
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 81 (2019) 234–239

2212-8271 © 2019 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/)
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.
10.1016/j.procir.2019.03.041

© 2019 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/)
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2019) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/)
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.

52nd CIRP Conference on Manufacturing Systems

Design, Implementation and Evaluation of Reinforcement Learning for an
Adaptive Order Dispatching in Job Shop Manufacturing Systems

 Andreas Kuhnlea,*, Louis Schäfera, Nicole Strickera, Gisela Lanzaa
awbk Institute of Production Science, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

* Corresponding author. Tel.: +49-721-608-44153; fax: +49-721-608-45005. E-mail address: andreas.kuhnle@kit.edu

Abstract

Modern production systems tend to have smaller batch sizes, a larger product variety and more complex material flow systems. Since a human
oftentimes can no longer act in a sufficient manner as a decision maker under these circumstances, the demand for efficient and adaptive control
systems is rising. This paper introduces a methodical approach as well as guideline for the design, implementation and evaluation of
Reinforcement Learning (RL) algorithms for an adaptive order dispatching. Thereby, it addresses production engineers willing to apply RL.
Moreover, a real-world use case shows the successful application of the method and remarkable results supporting real-time decision-making.
These findings comprehensively illustrate and extend the knowledge on RL.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/)
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.

 Keywords: Reinforcement Learning; Production Scheduling; Order Dispatching; Methodical Approach

1. Introduction

Manufacturing companies are nowadays, in the age of
connected Cyber-Physical Systems (CPS), more than ever
confronted with new challenges but also opportunities leading
to the fourth industrial revolution [1]. The digitization already
covers companies that generate two-thirds of the world’s total
gross domestic product [2]. These companies focus on the
integration of technological innovations in their role as solution
providers to their customers. At the same time, they concentrate
on innovations to maintain their operational competitiveness.

Especially in the domain of Artificial Intelligence (AI) and
Machine Learning (ML) promising progress has been made in
the last years. Firstly, the available hardware, e.g. graphics
processing units, leads to acceptable computation time for data-
intensive calculations. Secondly, advanced algorithm libraries
are publicly accessible and open source, e.g. tensorflow, keras-
rl and tensorforce. Lastly, successful applications, in particular
in the area of Reinforcement Learning (RL), such as AlphaGo
have attracted a large public audience [3].

However, considering the manufacturing industry there is an
almost negligible number of attempts applying state of the art
ML algorithms. A literature review in the subsequent section
reveals just a few applications to common production planning
and control (PPC) problems, e.g. scheduling. Additionally, a
methodical approach for the usage of state-of-the-art RL-
algorithms such as TRPO, PPO or Deep Q-Learning is missing.

Furthermore, traditional solution approaches such as
mathematical optimization and heuristics fail to meet the
demand for adaptability in the presence of uncertainties,
smaller batch sizes, higher product diversity and at the same
time the call for maximum productivity and efficiency [4].
Hence, new control mechanisms matter. Decentral and data-
driven approaches such as RL are promising approaches, as
they show a good performance for dynamic applications [5,6].

In this paper we introduce a methodical approach for the
design, implementation and evaluation of RL applications.
Section 2 describes the fundamentals and literature review of
ML in production control, in general. Section 3 forms the main
part of this paper wherein the methodical approach is outlined.
The findings are summarized in Section 4 and 5.

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2019) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/)
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.

52nd CIRP Conference on Manufacturing Systems

Design, Implementation and Evaluation of Reinforcement Learning for an
Adaptive Order Dispatching in Job Shop Manufacturing Systems

 Andreas Kuhnlea,*, Louis Schäfera, Nicole Strickera, Gisela Lanzaa
awbk Institute of Production Science, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

* Corresponding author. Tel.: +49-721-608-44153; fax: +49-721-608-45005. E-mail address: andreas.kuhnle@kit.edu

Abstract

Modern production systems tend to have smaller batch sizes, a larger product variety and more complex material flow systems. Since a human
oftentimes can no longer act in a sufficient manner as a decision maker under these circumstances, the demand for efficient and adaptive control
systems is rising. This paper introduces a methodical approach as well as guideline for the design, implementation and evaluation of
Reinforcement Learning (RL) algorithms for an adaptive order dispatching. Thereby, it addresses production engineers willing to apply RL.
Moreover, a real-world use case shows the successful application of the method and remarkable results supporting real-time decision-making.
These findings comprehensively illustrate and extend the knowledge on RL.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/)
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.

