73.4 

avhB9 Q7D3R4 1.85 

Type IV secretion protein 

AvhB9  31.3 7.43 65.59 

Atu5336 Q7D3B8 2.52 Uncharacterized protein  12.3 4.59 63.71 

Atu4744 A9CH25 1.63 

ABC transporter, substrate 

binding protein (Sugar)  29.9 5.78 62.99 

bkdA2 A9CF98 1.69 

2-oxoisovalerate 

dehydrogenase beta subunit  36.8 5.31 51.94 

traC A9CLN4 2.34 Conjugal transfer protein  10.3 6.13 40.32 

Atu4596 A9CGV5 1.61 Uncharacterized protein 34.2 8.15 39.82 

Atu5281 A9CLF3 2.78 Uncharacterized protein 8.5 6.11 36.57 

ugpA A9CKE7 1.51 

ABC transporter, substrate 

binding protein (Sn-glycerol 3-

phosphate)  47.4 7.83 36.21 

Atu5288 A9CLE9 3.79 Uncharacterized protein  14.3 8.37 33.24 

mobB A9CIR4 1.50 

Molybdopterin-guanine 

dinucleotide biosynthesis 

protein B  18.8 6.34 32.14 

avhB10 Q7D3R3 1.84 Type IV secretion protein 42.7 5.69 28.28 

Atu0886 A9CJS5 1.57 Uncharacterized protein  19.4 5.19 27.71 

Atu4027 A9CFY9 2.02 Cytochrome c2  18.1 9.63 25.15 

cinA A9CJ26 1.59 

Competence/damage-inducible 

protein CinA  17.6 7.52 21.97 

Atu8124 Q8U5L4 1.81 Uncharacterized protein  14.6 4.88 21.49 

Atu1501 Q7CZ41 1.70 Uncharacterized protein  12.6 10.4 18.85 
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5 

rctB A9CLN1 1.78 

Transcriptional regulator 

protein 11.5 5.4 13.64 

mobC A9CH85 1.59 Mobilization protein C  12.4 9.25 12.25 

avhB1 Q7D3S2 2.46 

Type IV secretion protein 

AvhB1  24.6 5.03 12.05 

Atu2313 A9CI12 1.51 Uncharacterized protein 12.9 5.72 10.24 

Atu5278 A9CLF5 2.76 Uncharacterized protein 18.3 5.67 6.23 

Atu8206 Q8U5T0 3.38 Uncharacterized protein  10.3 9.74 4.39 

Atu5324 A9CLD1 2.46 Zinc-binding oxidoreductase  35.2 5.47 2.91 

proX A9CLJ7 3.47 

ABC transporter, nucleotide 

binding/ATPase protein 

(Glycine betaine/L-proline)  37 5.95 2.64 

Atu5239 Q7D3K0 3.01 

Transcriptional regulator, LacI 

family  39.5 7.23 0 

Down-regulated 

     
dnaK P50019 0.60 Chaperone protein DnaK  68 4.98 979.41 

groES P30780 0.46 10 kDa chaperonin  10.5 5.57 596.92 

serA A9CFK0 0.63 

D-3-phosphoglycerate 

dehydrogenase  56.5 5.62 472.46 

gntZ A9CIZ2 0.65 

6-phosphogluconate 

dehydrogenase, 

decarboxylating 51.2 5.68 321.13 

Atu4345 A9CGG8 0.67 Uncharacterized protein  17.3 5.27 285.88 

fabG A9CJ78 0.66 

3-oxoacyl-(Acyl carrier 

protein) reductase  24.8 6.6 234.71 

serS Q8UEQ2 0.63 Serine--tRNA ligase  47.6 5.78 202.46 

hutU Q8U8Z9 0.60 Urocanate hydratase  61 6.37 199.47 

ndk Q8UGB6 0.60 Nucleoside diphosphate kinase  15.3 5.57 184.85 

dapD Q8UIC6 0.52 

2,3,4,5-tetrahydropyridine-2,6-

dicarboxylate N-

succinyltransferase  30.5 5.57 162.66 
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Atu3585 Q7CSU6 0.55 Glutathione S-transferase  32.9 6.35 161.14 

Atu2424 A9CHV5 0.36 

ABC transporter, nucleotide 

binding/ATPase protein  26.5 9.39 161.1 

typA A9CHI8 0.62 

GTP-binding tyrosin 

phosphorylated protein 66.6 5.49 130.44 

Atu2053 Q7CXZ7 0.66 FAD dependent oxidoreductase  50.2 5.39 108.57 

secB Q8UJC2 0.63 Protein-export protein  17.3 4.79 106.89 

Atu3493 A9CFA9 0.65 Non-heme haloperoxidase  30.3 6.47 101.48 

Atu0333 A9CKD9 0.63 

ABC transporter, nucleotide 

binding/ATPase protein 29.2 9.2 92.24 

Atu0983 Q7D077 0.61 Uncharacterized protein  11 6.52 89.61 

Atu1993 Q7CY44 0.57 tRNA/rRNA metyltransferase  31.8 9.2 87.29 

Atu3406 Q7CSD9 0.52 Uncharacterized protein  29.6 5.53 83.27 

cobW A9CHC1 0.65 Cobalamin synthesis protein  37.2 4.82 79.81 

Atu2336 A9CHZ5 0.64 Uncharacterized protein  22.6 10.1 73.55 

Atu1132 A9CJG4 0.47 

Glutathione S-transferase 

related protein  22.1 7.12 71.21 

bgl Q7CV27 0.65 Beta-glucosidase  51.3 5.67 69.01 

traM Q44452 0.50 Transcriptional repressor TraM  11.2 6.15 64.55 

tgt Q8UES8 0.60 

Queuine tRNA-

ribosyltransferase  41.9 6.67 62.72 

minC 

Q8UAW

8 0.51 

Probable septum site-

determining protein MinC  25.7 5.38 60.51 

Atu1473 A9CJ14 0.67 Uncharacterized protein  29.2 4.86 53.47 

Atu2026 Q7CY17 0.64 Exodeoxyribonuclease V  42 6.47 50.76 

Atu4318 Q8U7Y1 0.59 Putative D-xylulose reductase  36.8 5.67 49.03 

bioA Q7CVT0 0.49 

Adenosylmethionine-8-amino-

7-oxononanoate 

aminotransferase  50.5 6.6 43.55 

Atu1856 A9CIJ1 0.66 

Inositol monophosphatase 

family protein  29.8 4.79 41.59 
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pdxH Q8UHC2 0.54 

