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ABSTRACT
Today’s HPC systems experience steadily increasing problems with
the storage I/O bottleneck. At the same time, new storage technolo-
gies are emerging in the compute nodes of HPC systems. There are
many ideas and approaches how compute-node local storage can be
made usable for HPC systems. One consideration is to copy job data
to the compute-node local disks in advance. To accomplish this, the
allocated nodes must be known in advance. In this paper, we look at
the node allocation behavior of a HPC batch scheduling system. Our
goal is to determine whether it is possible to stage data in advance,
based on scheduler predictions. We show that wall time estimates
must be excellent to reliably predict node allocations. In reality, the
required accuracy enabling advance data staging is hard to achieve.
Therefore, the behavior of (standard) batch scheduler have to be
modified in order to enable efficient advance data staging.
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1 INTRODUCTION AND BACKGROUND
High-performance computing (HPC) systems show an increasing
gap between computing power and the performance of storage
systems. While the computing power has increased tremendously
during the last years the performance of storage systems did not
keep pace. For example, from Sequoia (Top 1 HPC System in 2012)
to Summit (Top 1 - 2018) the computing power increased by a factor
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of ten, from ∼20 to ∼200 PFLOPS, whereas the storage throughput
increased only by a factor of 2.5 from 1 to 2.5 TB/s.

Recently, many developments and innovations have improved
the I/O throughput and metadata performance for global parallel
file systems (FS). Hardware based innovation like NAND-based
disks, e.g., SSDs [1], are replacing spinning disks on global parallel
FS. Other approaches are using compute-node local storage as burst
buffers [2] or as hardware write accelerator caches within IBM’s
Spectrum Scale [3]. These approaches try to transparently forward
the non-contiguous and random I/O of the application as sequential
I/O to the parallel FS. Other hardware-based approaches such as
DDN’s Infinite Memory Engine [4, 5] act as a transparent in-bound
cache.

New storage technologies such as NVRAM [6] and NVMe [7]
have emerged onto the market and are more frequently used in
compute nodes of large HPC systems. Using these technologies
as fast local storage in each node is an option, but it would be
beneficial to use them for compute jobs by coupling their capacity
and performance. The ADA-FS [8] project follows this approach:
making compute-node local storages available to the users’ node-
parallel applications. The idea is to create a cross-node, ad-hoc
and independent parallel file system (FS) using the node-local stor-
ages. After creating a temporary FS with the node-local storage,
the required data for a job is staged to this temporary FS. This
data staging is either done with in-bound methods such as Moab’s
staging method [9] or by reserving the allocated nodes for data
staging.

Both methods cause inefficient utilization of nodes: the nodes
either idle for a while or are only used to stage-in data. One way to
reduce these wasted CPU cycles is to stage-in the data on the nodes
in advance before the nodes are freed up (cmp. Fig. 1). To make
this possible, the predicted job allocations of the scheduler must
be reliable. Operational experience from various HPC sites proves
that these job allocations are very inaccurate on real machines [10].
In this paper, we evaluate how good job wall time estimates have
to be to allow the scheduler to make reliable node predictions.

The remainder of this paper is structured as follows: In Chap-
ter 2, we give a brief overview of the related work. Our simulation
methodology that is used to evaluate the efficiency of node allo-
cation predictions is described in Chapter 3. Chapter 4 shows the
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Figure 1: Normal Scenario for data staging is wasting CPU
cycles during data staging (top). Proposed solution does ad-
vance data staging onto compute node(s) before job start, re-
ducing idle CPU time to minimal (bottom).

results of our experimental evaluation and discusses the observed
outcomes. Finally, we conclude our work in Chapter 5 and give an
outlook to future work.

