
Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften (Dr.-Ing.)
von der KIT-Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)
genehmigte Dissertation von
Dipl.-Wi.-Ing. Tobias Christof Käfer

Behaviour on Linked Data
Specification, Monitoring, and Execution

Tobias Christof Käfer

Tag der mündlichen Prüfung: 18. Dezember 2018
Referent: Prof. Dr. York Sure-Vetter

Korreferent: Prof. Dr. Andreas Harth
Korreferent: Prof. Dr. Axel Polleres

Karlsruhe, 2019

Abstract

People, organisations, and machines around the globe make use of web technologies to
communicate. For instance, 4.16 bn people with access to the internet made 4.6 bn pages
on the web accessible using the transfer protocol HTTP, organisations such as Amazon
built ecosystems around the HTTP-based access to their businesses under the headline
RESTful APIs, and the Linking Open Data movement has put billions of facts on the
web available in the data model RDF via HTTP. Moreover, under the headline Web of
Things, people use RDF and HTTP to access sensors and actuators on the Internet of
Things.

The necessary communication requires interoperable systems at a truly global scale, for
which web technologies provide the necessary standards regarding the transfer and the
representation of data: the HTTP protocol specifies how to transfer messages, besides
defining the semantics of sending/receiving different types of messages, and the RDF
family of languages specifies how to represent the data in the messages, besides providing
means to elaborate the semantics of the data in the messages. The combination of HTTP
and RDF –together with the shared assumption of HTTP and RDF to use URIs as
identifiers– is called Linked Data.

While the representation of static data in the context of Linked Data has been formally
grounded in mathematical logic, a formal treatment of dynamics and behaviour on Linked
Data is largely missing. We regard behaviour in this context as the way in which a system
(e. g. a user agent or server) works, and this behaviour manifests itself in dynamic data.
Using a formal treatment of behaviour on Linked Data, we could specify applications that
use or provide Linked Data in a way that allows for formal analysis (e. g. expressivity,
validation, verification). Using an experimental treatment of behaviour, or a treatment
of the behaviour’s manifestation in dynamic data, we could better design the handling of
Linked Data in applications.
Hence, in this thesis, we investigate the notion of behaviour in the context of Linked

Data. Specifically, we investigate the research question of how to capture the dynamics of
Linked Data to inform the design of applications. The first contribution is a corpus that
we built and analysed to monitor dynamic Linked Data on the web to study the update
behaviour. We provide an extensive analysis to set up a long-term study of the dynamics
of Linked Data on the web. We analyse data from the long-term study for dynamics on the
level of accessing changing documents and on the level of changes within the documents.
The second contribution is a model of computation for Linked Data that allows for
expressing executable specifications of application behaviour. We provide a mapping
from the conceptual foundations of the standards around Linked Data to Abstract State
Machines, a Turing-complete model of computation rooted in mathematical logic. The
third contribution is a workflow ontology and corresponding operational semantics to
specify applications that execute and monitor behaviour in the context of Linked Data.
Our approach allows for monitoring and executing behaviour specified in workflow models
and respects the assumptions of the standards and practices around Linked Data. We
evaluate our findings using the experimental corpus of dynamic Linked Data on the
web and a synthetic benchmark from the Internet of Things, specifically the domain of
building automation.

Publications

Parts of this thesis have already been published. Specifically, this thesis is based on the
following publications:

In Peer-Reviewed Conference Proceedings:

� Tobias Käfer and Andreas Harth. “Specifying, Monitoring, and Executing Work-
flows in Linked Data Environments”. In: Proceedings of the 17th International
Semantic Web Conference (ISWC). 2018, pp. 424–440

� Tobias Käfer, Ahmed Abdelrahman, Jürgen Umbrich, Patrick O’Byrne and Aidan
Hogan. “Observing Linked Data Dynamics”. In: Proceedings of the 10th European
Semantic Web Conference (ESWC). 2013, pp. 213–227. Our corresponding poster
won the Best Poster Award

In Peer-Reviewed Workshop Proceedings:

� Tobias Käfer and Andreas Harth. “Rule-based Programming of User Agents for
Linked Data”. In: Proceedings of the 11th International Workshop on Linked Data
on the Web (LDOW) at the Web Conference (27th WWW). 2018

� Tobias Käfer, Alexandra Wins and Maribel Acosta. “Modelling and Analysing
Dynamic Linked Data using RDF and SPARQL”. in: Proceedings of the 4th
International Workshop on Dataset PROFILing and fEderated Search for Web Data
(PROFILES) at the 16th International Semantic Web Conference (ISWC). 2017.
Best Paper

� Andreas Harth and Tobias Käfer. “Towards Specification and Execution of Linked
Systems”. In: Proceedings of the 28th Workshop Grundlagen von Datenbanken
(GvD). GI. 2016, pp. 62–67

� Tobias Käfer, Jürgen Umbrich, Aidan Hogan and Axel Polleres. “Towards a
Dynamic Linked Data Observatory”. In: Proceedings of the 5th Workshop on
Linked Data on the Web (LDOW) at the 25th International Conference on World
Wide Web (WWW). 2012

5

Acknowledgements

This dissertation would not have been written if it were not for a few people:
First of all, I want to thank Rudi, who built the research group with an amazing spirit

in which I conducted most of the research that led to this thesis, York, who took over
the group and the role of my doctoral advisor maintaining this spirit, and Andreas, who
supervised me and found the right balance between constantly challenging my work and
being good fun.

I want to thank Aidan and Jürgen for introducing me to research and for collaborating
throughout the years. Of course, this happened under the auspices of and together with
Axel, to whom I am on top of that grateful for serving on my committee.

I want to thank my great colleagues in the research group, especially everybody who
regularly had cake with me, notably Basil for adding levels of abstraction and puns to
everything that deserves it, Maribel for a good laugh about everything that deserves it,
and Steffen S. for his advice and teamwork.
It was a pleasure to work with you and thanks for all the fun we had!

The whole process around a dissertation could not be completed without an examination,
where I want to thank Alexander Mädche and Martin Ruckes for serving on the committee.

Last but not least I want to thank my friends and family, in particular Sabrina and
my parents Ursula and Helmut, who have sustained me throughout the years.

7

Contents

Abstract 3

1. Introduction 13
1.1. Background . 15

1.1.1. REST, HTTP, and the Web Architecture 15
1.1.2. RDF, Ontologies, and The Semantic Web 16
1.1.3. (Read-Write) Linked Data . 17

1.2. Research Questions and Contributions . 18
1.2.1. Challenges . 18
1.2.2. Hypotheses . 20
1.2.3. Research Questions . 20
1.2.4. Contributions . 20

1.3. Scope . 22
1.4. Structure of the Thesis . 23
1.5. Example . 23

2. Preliminaries 27
2.1. (Read-Write) Linked Data . 27
2.2. Resources and URIs . 27
2.3. Hypertext Transfer Protocol (HTTP) . 29
2.4. Resource Description Framework (RDF) 31

3. A Formal Basis for Dynamic Linked Data 35
3.1. The Linked Data Transition System . 35
3.2. Related Work . 37
3.3. Conclusion . 37

4. The Dynamics of Linked Data on the Web 41
4.1. The Need for a Dynamic Linked Data Observatory 41

4.1.1. The Need of Linked Data Consumers 42
4.1.2. The Need of Linked Data Publishers 43

4.2. Research Questions . 43
4.3. Challenges . 44
4.4. Contributions . 45
4.5. Related Work . 45
4.6. The Set-up of the Dynamic Linked Data Observatory 47

4.6.1. How to Capture Linked Data on the Web? 47
4.6.2. Sampling Technique . 52

9

Contents

4.6.3. Crawling Setup . 54
4.6.4. Compiling the Seed List . 55
4.6.5. Monitoring Scheme . 58
4.6.6. Validation of the Feasibility the Proposed Set-up 58

4.7. High-Level Statistics . 58
4.8. Methods to Describe and Analyse the Dynamics of Linked Data 60

4.8.1. Steps to Analyse Dynamic Linked Data 60
4.8.2. Modelling Dynamic Linked Data in RDFS 61
4.8.3. A Processing Pipeline to Extract Data According to Our Model . 63
4.8.4. Declaratively Specifying Preprocessing using SPARQL UPDATE . 64
4.8.5. Declaratively Specifying Analyses using SPARQL 66
4.8.6. Evaluation of the Declarative Approach to Analyse Dynamic Linked

Data . 67
4.8.7. Discussion . 69

4.9. Results on the Physical Level . 70
4.9.1. Availability/Occurrence . 70
4.9.2. Death Rate . 73
4.9.3. Change Ratio . 73
4.9.4. Temporal Coherence . 80

4.10. Results on the Logical Level . 84
4.10.1. Triple-Level Changes . 84
4.10.2. Term-Level Changes . 86
4.10.3. Dynamic Predicates . 87
4.10.4. RDF Link Structure . 87

4.11. Community Validation . 89
4.12. Summary . 90

5. A Model of Computation for Linked Data 93
5.1. Motivation . 93
5.2. Challenge . 94
5.3. Contributions . 94
5.4. Example Scenario: Rule-based Control for Building Automation 95

5.4.1. Intuition of the Syntax of a Condition-Action Rule Language . . . 95
5.4.2. Intuition of the Semantics of the Condition-Action Rule Language 96

5.5. Related Work . 96
5.6. Preliminaries . 98

5.6.1. State . 99
5.6.2. RDF Model-Theoretic Semantics 99
5.6.3. Abstract State Machines (ASM) 99

5.7. Abstract State Machines and Linked Data + Rules 101
5.7.1. Overview . 102
5.7.2. Synthesis . 102
5.7.3. Linked Data Servers . 105
5.7.4. Operational Semantics for the Condition-Action Rule Language . . 105

10

Contents

5.7.5. Discussion: Computation, ASMs, Simple Reflex Agents, and Linked
Data . 106

5.7.6. Requirements for a Linked Data User Agent Specification Language108
5.8. Evaluation . 108

5.8.1. Formal Evaluation . 108
5.8.2. Experimental Evaluation . 110

5.9. Conclusion and Future Work . 115

6. Workflows in Linked Data 117
6.1. Challenges . 117
6.2. Contributions . 118
6.3. Related Work . 118
6.4. Preliminaries . 119
6.5. Activity, Workflow Model and Instance Ontology 120
6.6. Reasoning and Querying over RDF Lists in OWL LD 123
6.7. Operational Semantics . 125

6.7.1. Overview . 125
6.7.2. Condition-Action Rules . 126

6.8. Evaluation . 131
6.8.1. Formal Evaluation . 131
6.8.2. Applicability: The Case of Virtual Aircraft Cockpit Design 132
6.8.3. Empirical Evaluation . 132

6.9. Conclusion . 134

7. Summary and Conclusion 135
7.1. Specification of Behaviour . 135
7.2. Monitoring of Behaviour without Specifications 136
7.3. Execution of Behaviour and Monitoring of Behaviour with Specifications . 137
7.4. Conclusion . 137

List of Figures 139

List of Tables 141

Acronyms 143

Bibliography 145

A. Queries 163
A.1. Preprocessing . 163

A.1.1. Semantics of Unavailable Sources 163
A.1.2. Materialising Intermediary Results 164

A.2. High-Level Statistics . 165
A.2.1. Number of PLDs Whose URIs Ever Dereferenced 165
A.2.2. Number of PLDs Whose URIs Dereferenced Per Snapshot 165

11

Contents

A.2.3. Number of URIs That Ever Dereferenced 165
A.2.4. Number of URIs That Dereferenced Per Snapshot 166

A.3. Queries to Analyse Dynamic Linked Data 166
A.3.1. Appearance . 166
A.3.2. HTTP Responses . 166
A.3.3. Death Rate I . 167
A.3.4. Death Rate II . 167
A.3.5. Changes and Change Frequency 168
A.3.6. Change Frequency and Change Amount 168
A.3.7. Change Frequency and Change Amount by LOD-Cloud Classification169

B. Linked Data-Fu Rules to Implement a Turing Machine 173

12

1. Introduction

The web is the largest information system built by mankind. Since the invention of
the web in 1989 [15], the web has grown to a size of 4.53 billion pages1 (or documents)
and is being used by 4.16 billion people2. The popular3 application to use the web
is the browser (for instance: Mozilla Firefox4, Google Chrome5), a client6 application
using which users communicate via the internet with web servers7 to download and read
usually one document, before they proceed to the next page, or update the document.
However, the web also provides the infrastructure for the communication of user-facing
applications, e. g. mobile apps, with servers, e. g. in the cloud. Moreover, communication
that is not directly user-triggered, such as in API ecosystems, e. g. around Amazon [63],
makes use of the web. Thus, the web has reached the goal to be “a shared information
space through which people and machines could communicate” [16].

In this thesis, we want to go beyond the communication aspects (representation of data
in documents, transfer of documents via the network) for which web technologies are
used traditionally and investigate the notion of behaviour in the context of applications
(or agents, or components) that communicate using web technologies.

Behaviour is defined by the Oxford Living Dictionary as:

The way in which one acts or conducts oneself, especially towards others

1. the way in which an animal or person behaves in response to a particular
situation or stimulus

2. the way in which a machine or natural phenomenon works or functions

[14]

This definition of behaviour encompasses both the living (1.) and the artificial and
abstract (2.). We adopt these definitions and concretise (2.) for an computer science
setting by also regarding as behaviour “the way in which an application works”, e. g. a
specification of an algorithm to perform a computation. As the subject exhibits behaviour,

1http://www.worldwidewebsize.com/, visited on 2018-06-10.
2http://www.internetworldstats.com/stats.htm, visited on 2018-06-10.
3We estimate that all of the 4.16 billion users of the internet use a browser, based on a 2015 report
by http://tcrn.ch/1S1N9qo (visited on 2018-06-10) that 800million people use Google Chrome on
Mobile, which had a market share of 16% towards the end of 2015 according to https://analytics.

wikimedia.org/dashboards/browsers/#all-sites-by-browser (visited on 2018-06-10)
4http://www.mozilla.org/firefox/, visited on 2018-06-10.
5http://www.google.com/chrome/, visited on 2018-06-10.
6A user agent, to be precise in REST terminology.
7Origin servers, to be precise in REST terminology.

13

http://www.worldwidewebsize.com/
http://www.internetworldstats.com/stats.htm
http://tcrn.ch/1S1N9qo
https://analytics.wikimedia.org/dashboards/browsers/#all-sites-by-browser
https://analytics.wikimedia.org/dashboards/browsers/#all-sites-by-browser
http://www.mozilla.org/firefox/
http://www.google.com/chrome/

1. Introduction

be it extrinsically as response or intrinsically if it works by itself, the subject is dynamic.
In our computer science setting, this dynamics manifests itself in dynamic data, e. g. the
values modified by an algorithm. As we consider a networked setting, in which typically
multiple components participate, we do not limit our considerations to the behaviour of
one component. Instead, we consider applications that compose data and functionality
from multiple components.

We consider a particular combination of web technologies, Linked Data, the combination
of the transfer protocol HTTP and the data model RDF. The Hypertext Transfer
Protocol (HTTP) [75] and the Resource Description Framework (RDF) [47] provide
global interoperability in the communication between distributed components on the levels
of transferring and representing data with implications on how to compose components
into applications:

� To communicate requires the ability to successfully transfer, i. e. encode, transmit,
and decode messages [190], and to interpret the messages’ semantics [107, 191].
Web technologies facilitate this communication using standardisation in the relevant
fields. The standardisation bodies W3C and IETF provide open standards for
communication roles, message (de/en)coding and semantics (HTTP [75, 76] by
the IETF, which builds on TCP/IP [177, 178] for transmission), and message
content and semantics, i. e. knowledge representation (RDF(S) [47, 109, 30] by
the W3C). Research has accompanied the standardisation, and the stack of web
technologies led to the discovery of an architectural style for information systems,
Representational State Transfer (REST) [73], behind HTTP.

� To compose applications from components requires not only interoperability on
the level of communication interfaces. Composition also requires shared and
interoperable assumptions about architecture [80]: (1) The assumption which party
holds the thread of control of the composed application. In REST, the client
application holds the thread of control. Consequently, (2) the assumption about
the communication topology in REST is that communication is predominantly star-
shaped around the client. (3) The assumption about the dependency between the
state of components. REST encourages loose coupling and independent evolvability
of components.

To investigate behaviour in the context of Linked Data, we cover the following topics:

� Specification of behaviour in static Linked Data – Our investigations address how
to describe “the way in which an application works” using RDF available for access
using HTTP.

� Monitoring of behaviour manifested in dynamic Linked Data – We record and
analyse the dynamics of Linked Data with and without specifications of how the
behaviour should be.

� Execution of behaviour on writeable Linked Data – We investigate how to execute
specifications of behaviour that modify RDF data via HTTP.

14

1.1. Background

Hence, we investigate the specification, execution, and monitoring of behaviour in
an environment that should readily allow for the composition of applications, as the
environment addresses the major interoperability challenges identified in [190, 107, 191,
80]. As we specify behaviour to compose distributed components into applications, we
work on the vision of programming-in-the-large [50].

1.1. Background

We next give an overview on the technologies on which Linked Data is based. We
present typical applications in the context of the technologies and sketch how they are
affected by dynamic data. Moreover, we relate this thesis to the body of knowledge of
the corresponding technologies. An in-depth discussion of related work will be given in
the individual chapters.

1.1.1. REST, HTTP, and the Web Architecture

REST, short for Representational State Transfer [73], is the architectural style of the web,
specifically of Uniform Resource Identifiers (URIs) [21] and HTTP. REST fosters loose
coupling between the communicating parties, called web agents [126], by separation of
concerns [51] into user agent and origin server. REST encourages stateless communication,
which means different communication acts do not depend on each other, as they contain
all information required for their understanding in a self-contained manner. In this
stateless communication, user agents and origin servers transfer representations (i. e.
documents) of state information of resources (i. e. subjects of discourse).

As a communication protocol, HTTP reduces the entropy8 [203] when it comes to
exchanging data by defining a constrained set of operations and corresponding message
semantics. The operations in HTTP roughly resemble the basic operations of persistent
storage, CRUD (create, retrieve, update, delete) [152]. In other architectural styles
however, the understanding of a communication act is complicated by e. g. unclear
semantics of a message (update or invocation) in publish/subscribe [62].

REST is flexible when it comes to the format of the representation. Again, standardised
representation formats reduce entropy [203], and in REST the format of use can be
negotiated between client and server. Different representation formats on the entropy
continuum balance expressivity for ease of interpretation9. Typical examples include
plain text, HTML, JSON, XML, or RDF. Linked Data builds on the data model RDF,
where we can add links to machine-processable and formal schema definitions that help to
further combat entropy [83, 197]. REST-based interaction with URI-identified resources,

8Shannon defined entropy as the information content of a message chosen from a set of possible messages.
Hence, the entropy is a measure of the uncertainty of the outcome of a choice, or in other words, a
measure of unpredictability. With pi as the probability of an outcome i, the entropy H is defined as
H = −

∑
pi log pi [190].

9https://www.slideshare.net/rnewton/autonomous-agents-on-the-web-22078931, visited on
2019/07/23.