Pyridoxine/pyridoxamine 5'-

phosphate oxidase  23.7 7.5 37.63 

hflx Q8U5B2 0.66 GTPase  49.3 6.13 36.57 

glmS Q8UEH1 0.65 

Glutamine--fructose-6-

phosphate aminotransferase 

[isomerizing]  66.1 5.83 31.2 

gmk 

Q8UGD

7 0.49 Guanylate kinase  25.3 5.9 31.03 

dxr Q8UC86 0.55 

1-deoxy-D-xylulose 5-

phosphate reductoisomerase  42.3 5.14 29.91 

Atu3026 A9CEK0 0.65 Short chain dehydrogenase  25.7 7.4 29.39 

nifS Q7CYG4 0.61 Cysteine desulfurase 44.9 6.24 27.98 

Atu1827 Q8UED3 0.63 

Anhydro-N-acetylmuramic acid 

kinase  39.3 6.25 27.58 

minE 

Q8UAX

0 0.43 

Cell division topological 

specificity factor  9.7 7.06 25.77 

cysI A9CJ21 0.52 

Sulfite reductase (NADPH) 

hemoprotein beta-component  61.7 6.11 25.18 

mutA A9CFE8 0.57 Methylmalonyl-CoA mutase  77.3 5.39 24.43 

bdhA Q7CXD5 0.51 

D-beta-hydroxybutyrate 

dehydrogenase  27.4 6.15 24.19 

rfbD 

A9CGW

6 0.41 

dTDP-4-dehydrorhamnose 

reductase  31.9 6.62 24.15 

Atu2186 A9CI74 0.60 

Transcriptional regulator, LysR 

family  34 6.8 22.97 

aglA A9CI23 0.47 Alpha-glucosidase  62.3 5.72 21.51 

Atu3861 Q7CTH0 0.59 Acyl-CoA hydrolase  14.3 6.57 20.33 

cycH A9CJN0 0.57 CycH protein  41.9 5.21 19.65 

Atu0240 A9CKI6 0.44 Uncharacterized protein  15 7.58 19.39 

Atu2574 

Q7CWR

2 0.56 Uncharacterized protein  24.2 6.93 18.87 

Atu1181 Q7CZT4 0.59 Uncharacterized protein 19.6 7.43 18.47 

Atu0797 A9CJV8 0.60 Hydrolase  23.4 5.71 18.13 

Atu0903 Q7D0E4 0.56 Uncharacterized protein  30.9 6.21 16.7 
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Atu1192 Q8U5D3 0.21 

Transcriptional regulator, MarR 

family 17.5 9.58 16.46 

Atu8198 Q8U500 0.55 Uncharacterized protein  13.6 9.2 15.98 

alr P58737 0.64 Alanine racemase, catabolic 40.6 6.23 14.64 

Atu0073 Q8UJ65 0.44 

DNA replication and repair 

protein  40.8 6.16 14.62 

minD A9CEX2 0.55 Site-determining protein  29.4 7.39 13.64 

cox15 Q7CZN9 0.63 Heme A synthase  40.9 8.72 13.56 

papS Q7CXI6 0.61 Poly(A) polymerase 45.6 6.84 13.25 

Atu1166 Q8UG74 0.65 Transcriptional repressor  18.2 7.77 13.02 

argE A9CF54 0.41 Acetylornithine deacetylase  39.1 5.16 12.8 

glsA Q8UEA1 0.59 Glutaminase  32.9 7.06 11.6 

Atu3140 Q8UB77 0.47 

Probable 5-dehydro-4-

deoxyglucarate dehydratase  32.5 5.91 10.28 

Atu2060 Q7CXZ0 0.56 

ABC transporter, substrate 

binding protein (Glycine 

betaine)  34.1 5.24 9.83 

hupX A9CLN8 0.46 DNA binding protein  8 

10.0

8 9.51 

Atu5086 Q7D3Y2 0.59 Uncharacterized protein  52.4 6.29 9.04 

Atu0300 A9CKE9 0.60 Methyltransferase  21.9 9.58 8.06 

lpxK Q8UHI5 0.63 Tetraacyldisaccharide 4'-kinase  37.7 9.45 7.25 

Atu0437 A9CK99 0.62 Uncharacterized protein  25.6 6.1 5.86 

lrp Q7CSE6 0.60 

Transcriptional regulator, AsnC 

family 18 7.37 5.71 

Atu2451 A9CHU0 0.66 Uncharacterized protein  22 9.8 5.51 

Atu3835 A9CFR4 0.33 Uncharacterized protein 29.6 5.2 5.36 

cfa A9CIF7 0.59 

Cyclopropane-fatty-acyl-

phospholipid synthase  39 6.28 5.1 

Atu3527 Q7CSP4 0.44 Uncharacterized protein  30.8 5.67 5.09 

Atu1766 Q7CYK9 0.47 Uncharacterized protein  8.4 

10.7

8 5.07 

Atu1814 A9CIL2 0.28 Epoxide hydrolase  38.7 6.25 4.61 
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Atu3392 A9CF50 0.48 Methyltransferase  30.3 7.66 4.46 

Atu6113 A9CKV6 0.64 Uncharacterized protein  21 5.69 4.3 

fabG A9CL71 0.54 

3-oxoacyl-(Acyl-carrier 

protein) reductase 25 5.43 4.11 

Atu3842 A9CFR5 0.43 Uncharacterized protein 21.9 8.25 3.95 

Atu1030 Q7D045 0.52 

GTP 

pyrophosphohydrolase/syntheta

se, RelA/SpoT family  83.8 6.43 3.71 

Atu3074 

A9CEM

5 0.48 Short chain dehydrogenase  26.8 5.97 3.48 

ctpE A9CKJ6 0.33 Components of type IV pilus 20.4 6.55 3.46 

Atu3833 A9CFR2 0.40 Uncharacterized protein  20 5.9 3.4 

Atu5199 Q7D3N8 0.58 Oxidoreductase  38.3 6.35 3.4 

Atu0722 Q7D0U4 0.62 Uncharacterized protein  19 7.46 3.13 

exoP A9CFZ9 0.30 

Exopolysaccharide 

polymerization/transport 

protein  86.9 6.71 2.84 

Atu4375 A9CGI9 0.14 Uncharacterized protein  41.2 5.82 2.66 

Atu3980 Q7CTS4 0.44 Hydrolase  25.3 6.29 2.57 

kgtP Q7CTV4 0.26 MFS permease 48.2 9.28 2.39 

aat Q8UFR8 0.55 

Leucyl/phenylalanyl-tRNA--

protein transferase  22.7 6.54 2.33 

Atu5498 A9CL42 0.58 

Oxidoreductase with iron-sulfur 

subunit 18.8 4.81 2.29 

Atu4529 Q7CV67 0.59 Uncharacterized protein  69.7 5.22 2.28 

Atu3834 A9CFR3 0.45 Uncharacterized protein 25.6 4.93 2.25 

Atu4477 A9CGQ4 0.40 

Transcriptional regulator, TetR 

family  25.3 5.69 2.24 

socR Q7D446 0.49 

Santhopine-responsive 

transcriptional repressor  38.2 7.62 2.18 

kdpB Q8U9D9 0.35 

Potassium-transporting ATPase 

ATP-binding subunit  72.9 5.71 2.16 

Atu4238 A9CGA0 0.12 Hydrolase  30.2 5.66 2.13 
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dhaS A9CLJ0 0.20 Aldehyde dehydrogenase 54.6 5.72 2.09 

