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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Modern production systems tend to have smaller batch sizes, a larger product variety and more complex material flow systems. Since a human 
oftentimes can no longer act in a sufficient manner as a decision maker under these circumstances, the demand for efficient and adaptive control 
systems is rising. This paper introduces a methodical approach as well as guideline for the design, implementation and evaluation of 
Reinforcement Learning (RL) algorithms for an adaptive order dispatching. Thereby, it addresses production engineers willing to apply RL. 
Moreover, a real-world use case shows the successful application of the method and remarkable results supporting real-time decision-making. 
These findings comprehensively illustrate and extend the knowledge on RL. 
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1. Introduction 

Manufacturing companies are nowadays, in the age of 
connected Cyber-Physical Systems (CPS), more than ever 
confronted with new challenges but also opportunities leading 
to the fourth industrial revolution [1]. The digitization already 
covers companies that generate two-thirds of the world’s total 
gross domestic product [2]. These companies focus on the 
integration of technological innovations in their role as solution 
providers to their customers. At the same time, they concentrate 
on innovations to maintain their operational competitiveness.  

Especially in the domain of Artificial Intelligence (AI) and 
Machine Learning (ML) promising progress has been made in 
the last years. Firstly, the available hardware, e.g. graphics 
processing units, leads to acceptable computation time for data-
intensive calculations. Secondly, advanced algorithm libraries 
are publicly accessible and open source, e.g. tensorflow, keras-
rl and tensorforce. Lastly, successful applications, in particular 
in the area of Reinforcement Learning (RL), such as AlphaGo 
have attracted a large public audience [3].  

However, considering the manufacturing industry there is an 
almost negligible number of attempts applying state of the art 
ML algorithms. A literature review in the subsequent section 
reveals just a few applications to common production planning 
and control (PPC) problems, e.g. scheduling. Additionally, a 
methodical approach for the usage of state-of-the-art RL-
algorithms such as TRPO, PPO or Deep Q-Learning is missing.  

Furthermore, traditional solution approaches such as 
mathematical optimization and heuristics fail to meet the 
demand for adaptability in the presence of uncertainties, 
smaller batch sizes, higher product diversity and at the same 
time the call for maximum productivity and efficiency [4]. 
Hence, new control mechanisms matter. Decentral and data-
driven approaches such as RL are promising approaches, as 
they show a good performance for dynamic applications [5,6]. 

In this paper we introduce a methodical approach for the 
design, implementation and evaluation of RL applications. 
Section 2 describes the fundamentals and literature review of 
ML in production control, in general. Section 3 forms the main 
part of this paper wherein the methodical approach is outlined. 
The findings are summarized in Section 4 and 5.  
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The developed method is exemplarily applied to a complex 
job shop manufacturing system taken from a semiconductor 
fabrication company. We closely build this work on the 
previous research of Stricker et al. [5]. The semiconductor 
industry appears as perfect example because the external 
market demand is highly uncertain and internal processes, e.g. 
the material flow in the job shop manufacturing system are 
complex systems [4]. In addition, the industry acts since many 
years as a pioneer in the field of digitized and connected 
production systems, e.g. the throughout implementation of 
RFID and indoor tracking systems [4]. 

2. ML applications in production control 

2.1. Problem description and requirements 

In the manufacturing industry, production control is the 
central element that allows a stable and cost-efficient 
production process, i.e. leading to a high operational efficiency 
[4]. Considering a complex job shop environment, the 
underlying main concern can be described as a resource 
allocation problem where the crucial aim is to optimize the 
usage of production resources with respect to previously 
defined Key Performance Indicators (KPI) such as the 
utilization of the resources or the lead time of the production 
orders. Thus, the task of production control can be described as 
a decision-making problem optimized with respect to the KPI. 

The continuous adjustment, i.e. adaptability, according to 
dynamics of turbulent markets, the increasing customer 
requirements and unstable production processes are inevitable 
for any production control system. It is ever more important to 
quickly adapt production control decisions to changing 
environmental conditions [1]. For instance, the semiconductor 
industry is in a phase in which economic success is to a large 
extend determined by the operational excellence [4].  

