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On Preserving Secrecy in Mobile Social Networks

GABRIELA SUNTAXI, ABOUBAKR ACHRAF EL GHAZI, and KLEMENS BÖHM, Karlsruhe
Institute of Technology, Germany

Location-based services are one of the most important services offered by mobile social networks. Offering

this kind of services requires accessing the physical position of users together with the access authorizations,

i.e., who is authorized to access what information. However, these physical positions and authorizations are

sensitive information which have to be kept secret from any adversary, including the service providers. As

far as we know, the problem of offering location-based services in mobile social networks with a revocation

feature under collusion assumption, i.e., an adversary colludes with the service provider, has not been studied.

In this paper, we show how to solve this problem in the example of range queries. Specifically, we guarantee

any adversary, including the service provider, is not able to learn (1) the physical position of the users, (2)

the distance between his position and that of the users, and (3) whether two users are allowed to learn the

distance between them. We propose two approaches namely two-layer symmetric encryption and two-layer

attribute-based encryption. The main difference between the first and the second approach is that they use,

among other encryption schemes, symmetric and attribute-based encryption, respectively. Next, we prove the

secrecy guarantees of both approaches, analyze their complexity and provide experiments to evaluate their

performance in practice.

Additional Key Words and Phrases: mobile social networks; access control; location-based services

1 INTRODUCTION
1.1 Motivation
Mobile Social Networks (mSNs) like Foursquare or Badoo have become popular in the last years.

Similarly to traditional social networks, mSNs allow users to create virtual communities to share

content, but they also let users share their physical position with other users. Having access to

the physical position of the users, mSNs offer location-based services (LBS) such as querying

friends within a given distance. In this kind of network, each user specifies who is authorized to

learn information about his physical position, i.e., users establish authorization relationships with

others. Next, given the dynamic relationships between users that are inherent to human behavior,

revocation of such privileges is a fundamental feature of mSNs.

To deliver services in mSNs different architectures with various components have been proposed

[10]. However, the three major components are service providers, mobile users, and network in-

frastructure. Depending on the features supported by mSNs, the service providers can be dedicated

servers (e.g., location server, access control server, video sharing server, VoIP server) which provide

services to the users through the network infrastructure [10]. Mobile users (e.g., mobile phones,

wearable devices) receive data or service results from the service providers. The network infras-

tructure is used to transfer data from a source (e.g., service providers) to a destination (e.g., mobile

users). Figure 1 illustrates a mSN architecture consisting of users and two service providers: the LBS

provider and the access control server (ACS). This system architecture is enough to provide typical

LBS and has been considered by existing work in the area [17, 18, 30]. Here, the LBS provider stores

the physical positions of the users, and the ACS stores the authorization relationships.

The physical positions of the users and authorization relationships are sensitive information that

should be kept secret from any adversary, including the service providers. In fact, this information

is particularly sensitive since it can be used to infer further personal information. For example, the
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Fig. 1. mSN System Architecture

physical positions of the users can be used to infer their state of health or personal preferences [1].

Consequently, this information has to be kept secret from unauthorized users, i.e., confidentiality.

Confidentiality is usually facilitated by trusting the entity in the system that manages the access

policies, i.e., the ACS. However, recent privacy breaches on existing social networks, such as the

Facebook-Cambridge Analytica scandal [9], have put this into question. In such attacks, the ACS

has allowed unauthorized entities, intentionally or unintentionally, to access private information.

Collusion attacks where adversaries, including malicious users, collude with the service provider

to gain unauthorized access to information are an important problem in mSNs.

This paper studies how to facilitate LBS in mSNs while providing secrecy guarantees to the users

under collusion assumption. We focus on one specific service, namely querying friends within a

given distance. As motivated earlier, we also cover revocation. Regarding collusion, we study the

case of pairwise collusion in which a user colludes with either the LBS provider or the ACS to try

accessing information that he is not unauthorized to see. In Section 2.2, we define our adversary

model. Regarding secrecy guarantees, we provide users with the following guarantees:

• Gposition: The physical positions of users are kept secret from any adversary.

• Gdistance: Given a user u, only entities they themselves have authorized can learn the distance

between their physical position and the one of u.
• Gauthorization: Given two users u and v , an adversary will not be able to learn whether u or v
are allowed to learn the distance between them.

Existing work in the area [17, 18, 33], either does not consider collusion attacks, or their system

architectures assume trusted authorities. This however does not solve the collusion problem,

but only shifts it to the trusted entity. Furthermore, these approaches do not provide a rigorous

specification of the collusion strategy as part of their adversary model, and they consider weaker

adversaries, as we explain in Section 2.2. Next, none of the existing work we are aware of does

protect Gauthorization against both the LBS provider and ACS.

1.2 Challenges
Encryption techniques are an effective way to keep the information secret from all but those

who are authorized to access it, without the presence of a trusted entity [21]. However, offering

the secrecy guarantees Gposition, Gdistance and Gauthorization under our collusion assumption with a

revocation feature in mSNs is challenging. First, the weak computing power of mobile devices

requires mobile users to outsource any heavy computation task. This not only restricts the choice

of encryption schemes that can be used but also the design alternatives for a solution.

Second, because of the collusion assumption, the typical encryption guarantee that only holders

of the right key can decrypt the information does not hold anymore. If an entity A that is not

authorized to decrypt a given ciphertext c colludes with an authorized entity B, A can get the key

from B to decrypt c or send c to B to decrypt it and get back the plaintext. To solve this issue, one
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can add further entities in the system architecture and use multi-layer encryption. Then, one needs

to assign the keys of each encryption layer to the entities so that in case of collusion, unauthorized

entities cannot gain access to the information. That is, either the unauthorized entities cannot

access the ciphertext or they cannot access at least one key of a non-colluding entity to be able to

decrypt all encryption layers. Indeed, multi-layer encryption with an adequate key distribution

among the entities of the system is the core idea of our solution, as we explain in Section 4. The

idea of multi-layer encryption has been used previously in systems such as CryptDB [27]; however,

the context is different from ours. In CryptDB, each encryption layer gives a higher security level

but reduces the capability of performing computation over the encrypted data. Users in CryptDb

basically have all the keys to decrypt the encryption layers, and during query processing, the users

decrypt the layers until they reach one that allows processing a given query.

Third, in a multi-user setting, such as our mSN scenario, several owners want to share informa-

tion with authorized users. To this end, one can consider two main encryption schemes, namely

symmetric encryption and attribute-based encryption (ABE). Both encryption schemes have ad-

vantages and disadvantages when comparing them to each other. The advantage of symmetric

encryption schemes is the efficiency in the encryption/decryption operations. In the multi-user

setting, however, key management and revocation are known problems of this kind of scheme

which could overcome its advantage if not implemented appropriately. Section 4.1 features an

example illustrating that seemingly simple solutions based on symmetric encryption schemes are

not adequate, i.e., the illustrated solution has a huge resource consumption in terms of storage and

CPU usage, and users have to be online during revocation. In contrast, an approach that uses ABE

has two advantages: One does not need to deal with multiple ciphertexts, and key management and

revocation are straightforward. This is because a single ciphertext is generated based on an access

control policy so that only users whose attributes fulfill the access policy can decrypt it. However,

the encryption/decryption process using ABE involves bilinear pairing and exponentiation opera-

tions, which in general has a significant impact on performance [24]. Indeed, we show that both

approaches can solve the problem of sharing information in the multi-user setting if implemented

appropriately. However, based on the advantages and disadvantages of both encryption schemes, it

is not obvious to determine which one performs better in our specific scenario.

1.3 Contributions
In this paper, we propose two approaches, which combine existing encryption schemes, to allow

users of mSNs to query friends within a given distance. Both approaches include a revocation

feature and provide users with the secrecy guarantees Gposition, Gdistance and Gauthorization under the

collusion assumption. First, we describe our problem and our adversary model. Next, we describe

our approaches, namely two-layer symmetric encryption (2lSE) and two-layer attribute-based

encryption (2lABE). The main difference between the first and the second approach is that they

use, among other encryption schemes, symmetric and attribute-based encryption, respectively.

We prove that both approaches fulfill our secrecy guarantees. To evaluate the performance of our

approaches, we provide complexity analyses of them. Our analyses tell us which approach is better

at each entity involved in the system. Next, we conduct experiments to validate the results of our

complexity analyses and finally determine which approach performs better in practice. Next to

other insights, although with the second solution the key management is more straightforward

than with the first solution, and the service provider does not have to store multiple encrypted

copies for each message, we have found that our first solution is on average twice as efficient in our

scenario. Therefore, we propose to consider the 2lSE approach, which not only solves the secrecy

problem existing in mSNs but also is more performant than the 2lABE approach.
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2 PROBLEM FORMULATION
2.1 System Architecture
mSNs require the following information for each user u to provide LBS: (1) the physical position of

u denoted by pu = (xu ,yu ), (2) the set of users who have allowed u to learn the distance between

their physical positions and the one of u, Grantoru , and (3) the set of users to whom u has allowed

to learn the distance between his position pu and their physical positions, called the set of grantees

of u, Granteeu . As mentioned in Section 1, we consider a mSN system consisting of users and two

service providers: the LBs provider and the ACS, which store the physical position and the sets

of grantors and grantees of each user, respectively. In addition to these entities, there is a key

authority responsible for key issuing.

Each user u can request to update his position pu and to allow or to revoke access from users at

any time. Users have to send access requests, Definition 2.1, to other users to establish who can

learn the distance between their physical positions. To avoid that the servers learn information

from the stored data, the users have to encrypt the information before outsourcing it. To obtain

LBS, users have to send their queries to the ACS. The ACS and the LBS provider interact with

each other to compute the query result, which the ACS sends to the user. See Section 4 for details.

LBS support different types of queries. In this paper, we focus on range queries, one of the most

important queries in mobile networks [35]. LetU and dist(pu ,pv ) denote the set of all users and
the distance between the physical positions of users u and v , respectively.

Definition 2.1 (Access request). An access request accessReq : U ×U → {true, false} is a function
that takes as input two usersu,v ∈ U and indicates that useru requestsv for permission to learn the
distance between their physical positions. The function accessReq(u,v) outputs true if v authorizes

the access request. Otherwise, it outputs false. We call a user who authorizes an access request and

a user who receives an authorized access request, grantor and grantee, respectively.