 Keywords: Reinforcement Learning; Production Scheduling; Order Dispatching; Methodical Approach

1. Introduction

Manufacturing companies are nowadays, in the age of
connected Cyber-Physical Systems (CPS), more than ever
confronted with new challenges but also opportunities leading
to the fourth industrial revolution [1]. The digitization already
covers companies that generate two-thirds of the world’s total
gross domestic product [2]. These companies focus on the
integration of technological innovations in their role as solution
providers to their customers. At the same time, they concentrate
on innovations to maintain their operational competitiveness.

Especially in the domain of Artificial Intelligence (AI) and
Machine Learning (ML) promising progress has been made in
the last years. Firstly, the available hardware, e.g. graphics
processing units, leads to acceptable computation time for data-
intensive calculations. Secondly, advanced algorithm libraries
are publicly accessible and open source, e.g. tensorflow, keras-
rl and tensorforce. Lastly, successful applications, in particular
in the area of Reinforcement Learning (RL), such as AlphaGo
have attracted a large public audience [3].

However, considering the manufacturing industry there is an
almost negligible number of attempts applying state of the art
ML algorithms. A literature review in the subsequent section
reveals just a few applications to common production planning
and control (PPC) problems, e.g. scheduling. Additionally, a
methodical approach for the usage of state-of-the-art RL-
algorithms such as TRPO, PPO or Deep Q-Learning is missing.

Furthermore, traditional solution approaches such as
mathematical optimization and heuristics fail to meet the
demand for adaptability in the presence of uncertainties,
smaller batch sizes, higher product diversity and at the same
time the call for maximum productivity and efficiency [4].
Hence, new control mechanisms matter. Decentral and data-
driven approaches such as RL are promising approaches, as
they show a good performance for dynamic applications [5,6].

In this paper we introduce a methodical approach for the
design, implementation and evaluation of RL applications.
Section 2 describes the fundamentals and literature review of
ML in production control, in general. Section 3 forms the main
part of this paper wherein the methodical approach is outlined.
The findings are summarized in Section 4 and 5.

 Andreas Kuhnle et al. / Procedia CIRP 81 (2019) 234–239 235
2 A. Kuhnle et al. / Procedia CIRP 00 (2019) 000–000

The developed method is exemplarily applied to a complex
job shop manufacturing system taken from a semiconductor
fabrication company. We closely build this work on the
previous research of Stricker et al. [5]. The semiconductor
industry appears as perfect example because the external
market demand is highly uncertain and internal processes, e.g.
the material flow in the job shop manufacturing system are
complex systems [4]. In addition, the industry acts since many
years as a pioneer in the field of digitized and connected
production systems, e.g. the throughout implementation of
RFID and indoor tracking systems [4].

2. ML applications in production control

2.1. Problem description and requirements

In the manufacturing industry, production control is the
central element that allows a stable and cost-efficient
production process, i.e. leading to a high operational efficiency
[4]. Considering a complex job shop environment, the
underlying main concern can be described as a resource
allocation problem where the crucial aim is to optimize the
usage of production resources with respect to previously
defined Key Performance Indicators (KPI) such as the
utilization of the resources or the lead time of the production
orders. Thus, the task of production control can be described as
a decision-making problem optimized with respect to the KPI.

The continuous adjustment, i.e. adaptability, according to
dynamics of turbulent markets, the increasing customer
requirements and unstable production processes are inevitable
for any production control system. It is ever more important to
quickly adapt production control decisions to changing
environmental conditions [1]. For instance, the semiconductor
industry is in a phase in which economic success is to a large
extend determined by the operational excellence [4].