To overcome these obstacles, manufacturers consider 
decentralized, autonomous decision-making units to achieve a 
high flexibility and adaptability [5,6]. Mathematical 
optimization and heuristics cause a high manual adjustment 
effort in case of system changes due to their static nature and 
model-based implementation. Herein, RL-algorithms can, 
firstly, realize a real-time-capable and, secondly, adaptive 
production control system. RL-algorithms are not hardcoded, 
meaning in most cases model-free, and continuously adjust 
their procedure according to the data input [13].  

2.2. Control applications of machine learning 

A comprehensive overview of ML algorithm applications 
reveals that control application is one kind of recurring pattern. 
Independent of the system under control the algorithms that are 
applied are in the class of RL. Table 1 shows an extract of the 
review. It does not only reveal the suitability of RL for dynamic 
and complex production systems but also the transferability 
motivated in this paper. Due to its approach presented in the 
next section, RL perfectly integrates into the domain of 
adaptive production control. 

 
 

Table 1. Overview and classification of ML applications. 

Application Context Author ML algorithm 
category 

AlphaGo Zero Go-Engine [3] RL 

Locomotion 
Behaviors 

Humanoid limbs [7] RL 

Soccer Robot Robotics [8] RL 

3D Walking Biped Robotics [9] RL 

Improving Elevator 
Performance 

Elevator control [10] RL 

Playing Atari Joystick [11] RL 

Dispositive Order 
Control 

Production control [12] RL 

Complex Job Shop 
Scheduling 

Production control [6] RL 

 

2.3. Reinforcement learning 

RL is one of the three categories of ML algorithms [13]. For 
a detailed definition and differentiation of RL from Supervised 
Learning and Unsupervised Learning we refer to [13]. RL 
follows the nature of learning just like animals or humans do 
through a continuous interaction of the decision maker (agent) 
with its environment. Fig. 1 illustrates on a high level, using the 
terminology of control theory, the application of RL as a 
controller unit for the system “production”. 
 

  
Fig. 1. RL for an adaptive production control. 

The agent chooses an action 𝑎𝑎𝑡𝑡 ∈ 𝐴𝐴  that influences its 
environment state 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆 and is rewarded by a reward signal 
𝑟𝑟(𝑆𝑆, 𝐴𝐴) ∈ ℝ . It learns via the direct interaction with the 
environment, meaning from the context of its previous actions 
and the associated reward. The relationship, i.e. state-action-
pairs, learned over time is called strategy 𝜋𝜋: 𝑆𝑆 → 𝐴𝐴. It is the 
agent's overall goal to maximize the long-term, cumulative 
reward by optimizing its strategy. The value function 𝑉𝑉𝜋𝜋(𝑠𝑠𝑡𝑡) is 
used as an estimator of how good it is for the agent to be in a 
particular state 𝑠𝑠𝑡𝑡 of the environment and Q𝜋𝜋(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) to choose 
a corresponding action 𝑎𝑎𝑡𝑡 in a given state 𝑠𝑠𝑡𝑡. [14] 

When modelling a RL-agent, the design of the action space, 
state representation and reward function as well as further 
RL-algorithm specific hyperparameters have to be 
considered in detail for a successful RL-implementation. 

2.4. Related work 

There are some successful RL-applications (see Table 1) 
such as AlphaGo Zero [3], the outperforming achievements of 
RL playing Atari games [11] as well as early ones like the 
optimization of elevator performance in 1995 [10].  

The application areas of RL are potentially diverse but there 

Controller
RL-Algorithm

System
Production

Control actions

Disturbances 
(e.g. machine breakdown)

Desired state / 
reference System output

Sensor
Reward function State, action, KPIReward
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are very few serious applications in the manufacturing context. 
Most well-known use cases concentrate on an illustrative 
demonstration of RL using simplified problems with for 
example just a small action-space. Early applications of RL in 
production control date back to 1996 when Zhang and Diettrich 
used a neural network trained with RL to schedule a static job 
shop [15]. Scholz-Reiter et al. [16] apply RL for the inventory 
control in production systems. Recent research by Waschneck 
et al. [6] addresses the optimization of a global production 
scheduling with Deep-Q-Learning, Gabel et al. [17] focus on a 
multi-agent approach for the distributed job shop scheduling 
and Shiue et al. [18] concerning the optimal scheduling rule 
selection based on Q-Learning.  