Definition 2.2 (Range query). Given a user u and a distance d , a range query, Ranдe(u,d),
is a query that returns the users who are located within a distance d from u and who have

authorized u to learn the distance between their physical positions and the one of u. Formally,

Ranдe(u,d) = {v ∈ U | v ∈ Grantoru ∧ dist(pu ,pv ) ≤ d}.

2.2 Adversary Model and Secrecy Guarantees
To formally define an adversary model under a collusion assumption, one needs to specify four

aspects [14]: (1) the collusion strategy, i.e., when or how entities come under the control of the

adversary, (2) the adversarial behavior strategy, i.e., the actions that the colluding entities might

take, (3) the computational strategy, i.e., the computational complexity the adversary is assumed

to have, and (4) the protocol execution strategy, i.e, how many times the adversary is allowed to

execute the protocol. Next, we describe briefly the main alternatives for each of the four aspects of

the adversary model and specify our model. We specify our model based on a just-strong-enough
principle, in which the selected alternatives for each of the four aspects are just strong enough

to model real-world adversaries under a collusion assumption with revocation capability, as we

explain in the remaining of this section. Studying more complex settings which consider stronger

adversary models is future work.

Collusion strategy: There exist two main collusion strategies: static and adaptive [14]. In the

static strategy, the adversary is given a set of entities to collude with, and the honest entities remain

honest during the protocol execution. In the adaptive strategy, the adversary can collude with any

entity in the system during the protocol execution. Here, we consider the static strategy. Although

the static strategy is weaker than the adaptive one, developing highly efficient schemes that are
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secure under the static strategy serves as an important step for constructing secure schemes under

the adaptive one [14]. We refer to any entity that participates in a collusion as an adversary.

Adversarial behavior strategy: There exist three main adversarial behavior strategies: semi-

honest, covert, and malicious [14]. In the semi-honest strategy, every colluding entity follows

the protocol specification, i.e., each entity performs the tasks assigned to it correctly. However,

adversaries can access to the state of all colluding parties and try to learn information from it.

In the covert strategy, adversaries may deviate from the protocol specification if honest entities

do not detect them. The covert strategy represents many real-world scenarios such as financial

or political settings, where the involved entities, i.e., companies or individuals, cannot afford the

embarrassment, loss of reputation and law punishment associated with being caught cheating. In

the malicious strategy, the colluding entities can deviate arbitrarily from the protocol specification,

according to the instructions of the adversary. Since the security guarantees provided by schemes in

the semi-honest strategy are weak, and schemes that offer security guarantees under the malicious

strategy are not efficient enough to be implemented and used in practice [2, 14], we opt for the

covert strategy, which represents real-world adversaries. However, since we aim to cover realistic

scenarios where unauthorized entities try to gain access to information they are not allowed to,

we restrain the covert strategy further to limit adversaries to deviate from the protocol only to

advantage themselves, but they will not disadvantage any entity in the system. Advantaging and

disadvantaging an entity means to give the entity access to information that the entity is not

allowed to access and to deny access to information that the entity is allowed to access, respectively.

Computational strategy: There exist two main computational strategies: polynomial and

unbound. In the first one, adversaries run in polynomial time, while in the second one, they do not

have computational limits. Similar to existing works [2, 17], we consider the polynomial strategy.

Protocol execution strategy: There exist two main protocol execution strategies: stand-alone

and concurrent-composition [7]. In the stand-alone strategy, the adversary is allowed to execute

the protocol a single time, while in the concurrent-composition one, he can execute the protocol

several times. Considering adversaries in the concurrent-composition strategy is a harder problem

to solve; however, having a scheme for the stand-alone strategy can be used to design schemes for

the concurrent-composition one [14]. Following our just-strong-enough principle for specifying

the adversary model, we consider the stand-alone strategy, and we extend it to fulfill our needs.

In our extension, we allow the execution of the protocol twice, which let us evaluate the secrecy

guarantees met after a revocation takes place. Before describing the extension, we explain the

need for it. In a single protocol execution, the adversary can (1) collude with the entities of the

system based on the defined collusion strategy, (2) send a set of queries, and (3) get their respective

answers based on the information stored at each entity of the system at the moment of the protocol

execution. In our scenario, the information stored by the entities of the system includes, among

others, the encrypted sets of grantors and grantees of the users. The information stored at each

entity is not modified during the protocol execution. However, to evaluate the secrecy guarantees

of a scheme under revocation, one needs to change the authorizations, i.e., adjust the set of grantors

and grantees of the users involved in the revocation. Therefore, after updating the information, we

need to allow the adversary to execute the protocol a second time. In the second protocol execution,

the adversary is allowed to repeat the steps (2)-(3) of the first execution, but it is not allowed to

collude anymore with any entity. The purpose of the second execution is to evaluate whether a

revoked user can gain access to information that he is not authorized to access anymore but that

he could access on the first execution. We call this extension the twofold-composition strategy.

To summarize our adversary model, regarding the collusion, adversarial behavior, computational

and protocol execution strategies, we choose the static strategy, the covert strategy, where ad-

versaries are allowed to deviate from the protocol only to advantage themselves, the polynomial
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strategy and the twofold-composition strategy, respectively. In the remaining of the paper, when

we refer to adversaries, we imply adversaries with the power specified in our adversary model.

Obviously, neither a user is an adversary of himself nor are the entities that a user has allowed

them freely to access his data.

Having specified our adversary model, it only remains to define the setting of the static strategy,

i.e., specify the possible collusion scenarios.

Static strategy setting: On each execution of the protocol there are four entities: the key

authority, a user, the ACS and the LBS provider. First, the key authority is an honest entity. We note

that the key authority is only responsible of issuing keys during the registration of users in the

system, it does not participate in any other phase of the protocol specification, and it does not store

any information. Details of our protocol are in Section 4. Thus, considering the key authority as an

honest entity does not shift the collusion problem to it. Second, the LBS provider, ACS and the user

can be adversaries. However, we limit ourselves to the case of pairwise collusion. This restriction is

in line with the selected adversary behavior strategy, i.e., the covert strategy. Since three entities

participate in the critical phases of the protocol execution, i.e, access request, query and revocation

phases, at least one honest entity is needed to be able to detect the deviation from the protocol of

the adversaries. Finally, in line with existing approaches [18, 25, 33, 37], we consider that: (1) the

LBS provider and ACS do not collude with each other, and (2) the ACS and LBS provider cannot

identify the users by observing their IP addresses in the connections.

Secrecy Guarantees: Based on our adversary model, we aim to offer the secrecy guarantees

Gposit ion , Gdistance and Gauthor ization stated in Section 1.

3 ENCRYPTION SCHEMES USED
In this section, we define the encryption schemes that we consider in our approaches. In Section 4,

we explain how we apply them in our scenario.

Definition 3.1 (Symmetric Encryption Scheme). A symmetric encryption scheme SE = (KGen,
Enc,Dec) consists of three algorithms: (1) A key generation algorithm KGen that returns a key k.
(2) An encryption algorithm Enc which can be probabilistic or deterministic and takes as input the

key k and a plaintextm to return a ciphertext c . (3) A deterministic decryption algorithm Dec that
takes as input the key k and a ciphertext c to return a plaintextm such that Dec(k, Enc(k,m)) =m.

We write Enc(k,m) and Dec(k, c) for the operations of encryptingm under key k and decrypting

c under key k, respectively.

Definition 3.2 (Asymmetric Encryption Scheme). An asymmetric encryption scheme AE =

(KGen, Enc,Dec) consists of three algorithms: (1) A key generation algorithm KGen that returns a

pair of public and secret keys (pk, sk). (2) A probabilistic encryption algorithm Enc which takes as

input the public key pk and a plaintextm to return a ciphertext c . (3) A deterministic decryption

algorithm Dec that takes as input the secret key sk and a ciphertext c to return a plaintextm, such

that Dec(sk, Enc(pk,m)) =m.

Definition 3.3 (Somewhat Homomorphic Encyption Scheme). A somewhat homomorphic en-
cryption scheme SHE is an asymmetric encryption scheme in which the message space is a ring

(R,+, ·) and the ciphertext space is also a ring (R, ⊕, ⊗) such that for all messages m1,m2 ∈ R,
and all pair of keys (pk, sk), m1 + m2 = Dec (sk, Enc(pk,m1) ⊕ Enc(pk,m2)), and m1 · m2 =

Dec (sk, Enc(pk,m1) ⊗ Enc(pk,m2)). A SHE supports limited computations on ciphertext, i.e., one

can perform a limited number of addition and multiplication operations.

We also use Ciphertext-Policy attribute based encryption (CP-ABE) [5]. In CP-ABE, the data is

encrypted based on an access policy, which itself consists of constraints on user attributes, like
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role = “student" ∧memberO f = “Project1". The encryption is done so that only users who fulfill

the access policy can decrypt. Formally:

Definition 3.4 (Ciphertext-Policy Attribute based Encryption Scheme). ACP-ABE scheme consists
of four algorithms (Setup,KGen, Enc,Dec) (1) A setup algorithm, Setup, that selects two cyclic

groups G and GT and use them to generate and return a public key pk and a master keymk . (2) A
key generation algorithm KGen that takes as input a set of attributes ωu associated with a user u
and the master keymk , to return a secret key skωu . (3) A probabilistic encryption algorithm Enc
that takes as input a messagem, an access policy γ and the public key pk to return a ciphertext

cγ . (4) A deterministic decryption algorithm Dec which takes as input the public key pk, a secret
key skωu associated with the set of attributes ωu and a ciphertext cγ to return a messagem if ωu
satisfies the access policy γ ; otherwise it returns an error message ⊥. We write Enc(pk,mγ ) for the

operation of encryptingm under the access policy γ and key pk, and Dec((pk, skωu , cγ )) for the
operation of decrypting cγ under the pair of keys (pk, skωu ).

Note that general CP-ABE schemes do not guarantee the security of the access policy used to

encrypt a given ciphertext c , i.e., an entity who has access to c can learn who is authorized to

decrypt c . Learning this information is against the secrecy guarantee Gauthor ization that we aim to

offer. However, we consider stronger CP-ABE schemes with hidden policy as proposed in [19].