traA 

Q7D3W

2 0.33 Conjugal transfer protein 171.1 8.9 2.04 

mutS Q8UIF2 0.13 DNA mismatch repair protein  98.1 5.63 1.97 

Atu0215 A9CKJ9 0.66 Uncharacterized protein  29.7 9.48 1.95 

apaG Q8UI68 0.31 Protein ApaG  14.7 4.34 1.93 

Atu0570 Q7D176 0.20 Chemotaxis protein  45.6 5.6 1.93 

pssN Q7CS19 0.45 

Exopolysaccharide export 

protein 42.5 7.33 1.9 

Atu4122 A9CG37 0.31 

Transcriptional regulator, LysR 

family 34.7 8.19 1.79 

rpoN Q8U5M8 0.22 

RNA polymerase sigma-54 

factor 56.7 4.86 1.64 

Atu0869 A9CJT2 0.67 Uncharacterized protein  13.2 5.39 0 

Atu2320 A9CI06 0.48 

Transcriptional regulator, TetR 

family 21.1 6.95 0 

 

 

Protein Accession 

FC = M (L) / 

WT (L) Function 

MW 

[kDa] 

calc. 

pI 

Score 

Seques

t  

Up-regulated 

     Atu2469 A9CHT0 2.04 Uncharacterized protein 32.4 5.24 603.99 

ileS Q8UHJ6 1.58 Isoleucine--tRNA ligase  108.4 5.66 508.79 

Atu5296 A9CLE5 3.44 Arylester hydrolase 32.6 6.96 455.2 

frcB A9CKR7 1.57 

ABC transporter, substrate 

binding protein (Sugar)  35.2 5.29 384.91 

dctP A9CLG5 3.81 

ABC transporter, substrate 

binding protein  40.4 6.8 324.49 

rplA Q8UE05 1.85 50S ribosomal protein L1  24.2 9.45 285.33 

Atu5118 A9CLN0 2.20 Aminotransferase, class II  44.8 7.02 262.52 

Atu3891 A9CFT2 1.51 Uncharacterized protein 63.9 5.94 246.7 
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rplJ Q8UE06 1.84 50S ribosomal protein L10  18.2 9.61 223.78 

trpE(G) A9CI26 1.67 

Anthranilate synthase 

component I and II  80.5 5.86 221.22 

rpmE Q8U9I5 1.62 50S ribosomal protein L31  8.1 8.56 220.9 

fixP A9CIY8 1.86 

Cbb3-type cytochrome c 

oxidase subunit  30.9 4.88 214.71 

Atu3372 A9CF36 1.56 

ABC transporter, substrate 

binding protein (Sugar)  32.8 4.98 206.39 

rpsJ Q8UE17 1.81 30S ribosomal protein S10  11.5 

10.1

8 201.13 

ilvI Q7CY08 2.04 Acetolactate synthase 65.4 5.88 198.66 

Atu5117 Q7D3V8 2.00 Uncharacterized protein 36 6.71 198.54 

ugpB Q8UB32 1.61 

sn-glycerol-3-phosphate-

binding periplasmic 

protein  47.2 6.71 187.72 

Atu0946 A9CJP4 3.04 Dehydrogenase  39.5 5.47 173.94 

hflK Q7CY01 1.54 Protein HflK  40.2 5 126.08 

rplL Q8UE07 1.74 

50S ribosomal protein 

L7/L12  12.7 4.86 125.18 

clpP Q8UD57 2.07 

ATP-dependent Clp 

protease proteolytic 

subunit 3 22.3 5.49 122.31 

rplD Q8UE19 1.88 50S ribosomal protein L4 22.4 

10.2

6 119.88 

Atu3772 A9CFM5 1.80 Uncharacterized protein  37.6 5.62 119.75 

Atu5287 A9CLF0 3.54 Uncharacterized protein 19.9 4.89 119.67 

xylF A9CFE7 1.73 

ABC transporter, substrate 

binding protein (Xylose) 36 6.33 117.24 

rpsE Q8UE35 1.91 30S ribosomal protein S5 20.5 

10.5

2 113.25 

rplM Q8UFZ7 1.60 50S ribosomal protein L13  17.3 

10.1

3 104.23 

Atu4577 Q7CVB1 1.64 

ABC transporter, substrate 

binding protein 35.3 5.02 102.42 
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Atu3253 A9CEX5 1.56 

ABC transporter, substrate 

binding protein 36 7.18 101.69 

Atu1971 Q7CY63 2.05 Uncharacterized protein  15.9 9.11 101.27 

Atu1885 A9CIH8 1.52 

Transcriptional regulator, 

AsnC family  18.7 6.24 100.82 

rnpO Q8UGK8 1.61 

DNA-directed RNA 

polymerase subunit omega 14.3 4.26 95.28 

Atu2656 Q7CWJ5 1.74 Uncharacterized protein  58.6 7.97 94.4 

Atu5297 A9CLE4 1.58 Hydrolase  34.6 6.67 90.64 

hemH Q8U9F7 1.60 Ferrochelatase  39.4 6.8 81.2 

dnaJ P50018 1.83 Chaperone protein  40.9 7.59 77.27 

Atu2014 A9CIE2 1.56 

ABC transporter, substrate 

binding protein  34.5 6.05 73.8 

rplC Q8UE18 1.77 50S ribosomal protein L3  22.6 

10.3

5 73.56 

atpH Q7CWL8 1.85 

ATP synthase subunit 

delta 19.8 5.66 73.35 

rpmA Q8UBR6 2.55 50S ribosomal protein L27 9.4 

11.0

3 67.42 

Atu5336 Q7D3B8 2.92 Uncharacterized protein  12.3 4.59 63.71 

Atu4744 A9CH25 1.67 

ABC transporter, substrate 

binding protein (Sugar) 29.9 5.78 62.99 

gyrB A9CKT5 1.61 DNA gyrase subunit B  88.8 5.77 61.26 

Atu3151 A9CER5 1.53 

ABC transporter, substrate 

binding protein (Sugar)  45.5 4.82 54.3 

glnA Q7D146 1.61 Glutamine synthetase 53.1 5.33 52.87 

Atu0008 Q7D2D0 1.94 Uncharacterized protein  24.2 4.94 52.09 

yidC Q8UIB3 1.94 

Membrane protein 

insertase 67.1 7.64 51.61 

rpsI Q8UFZ8 2.43 30S ribosomal protein S9  16.7 

11.2

1 51.1 

rpmI Q8UIN8 2.40 50S ribosomal protein L35  7.3 

11.2

5 43.36 

rpmF Q8UJ26 2.42 50S ribosomal protein L32  6.9 

10.7

3 42.86 

Atu1222 A9CJC7 1.81 Uncharacterized protein  27.3 10.1 41.2 
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traC A9CLN4 2.00 Conjugal transfer protein 10.3 6.13 40.32 