Although RL has been applied successfully, it often lacks 
sufficient information regarding the modeling of the solution 
algorithm. Therefore, this paper is split up into the three phases 
of design, implementation and evaluation of RL and 
exemplarily illustrates the application by the example of 
adaptive order dispatching. 

3. Methodical approach for RL application 

This section presents the methodical approach for the 
design, implementation and evaluation of RL-algorithms for an 
adaptive order control. Generally, one has to note the iterative 
nature of the phases, meaning it is for instance mostly 
necessary to come back to the design phase when looking at the 
evaluation results. The method addresses production engineers 
not familiar with RL and compromises key questions that need 
to be answered by practitioners when applying it. 

3.1. Design 

The design phase aims to translate the real-world problem 
into a RL problem formulation. Not all types of optimization 
tasks are suitable for RL. Dynamic optimization problems in 
the domain of production control with the goal to achieve on 
average a high performance are in line with RL. However, 
optimization problems that are, for instance, looking for the 
(static) best weekly production schedule or a strategic planning 
decision miss the interactive nature of RL. 

Furthermore, a common design characteristic of RL is to 
approximate the optimal strategy by the application of an 
Artificial Neural Network (ANN). Alternatively, one could use 
a lookup table. However, this is not computationally efficient 
in case of a large number of and / or continuous variables. 

Fig. 2 shows an ANN. It summarizes the key elements of 
RL, their connection to elements of ANNs as well as their 
relationship and interplay within the learning procedure. The 
following subsections elaborate on the design of these four key 
elements. 

Action space representation 

Purpose: The action selection in RL is determined by the 
strategy which is technically based on probabilities, i.e. weights 
in the ANN. So, it is representing a classification problem (see 
Fig. 2). Moreover, the reward is always related to an action. 
 

  
Fig. 2. ANN application, RL set-up, key elements and learning procedure. 

Main considerations: Designing the agent’s action space is 
rather straightforward, because it directly emerges from the 
problem description. The decision agent has to fulfill a specific 
task, e.g. order dispatching, and hence, a fixed set of actions is 
required that influences the environment resulting in the 
dispatching of orders. To give another example, just two 
actions “move right” and “move left” are required for most 
simple Atari Games [11]. However, in most real-world 
problems the action space is larger. For large action spaces one 
has to consider, that the actions are biunique and not 
conditional to each other [14]. Moreover, the action space has 
to be designed in such a way that in any environment state there 
is always at least one action that yields a higher reward than 
any other. Otherwise the agent is not able to learn the relation 
between a given state and the “optimal” action. 

Methodical key steps: 
 Is the agent able to change the environment (state)? 
 Is the number of actions as high as necessary and as small 

as possible, i.e. no conditional actions? 
 Are the actions modeled in a way that the agent can always 

choose an action that is better than any other? 
 Are there any infeasible actions that are not executable in a 

specific environment states and therefore have to be taken 
into account when designing the reward function? 

State representation 

Purpose: The agent’s state representation builds the central 
basis for the action selection and represents the agent’s 
observation of the environment state (see Fig. 2). The state 
design has a big influence on the achievable learning 
performance [14]. Therefore, it is crucial to understand the way 
the agent observes the environment. Whereas, games such as 
Atari are easy to model with all pixels on the screen [11], most 
real-world control problems are not so easy to comprehend and 
multiple dimensions and perspectives such as machine state, 
inventory level, order due dates and resource utilization are 
relevant. 