4 OUR APPROACH
To fulfill the secrecy guarantees, users have to encrypt the information before outsourcing it to the

ACS and the LBS provider. There are different possibilities to do so.

Mainly due to the decryption and revocation overhead at the users-side, we do not consider naive

solutions such as the one of Example 4.1. The illustrated solution has the following shortcomings:

it affects the storage capacity and limited processing resources of mobile devices, and revocation is

not only not efficient for data owners, but it also requires authorized users to be online. Given a set

S , let |S | denote the cardinality of S .

Example 4.1. Assume that each user u encrypts his name with a key ku , stores his encrypted
name at the LBS provider, and distributes ku to all authorized users. Such a solution has several

problems. First, each user u has to store as many keys as grantors. Second, during query processing,

u receives as result a set of encrypted names corresponding to users who fulfill the query condition.

Since u stores one key for each of his grantors and u does not know which key to use to decrypt

each ciphertext, the decryption process has a worst case complexity of O(|Grantoru |
2). Third, if u

wants to revoke access from a user, u has to generate a new key ku′ , encrypt his name with ku′ ,
replace his encrypted name at the LBS provider with the new ciphertext and distribute ku′ to all
still authorized users.

Next, we show how to use and combine existing cryptographic techniques to implement a scheme

under our secrecy guarantees. We come up with two approaches. To ease the explanation of them,

we first start by describing two basic schemes, called basic two-layer symmetric encryption, basic
2lSE, and basic two-layer attribute-based encryption, basic 2lABE. Our basic schemes meet our

secrecy guarantees under a weaker adversary model than the one defined in Section 2.2. With it,

we weaken the protocol execution strategy by considering the stand-alone strategy instead of the

twofold-composition strategy, i.e., the protocol is executed only once. We then show how to extend

the basic schemes to meet our secrecy guarantees under our actual adversary model, Section 2.2.

Themain difference between our basic schemes lies on the cryptographic schemes used to encrypt

the names which are sent as query answers. The basic schemes consist of four phases, namely
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initialization phase, registration phase, access request phase, and query phase. In Sections 4.1 and 4.2,

we explain these phases for the basic 2lSE and the basic 2lABE schemes, respectively.

4.1 Basic two-layer symmetric encryption (basic 2lSE)
4.1.1 Initialization phase. In this phase, the key authority generates and distributes keys. The initial-
ization of the system happens only once. The entities involved in this phase are the key authority, the

ACS, and the LBS provider. The key authority generates three pairs of keys (pkLBS , skLBS ), (pkACS ,
skACS ), and (pkH , skH ). These keys are used later during the registration, access request, and query
phases. The key authority sends the secret keys skH and skACS to the ACS and the secret key skLBS
to the LBS provider. The key authority chooses the integers p and д of Diffie-Hellman key exchange

protocol (DH), Definition 4.2. The DH protocol is used in Sections 4.1.2 - 4.1.4 to generate and share

secret keys between a pair of users.

Definition 4.2 (Diffie-Hellman key exchange). The Diffie-Hellman key exchange (DH) is a pro-

tocol which allows two parties, A and B, that have no prior knowledge of each other to establish a

shared secret key jointly. The protocol is as follows: First, a trusted party chooses and publishes

two integers p and д, where p is large, e.g., 512 bits, and д is a primitive root modulo p.1 Second, the
parties A and B choose the secret integers, a and b, respectively. Next, A computes ZA ≡ д

a (mod p)
and sends ZA to B. B computes ZB ≡ д

b (mod p) and sends ZB to A. Finally, A computes the shared

key kba ≡ ZB
a (mod p). B computes the shared key kab ≡ ZA

b (mod p). The shared key value is

kba ≡ ZB
a (mod p) ≡ (дb )a (mod p) ≡ дab (mod p) ≡ (дa)b (mod p) ≡ ZA

b (mod p) ≡ kab.

4.1.2 Registration phase. In this phase, new users are registered in the system. Registering a user

u in the system involves four entities, the key authority, the ACS, the LBS provider, and the user u.
Figure 2 illustrates the steps of this phase. First, the key authority sends to u (1) two identifiers

idACSu and idLBSu , (2) a secret key ku , (3) the public keys pkLBS and pkACS , and (4) the integers p
and д. Second, u selects an integer number ηu and compute the value Zu ≡ д

ηu (mod p). We call ηu
and Zu the secret and public numbers of u, respectively. These two numbers are used as part of

the DH protocol in the access request and query phases, as we explain in Sections 4.1.3 and 4.1.4.

Next, u stores at the LBS provider his identifier idLBSu , his encrypted position Enc(pkH ,pu ),
2
and

his encrypted public number Enc(pkACS ,Zu ). The use of SHE allows the LBS provider to compute

the encrypted square distance between the encrypted positions of two users. The LBS provider

cannot decrypt any of the ciphertexts because it does not have the secret keys to do it. Finally, u
stores at the ACS his identifier idACSu and two empty sets Grantoru and Granteeu . Information is

added to these two sets in the access request phase, Section 4.1.3. We note that neither the LBS

provider nor the ACS knows the link between users and their identifiers.

4.1.3 Access request phase. In this phase, a user u calls the function accessReq(u,v). If user v
authorizes the access request, i.e., accessReq(u,v) = true, v stores encrypted information at the

ACS and the LBS provider, as we will explain in this Section. The providers use this information

to process queries sent by u. Before explaining the steps of this phase, let us analyze briefly how

query processing works to understand the information that v has to store. Example 4.3 illustrates

two design alternatives, querying-filtering and filtering-querying, to answer a given range query.

Example 4.3. Think of an LBS provider and an ACS. Assume that for each user u, the LBS

provider stores his encrypted physical position using SHE, and the ACS stores the set of grantors

Grantoru . To answer a given range query Ranдe(u,d), different designs alternatives are conceivable.

1
A primitive root modulo p is an integer д such that д (mod p) has multiplicative order p − 1.

2
In reality, we encrypt a given position pu as Enc(pkH , xu ) and Enc(pkH , yu ).
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Key Authority User u

1 :
idACSu , idLBSu , ku , pkLBS , pkACS , pkH ,p,д

2 : LBS provider Select integer ηu ;

Zu ← дηu (mod p);

3 :

idLBSu , Enc(pkH ,pu ), Enc(pkACS ,Zu )
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 : ACS
idACSu ,Grantoru = {},Granteeu = {}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 2. User Registration Phase - basic 2lSE

In particular, one can consider two designs namely querying-filtering and filtering-querying. With

the first alternative, the LBS provider executes, first, the query and then sends the result to the

ACS to filter it based on the set Grantoru . With the second alternative, the ACS sends, first, the set

Grantoru to the LBS provider and then the LBS provider executes the query using only the physical

positions of users in Grantoru . With both alternatives, since the LBS provider stores encrypted

physical positions, it cannot use indexing, like B-tree or R-tree, for spatial query processing. Then

in terms of performance, the querying-filtering alternative is not a suitable option because the LBS

provider would need to compute the encrypted square distances between the encrypted position of

u and the ones of all the users in the system.

Due to performance reasons, as explained in Example 4.3, we opt for the filtering-querying
approach. Then the set of grantors of each user u has to contain information that allows the LBS

provider to reduce the computation cost during query execution. Specifically, if accessReq(u,v) =
true, v has to add, among other information, his encrypted identifier idLBSv in the set Grantoru ,
and to store his encrypted name at the LBS provider. The encrypted names of the users are sent

as query answers, as we explain in Section 4.1.4. The access request phase involves the following

entities: the users that are part of the access request, u and v , the LBS provider, and the ACS.

Figure 3 illustrates the steps of this phase. We denote the concatanation of strings a and b by

a∥b. First, user u calls the function accessReq(u,v) and sends to user v his identifier idACSu and

his public number Zu . If accessReq(u,v) = true, v computes the shared key kuv ≡ Zu
ηv (mod p)

and selects two random numbers rACSuv , r
LBS
uv ∈ Z. Next, v encrypts his name using two layers

of encryption. The shared key kuv is used for the inner layer of encryption, and the public key

pkACS is used for the outer layer of encryption. Then, v stores at the LBS provider the resulting

ciphertext, Enc(pkACS , Enc(kuv ,v)), together with the random number rLBSuv . The LBS provider

cannot decrypt the ciphertext, even if it colludes with any of the users, because none of them has

the key to decrypt the outer layer of encryption. Secrecy proofs are in Section 5. Next,v sends to the

ACS the identifier of u, idACSu together with a tuple t which consists of two elements: the random

number rACSuv and the ciphertext Enc(pkLBS , id
LBS
v ∥rLBSuv ), i.e., t =

〈
rACSuv , Enc(pkLBS , id

LBS
v ∥rLBSuv )

〉
.

The ACS adds the tuple t to the set Grantoru . The ciphertext, which is part of tuple t , is sent by
the ACS to the LBS provider during query processing. This ciphertext can be decrypted only by

the LBS provider. The LBS provider uses the decrypted information as an index to recover the

encrypted name, encrypted position, and encrypted public number ofv . Note that onlyv knows his

identifier idLBSv , then he is the only one who can add his encrypted id to the set of grantors of other

users. Finally, to revoke access, v stores in his set of grantees, Granteev , at the ACS, the ciphertext
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c = Enc(kv ,u∥idACSu ∥rACSuv ∥r
LBS
uv ). The ciphertext c contains the name of u and index information

that allows v to revoke access from u, i.e., v can delete (1) the tuple t added in the setGrantoru and

(2) the encrypted name stored at the LBS provider. Only v knows the key to decrypt c .

User u User v

1 : accessReq(u,v) idACSu ,Zu if accessReq(u,v) =true

2 : kuv ← Zu
ηv (mod p);

Select random numbers:

rACSuv , r
LBS
uv ∈ Z;

3 : LBS provider
rLBSuv , Enc(pkACS , Enc(kuv ,v))

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 : ACS
idACSu , t =

〈
rACSuv , Enc(pkLBS , id

LBS
v ∥rLBSuv )

〉
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 : Add t to Grantoru ;

6 : Add c to Granteev ;
idACSv , c = Enc(kv ,u∥idACSu ∥rACSuv ∥rLBSuv )
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 3. Access Request Phase - basic 2lSE

4.1.4 Query phase. In this phase, users send range queries and get back query answers. The query

phase involves three entities, the querying user u, the ACS, and the LBS provider.