Atu5265 A9CLG7 1.71 Sugar binding protein  46.2 4.75 39.78 

fixN Q7CZ11 2.01 

Cytochrome-c oxidase, 

FixN chain 60.8 8.84 36.9 

Atu5281 A9CLF3 2.06 Uncharacterized protein  8.5 6.11 36.57 

yajC A9CIX5 2.99 

Preprotein tranlocase 

protein  12.6 9.13 36.43 

Atu5288 A9CLE9 2.22 Uncharacterized protein  14.3 8.37 33.24 

blcC Q7D3U0 1.52 

N-acyl homoserine 

lactonase AttM  29.3 6.21 31.92 

rluB A9CK15 1.85 Pseudouridine synthase 72.5 

10.2

6 30.27 

avhB10 Q7D3R3 2.01 

Type IV secretion protein 

AvhB10 42.7 5.69 28.28 

Atu5270 A9CLG3 2.02 

Permease component of 

C4 dicarboxylate 

transporter  19.9 7.97 24.93 

rpmG Q8UFU8 1.95 50S ribosomal protein L33  6.3 

10.0

7 24.52 

Atu5359 Q8UJW6 3.26 UPF0339 protein Atu5359 6.9 9.13 21.92 

ctpA Q7D1X1 1.53 

Components of type IV 

pilus, pilin subunit 6.4 9.25 19.89 

secG Q7CYV5 1.50 

Protein-export membrane 

protein SECG 15.3 9 19.37 

Atu5299 A9CLE3 1.60 Uncharacterized protein  40.2 7.14 17.31 

deaD A9CG67 1.51 

Cold-shock dead-box 

protein A  67.9 9.03 16.24 

Atu5383 Q8U5S9 1.66 

Transcriptional regulator, 

TetR family  22.5 6.4 12.97 

Atu0643 Q7D114 2.15 Uncharacterized protein 68.4 8.53 12.8 

Atu4600 A9CGV8 2.24 

ABC transporter, 

nucleotide 

binding/ATPase protein  64 8.5 12.23 

Atu8099 Q8U5X6 2.21 Uncharacterized protein  6.6 9.63 11.47 

Atu5212 Q7D3M5 1.64 Uncharacterized protein  24.4 7.06 11.32 
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Atu3641 A9CFH3 2.07 Uncharacterized protein  41.7 5.12 11.06 

cyoC A9CKN5 2.39 

Cytochrome o ubiquinol 

oxidase subunit III  23 6.6 10.96 

soxD A9CG07 2.34 

Sarcosine oxidase delta 

subunit 11.9 5.27 10.86 

nuoA A9CJB3 1.94 

NADH-quinone 

oxidoreductase subunit A  13.7 4.56 10.49 

nuoL A9CJA3 2.29 

NADH ubiquinone 

oxidoreductase chain L 73.2 7.77 10.41 

nuoM A9CJA2 2.76 

NADH dehydrogenase I 

chain M  55.4 7.5 8.35 

avhB7 Q7D3R6 1.52 

Type IV secretion protein 

AvhB7  9.7 7.08 8.06 

aroQ Q8UFR5 1.53 

3-dehydroquinate 

dehydratase 1  15.6 6.95 7.54 

impM Q7CUN2 1.65 

Serine/threonine 

phosphoprotein 

phosphatase  51.7 6.86 7.32 

Atu0638 A9CK42 1.74 Uncharacterized protein  7.3 9.17 7.21 

Atu5343 A9CLC1 2.04 

ABC transporter, substrate 

binding protein 

(Oligopeptide) 56.8 6.34 7.2 

dfp Q7D1P8 1.75 

Coenzyme A biosynthesis 

bifunctional protein 

CoaBC  42.3 6.9 6.41 

napE A9CGL2 2.36 

Periplasmic nitrate 

reductase protein  6.6 9.54 6.29 

Atu5278 A9CLF5 2.47 Uncharacterized protein  18.3 5.67 6.23 

Atu2286 A9CI29 4.03 UPF0114 protein 19.3 5.96 5.79 

Atu3758 Q8U9H0 2.37 UPF0335 protein  9.7 4.86 5.79 

Atu3763 Q7CT90 2.13 Uncharacterized protein 61.4 9.1 5.61 

Atu0730 Q7D0T7 1.60 Uncharacterized protein  19.7 9.79 5.31 

Atu5039 A9CLS2 1.68 Uncharacterized protein 44.3 6.47 5.24 
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Atu8206 Q8U5T0 3.22 Uncharacterized protein  10.3 9.74 4.39 

panB Q8UA91 1.80 

3-methyl-2-oxobutanoate 

hydroxymethyltransferase 29.7 6.34 4.06 

Atu1967 Q7CY65 2.46 Uncharacterized protein  22.5 5.73 3.99 

ureB Q8UCS8 2.18 Urease subunit beta 11.1 8.59 3.96 

Atu2352 A9CHY7 1.68 Uncharacterized protein  9.4 5.01 3.67 

hutH A9CFP1 1.51 Histidine ammonia-lyase 52.4 5.72 3.63 

aglG A9CK58 1.84 

ABC transporter, 

membrane spanning 

protein 41.6 9.19 2.78 

proX A9CLJ7 2.26 

ABC transporter, 

nucleotide 

binding/ATPase protein 

(Glycine betaine/L-

proline)  37 5.95 2.64 

Atu1107 A9CJH1 2.44 Uncharacterized protein 39.5 9.52 2.55 

Atu4602 Q7CVD5 2.19 IS 426 transposase 14.8 9.8 2.44 

dgk A9CIH6 1.76 Diacylglycerol kinase  14.8 7.52 2.38 

Atu5269 A9CLG4 2.51 

Permease component of 

C4 dicarboxylate 

transporter  51.8 8.72 2.25 

mtbA Q7CWX7 1.62 MFS permease  65.6 8.88 1.91 

Atu0925 Q8UGW0 2.13 Uncharacterized protein  19.9 5.54 1.89 

exoX Q7CTZ5 1.65 

Exopolysaccharide 

production repressor 

protein 10.3 9.31 1.88 

Atu8036 Q8U4Y5 2.60 

Protein YBGT-related 

protein  4.7 5.02 0 

mnhF A9CJQ9 2.00 Na+/H+ antiporter  13.8 

10.4

3 0 

Down-regulated 

     

glyA Q8UG75 0.63 

Serine 

hydroxymethyltransferase 

1 46.5 6.55 666.08 

groES P30780 0.49 10 kDa chaperonin  10.5 5.57 596.92 
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serC A9CFK1 0.61 