To overcome these obstacles, manufacturers consider
decentralized, autonomous decision-making units to achieve a
high flexibility and adaptability [5,6]. Mathematical
optimization and heuristics cause a high manual adjustment
effort in case of system changes due to their static nature and
model-based implementation. Herein, RL-algorithms can,
firstly, realize a real-time-capable and, secondly, adaptive
production control system. RL-algorithms are not hardcoded,
meaning in most cases model-free, and continuously adjust
their procedure according to the data input [13].

2.2. Control applications of machine learning

A comprehensive overview of ML algorithm applications
reveals that control application is one kind of recurring pattern.
Independent of the system under control the algorithms that are
applied are in the class of RL. Table 1 shows an extract of the
review. It does not only reveal the suitability of RL for dynamic
and complex production systems but also the transferability
motivated in this paper. Due to its approach presented in the
next section, RL perfectly integrates into the domain of
adaptive production control.

Table 1. Overview and classification of ML applications.

Application Context Author ML algorithm
category

AlphaGo Zero Go-Engine [3] RL

Locomotion
Behaviors

Humanoid limbs [7] RL

Soccer Robot Robotics [8] RL

3D Walking Biped Robotics [9] RL

Improving Elevator
Performance

Elevator control [10] RL

Playing Atari Joystick [11] RL

Dispositive Order
Control

Production control [12] RL

Complex Job Shop
Scheduling

Production control [6] RL

2.3. Reinforcement learning

RL is one of the three categories of ML algorithms [13]. For
a detailed definition and differentiation of RL from Supervised
Learning and Unsupervised Learning we refer to [13]. RL
follows the nature of learning just like animals or humans do
through a continuous interaction of the decision maker (agent)
with its environment. Fig. 1 illustrates on a high level, using the
terminology of control theory, the application of RL as a
controller unit for the system “production”.

Fig. 1. RL for an adaptive production control.

The agent chooses an action 𝑎𝑎𝑡𝑡 ∈ 𝐴𝐴 that influences its
environment state 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆 and is rewarded by a reward signal
𝑟𝑟(𝑆𝑆, 𝐴𝐴) ∈ ℝ . It learns via the direct interaction with the
environment, meaning from the context of its previous actions
and the associated reward. The relationship, i.e. state-action-
pairs, learned over time is called strategy 𝜋𝜋: 𝑆𝑆 → 𝐴𝐴. It is the
agent's overall goal to maximize the long-term, cumulative
reward by optimizing its strategy. The value function 𝑉𝑉𝜋𝜋(𝑠𝑠𝑡𝑡) is
used as an estimator of how good it is for the agent to be in a
particular state 𝑠𝑠𝑡𝑡 of the environment and Q𝜋𝜋(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) to choose
a corresponding action 𝑎𝑎𝑡𝑡 in a given state 𝑠𝑠𝑡𝑡. [14]

When modelling a RL-agent, the design of the action space,
state representation and reward function as well as further
RL-algorithm specific hyperparameters have to be
considered in detail for a successful RL-implementation.

2.4. Related work

There are some successful RL-applications (see Table 1)
such as AlphaGo Zero [3], the outperforming achievements of
RL playing Atari games [11] as well as early ones like the
optimization of elevator performance in 1995 [10].

The application areas of RL are potentially diverse but there

Controller
RL-Algorithm

System
Production

Control actions

Disturbances
(e.g. machine breakdown)

Desired state /
reference System output

Sensor
Reward function State, action, KPIReward

236 Andreas Kuhnle et al. / Procedia CIRP 81 (2019) 234–239
 A. Kuhnle et al. / Procedia CIRP 00 (2019) 000–000 3

are very few serious applications in the manufacturing context.
Most well-known use cases concentrate on an illustrative
demonstration of RL using simplified problems with for
example just a small action-space. Early applications of RL in
production control date back to 1996 when Zhang and Diettrich
used a neural network trained with RL to schedule a static job
shop [15]. Scholz-Reiter et al. [16] apply RL for the inventory
control in production systems. Recent research by Waschneck
et al. [6] addresses the optimization of a global production
scheduling with Deep-Q-Learning, Gabel et al. [17] focus on a
multi-agent approach for the distributed job shop scheduling
and Shiue et al. [18] concerning the optimal scheduling rule
selection based on Q-Learning.