We use the following notation: Given n strings, st1, · · · , stn , and the string st = st1∥st2∥ · · · ∥stn ,
the function дet(st , i), where 1 ≤ i ≤ n, returns the i-th string in st . Given a tuple t which consist

of n elements, we use ti , where 1 ≤ i ≤ n, to denote the i-th element of tuple t .
Figure 4 illustrates the steps of this phase. First, the querying useru sends his identifier idACSu , the

constraint d of the range query and his encrypted position Enc(pkLBS , (Enc(pkH ,pu )). u encrypts

his position using two layers of encryption because the encrypted position is sent thought the

ACS to the LBS provider, and the ACS knows the key skH to decrypt the SHE. The outer layer

of encryption prevents the ACS from learning the position of u. Second, using the id idACSu , the

ACS retrieves the set of grantors of u, Grantoru . Recall that each tuple t in Grantoru consists of

two elements, a random number and a ciphertext. The ACS constructs a set C which contains the

ciphertext of each tuple t in Grantoru , i.e., t2. The ACS sends C and the encrypted position of u to

the LBS provider. Third, the LBS provider decrypts each ciphertext c in C and obtains the plaintext

st , which consists of an identifier id concatenated with a random number rand . The LBS provider
searches and retrieves the encrypted position and the encrypted public number corresponding

to the identifier id . We use pid and Zid to denote the retrieved encrypted position and encrypted

public number, respectively. Then using pid and the encrypted position of u, the LBS provider

computes the encrypted square distance between them, Enc(pkH ,dist(pid ,pu )
2). The LBS provider

also searches and retrieves the encrypted name, corresponding to the number rand . We denote this

ciphertext by namerand . Then, it creates a tuple e which contains three elements: namerand ,Zid
and Enc(pkH ,dist(pid ,pu )

2), and adds e to the result set Res . Fourth, the LBS provider sends the set
Res to the ACS. Fifth, for each tuple e ∈ Res , the ACS decrypts the element e3, i.e., the encrypted
square distance. If the decrypted distance is less or equal than d2, the ACS (1) decrypts e1 and e2,
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i.e., the outer layer of the encrypted name and the encrypted public number, (2) creates a tuple l
containing the decrypted information, and (3) adds l to the set of answers Ans . Then the ACS sends

Ans to u. Finally, for each tuple l in Ans , u (1) uses l2, i.e., the public number, and his secret number

ηu to compute the shared key kshared ≡ l2ηu (mod p), and (2) decrypts l1, i.e., the usernames , using

kshared . The decrypted names correspond to users that fulfill the query condition.

User u ACS

1 : Ranдe(u,d) idACSu ,d, Enc(pkLBS , (Enc(pkH ,pu )) C = {};

2 : LBS provider foreach t in Grantoru

Add t2 to C;

3 : Res = {}; C, Enc(pkLBS , (Enc(pkH ,pu ))

foreach c in C

st ← Dec(skLBS , c);

id ← дet(st , 1);

rand ← дet(st , 2);

e = ⟨ namerand ,Zid ,

Enc(pkH ,dist(pid ,pu )
2) ⟩;

Add e to Res; Res Ans = {};

4 : User u foreach e in Res

if Dec(skH , e3) ≤ d2{

Add l = ⟨ Dec(skACS , e1);

5 : foreach l in Ans
Ans

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Dec(skACS , e2) ⟩ to Ans; }

kshared ← (l2)
ηu (mod p);

name ← Dec(kshared , l1);

Fig. 4. Query Phase - basic 2lSE

4.2 Basic two-layer attribute-based encryption (basic 2lABE)
To facilitate the understanding, before describing the basic 2lABE approach, we specify the differ-

ences between our two approaches.

With the basic 2lSE, the LBS provider stores, for each user u, |Granteeu | copies of the encrypted
name of u. Each ciphertext is generated using a shared key between u and each v inGranteeu . The
DH protocol is used to generate shared keys. In contrast, with the basic 2lABE there is no need

of storing multiple copies of the encrypted name or sharing keys. Instead, each user encrypts his

name using CP-ABE, Definition 3.4. Because of the properties of CP-ABE, each user receives a

secret key based on his set of attributes, and only users who fulfill the access policy can decrypt a

given ciphertext. In Sections 4.2.2 and 4.2.3, we specify the access policy and the set of attributes

used for the encryption and decryption process.
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Next, we describe the initialization, registration, access request, and query phases of the basic
2lABE. For brevity, we only describe the differences between the basic 2lABE and basic 2lSE schemes.

4.2.1 Initialization phase. This phase differs from that of the basic 2lSE, Section 4.1.1, only in the

selection of the parameters p and д of the DH protocol. Since the basic 2lABE uses CP-ABE, there

is no need of using the DH protocol for generating and sharing keys. Hence, the key authority

generates a public key pkABE and a master keymkABE . When a user u registers in the system, the

key authority uses the master keymkABE to generate a secret key for u. Then, it sends to u, among

other information, the generated secret key and the public key pkABE . The key authority keeps

mkABE secret from all entities.

4.2.2 Registration phase. Before explaining the steps of this phase, let us analyze how CP-ABE

works in our scenario. The key authority has to generate a secret key for each useru using attributes

associated with u. In our scenario, we consider only the attribute name of the users. That is because
the access policy used in this work considers only the names of the users to establish who can

decrypt a given ciphertext c . Otherwise, if other attributes are used, they just have to be included

in the set of attributes associated with the users. Given a user u, the access policy defined by u, γu ,
is a disjunction of terms of the form (name=value), where name is a user attribute, and value refers
to an atomic value.

Example 4.4. Consider a user u and a messagem, which u wants to encrypt and allow to all

users in the set Granteeu to decrypt it. u can use the usernames to (1) identify the users in his

set Granteeu , and (2) generate the access policy γu needed to encryptm. Assume that Granteeu
consists of users v and w . u can specify the access policy γu =

(
(name = v) ∨ (name = w)

)
and

generate the ciphertext c = Enc(pkABE ,mγu ). γu indicates that c can be decrypted by users whose

name is v orw . The secret keys of users v andw are generated based on their attributes, i.e., for

instance, the secret key of v , skωv is generated based on the set of attributes ωv = {name = v}.
Consequently, only users whose secret key fulfill the access policy γu will be able to decrypt c .

This phase differs from that of the basic 2lSE, Section 4.1.2, in the following: First, the key authority
uses the master keymkABE and the set of attributes of the registering user u, ωu = {name = u} to
generate the secret key skωu . Second, the key authority, instead of sending to u the parameters p
and д, sends the the keys pkABE and skωu . Third, u does not need to (1) select a secret number ηu
and (2) compute and store at the LBS provider the encrypted public number part of the DH protocol.

Instead, u stores at the LBS provider, apart from his identifier idLBSu and his encrypted position, his

encrypted name Enc(pkACS , Enc(pkABE ,uγu )), with access policy γu =
(
(name = u)

)
. Note that the

access policy γu specifies that only u can decrypt his encrypted name. That is because, u has not

authorized any access request, yet.

4.2.3 Access request phase. This phase differs from that of the basic 2lSE, Section 4.1.3, in the

following: First, since the basic 2lABE does not use the DH protocol, user u does not need to send

his public number Zu , and user v does not need to compute the shared key kuv . Instead, v has to

update his access policy γv by adding to the disjunction the term “(name = u)”. Second, v does

not need to generate the random number rLBSuv . That is because, the LBS provider stores, together

with the identifier idLBSv , a single ciphertext containing the encrypted name of v . Then, it is not
necessary to have an index, i.e., rLBSuv , to retrieve the encrypted name of v that u can decrypt.

Therefore, v selects only one random number, rACSuv ∈ Z, instead of two. As a consequence, v

does not have to include rLBSuv in the sets Grantoru and Granteev . That is, the tuple t added to

the set Grantoru is t =
〈
rACSuv , Enc(pkLBS , id

LBS
v )

〉
, instead of t =

〈
rACSuv , Enc(pkLBS , id

LBS
v ∥rLBSuv )

〉
,

and the ciphertext c added to the set Granteev is c = Enc(kv ,u∥idACSu ∥rACSuv ), instead of c =
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Enc(kv ,u∥idACSu ∥rACSuv ∥r
LBS
uv ). Third, v encrypts and updates at the LBS provider his name using,

for the inner layer of encryption, the public key pkABE and the access policy γv , instead of using

the shared key kuv for each u ∈ Granteev .

4.2.4 Query phase. This phase differs from that of the basic 2lSE, Section 4.1.4, in the following:

First, the set of ciphertexts C that the LBS provider receives from the ACS contains only encrypted

identifiers, instead of encrypted identifiers concatenated with random numbers. Second, the LBS

provider does not need to retrieve the public numbers, and it does not use the decrypted random

numbers to retrieve encrypted names. Instead, it only uses the decrypted identifiers to retrieve

the encrypted positions and encrypted names. Third, the set of tuples that the ACS receives from

the LBS provider does not contain encrypted public numbers. So it does not need to decrypt them.

Fourth, the querying user u does not need to compute shared keys to decrypt the ciphertexts

received as query answer. Instead, u uses his secret key skωu .

4.3 Extending the basic schemes
Having the basic schemes, basic 2lSE and basic 2lABE, we now show how to extend them to meet

our secrecy guarantees Gposit ion , Gdistance and Gauthor ization under our actual adversary model

defined in Section 2.2. That is, we consider the twofold-composition strategy in which the protocol

is executed twice. The only problem of the basic schemes under the twofold-composition strategy

relies on the revocation process. With both approaches, a revoked user, in case of collusion with

the LBS provider could gain access to unauthorized information as explained in Examples 4.5. In

case of collusion with the ACS, there is no information leakage, as we prove in Section 5.