Phosphoserine 

aminotransferase 42.5 5.68 524.46 

greA Q8UDE5 0.53 

Transcription elongation 

factor  17.3 4.92 323.06 

Atu4345 A9CGG8 0.59 Uncharacterized protein 17.3 5.27 285.88 

Atu4610 A9CGW4 0.63 

Sugar nucleotide 

epimerase/dehydratase  38.5 6.61 254.68 

kdgA Q7CV35 0.59 

Keto-hydroxyglutarate-

aldolase/keto-deoxy-

phosphogluconate aldolase 21.5 5.63 251.66 

adh Q7CY20 0.57 

NADP-dependent alcohol 

dehydrogenase 37.6 5.64 246.09 

cysK A9CKE4 0.61 Cysteine synthase  33.6 5.83 245.06 

aspB Q7D196 0.61 Aminotransferase  42.3 5.35 234.85 

fabG A9CJ78 0.66 

3-oxoacyl-(Acyl carrier 

protein) reductase  24.8 6.6 234.71 

sodBI A9CJS9 0.62 Superoxide dismutase 22.6 6.1 207.04 

hpcE A9CKT3 0.60 

2-hydroxyhepta-2,4-diene-

1,7-dioate isomerase  29.7 5.36 204.23 

hutU Q8U8Z9 0.66 Urocanate hydratase  61 6.37 199.47 

ndk Q8UGB6 0.64 

Nucleoside diphosphate 

kinase 15.3 5.57 184.85 

prfC A9CKE3 0.65 

Peptide chain release 

factor 3 58.8 5.68 182.31 

Atu1093 Q7D001 0.61 Aldo/keto reductase 37.8 5.85 165.46 

dapD Q8UIC6 0.65 

2,3,4,5-tetrahydropyridine-

2,6-dicarboxylate N-

succinyltransferase  30.5 5.57 162.66 

Atu2424 A9CHV5 0.28 

ABC transporter, 

nucleotide 

binding/ATPase protein  26.5 9.39 161.1 

lysA A9CFF5 0.65 

Diaminopimelate 

decarboxylase  45.6 6.05 160.84 

Atu2455 Q8UCM8 0.57 Uracil-DNA glycosylase 26.7 7.11 157.55 

scrK Q7D1J1 0.62 Fructokinase  32.8 5.64 157.3 
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rsmC Q7D284 0.65 

Ribosomal RNA small 

subunit methyltransferase  36.6 6.57 155.2 

rfbA Q7CVE5 0.66 

Glucose-1-phosphate 

thymidylyltransferase  31.5 5.49 143.29 

Atu3982 A9CFW6 0.57 Uncharacterized protein 72.7 6.15 138.69 

Atu4347 Q7CUP8 0.63 Uncharacterized protein 18.3 8.88 133.4 

hpt A9CFF7 0.64 

Hypoxanthine 

phosphoribosyltransferase  19.8 5.19 130.98 

gst A9CJU4 0.56 Glutathione-S-transferase  24.1 6.39 126.59 

queA Q8UES7 0.52 

S-adenosylmethionine: 

tRNA ribosyltransferase-

isomerase 40.7 5.59 111.46 

Atu1136 A9CJG2 0.65 Reductase  78.3 6.51 108.5 

secB Q8UJC2 0.66 

Protein-export protein 

SecB  17.3 4.79 106.89 

bcp A9CIK6 0.63 

Bacterioferritin 

comigratory protein  16.7 6.8 101.57 

Atu3493 A9CFA9 0.66 Non-heme haloperoxidase  30.3 6.47 101.48 

Atu2761 A9CHD9 0.67 Exodeoxyribonuclease III  30.6 8.28 94.56 

hutI Q8U8Z6 0.67 Imidazolonepropionase 44.4 5.26 94.07 

Atu0211 A9CKK1 0.61 Uncharacterized protein  31.2 5.57 93.26 

Atu3331 A9CF08 0.65 Uncharacterized protein  28.4 8.37 91.74 

Atu0983 Q7D077 0.61 Uncharacterized protein 11 6.52 89.61 

Atu3726 A9CFK5 0.67 

Flavin dependant 

oxidoreductase 36.6 6.27 87.35 

fabZ A9CIV8 0.62 

(3R)-Hydroxymyristoyl-

(Acyl carrier protein)-

Dehydratase  17.1 5.54 87.11 

Atu2144 A9CI91 0.65 Uncharacterized protein  28 5.6 84.42 

Atu3406 Q7CSD9 0.41 Uncharacterized protein 29.6 5.53 83.27 

glpK Q8U940 0.65 Glycerol kinase 54.6 5.54 82.4 

Atu0813 A9CJV2 0.62 Uncharacterized protein 14.7 9.52 78 
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Atu2336 A9CHZ5 0.66 Uncharacterized protein  22.6 10.1 73.55 