2 RELATEDWORK
Batch system schedulers are responsible for resource planning and
allocating the node(s) for a job [11]. Typically, resource utilization
is improved by filling existing gaps in job schedule with sufficiently
small jobs (so called back-filling) [12]. Similarly, job schedules can
be used to either predict the start time or the node(s) for a given
job. In both cases, the scheduler uses wall time estimates given by
users to calculate job schedules. It is a well known problem that
the user-provided estimates are far from being accurate [13–15].

There are several approaches to improve wall time estimates, and
we can only give a brief overview in this section. Gibbons [16, 17],
and Downey [18] used historical workloads to predict the wall
times of parallel applications. They predict wall times based on
templates. These templates are created by analyzing previously
collected metadata and grouped accordingly. Smith et al. [19, 20]
apply greedy and genetic search techniques to identify similar jobs.
In the recent years, machine learning algorithms are used to predict
resource consumption in several studies [21–25]. However, all the
studies mentioned above do not evaluate the accuracy of node
allocation predictions. Instead, most of the publications focus on
observing the impact of improved estimates on, e.g., the system
utilization or the reliability of calculated job start times.

In this paper, we focus on the node allocation prediction and how
good wall time estimates have to be to reasonably predict which
physical node(s) will be used for a job. This directly affects, whether
a cross-node, ad-hoc, independent parallel FS can be deployed to
stage-in data, or not.

3 SIMULATION METHODOLOGY
This section describes the simulation methodology to evaluate node
allocation predictions. First, we define the metric used to evaluate
the quality of predictions. Next, we present how the simulations
were performed. Especially, we describe how the impact of impre-
cise wall time estimates has been studied. Finally, we briefly present

the workloads used in this analysis and describe the job scheduling
simulator used for our evaluation.

3.1 Applied Metric
The main goal of this paper is to study how node allocation pre-
dictions are reliable subject to variously accurate job run time
estimates. Therefore, we define TNAP as the Node Allocation Predic-
tion Time. This metric measures the time from which the allocation
did not change till the actual job start. In other words, TNAP is the
difference between job start time and the time when the last accu-
rate prediction has been made. This time was taken as a metric to
evaluate the results. In this context, TNAP is a per job metric and,
e.g., job parallelism does not influence the way it is computed. For
example, ifTNAP = 1 hour then the actually used physical node has
been correctly predicted one hour before job started its execution.

We categorized jobs into different groups depending on theTNAP
value. TNAP below one second, TNAP over one second and bellow
ten minutes, and TNAP over ten minutes (long-term predictions). A
TNAP below one second, indicates e.g.,

• that job started immediately after job submission due to free
resources (we classify these jobs as “instant”),

• that job was picked up by a back-filling algorithm, or
• that job was later rescheduled on free resources (previously
unavailable).

The reason why we choose ten minutes is based on our previous
work. We have shown that parallel file systems can be created in a
very short time. BeeGFS within few minutes on 256 nodes [26] and
GekkoFS in less than 30 seconds on 512 nodes [27]. In the remaining
time, the required data could be copied to the nodes accordingly.
Whereby the 10 minute limit should be interpreted as an arbitrary
guess. A meaningful value can only be determined by considering
more factors. One is the maximum throughput of the global file
system and the performance of the node-local storage. Especially
the volume of copy-able data is limited by the sum of all allocated
node-local storages. Of course, this time depends on howmuch data
has to be copied, but 10 minutes seem to be a reasonable threshold
based on real-world experience in a large HPC computing center.

3.2 The Design of the Experiment
We havemodeled the system, scheduler andworkload in a simulator
and conducted several experiments where job run time estimates
were subsequently improved. Startingwith very imprecise wall time
estimates as provided by real users of the system and continuing to
fully accurate job run time estimates. For this purpose, we introduce
T̃Req, the “refined” requested wall time,

T̃Req = TRun + λ(TReq −TRun) with λ ∈ [0, 1], (1)

where TReq is the user-provided wall time and TRun is the job run
time. Each job in the workload is then adjusted by the same λ,
effectively simulating different precision of provided wall time
estimates. For example, if a user requests 100 hours but only needs
10, then for λ = 1.0 (λ1.0) would be T̃Req = 100 hours and for λ = 0.2
(λ0.2) the refined wall time T̃Req = 10 + 0.2 · (100 − 10) = 28 hours.
Clearly, for λ = 0 the T̃Req becomes a perfect estimate, i.e., T̃Req =
TRun.
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Figure 2: An example of back-filling distorting previous node allocations.