Example 4.5. Consider a user u who has a single grantor v . Assume that u colludes with the

LBS provider. Assume now that u sends a range query. As part of the query processing, the LBS

provider receives from the ACS encrypted information containing the identifier idLBSv . Assume

further that the LBS provider sends the identifier idLBSv to u (as part of the collusion). Now u knows

that idLBSv is the identifier of user v . Next, assume that v revokes access to u. However, u can regain

access by following himself the steps of the access request phase. Specifically, with the basic 2lSE,
u can follow himself all the steps of the access request phase that the grantor v should execute,

Section 4.1.3. With the basic 2lABE, u can follow himself the steps of the access request phase

required to store information at the ACS, Section 4.2.3. However, u cannot update the ciphertext

containing the encrypted name of user v , which is stored at the LBS provider. That is because, u
does not know the access policy of v , γv . Nevertheless, with the information added at the ACS,

during querying processing, u will receive the ciphertext corresponding to the encrypted name of

v , which u cannot decrypt but he knows it corresponds to v .

4.3.1 Extended two-layer symmetric encryption (2lSE). If a revoked user colludes with the LBS

provider, we need the ACS to detect the attack and raise an alarm. To do so, we extend the basic 2lSE
as follows: First, in the initialization phase, in addition to the steps of the basic 2lSE, Section 4.1.1,

the key authority generates a pair of keys (pkACS ′, skACS ′), and sends skACS ′ to the ACS . The key
authority keeps for itself the key pkACS ′ . Second, in the registration phase, the key authority sends

to each registering user v , in addition to the information sent with the basic 2lSE, Section 4.1.2,

a ciphertext containing his identifier encrypted using two layers of encryption. The key for the

inner layer is pkLBS and the one for the outer layer is pkACS ′ . That is, each user v receives,

additionally, the ciphertext Enc(pkACS ′, (Enc(pkLBS , id
LBS
v ))). Third, in the access request phase,

the tuple t that the grantor v sends to the ACS changes from t =
〈
rACSuv , Enc(pkLBS , id

LBS
v ∥rLBSuv )

〉
to t =

〈
rACSuv , Enc(pkACS ′, (Enc(pkLBS , id

LBS
v ))), Enc(pkLBS , r

LBS
uv )

〉
. Next, the ACS uses the key

skACS ′ to decrypt the element t2, replaces t2 with the decrypted information and adds t to the
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set Grantoru . Since v is the only user who knows the ciphertext Enc(pkACS ′, (Enc(pkLBS , id
LBS
v ))),

the ACS knows that the access request has been registered by the actual grantor and not by a

revoked user who has colluded with the LBS provider. In other words, even if a user u learns

the identifier of one of his grantors v , in case of revocation, u cannot regain access because

only v knows his ciphertext c = Enc(pkACS ′, (Enc(pkLBS , id
LBS
v ))) and only the key authority

knows the key pkACS ′ to generate c . We assume that the decryption algorithm Dec, used by the

ACS, indicates successful decryption. That is, the decryption Dec(skACS ′, Enc(k′, c)), where c is a
ciphertext, is called successful if skACS ′ = k′. One can implement a successful decryption algorithm

by concatenating the hash value H(c) to the encryption Enc(k′, c ∥H(c)) and checking this relation

in the decryption algorithm [13]. Fourth, in the query phase, the set of ciphertexts C that the ACS

sends to the LBS provider is different from that of the basic 2lSE, Section 4.1.4. With the basic 2lSE,
C is a set of ciphertexts, where each ciphertext contains an identifier concatenated with a random

number. Here, C is a set of tuples, where each tuple contains two ciphertexts. Specifically, for each

tuple t in the set Grantoru , the ACS adds to C a tuple consisting of the elements t2 and t3, i.e., the
encrypted identifier and the encrypted random number. The LBS provider has to decrypt both

ciphertexts and proceed with the query processing as with the basic 2lSE.

4.3.2 Extended two-layer attribute-based encryption (2lABE). To solve the existing problems when

a revoked user colludes with the LBS provider, we use the same technique as that of the 2lSE,
Section 4.3.1. That is, the ACS, during the access request phase, receives the following cipher-

text: Enc(pkACS ′, (Enc(pkLBS , id
LBS
v ))), and verifies that the actual grantor has sent the received

ciphertext. The query processing phase is similar to that of the basic 2lABE, Section 4.2.4.

5 SECRECY PROOFS
This section provides the secrecy analysis of our proposed approaches. The proofs are organized as

follows: For each approach, we first prove that, under our adversary model defined in Section 2.2,

the approach provides the secrecy guarantee Gposition, then the secrecy guarantee Gdistance, and

finally the secrecy guarantee Gauthorization.

5.1 Secrecy Proofs of the 2lSE approach
For each of the proofs in this section, we first consider the case that a user colludes with the LBS

provider and then the case that a user colludes with the ACS, during the first execution of the

protocol. During the second execution of the protocol, the user is not allowed to collude anymore

(twofold-composition strategy). The case where each party individually acts as an adversary is

straightforward and therefore omitted. Given two entities A and B, we study the case where entity

A colludes with B, and omit the case where B colludes with A. That is because, in the case of

collusion of two entities A and B, we assume that either A or B has access to all information and

functionality of A and B together.

Before starting with the proofs, let us recall the information that the users, LBS provider, and

ACS have. This information will be used in the proofs. First, each user s knows: his identifiers
idLBSs , idACSs , the keys ks , pkH and pkACS , his encrypted identifier Enc(pkACS ′, (Enc(pkLBS , id

LBS
s ))),

and the parameters p, д, ηs . Second, the LBS provider stores: the user identifiers, the encrypted

positions, the encrypted public numbers, the encrypted names together with the random numbers,

and the secret key skLBS . Additionally, the LBS provider knows the relations existing between the

information that it stores, e.g., the encrypted position that corresponds to a given identifier. Third,

the ACS stores: the encrypted sets of grantors and grantees of all the users, and the keys skH , skACS
and skACS ′ . Additionally, the ACS knows the relations existing between the stored information.
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Lemma 5.1. The 2lSE approach guarantees that, in the presence of adversaries with the characteristics
defined in our adversary model, Section 2.2, the physical positions of users are kept secret from any
adversary.

Proof. Case 1: A user s colludes with the LBS provider. During the first protocol execution, s has
access to the information that he owns and the one stored at the LBS provider. However, none

of the information that s has can be used to decrypt the encrypted positions. The decryption key

skH is known only by the ACS, but according to our adversary model, s cannot collude with both

entities at the same time. Furthermore, SHE, which is used to encrypt the physical positions of the

users, is secure against indistinguishability chosen-plaintext attacks (IND-CPA), i.e., an adversary

cannot learn any useful information from the encrypted data.

In addition to the information that s has learned, s can execute queries and get their respective

answers. We now show that s cannot use this information to learn the physical positions of other

users. During query processing, the LBS provider receives from the ACS a set containing the

encrypted identifiers of the grantors of s . So, s knows that the set of identifiers used by the LBS

provider to process his query corresponds to his grantors. The identifiers are random numbers, so

s cannot link the identifiers with their owners, except if |Grantors | = 1. In this last case, s can learn

the identifier of his unique grantor, namely u, idLBSu . However, idLBSu does not leak any information

about the position of u or cannot be used to decrypt his encrypted position. Next, during query

processing, s receives a set of encrypted names and public numbers corresponding to the grantors

of s that fulfill the query condition. None of this information can be used to decrypt the encrypted

positions. Then, s cannot learn the position of other users during the first protocol execution.

During the second protocol execution, since s is not allowed to collude anymore with any entity,

s only has access to information that he owns, information that he has learned during the first

protocol execution, and the one that he will obtain during the second protocol execution. However,

during the second protocol execution, s does not learn any new information. Then, as in the first

execution, this information is not enough to decrypt and learn the physical positions of other

users. Case 2: A user s colludes with the ACS. During the first protocol execution, s has access to the

information that he owns and the one stored at the ACS. Although s knows the key skH to decrypt

the encrypted positions, s does not have the ciphertext to decrypt them because they are stored at

the LBS provider. Since, according to our adversary model, s cannot collude with both entities at

the same time, s cannot learn the physical positions of other users.

In addition to the information that s has learned, s can execute queries and get their respective

answers. We now show that s cannot use this information to learn the physical positions of

other users. During query processing, the ACS receives from the LBS provider a set containing

the encrypted names, encrypted public numbers, and encrypted distances corresponding to the

grantors of s . s can decrypt all the received information. However, none of this information contains

the encrypted positions or the position of any user.

Next, during the second protocol execution, since s is not allowed to collude anymore with any

entity, s only has access to information that he owns, information that he has learned during the

first protocol execution, and the one that he will obtain during the second protocol execution.

Similar to the first execution, this information is not enough to get the encrypted positions, and so

s cannot learn the physical positions of other users.

Consequently, the 2lSE approach guarantees that, in the presence of adversaries with the power

defined in our adversary model, the physical positions of users are kept secret from any adversary.

□
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Lemma 5.2. Given a user u, the 2lSE approach guarantees that, in the presence of adversaries with
the characteristics defined in our adversary model, Section 2.2, only entities they themselves have
authorized can learn the distance between their physical position and the one of u.

Proof. Case 1: A user s colludes with the LBS provider. During the first protocol execution, s has
access to the information that he owns and the one stored at the LBS provider. Knowing all this

information, as proved in Lemma 5.1, s cannot learn the physical positions of other users. Thus, s
cannot use the positions to learn the distance between his position and the one of the users who

have not authorized him to do so.

In addition to the information that s has learned, s can execute queries and get their respective

answers. We now show that s cannot use this information to learn the distance between his position

and the one of the users who have not authorized him to do so. As explained in the proof of

Lemma 5.1, during query processing, if |Grantors | = 1, s can learn the identifier of his unique

grantor, namelyu, idLBSu . However, idLBSu does not leak any information about the physical positions

or the distance between users. Additionally, by following the query processing protocol, s receives
a set of encrypted names and public numbers corresponding to the grantors of s that fulfill the
query condition. Since the information received belongs to the grantors of s , s is allowed to learn

such information. Next, assume that the LBS provider deviates from the query processing protocol,

as part of the collusion. That is, the LBS provider processes the query with different identifiers

from the ones sent by the ACS. So, instead of using the information that belongs to the grantors

of s , the LBS provider selects different identifiers and random numbers to give s information that

he is not authorized to access. However, the identifiers are random numbers, and neither s nor
the LBS provider knows the relationship between identifier and users. Next, if the LBS provider

processes the query with identifiers selected at random, s receives as query result a set of encrypted
names and public numbers. However, the names are encrypted using probabilistic encryption, and

s does not know the key to decrypt them. Moreover, by using the received public numbers, and the

parameters p and д, s cannot compute the decryption key because of the security offered by the DH

assumption, which has been proven to be computationally infeasible in [6]. Since s cannot compute

the key and probabilistic encryption is secure against IND-CPA, s cannot learn, in the first protocol

execution, the distance between his position and the one of users that he is not authorized.