Main considerations: The state representation is used in the 
RL implementation as input vector for the ANN and it is just 
allowed to contain numerical values. This might necessitate 
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data preprocessing, such as transformation, normalization or 
feature extraction, which is well-known for data mining and 
supervised learning applications. One possibility to 
numerically encode categorical data is a (binary) one-hot 
vector, where the input simply either contains a one or a zero 
for the specific category [6]. Moreover, it is in some cases 
beneficial to code state information gradually, meaning 
multiple binary inputs. In comparison to the action space it is 
not that relevant to keep the state representation rather small. 
Advanced RL-algorithms are able to handle large input vectors 
such as demonstrated by Silver et al. [3]. They even propose a 
duplication of important state information in order to increase 
the “attention” and relevance for the RL-algorithm [3].  

Additionally, the state vector has to display the optimal 
target state, if such state exists. For example, in chess the 
victory at the end of a game can be considered as optimal 
(terminal) state and rewarded as such. However, production 
control applications focus on maintaining a state of high 
performance, representing a kind of endless game. This issue is 
discussed later.  

Finally, the state representation needs to make the change 
resulting from the action execution “sufficiently” transparent. 
This means that for instance the machine utilization 
representation via absolute percentage value is less sensible to 
changes than a representation by the relative increase or 
decrease. Furthermore, the latter representation is centered on 
zero and independent of the application. 

Methodical key steps: 
 Is the environment numerically encodeable? 
 Does the consideration of one-hot vectors for categorical or 

gradual data applies? 
 Which important input might be duplicated to point it out? 
 Does an optimal terminal state exist and is it representable 

with the state representation? 
 Does the state representation make changes in the 

environment due to the action execution transparent? 

Reward function  

Purpose: The reward function brings both, the action space 
and the state representation, together and directs the strategy 
optimization. 

Main considerations: The reward function can be modeled 
linearly, exponentially or by another mathematical function. In 
most applications a piece-wise defined function is given. If 
there are multiple KPI, it is very important to consider the 
dependencies. Multiple objectives are usually integrated by a 
linear combination.  

Additionally, the reward function should consider an 
increasing gradient towards the target state. This is beneficial 
for most gradient-based RL optimization algorithms. So, 
exponential functions are preferable to linear functions or step 
functions that just reward the target state.  

In case there is no natural terminal state, e.g. the end of a 
game, terminal states can be simulated e.g. with a fixed time 
limit. Another modelling guideline is that positive reward is 
accumulated and tries to avoid terminal states and a negative 
reward is followed or close to a terminal state. 

Furthermore, it is not always advisable to reward interim 
target states because the agent might develop a strategy that 

follows these interim states by maximizing the reward and 
hence ignoring the actual target state [14]. Therefore, it is 
crucial when designing the reward function that it achieves the 
overall goal, e.g. minimal lead times as a result of the 
maximization of the cumulative reward. This is also 
recommended if multiple target states exist. It might also 
require splitting KPI up into its components, because an 
aggregated figure contains components that cannot be 
influenced by the agent. The order lead time, for example, 
contains the process, waiting and transport time, whereas the 
process time is given and cannot be changed by the dispatching 
decision.  

Methodical key steps:  
 Is there a single optimal state that is targeted or does the 

optimization focus on a continuous control operation? 
 How do the KPI relate to the level of reward (increasing 

gradients are preferable)? 
 Are there any dependencies between multiple KPI? 
 Does a positive reward avoid terminal states and a negative 

reward lead to a terminal state? 
 Is the maximal reward in line with the target state? 
 Is just the RL-agent affecting the KPI by its actions? 

RL-Algorithm hyperparameter 

Purpose: Depending on the RL-algorithm, there are usually 
multiple hyperparameters that have to be modeled.  

Main considerations: Most RL-algorithms are based on a 
learning rate 𝛼𝛼, discount factor 𝛾𝛾, exploration rate 𝜖𝜖, batching 
capacity and the ANN configuration [14]. The learning rate 𝛼𝛼 
determines the step size of the ANN-weight update. The 
discount factor 𝛾𝛾 determines the degree of farsightedness of the 
agent, i.e. to how many time steps is the reward assigned to. 
The exploration rate 𝜖𝜖  determines how the agent behaves 
regarding exploring new actions versus following (exploiting) 
the so far best-known action. The batching capacity is a 
parameter that affects the speed and stability of the learning 
process. For more detailed information we refer to [14]. 