Of course, improving wall time estimates in this way is rather un-
realistic as was shown repeatedly by Feitelson [28] and Tsafrir [29].
It is obvious, that users cannot improve their estimates in such a
fine-grained fashion. But as mentioned before, we only want to
evaluate the impact of accuracy on the node allocation prediction,
thus such refinement of wall times is sufficient for our investigation.

Furthermore, beside these synthetic refinements we also used an
existingwall time predictor (see Section 3.4.2) which uses historic job
run time data to deliver improved wall time estimates. It provides a
valuable comparison with aforementioned synthetic refinements
and outlines possible outcomes of practical application of node
predictions in everyday use.

These workloads with varying degree of wall time accuracy were
then used as inputs for the simulator. The simulator uses the TNAP
metric to measure prediction accuracy of each such experiment. All
experiments have been conducted using the Alea job scheduling
simulator [30]. To emulate the system-level job batch scheduler
we used two widely adopted scheduling algorithms to create job
schedules— a simple First-Come-First-Serve (FCFS) algorithm and
the Conservative back-filling algorithm [12].

3.3 Workload Traces
We used workload files from the Parallel Workload Archive [31]
for evaluation. ForHLR II at KIT [32]1, SDSC[33], KTH[34] and
CTC [35].

The workload from KIT has been modified to fit into the node-
level simulation of ALEA:
The nodes have multi-core CPUs but due to the usage model of
the system, the nodes are scheduled and allocated as whole nodes.
Therefore, we changed the nodes from 20 cores per node to one,
and divided also the requested number of cores accordingly. With
this modification, a whole node scheduling is simulated. We also
removed all jobs belonging to the partition of fat nodes, leaving
approximately 112k jobs for ForHLR II. The workload covers a time
span of 1.5 years (06/2016 – 01/2018).

3.4 Alea Simulator and Scheduling Algorithms
The Alea simulator used in this study has been further developed
to enable detailed simulations of advanced node allocations. This
covers several areas, which we describe here.
1The workload is not published yet. We intend to publish the workload with the
publication of this paper.

First, Alea allows to built job schedules (a plan of future job
execution) based on the provided estimated run time (either TReq
or refined T̃Req) or using a built-in run-time predictor, which uses
previous known run times of already completed jobs to establish
a run-time prediction [36]. Either the Conservative back-filling or
simple FCFS-based technique is used to construct such job sched-
ules.

Second, Alea now records the time when a node allocation was
created by the scheduling algorithm and measures theTNAP metric.
This extended version of the simulator that has been used in this
study can be found at GitHub [37].

In the following paragraphs, we describe several interesting fea-
tures of the used scheduling algorithms that influence the prediction
accuracy of constructed plans. Next, we also briefly describe the
built-in job run-time predictor.

3.4.1 Scheduling Algorithms. While the (in)accuracy of run-time
estimates plays a major role in the reliability of constructed sched-
ules, it is most important to focus also on the behavior of the used
scheduling algorithm. The first used algorithm based on First-Come-
First-Serve (FCFS) is very straightforward. It simply adds new jobs
at the earliest free time slot at the end of the existing schedule. On
the other hand, Conservative Back-filling tries to use existing “holes”
in the schedule for the newly arriving jobs. The goal is to increase
system utilization and to reduce average response time. However,
this “hole filling” approach may have negative impact on prediction
accuracy. Figure 2 illustrates a scenario, where a newly arriving job
is placed into existing holes, but during this process it reshuffles
node allocations of previously planned job. While this reshuffling
has no negative impact on job start times (those are guaranteed
to remain the same during back-filling), it hampers all efforts to
efficiently stage job-related data in advance of actual computation.
From this point of view a simple FCFS is a safer choice.