Next, during the second protocol execution, since s is not allowed to collude anymore with any

entity, s only has access to information that he owns, information that he has learned during the

first protocol execution, and the one that he will obtain during the second protocol execution.

Assume that in the second protocol execution, u revokes access to s . Then s can try himself to add

idLBSu to his set Grantors following the steps of the access request phase. However, s needs to send

the ciphertext c = Enc(pkACS ′, (Enc(pkLBS , id
LBS
u ))) to the ACS. Since s does not know c or the key

pkACS ′ to generate c , s cannot add idLBSu in his set Grantors . Therefore, in the case of revocation, s
cannot regain access.

Case 2: A user s colludes with the ACS. During the first protocol execution, s has access to the

information that he owns and the one stored at the ACS. Knowing all this information, as proved in

Lemma 5.1, s cannot learn the physical positions of other users. Thus, s cannot use the positions to
learn the distance between his position and that of the users who have not authorized him to do so.

In addition to the information that s has learned, s can execute queries and get their respective

answers. We now show that s cannot use this information to learn the distance between his position

and the one of the users who have not authorized him to do so. By following the query processing

protocol, s receives a set of encrypted names and public numbers corresponding to the grantors of

s that fulfill the query condition. Since the information received belongs to the grantors of s , s is
allowed to learn that information. Next, assume that the ACS deviates from the query processing
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protocol, as part of the collusion. That is, the ACS includes in the setGrantors , information from

the other sets of grantors to give access to s to information that he is not authorized to access.

So, s receives as query answer, a set of encrypted names and public numbers. Based on the same

arguments as the ones presented in the Case 1, s cannot compute the decryption key and cannot

learn any information from the encrypted names. Then, during the first protocol execution, s cannot
learn the distance between his position and the one of the users who have not authorized him.

During the second protocol execution, since s is not allowed to collude anymore with any entity,

s only has access to information that he owns, information that he has learned during the first

execution, and the one that he will obtain during the second protocol execution. Different from the

case 1, after query processing, s cannot learn any extra information, i.e., s has access to the same

information as in the first protocol execution. Using the same arguments as in the first execution, s
cannot learn the distance between his position and the one of the users who have not authorized

him. So, in the case of revocation, by using the information that s knows, s cannot regain access.

Consequently, given a user u, the 2lSE approach guarantees that, in the presence of adversaries

with the power defined in our adversary model, only entities they themselves have authorized can

learn the distance between their physical position and the one of u. □

Lemma 5.3. Given two usersu andv , the 2lSE approach guarantees that, in the presence of adversaries
with the characteristics defined in our adversary model, Section 2.2, an adversary will not be able to
learn whether u or v are allowed to learn the distance between them.

Proof. Case 1: A user s colludes with the LBS provider. During the first protocol execution, s
has access to the information that he owns and the one stored at the LBS provider. First, the user

identifiers are random numbers, and by using all the known information, neither the LBS provider

nor s can determine the link between users and identifiers. Second, the information that s knows
does not contain any link between grantees and grantors. Then, s cannot determine whether two

given users u and v are allowed to learn the distance between them.

In addition to the information that s has learned, s can execute queries and get their respective

answers. We now show that s cannot use this information to learn whether two given users u and

v are allowed to learn the distance between them. As explained in the proof of Lemma 5.1, during

query processing, if |Grantors | = 1, s can learn the identifier of his unique grantor, namely u, idLBSu .

However, given a set of queries, neither s nor the LBS provider knows who are the querying users.

Therefore, if the identifier idLBSu is used during query processing, s cannot determine who are the

grantees of u. Additionally, during query processing, s receives a set of encrypted names and public

numbers corresponding to the grantors of s that fulfill the query condition. However, the received

information does not reveal any data about the grantees and grantors of other users. Then, given

two users u and v , during the first protocol execution, s is not able to learn whether u or v are

allowed to learn the distance between them.

During the second protocol execution, since s is not allowed to collude anymore with any entity,

s only has access to information that he owns, the one that he has learned during the first execution,

and the one that he will obtain during the second protocol execution. Since the information that s
gets in the second protocol execution is similar to the one of the first execution, this information is

not enough to learn whether u or v are allowed to learn the distance between them.

Case 2: A user s colludes with the ACS. During the first protocol execution, s has access to the

information that he owns and the one stored at the ACS. First, the set of grantors is encrypted

using asymmetric encryption and the key pkLBS . Since s does not know pkLBS and asymmetric

encryption is secure against IND-CPA, s cannot learn any useful information from the encrypted

data. Second, the set of grantees are encrypted using probabilistic encryption and the key of its
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owner. Since s knows only the key to decrypt his set of grantees, and probabilistic encryption is

secure against IND-CPA, s cannot learn any useful information from the encrypted data.

In addition to the information that s has learned, s can execute queries and get their respective

answers. Similar to the case 1, the information that s received during query processing does not

reveal any data about the grantees and grantors of other users. Next, during the second protocol

execution, since s is not allowed to collude anymore with any entity, s only has access to information

that he owns, the one that he has learned during the first protocol execution, and the one that he

will obtain during the second execution. Similar to the case 1, s has access to the same information

as in the first protocol execution. Therefore, using the same arguments as in the first protocol

execution, s cannot learn whether u or v are allowed to learn the distance between them.

Consequently, given two users u and v , the 2lSE approach guarantees that, in the presence of

adversaries with the power defined in our adversary model, an adversary will not be able to learn

whether u or v are allowed to learn the distance between them. □

5.2 Secrecy Proofs of the 2lABE approach
Lemma 5.4. The 2lABE approach guarantees that, in the presence of adversaries with the character-

istics defined in our adversary model, Section 2.2, the physical positions of users are kept secret from
any adversary.

Lemma 5.5. Given a user u, the 2lABE approach guarantees that, in the presence of adversaries
with the characteristics defined in our adversary model, Section 2.2, only entities they themselves have
authorized can learn the distance between their physical position and the one of u.

Lemma 5.6. Given two users u and v , the 2lABE approach guarantees that, in the presence of
adversaries with the characteristics defined in our adversary model, Section 2.2, an adversary will not
be able to learn whether u or v are allowed to learn the distance between them.

The proofs of Lemmas 5.4 - 5.6 are analogous to the proofs of Lemmas 5.1 - 5.3, respectively. That

is because, although the 2lSE and the 2lABE approaches have some differences, the properties of the

2lSE used for the proofs also hold for 2lABE. First, both approaches differ in the encryption scheme

used to encrypt the usernames. The 2lABE uses CP-ABE. CP-ABE is secure against IND-CPA [5].

Then an adversary cannot learn any useful information from the encrypted names. Second, different

from the 2lSE, the 2lABE does not use the DH protocol to share keys between users. Instead, each

user receives, as part of the CP-ABE, a secret key for decryption. A user can decrypt a ciphertext c
only if the attributes used to generate his secret key satisfies the access policy used to generate c .
That is, a user can decrypt only usernames that belong to his grantors. Then users cannot decrypt

ciphertexts that they are not authorized to.

6 TIME COMPLEXITY ANALYSIS
A complexity analysis is helpful to predict the behavior of the 2lSE and 2lABE approaches and

to facilitate meaningful comparisons. An average complexity analysis depends on the internal

behavior of the database, which is specific to the product and is not openly available. Furthermore,

if there are changes in the system settings, the average analysis is void. So our complexity analysis

is a worst case analysis. Here, we focus on the complexity of the query phase because this is the

most frequently used phase in our scenario.

6.1 Time Complexity Analysis of the 2lSE and 2lABE approaches
Since we are performing a worst case complexity analysis, we consider that all the users in the

set of grantors of the querying user u are located within the query range. That is because the
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number of operations at the user-side depends on the number of grantors of u that are inside

the query range. Furthermore, to perform the complexity analysis of our approaches, one needs

to specify the complexity of the encryption/decryption process, which depends on the type of

encryption/decryption algorithm used. In this sense, we select the following well-known algorithms

from the literature: For symmetric and asymmetric encryption schemes, we use AES and RSA,

respectively. For SHE, we use algorithms based on the learning with errors problem over rings,

such as the ones presented in [11, 23]. For CP-ABE, we select the algorithm presented in [19].

Let A be the total number of authorized access requests, i.e., A =
∑
u ∈U |Grantoru |, B(pu ) be

the bit string representation of the physical position pu , and |B(pu )| its length. Further, let TCuser ,

TCACS , and TCLBS denote the time complexity at the user-side, the ACS and the LBS provider,

respectively. Next, a ciphertext generated using SHE is represented as a matrixM . We use |M | to
denote the size of the matrix. Additionally, the initialization of the RSA algorithm requires to select

at random two large primes. We use N to denote the product of the selected two primes. Next, note

that p and ηu are the integer and the secret number of a given user u, respectively, which are part

of the DH protocol used by the 2lSE approach.

Lemma 6.1. Given a range query Ranдe = (u,d), the time complexities of the 2lSE approach at the
user-side, the ACS, and the LBS provider are:

TCuser = O
(
|Grantoru | · log(p)

2 · log(ηu )
)

TCACS = O
(
|Grantoru | · (|B(pu )| · log(|B(pu )|) + log(N )

3)
)

TCLBS = O
(
|Grantoru | · |M |

3
) (1)

Proof. We start by analyzing the complexity of the encryption/decryption process of each of the

encryption schemes used in the 2lSE approach, i.e., symmetric, asymmetric encryption, and SHE.

First, the complexity of symmetric encryption schemes, specifically AES, depends on the length of

the messagem to be encrypted, |m |, [26]. Then, the complexity of the encryption/decryption process

is O(|m |). In our scenario, we use symmetric encryption to encrypt the usernames. We consider

that the length of the string that represents a username has a constant size of 12 bytes. Therefore,

the complexity of the encryption/decryption process using symmetric encryption reduces to O(1).