Defining these parameters often appears to be similar for 
different applications and in the end also “trial and error” when 
fine-tuning the performance. Universal guidelines on the 
influence of all mentioned hyperparameters are not available. 
Generally speaking, the convergence during the learning phase 
only occurs for sufficiently low learning rate values. 
Considering the ANN configuration, a small network often 
results in loosing information and therefore non-convergence 
and a large one increases the computation effort and the chance 
of overfitting. 

Methodical key steps: 
 Which hyperparameters are relevant for the RL-algorithm? 
 Are default values for any hyperparameters available? 
 How many input and output neurons are given, which can 

be considered for the hidden layer design? 

3.2. Implementation 

Purpose: After designing the RL-algorithm the 
implementation phase focuses on the realization as an 
operational system.  

Main considerations: The application and evaluation of new 



238 Andreas Kuhnle  et al. / Procedia CIRP 81 (2019) 234–239
 A. Kuhnle et al. / Procedia CIRP 00 (2019) 000–000  5 

control methods in real-world systems is very time- and cost-
intensive. Just as the broad range of Atari games [11] the 
implementation of RL-algorithms is therefore recommended in 
a simulation environment. For CPS the “digital twin” can be 
used as a perfect training environment. When the agent’s 
performance is good enough, it can be applied to the real-world.  

Simulation can be either event- or time-discrete [19]. With 
regard to the use case of production control we suggest an 
event-discrete model with discrete decision points. For the 
simulation one first has to ensure that the simulation is valid 
and verified [19]. The simulated environment must also only 
contain information that is also available and accessible in the 
real-world. Otherwise the transfer is not possible.  

Finally, for the implementation of the agent-environment 
interaction, two alternatives prevail: First, the (simulation) 
environment is leading and the agent is asked whenever an 
action is requested. Second, the agent is in control and “plays” 
with the environment. We propose the first alternative as it is 
more suitable for the most applications in production control.  

Methodical key steps: 
 Can the environment be adequately simulated in order to 

facilitate the training and testing? 
 Which software tools provide a computational efficient 

implementation for the data-intensive computations? 

3.3. Evaluation 

Purpose: One important step before applying a RL model to 
a real-world problem is the evaluation of the agent system. This 
section describes a procedure of how to analyze and test the 
adaptive control system before finally transferring it to the real-
world. Multiple experiments and sensitivity analysis can be 
easily performed within the “digital twin” simulation model.  

Main considerations: First, one has to look at the realized 
reward during the learning phase. This gives information on 
the general learning ability of the RL-agent, i.e. whether the 
agent is able to improve its strategy during the learning phase. 
It is important to observe whether the reward increases and 
convergences. Moreover, the time / number of learning 
iterations it takes until a high reward level is reached is also 
noteworthy. The maximum reward level usually is an arbitrary 
number that does not directly translate into meaningful real-
world number. Lastly, next to a high reward a stable reward 
signal is desirable. In some applications the reward signal 
collapses after a high level has been reached before. This is due 
to the dynamic nature of the RL-algorithm and thus needs to be 
evaluated with respect to the application.  

Although a high and converging reward is essential, it does 
not necessarily guarantee a “good” control strategy in the first 
place. This is mostly caused by a wrongly modeled reward 
function that does not match the overall objectives (KPI) that 
are relevant to the control task. Another reason could be 
external disturbances, e.g. breakdown of machines that hinder 
the agent to perform any better than that. Therefore, it is crucial 
to review the agent’s actual behavior. For example, if it is 
possible to select an action which is not executable in some 
environment states it can be revealing to look at the 
development of the number of infeasible actions the agent 
chooses. Moreover, analyzing the overall KPI, e.g. utilization 

or lead time, is crucial and gives a more accurate view on the 
quality of the agent’s strategy. The KPI also offer a good 
possibility to benchmark the adaptive RL-algorithm with 
alternative solution approaches such as heuristics. Moreover, 
existing, historic KPI can be applied as benchmark, too.  