15

https://www.slideshare.net/rnewton/autonomous-agents-on-the-web-22078931

1. Introduction

during which messages in interoperable data formats are exchanged, is the gist of the
Web Architecture [126].

Applications

Traditional applications for REST, such as the browser or mobile apps, communicate
mainly with few resources. Search engines, on the other hand, download and index
massive amounts of representations of resources and provide the functionality to search
the representations [31]. Recent developments use REST when integrating multiple
components into one single client application: Mashups display different resources in
an integrated fashion in a browser [224]. Workflow management systems interact with
REST resources to obtain data to consider this data in the execution of a workflow [169].
Increasingly, small-scale embedded devices on the Internet of Things provide REST-based
access to sensors and actuators [23, 139, 220, 199, 223, 222], where the data from one
sensor typically has to be put in context with information from other components. Where
applications retain copies of the resource descriptions over an extended time span, the
dynamics of the resources can make the data outdated.

Relation to the Thesis

In this thesis, we consider REST-based communication of user agents with multiple
resources described in RDF. We apply findings from search engines about the dynamics
of the web when investigating the dynamics of Linked Data. When considering workflows
to describe behaviour in the context of REST, previous works used the assumptions of
traditional workflow management systems to include REST resources. In contrast, we
use the assumptions of REST when building a workflow management system.

1.1.2. RDF, Ontologies, and The Semantic Web

The Semantic Web is the vision of an environment of technologies in which data published
on the web can be understood by machines [114]. RDF is the data model of the Semantic
Web. RDF is graph-based and defines a merge operation for data from different sources
and is hence suitable for integration. On the Semantic Web, we want to go beyond this
syntactic integration and consider the semantics of the terms. The semantics of terms
can be make explicit by describing the terms in ontologies, i. e. formal specifications of
how concepts, i. e. classes of terms are interrelated [201]. To specify the semantics of
terms, ontology languages such as RDF Schema (RDFS) [30] and the Web Ontology
Language (OWL) [113] have been standardised. Being formal, we can leverage ontologies
and corresponding reasoning when programming machines to process data while taking
the data’s semantics into account.

Applications

Consequently, in the seminal article on the semantic web by Berners-Lee et al. [22],
ontologies are the key enabler for machine agents that act on the behalf of humans.

16

1.1. Background

While such agents have not been realised yet [189, 110], other technologies from the
semantic web found widespread adoption: The sheer size of RDF data available has
called for applications called Triple Stores, i. e. databases that allow for efficient storage
and querying of RDF data. Early systems that stood the test of time include Jena [153],
Sesame [32], and Redland [12]. The interface to Triple Stores and the query language has
been standardised in the SPARQL Protocol and RDF Query Language (SPARQL) [195].
The need for expressing complex relations between terms has led to the development of
ontology languages of different expressivity and complexity [30, 85, 157] rooted in logics.
Applications that perform corresponding logical inferencing are called reasoners. While
the seminal article has covered the need for ontologies in-depth, the article is fairly silent
about how agents on the web access and change data, and only talks about “meaningful
manipulation” [22]. In contrast, Linked Data is all about making semantic data accessible
on the web, such that user agents can consume and modify such data.

Relation to the Thesis

In this thesis, we investigate the notion of behaviour in Linked Data. Hence, our results
affect systems that work on replicated Linked Data or act in federated settings. Such
systems typically include include Triple Stores and reasoners. When analysing dynamics,
we operate on RDF without doing reasoning, while we do make use of light-weight
reasoning when considering workflows, and our formalisations of behaviour in Linked
Data leave room for reasoning. We provide an analogy of a part of our work to Semantic
Web agents.

1.1.3. (Read-Write) Linked Data

The Linked Data principles are a canonical way of publishing data on the web [17] that
combines the technical web standards for identifying resources (URI), for describing
resources (RDF), and for accessing resource representations (HTTP) with the social
imperative to provide links to other related data. Following those principles, the Linked
Data initiative has published a sizeable amount data on the web: The Linking Open
Data cloud diagram10 lists 1 184 datasets as of 2018-04-30. When also considering the
state-changing methods of HTTP, we can manipulate writeable sources on the web [18]
and use this Read-Write Linked Data for application integration [120]. Clarifications
around the use of HTTP and RDF have been standardised in the the Linked Data
Platform (LDP) [196].

Applications

Specialised applications for using Linked Data include crawlers [102, 124] for downloading
Linked Data, e. g. to put the data in a Triple Store for further processing, and browsers [19]
to display and browse Linked Data. Moreover, there are applications that combine
downloading, link following, querying and reasoning such as cwm11, Linked Data-Fu [198],

10http://lod-cloud.net/, visited on 2018-06-10.
11http://www.w3.org/2000/10/swap/doc/cwm.html, visited on 2018-06-10.

17

http://lod-cloud.net/
http://www.w3.org/2000/10/swap/doc/cwm.html

1. Introduction

NautiLOD [77], LDQL [106], LTBQE [104, 103], and Ripple [192]. Such applications so
far only consider reading access to Linked Data. Besides generic HTTP clients that send
RDF, specialised applications that can write to Linked Data include Linked Data-Fu [198].

Relation to the Thesis

In this thesis, we investigate the notion of behaviour in Linked Data. Consequently, all
applications that download Linked Data are affected by the dynamics of Linked Data.
We study formal approaches to describe the dynamics of Linked Data. Subsequently,
we investigate the dynamics of Linked Data on the Web. Next, we provide a model of
computation for Linked Data such that we can specify the behaviour of applications
operating on Linked Data. Last, we devise a workflow-based language to specify behaviour
for monitoring and execution on Linked Data. The thesis has been carried out in the
context of Linked Data-Fu12, a language and an interpreter for downloading of, querying
over, reasoning on, and enacting change to Linked Data, to which this thesis provides a
formally grounded operational semantics. Moreover, we use the operational semantics in
the execution of behaviour on Linked Data that is given in workflows.

1.2. Research Questions and Contributions

Dynamics and behaviour affect applications of HTTP and RDF individually and in the
combination, i. e. Linked Data. Hence we ask the main research questions of this thesis:

Main research question: How can we capture the dynamics of Linked Data to
inform the design of applications?

1.2.1. Challenges

Semantic Web research is an interdisciplinary field of research to which many disci-
plines have contributed. The disciplines range from Hypermedia, Software Engineering,
Databases, Distributed Systems, Knowledge Representation to Philosophy. Those contri-
butions led to standards and practices, which have been charted in the so-called “Semantic
Web Layer Cake”, which the the World Wide Web Consortium (W3C)’s Semantic Web
Activity maintained until 2013, see Figure 1.1. This Semantic Web Layer Cake does not
contain a notion of behaviour. In fact, HTTP, which we showed introduces dynamics, is
not part of the figure. Consequently, the distinction between the communication roles of
user agents and servers, which addresses the principle of separation of concerns in HTTP,
has largely been overlooked in Semantic Web research. While third-party updates to
the Semantic Web Layer Cake have introduced HTTP as a means for data access, e. g.
see Figure 1.2 from 2009 and a blog post from 2017 [123], the dynamics introduced by
HTTP are still not in the scope of the figures. Hence, the challenge is to find analyses
and formalisms that not only have the explanatory power and the expressivity to be
relevant in practice, but also respect the established standards and practices and their
conceptual foundations.

12http://linked-data-fu.github.io/, visited on 2018-06-10.

18

http://linked-data-fu.github.io/

1.2. Research Questions and Contributions

Figure 1.1.: The Semantic Web Layer Cake.

Figure 1.2.: Another layer cake for the Semantic Web [162].

19

1. Introduction

To find suitable analyses and formalisms of behaviour in Linked Data is challenging in
itself, as the area of dynamic systems is highly fragmented [145, 127]. Approaches to
describe dynamics range from logics, physics, concurrent systems, workflow management,
just to name a few. Hence, we need approaches that can be mapped conceptually to the
conceptual foundations of Semantic Web Technologies.

1.2.2. Hypotheses

To investigate our main research question, we consider the following hypotheses, which
we test in the course of this thesis.

H1. Linked Data is dynamic across application domains.

H2. We can describe the dynamics of Linked Data using formal methods.

H3. We can derive coherent snapshots of Linked Data.

H4. Web technologies can serve as framework for computation and application specifi-
cation.

1.2.3. Research Questions

In the context of our main research question, we test the hypotheses by answering the
following research questions:

RQ1. How can we describe the dynamics of Linked Data using formal methods? → H2

RQ2. How can we construct a corpus to verify and study the dynamics of Linked Data?
→ H1, H3

RQ3. How can we specify computation using Read-Write Linked Data and rules? → H4

RQ4. How can we combine control flow specifications in workflows with semantic reason-
ing, and RESTful access? → H4

1.2.4. Contributions

To answer our research questions, we provide our following main contributions. For each
contribution, we show the research question the contribution aims to answer and the
thus addressed hypotheses.

C1. The Linked Data Transition System → RQ1 → H2

The Linked Data Transition System is a formal abstraction on Linked Data based on
Transition Systems to describe the behaviour of Linked Data. This snapshot-based
formal abstraction serves as basis for the considerations of the following contribu-
tions. We verify the abstraction using the Dynamic Linked Data Observatory.

20

1.2. Research Questions and Contributions

C2. The Dynamic Linked Data Observatory → RQ2 → H1, H3

The Dynamic Linked Data Observatory is a corpus of Linked Data over time, which
consists of more than 300 weekly snapshots of about 100 k Linked Data resources
on the web. Using the Dynamic Linked Data Observatory, we shed light on the
dynamics of Linked Data on the web by monitoring Linked Data, in particular we
investigate the temporal coherence of snapshots.

C3. Statistical analyses for temporally coherent snapshots → H3

We apply statistical methods to investigate the validity of the snapshot-based view
on Linked Data using the Dynamic Linked Data Observatory. We found the error
that is introduced by networking and processing latencies when compiling the
snapshots of the Dynamic Linked Data Observatory, to be small.

C4. ASM4LD → RQ3 → H4

To specify and execute behaviour on Linked Data, we develop Abstract State
Machines for Linked Data (ASM4LD), a model of computation for Linked Data
based on Abstract State Machines. We found ASM4LD to be Turing-complete and
the performance of a corresponding interpreter to be sufficient for application in
practice.

C5. WiLD → RQ3 → H4

Based on ASM4LD, we develop Workflows in Linked Data (WiLD), a workflow-
based approach to specify, monitor, and execute behaviour on Linked Data. WiLD
covers the basic workflow patterns [211] and has been successfully applied with
partners from industry.

C6. RWLD-Brick-Benchmark → H4

To evaluate ASM4LD and WiLD, we built a synthetic benchmark for Read-Write
Linked Data user agents. The benchmark is set in a building automation setting
and simulates parts of the building management systems of one or multiple editions
of an office building with about 280 rooms.

We illustrate the layering of the descriptive approaches developed in this thesis (contri-
butions C1, C4, C5) using Table 1.1. The other contributions serve as evaluation.

Evaluations

We evaluate our main contributions as follows:

� The snapshot-based view of the Linked Data Transition System (C1) is evaluated
using the statistical analysis for coherence (C3) on the Dynamic Linked Data
Observatory (C2). With the snapshot-based view on Linked Data as basis for
ASM4LD (C4) and WiLD (C5), we thus also indirectly evaluate the assumptions
behind C4 and C5.

21

1. Introduction

Table 1.1.: The layer cake of the approaches in this dissertation to describe dynamics in
Linked Data. We build on Read-Write Linked Data, which in turn builds on
HTTP. We align our layer cake to the Semantic Web Layer Cake.

Layer Technology SW Layer Cake

Workflow Meta Model WiLD (C5)
RDF-S‡

Model of Computation ASM4LD (C4)
Dynamics Model LDTS (C1)
Data Model and Access [Read-Write Linked Data]

RDF
Data Access [HTTP]

URI

‡We use a bit more than RDFS reasoning in WiLD, but not full OWL. Specifically, WiLD builds on

OWL LD [85].

� The Dynamic Linked Data Observatory is evaluated by pointing to the impact of
the data collection and analysis.

� ASM4LD is evaluated formally and using a performance benchmark (C6).

� WiLD is evaluated formally, using a performance benchmark (C6), and by presenting
a showcase developed with partners from academia and industry. Additionally, by
evaluating WiLD, which is based on ASM4LD and LDTS, we evaluate the whole
stack of the descriptive approaches presented in thesis.

1.3. Scope

Our investigations of behaviour covers both the server behaviour that influences client
applications (specifying, monitoring) and the behaviour of client applications that in-
fluences servers (specifying, executing). In both cases, we consider client applications
whose data is composed by communicating with multiple components with Linked Data
interfaces.

This thesis operates mostly on HTTP and RDF. Hence, we do not consider behaviour
in the levels in the Semantic Web Layer Cake higher than RDF. In fact, higher levels
have been addressed by other people using results from this thesis. Yet, we use OWL LD
reasoning as means when investigating behaviour. Next to RDF in the layer cake, there
are rules. If we consider rules in this thesis, we consider fixed rule sets, i. e. the rule sets
are not subject to behaviour. Farther right are cryptographic methods, which we consider
out of scope for this thesis. Yet, our findings do support access control and cryptography
if it can be transparently layered on top of HTTP, e. g. using HTTPS [182].

22

1.4. Structure of the Thesis

Chapter 4

C2

RQ2

H1 H3

C3

Chapter 3

C1

RQ1

H2

Chapter 5

C4

RQ3

H4

C6

Chapter 6

C5

RQ4

Figure 1.3.: The distribution of the investigation of hypotheses, answers to the research
questions, and contributions to chapters in this thesis.

1.4. Structure of the Thesis

The remainder of the thesis is structured as follows. First, in Chapter 2, we give an
in-depth treatment of the basic technologies and definitions that are required in the
remaining chapters. Then, we present our contributions in the order how the contributions
build on each other, see Figure 1.3. As we go, we provide answers to the research questions,
and test hypotheses. Last, we conclude in Chapter 7.

1.5. Example

Throughout the thesis, we use the following example: Imagine two devices from the
Internet of Things with Linked Data interfaces. Both devices be located in a room. One
device has a temperature sensor, such that we can retrieve the current temperature
described in RDF using HTTP requests. The second device serves as a switch of two
lamps attached, whose state is described in RDF, which we can read and write by
sending corresponding HTTP requests. We use the SSN/SOSA ontologies [92] to describe
the devices, and the SAREF ontology [49] to describe the sensors, actuators, and the
actuators’ state. Moreover, we use the FOAF ontology13 to define the relation between a
resource and the document about a resource. We give details on the used URIs and the
data obtained by sending an HTTP request to the URIs. We used a set-up that included
such devices based on Tessel 2 boards for a demo [133]. Corresponding source code to
run on Tessel 2 boards can be found online14. We show such devices in Figure 1.4.

Using this example, we describe a small instantiation of the (Read-Write) Linked
Data setting. The example is in a networked setting and contains two servers that serve
representations of the state of resources in RDF over HTTP. These resources include
the documents about the devices and the sensors. The state of two particular resources,
namely the documents that describe the two relays for the lamps, is writeable. In RDF,
the granularity using which the descriptions of resources are distributed to documents is
not specified [221]. We applied a fairly fine-granular distribution such that we do not

13http://xmlns.com/foaf/spec/, visited on 2018-06-10.
14https://github.com/kaefer3000/t2-rest-relay-climate, visited on 2018-06-10.

23

http://xmlns.com/foaf/spec/
https://github.com/kaefer3000/t2-rest-relay-climate

1. Introduction

Table 1.2.: URIs of resouces on the two Internet of Things devices for the example, and
the content of message bodies in responses to HTTP-GET requests.

URI Response Message Body Content

http://t2-relay.example/ The description of the root resource
with a pointer to the overview of the
device’s modules:
<> foaf:primaryTopic <#it> .

<#it> sosa:hosts <modules/#it>.

http://t2-relay.example/modules/ The overview over the modules with
pointers to the device’s modules:
<> foaf:primaryTopic <#it> .

<#it> sosa:hosts <relay/#it>.

http://t2-relay.example/modules/relay/ The description of the device’s module,
which points to sub-resources:
<> foaf:primaryTopic <#it> .

<#it> sosa:hosts <1#it>, <2#it> .

http://t2-relay.example/modules/relay/1 The description of the actuator (analo-
gously for the second switch):
<> foaf:primaryTopic <#it> .

<#it> a saref:LightSwitch ;

saref:hasState saref:On .

(a) On the Internet of Things device with the light switch.

URI Response Message Body Content

http://t2-climate.example/ The description of the root resource
with a pointer to the overview of the
device’s modules:
<> foaf:primaryTopic <#it> .

<#it> sosa:hosts <modules/#it> .

http://t2-climate.example/modules/ The overview over the modules with
pointers to the device’s modules:
<> foaf:primaryTopic <#it> .

<#it> sosa:hosts <climate/#it> .

http://t2-climate.example/modules/

climate/

The description of the device’s module,
which points to sub-resources:
<> foaf:primaryTopic <#it> .

<#it> sosa:hosts <temperature#it> .

http://t2-climate.example/modules/

climate/temperature

The description of the sensors:
<> foaf:primaryTopic <#it> .

<#it> a saref:TemperatureSensor ;

rdf:value 20 .

(b) On the Internet of Things device with the temperature sensor.

24

1.5. Example

Figure 1.4.: Two Internet of Things devices, which we use in our examples. One has
a thermometer attached, the other controls two lamps via relay switches.
Images from SparkFun, Pixabay, and Wikimedia Commons.

overwrite the state of many resources using one request. Using the example, we can
illustrate how Linked Data changes, how to derive Linked Data snapshots from different
resources, how to follow links, and how to change Linked Data. The example does not
show how to follow redirects. We give more details on the example as we introduce of
technologies using the example. The generalisation to larger scenarios is straight-forward.

25

2. Preliminaries

In this chapter, we lay out foundational definitions that most of this thesis’ chapters
require: (Read-Write) Linked Data, URIs, HTTP, RDF Graphs and datasets. We give
definitions that are relevant only in certain chapters in the corresponding places: model-
theoretic semantics for RDF (Section 5.6.2), Notation3 and rules (Section 5.4.1) as well
as terminology around dynamics and workflows (Section 6.5).

2.1. (Read-Write) Linked Data

The Linked Data principles are a set of practices for data publishing on the web [17].
They encourage the use of web standards for identifying and accessing data and to link
the data with data from other providers. The Linked Data principles are:

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the
standards (RDF*, SPARQL)

4. Include links to other URIs. so that they can discover more things.

[17]

While the Linked Data principles are concerned with accessing data, Read-Write Linked
Data generalises the principles and also encourages writing access [18].

2.2. Resources and URIs

The following definitions build on the notions of resources and URIs, which are identifiers
for resources.

Definition 1 (URI, Resource, Scheme, Scheme-specific part). Uniform Resource Iden-
tifiers (URIs) are character sequences that serve as names on the web. A resource
identified by a URI may be anything, abstract or physical. URIs consist of a scheme and
a scheme-specific part, divided by a colon [21].