traM Q44452 0.32 Transcriptional repressor 11.2 6.15 64.55 

Atu4121 Q7CU40 0.65 Monooxygenase  37.8 5.59 64.32 

tgt Q8UES8 0.62 

Queuine tRNA-

ribosyltransferase 41.9 6.67 62.72 

minC Q8UAW8 0.59 

Probable septum site-

determining protein 25.7 5.38 60.51 

Atu0690 A9CK14 0.58 Uncharacterized protein  20.2 7.14 58.86 

Atu2614 A9CHK6 0.64 Uncharacterized protein 8.2 9.33 57.14 

Atu1372 A9CJ63 0.53 Uncharacterized protein 16.2 5.48 57 

kdgK Q7CXE6 0.65 

2-dehydro-3-

deoxygluconokinase  31.4 5.4 55.08 

blcR Q7D3U3 0.65 

Transcriptional repressor 

of the blcABC operon  29.7 6.54 52.64 

Atu4019 A9CFY5 0.64 

Two component response 

regulator 23.9 5.85 49.9 

recR Q8UJ45 0.66 Recombination protein 21.3 6.68 49.33 

Atu5430 A9CL77 0.63 Uncharacterized protein  15.5 4.91 48.21 

Atu1441 A9CJ27 0.56 Uncharacterized protein  17.6 6.8 45.59 

bioA Q7CVT0 0.66 

Adenosylmethionine-8-

amino-7-oxononanoate 

aminotransferase  50.5 6.6 43.55 

gidB Q8UBM1 0.61 

Ribosomal RNA small 

subunit methyltransferase 

G  23 8.63 42.93 

Atu1325 A9CJ86 0.64 Acetyltransferase  18.4 5.63 42.14 

hadL Q7CSD8 0.63 

Haloalkanoic acid 

dehalogenase  24.9 6.21 41.87 

Atu0479 Q7D1E1 0.67 

ABC transporter, substrate 

binding protein (Amino 

acid)  27.7 5.36 32.42 

Atu1989 Q7CY46 0.57 

Two component response 

regulator  16.7 5.05 31.72 
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gmk Q8UGD7 0.60 Guanylate kinase  25.3 5.9 31.03 

gidA Q8UET6 0.63 

Methylenetetrahydrofolate

--tRNA-(uracil-5-)-

methyltransferase  51.8 5.81 30.77 

dxr Q8UC86 0.63 

1-deoxy-D-xylulose 5-

phosphate 

reductoisomerase 42.3 5.14 29.91 

rluA A9CFZ5 0.64 

Ribosomal large subunit 

pseudouridine synthase A  24.8 8.19 29.73 

Atu3409 A9CF60 0.58 

ABC transporter, substrate 

binding protein 

(Oligopeptide)  57.9 7.56 29.41 

Atu3026 A9CEK0 0.59 Short chain dehydrogenase  25.7 7.4 29.39 

Atu3407 A9CF58 0.48 Aminotransferase, class III  48.8 6.06 28.66 

ordL A9CHN2 0.66 Oxidoreductase 45.9 6.62 28.02 

nifS Q7CYG4 0.54 Cysteine desulfurase 44.9 6.24 27.98 

rctA A9CLM1 0.47 

Transcriptional regulator 

protein  13.1 9.52 27.15 

murI Q8UE93 0.61 Glutamate racemase 30 5.39 26.09 

lspL A9CG55 0.57 

UDP-glucuronic acid 

epimerase 37.4 6.7 25.77 

minE Q8UAX0 0.58 

Cell division topological 

specificity factor 9.7 7.06 25.77 

Atu0397 Q7D1J3 0.61 Uncharacterized protein  47.6 9.06 25.58 

Atu0606 Q7D143 0.47 Uncharacterized protein 9.1 7.66 24.68 

Atu5487 Q7D2Y6 0.61 Uncharacterized protein 11.6 4.46 24.25 

rfbD A9CGW6 0.57 

dTDP-4-dehydrorhamnose 

reductase  31.9 6.62 24.15 

Atu3908 Q7CTL4 0.63 

Transcriptional regulator, 

GntR family 24.8 6.81 23.65 

metA Q7CWE8 0.65 

Homoserine O-

acetyltransferase  35.7 6.05 22.11 

aglA A9CI23 0.57 Alpha-glucosidase  62.3 5.72 21.51 
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phoB A9CKA3 0.62 

Two component response 

regulator  26 6.43 21.01 

Atu1343 Q7CZG7 0.44 Uncharacterized protein  16.8 6.27 20.86 

Atu2275 A9CI35 0.59 Uncharacterized protein  15.3 5.17 20.37 

uxuA Q8UA46 0.60 Mannonate dehydratase 2  43.6 5.77 20.33 

Atu3861 Q7CTH0 0.64 Acyl-CoA hydrolase  14.3 6.57 20.33 

Atu0781 Q8UHA2 0.67 UPF0301 protein  21.9 4.92 19.88 

Atu0240 A9CKI6 0.65 Uncharacterized protein 15 7.58 19.39 

Atu5516 A9CL33 0.60 Uncharacterized protein  50.7 5.52 19.34 

myg1 A9CFP3 0.63 Uncharacterized protein  33.9 5.33 18.7 

nasT Q7CTL3 0.67 

Two component response 

regulator  21.8 5.74 18.63 

rluD Q7CX17 0.31 Pseudouridine synthase  37.5 6.07 18.62 

Atu0792 A9CJW1 0.63 Uncharacterized protein  16.8 8.27 18.61 

Atu2331 A9CHZ9 0.55 Uncharacterized protein 28 5.57 18.37 

Atu4270 Q7CUH6 0.61 Uncharacterized protein  22.3 5.03 18.37 

Atu1626 A9CIU6 0.63 

NAD dependent 

epimerase/dehydratase 

family protein  32 6.33 18.36 

dacF Q7CSY9 0.64 

Penicillin-binding protein 

dacf 41 9.7 17.88 

Atu2811 Q7CW73 0.64 Uncharacterized protein  44.8 5.38 17.67 

Atu1192 Q8U5D3 0.29 

Transcriptional regulator, 

MarR family  17.5 9.58 16.46 

Atu2673 Q7CWI1 0.60 

Dual-specificity RNA 

methyltransferase RlmN  45.3 7.28 15.94 

Atu4503 A9CGR4 0.61 Creatinine amidohydrolase  28.9 6.21 15.81 

Atu3054 Q7CRH0 0.65 Uncharacterized protein  42.9 7.15 15.8 

Atu0292 A9CKF3 0.65 

Iron-sulfur cluster binding 

protein  36.2 6.46 15.53 

rbsB A9CKY3 0.64 

ABC transporter, substrate 

binding protein (Ribose)  45.9 8.12 15.38 
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Atu0864 A9CJT4 0.65 Oxidoreductase 27 5.41 14.84 