In addition to that, it is advisable to validate the agent’s 
strategy applicability within a slightly modified problem. 

Methodical key steps: 
 Does the reward increase and converge on a high level? 
 Do the KPI show the same performance? 
 Is the agent behavior valid – maybe consider a simplified, 

trivial problem for validation first? 
 How does the RL-algorithm perform comparing to a 

benchmark solution approach? 

4. Application and experiments 

After proposing the methodical approach this section 
exemplarily applies it to an adaptive order dispatching, which 
advances the work of Stricker et al. [5].  

Design: Action space representation 

The action space follows the order-oriented dispatching 
problem. All orders need to be dispatched to a machine or to a 
buffer. So, all machines and buffers are possible discrete 
actions. Additionally, an idle action is added. Hence, there is 
always at least one action that is better than any other.  

Design: State representation 

The environment state offers more alternative design 
approaches because there are, for example, always infeasible 
actions that depending on the current state cannot be executed, 
e.g. transporting order from A to B when there is no order at A. 
So, it is reasonable to include the binary information. This data 
is encoded as one-hot vector. Additionally, the information 
about the buffer level in front of a machine is represented by 
the sum of the processing time of all waiting orders as well as 
the current maximum waiting time of an order at every machine 
in order to emphasize it. Evaluation reveals better results for 
this representation in contrast to e.g. adding the current buffer 
level into the state representation. Finally, the location of the 
dispatching unit is included.  

Design: Reward function 

A reward function r based on the KPI utilization 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and 
lead time 𝐿𝐿𝐿𝐿𝑖𝑖  is developed and defined as follows: 

The reward is given in order to reach a continuous high 
performance level, without just one single optimal state. Note 
that for the lead time just the waiting time is considered, and 
the utilization leaves out disturbances. So, just what the agent 
affects defines the learning feedback. 
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Design: RL-Algorithm hyperparameter 

The herein presented results are based on the following 
hyperparameter set: TRPO policy-based RL-algorithm, adam 
stochastic gradient optimizer, 𝛾𝛾=0.2, 𝛼𝛼=0.001, a dense two 
layered net with 64 neurons each and tanh activation function. 

Implementation 

The simulation-based adaptive production control and the 
RL-algorithm are implemented using the Python libraries 
SimPy (simulation) and TensorForce (RL). Both together 
ensure an integrated and computational efficient runtime 
environment. The validation is based on a detailed evaluation 
of the simulation events as well as tests for extreme values. 

Evaluation 

  
Fig. 3. Computational results. 

Fig. 3 illustrates the computational results. Firstly, the 
reward (averaged values over 103 finished orders) shows, that 
the RL-algorithm achieves a good learning performance. 
Secondly, the KPI machine utilization and lead time validate 
and confirm the optimized performance not just with respect to 
the agent’s reward. Moreover, the adaptive RL-algorithm is 
able to optimize both KPI, which are at least partially 
contradicting objectives, as the utilization is focusing on 
resources and the lead time on orders. Thirdly, for the ratio of 
infeasible to feasible actions we observe a score representing 
the number of different actions the agent proposes when asked 
multiple times per interaction, i.e. an indicator for the action 
selection uniformity. Comparing this to the reward also reveals 
that both improvements happen in parallel. Lastly, the 
comparison to a heuristic dispatching rule demonstrates the 
overall quality of the adaptive control. So, the computational 
results show that following the method described in Section 3 
can successfully applied to the order dispatching. 

5. Summary 

This research focuses on learning algorithms for adaptive 
control systems that are applied to complex manufacturing 
systems in order to increase the operational efficiency. Herein, 
a method is presented that addresses production engineers not 
familiar with RL and focusses on the design, implementation 

and evaluation of RL-algorithms in the domain of order 
dispatching. The promising results motivate this field of 
research also in future. Especially, data-intensive CPS and 
digital twins are prone for future research in PPC. This work 
facilitates the application of RL to any production control case. 
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