The scheme determines how the scheme-specific part is to be interpreted. In this thesis,
we assume URIs with the HTTP schemes (http and https), which indicate that HTTP

27

2. Preliminaries

interaction may be possible with the URI. URIs are absolute or relative. If a scheme
allows for expressing a hierarchical structure such as the HTTP schemes, then relative
URIs allow for giving URIs that are relative to other URIs in the hierarchical structure.

Example 1 (URIs). We identify the Internet of Things devices using URIs1:

� http: // t2-climate. example/ #it

� http: // t2-relay. example/ #it

We also identify the modules on the Internet of Things devices using URIs:

� http: // t2-climate. example/ modules/ climate/ #it

� http: // t2-relay. example/ modules/ relay/ #it

and the sensors and actuators on the modules:

� http: // t2-climate. example/ modules/ climate/ temperature# it

� http: // t2-relay. example/ modules/ relay/ 1# it

Definition 2 ((Non) Information Resource, Collection Resource). An Information
Resource is a resource that provides a non-empty message body in HTTP responses with
status code 200 to HTTP-GET requests (cf. Section 2.3). Non-Information Resources
are all other resources. Collection resources are collections of resources.

Example 2 (Collection Resource). The set of modules on the Internet of Things devices
are collection resources:

� http: // t2-climate. example/ modules/

� http: // t2-relay. example/ modules/

Similarly, the set of relays on the relay module is a collection. Using the relay, we to
turn a light on and off: http: // t2-relay. example/ modules/ relay/

Example 3 ((Non) Information Resource). Although the URI http: // t2-climate.

example/ modules/ climate/ temperature# it identifies the temperature sensor, we
cannot do an HTTP request to said URI. Hence, this URI is not an information resource.
However, we can make a request to http: // t2-climate. example/ modules/ climate/

temperature , which is the URI of the document to describe the temperature sensor. Said
URI is indeed an information resource, if we assume that the server implementation on
the Internet of Things device answers HTTP-GET requests to said URI with status code
200 and a non-empty message body.

1We use the top-level domain .example in our examples as put forward in [59].

28

http://t2-climate.example/#it
http://t2-relay.example/#it
http://t2-climate.example/modules/climate/#it
http://t2-relay.example/modules/relay/#it
http://t2-climate.example/modules/climate/temperature#it
http://t2-relay.example/modules/relay/1#it
http://t2-climate.example/modules/
http://t2-relay.example/modules/
http://t2-relay.example/modules/relay/
http://t2-climate.example/modules/climate/temperature#it
http://t2-climate.example/modules/climate/temperature#it
http://t2-climate.example/modules/climate/temperature
http://t2-climate.example/modules/climate/temperature

2.3. Hypertext Transfer Protocol (HTTP)

Table 2.1.: HTTP status code classes and explanations [76].

Range Class Explanation

1xx Informational The request was received, processing continues
2xx Successful The request was received and can be successfully answered
3xx Redirection The request needs further client action for completion
4xx Client Error The request cannot be fulfilled due to a client error
5xx Server Error The request cannot be fulfilled due to a server error

2.3. Hypertext Transfer Protocol (HTTP)

URIs with one of the HTTP schemes indicate that communication with the resource
may be possible [75]. In the Hypertext Transfer Protocol [75] (HTTP), communication
happens in request/response pairs. We call the party initiating a request user agent, and
the responding party origin server.

Definition 3 (HTTP Request, Response, Method, Target, Status Code). A HTTP
message is a tuple ⟨S,H,B⟩, where S is the mandatory start line, H is an optional list
of header name/value pairs, and B is the message body, also optional. A HTTP request
is a HTTP message in which the start line S consists of a request line (with the HTTP
method, the target of the request, and the version information). In a HTTP response
message, the start line S consists of a numerical HTTP status code along with a textual
explanation, and information on HTTP version used.

An HTTP header contains meta information on the HTTP message. For instance,
the resource representation format can be negotiated in a process called content negotia-
tion [76] between client and server using the Accept header in the request, which lists the
preferences of the client, and the Content-Type header in the response, which states the
representation format the sever chose. We present the Location header in the following
when discussing HTTP status codes.

Status codes are three-digit integers, where the first digit determines the status code
class. The HTTP specification distinguishes the classes in Table 2.1. The responses with
3xx status code typically contain a Location header with a URI to which the server
redirects the client for the next request.

The HTTP method in an HTTP request states the purpose of the request for the
user agent, and determines the semantics of the message bodies in the corresponding
request/response pair. Of the HTTP methods in the standard, we consider the most
prominent methods: GET, PUT, POST, DELETE. Those methods can be roughly
mapped to CRUD (create, retrieve, update, delete), the basic operations of persistent
storage [152]. We next present the HTTP methods that we consider in this thesis:

� A user agent uses a GET request to ask the server for a representation of the
current state of the target resource.

29

2. Preliminaries

Table 2.2.: The semantics of HTTP message bodies [76, 196] . . .
(a) . . . in requests.

Method The Message Body Contains . . .

GET Nothing
PUT State of the resource
POST Arbitrary data or state of a resource
DELETE Nothing

(b) . . . in responses with certain status codes.

Method Status Code Range The Message Body Contains . . .

GET 2xx State of the resource
PUT 2xx State of the resource or nothing
POST 2xx State of the request or nothing
DELETE 2xx State of the request or nothing
any Non-2xx State of the request or nothing

� A user agent uses a PUT request to tell the server to overwrite the current state of
the target resource using the representation supplied.

� A user agent uses a DELETE request to order the server to delete the target
resource.

� The use of a POST request depends on the type of the target resource. The
standard discusses a few types of functions including:

– If the target resource represents a collection, a user agent uses the POST
request to add a resource to the collection. The supplied representation
describes the resource to be created. We call this function POST-append in
this thesis. In line with level 2 on the Richardson Maturity Model [78], we
only consider in this function of the POST request in this thesis.

– If the target resource represents a data-handling process, a user agent can
supply data to the process and gets an answer in return. We call this function
POST-RPC in this thesis.

The semantics of the message bodies of messages in requests and responses under the
different HTTP methods and status codes is summarised in Table 2.2. As we consider
Linked Data in this thesis, we assume the message bodies to be in RDF. Note that the
Linked Data Platform specification [196] provides clarifications regarding HTTP when
RDF data is transferred. For instance, the response to a successful POST-append request
should not be expected to contain a message body.

HTTP methods have different properties. For instance, the property a method of being
safe means that a client sending a request with a safe method does not expect change

30

2.4. Resource Description Framework (RDF)

Table 2.3.: Properties of HTTP methods.

Method Safe? Idempotent?

GET X X
PUT X
POST
DELETE X

on the origin server caused by the request. A request with an idempotent method sent
multiple times ceteris paribus shall have the same result as sending the request once. We
summarise the properties of different request methods in Table 2.3.

2.4. Resource Description Framework (RDF)

As indicated by the Linked Data principles, we assume that the representation of the
state of resources is given in an RDF Graph.

Definition 4 (RDF Term, Triple, Graph). The set of RDF terms consists of the set
of URIs U , the set of blank nodes B and the set of RDF literals L, all being pairwise
disjoint. A tuple ⟨s, p, o⟩ ∈ (U ∪B)× U × (U ∪B ∪ L) is called an RDF triple, where s
is the subject, p is the predicate, and o is the object of the triple. A set of triples is called
RDF Graph.

In this thesis, we use the Turtle syntax2 to describe RDF Graphs [180].

Example 4. We can interact with the Internet of Things device using HTTP. For
instance, we can send an HTTP-GET request to the root resource. We retrieve a
successful response with a message body in Turtle format, see Figure 2.1.

To be able to talk about the state representations retrieved from multiple resources,
i. e. multiple RDF Graphs, we introduce the notion of an RDF Dataset [47].

Definition 5 (Named Graph, RDF Dataset). Let G be the set of RDF Graphs and let
U be the set of URIs. A pair ⟨g, u⟩ ∈ G× U is called a named graph. An RDF Dataset
consists of a (possibly empty) set of named graphs (with distinct names) and a default
graph g ∈ G without a name.

While the standard only discusses said structure of an RDF Dataset, the semantics of
RDF Datasets have not been standardised. Zimmermann discusses different semantics
for an RDF Dataset [225]. In this thesis, we adopt the semantics discussed as “Named
graph[s] are in a particular relationship with what the graph name dereferences to” in
Section 3.5 of [225]: At one point in time, all names in the graph have been dereferenced
and the retrieved RDF Graphs have been put into the RDF Dataset at the corresponding

2We use prefix definitions as provided by http://prefix.cc/, visited on 2018-06-10.

31

http://prefix.cc/

2. Preliminaries

t2-relay.exampleUser Agent

GET / HTTP/1.0

HTTP/1.0 200 OK
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix sosa: <http://www.w3.org/ns/sosa/> .
<> foaf:primaryTopic <#it>.
<#it> sosa:hosts <modules/#it> .

Figure 2.1.: UML Sequence Diagram of an HTTP-GET request from a user agent to
the server at t2-relay.example, which runs one of the Internet of Things
devices in our example. The server device answers with a successful response
with the message body in Turtle.

graph name. To talk about the state of resources at different system states, we introduce
an index t, which denotes the system state to which an RDF Dataset D refers, thus
yielding Dt. We assume discrete time represented as monotonically increasing integers.

Example 5 (RDF Datasets). We show RDF Datasets for two points in time for three
resources from the Internet of Things device with the light, see Figure 2.2. Note that the
graph at the bottom changes.

32

2.4. Resource Description Framework (RDF)

Figure 2.2.: RDF Datasets for two points in time of three resources from the Internet of
Things device with the light.

Name Graph

http://t2-relay.example/ <> foaf:primaryTopic <#it> .

<#it> sosa:hosts <modules/#it> .

http://t2-relay.example/modules/ <> foaf:primaryTopic <#it> .

<#it> sosa:hosts <relay/#it> .

http://t2-relay.example/modules/relay/ <> foaf:primaryTopic <#it> .

<#it> sosa:hosts <1#it> , <2#it> .

http://t2-relay.example/modules/relay/1 <> foaf:primaryTopic <#it> .

<#it> a saref:LightSwitch ;

saref:hasState saref:Off .

(a) D0

Name Graph

http://t2-relay.example/ <> foaf:primaryTopic <#it> .

<#it> sosa:hosts <modules/#it> .

http://t2-relay.example/modules/ <> foaf:primaryTopic <#it> .

<#it> sosa:hosts <relay/#it> .

http://t2-relay.example/modules/relay/ <> foaf:primaryTopic <#it> .

<#it> sosa:hosts <1#it> , <2#it> .

http://t2-relay.example/modules/relay/1 <> foaf:primaryTopic <#it> .

<#it> a saref:LightSwitch ;

saref:hasState saref:On .

(b) D1

33

http://t2-relay.example/
http://t2-relay.example/modules/
http://t2-relay.example/modules/relay/
http://t2-relay.example/modules/relay/1
http://t2-relay.example/
http://t2-relay.example/modules/
http://t2-relay.example/modules/relay/
http://t2-relay.example/modules/relay/1

3. A Formal Basis for Dynamic Linked Data

Parts of this chapter have been published in:
▷ Andreas Harth and Tobias Käfer. “Towards Specification and Execution of Linked Systems”.
In: Proceedings of the 28th Workshop Grundlagen von Datenbanken (GvD). GI. 2016, pp. 62–67.

In this chapter, we propose the Linked Data Transition System, a formal abstraction
on Linked Data over time. To look at Linked Data over time makes intuitively sense
at least for the following two reasons: (1) As HTTP URIs can represent resources that
stand for things in the real world, the representations retrieved at different points in time
can be assumed to vary. (2) Moreover, we can change Read-Write Linked Data using
state-changing HTTP requests. The Linked Data Transition System describes Linked
Data as snapshots at different points of time. This snapshot-based view on Linked Data
is the basis for the considerations in the subsequent chapters: In Chapter 4, we analyse
changes between different Linked Data snapshots and investigate the temporal coherence
of snapshots to evaluate the notion of Linked Data snapshots. In Chapter 5, we interpret
Linked Data snapshots as states of algorithm runs. In Chapter 6, we use workflows that
operate on Linked Data snapshots and whose workflow instance state is maintained in
Linked Data snapshots.

3.1. The Linked Data Transition System

In the Linked Data Transition System, we take an omniscient view on states, requests
and responses in the system, and describe the state of relevant Linked Data sources at
one point in time as RDF Dataset. The graph names in the RDF Datasets in the Linked
Data Transition Systems be URIs of information resources. The RDF Graphs in the
RDF Datasets are then the graphs obtained by dereferencing the URI at the time of
the RDF Dataset, cf. Section 3.5 in [225]. As an omniscient observer, we know when
a change occurs in the system. Then, we compile a new RDF Dataset. While we here
take an omniscient view and thus present an idealised view, in practice, a user agent
has to make HTTP-GET requests to create the RDF Datasets (e. g. in Chapters 4, 5, 6).
Compared to the idealised view, the user agent perspective introduces two inaccuracies:

� Network latencies can make the RDF Dataset temporally incoherent, i. e. the one
point in time is in reality different points in time for different URIs

� When operating in a periodic fashion, the sampling rate may be too low such
that the user agent misses system states. On the other hand, if the sampling
rate is higher than the rate of change, we have RDF Datasets in the Linked Data
Transition System with no change in between.

35

3. A Formal Basis for Dynamic Linked Data

The changes may be caused by one or many HTTP requests (e. g. in the case of Read-
Write Linked Data), or by the environment (e. g. if the real-world things change). Thus,
the transitions in the Linked Data Transition System are sets of requests. We hence
define the Linked Data Transition System as follows:

Definition 6 (Linked Data Transition System). Let Req,Resp be the set of all HTTP
request/response pairs. A Linked Data Transition System is a pair (S,→):

� A set of RDF Datasets S representing resource states.

� The transition relation → over S× 2Req,Resp×S. We can contrast the current state
st with the next state st+1, given a transition occurs. A transition consists of a set
of request/response pairs.

The states S are the states of all resources in the system. We write s0, s1 . . . sn to
denote datasets at different time points. With → denoting the transition relation, we
write (so, ro, s1) ∈→ as so

r0−→ s1. We can define the history of a system by a sequence

so
r0−→ s1

r1−→ s2 . . ., where so, s1, s2 are states, and r0, r1 are sets of request/response
pairs.

Based on the Linked Data Transition System, we can now formally illustrate the
semantics of different HTTP request methods. For instance, a successful HTTP-GET
request trivially transitions to the same state. Given robust server implementations,
unsuccessful requests also transition to the same state. Less trivial are the semantics of
successful unsafe requests (we denote a “don’t-care” as “·” and the empty set as “∅”).
Let u be a URI denoting some resource.

� PUT: Let r be a request/response pair, and B a message body. r := (⟨PUT u, ·, B⟩,
⟨204 No Content, ·, ∅⟩). Applying r to state St yields St+1, where in St+1 the
triples belonging to u are B.

� POST: We assume in this thesis the POST request to append to a resource, hence we
discuss the POST request below.

� DELETE: Let r be a request/response pair. (⟨DELETE u, ·, ∅⟩, ⟨204 No Content, ·, ∅⟩).
Applying r to state St yields St+1, where in St+1, there is no representation available
at u.

Now, let uc be a URI from U identifying a collection resource.

� PUT: PUT is not possible on collection resources (we assume collections are managed
by the server). LDP does not require the PUT request to be supported in the context
of collections either.

� POST: Let r be a request/response pair, B be a message body, and H be a set of
headers. r := (⟨POST uc, ·, B⟩, ⟨201 Created, H, ·⟩). Applying r to state St yields
St+1, where in St+1 there are additional triples (those in B) related to a newly

36

3.2. Related Work

created1 URI ue that is linked to uc. Also, uc is different now, as the link to the
newly created resource identified via URI ue is part of the state of the collection
resource. The set of headers H contains ue as the value of the Location header.
In compliance with LDP, we assume no representation in the body of the response.

� DELETE: Let r be a request/response pair (⟨DELETE uc, ·, ∅⟩, ⟨204 No Content, ·, ∅⟩).
Applying r to state St yields St+1, where in St+1 there is no representation available
for uc. Whether deleting the collection resource uc also affects its associated element
resources depends on the type of the relation between the collection and its elements
(cf. the container types specified in LDP).

Example 6 (Linked Data Transition System). We again show the two RDF Datasets
from example 5 of two points in time for four resources from the Internet of Things
device with the light switch, see Figure 3.1. This time, the two RDF Datasets are part
of a Linked Data Transition System, where the two RDF Datasets differ in the graph at
http: // t2-relay. example/ modules/ relay/ 1 : In D0, the light switch is set to off,
whereas in D1, the light switch is set to on. The change in graphs in Figure 3.1 is caused
by a successful HTTP-PUT request, which transforms D0 into D1.

3.2. Related Work

Stadtmüller et al. defined the REST state transition system (RSTS) [198] (called Linked
Data State Transition System in [197]), which captures a similar notion as the the LDTS.
However, the RSTS takes a different standpoint: The LDTS regards the state of set of
Linked Data resources irrespective of their component and describes as a omniscient
observer how the combined state of the Linked Data resources evolves, using HTTP
requests or not. The RSTS however models one component, the component’s internal
state, and the component’s reactions, similar to an acceptor of HTTP requests that
answers using HTTP responses. As a formal difference, the LDTS uses RDF Datasets to
describe states, whereas the RSTS uses RDF Graphs.

Similarly, the main difference to Hernández et al.’s formal account of semantic REST-
ful APIs [111] is that their account is concerned with only one component, and the
component’s inner workings. For the account, Hernández et al. use a combination of
the π-calculus [155, 156] and triple-space computing [65], an extension of tuple-space
computing [82] to RDF.

3.3. Conclusion

In this chapter, we presented the Linked Data Transition System (LDTS), a formal
account of dynamic Linked Data. As a model, the LDTS is an abstract view on Linked
Data over time. The snapshot-based view on Linked Data in LDTS is the foundation for

1Or taken from a pre-filled reservoir of URIs, for example as defined in Abstract State Machines.

37

3. A Formal Basis for Dynamic Linked Data

Figure 3.1.: Two RDF Datasets, D0 and D1, as states in a Linked Data Transition
System and an HTTP-PUT request/response pair as transition. The request
is depicted on the left of the arrow, the response on the right of the arrow.
We highlight where the change happens by underline.

Name Graph

http://t2-relay.example/ <> foaf:primaryTopic <#it> .

<#it> sosa:hosts <modules/#it> .

http://t2-relay.example/modules/ <> foaf:primaryTopic <#it> .

<#it> sosa:hosts <relay/#it> .

http://t2-relay.example/modules/relay/ <> foaf:primaryTopic <#it> .

<#it> sosa:hosts <1#it> , <2#it> .

http://t2-relay.example/modules/relay/1 <> foaf:primaryTopic <#it> .

<#it> saref:hasState saref:Off .

(a) D0

(PUT http://t2-relay.example/modules/relay/1,
∅,
<> foaf:primaryTopic <#it> .

<#it> saref:hasState saref:On .)

(204 No Content,
∅,
∅)

Name Graph

http://t2-relay.example/ <> foaf:primaryTopic <#it> .

<#it> sosa:hosts <modules/#it> .

http://t2-relay.example/modules/ <> foaf:primaryTopic <#it> .