Although RL has been applied successfully, it often lacks
sufficient information regarding the modeling of the solution
algorithm. Therefore, this paper is split up into the three phases
of design, implementation and evaluation of RL and
exemplarily illustrates the application by the example of
adaptive order dispatching.

3. Methodical approach for RL application

This section presents the methodical approach for the
design, implementation and evaluation of RL-algorithms for an
adaptive order control. Generally, one has to note the iterative
nature of the phases, meaning it is for instance mostly
necessary to come back to the design phase when looking at the
evaluation results. The method addresses production engineers
not familiar with RL and compromises key questions that need
to be answered by practitioners when applying it.

3.1. Design

The design phase aims to translate the real-world problem
into a RL problem formulation. Not all types of optimization
tasks are suitable for RL. Dynamic optimization problems in
the domain of production control with the goal to achieve on
average a high performance are in line with RL. However,
optimization problems that are, for instance, looking for the
(static) best weekly production schedule or a strategic planning
decision miss the interactive nature of RL.

Furthermore, a common design characteristic of RL is to
approximate the optimal strategy by the application of an
Artificial Neural Network (ANN). Alternatively, one could use
a lookup table. However, this is not computationally efficient
in case of a large number of and / or continuous variables.

Fig. 2 shows an ANN. It summarizes the key elements of
RL, their connection to elements of ANNs as well as their
relationship and interplay within the learning procedure. The
following subsections elaborate on the design of these four key
elements.

Action space representation

Purpose: The action selection in RL is determined by the
strategy which is technically based on probabilities, i.e. weights
in the ANN. So, it is representing a classification problem (see
Fig. 2). Moreover, the reward is always related to an action.

Fig. 2. ANN application, RL set-up, key elements and learning procedure.

Main considerations: Designing the agent’s action space is
rather straightforward, because it directly emerges from the
problem description. The decision agent has to fulfill a specific
task, e.g. order dispatching, and hence, a fixed set of actions is
required that influences the environment resulting in the
dispatching of orders. To give another example, just two
actions “move right” and “move left” are required for most
simple Atari Games [11]. However, in most real-world
problems the action space is larger. For large action spaces one
has to consider, that the actions are biunique and not
conditional to each other [14]. Moreover, the action space has
to be designed in such a way that in any environment state there
is always at least one action that yields a higher reward than
any other. Otherwise the agent is not able to learn the relation
between a given state and the “optimal” action.

Methodical key steps:
 Is the agent able to change the environment (state)?
 Is the number of actions as high as necessary and as small

as possible, i.e. no conditional actions?
 Are the actions modeled in a way that the agent can always

choose an action that is better than any other?
 Are there any infeasible actions that are not executable in a

specific environment states and therefore have to be taken
into account when designing the reward function?

State representation

Purpose: The agent’s state representation builds the central
basis for the action selection and represents the agent’s
observation of the environment state (see Fig. 2). The state
design has a big influence on the achievable learning
performance [14]. Therefore, it is crucial to understand the way
the agent observes the environment. Whereas, games such as
Atari are easy to model with all pixels on the screen [11], most
real-world control problems are not so easy to comprehend and
multiple dimensions and perspectives such as machine state,
inventory level, order due dates and resource utilization are
relevant.