Second, the complexity of asymmetric encryption schemes, specifically RSA, is based on the

complexity of modular exponentiation. That is because, using RSA, given a messagem, the resulting

ciphertext c is c =me (mod N ), and the decryption of c ism = cd (mod N ), where e is the public
key and d is the secret key. Given the integer numbers B,C,N , the complexity of the modular

exponentiation BC (mod N ) is O(log(N )2 · log(C)). We consider that the exponent e in the RSA

algorithm, i.e., the public key, is fixed, as specified in FIPS-186-3 [22]. So the encryption complexity

using RSA is O(log(N )2). Next, using standard RSA assumptions, the exponent d in the RSA

algorithm, i.e., the secret key, has size in bits close to that of N . Then, the decryption complexity

using RSA is O(log(N )3).
Third, in SHE schemes [11, 23], the encryption/decryption process depends on modular mul-

tiplication and addition of vectors. Given a message m, using SHE, the complexity of encrypt-

ing/decryptingm is log(|B(m)|) per bit [8], assuming the use of the Montgomery multiplication,

which is one of the fastest methods available for performing modular multiplication. Then, the

encryption/decryption complexity of SHE schemes is O(|B(m)| · log(|B(m)|)).
The following steps are required to compute a given range query with the 2lSE approach.

(1) Encrypt using SHE the position of the querying user u. The user executes this step. The
complexity of this step is O(|B(pu )| · log(|B(pu )|)).
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(2) Use the identifier of the querying user u, idACSu to retrieve the set of grantors Grantoru . The
ACS executes this step. We assume the ACS uses B-tree indexing. Then, the complexity of

this step is O(log(|U |)).
(3) Decrypt the set of encrypted identifiers and the set of encrypted random numbers sent by

the ACS. Since both sets have a size of |Grantoru | and each element of these sets is encrypted

using the asymmetric encryption, the LBS provider has to execute 2 · |Grantoru | asymmetric

decryptions. The complexity of this step is O(|Grantoru | · log(N )
3).

(4) For each decrypted identifier in step 3, retrieve the corresponding encrypted position and

encrypted public value. The LBS provider does this step. We assume the LBS provider uses

B-tree indexing. Then, the complexity of this step is O(|Grantoru | · log(|U |)).
(5) Compute the encrypted square distances between the querying user and the ones retrieved

in step 4. The LBS provider executes this step. Computing the encrypted square distance

requires three homomorphic additions and two multiplications. Since a ciphertext gener-

ated using SHE is represented as a matrix, adding and multiplying two ciphertexts imply

addition and multiplication of two matrices, respectively, [31]. Then, the addition and multi-

plication processes have a complexity of O(|M |2) and O(|M |3), respectively. Since O(|M |3)
dominates O(|M |2), the complexity of computing one encrypted square distance is O(|M |3).
The complexity of this step is O(|Grantoru | · |M |

3).

(6) Retrieve from the set of encrypted names stored at the LBS provider the encrypted names

corresponding to each of the random numbers decrypted in step 3. The LBS provider executes

this step. The complexity of this step is O(|Grantoru | · loд(A)).
(7) Decrypt the encrypted square distances, the second layer of encryption of the encrypted

names, and the encrypted public numbers sent by the LBS provider. The ACS executes

this step. The total number of ciphertexts that the ACS has to decrypt is 3 · |Grantoru |.
However, the square distances are encrypted using SHE, and the names and public numbers

are encrypted using asymmetric encryption. Then, the ACS has to perform |Grantoru | SHE
decyptions and 2 · |Grantoru | asymmetric decryptions. Then, the complexity of this step is

O(|Grantoru | · (|B(pu )| · log(|B(pu )|) + log(N )
3)).

(8) Compute the shared keys and decrypt the encrypted names corresponding to users that fulfill

the query condition. The user does this step. The total number of shared keys that u has to

compute is |Grantoru |. The shared keys are generated using the DH protocol, which requires

modular exponentiation. Given a public number of a user v , Zv , and the secret number of

u, ηu , the complexity of the modular exponentiation Zv
ηu (mod p) is O(log(p)2 · log(ηu )),

where p is the parameter of the DH protocol. The number of decryptions performed are

|Grantoru |, where each decryption has a complexity of O(1). Then the complexity of this

step is O(|Grantoru | · log(p)
2 · log(ηu )).

By considering the step with the highest complexity that is performed by each entity of the

system, one can easily construct the terms of Equation 1. □

Before studying the complexity of the 2lABE, we introduce further notation: Let G and GT
be two cyclic groups of the same order, where G and GT are the groups selected during the

initialization of the CP-ABE scheme. Further, let e be a bilinear map of the form e : G × G→ GT .
The encryption/decryption process using CP-ABE is based on bilenear mappings and operations

in the groups G and GT . We use Ce and CGT to denote the complexity of computing e , and the

complexity of performing an operation in the group GT , respectively.
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Lemma 6.2. Given a range query Ranдe = (u,d), the time complexities of the 2lABE approach at
the user-side, the ACS, and the LBS provider are:

TCuser = O
(
|Grantoru | · (Ce +CGT )

)
TCACS = O

(
|Grantoru | · (|B(pu )| · log(|B(pu )|) + log(N )

3)
)

TCLBS = O
(
|Grantoru | · |M |

3
) (2)

Proof. We start by analyzing the complexity of the encryption/decryption process of each

of the encryption schemes used in the 2lABE approach, i.e., asymmetric encryption, SHE, and

CP-ABE. First, as shown in the proof of Lemma 6.1, the encryption and decryption complexity of

asymmetric encryption schemes areO(log(N )2) andO(log(N )3), respectively, and given a message

m, the encryption/decryption complexity of SHE is O(|B(m)| · log(|B(m)|)). Third, the encryption
complexity of CP-ABE schemes [19] depends on the size of the access policy and the cyclic groups

G and GT . The encryption costs using CP-ABE is (n + 3) · CG + 2 · CGT , where n is the size of

the access policy and CG is the complexity of performing an operation in the group G [34]. In

our scenario, the size of the access policy depend on the size of the set of grantees of each user.

Then, the encryption complexity of CP-ABE isO(|Granteeu | ·CG +CGT ). The decryption cost using

CP-ABE is 2 ·Ce + 2 ·CGT [34]. Then, the decryption complexiy of CP-ABE is O(Ce +CGT ).
The following steps are required to compute a given range query with the 2lABE approach.

(1)-(3) Similar to the step 1-3 of the 2lSE.
(4) Retrieve the encrypted position and encrypted name corresponding to each decrypted

identifier in step 3. The LBS provider executes this step. The complexity of this step is

O(|Grantoru | · log(|U |).
(5) Similar to the step 5 of the 2lSE.
(6) Decrypt the encrypted square distances and the second layer of encryption of the encrypted

names sent by the LBS provider. The total number of ciphertexts that the ACS has to decrypt

is 2 · |Grantoru |, where the square distances are encrypted using SHE and the names are

encrypted using asymmetric encryption. This step is done by the ACS. The complexity of

this step is O(|Grantoru | · (|B(pu )| · log(|B(pu )|) + log(N )
3)).

(7) Decrypt the encrypted names corresponding to users that fulfill the query condition. The user

executes this step. The number of decryptions performed are |Grantoru |. Then the complexity

of this step is O(|Grantoru | · (Ce +CGT )).

By considering the step with the highest complexity that is performed by each entity of the

system, one can easily construct the terms of Equation 2. □

6.2 Discussion
From our worst case analysis, Lemmas 6.1 and 6.2, one can observe that both approaches differ only

at one entity, namely the user-side. Their differences rely on the decryption process, which is related

to the encryption scheme used. With the 2lSE, the encryption/decryption complexity of symmetric

schemes is O(1). However, the querying user has to perform a total of |Grantoru | exponentiations
module p to calculate the shared key. This computation is not needed with the 2lABE, since the
user uses the same key to decrypt the received ciphertexts. However, the encryption/decryption

complexity of CP-ABE schemes depends on the size of the access policy used to generate a given

ciphertext and bilinear pairing operations, which are computationally expensive [34]. Next, because

a complexity analysis considers only the dominating operations, a worst case analysis is not enough

to determine the performance of an algorithm in practice. For instance, for the complexity at the

LBS provider, one can observe that both approaches have the same time complexity. However,

significant differences between both approaches can be found on the less dominant steps. With the
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2lSE approach, the LBS provider has to perform |Grantoru | extra searches with complexity log(A),
which will affect its performance. Therefore, we additionally perform experiments to validate

our complexity analysis, evaluate how the differences between both approaches impact on their

performance, and determine at the end which approach performs better in practice.

7 EXPERIMENTS
This section presents an experimental analysis of the performance of the 2lSE and 2lABE approaches.

7.1 Experiment Setup
7.1.1 Dataset andQuery Sample. We use the Tokyo dataset [36] in our experiments. This dataset

contains 573703 real check-ins, i.e., positions. We choose a sample of 1000 users at random. Next,

we divide the users into ten equally classes. We generate authorized access requests such that all

the users in each class have the same number of grantors. Specifically, we generate the following

grantors sizes: 10, 25, 50, 100, 250, 500, 750, 1000, 2500, and 5000.

7.1.2 Encryption Algorithms. We use the following libraries for the implementation: Microsoft

SEAL [29] for the homomorphic encryption and the Java Pairing-Based Cryptography Library

together with the Cryptographic Packages javax.crypto and java.security for symmetric, asymmetric

encryption and CP-ABE.

7.1.3 Evaluation Measures. For our evaluation, we considered the access request and query phases.

All other phases are executed only once, at least with respect to one of the entities of the systems. In

this sense, we consider six measures: the storage size, the access request time, the query processing

time at the user-side, the query processing at the LBS provider, the query processing time at the

ACS, and the total query processing time. Note that, the total query processing time is the sum of

the query processing time at each of the entities.

7.2 Results
We now present our experiment results, which evaluate the performance of our schemes using the

metrics defined in Section 7.1.3. Note that we do not consider the network-communication time.

Storage-Size: Figure 5(a) shows the total storage size occupied by each of the approaches. The

blue and red colors represent the storage size at the ACS and LBS provider, respectively. The 2lABE
approach requires more storage capacity. However, the difference between the storage capacity of

both approaches is minimal (2 percent in our scenario).