<#it> sosa:hosts <relay/#it> .

http://t2-relay.example/modules/relay/ <> foaf:primaryTopic <#it> .

<#it> sosa:hosts <1#it> , <2#it> .

http://t2-relay.example/modules/relay/1 <> foaf:primaryTopic <#it> .

<#it> saref:hasState saref:On .

(b) D1

38

3.3. Conclusion

the considerations of the subsequent chapters. For the snapshots, which constitute the
states in the LDTS, the model abstracts from the network access required to assemble the
snapshots. In reality, the snapshots are subject to synchronisation issues introduced by
network latencies. We hence experimentally investigate the validity of the snapshot-based
view in the presence of network access in the next chapter, specifically in Section 4.9.4.

39

4. The Dynamics of Linked Data on the
Web

Parts of this chapter have been published in:
▷ Tobias Käfer, Alexandra Wins and Maribel Acosta. “Modelling and Analysing Dynamic Linked
Data using RDF and SPARQL”. in: Proceedings of the 4th International Workshop on Dataset
PROFILing and fEderated Search for Web Data (PROFILES) at the 16th International Semantic
Web Conference (ISWC). 2017. Best Paper,
▷ Tobias Käfer, Ahmed Abdelrahman, Jürgen Umbrich, Patrick O’Byrne and Aidan Hogan.
“Observing Linked Data Dynamics”. In: Proceedings of the 10th European Semantic Web Conference
(ESWC). 2013, pp. 213–227,
▷ Tobias Käfer, Jürgen Umbrich, Aidan Hogan and Axel Polleres. “Towards a Dynamic Linked
Data Observatory”. In: Proceedings of the 5th Workshop on Linked Data on the Web (LDOW) at
the 25th International Conference on World Wide Web (WWW). 2012.

In this chapter, we experimentally investigate the dynamics of Linked Data. We verify the
hypothesis that Linked Data is dynamic and look at the validity of the snapshot-based
view on Linked Data, which serves as basis for the subsequent chapters. For these
investigations, we set up a long-term study of Linked Data on the web, the Dynamic
Linked Data Observatory. We motivate the study by presenting challenges in building
applications for Linked Data induced by the dynamics of Linked Data. We describe the
design of the study, and present findings on the dynamics of Linked Data on the web.
Moreover, we investigate the suitability of Semantic Technologies for conducting our
analyses.

Example 7. (Dynamic Linked Data on the web) In our example for the RDF Dataset,
we looked at four resources of an Internet of Things device at two points in time. The
RDF Datasets of Figure 2.2 can be imagined as being created by making HTTP-GET
requests to the four resources at two points in time and by recording the data from the
responses. In the Dynamic Linked Data Observatory, we actually create RDF Datasets
by doing the HTTP-GET requests to roughly 105 resources from the web. So far, we have
created RDF Datasets for around 300 points in time over a time span of six years.

4.1. The Need for a Dynamic Linked Data Observatory

The dynamics of Linked Data affects both Linked Data consumers and providers as
they build applications. We discuss challenges induced by the dynamics of Linked Data,
and derive use-cases for our analyses of dynamic Linked Data. The use-cases build on
previous investigations by Umbrich et al. [208].

41

4. The Dynamics of Linked Data on the Web

4.1.1. The Need of Linked Data Consumers

Consuming Linked Data involves reasoning on and querying of data downloaded from the
web. We identify two main challenges induced by changing data and present corresponding
use-cases:

Freshness of Caches and Indices To improve performance, reasoning and querying sys-
tems employ caches and indices:

Caches improve performance by saving user agents from potentially expensive
network access. To this end, caches replicate remote data locally in a way that
is transparent for an user agent’s application logic. For instance, HTTP Caches
are relevant on the Semantic Web for approaches that use HTTP-GET requests
for accessing RDF Graphs. Those approaches include live-querying approaches
such as Linked Data-Fu [198], NautiLOD [77], LDQL [106], LTBQE [104, 103],
scripting approaches such as Ripple [192], and SPARQL engines that retrieve RDF
via HTTP-GET in URIs in FROM clauses such as roqet1 and Virtuoso2. Moreover,
other approaches use HTTP-GET requests to transfer intermediary results in query
processing, e. g. Triple Pattern Fragments [216] (typically with HDT back-end [67])
and federated SPARQL engines [64, 179].

In contrast to caches, indices are part of a user agent’s application logic. Indices
improve performance by not just removing the need for network access, but also
by locally performing pre-computations. Systems with indices on the Semantic
Web where index freshness can be an issue include triple stores that replicate
data, e. g. mirrors of Linked Data in private deployment, such as a local copy of
DBpedia [8], or public semantic web search engines such as SWSE [117], the LOD
Laundromat [13], Sindice [204], Swoogle [53], Watson [48], and the LOD Cache3.
Moreover, there are hybrid approaches that use indices for some sources, and do
live-querying on others [207].

For up-to-date results with both caches and indices, changes in the original sources
have to be reflected locally. Hence, knowledge about the dynamics of data would
allow for the design of applications with caches and indices that can do, e. g.:

Focussed Synchronisation Applications that build on pre-computed indices can
determine for which sources they update their indices at which intervals.

Smart Caching Applications that build on caches can determine which sources to
cache and for how long cached data can be assumed to be valid.

Adaptive Processing Hybrid applications that involve both, indices and caches,
can choose the appropriate approach per source.

Temporal Coherence of Snapshots Approaches that integrate and reason over data
assume the data to stem from one point in time. Yet, in a distributed and

1http://librdf.org/rasqal/roqet.html, visited on 2018-06-10.
2https://virtuoso.openlinksw.com/, visited on 2018-06-10.
3http://lod.openlinksw.com/sparql, visited on 2018-06-10.

42

http://librdf.org/rasqal/roqet.html
https://virtuoso.openlinksw.com/
http://lod.openlinksw.com/sparql

4.2. Research Questions

networked setting, data is downloaded from different sources, where the download
from different sources may exhibit different latencies. In the presence of dynamic
sources, those latencies can make a combined dataset temporally incoherent, i. e.
the dataset contains data about different points in time from different sources [194].

Affected systems on the Semantic Web include those approaches to benefit from
HTTP-GET caches listed above that obtain data from multiple sources. To that
list, we add SPARQL federated querying that uses HTTP-POST for querying [64,
179].

Optimised Download Schemes Applications involving data form multiple sources
can influence the downloading process, e. g. by ordering the sources to improve
temporal coherence [194].

Quantification of Error Applications involving data form multiple sources can
quantify the error introduced by network latencies, which can serve as input
for probabilistic reasoning.

4.1.2. The Need of Linked Data Publishers

We identified two challenges in Linked Data publishing introduced by the dynamics of
own data and of the data of third parties.

Link Maintenance When publishing Linked Data, publishers are encouraged to put links
into their data, to where more information can be found [17]. If the ends to those
links are on domains outside of the control of the publisher, dead links may occur
after some time, or the ends may no longer be appropriate for linking after changes
to the data [89, 176]. Furthermore, novel sources may serve as useful targets to
link [218]. Information about dynamics could be built into applications that help
publishers to decide how frequently their link-sets need updating depending on,
e. g. the domain they target or the type of link.

Versioning When changes are made to Linked Data, versioning [140] should be applied
to make sure that other parties that rely on the data to be stable are not negatively
affected. For instance, vocabularies are Linked Data which is particularly often
re-used and thus vocabularies would be obvious candidates for Linked Data where
versioning should be applied. Insights into the dynamics of Linked Data and how
changes propagate can e. g. help in developing versioning methods for Linked Data
publishing applications.

4.2. Research Questions

The use-cases call for investigations on two levels:

� On the physical level of communication, our investigations are mainly concerned
with the transfer of documents in HTTP messages. We look at changes only at

43

4. The Dynamics of Linked Data on the Web

the granularity of a document, i. e. we only check whether the RDF Graphs in two
documents are different, but do not look at the triples that constitute the difference.
As we operate on level of documents, findings on the physical level can be easily
contrasted with investigations of the web of documents with content of other types,
e. g. HTML.

� On the logical level of communication, we look into the content of the documents
transferred, i. e. at the triples and terms in the RDF Graphs.

We next present the research questions for our analyses on both levels.

On the Physical Level

Change Frequency: Can we model change frequency of documents with mathe-
matical models and thus predict future changes?

Change Patterns: Can we mine patterns that help to categorise change behaviour?

Lifespan: What is the lifespan of Linked Data documents?

Stability: How stable are Linked Data documents in terms of HTTP accessibility?

Domain-dependent Changes: Do we observe a variation or clustering in dynamics
across different domains?

Temporal Coherence: Can we achieve temporally coherent snapshots of Linked
Data?

On the Logical Level

Degree of Change: If a document changes, how much of its content is updated?

Growth Rate: How fast is the Linked Data on the web evolving?

Structural Changes: Do we observe any changes in the structure of the network
formed by links?

Change Triggers: Can we find graph patterns that trigger or propagate changes
through the network?

Vocabulary-dependent Changes: Do we observe different change patterns for data
using certain vocabularies, classes or properties?

Vocabulary Changes: How do the semantics of vocabulary terms evolve over time?

4.3. Challenges

With the identified use-cases and research questions for analyses not limited to an
application architecture, a domain, or to consumers or producers of Linked Data, we are
facing the following conflicting desired properties in our study design. We come back to
these trade-offs as we present the set-up of the Dynamic Linked Data Observatory.
First of all, with the aim of building a working system that runs on commodity

hardware, feasibility becomes a concern. Feasibility is obviously conflicting with the
following desired properties of a data collection:

44

4.4. Contributions

General-purpose suitable to study for a wide range of interested parties

Broad capturing a wide selection of Linked Data domains

Substantial the number of documents monitored should allow for deriving confident
statistical measures

Granular & frequent offering detailed data on sources

Given resource constraints, the following points need to be balanced for the monitoring
and crawling scheme:

Contiguous allowing for comparison of sources over time

Adaptive able to discover the arrival of new sources

In practice, there also other considerations to take into account such as crawling in a
polite fashion [144], i. e. not to overload remote servers when collecting data.
Thus, the composition of the corpus is a research problem in itself and hence we

address RQ2 first: How can we construct a corpus to verify and study the dynamics of
Linked Data?

4.4. Contributions

Our first contribution is the design of the Dynamic Linked Data Observatory. We have
been running this observatory since May 2012 and have collected a significant corpus of
data that captures the inherent dynamics of Linked Data. We make all data available for
the community; please see http://purl.org/dyldo/ for up-to-date weekly snapshots.

Our second contribution is the method to analyse dynamic Linked Data using Semantic
Web Technologies. The approach to use declarative specifications of analyses allows for
concise specifications of analyses, which ease validation.

Our third contribution is the comprehensive analysis of the dynamics of Linked Data.
We shed light on the dynamics of Linked Data on the physical levels of accessing documents
and on the logical level of RDF documents with the aim of providing insights that inform
the design of Linked Data applications.

4.5. Related Work

Few papers specifically analysed RDF or Linked Data dynamics, especially previous to our
work on the Dynamic Linked Data Observatory. We discuss those works in Section 4.5.
Our work on the Dynamic Linked Data Observatory sparked interest in the dynamics
of Linked Data, and other researchers used our dataset for their investigations. We
summarise those works when we discuss the impact of our work in Section 4.11.
In contrast to RDF and Linked Data, the dynamics on the HTML web has been

subject to a considerable amount of scholarly investigation. We survey findings of those
investigations in Section 4.5, relate the findings to our research questions, and take a
closer look at the data collection to ground our set-up in literature.

45

http://purl.org/dyldo/

4. The Dynamics of Linked Data on the Web

4.5.1. Studies of the Semantic Web and the Semantic Web’s Dynamics

Klein et al. classified changes to ontologies [141], without looking at the data access.
Popitsch and Haslhofer [176] propose DSNotify to help maintain links between datasets,
but only have knowledge of DBpedia dynamics. Umbrich et al. analysed changes in
documents over 24 snapshots of RDF web data [205]; however, the coverage of each
snapshot varied and the analysis was rather “best-effort”, whereas our aim is to provide
and analyse a broad and contiguous dataset. Authors from the same group also showed
that two centralised query indexes of Linked Data (OpenLink’s LOD Cache4 and Sindice’s
SPARQL endpoint5) often return stale results [207]. Passant et al. investigated how to
evaluate continuous queries over SPARQL endpoints [168]. Recently, Schon and Staab
investigated dynamics of DL-knowledge bases behind a SPARQL endpoint [188].

While our aim is to compose and analyse a corpus of Linked Data on the web, other
approaches survey and monitor other aspects of the Semantic Web. For example, Auer
et al. built LODStats to collect statistics about RDF available on the web in the form of
Linked Data, as compressed files, or behind SPARQL endpoints [9]. The authors provide
statistics such as the depth of the class hierarchy, or number of triples, literals, and blank
nodes. LODStats ran from 2012 until 2016. SPORTAL by Hasnain et al. provides a
catalogue of SPARQL queries to compute statistics (including VoID descriptions [2])
about SPARQL endpoints [108]. SPARQLES by Aranda et al. focuses on monitoring
publicly available SPARQL endpoints [6]. The authors provides a set of predefined
queries to inspect the support of SPARQL features and performance of endpoints and
monitor SPARQL endpoints in this fashion since 2013. The datasets for the Billion Triple
Challenge (BTC) of different years from 20086 to 2014 [94, 95, 96, 97, 129] provide crawls
of Linked Data. Yet, the BTC datasets do not provide contiguous monitoring, as every
year the crawls’ seed list was compiled differently, also the frequency of the monitoring,
about yearly, is not sufficient for our investigations.

4.5.2. Studies of the Web and the Web’s Dynamics

The study of the evolution of the web (of Documents) and its implicit dynamics reaches
back to the proposal of the first generation of autonomous World Wide Web spiders
(aka. crawlers) around 1995. Bray [25] published one of the first studies about the
characteristics of the web and estimated its size in 1996. Around the same time, web
indexes such as AltaVista or Yahoo! began to offer one of the first concrete use-cases for
understanding the change frequency of web pages: the efficient maintenance of search
engine indexes. In 1998, Coffman et al. [46] proposed a revisiting strategy for web
crawlers to improve the “freshness” of an index. This work was continuously improved
over the subsequent years with additional experimental and theoretical results provided
by Brewington and Cybenko [28, 29], Lim et al. [149], Cho and Garcia-Molina [44, 43],
Fetterly et al. [72], Ntoulas et al. [163], and Koehler [143] amongst others.

4http://lod.openlinksw.com/sparql, visited on 2018-06-10.
5http://sparql.sindice.com/, visited on 2013-03-12, unavailable as of 2018-06-10.
6The data set from 2008 is unavailable as of 2018-07-01.

46

http://lod.openlinksw.com/sparql
http://sparql.sindice.com/

4.6. The Set-up of the Dynamic Linked Data Observatory

Based on large data collections, these papers presented theory and/or empirical analyses
of the HTML web that relate closely to the dynamicity questions we highlight. For
example, various authors discovered that the change behaviour of web pages corresponds
closely with – and can be predicted using – a Poisson distribution [28, 29, 44, 43]. Relating
to high-level temporal change patterns, Ntoulas et al. [163] analysed the different frequency
of updates for individual weekdays and working hours. The same paper also empirically
estimated the growth rate of the web to be ∼ 8% new content every week, and regarding
structural changes, found that the link structure of the web changes faster than the textual
content by a factor of 3. Various authors found that with respect to the degree of change,
the majority of changes in HTML documents are minor [149, 72, 163]. Loosely related to
change triggers, Fetterly et al. [72] found that certain parties simulate content changes
to draw the attention of search engines. Regarding domain dependent changes, various
authors also showed that change frequencies vary widely across top-level domains [72, 44,
28, 29].

Relating to use-cases for studying the dynamics of web documents, a variety have
been introduced through the years, including (i) the improvements of web proxies or
caches looked at by, e. g. Douglis et al. [58], (ii) efficient handling of continuous queries
over documents [167]. We refer interested readers to the excellent survey by Oita and
Senellart [164], which provides a comprehensive overview of existing methodologies to
detect web page changes, and also surveys general studies about web dynamics. An
earlier survey by Ke et al. [136] addresses the implications of web dynamics to search
engines.

4.6. The Set-up of the Dynamic Linked Data Observatory

To investigate the research questions on the dynamics of the Linked Data on the web
(Section 4.2), we set up a long-term monitoring study, the Dynamic Linked Data Obser-
vatory. In this section, we describe how we set up the Dynamic Linked Data Observatory
in 2012. We first derive a definition of what, i. e. the population, we want to monitor. To
this end, we derive a practical working view on Linked Data on the web by contrasting
two popular views on Linked Data on the web: the Billion Triple Challenge dataset,
which is a crawled dataset, and the LOD cloud7, which is a visualisation of entries in
CKAN (also known as the datahub), a registry for datasets. We decide for a hybrid
approach that combines the two views. Next, we describe how we obtain a list of URIs
to monitor: We sample the population, i. e. our working view on Linked Data on the
web, and define a crawling scheme to expand our sample. Last, we describe and briefly
validate our monitoring scheme.

4.6.1. How to Capture Linked Data on the Web?

Using our data collection, we want to enable researchers to investigate various aspects of
the dynamics of Linked Data on the web. With Linked Data being only a set of practices

7http://lod-cloud.net/, visited on 2018-06-10.

47

http://lod-cloud.net/

4. The Dynamics of Linked Data on the Web

to publish data on the web [17] to which publishers adhere to a varying extent, there is
no yardstick or authority to tell which sources on the web the Linked Data community
would consider in-scope or out-of-scope. Hence, the population we want to study does
not have a clear definition that is practical for our purposes.

To get to a working definition of the population, we contrast two views on Linked Data
on the web popular at the time of the design of the study: The Billion Triple Challenge
dataset, specifically the 2011 edition, and the LOD cloud, represented by the underlying
dataset from CKAN/DataHub available as of September 29, 2011.

BTC2011 – The Billion Triple Challenge Dataset

In the years 2008 to 2014, the Billion Triple Challenge to showcase applications that
build on Linked Data has been performed at the International Semantic Web Conference
(ISWC) series using a dataset crawled from the web [94, 95, 96, 97, 129]. In different
years, the dataset has been composed by downloading RDF from the web and following
links. This crawling approach to composition biases the dataset towards general-purpose
and well-interlinked data providers. Conversely, data of providers in a niche application
area with a less dense link structure –regardless of size and importance in that area–,
may be under-represented in such a crawl.

For our analyses, we looked at the dataset of the 2011 edition of the Billion Triple
Challenge [96] (short: BTC2011), the most recent dataset available at the time when we
designed the Dynamic Linked Data Observatory. The dataset was crawled in May/June
2011 and contains 2.145× 109 quadruples, i. e. RDF triples with the information resource
that provided the triple in fourth position. These triples came from 7.411× 106 infor-
mation resources, specifically information resources that provide RDF in RDF/XML
serialisation. The information resources reside on 791 pay-level domains (PLDs).

Definition 7 (Pay-Level Domain). The term PLD has been defined [147] as any domain
that requires payment at a top-level domain or country-code top-level domain registrar.