alr P58737 0.67 

Alanine racemase, 

catabolic  40.6 6.23 14.64 

zur A9CIZ4 0.62 

Ferric uptake regulation 

protein  15.4 6.7 13.84 

minD A9CEX2 0.43 Site-determining protein  29.4 7.39 13.64 

Atu0011 A9CKT6 0.64 Transcriptional regulator  13.4 8.15 13.25 

Atu0907 A9CJR4 0.65 

Phosphinothricin 

acetyltransferase  18.4 6.42 13.07 

Atu2734 A9CHF9 0.67 Dehydrogenase  38.7 5.59 12.9 

argE A9CF54 0.39 

Acetylornithine 

deacetylase  39.1 5.16 12.8 

Atu2343 A9CHY9 0.66 Acetyltransferase  16.5 6.57 12.55 

pcaR Q7CV82 0.63 

Transcriptional regulator, 

IclR family  27.4 7.12 12.47 

Atu0796 Q7D0N2 0.55 Putative peptidase  26.7 7.62 12.45 

Atu3164 A9CES4 0.41 Dehydrogenase 26.7 6.35 11.69 

Atu5489 Q8UJI8 0.64 Uncharacterized protein  8.5 7.5 10.9 

dnaJ A9CIE5 0.64 

Molecular chaperone, 

DnaJ family  22.7 5.3 10.57 

sodBII Q7CVB7 0.67 Superoxide dismutase  22.3 6.07 10.38 

Atu4674 Q7CVJ9 0.47 

Transcriptional regulator, 

GntR family 26.4 6.55 10.37 

Atu0949 A9CJP3 0.63 Uncharacterized protein  29.4 5.35 10.21 

Atu4416 A9CGL7 0.55 

Phosphopantetheinyl 

transferase  25.7 6.06 10.05 

Atu0072 A9CKR2 0.47 Uncharacterized protein  44.5 9.07 9.98 

Atu2060 Q7CXZ0 0.51 

ABC transporter, substrate 

binding protein (Glycine 

betaine) 34.1 5.24 9.83 

aceA A9CK53 0.61 Isocitrate lyase 46.8 6.16 9.42 
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Atu6117 A9CKV3 0.65 

NTP 

pyrophosphohydrolase, 

MutT family 18 6.09 9.23 

Atu4301 A9CGE2 0.50 Uncharacterized protein  26.8 6.42 9.1 

attH Q7D3U4 0.65 Uncharacterized protein  39.1 5.44 8.99 

truA Q8UIC9 0.64 

tRNA pseudouridine 

synthase A 29.9 7.06 8.95 

aroE A9CGT0 0.64 

Shikimate dehydrogenase 

(NADP(+))  31.3 6.6 8.47 

gltX A9CFE9 0.63 

Glutamyl-tRNA 

Synthetase  33.2 6.2 8.32 

Atu5064 Q7D402 0.66 

Transcriptional regulator, 

MarR family 16.7 8.48 8.17 

Atu1554 Q8UF45 0.67 Uncharacterized protein  6.9 7.36 7.34 

Atu4874 A9CH98 0.61 Uncharacterized protein  16.2 4.88 6.78 

Atu8154 Q8U5C1 0.52 

Plasmid stabilization 

system protein 14 9.09 6.78 

fadD A9CIS6 0.43 

Long-chain fatty acid-CoA 

ligase 55.3 6.61 6.26 

Atu4141 Q7CU59 0.67 Uncharacterized protein  16 5.16 6.06 

Atu4555 Q7CV91 0.54 Uncharacterized protein 27.8 5.16 5.9 

Atu0675 A9CK21 0.67 Uncharacterized protein  8.9 5.07 5.83 

ruvC Q8U9K4 0.59 

Crossover junction 

endodeoxyribonuclease 18.2 8.88 5.83 

ipk Q8UHP8 0.58 

4-diphosphocytidyl-2-C-

methyl-D-erythritol kinase 31.8 6.54 5.58 

hemO Q7CWX1 0.59 Heme oxygenase 22.3 5.21 5.55 

Atu2451 A9CHU0 0.56 Uncharacterized protein  22 9.8 5.51 

Atu3835 A9CFR4 0.21 Uncharacterized protein  29.6 5.2 5.36 

nusG Q7D1F8 0.60 

Transcription 

antitermination protein  20.4 8.02 5.31 

amaB Q7CRI5 0.51 

N-carbamoyl-beta-alanine 

amidohydrolase  44.6 4.96 5.25 
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Atu4384 A9CGJ5 0.52 Uncharacterized protein  19.5 4.73 5.07 

Atu0839 Q7D0K2 0.53 Uncharacterized protein  36.2 6.47 4.95 

Atu1059 A9CJI9 0.59 

Putative SOS response-

associated peptidase  28 6.13 4.86 

Atu1814 A9CIL2 0.61 Epoxide hydrolase  38.7 6.25 4.61 

nwsB A9CJG9 0.65 

Two component response 

regulator 21.9 5.85 4.56 

Atu5188 Q7D3P9 0.64 

Zinc-binding 

dehydrogenase 35.2 6.54 4.54 

Atu3798 Q7CTC0 0.59 

Transcriptional regulator, 

TetR family  23.4 8.85 4.53 

bme3 Q7CVX9 0.33 Uncharacterized protein  46.3 9.42 4.53 

Atu2466 Q7CWZ7 0.49 

Two component response 

regulator  24.7 5.27 4.46 

Atu0636 Q7D120 0.64 Uncharacterized protein  25.4 6.43 4.46 

Atu4131 A9CG46 0.26 

Hydroxybutyrate 

dehydrogenase 27.7 6.37 4.42 

Atu2660 Q8UC38 0.58 UPF0235 protein 12.2 8.7 4.25 

Atu1439 Q7CZ90 0.64 Uncharacterized protein  10.2 7.93 4.04 

Atu1114 Q7CZY6 0.56 GGDEF family protein 71.3 6.86 4.01 

Atu4398 A9CGK5 0.52 Uncharacterized protein 33.9 6.32 3.9 

ocd P09773 0.62 Ornithine cyclodeaminase  39 5.48 3.86 

Atu3117 A9CEP8 0.56 Uncharacterized protein  42.6 5.85 3.84 

Atu1553 A9CIX8 0.66 Uncharacterized protein 16.1 5.6 3.79 

Atu4378 Q7CUS8 0.62 Uncharacterized protein 20.1 5.64 3.63 

Atu3074 A9CEM5 0.56 Short chain dehydrogenase  26.8 5.97 3.48 

ctpE A9CKJ6 0.54 

Components of type IV 

pilus  20.4 6.55 3.46 

Atu5199 Q7D3N8 0.50 Oxidoreductase  38.3 6.35 3.4 

Atu1326 A9CJ85 0.63 Acetyltransferase 17.2 6.95 3.22 

moaA Q8UER0 0.61 GTP 3',8-cyclase  39 7.11 3.17 
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Atu1872 A9CII6 0.49 Uncharacterized protein 14.8 5.31 3 