Main considerations: The state representation is used in the
RL implementation as input vector for the ANN and it is just
allowed to contain numerical values. This might necessitate

…

ACTION
(2) Selected
action gets
rewarded

(4) Action
execution
changes
the state

(3) Reward influences
strategy and thus

action selection

Neural network configuration

(1) Strategy, i.e.
weights, determines
the action selection

STATE

REWARD FUNCTION

…

…

 Andreas Kuhnle et al. / Procedia CIRP 81 (2019) 234–239 237
4 A. Kuhnle et al. / Procedia CIRP 00 (2019) 000–000

data preprocessing, such as transformation, normalization or
feature extraction, which is well-known for data mining and
supervised learning applications. One possibility to
numerically encode categorical data is a (binary) one-hot
vector, where the input simply either contains a one or a zero
for the specific category [6]. Moreover, it is in some cases
beneficial to code state information gradually, meaning
multiple binary inputs. In comparison to the action space it is
not that relevant to keep the state representation rather small.
Advanced RL-algorithms are able to handle large input vectors
such as demonstrated by Silver et al. [3]. They even propose a
duplication of important state information in order to increase
the “attention” and relevance for the RL-algorithm [3].

Additionally, the state vector has to display the optimal
target state, if such state exists. For example, in chess the
victory at the end of a game can be considered as optimal
(terminal) state and rewarded as such. However, production
control applications focus on maintaining a state of high
performance, representing a kind of endless game. This issue is
discussed later.

Finally, the state representation needs to make the change
resulting from the action execution “sufficiently” transparent.
This means that for instance the machine utilization
representation via absolute percentage value is less sensible to
changes than a representation by the relative increase or
decrease. Furthermore, the latter representation is centered on
zero and independent of the application.

Methodical key steps:
 Is the environment numerically encodeable?
 Does the consideration of one-hot vectors for categorical or

gradual data applies?
 Which important input might be duplicated to point it out?
 Does an optimal terminal state exist and is it representable

with the state representation?
 Does the state representation make changes in the

environment due to the action execution transparent?

Reward function

Purpose: The reward function brings both, the action space
and the state representation, together and directs the strategy
optimization.

Main considerations: The reward function can be modeled
linearly, exponentially or by another mathematical function. In
most applications a piece-wise defined function is given. If
there are multiple KPI, it is very important to consider the
dependencies. Multiple objectives are usually integrated by a
linear combination.

Additionally, the reward function should consider an
increasing gradient towards the target state. This is beneficial
for most gradient-based RL optimization algorithms. So,
exponential functions are preferable to linear functions or step
functions that just reward the target state.

In case there is no natural terminal state, e.g. the end of a
game, terminal states can be simulated e.g. with a fixed time
limit. Another modelling guideline is that positive reward is
accumulated and tries to avoid terminal states and a negative
reward is followed or close to a terminal state.

Furthermore, it is not always advisable to reward interim
target states because the agent might develop a strategy that

follows these interim states by maximizing the reward and
hence ignoring the actual target state [14]. Therefore, it is
crucial when designing the reward function that it achieves the
overall goal, e.g. minimal lead times as a result of the
maximization of the cumulative reward. This is also
recommended if multiple target states exist. It might also
require splitting KPI up into its components, because an
aggregated figure contains components that cannot be
influenced by the agent. The order lead time, for example,
contains the process, waiting and transport time, whereas the
process time is given and cannot be changed by the dispatching
decision.

Methodical key steps:
 Is there a single optimal state that is targeted or does the

optimization focus on a continuous control operation?
 How do the KPI relate to the level of reward (increasing

gradients are preferable)?
 Are there any dependencies between multiple KPI?
 Does a positive reward avoid terminal states and a negative

reward lead to a terminal state?
 Is the maximal reward in line with the target state?
 Is just the RL-agent affecting the KPI by its actions?

RL-Algorithm hyperparameter

Purpose: Depending on the RL-algorithm, there are usually
multiple hyperparameters that have to be modeled.