In practice, a pay-level domain is a direct sub-domain of a top-level domain (TLD)
or a second-level country domain (ccSLD), e.g., dbpedia.org, bbc.co.uk. We prefer
the notion of a pay-level domain since fully qualified domain names (FQDNs) over-
exaggerate the diversity of the data: for example, sites such as livejournal.com assign
different subdomains to individual users (e.g., danbri.livejournal.com), leading to
millions of FQDNs on one site, all under the control of one publisher: The BTC2011
dataset contained documents from 240 845 FQDNs, 233 553 of which were from the
livejournal.com PLD. Henceforth, when we mention domain, we thus refer to a PLD
(unless otherwise stated). The notion of the PLD has also been called “site” in earlier
work [25] or “top private domain” in a Java library for URI processing8. Today, Mozilla
maintains the “public suffix list”9, a list of mappings to determine the PLD for a given
FQDN.

8http://github.com/google/guava, visited on 2018-06-10.
9https://publicsuffix.org/, visited on 2018-06-10.

48

http://github.com/google/guava
https://publicsuffix.org/

4.6. The Set-up of the Dynamic Linked Data Observatory

100

102

104

102 104

N
u
m
b
er

o
f
d
o
cu
m
en
ts

Number of statements

(a) Overall

100

102

104

100 102 104
N
u
m
b
er

o
f
d
o
cu

m
en
ts

Number of statements

(b) hi5.com

0

200

400

600

800

1000

900 1000 1100 1200

N
u
m
b
er

o
f
d
o
cu

m
en
ts

Number of statements

hi5.com∑
next top 10

(c) hi5.com dominates

Figure 4.1.: Distribution of the number of statements in documents for the BTC2011
dataset (4.1a) overall and (4.1b) for hi5.com; as well as (4.1c) the periodicity
of distribution of statements-per-document for hi5.com that causes the split
tail in (4.1a) & (4.1b).

As the seed list for the crawl has been sampled from the dataset from the previous year,
the dataset is hard to analyse by looking at the dataset’s genesis. Hence, we look at what
the dataset actually contains.

We found the dataset heavily dominated by few exporters that use the foaf vocabulary,
hinting at social networks. We already discussed the dominance of livejournal.com
when it comes to FQDNs. Another social network, hi5.com dominates the dataset when
it comes to the ratio of statements per document: as observed for similar corpora (cf.
Table A.1 in [117]) hi5.com has many documents, each with an average of over two
thousand statements – an order of magnitude higher than most other domains. The
dominance of hi5.com – and to a lesser extent similar sites like livejournal.com –
shape the overall characteristics of the BTC2011 dataset. To illustrate one prominent
such example, Figure 4.1a gives the distribution of statements per document in the BTC
dataset on log/log scale, where one can observe a rough power-law(-esque) characteristic.
However, there is an evident three-way split in the tail emerging at about 120 statements,
and ending in an outlier spike at around 4 000 statements. By isolating the distribution
of statements-per-document for hi5.com in Figure 4.1b, we see that it contributes to
the large discrepancies in that interval. The stripes are caused by periodic patterns in
the data, due to its uniform creation: on the hi5.com domain, RDF documents with a
statement count of 10 + 4f are heavily favoured, where ten triples form the base of a
user’s description and four triples are assigned to each of f friends. Other lines are formed
due to two optional fields (foaf:surname/foaf:birthday) in the user profile, giving a
9 + 4f and 8 + 4f periodicity line. An enforced ceiling of f ≤ 1, 000 friends explains the
spike at (and around) 4 010. The other lines can be explained as follows: If a user on
hi5.com does not state his birthday, there is no statement in the exported foaf file for
birthday. Another reduction in statements is caused by the employed RDF/XML-parser,
which drops statements that have invalid characters in their XML.

The core message here is that although BTC2011 offers a broad view of Linked Data

49

4. The Dynamics of Linked Data on the Web

on the web, covering 791 domains, in absolute statement-count terms, the dataset is
skewed by a few high-volume exporters, and in particular hi5.com. When deriving global
statistics and views from BTC2011, the results say more about the code used to generate
hi5.com profiles than the efforts of thousands of publishers10. In defence of the BTC2011
dataset, we note that such a dominance is a naturally-occurring phenomenon and is not
limited to this dataset [52, 117].

Cloud2011 – The Linking Open Data Cloud Diagram

The cloud diagram from the Linking Open Data project, commonly dubbed as the “LOD
Cloud”, is a visualisation of Linked Data datasets and links. For a dataset to appear
in the diagram, the dataset needs to be registered in a registry, the DataHub built on
the CKAN software, specifically the group lodgroup therein11 and to fulfil minimum
requirements regarding certain self-reported numbers such as size and linkage with other
datasets. These conditions for appearance bias this view on Linked Data on the web
towards datasets whose providers put in the effort to sign up, and big datasets served on
one domain. Conversely, small datasets published in a decentralised fashion, e. g. social
network information published using the foaf vocabulary, or vocabularies themselves,
which are highly relevant to Linked Data, often do not make it into the diagram.

For our analyses, we looked at the self-reported statistics as of September 29, 2011
(short: Cloud2011). At this time, there were datasets from 206 FQDNs or 133 PLDs. The
reported triple count was more than one order of magnitude higher than for BTC2011.
Most of the datasets claim to serve RDF/XML (85%).

We found huge triple counts reported, but a quick check on the actual support of
serialisation formats (vs. the reported support) indicates that the self-reported statistics
and properties have to be taken with a grain of salt.

BTC2011 vs. Cloud2011

We next contrasted the two views on Linked Data on the web. Overall, both contain data
from 854 PLDs, with BTC2011 covering 791 domains (∼92.6%), Cloud2011 covering 133
domains (∼15.6%), and the intersection of both covering 70 domains (∼8.2% overall;
∼8.8% of BTC2011; ∼52.6% of Cloud2011). Cloud2011 reports a total of 28.4× 109

billion triples, whereas the BTC (an incomplete crawl) accounts for 2.1× 109 billion
quadruples (∼7.4% of Cloud2011). However, only 384.3× 106 million quadruples in the
BTC2011 dataset (∼17.9%) come from PLDs mentioned in the extracted Cloud2011
metadata. In Table 4.1, we present the BTC2011 and Cloud2011 statement counts
side-by-side. We can observe that a large number of high-volume BTC2011 domains are
not mentioned on Cloud2011, where the datasets in question may not publish enough
RDF data to be eligible by Cloud2011, or may not follow Linked Data principles or have
enough external links, or may not have self-reported.

10Furthermore, hi5.com is not even a prominent domain on Linked Data on the web in terms of
being linked, and was ranked 179/778 domains in a PageRank analysis of a similar corpus, see

50

4.6. The Set-up of the Dynamic Linked Data Observatory
T
ab

le
4.
1.
:
S
ta
te
m
en
t
co
u
n
ts

fo
r
to
p
-2
5
P
L
D
s
in

th
e
B
T
C
2
0
1
1
w
it
h
co
rr
es
p
o
n
d
in
g
re
p
o
rt
ed

tr
ip
le

co
u
n
t
in

C
lo
u
d
2
0
1
1
(l
ef
t)
,

a
n
d
to
p
-2
5
P
L
D
s
in

C
lo
u
d
20

11
w
it
h
B
T
C
20

11
q
u
ad

co
u
n
t
(r
ig
h
t)

N
o.

T
o
p
-2
5
B
T
C
2
0
1
1

T
o
p
-2
5
C
l
o
u
d
2
0
1
1

P
L
D

B
T
C
2
0
1
1

C
lo
u
d
2
0
1
1

P
L
D

C
lo
u
d
2
0
1
1

B
T
C
2
0
1
1

1
h
i
5
.
c
o
m

1
3
71

85
4
35

8
—

r
p
i
.
e
d
u

9
80

3
14

0
00

0
90

0
46

4
2

l
i
v
e
j
o
u
r
n
a
l
.
c
o
m

1
69

8
63

72
1

—
l
i
n
k
e
d
g
e
o
d
a
t
a
.
o
r
g

3
00

0
00

0
00

0
—

3
t
f
r
i
.
g
o
v
.
t
w

1
53

3
00

32
1

23
01

5
25

7
l
e
g
i
s
l
a
t
i
o
n
.
g
o
v
.
u
k

1
90

0
00

0
00

0
31

99
0
93

4
4

s
c
i
n
e
t
s
.
o
r
g

5
6
07

5
0
80

—
w
r
i
g
h
t
.
e
d
u

1
73

0
28

4
73

5
5

5
o
n
t
o
l
o
g
y
c
e
n
t
r
a
l
.
c
o
m

5
5
12

4
0
03

12
2
00

0
00

0
c
o
n
c
o
r
d
i
a
.
c
a

1
50

0
00

0
00

0
—

6
r
d
f
i
z
e
.
c
o
m

3
6
15

4
3
81

—
d
a
t
a
.
g
o
v
.
u
k

1
33

6
59

4
57

6
13

30
2
27

7
7

l
e
g
i
s
l
a
t
i
o
n
.
g
o
v
.
u
k

3
1
99

0
9
34

1
90

0
00

0
00

0
d
b
p
e
d
i
a
.
o
r
g

1
20

4
00

0
00

0
25

77
6
02

7
8

i
d
e
n
t
i
.
c
a

3
0
42

9
7
95

—
r
d
f
a
b
o
u
t
.
c
o
m

1
01

7
64

8
91

8
—

9
b
i
b
s
o
n
o
m
y
.
o
r
g

2
8
67

0
5
81

—
d
b
t
u
n
e
.
o
r
g

88
8
08

9
84

5
1
63

4
89

1
10

d
b
p
e
d
i
a
.
o
r
g

2
5
77

6
0
27

1
20

4
00

0
00

0
u
n
i
p
r
o
t
.
o
r
g

78
6
34

2
57

9
4
00

4
44

0
11

f
r
e
e
b
a
s
e
.
c
o
m

2
5
48

8
7
20

33
7
20

3
42

7
u
n
i
m
e
.
i
t

58
6
00

0
00

0
—

12
o
p
e
r
a
.
c
o
m

2
3
99

4
4
23

—
u
r
i
b
u
r
n
e
r
.
c
o
m

48
6
08

9
12

1
—

13
b
i
o
2
r
d
f
.
o
r
g

2
0
16

8
2
30

72
58

5
13

2
o
p
e
n
l
i
b
r
a
r
y
.
o
r
g

40
0
00

0
00

0
25

39
6

14
a
r
c
h
i
p
l
a
n
e
t
.
o
r
g

1
3
39

4
1
99

—
s
u
d
o
c
.
f
r

35
0
00

0
00

0
—

15
d
a
t
a
.
g
o
v
.
u
k

1
3
30

2
2
77

1
33

6
59

4
57

6
f
r
e
e
b
a
s
e
.
c
o
m

33
7
20

3
42

7
25

48
8
72

0
16

l
o
c
.
g
o
v

7
1
76

81
2

24
15

1
58

6
f
u
-
b
e
r
l
i
n
.
d
e

24
7
52

7
49

8
5
65

8
44

4
17

v
u
.
n
l

6
1
06

36
6

14
94

8
78

8
d
a
t
a
i
n
c
u
b
a
t
o
r
.
o
r
g

20
5
88

0
24

7
3
69

5
95

0
18

b
b
c
.
c
o
.
u
k

5
9
84

10
2

80
02

3
86

1
v
i
a
f
.
o
r
g

20
0
00

0
00

0
—

19
r
a
m
b
l
e
r
.
r
u

5
7
73

29
3

—
e
u
r
o
p
e
a
n
a
.
e
u

18
5
00

0
00

0
—

20
f
u
-
b
e
r
l
i
n
.
d
e

5
6
58

44
4

24
7
52

7
49

8
m
o
r
e
w
a
y
s
.
n
e
t

16
0
00

0
00

0
—

21
u
n
i
p
r
o
t
.
o
r
g

4
0
04

44
0

78
6
34

2
57

9
r
k
b
e
x
p
l
o
r
e
r
.
c
o
m

13
4
54

3
52

6
22

0
22

d
a
t
a
i
n
c
u
b
a
t
o
r
.
o
r
g

3
6
95

95
0

20
5
88

0
24

7
o
n
t
o
l
o
g
y
c
e
n
t
r
a
l
.
c
o
m

12
2
00

0
00

0
55

12
4
00

3
23

z
i
t
g
i
s
t
.
c
o
m

3
4
46

07
7

60
00

0
00

0
o
p
e
n
c
o
r
p
o
r
a
t
e
s
.
c
o
m

10
0
00

0
00

0
—

24
d
a
m
l
.
o
r
g

3
1
35

22
5

—
u
b
e
r
b
l
i
c
.
o
r
g

10
0
00

0
00

0
—

25
m
y
b
l
o
g
l
o
g
.
c
o
m

2
9
52

92
5

—
g
e
o
n
a
m
e
s
.
o
r
g

93
89

6
73

2
45

8
49

0

51

4. The Dynamics of Linked Data on the Web

Perhaps more surprisingly however, we note major discrepancies in terms of the
catchment of BTC2011 statements versus Cloud2011 metadata. Given that BTC2011
can only sample larger domains, a lower statement count is to be expected in many cases:
however, some of the largest Cloud2011 domains do not appear at all. Reasons can be
found through analysis of the BTC2011’s publicly available access log [96]. In Table 4.2,
we present reasons for the top-10 highest-volume Cloud2011 data providers not appearing
in the BTC2011 dataset (i. e. providers appearing with “—” on the right-hand side of
Table 4.1). Robots indicates that crawling was prohibited by robots.txt exclusions;
Http-401 and Http-502 indicate the result of lookups for URIs on that domain; Mime
indicates that the content on the domain did not return application/rdf+xml used
as a heuristic in the BTC2011 crawl to filter non-RDF/XML content; Unreachable
indicates that no lookups were attempted on URIs from that domain; Other refers
solely to europeana.eu, which redirected all requests to their home page.
Concluding, we found that both views have strengths and weaknesses, and observe

major divergence with respect to coverage between the two. As our aim is to provide a
general-purpose dataset, which should be interesting to a wide range of parties, we decided
to take a view on linked data that unifies the best of both BTC2011 and Cloud2011.

Table 4.2.: Reasons for largest ten PLDs in Cloud2011 not appearing in BTC2011.

PLD R
o
b
o
t
s

H
t
t
p
-4
0
1

H
t
t
p
-5
0
2

M
im

e

U
n
r
e
a
c
h
a
b
l
e

O
t
h
e
r

linkedgeodata.org X X
concordia.ca X
rdfabout.com X
unime.it X
uriburner.com X
sudoc.fr X
viaf.org X
europeana.eu X
moreways.net X
uberblic.org X

4.6.2. Sampling Technique

Due to the size of Linked Data on the web and the need for frequent snapshots, sampling is
necessary to create an appropriate collection of URIs that can be processed and monitored

http://aidanhogan.com/ldstudy/table21.html, visited on 2018-06-10.
11http://ckan.org/, now at https://old.datahub.io/dataset?tags=lod, visited on 2018-06-10.

52

http://aidanhogan.com/ldstudy/table21.html
http://ckan.org/
https://old.datahub.io/dataset?tags=lod

4.6. The Set-up of the Dynamic Linked Data Observatory

under the given time, hardware and bandwidth constraints. The goal of our sampling
method is thus two-fold: to select a set of URIs that (i) capture a wide cross-section of
domains and (ii) can be monitored in a reasonable time given our resources and in a
polite fashion. Given the previous discussion, we wish to combine the BTC2011 (crawled)
and Cloud2011 (metadata) perspectives when defining our seed-list.

Before we continue to describe the sampling methodology we choose, it is worthwhile
to first remark upon sampling methods used in other dynamicity studies of the Web.

Published Sampling Techniques

There are several published works that present sampling techniques in order to create a
corpus of Web documents that can be monitored over time. Having studied a variety of
major works, we could not find common agreement on a suitable sampling technique for
such purposes. The targeted use-cases and research questions directly affect the domain
and number of URIs, as well as the monitoring frequency and time frame.

Grimes and O’Brien [88] studied the dynamics of highly frequently changing pages and
prepared their seed list accordingly. From a crawl of the search engine provider Google,
they selected hosts according to the number of URLs they had. From that, they sampled
“a number of URLs” and crawled them twice a day and took the most dynamic of them.
From those URLs they chose those with at least 500 successful fetches, which allows for
assumptions on the reliability of the provider.

Fetterly et al. [72] studied the dynamics of changes within pages and the Web in
general. In order to allow for general statements, they took the Yahoo! homepage as a
source of URLs covering many subjects and types of providers of pages. From there, they
crawled and took a random sample of the URLs.

In their development of an estimator for change frequency of web pages, Cho and
Garcia-Molina [44] crawled the Web for the validation of their estimator, so they also
need a broad coverage of various pages. They started off with a snapshot of 2.5× 107

web pages they already had, from which they selected the most popular 270 sites (cf.
PLD, definition 7) according to their in-links. From each site, they downloaded 3 000
pages, which they downloaded every day for their analysis.

We observe that where researchers employed sampling, the exact numbers employed
in the sampling are not described as calculated for the special needs of their analyses.
Instead, the numbers seem like a result of the trade-off between broad coverage and
resource consumption.

Our Sampling Technique

We can conclude that existing sampling methods select URIs from crawled documents,
either randomly, because of specific characteristics (e. g. dynamic or highly ranked), or to
ensure an even spread across different hosts. Thus, we decide to use a combination of
these three methods to generate our list of URIs.

Similarly to the works in literature, we take into account two factors when sampling:
coverage of different hosts and bias for certain characteristics. To compile our initial

53

4. The Dynamics of Linked Data on the Web

seed list, we took all 220 example URIs in the registry for Cloud2011 (for coverage,
similar to [72]). To this list, we added the 220 most popular URIs from the BTC2011
dataset, determined by a PageRank analysis [85] (for the characteristics popularity and
interlinkage, similar to [44]). Thus, we also include popular vocabularies, which are
amongst the most linked Linked Data documents. These 440 core URIs contain 137
PLDs, 120 from the Cloud2011 examples and 37 from the most popular BTC2011 URIs.
To build a corpus of a meaningful size, we extend these 440 URIs by crawling. From the
data thus downloaded, we obtain the final set of URIs to monitor.

The result is then our best-effort compromise to achieve representative snapshots of
Linked Data that (i) take into account both views on Linked Data by including Cloud2011
and BTC2011 URIs in the core seed list, (ii) extend beyond the core seed list in a defined
manner, and (iii) do not exceed our crawling resources.

4.6.3. Crawling Setup

From our observations, the specifics of the crawling configuration have a significant
effect on the data. For instance, the reported support of serialisation formats indicates
that by restricting ourselves to RDF/XML, like BTC2011, we may miss out on 15%
of data providers from Cloud2011. Thus, we provide details and justifications on our
crawling configuration: Our implementation is based on two open source Java projects:
(1) LDSpider12, a multi-threaded crawling framework for Linked Data [124], and (2)
any2313, a parsing framework for various RDF syntaxes. The experiments are intended
to run on a dedicated, single-core 2.2GHz Opteron x86-64 with 4GB of RAM on a
university network. We use the following configuration:

All RDF syntaxes: we want to consider all standard serialisation formats for RDF as
supported by LDSpider or any23, including RDF/XML, Turtle, N-Triples, and
RDFa. Moreover, we do not want to penalise providers for incorrectly implementing
content-negotiation or falsely suggesting formats in file extensions, and thus do
not pre-filter on Content-type header information or URI substrings. For RDFa,
where RDF extracted from HTML can either be meta data from HTML headers,
e. g. on stylesheets and icons, or data from the HTML body, which we consider
the “intended” data, we are rather interested in the latter and filter out the former
“accidental” trivial triples.