Similarly, when a job completes earlier than expected, a FCFS-
built plan is updated simply by adjusting job start times with respect
to the new situation, i.e., jobs are moved to earlier time slots that
could have appeared as a result of the earlier job completion. Rel-
ative job ordering (defined by planned start times) is kept intact
and jobs are thus less likely to end up on different nodes. On the
other hand, Conservative Back-filling uses a more aggressive strat-
egy called schedule compression. During compression, all jobs are
removed from the schedule and then re-inserted one-by-one into
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the newly built schedule. It is quite common that after the compres-
sion the schedule looks rather different than the previous one [12].
As a result, although FCFS is less efficient by means of resource
utilization, it is more likely to deliver more accurate predictions,
thus providing better (higher) values of the TNAP metric.

3.4.2 Run-time Prediction Technique. Alea implements a rather
simple run-time prediction technique. It uses previous known run
times of already completed jobs to establish a run-time estimate
for a newly arriving job. It is working on a per-user basis, i.e., a
new run-time estimate for a given job of a user is computed using
information about previous jobs of that user2.

The predictor works as follows. Each time a given user’s job
completes its execution, the predictor computes the ratio of the
used wall time σ , the fraction of job’s actual run time and user’s
estimate

σ (i) :=
TRun(i)

TReq(i)
, (2)

where i is the i-th job by the specific user, i.e., σ measures to what
extent the estimated wall time was actually used. Since the user’s
estimate is the upper bound of job run time3, σ falls between 0.0 and
1.0 representing the relative usage of requested wall time. In other
words, the technique measures by how much a user overestimates
job’s run time. It is fair to mention, that a similar approach has
been used in [38]. Once σ is computed, it is used to generate the
final prediction. The predictor only uses the five last (most recently
completed) jobs when computing the prediction in order to use
“fresh” information. First, it computes the σ of those five recently
completed jobs and then chooses their maximum. Next, it multiplies
the job’s wall-time estimate TReq(i) by this maximum. We define

TPred(i) := TReq(i) max
i−5≤k≤i−1

{σ (k)}, (3)

the predicted run time.
It represents a conservative strategy, where the prediction is

calculated using the known relative accuracy of user’s recent esti-
mates. By choosing the maximum σ (i.e., choosing a job where the
difference between actual and estimated run time was minimal),
this technique aims to minimize the number of cases where the
prediction will be underestimated. At the same time, by ignoring
older jobs it reflects aging and orients itself more on the recent
user’s workload characteristics.

Of course, TPred(i) may turn out to be overly optimistic, i.e.,
shorter than actual job run time. If this case is detected during
simulation, TPred(i) is gradually increased during the simulation
(multiplied by a factor of 2), until it is either sufficient or it reaches
the original user’s estimated value TReq(i) [39].

4 RESULTS
First, we take a look at the characteristics of the used workload
traces. Figure 3a show the ratio between the requested and used
wall time of the evaluated workloads in this paper.

Users of the ForHLR II request approximately ∼3.8 more time
than they use. The differences are smaller for the other workloads,

2In case that a given user has no completed jobs so far then such historic information
is obviously missing, thus we use the user-provided estimate TReq instead.
3The system is configured to kill a job if it exceeds user’s wall-time estimate.

(a) Comparison of used workloads. The ratio of time requested to
time used.

(b) CTC Workload with improved estimates. hours. Y-Axis: Sum of
requested and used hours of all jobs

Figure 3: Comparison of requested wall time vs. used run
time.

the smallest difference is for the KTH workload with a factor of
∼1.5, CTC with ∼2.1 and SDSC with a factor of ∼2.6. The effect of
the artificial improved wall times for CTC workload and different
values of λ is shown in Figure 3b. The blue bars represent the sum
of all requested job wall times for several λ. For comparison, the
sum of the job run times is represented by the red line.