nadD Q8UBS2 0.50 

Probable nicotinate-

nucleotide 

adenylyltransferase  20.9 9.99 2.91 

Atu3620 A9CFG5 0.57 Uncharacterized protein 36.6 5.58 2.77 

speF Q7CRV2 0.61 Ornithine decarboxylase  41.1 5.59 2.47 

Atu1617 A9CIV0 0.66 Uncharacterized protein  33.4 8.72 2.27 

Atu4420 Q7CUW8 0.57 

Transcriptional regulator, 

LacI family 36.6 6.01 2.26 

Atu2342 A9CHZ0 0.34 Uncharacterized protein  19.4 6.19 2.24 

Atu5181 A9CLL6 0.56 Short chain dehydrogenase  25.1 5.29 2.11 

deoR A9CH78 0.49 

Transcriptional regulator, 

DeoR family 26.5 6.99 2.01 

Atu0215 A9CKJ9 0.38 Uncharacterized protein  29.7 9.48 1.95 

Atu1819 A9CIL0 0.63 Uncharacterized protein  13.5 4.88 1.89 

Atu0024 A9CKS9 0.47 Uncharacterized protein  115.9 5.52 1.85 

Atu4122 A9CG37 0.45 

Transcriptional regulator, 

LysR family  34.7 8.19 1.79 

exsB Q8UAM7 0.48 

7-cyano-7-deazaguanine 

synthase  25.3 5.8 1.71 

cbiP Q8UBP3 0.37 Cobyric acid synthase  51.2 5.33 1.64 

Atu3400 A9CF55 0.36 Uncharacterized protein  13 6.11 1.6 

Atu3108 A9CEP3 0.66 Uncharacterized protein  69.2 6.62 0 

int Q8UG48 0.36 Phage-related integrase 43 9.16 0 

Atu4867 A9CH92 0.57 Uncharacterized protein  20 6.34 0 

Atu2524 A9CHP6 0.16 Uncharacterized protein  88 9.47 0 

Atu2525 Q7CWU9 0.32 MFS permease  47.3 9.95 0 

Atu1460 A9CJ19 0.56 Uncharacterized protein  17.5 10.9 0 
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Protein Accession 

FC = 

M (L) / 

M (D) Function 

MW 

[kDa] 

calc. 

pI 

Score 

Sequest 

Up-regulated 

     

Atu1132 A9CJG4 1.59 

Glutathione S-transferase related 

protein 22.1 7.12 71.21 

Atu0436 A9CKA0 2.07 DNA helicase  80 5.69 69.4 

bdhA Q7CXD5 1.59 

D-beta-hydroxybutyrate 

dehydrogenase 27.4 6.15 24.19 

dapA A9CHR2 1.55 Dihydrodipicolinate synthase  31.2 5.73 20.64 

cycH A9CJN0 1.58 CycH protein 41.9 5.21 19.65 

fdhF Q7CVN2 1.58 

Formate dehydrogenase alpha 

subunit  105.2 5.87 17.35 

ggt A9CH16 4.21 Gamma-glutamyltranspeptidase  64.4 6 16.52 

Atu0073 Q8UJ65 1.64 

DNA replication and repair 

protein  40.8 6.16 14.62 

Atu3572 A9CFE4 2.00 Transcriptional regulator 15.1 10.1 14.57 

papS Q7CXI6 1.59 Poly(A) polymerase  45.6 6.84 13.25 

Atu4763 A9CH37 2.66 

Transcriptional regulator, AsnC 

family  17.7 7.2 11.48 

Atu0376 A9CKC2 2.11 Uncharacterized protein  9.5 5.15 11.38 

Atu4674 Q7CVJ9 1.69 

Transcriptional regulator, GntR 

family  26.4 6.55 10.37 

Atu3140 Q8UB77 1.60 

Probable 5-dehydro-4-

deoxyglucarate dehydratase  32.5 5.91 10.28 

Atu0300 A9CKE9 1.61 Methyltransferase  21.9 9.58 8.06 

Atu0638 A9CK42 1.63 Uncharacterized protein  7.3 9.17 7.21 

Atu1848 A9CIJ5 1.78 

Transcriptional regulator, GntR 

family  51.5 5.66 7.02 

Atu1814 A9CIL2 1.87 Epoxide hydrolase  38.7 6.25 4.61 
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fabG A9CL71 1.55 

3-oxoacyl-(Acyl-carrier protein) 

reductase  25 5.43 4.11 

Atu1030 Q7D045 1.52 

GTP 

pyrophosphohydrolase/synthetase, 

RelA/SpoT family 83.8 6.43 3.71 

kdgR A9CGQ1 2.28 Transcriptional regulator  28 6.7 3.58 

Atu3147 A9CER3 3.33 Oxidoreductase  72.9 6 3.18 

Atu3834 A9CFR3 1.73 Uncharacterized protein  25.6 4.93 2.25 

Atu5181 A9CLL6 2.07 Short chain dehydrogenase 25.1 5.29 2.11 

mutS Q8UIF2 2.47 DNA mismatch repair protein  98.1 5.63 1.97 

apaG Q8UI68 2.27 Protein ApaG  14.7 4.34 1.93 

Down-regulated 

     

Atu1475 A9CJ12 0.63 Uncharacterized protein  14.3 4.82 20 

Atu3164 A9CES4 0.62 Dehydrogenase  26.7 6.35 11.69 

ipk Q8UHP8 0.59 

4-diphosphocytidyl-2-C-methyl-

D-erythritol kinase  31.8 6.54 5.58 

Atu2342 A9CHZ0 0.54 Uncharacterized protein  19.4 6.19 2.24 



Acknowledgement 

111 

 

Acknowledgement 

I would like to thank my supervisor Prof. Dr. Tilman Lamparter for providing support 

and encouragement. For the topic selection of my Ph.D thesis, the progress of the 

experiment and the writing of the thesis, he provided a lot of help. His meticulous and 

diligent work attitudes deeply influence me. Whenever I have an experimental question 

to ask him, he can patiently explain. In the past four years, I have learned a lot from him, 

especially in terms of learning and being a nice person, which has benefited me a lot. 

These laid a solid foundation for my future life. On the completion of my thesis, I would 

like to express my heartfelt gratitude and most sincere respect to him. 

Thanks to Dr. Norbert Krauß, Gero Kaeser, Afaf El Kurdi, Nadja Wunsch, 

Elisabetha Averbukh, Dr. Hongju Ma, Anja Kohler, Katharina Thoulass, Anna-Luise 

Kuppinger, Dr. Arin Ali, Prof. Dr. Reinhard Fischer for help. In addition, I am especially 

grateful to my parents, old sister, brother-in-law and girlfriend (Yuanyuan Ma) for their 

support and help in my study and life over the past four years. 

Thanks to all the teachers, classmates, family and friends who have cared and 

helped me. Finally, I am especially grateful to the China Scholarship Council for my 

financial support. 

 

 

 

 