Threads: to make the most of our hardware in presence of slow sources and parsing, we
use a multi-threaded crawler configuration. In previous work [117], we found 64
threads to offer the best trade-off between parallelism and CPU/disk contention.

Timeouts: Working on the web, we have to deal with network outages and misconfigured
hard- and software. Hence, we set a timeout on connections and sockets to 120 s.
The timeout is deliberately high to ensure reproducibility.

12http://github.com/ldspider/ldspider, visited on 2018-06-10.
13http://any23.org/, visited on 2018-06-10.

54

http://github.com/ldspider/ldspider
http://any23.org/

4.6. The Set-up of the Dynamic Linked Data Observatory

Links: When crawling, we have to decide which links we want to follow (cf. the 4th
Linked Data Principle [17]). We follow all links, instead of e. g. restricting us to
owl:sameAs or rdfs:seeAlso links.

Breadth-first: As crawling strategy, we chose breadth-first crawling, which, given a
diverse seed-list, should result in a diverse data-set [117].

Redirects: On the web of Linked Data, redirects, i. e. HTTP responses with 301, 302, 303
or 307 status code, are often used to express the difference between non-information
resources and information resources14. Hence, we do not consider redirects as links,
but follow the redirects immediately within the same crawling hop, until we get a
response with a successful status code (2xx) or an error (status code ≥400, network
error, or we hit a cycle or path length limit).

Per-domain Queue: To implement polite crawling in an efficient fashion, our crawler
maintains an individual queue per PLD. By polling these queues in a round-robin
fashion, we can ensure a maximal delay between two accesses to a PLD while
making high use of our crawler’s capacity.

Priority Queue: To cover the most important URIs per PLD when performing incomplete
crawls, we order the URIs in the per-PLD queues according to the number of in-links
we encountered so far.

Politeness Policy: For polite crawling, we implemented a 2 s delay between two requests
to a PLD. Moreover, we honour robots.txt exclusions.

When crawling a scale-free network like the web in a polite fashion, the phenomenon
of “PLD-starvation” can occur [117], which we want to counter: The number of active
PLDs (i. e. PLDs with still URIs in the queue) times the politeness delay results in the
minimum amount of time to complete a round of the per-PLD queues. In the worst
case, only one PLD is active, which keeps the crawling hop unfinished until all URIs
from that PLD are downloaded in a polite fashion. This “starvation” results in a very
low utilisation of crawling resources. On the other hand, in the frontier, i. e. the list of
URIs for the next hop, there are a lot of URIs which could raise the utilisation. Hence,
we employ a termination criterion for the hops: If (1) the list of seed URIs has been
downloaded completely, and (2) all redirects have been followed and (3) the number
of active PLDs drops below the number of threads, we end the current hop and move
the remaining URIs to the frontier. The priority queues ensure that we cover the most
important URIs nevertheless.

4.6.4. Compiling the Seed List

Starting from our list of 440 core URIs, we wish to expand a 2-hop crawl using the
outlined framework, from which we will extract the final seed list of URIs to monitor
in our observation framework. However, due to the unpredictability/non-determinism

14Discussed under the headline “httpRange-14” at http://www.w3.org/2001/tag/group/track/issues/
14, visited on 2018-06-10.

55

http://www.w3.org/2001/tag/group/track/issues/14
http://www.w3.org/2001/tag/group/track/issues/14

4. The Dynamics of Linked Data on the Web

0

15

30

45

60

75

90

1 2 3 4 5 6 7 8 9 10
0

3

6

9

12

15

18

10
3
d
o
cu

m
en
ts

(r
ed

,
le
ft

b
a
rs
)

1
06

st
a
te
m
en
ts

(b
lu
e,

ri
gh

t
b
a
rs
)

Crawl No.

Figure 4.2.: Number of statements and documents per crawl experiment.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

N
u
m
b
er

of
P
L
D
s

Rounds of Crawl No.

New PLDs

Figure 4.3.: Number of PLDs per round per crawl experiment.

of remote connections, we want to ensure a maximal coverage of the documents in this
neighbourhood. Along these lines, we repeated ten complete 2-hop crawls from our core
URI list.

With respect to the non-determinism, Figure 4.2 shows for each round the number of
documents (left bars on y-axis) and the number of statements (right bars on y-axis). We
can observe that two crawls (crawl number 1 and 10) have a significantly higher number
of statements compared to the other crawls. One reason for this large discrepancy relates
to the identi.ca domain, where a URI (referring to Tim Berners-Lee’s account; a highly
ranked document in the BTC2011 dataset) in the seed round of crawls 1 and 10 offered
a rich set of links within that domain, whereas the lookup failed in the other crawls,
cutting off the crawler’s path in that domain: for example, in the first crawl, identi.ca
accounted for 1.5× 106 million statements, whereas in crawl 2, the domain accounted for
1.7× 104 statements. Such examples illustrate the inherent non-determinism of crawling.

In Figure 4.3, we show for each crawl the number of visited PLDs per round together
with the number of new PLDs per round with respect to the previous round. The left bar
for each crawl represents Round 0, the middle bar Round 1, and the right bar Round 2.

56

4.6. The Set-up of the Dynamic Linked Data Observatory

100

101

102

100 101 102 103 104

N
u
m
b
er

o
f
P
L
D
s

Number of documents

Figure 4.4.: Distribution of the number of documents per PLD.

Table 4.3.: Top 10 PLDs based on the number of URIs.

No. PLD URIs

1 gesis.org 7 850
2 chem2bio2rdf.org 5 180
3 dbpedia.org 3 643
4 freebase.com 3 026
5 fer.hr 2 902
6 loc.gov 2 784
7 concordia.ca 2 784
8 dbtune.org 2 767
9 fu-berlin.de 2 689
10 semantictweet.com 2 681

We can observe that the relative level of domains across the crawls is much more stable
when compared with the number of documents (cf. Figure 4.2). Across rounds, the
graph shows an average ∼1.3× increase of active PLDs between Rounds 0 and 1, and
an increase of ∼3.4× between Rounds 1 and 2. Further, we observe that about 30% of
the PLDs in Round 1 are new compared to the previous round and roughly 70% of the
PLDs in Round 2 are not visited by the crawler in the rounds before.

Given the non-deterministic coverage of documents, to ensure comprehensive coverage
of URIs in the 2-hop neighbourhood, we take the union of URIs that dereferenced to
RDF content, resulting in a total set of 95 737 URIs spanning 652 domains, giving an
average of 146.8 dereferenceable URIs per domain. Figure 4.4 shows in log/log scale the
distribution of the number of PLDs (y-axis) against the number of URIs in the union list
(x-axis); we observe a typical power-law-ish distribution and see that 379 PLDs (∼58.1%)
have one URI in the list, 78 PLDs (∼12.0%) have two URIs, and so forth. In addition,
Table 4.3 lists the number of URIs for the top-10 PLDs in the set (represented by the
ten rightmost dots in Figure 4.4).

57

4. The Dynamics of Linked Data on the Web

4.6.5. Monitoring Scheme

For the monitoring scheme, we have to decide along two dimensions: Crawling set-up
and interval. Both are subject to resource constraints.

For the crawling set-up, resource constraints cause us to limit the number of URIs we
download. The spectrum spans between downloading the same list of URIs every time
and downloading a different list of URIs every time, where in the latter case the list of
URIs is determined by the previous crawls or the initial URI list. The former end of the
spectrum allows for studying the evolution of the list of URIs in a contiguous fashion
and is widely followed in literature [28, 29, 43, 44]. We follow the hybrid approach of [163]
by downloading the same list of URIs every time and by also performing a crawl from
this URI list to incorporate new sources. This way, we want to balance contiguousness
and adaptiveness in our set-up. Yet, to answer the research questions of Section 4.2,
we require a contiguous dataset. Hence, we disregard the crawled part in this thesis.

For the monitoring interval, resource constraints cause us to set a frequency for
monitoring. The frequency in previous studies based on practical considerations, e. g.
weekly [28, 29, 43, 44], daily [163, 72], or even hourly [88]. Given our resources, we
decided for a weekly interval.

4.6.6. Validation of the Feasibility the Proposed Set-up

To validate our set-up, we performed a download of the 95 737 seed URIs and monitored
the crawler’s behaviour. The download took 5 h 55min, during which we downloaded
about 16× 106 statements from about 80× 103 documents. In Figure 4.5, we show the
number of requests performed per crawl hour. During the first hours, we observe the
highest rate of about 70× 103 requests per hour. After that, the rate drops significantly
due to PLD starvation: In the last hour, only about 1.2× 103 requests have been made.
Overall, we observe that, including a safety margin, we can process the seed list within a
10 hours’ interval.

4.7. High-Level Statistics

We have performed this monitoring on a weekly basis since 2012/05/06, yielding 299 weekly
snapshots at the time of writing, spanning exactly 6 years. Each snapshot consists of
the content retrieved for the core kernel URIs (following redirects), the content of the
expanded crawl, a set of redirects, and access logs for URIs that were looked up. In
this thesis, we focus on the kernel. Table 4.4 enumerates the average and total amount
of data retrieved over the 299 weeks for the kernel documents. Of the 95 737 kernel
URIs, an average of 64 243 URIs could be dereferenced successfully: though all URIs
were deemed to dereference to RDF during sampling, some now fail to dereference. The
number of unique URIs dereferencing successfully in at least one snapshot was 95 567
and the analogous figure for domains was 649 (vs. 652 for the source URIs). In terms of
the diversity of the kernel, the documents in each snapshot came from an average of 528
PLDs.

58

4.7. High-Level Statistics

0 1 2 3 4 5 6
0

2

4

6

·104

Hours Since the Start of the Crawl

N
u
m
b
er

of
R
eq
u
es
ts

Figure 4.5.: Number of requests made over time.

Table 4.4.: Overall statistics across all 299 snapshots.

Mean pay-level domains 527.7 ±59.5
Mean seed URIs dereferenced 64 243.3 ±11 121.6

59

4. The Dynamics of Linked Data on the Web

4.8. Methods to Describe and Analyse the Dynamics of Linked
Data

There is no standard way to analyse dynamic Linked Data. For instance, for the analysis
of dynamic Linked Data in the set-up and after the first half year, we used a multi-stage
pipeline controlled on the Linux command line, where the components were mostly
written in Java. In a similar fashion, other researchers conducted their work, e. g. the
code to a paper by Dividino et al. can be found online15. While the approach to use a
general-purpose imperative programming language leaves room for manual optimisation
of the code, to gain understanding how such code performs the analyses is difficult. Hence,
the validation of the analyses is hard to carry out.

Motivating Example. In [128], we reported the number of overall documents ever
appearing in the first half year of the Dynamic Linked Data Observatory dataset, which
monitors a set of 95 737 seed URIs, to be 86 696. To be precise, this was the number of
information resources ever encountered in any of the 29 snapshots available at that time
and determined by counting the contexts of quads. When considering e. g. 171 snapshots,
this number rises to about 106 105 documents, more than seed URIs. This mismatch
points us towards that we may have to re-ask our question and take into account the
dereferencing process: If we instead consider the number of seed URIs that dereferenced to
information resources, the number for 29 snapshots is 92 712. To further put this number
into context, we note that for the first snapshot, 67 107 seed URIs were redirected, i. e.
had non-trivial dereferencing, and 77 958 could be dereferenced successfully.

To specify the analyses in a way that is easier to validate and that requires less
programming effort, we therefore want to investigate a declarative approach to analyse
dynamic Linked Data. The Linked Data principles mention the declarative SPARQL
language for querying RDF data. Hence, we next investigate the applicability of SPARQL
and RDF to analyse dynamic Linked Data. Specifically, we want to model the snapshots
from the Dynamic Linked Data Observatory in RDF, and use queries in the declarative
SPARQL language for the analyses. In this declarative approach, imperative code is then
only required to produce data according to the model.
Hence, in this section we ask the research question: Can we use the Semantic Tech-

nologies of SPARQL and RDF for the analyses of dynamic Linked Data?

4.8.1. Steps to Analyse Dynamic Linked Data

To analyse dynamic Linked Data based on weekly snapshots requires a three-step pro-
cessing pipeline:

1. Extraction of the relevant data from the raw data and log files generated weekly
into a model

2. Preprocessing of the data, e. g. application of a uniform handling of missing values

15https://github.com/dividino/LODCacheUpdateStrategyEvaluation, visited on 2018-06-10.

60

https://github.com/dividino/LODCacheUpdateStrategyEvaluation

4.8. Methods to Describe and Analyse the Dynamics of Linked Data

3. Analysis of the data

With the aim of reducing the amount of imperative code, we want to cover step 2 and 3
declaratively using Semantic Technologies. For step 1, we have to rely on imperative
code, as there no declarative approach to parse all the log files of the crawler employed
in the Dynamic Linked Data Observatory, LDSpider.
As basis for our considerations, we provide an ontology in RDFS to represent infor-

mation both at the physical and logical levels of dynamic Linked Data. We then can
present our processing pipeline:

1. Extraction of the relevant data from the raw data and log files generated weekly
into an RDFS model using imperative code

2. Preprocessing of the data, e. g. application of a uniform handling of missing values
using SPARQL UPDATE queries

3. Analysis of the data using SPARQL SELECT queries

We now present first the model and then the steps of the processing pipeline.

4.8.2. Modelling Dynamic Linked Data in RDFS

Using our model, we want to allow for analysing both the data access and the data itself
in an integrated fashion. The basis for our considerations is an approach that periodically
creates snapshots of Linked Data by dereferencing a set of URIs. Hence, central to our
ontology is an observation of one URI at one point in time. We show our proposed
ontology in Figure 4.6.

To represent the details about the physical level of Dynamic Linked Data, our model
captures in an RDF list the HTTP requests following redirects where dereferencing a
seed URI. RDF lists are closed and ordered, both features are desired for the requests,
as the number of requests that has been made is determined by what happened, and
the order of the request is determined by the redirects. Nonetheless, we highlight
that to traverse the elements in RDF lists in queries, it is necessary to use SPARQL
property paths, which may be rather expensive to evaluate depending on the assumed
semantics [7]. To allow for querying the information resource of a seed URI, the model
includes the :hasLastResponse property. In this way, it is not necessary to traverse
the entire list of requests thus reducing the complexity of queries that only require data
about the information resource associated with a seed URI. For each request, the model
represents the obtained response which contains the status code and the response body
(if applicable).

The logical level of Dynamic Linked Data corresponds to the RDF Graphs obtained
in the body of a response. To associate these graphs with the corresponding response, the
proposed model represent the triples in the RDF Graphs as an RDF list of reified triples.
Reified triples allow to make statements about triples without logically asserting the
triples. In this context, reified statements allows for referring to RDF Graphs at different
points in time. Another option would have been named graphs for each information

61

4. The Dynamics of Linked Data on the Web

qb:Observation

:Snapshot

:hasSnapshot

xsd:anyURI

:hasSeedURI

rdf:List

:hasRequestChain

http:Response

:hasLastResponse

xsd:boolean

:changed

:next

xsd:date

dc:created

http:Request

list:member

xsd:integer

http:statusCodeValue

rei:RDFGraph,
rdf:List

http:body

http:requestURIhttp:resp

http:Method

http:mthd

rdf:Statement

list:member

xsd:hexBinary

crypto:md5

rdfs:Resource

rdf:subject rdf:predicate rdf:object

:PLD

:hosts

rdfs:Literal

rdfs:label :lod2012{topic|party}
Classification

Figure 4.6.: Our proposed ontology to describe dynamic Linked Data in RDFS. We note
that the dashed information can be inferred. We did not use the dotted
information to produce the figures in this thesis.
The depiction uses the UML class diagram with the following correspon-
dence from UML to RDFS: UML classes depict rdfs:Classes and UML
associations depict rdfs:domain and rdfs:range of an rdf:Property. We
use list:member associations to state the rdfs:Class of the members of
an rdf:List.

62

4.8. Methods to Describe and Analyse the Dynamics of Linked Data

resource at each point in time. Nonetheless, this option has several drawbacks. First, we
would have to name each named graph in FROM clauses of analysis queries. With about
300 snapshots of about 95 737 URIs, we would have about 30× 109 FROM clauses in the
queries, which is rather lengthy. Second, to try different triple stores, whose treatment of
named graph varies if they are supported (some treat the triples in the named graphs
as asserted in the default graph), we want to rely on common features independently
from the triple store. To efficiently find out whether a HTTP request to a given URI
yielded two different graphs at two different points in time, we have to check the graphs
for isomorphism. In the presence of blank nodes, such checks are difficult in SPARQL.
Hence, we replace the blank nodes by URIs using the hash-based skolemisation approach
described by Hogan in [115]. Thus, we can check using RDF term equality whether a
triple with a blank node from the graph derived at one point in time is the same as a
triple with a blank node from another point in time. We model the corresponding hashes
using the crypto:md5 predicate. To materialise the expensive computation of changes,
we use the :changed predicate.

To allow for analyses on the level of PLDs, we model the PLDs and the URIs from
the seed URI the PLD hosts, see the predicate :hosts in Figure 4.6. Moreover, to
perform analyses based on the classifications of the Linking Open Data cloud of 2012, we
also model the classifications of PLDs according to topic and party, see the predicates
:lod2012topicClassification and :lod2012partyClassification in Figure 4.6.

4.8.3. A Processing Pipeline to Extract Data According to Our Model

The processing pipeline includes the handling of the data produced by the tools to create
snapshots of Linked Data. In our approach, the pipeline obtains relevant information
about the dynamics of the crawled Linked Data that is scattered in different LDSpider
outputs into one RDF Graph. While LDSpider uses a de-facto standard for some of the
log files, e. g. the format of the popular Squid HTTP cache16, which could be declaratively
extracted e. g. using regular expressions to extract the data into comma-separated text,
and to use Tarql17 to turn the comma-separated text into RDF, not all the data required
is in such log files. For instance, errors on the networking level such as timeouts do not
have a standardised HTTP error code, and hence do not appear in those log files.

We give an overview of the processing pipeline in Figure 4.7. The proposed pipeline
includes two major components, which extract data per-snapshot, see Figure 4.7a: one
to process the log files on the physical level of Linked Data18, and another to process the
quads on the logical level of Linked Data19. Moreover, two minor components provide
links between the snapshots and to information about the PLDs of the URIs in the seed
list. The minor components have only to be run once, see Figure 4.7b.

To integrate the data of the two major components using RDF merge [109], both
mint URIs for the HTTP responses retrieved during the dereferencing process in the

16http://www.squid-cache.org/, visited on 2018-06-10.
17http://tarql.github.io/, visited on 2018-06-10.
18http://github.com/kaefer3000/dyldo-http2rdf, visited on 2018-06-10.
19http://github.com/kaefer3000/dyldo2qb, visited on 2018-06-10.