The simulation results are shown in Figure 4 and show the jobs
categorized within fourTNAP classes (see Section 3.1). Each bar rep-
resents a simulation with a different λ value. The last bar, labeled
“Alea”, is the simulation using Alea’s built-in wall time predictor.
Each row shows the simulation of a specific workload with two
different scheduling algorithms. The conservative back-filling algo-
rithm (left column) and the simple FCFS algorithm (right column).
The bars are categorized into four groups based on the TNAP. The
blue part represent the jobs that are started immediately after the
job is submitted (instant). The orange part represent queued jobs
with a TNAP between 0 and 1 seconds. Jobs with a TNAP from one
second up to 10 minutes are represented by the green part. Red
indicates a TNAP value of more than 10 minutes (long term predic-
tions) which is in our focus. This long-term predictions increases
significantly only at very small λ ≤ 0.1 which already proves that
very good run time estimates are needed.

Using back-filling, the improvement is not so steady, e.g., the
long term predictions for the CTC workload increases from ∼10%
to ∼26% of all jobs, for λ1.0 to λ0.1. From λ0.1 to λ0.01 this class
improves from ∼26% to ∼52%. Even with perfect run time predic-
tions, long-term predictions are not possible for the majority of jobs.
With FCFS algorithm a more continuous prediction improvement is
seen. When using FCFS with perfect run times estimates, (almost)
only instant starting jobs (blue) or with long term predictions (red)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Job distributions according to the TNAP class for all evaluated workloads with conservative back-filling (CONS) on
the left and FCFS on the right. Blue color denotes instant jobs, orange color means job having TNAP ≤ 1 s, green color denotes
jobs with 1 s < TNAP ≤ 600 s and red color denotes long-term predictions (600 s < TNAP ≤ ∞).



ICPP 2019, August 5–8, 2019, Kyoto, Japan Mehmet Soysal, Marco Berghoff, Dalibor Klusáček, and Achim Streit

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: Cumulative distributions of TNAP values for all considered workloads, with conservative back-filling (CONS) on the
left and FCFS on the right. Fine dashed vertical line denotes the 10 minutes (600 s) TNAP threshold, depicting the fraction of
jobs that fail to obtain reasonably long-term predictions.
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remain. Since operators like to keep the utilization of their system
high, back-filling is often used which makes our approach more
difficult. The culprit here is the way back-filling uses existing holes
in the schedule. In back-filling, a newly arriving job is often placed
into several existing holes. It improves utilization, but during this
process it reshuffles node allocations of previously planned job, as
was shown in Figure 2. This reshuffling then hampers all efforts to
efficiently stage job-related data in advance of actual computation.
From this point of view, simple FCFS is a safer choice.

The cumulative distributions of TNAP for all considered work-
loads are shown in Figure 5. In these figures we removed the jobs
which are started instantly after job submission (blue bars from
Figure 4). These instant started jobs are not of our interest and
we can focus on jobs which have to wait until their requests can
be satisfied. X-Axis shows the TNAP values while Y-Axis denotes
the fraction of jobs having TNAP ≤ x . The dashed vertical line rep-
resents a valid prediction of 600 seconds for the node allocation.
Everything to the right from this vertical line, represents jobs with
a valid long term prediction. For all workloads it can be clearly seen
that the FCFS algorithm performs better. Here the lines rise later,
which means longer valid predictions. However, there is still a gap
between λ0.01 and the λ0, which gives an indication that even a
small deviation of the wall time estimate will reduce the accuracy
accordingly.