Fig. 5. Storage size, Access request time and Encryption time
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Access request time: Given an authorized access request accessReq(u,v)=true, we evaluate the time

required by the grantor v to (1) generate and add the information needed to the setGrantoru at the

ACS, and (2) generate and store the information needed at the LBS provider, with each approach.

Figure 5(b) shows the average access request time with both approaches for our sample. The blue

and red colors indicate the time required by the grantors to generate and store the information

at the ACS and LBS provider, respectively. Both approaches require the same amount of time to

generate and store the corresponding information at the ACS (blue color). However, with the 2lABE
approach, the grantors require more time to generate and store the information at the LBS provider.

That is because of the different encryption scheme used to encrypt the usernames which are stored

at the LBS provider. One could think that our results are specific to the number of grantees that the

user in our sample have. Next, we will show that our results apply to any number of grantees. As

shown in the proof of Lemma 6.2, the encryption complexity using CP-ABE, which is used by the

2lABE approach, depends, among others, on the number of grantees that a user has. Therefore, to

analyze in depth, the effect of each encryption scheme, we select a user and increase his number

of grantees, starting from 1 up to 500. Next, we measure the time required by the user to encrypt

his username against the size of his set of grantees. Figure 5(c) shows the encryption time with

both approaches. One can observe that even for a set of grantees with cardinality one, the 2lSE
approach performs better than the 2lABE. Moreover, as expected from our complexity analysis,

the encryption time with the 2lABE grows linearly with the number of grantees, whereas with

the 2lSE the encryption time is constant. That is because, with the 2lSE, each grantor generates

a ciphertext for each of his grantees. Consequently, with the 2lSE, the encryption time of each

ciphertext is independent of the number of grantees that the grantor has. With the 2lABE, although
each grantor generates only one ciphertext which can be accessed by all of his grantees, the number

of operations required to encrypt a ciphertext depends, among others, on the number of grantees,

i.e., the encryption time grows linearly with the number of grantees.

Query time: Figures 6(a), 6(b), and 6(c) show the average query processing time for each of the

ten classes at the ACS, the LBS provider, and the user, respectively. The query processing times of

the LBS provider and ACS with the 2lSE approach is greater than that of the ones with the 2lABE
approach. In contrast, the query processing time of the user with the 2lSE approach is less than the

one with the 2lABE. This is explained as follows: First, with the 2lSE approach, the LBS provider

has to perform an additional search to recover the encrypted version of the name, which can be

decrypted by the querying user. With the 2lABE, there is only one encrypted version of the name

for each user, which can be decrypted by all authorized users. Second, with the 2lSE approach,

the ACS has to decrypt for each user v in the query answer, apart from the second layer of the

encrypted name ofv and the encrypted square distance, the encrypted public number Zηv . With the

2lABE approach, the ACS has to decrypt only the encrypted square distances and the second layer

of the encrypted names. Third, with the 2lSE approach, the user has to compute the shared key

and decrypt the names which are encrypted using symmetric encryption, whereas with the 2lABE
the user has to decrypt the names which are encrypted using CP-ABE. The encryption/decryption

process using CP-ABE is computationally more expensive than the one using symmetric encryption

and even more expensive than computing the shared keys and decrypting. In fact, although, with

the 2lABE, the query processing time at two entities of the system, namely LBS provider and ACS,

is less than the one with the 2lSE, the performance of the 2lSE on the user-side is that much high

that it compensates, at the end, the advantages of the 2lABE. As we can observe in Figure 6(d), the

total average query processing time, i.e., the sum of the times required by the LBS provider, the

ACS, and the user, with the 2lSE approach is much less (approximately by a factor of 2) than the

one with the 2lABE.
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Fig. 6. Query Time

Discussion: One important difference between both approaches that affect query performance

is the encryption scheme used to encrypt the usernames. In general, in our scenario, as our

experimental results show, having multiple encrypted copies of a message (2lSE) is more efficient

in terms of query performance. The additional search process needed with the 2lSE approximately

doubles the query processing time at the LBS provider side compare to the one with the 2lABE
approach. The opposite happens at the user-side, where the decryption time, with the 2lABE,
increases by more than twice compared to the one with the 2lSE. However, the time contribution

to the total query processing time of the LBS provider is less in comparison to that of the user.

These differences are reflected in the total query processing time, where the 2lSE approach is twice

more efficient than the 2lABE, which is impressive. Therefore, one can say that the 2 percent extra

storage required by the 2lSE pays off with better query performance. Our results not only apply to

real online social networks like Orkut and LiveJournal, where the average number of connections

of a person, i.e., the size of the set of grantors, is 223.99 and 520.04, respectively, [16], but also to

unrealistic scenarios where the size of the set of grantors is 5000. These results are in line with our

complexity analysis, and one may interpret them as an indication that our analysis also holds for

the average case. Consequently, the 2lSE approach is the most feasible option in our scenario.

8 RELATEDWORK
We categorize exiting works aiming to preserve location secrecy in two groups: location secrecy

in LBS and location secrecy in mSNs. The main difference between these two categories is that

approaches in the first one do not consider access policies, i.e., users are allowed to access the

location of any user in the system.

Location secrecy in LBS: Several techniques have been proposed in the literature to achieve

location secrecy in LBS such as:

Mix zones: The fundamental idea of these approaches is to prevent an adversary from tracking

long-term user movements [3]. A mix zone is a spatial region with a predetermined size, inside

which users do not report their position or communicate with the LBS provider. These approaches

focus on data anonymization and replace the user identity with a pseudonym. They offer anonymity

guarantees by changing the pseudonyms of users inside a mix zone such that an adversary will not

be able to link users that go inside the mix zone with those leaving it. Since these approaches do not

hide the position of users outside the mix zones, one can perform any query on the plaintext data.
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However, users inside the mix zones do not communicate with the LBS provider, and therefore,

they cannot get any service. This lack of communication affects functionality.

Coordinates transformation: Approaches in this area aim to guarantee that an adversary does

not learn the position of the users. These approaches consist of mapping the location of users to

another space coordinate and addressing the query on the transformed space. In the approach

presented in [12], users use a transformation function over their physical position before sending

it to the LBS provider. The transformation function consists of shifts and rotations. Each user sets

the parameters of the transformation function and distributes these parameters among the rest

of users to allow them to recover the original physical position. This approach is subject to data

reconstruction attacks [15]. To avoid this kind of attacks, the authors in [20] use agents to transform

the physical positions of users. Agents are trusted third parties servers that act as middleware

between the users and the LBS provider. Agents periodically change their transformation functions,

which prevents the adversaries from analyzing the data. These approaches allow users to query

for one specific user at each time, i.e., point queries. The secrecy of this approach relies on trusted

third servers.

Cryptography: Approaches like [25, 38]keep the position of users secret from any adversary

including the service provider. They use encryption techniques and hash functions to compute

proximity between two users privately. The authors in [38] use, besides hash functions, location

tags to prevent users from cheating their location, i.e., announcing an untruthful location. Location

tags are pieces of information obtained from the network protocol like 802.11 frames in WiFi

networks. In these approaches, users are allowed to query for the proximity of one specific user at

each time, i.e., point queries.

Location secrecy in mSNs: Approaches in this area restrict access to the physical position

of users based on access control policies. Each user defines a set of users who are authorized to

read his physical position. In [28], the authors proposed a scheme to guarantee location secrecy,

which uses encryption and coordinate transformation techniques. The LBS provider stores the

transformed data. Querying requires that users distribute among their friends the transformation

parameters and the corresponding decryption keys. This scheme focuses on dealing with point and

nearest neighbor queries. Wei et al. [33] proposed an approach called Mobishare. The architecture

of this approach consists of a trusted central tower, an untrusted LBS provider, and an untrusted

Access Control Server (ACS). Mobishare uses dummy techniques to prevent the LBS provider and

the ACS from learning the users identities and their physical positions. Before outsourcing the

data to the LBS provider, Mobishare replaces users identities with pseudonyms and adds dummy

pseudonyms together with dummy locations. Since the position of users is stored in plaintext, the

LBS provider can compute any kind of query. Before sending the final query answer to the user,

the ACS filters the data based on the access policies, and the central tower replaces pseudonyms

with user identities. However, an adversary who can observe query executions will be able to

identify real pseudonyms from dummy ones. Learning this information, an adversary could link a

pseudonym with a user identity and therefore learn the position of the user. The adversary could

also learn information about access policies, i.e., the set of users that have allowed a given user to

access their position. To avoid these issues, the authors in [17] extended the previous approach by

adding dummy queries and using a private set intersection protocol. The authors in [18] extended

the latter approach by introducing a new architecture with multiple LBS providers. The authors

aim to prevent an adversary from identifying queries coming from the same user, which can help

an adversary to learn the users identities. To conclude, approaches in this area focus on point

or nearest neighbor queries, or they rely on trusted central towers. Furthermore, their adversary

model is weaker than ours, as explained in Section 2.2.
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9 CONCLUSION
Location-based services are an important feature provided by mSNs. However, users are normally

reluctant to share their physical position with others due to privacy reasons. In this paper, we

have showed how to offer location-based services, in the example of range queries, in mSNs with a

revocation feature while providing the secrecy guaranteesGposition,Gdistance, andGauthorization, to the

users under collusion assumption. We introduced two approaches namely two-layer symmetric

encryption, 2lSE, and two-layer attribute-based encryption, 2lABE. One of the main differences

between the first and the second approach is that they use, among other encryption schemes,

symmetric and attribute-based encryption, respectively. A complexity analysis of the query phase

tells us that both approaches differ only at one entity, namely the user-side. Their differences

rely on the decryption process, which is related to the encryption scheme used. We have further

compared our approaches experimentally. Although with the 2lABE, the key management is more

straightforward than with the 2lSE, and the LBS provider does not have to store multiple encrypted

copies for each message, we have found that our former solution is on average twice more efficient

in our scenario.

In the future, it will be interesting to study how to offer location-based services in mSNs with

different kind access policies while providing secrecy guarantees. For instance, one can consider

integrating mutual authorizations [32], where users grant access to their resources, i.e., physical

positions, to users that allow them the same, or location constraints [4], where users restrict access

to their resources based on the location of the accessing user.
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