63

http://www.squid-cache.org/
http://tarql.github.io/
http://github.com/kaefer3000/dyldo-http2rdf
http://github.com/kaefer3000/dyldo2qb

4. The Dynamics of Linked Data on the Web

Table 4.5.: Assigning exceptions to HTTP status code classes.

Exception Status Code Class Rationale

SSL exceptions 5xx SSL mis-configured on server
Connection pool timeout 5xx Caused by invalid HTTP responses
Socket timeout 5xx Server mis-configured
Socket exception 5xx Server suddenly closed connection
URI syntax exception 5xx Caused by server-provided redirects

No HTTP response 6xx

Unclear whose network is faulty
No route to host 6xx
Unknown host 6xx
Connection timeout 6xx

same way. Then, the URIs generated from the last HTTP response in an HTTP request
chain matches the URIs generated from the contexts in the quads of the snapshot. The
data merged from all, major and minor, components follows the model presented in
Figure 4.6. The meta data processing code adds custom HTTP status codes for URIs
whose dereferencing yields non-HTTP errors such as networking errors. We assigned
network errors to the HTTP status code classes whether we consider them sever or
networking errors. For the networking errors, we added a custom status code class (6xx)
to the standard status code classes. Those custom HTTP status codes allow us to model
and query both HTTP errors and networking errors in a uniform fashion. We list the
assignment of non-HTTP errors to status code class in Table 4.5 providing a rationale
four assignment.

4.8.4. Declaratively Specifying Preprocessing using SPARQL UPDATE

We next give two examples for specifying preprocessing steps using SPARQL UPDATE
queries.

The Semantics of Unavailable Sources

One step is the definition of the semantics of offline sources. For instance, if the request to
a URI returned successfully for two points in time with the same data, but unsuccessfully
for the point in time in between, we have to define whether this behaviour constitutes a
change. In this thesis, we do not consider unsuccessful responses as a change and specify
this semantics using a SPARQL UPDATE query, see Appendix A.1.1. The query consists
in two SPARQL INSERT queries:

Forward Propagation The first query checks for a given URI, whether there is an
observation with an HTTP body for the last response followed by an observation
without an HTTP body for the last response. For such pairs of last responses, the
HTTP body is propagated from the last response with a HTTP body to the last

64

4.8. Methods to Describe and Analyse the Dynamics of Linked Data

RDF data processing
“logical level”

Downloaded

RDF dataset
RDF Graph hashes in RDF

Reified triples

Meta data processing
“physical level”

HTTP log

HTTP redirects

HTTP headers

Standard error

Request descriptions

in RDF

(a) The processing pipeline per snapshot. The input (on the left) is produced by a crawler. Both the physical
and the logical level, and data from different snapshots can be processed in parallel.

Snapshot link
generator

Links between

snapshots in RDF

PLD information
processor

URI list
RDF links between the

URIs and their PLDs

(b) The processing pipeline to be run once.

Figure 4.7.: The proposed processing pipeline to produce data in our model of Figure 4.6
to describe dynamic Linked Data in RDF.

65

4. The Dynamics of Linked Data on the Web

response without an HTTP body. In the presence of redirects, multiple URIs can
redirect to the same last response. Thus, an unavailable source can get multiple
HTTP bodies assigned using this propagation method. This result of multiple
HTTP bodies is desired – if a source is online again, we have to check for all seed
URIs for which the source was the last response, whether there was a change,
hence all previous HTTP bodies are candidates for checks. Unfortunately, this adds
complexity to the analysis queries. Term equality of the hashes of responses is not
sufficient in the case of multiple HTTP bodies. Instead, we have to use FILTER

NOT EXISTS, which complicates the queries.

Backward Propagation While the first query works forward, we also want to consider
sources that only appeared in the Dynamic Linked Data Observatory after some
time. For those sources, we have to propagate the first-observed HTTP body
backward. Hence, the query checks for an observation of a seed URI whether
there was ever a body downloaded before in a last response, and if not, the query
propagates the HTTP body to the last response in the previous observation of the
seed URI.

The query needs to be executed until no further data is added.

As the backward propagation involves a SPARQL property path to check whether
there was a body ever before, which is computationally expensive, we can run the forward
propagation query first until no further data is added, and then run a re-written version
of the backward propagation query that contains no SPARQL property path (the check
whether there was ever a body downloaded before is then superfluous).

Materialising Intermediary Results

A recurrent query part when investigating the dynamics of Linked Data is the check
whether between two points in time, a URI dereferenced to the same or to different RDF
Graphs. When working with our proposed model, this check requires the evaluation of
11 triple patterns and a filter in SPARQL. We can reduce this number to 5 triple patterns
and no filter by pre-computing results: We evaluate a SPARQL UPDATE query with the
11 triple patterns and a BIND instead of the FILTER in the WHERE clause and add triples
with :changed predicate (see Figure 4.6) using a corresponding INSERT clause. Then,
we can use the :changed predicate in our analysis queries.

4.8.5. Declaratively Specifying Analyses using SPARQL

We provide queries to determine the high-level statistics (Hx) of Section 4.7 in Ap-
pendix A.2. Moreover, we provide queries to create the data for the first six figures
(Qx) and Table 2 (T2) of our paper [128] in Appendix A.3. We list the features of the
SPARQL language used by each query in Table 4.6.

66

4.8. Methods to Describe and Analyse the Dynamics of Linked Data

Table 4.6.: SPARQL features used by different queries.

Query No. TP No. AGG No. STR No. SQ No. TP in EXI No. PP

H1 4 1 — — — —
H2 5 1 — — — —
H3 3 1 — — — —
H4 4 1 — — — —
Q1 4 2 — 1 — —
Q2 5 1 2 — — —
Q3 3 1 — 1 4 1
Q4 3 1 — 2 4 1
Q5 10 1 — — 1 —
Q6 5 8 — 1 6 —
T2 8 15 — 3 6 —

Abbreviations: TP – Triple Patterns, AGG – Aggregations, STR – String Manipulations,

SQ – Subqueries, EXI – Exists, PP – Property Paths

4.8.6. Evaluation of the Declarative Approach to Analyse Dynamic Linked
Data

We evaluate the use of Semantic Technologies for analysing dynamic Linked Data. First,
we look at the RDFS model and SPARQL queries, then at data loading and execution.
Specifically, we look at the queries on the physical level of [128] and five snapshots from
the Dynamic Linked Data Observatory.

RDFS Model and SPARQL Queries

We gave a model of dynamic Linked Data in RDFS in Figure 4.6. RDFS allowed us to
model all relevant aspects of dynamic Linked Data for the queries of [128]. While we
gave the ontology in RDFS, we do not make use of RDFS entailment. For instance, the
use of rdfs:domain and rdfs:range was only for documentation purposes.

The expressivity of SPARQL is sufficient to give queries for the analyses on the physical
level of [128] (see Appendix A.3) and the required preprocessing (see Appendix A.1). In
contrast to the imperative code we used before for the analyses, which spans thousands
of lines of code, the queries are fairly concise. We did not investigate the logical level for
scalability reasons, see below.

Initial Performance Experiments

We investigated queries for the first (Q1), the second (Q2), and the fifth (Q5) figure20

of [128]. We chose the queries Q1 and Q2 as those are the simplest queries to produce

20In this thesis, we provide updated results for the figures: We used the SPARQL query results for Q1 to
generate Figure 4.8, for Q2 to generate Figure 4.9, and for Q5 to generate Figure 4.12.

67

4. The Dynamics of Linked Data on the Web

figures of [128]. We add Q5 to the list, as Q5 is the first query to involve a comparison
between snapshots, which considerably rises the number of triple patterns in the query.
To estimate the complexity of the SPARQL queries see Table 4.6.

To showcase the applicability of our approach, we present loading and querying times
for the first five snapshots and the three queries. We used three different state-of-the-art
SPARQL engines with fundamentally different architectures. We do not want to publicly
name the two commercially available engines, hence we use abbreviations. We call them
Engine V, Engine B, and Linked Data-Fu [198].

From the five snapshots, we yielded about 10M triples overall with information about
the physical level (including the hashes on the graphs) and 481M triples overall with
the reified data (derived from about 80M triples raw data), the hashes, and data about
pay-level domains required for more analyses from [128]. As the snapshots are processed
individually and because we exploit in the model the fact that many sources do not
change so much over time, there is a high number of duplicate triples between the data
from different snapshots. Therefore, the data to be processed by the SPARQL query
engines is considerably lower than the reported triple numbers.

We ran the experiments on a Debian 8 (Jessie) 64 bit Linux system with 4 cores of an
AMD Opteron 62xx with 2GHz and 48GB of RAM. We report the times in Table 4.7.
We report the loading times for the physical data (including the hashes on the graphs),
and the full data. Moreover, we briefly report on the lessons learned while using different
SPARQL query engines to evaluate our approach:

Engine V (Version 7.20.3217) is a SPARQL engine based on a relational database. This
engine was not able to load the full data due to the skews in the data introduced
by the heavy use of RDF lists for the reified triples. The query performance of the
engine was the best in our initial experiments, when considering the evaluation of
the queries after indexing.

Engine B (Version 2.1.4) is a SPARQL engine based on specialised indices. This engine
managed to load the entire data, but query performance is low when using the
automatic query optimiser for queries where different snapshots are compared, for
instance it took about a week to get results for Q5. With the feature of the engine
to manually optimise the query plan, we were able to significantly improve the
performance, for Q5 down to 73 s. In contrast to the other engines we considered,
this engine allows to introspect the query evaluation, which helped optimising the
query plans.

Linked Data-Fu (Version 0.9.12)21 [198] contains a SPARQL engine that executes queries
on the fly in main memory by streaming RDF through a query plan. Hence, Linked
Data-Fu does not employ indices and the availability of main memory limits the size
of data to be processed. As Linked Data-Fu does not support aggregates, we had to
remove them from the queries and implemented them using GNU AWK22 scripts.

21http://linked-data-fu.github.io/, visited on 2018-06-10.
22http://www.gnu.org/software/gawk/, visited on 2018-06-10.

68

http://linked-data-fu.github.io/
http://www.gnu.org/software/gawk/

4.8. Methods to Describe and Analyse the Dynamics of Linked Data

Table 4.7.: Times for loading and querying data.

Load Query Load+Query physical
physical full Q1 Q2 Q5 Q1 Q2 Q5

Engine V 181 s failed 4 s 18 s 14 s 185 s 199 s 195 s
Engine B 289 s 6 h 45 s 80 s 73 s∗ 334 s 369 s 362 s
Linked Data-Fu + AWK n/a failed‡ 97 s 112 s 178 s 97 s 112 s 178 s
∗ Using manual query optimisation. Otherwise, the execution time was about 1 week.
‡ The engine ran out of main memory when considering the full data set.

For the query evaluation, we piped the results from Linked Data-Fu through AWK
4.1.1 to get the aggregated results. When considering both the loading time and
the querying time, Linked Data-Fu proved to be superior to the other two engines
we considered.

We report the run times in Table 4.7.

4.8.7. Discussion

While the expressivity of RDF and SPARQL proved to be sufficient for our purposes, the
execution time of the queries was not satisfactory for all queries.

We observed that our particular workload poses challenges to indexes and query
optimisers. One query engine was not able to load the full data, a different query
engine only returned results for Q5 in reasonable time if we interfered with the query
optimisation. To work entirely without indexes is fastest if we only need query results
once. As we have to do multiple queries, we use the index-based approach employed by
the two commercial engines. Although one query engine dominates in terms of run time,
the updates required by the semantics of unavailable sources only reliably run on the
other engine. Hence, we use both and share intermediary results between the two.

As our goal is to perform the queries on all snapshots, 299 at the time of writing,
we have to considerably optimise, given that our initial experiments spanned only five
snapshots. For instance, to reduce the number of SPARQL features known to be
computationally expensive such as property paths and joins, we added triples with
predicate :hasLastResponse, see Figure 4.6. Moreover, for the queries of Figure 5 seqq.
of [128], we need to compare snapshots. To re-use intermediate results, we could add
triples with predicate :changed, see Figure 4.6.

More optimisations concern the the representation of the RDF data: For instance, we
could reduce the overall data by omitting triples that are depicted dotted in Figure 4.6
because they are the same for all requests or triples. Second, we could use less verbose
modelling for the triples that are depicted dashed in the figure: We use the RDF list
to describe the HTTP body because it is terminated. The order of the statements does
not matter. As we want to use SPARQL for querying, where closed-world assumption
(CWA) [181] is made, we can reduce the number of triples by introducing a blank node

69

4. The Dynamics of Linked Data on the Web

Table 4.8.: The Top-5 PLDs with URIs that always returned HTTP status 200 OK, but
never returned data.

PLD No. URIs

semantictweet.com 2 681
legislation.gov.uk 202
dbpedia.org 159
oszk.hu 82
bio2rdf.org 81

or URI for the HTTP response body, and use triples with a predicate like rdfs:member
to connect the body to the statements in the RDF graph of the response body.

For the reasons of unsatisfactory scalability of the SPARQL engines, we report the
figures on the dynamics of Linked Data in this thesis in the following fashion: For the least
complex queries, i. e. Q1, Q2, and high-level statistics, we report results for 299 snapshots,
i. e. 6 years of observation. For the queries with raised complexity, i. e. Q5, Q6, and T2,
we report results for 129 snapshots, i. e. 2 ½ years of observation. For the queries with
property paths or queries that involve the logical level, we report the results from 29
snapshots, i. e. ½ years of observation.

4.9. Results on the Physical Level

In this section, for the documents retrieved from the fixed set of seed URIs, we first look
at the availability of documents over time, the estimated life-span and death-rate of these
documents, their rates of change, and temporal coherence.

4.9.1. Availability/Occurrence

Of the 95 567 URIs, which could be dereferenced successfully in at least one of the
299 snapshots, only 92 248 URIs provided a non-empty HTTP body. We investigated
more closely on 129 snapshots for patterns. We report the top-5 providers of URIs that
always returned a response with status code 200 OK, but never returned data. Such URIs
hint at misconfigured servers, as there exists the specific status code 204 No Content

for the case of a successful and deliberately empty response. For instance, in the case of
dbpedia.org, we can look up arbitrary URIs starting in http://dbpedia.org/data/

and get a 200 OK response. For such URIs that return an empty RDF Graph, an error
status code, e. g. 404 Not Found, would be appropriate instead. Figure 4.8 shows the
distribution of the availability of seed URIs, counting for how many snapshots they
eventually responded with 200 OK, measuring their stability over the 299 weeks. We see
that 4% were available for all 299 weeks of the monitoring period. 80% of documents
were available for 290 weeks or more and the mean availability for documents was
238 snapshots (79.6% availability). Those figures are in line with the figures we reported

70

4.9. Results on the Physical Level

20% 50% 80%

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

0.5%

1%

1.6%

2.1%

2.6%

3.1%

3.7%

4.2%

Number of weekly snapshots

R
a
ti
o
o
f
se
ed

U
R
Is

Figure 4.8.: Appearances of documents.

in [128] analysing 29 snapshots.

With respect to this “one-in-five” unavailability of documents, Figure 4.9 provides a
breakdown of the HTTP response codes and errors encountered while accessing URIs
in the kernel (after following redirects). Response codes in 2xx are most common: all
of these were 200 OK suggesting that content was returned. The remaining responses
indicate errors, where we see increasing instability over the monitoring time-frame. While
we observed in [128] that most errors were 5xx server error codes, those errors are now
outnumbered by 4xx codes, 87.0% of which were specifically 404 Not Found, indicating
that there is no longer any document at that location. In the next section, we investigate
these “dead documents”.

Discussion: A one-in-five unavailability rate suggests that an agent traversing Linked
Data documents can, on a single pass, expect to miss about 20% of potential content.
This unavailability is not unique to Linked Data: for example, looking at 151 M HTML
pages in 2003, Fetterly et al. [72] managed to download only 49.2% of pages eleven times

71

4. The Dynamics of Linked Data on the Web

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

47%

52%

57%

63%

68%

73%

78%

84%

89%

94%

99%

Week No.

R
at
io

of
se
ed

U
R
Is

other
5xx
4xx
2xx

Figure 4.9.: Response distributions. Note that the y-axis does not start at 0 for the
legibility of the results.

72

4.9. Results on the Physical Level

in eleven weeks; in fact, our results are much more stable by comparison (cf. Figure 4
in [72], and Figure 4.9). One may then ask how often unavailability is temporary, rather
than permanent. We next investigate this unavailability.

4.9.2. Death Rate

Given estimates about their stability, we now estimate the loss of documents in the
kernel over time by identifying dead documents: documents that (are likely to) have
gone permanently offline. First, we look at the last-heartbeat of documents: the last
weekly snapshot in which the document appeared such that, e.g., if a document was last
seen in week 2, this document is unlikely to ever return. Figure 4.10 shows the evolving
last heart-beats of kernel documents where, e.g., we see that 95% of documents have
appeared at least once since the 14th snapshot (2012-08-05). The further left the life-span,
the longer the document is offline and the less likely that it will return. Thus the sharp
downward trend observable for the last three snapshots could be due to temporary issues.

Taking another perspective, we also estimate the death-rate of documents by looking
specifically at 404 errors that often indicate a permanent error (vs. 5xx codes that may
indicate, e. g. temporary unavailability or server bugs). We found that 98.3% of URIs
that return a 404 error never return content again in our monitoring frame, and 99.7% of
URIs that return 404 errors in two successive snapshots never return. Based on returning
a sequence of 404 codes up to the most recent snapshot, Figure 4.11 shows the rate
at which documents die in a manner comparable with the analogous “last heart-beat”
measures: the 404 death-rate likely underestimates the amount of dead documents (since
it does not cover all possible causes), whereas the last heart-beat measure overestimates
the amount of dead documents. Combining both perspectives, 5% of the documents
have returned a trailing sequence of five or more 404s or have been offline for more than
14 weeks, strongly indicating death.

Discussion: The one-in-twenty death-rate of Linked Data documents over six-months
is pertinent for link-maintenance (detecting and avoiding dead-links) and for cache
maintenance. The death-rate of 5% over six months can be compared favourably with
death-rates of 20.5% observed by Koehler [142] in 1999 and 48% observed by Ntoulas
et al. [163] in 2004 for HTML documents. We conjecture that since (cool [186]) URIs
also serve as names in Linked Data, such documents often have more stable URLs than,
e. g. HTML URLs that often contain query strings.

4.9.3. Change Ratio

Next, we compare the RDF content of the documents on a week-to-week basis. For each
document, we compare 28 sequential version pairs. If a document was not available
for a given week, we make the comparison with the most recent available version of
the document. We wish to compare RDF content and not document syntax: thus, our
comparison is complicated by the presence of existential blank nodes. In theory, our
crawler uses a deterministic mechanism for labelling blank-nodes such that, for a given
Web document, the labels of blank nodes will be consistent if blank nodes are consistently

73

4. The Dynamics of Linked Data on the Web

0 5 10 15 20 25
0%

20%

40%

60%

80%

100%

Last 200 response on or after week No.