The result when using Alea’s run time estimate predictor are
miscellaneous. With the ForHLR II workload the built-in predictor
shows pretty impressive results, if the instant started jobs are ig-
nored (cmp. Figs. 4g and 5g). The prediction accuracy is close to
λ0.01. This is caused by the gap between the requested and used
wall time (see Figure 3a). With such a high difference, the effect
of predictions on scheduling and thus on the node prediction is
significant. For the remaining workloads with better user-provided
estimates the line related to Alea’s predictor is located, at least,
behind the λ0.3 line. Clearly, the simple Alea’s predictor does not
improve the accuracy very much in such cases. When comparing
the cumulative distributions in Figure 5, it can be seen that only
with very good estimates (λ ≤ 0.1), the accuracy of predictions
improves. Generally, the accuracy is better with the FCFS algorithm.
This is because all jobs wait until their turn and cannot be brought
forward in the schedule, causing disruptions for previously planned
jobs (see Figure 2 for an example of such a side-effect).

4.1 Remarks
During the simulations we noticed small details, which should be
mentioned.

In Figure 4 we can observe that when using the back-filling
algorithm with improved λ values, the number of jobs which start
immediately (blue) slightly increases. This has two reasons. First,
the throughput improves with more accurate run times as more
waiting jobs are started by back-filling. Second, newly submitted
jobs may fit better into available free slots. On the other hand, these
values hardly change for FCFS algorithm, since it does not use such
back-filling optimization. Clearly, jobs that are started instantly
cannot profit from any advance data stage-in method.

The results in Figure 4g-h show a high rate of jobs that are started
immediately after the job submission. There are several reasons for

this. First, the workload’s time-frame is approximately 1.5 years and
various maintenance slots have not been simulated, i.e., the queue
is processed normally during maintenance. Second, a part of the
nodes has been separated for a limited time for various campaigns
whose consumption is not included in the workload.

5 CONCLUSION AND FUTUREWORK
In this work, we have analyzed whether advance data staging to
computing nodes is achievable in nowadays systems. We have used
detailed simulations using existing HPC workloads and measured
the influence of (in)accurate wall time estimates on the prediction’s
reliability. Either artificially improved wall times or predictor-based
estimates have been used to identify the threshold where the predic-
tions become practically useful. Our result shows that very accurate
wall time estimates are needed to deliver precise node allocation
predictions. We have also shown, that the widely used back-filling
algorithm may degrade the reliability of predictions as a side-effect
of its mechanism to increase resource utilization. From this point
of view, the vanilla FCFS algorithm produces more reliable results.

Still, our simulations demonstrate that without very accurate
wall time estimates, current systems will not be able to guarantee
good predictions needed for advance data staging. Also, on real
production systems, there are of course, more parameters which
could have an impact on the wall time of jobs. Parameters like
processes-binding, NUMA locality, topology awareness, network
congestion, or even power capping. The factors make the wall times
more variant and thus increase the uncertainty.

Therefore, the goal to find a general approach for efficient ad-
vance data staging on the nodes remains open. We will need to
investigate more aggressive strategies to fulfill this goal, e.g., con-
sider modifications of the scheduling behavior or use reservations
of nodes for data staging. A minimally invasive solution could in-
volve introducing a special flag to the jobs. This flag could signal
a request for a temporary on-demand FS and indicate which data
should be staged. The scheduler could then reserve or pin down
the required nodes for this job. This approach might reduce the
cluster utilization, but also benefit from the reduced load on the
global FS. This solution is going to be evaluated and the advantages
and disadvantages weighed against each other in our future work.

What we did not consider in this paper is the fundamental ques-
tion of whether an on-demand FS on the compute node makes sense.
The resources of compute nodes are needed for the application, and
these would have to be shared with an on-demand FS. Also the
concurrent data-staging may interfere with the running application.
These questions have already been evaluated, and we have shown
that using an on-demand file system does not mean automatically,
that an application is slowed down. It depends highly on the specific
use-case and the I/O behavior of the use case, but the advantages
of an on-demand file system outweigh the disadvantages in the
evaluated use cases [40].
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