Main considerations: Most RL-algorithms are based on a
learning rate 𝛼𝛼, discount factor 𝛾𝛾, exploration rate 𝜖𝜖, batching
capacity and the ANN configuration [14]. The learning rate 𝛼𝛼
determines the step size of the ANN-weight update. The
discount factor 𝛾𝛾 determines the degree of farsightedness of the
agent, i.e. to how many time steps is the reward assigned to.
The exploration rate 𝜖𝜖 determines how the agent behaves
regarding exploring new actions versus following (exploiting)
the so far best-known action. The batching capacity is a
parameter that affects the speed and stability of the learning
process. For more detailed information we refer to [14].

Defining these parameters often appears to be similar for
different applications and in the end also “trial and error” when
fine-tuning the performance. Universal guidelines on the
influence of all mentioned hyperparameters are not available.
Generally speaking, the convergence during the learning phase
only occurs for sufficiently low learning rate values.
Considering the ANN configuration, a small network often
results in loosing information and therefore non-convergence
and a large one increases the computation effort and the chance
of overfitting.

Methodical key steps:
 Which hyperparameters are relevant for the RL-algorithm?
 Are default values for any hyperparameters available?
 How many input and output neurons are given, which can

be considered for the hidden layer design?

3.2. Implementation

Purpose: After designing the RL-algorithm the
implementation phase focuses on the realization as an
operational system.

Main considerations: The application and evaluation of new

238 Andreas Kuhnle et al. / Procedia CIRP 81 (2019) 234–239
 A. Kuhnle et al. / Procedia CIRP 00 (2019) 000–000 5

control methods in real-world systems is very time- and cost-
intensive. Just as the broad range of Atari games [11] the
implementation of RL-algorithms is therefore recommended in
a simulation environment. For CPS the “digital twin” can be
used as a perfect training environment. When the agent’s
performance is good enough, it can be applied to the real-world.

Simulation can be either event- or time-discrete [19]. With
regard to the use case of production control we suggest an
event-discrete model with discrete decision points. For the
simulation one first has to ensure that the simulation is valid
and verified [19]. The simulated environment must also only
contain information that is also available and accessible in the
real-world. Otherwise the transfer is not possible.

Finally, for the implementation of the agent-environment
interaction, two alternatives prevail: First, the (simulation)
environment is leading and the agent is asked whenever an
action is requested. Second, the agent is in control and “plays”
with the environment. We propose the first alternative as it is
more suitable for the most applications in production control.

Methodical key steps:
 Can the environment be adequately simulated in order to

facilitate the training and testing?
 Which software tools provide a computational efficient

implementation for the data-intensive computations?

3.3. Evaluation

Purpose: One important step before applying a RL model to
a real-world problem is the evaluation of the agent system. This
section describes a procedure of how to analyze and test the
adaptive control system before finally transferring it to the real-
world. Multiple experiments and sensitivity analysis can be
easily performed within the “digital twin” simulation model.

Main considerations: First, one has to look at the realized
reward during the learning phase. This gives information on
the general learning ability of the RL-agent, i.e. whether the
agent is able to improve its strategy during the learning phase.
It is important to observe whether the reward increases and
convergences. Moreover, the time / number of learning
iterations it takes until a high reward level is reached is also
noteworthy. The maximum reward level usually is an arbitrary
number that does not directly translate into meaningful real-
world number. Lastly, next to a high reward a stable reward
signal is desirable. In some applications the reward signal
collapses after a high level has been reached before. This is due
to the dynamic nature of the RL-algorithm and thus needs to be
evaluated with respect to the application.

Although a high and converging reward is essential, it does
not necessarily guarantee a “good” control strategy in the first
place. This is mostly caused by a wrongly modeled reward
function that does not match the overall objectives (KPI) that
are relevant to the control task. Another reason could be
external disturbances, e.g. breakdown of machines that hinder
the agent to perform any better than that. Therefore, it is crucial
to review the agent’s actual behavior. For example, if it is
possible to select an action which is not executable in some
environment states it can be revealing to look at the
development of the number of infeasible actions the agent
chooses. Moreover, analyzing the overall KPI, e.g. utilization

or lead time, is crucial and gives a more accurate view on the
quality of the agent’s strategy. The KPI also offer a good
possibility to benchmark the adaptive RL-algorithm with
alternative solution approaches such as heuristics. Moreover,
existing, historic KPI can be applied as benchmark, too.

In addition to that, it is advisable to validate the agent’s
strategy applicability within a slightly modified problem.

Methodical key steps:
 Does the reward increase and converge on a high level?
 Do the KPI show the same performance?
 Is the agent behavior valid – maybe consider a simplified,

trivial problem for validation first?
 How does the RL-algorithm perform comparing to a

benchmark solution approach?

4. Application and experiments

After proposing the methodical approach this section
exemplarily applies it to an adaptive order dispatching, which
advances the work of Stricker et al. [5].

Design: Action space representation

The action space follows the order-oriented dispatching
problem. All orders need to be dispatched to a machine or to a
buffer. So, all machines and buffers are possible discrete
actions. Additionally, an idle action is added. Hence, there is
always at least one action that is better than any other.

Design: State representation

The environment state offers more alternative design
approaches because there are, for example, always infeasible
actions that depending on the current state cannot be executed,
e.g. transporting order from A to B when there is no order at A.
So, it is reasonable to include the binary information. This data
is encoded as one-hot vector. Additionally, the information
about the buffer level in front of a machine is represented by
the sum of the processing time of all waiting orders as well as
the current maximum waiting time of an order at every machine
in order to emphasize it. Evaluation reveals better results for
this representation in contrast to e.g. adding the current buffer
level into the state representation. Finally, the location of the
dispatching unit is included.

Design: Reward function

A reward function r based on the KPI utilization 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and
lead time 𝐿𝐿𝐿𝐿𝑖𝑖 is developed and defined as follows:

The reward is given in order to reach a continuous high
performance level, without just one single optimal state. Note
that for the lead time just the waiting time is considered, and
the utilization leaves out disturbances. So, just what the agent
affects defines the learning feedback.

(1)

(2)

 (3)

 Andreas Kuhnle et al. / Procedia CIRP 81 (2019) 234–239 239
6 A. Kuhnle et al. / Procedia CIRP 00 (2019) 000–000

Design: RL-Algorithm hyperparameter

The herein presented results are based on the following
hyperparameter set: TRPO policy-based RL-algorithm, adam
stochastic gradient optimizer, 𝛾𝛾=0.2, 𝛼𝛼=0.001, a dense two
layered net with 64 neurons each and tanh activation function.

Implementation

The simulation-based adaptive production control and the
RL-algorithm are implemented using the Python libraries
SimPy (simulation) and TensorForce (RL). Both together
ensure an integrated and computational efficient runtime
environment. The validation is based on a detailed evaluation
of the simulation events as well as tests for extreme values.

Evaluation

Fig. 3. Computational results.

Fig. 3 illustrates the computational results. Firstly, the
reward (averaged values over 103 finished orders) shows, that
the RL-algorithm achieves a good learning performance.
Secondly, the KPI machine utilization and lead time validate
and confirm the optimized performance not just with respect to
the agent’s reward. Moreover, the adaptive RL-algorithm is
able to optimize both KPI, which are at least partially
contradicting objectives, as the utilization is focusing on
resources and the lead time on orders. Thirdly, for the ratio of
infeasible to feasible actions we observe a score representing
the number of different actions the agent proposes when asked
multiple times per interaction, i.e. an indicator for the action
selection uniformity. Comparing this to the reward also reveals
that both improvements happen in parallel. Lastly, the
comparison to a heuristic dispatching rule demonstrates the
overall quality of the adaptive control. So, the computational
results show that following the method described in Section 3
can successfully applied to the order dispatching.

5. Summary

This research focuses on learning algorithms for adaptive
control systems that are applied to complex manufacturing
systems in order to increase the operational efficiency. Herein,
a method is presented that addresses production engineers not
familiar with RL and focusses on the design, implementation

and evaluation of RL-algorithms in the domain of order
dispatching. The promising results motivate this field of
research also in future. Especially, data-intensive CPS and
digital twins are prone for future research in PPC. This work
facilitates the application of RL to any production control case.

Acknowledgements

We extend our sincere thanks to the German Federal
Ministry of Education and Research (BMBF) for supporting
this research project 02P14B161 “Intro4.0”.

References

[1] Bauernhansl T, ten Hompel M, Vogel-Heuser B. Industrie 4.0 in
Produktion, Automatisierung und Logistik. Wiesbaden: Springer; 2014.

[2] Schaeffer E. Industry X.0. Digitale Chancen in der Industrie nutzen.
München: Redline Verlag; 2017.

[3] Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A,
Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L,
van den Driessche G, Graepel T, Hassabis D. Mastering the game of Go
without human knowledge. Nature 2017;550(7676):354-359.

[4] Waschneck B, Altenmüller T, Bauernhansl T, Kyek A. Production
Scheduling in Complex Job Shops from an Industry 4.0 Perspective.
CEUR Workshop Proceedings 2016;1793:12-24.

[5] Stricker N, Kuhnle A, Sturm R, Friess S. Reinforcement learning for
adaptive order dispatching in the semiconductor industry. CIRP Annals
2018;67:511-514.

[6] Waschneck B, Reichstaller A, Belzner L, Altenmüller T, Bauernhansl T,
Knapp A, Kyek A. Optimization of global production scheduling with
deep reinforcement learning. Procedia CIRP 2018;72:1264-1269.

[7] Heess N, TB D, Sriram S, Lemmon J, Merel J, Wayne G, Tassa Y, Erez T,
Wang Z, Eslami SMA, Riedmiller M, Silver D. Emergence of Locomotion
Behaviours in Rich Environments. arXiv 2017:1707.02286.

[8] Asada M, Noda S, Tawaratsumida S, Hosoda K. Purposive Behavior
Acquisition for a Real Robot by Vision-Based Reinforcement Learning.
Machine Learning 1996;23:279–303.

[9] Tedrake R, Zhang TW, Seung HS. Stochastic policy gradient
reinforcement learning on a simple 3D biped. IEEE/RSJ International
Conference on Intelligent Robots and Systems 2004;3:2849–2854.

[10] Crites RH, Barto AG. Improving elevator performance using
reinforcement learning. Advances in neural information processing
systems 1996:1017–1023.

[11] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D,
Riedmiller M. Playing Atari with Deep Reinforcement Learning. arXiv
2013:1312.5602.

[12] Stegherr F. Reinforcement-Learning zur dispositiven Auftragssteuerung in
der Variantenreihenproduktion. München: Utz Wiss; 2000.

[13] Russell SJ, Norvig P. Artificial Intelligence. A modern approach. Boston:
Pearson; 2016.

[14] Sutton RS, Barto AG. Reinforcement Learning. An introduction.
Cambridge, Mass: MIT Press; 2010.

[15] Zhang W, Diettrich TG. High-performance job-shop scheduling with time-
delay td() network. Advances in neural information processing systems
1996:1024-1030.

[16] Scholz-Reiter B, Hamann T. The behaviour of learning production control.
CIRP Annals 2008;57:459-462.

[17] Gabel T, Riedmiller M. Distributed policy search reinforcement learning
for job-shop scheduling tasks. International Journal of production research
2012;50(1):41-61.

[18] Shiue, YR, Lee KC, Su CT. Real-time scheduling for a smart factory using
a reinforcement learning approach. Computers & Industrial Engineering
2018;125:604-614.

[19] Law AM, Kelton WD. Simulation modeling and analysis. New York:
McGraw-Hill; 1991.

0

20

40

60

80

100

120

140

160

0,0

0,2

0,4

0,6

0,8

1,0

0 50 100 150 200 250 300 350 400 450

Le
ad

 ti
m

e
[m

in
]

Finished orders [103]

Total reward for 103

Score

RL-agent Ø machine util.Heuristic Ø machine util.

RL-agent lead time
Heuristic lead time