R
at
io

of
se
ed

U
R
Is

Figure 4.10.: Last heartbeat of documents.

0 5 10 15 20 25
0%

20%

40%

60%

80%

100%

Last non-404 response on or after week No.

R
at
io

of
se
ed

U
R
Is

Figure 4.11.: Documents reported dead.

74

4.9. Results on the Physical Level

0 20 40 60 80 100 120 140

0%

5%

10%

15%

No. of weekly changes

R
at
io

of
se
ed

U
R
Is

Figure 4.12.: Document change distribution.

labelled in the source document and/or the order of implicit blank nodes remains the
same. However, some documents in our collection provide fresh, explicit blank node
labels upon every access23. With the algorithm of [115] to skolemise blank nodes not yet
available when we performed the analyses in this section, we applied an approximation
whereby we rewrite all blank nodes to a single, global, fresh constant (i. e. we considering
all blank nodes as equal). This allowed us to detect changes in documents, including
additions and deletions of statements, irrespective of blank node labels. We compared
this approximation to an isomorphism check for RDF Graph equivalence and found that
it corresponded in all pair-wise comparisons of document versions for both positive and
negative cases.

The distribution of changes for the kernel documents across the 129 snapshots is
plotted in Figure 4.12, where we see the ratio of documents with 0–128 changes across the
snapshot pairs. At x = 0, we see that about 17% of documents did not change over the
129 weeks (down from 62.2% when we investigated only 29 weeks). Yet, when looking at
a larger number of changes, the results of 29 weeks remain valid: Most URIs fall into the
slightly dynamic interval (URIs that change in up until 15% of the snapshots), followed
by the highly dynamic interval (URIs that change in at least 85% of the snapshots). The
rest of the URIs fall into the large remaining middle interval.

Next, we are interested to characterise changes of documents within the same pay-
level-domain. In Figure 4.13, we plot domains along two dimensions of change: the
x-axis represents the ratio of documents on that domain that exhibited at least one
change in the monitoring period, the y-axis represents the mean number of changes for
the documents on that domain (including only those that changed at least once), and
the size of the tick indicates the number of sampled documents for the domain. We also

23See e. g. http://dbtune.org/artists/last-fm/Baracudas.rdf; retr. 2013/02/12.

75

http://dbtune.org/artists/last-fm/Baracudas.rdf

4. The Dynamics of Linked Data on the Web

Table 4.9.: Top-10 static PLDs by number of documents.

No. PLD No. Documents

1 tfri.gov.tw 2 671
2 culture.gouv.fr 1 499
3 geovocab.org 479
4 beeldengeluid.nl 249
5 kasabi.com 170
6 dataincubator.org 92
7 iandavis.com 88
8 lcsubjects.org 35
9 nytimes.com 33
10 advogato.org 33

annotate some examples of notable domains. 176 domains sit at the origin of Figure 4.13
indicating no changes in any of their 5 656 documents. We investigate those domains in
Table 4.9 and see that 5 domains represent 87% of the documents, and the rest of the
documents is on low-volume domains. Further inspection of the domains showed that
the domains at the origin are often personal homepages. For the bigger picture and since
the majority of domains tend to cluster towards three of the four corners, we consider
the following classification of domains:

Steady domains contain a low ratio of documents that change, and these documents
change infrequently. Per Figure 4.13, 214 domains fell into the Static quadrant
(32.82%), including w3.org, data.gov.uk, and l3s.de.

Dual domains contain a low ratio of documents that change, but these documents
change frequently. Per Figure 4.13, only 3 domains fell into the Dual quadrant
(0.46%), including indiana.edu and linkedmdb.org.

Bulk domains contain a high ratio of documents that change, but these documents
change infrequently. Per Figure 4.13, 306 domains fell into the Bulk quadrant
(46.93%), including dbpedia.org, freebase.com, and bio2rdf.org.

Active domains contains a high ratio of documents that change, and these documents
change frequently. Per Figure 4.13, 114 domains fell into the Active quadrant
(17.48%), including dbtropes.org, loc.gov, and linkeddata.es.

Based on meta-data from the LOD cloud and the DataHub24, in Table 4.10, we show
the breakdown of domains in the categories outlined above for (i) dataset topic, and (ii)
whether the data is exported directly by the producer or by a third party. We could not
locate topic or producer information for many (non-LOD) domains with few documents

24http://lod-cloud.net; http://datahub.io/, visited on 2013-03-08.

76

http://lod-cloud.net
http://datahub.io/

4.9. Results on the Physical Level

0 0.5 1
0

64

128

Steady

Active

Bulk

Dual

dbpedia.org

loc.gov

dbtune.org

w3.org

data.gov.uk

dbtropes.org

bio2rdf.org

bbc.co.uk

l3s.de

Ratio of changing documents

M
ea
n
n
u
m
b
er

of
ch
an

ge
s

Figure 4.13.: Clustering of domain changes.

77

4. The Dynamics of Linked Data on the Web

T
a
b
le

4.10.:
D
y
n
a
m
icity

of
L
in
ked

D
ata

d
om

ain
s
p
er

top
ic

an
d
p
er

p
arty

in
v
olved

.

C
ateg

o
ry

D
o
c
N
o.

D
om

N
o.

S
t
e
a
d
y

D
u
a
l

B
u
l
k

A
c
t
iv
e

N
o.

%
N
o.

%
N
o.

%
N
o.

%

cross-d
om

ain
2
9
8
73

40
17

42
.50

1
2.50

13
32.50

9
22.50

geograp
h
ic

4
84

0
10

4
40

.00
1

10.00
3

30.00
2

20.00
govern

m
en
t

5
50

7
15

7
46

.67
0

0.00
5

33.33
3

20.00
life-scien

ces
8
21

4
6

3
50

.00
0

50.00
3

50.00
0

0.00
m
ed
ia

8
41

1
28

6
21

.42
1

3.57
14

50.00
7

25.00
p
u
b
lication

s
2
2
2
03

36
10

27
.78

0
0.00

21
58.33

3
8.33

u
ser-gen

erated
8
52

3
39

11
28

.20
0

0.00
15

38.46
13

33.33
u
n
kn

o
w
n

8
16

6
478

156
32

.64
0

0.00
232

48.54
77

16.11

fi
rst-p

arty
2
6
2
35

94
28

29
.79

1
1.06

46
48.93

17
18.09

th
ird

-p
arty

3
9
5
31

61
29

47
.54

1
1.64

22
36.07

9
14.75

bo
th

2
2
5
01

35
9

25
.71

1
2.86

15
42.85

10
28.57

u
n
kn

o
w
n

7
47

0
462

148
32

.03
0

0.00
223

48.27
78

16.88

total
95

73
7

652
214

32
.82

3
0.46

306
46.93

114
17.48

78

4.9. Results on the Physical Level

Table 4.11.: Static PLDs by topic.

Topic No. PLDs

cross-domain 9
geographic 2
government 4
life-sciences 0
media 6
publications 4
user-generated 9
unknown 142

(cf. Table 4.10). Since domains may host multiple datasets, if we found multiple topics
or production types associated to a single domain, we categorised it as cross-domain or
both, respectively. In general, we see few high-level patterns in dynamicity for different
topics or methods of production. Perhaps most notably, third-party exporters tend to
be more active than first-party producers (presumably due to “live exporters”). Also,
user-generated domains tended to be more active (though the number of such domains
was low).

Discussion: We find that 6.0% of documents did not change in the 129 weeks and thus
are obvious candidates for long-term caching. This finding is in contrast to shorter-term
studies, such as our analysis of half a year [128], where we found considerably larger
numbers for static URIs (62.2%). We can conclude that in the long term, a change
has to be expected, in mid-term cycles however, it is safe to assume that a majority of
the sources is static. Similarly, shorter studies of the HTML web found 56% of HTML
pages to be static, as reported by Brewington and Cybenko [29] in 2000, 65.5% reported
by Fetterly et al. [72] in 2003 and 50% reported by Ntoulas et al. [163] in 2004. Such
works also confirm that past dynamicity can be used to predict future dynamicity in the
mid-term. Our work also clusters changes per domain, helping to design synchronisation
strategies, where, e. g. a change detected for a Bulk site such as dbpedia.org suggests
that all documents from that domain should be refreshed. Similarly, Ntoulas et al. [163]
showed that change predictions made for individual sites can often (but not always)
be accurate. Last, we note that while static domains appear in all of the topics (see
Table 4.11), no domain is entirely static (cf. Figure 4.13), and hence we can confirm
hypothesis H1.

79

4. The Dynamics of Linked Data on the Web

time
t1 t2 t3

Figure 4.14.: Illustration of the problem of coherent snapshots. A client (gear wheels)
determines a snapshot of distributed components (lamp and thermometer).
Images from Pixabay and Wikimedia Commons.

4.9.4. Temporal Coherence

Next, we look at the temporal coherence of the snapshots. When working in a distributed
environment, it can be challenging to obtain consistent snapshots of the environment, given
network and processing delays. In our example, imagine the scenario of Figure 4.14, in
which the user agent fails to produce a consistent snapshot. The problem of determining
consistent snapshots is well-studied in distributed systems, where e. g. Chandy and
Lamport proposed an algorithm to determine a consistent snapshot of a distributed
system [39]. The assumption of this body of work is that the components in the distributed
system can run some algorithm on behalf of the user agent that wants to determine a
consistent snapshot. The algorithm run on the components allows for determining the
snapshot. On the web, however, we only assume HTTP-GET access to system components
and hence we cannot assume that we can run algorithms on arbitrary system components.
On the HTML web, the problem has also been subject to scholarly investigation, e. g. by
Spaniol et al., who coined the term temporal coherence for this problem [194].

Example 8 (Temporal Coherence). Imagine a user agent that operates in our example
of Internet of Things devices. To reason about his actions, the user agent determines
a snapshot, see Figure 4.14. The user agent (gear wheels) starts at t1 to determine
the snapshot of the distributed components (lamp and thermometer). At t2, somebody
turns on the lamp. The different components are subject to different network delay. The
component with the thermometer responds quickly. The component with the lamp has a
worse connectivity, and hence answers later. As the response from the component with
the lamp has been sent after t2, the point in time of the state change of the lamp, the
combined responses of the lamp is incoherent (t3).

To investigate the temporal coherence at a broader scale than our example, we look
at the temporal coherence of the snapshots of the Dynamic Linked Data Observatory.
In contrast to our example in Figure 4.14, we consider not 2 resources but the seed list

80

4.9. Results on the Physical Level

of 95 737 resources, from which we want to obtain a snapshot. In contrast to previous
work [194], where the goal was to order a list of URIs for downloading such that temporal
coherence is guaranteed, we assume that the number of URIs is sufficiently large such
that temporal incoherence will occur. Hence, we want to quantify the error introduced
by temporal incoherence.
We base our investigations on the metric age defined by Cho and Garcia-Molina to

quantify how out-dated a copy of an element ei (i. e. a page on the web) and a collection
of copies of elements is [41]. For temporal coherence, all copies in the collection should
have the same age.

Definition 8 (Age). The age A of a copy of a page is the time that passed since the first
update after the copy was made, i. e.:

A(ei, t) :=

{
0 if ei is up-to-date at time t

t−modification time of ei otherwise

The age of a collection of copies is the average of the age of all copies.

To study the age of copies, we need an estimate how the original changes. In line
with previous work [28, 42, 44], which investigated the changes of web pages, we use a
Poisson process to model the changes of Linked Data documents. The probability density
function of a Poisson process that models events can be given as

f(t) :=

{
λe−λt if t > 0

0 otherwise

where λ is the average rate at which events occur.

Verification of the Poisson Process In this section, we look at whether our assumption
of a Poisson process is adequate. Under a Poisson process, the time between two events
is exponentially distributed. Hence, we should expect many changes in shorter intervals,
and only few changes in longer intervals. In Figure 4.15, we plot for two given number of
changes in Linked Data documents the occurrence of different intervals between changes
of Linked Data documents25. On the abscissa, we give the duration of the interval
between two changes of a Linked Data document. On the ordinate, we give the frequency
of a duration as it occurred observing the URIs in the seed list. As the ordinates are
logarithmic, exponential functions draw straight lines in the plots. We consider the
assumption of a Poisson process to be adequate, as the frequencies of durations between
changes are close to an exponential line.

Estimation of λ Facing a similar setting as ours with incomplete change histories (we do
not know whether a source that change between two observations changed once or multiple
times between the observations) and irregular access intervals (the odd technical problem

25The plots of other numbers of changes look similar, given that sufficient data is available.

81

4. The Dynamics of Linked Data on the Web

0 50 100 150 200 250 300
10 1

100

101

102

103

(a) n = 36

0 50 100 150 200 250 300
10 1

100

101

102

103

(b) n = 46

Figure 4.15.: Frequency over the duration between two changes for sources with n changes,
and an exponential function fitted using the method of least squares. Note
the logarithmic scale on the y-axis.

during the six years of observation sometimes caused delays creating the downloads),
Cho and Garcia-Molina developed an estimator that is in this setting superior to the
näıve estimator for λ, which divides the number of changes by the overall timespan of the
observation [44]. Cho and Garcia-Molina’s estimator estimates λ indirectly, by estimating
r = λ/f , the ratio between λ and the access frequency f . We use the this estimator by
Cho and Garcia-Molina and estimate r using:

r̂ = − log

(
X̄ + 0.5

n+ 0.5

)
where r̂ is the estimated r, n is the number of accesses, X is the number of observed
changes, and X̄ := n −X is the number of accesses without an observed change. We
then can compute the estimated λ, λ̂, using:

λ̂ = f · r̂

Expected Value of Age From λ, we can compute the expected value for the age for a
source ei as follows [41]. With s ∈ (0, I) the time point of modification in the interval
until I, the time of the next access, the age at time t ∈ (s, I) is (t − s). Hence, the
expected age of element ei at time t ∈ (0, I) is:

E[A(ei, t)] =

∫ t

0
(t− s)(λe−λs)ds = t

(
1− 1− e−λt

λt

)
Results and Discussion We calculated λ and E[A(ei, t)] for all 95 737 seed URIs over
129 snapshots for the case that the downloads last 10 h, cf. Figure 4.5. Then, we derived
the expected value for the age of all individual sources, and the average of the set of seed
URIs and find:

E[A(snapshot, 10h)] = 8:05min± 20:51min

82

4.9. Results on the Physical Level

0 20 40 60 80 100 120
No. Changes Excluded

10

0

10

20

30

Ag
e

[m
in

]

(a) Excluding the highest change frequencies achiev-
able

0 5 10 15 20 25 30
Percent Excluded

10

0

10

20

30

Ag
e

[m
in

]

(b) Excluding the top-x% dynamic URIs

Figure 4.16.: Mean and standard deviation of the age of URIs in the snapshot.

That is, an application that uses a snapshot from the Dynamic Linked Data Observatory
has to take into account that the data from different sources stems from time points that
are at average about 8min apart. As we will see analysing the RDF terms, the changes
in the most dynamic sources are timestamps of the generation date (cf. Table 4.12), i. e.
rather changes to the meta data than to the actual data. Hence, we look at two options
to exclude URIs whose changes we consider meta data changes. First, we exclude the
URIs that have the highest change frequencies possible, i. e. we increase n in N−n, where
N is the total number of snapshots, see Figure 4.16a. Second, we exlude the top-x%
dynamic URIs, see Figure 4.16b. We observe that already by excluding the frequency
that equals the number of snapshots, we can achieve a considerable drop in mean and
standard deviation, see Figure 4.16a. Looking at Figure 4.16b, we see that by excluding
the highest frequency, we disregard about 4% of all URIs. If we account for this by only
considering the URIs which changed in 96% of the snapshots or less, we find:

E[A(96%-snapshot, 10h)] = 2:07min± 6:08min

Discussion We provided a statistical analysis of the Dynamic Linked Data Observatory
for temporal coherence of the snapshots of the observatory. Under the assumptions of
a Poisson process and a download time of 10 hours, we see that during the 10 hours,
the dynamics of the sources introduce an age of the snapshot of 8:05min (2:07min if
we exclude suspiciously dynamic sources). While we hence cannot guarantee temporal
coherence, we argue that an incoherence of 1.3% (0.3%) of the overall download time
introduces an error hopefully negligible for the use-case of the download.

A mitigation strategy to avoid incoherence is to optimise the order of the URIs during
the download for coherence, as described in [194]. In contrast, the download of URIs
using the crawler used for the Dynamic Linked Data Observatory does not follow a
particular order, except that the crawling process is optimised towards polite crawling.
Other strategies include to reduce the download time by caching the least-frequently

83

4. The Dynamics of Linked Data on the Web

changing sources, or to investigate whether the list of URIs can be reduced by focussing
on the specific use-case, e. g. using techniques from focussed crawling [37, 60].

4.10. Results on the Logical Level

We see that Linked Data documents change with varying degrees of breadth and frequency
on different domains, and that documents on some domains, such as dbtropes.org,
change widely and often. We now look at what kinds of changes are occurring on an
RDF-level within these documents by considering the first 29 snapshots from the Dynamic
Linked Data Observatory.

4.10.1. Triple-Level Changes

We first look at the types of changes for documents. We found that 27.6% of documents
only ever updated values for terms (one per triple) in the RDF Graph they contain
across the 29 weeks, keeping the number of triples static: such changes would include,
e.g., updating a literal value like as an access-date entry. A further 24.0% of documents
only added triples across the 29 weeks, representing monotonic additions. Changes for
other documents involved a mix of additions, single-term updates and deletions across
the different weeks.

In Figure 4.17, we plot the ratio of documents for which we found at least one triple
addition over the 29 weeks against the ratio of documents for which we encountered some
deletion over the 29 weeks, looking for high-level patterns. For the purposes of this plot,
we consider a term update as an addition and a deletion of a triple. We see that most of
the domains fall along a Stable line where an equal number of documents involve some
additions and some deletions: again, many of these documents correspond to the 27.6%
that only update individual values (an add and a delete). Close to the (0, 1) point, we see
two large “monotonic” domains (europa.eu and gesis.org) in the Growing half-space
that almost always only ever add triples to their documents. The one notable domain in
the Shrinking half-space was bio2rdf.org, for which 52% of documents had additions
and 85% had deletions.

Discussion: For Triple Stores, additions are often cheaper than deletions (especially if
inference and truth maintenance are required). Here we see that additions to Linked Data
documents are almost always accompanied by deletions, emphasising the importance of
efficient revision strategies for warehouses. In relation to the HTML Web, Brewington
and Cybenko [29] show that the content of HTML pages tends to grow over time,
though their results rather reflect technological trends over a period of many years (1995–
1999). The shrinking of the bio2rdf.org data set can be accounted to the release 2 of
bio2rdf.org, where the maintainers consolidated the data set [33] during the timespan
of our observation.

84

4.10. Results on the Logical Level

0 0.5 1
0

0.5

1

St
ab
le

G
ro
w
in
g

Sh
ri
nk
in
g

linkedmdb.org

dbtropes.org
europa.eu

gesis.org

dbpedia.org

freebase.com

linkedct.org

dbtune.org

loc.gov

bbc.co.uk

identi.ca

data.gov.uk

geospecies.org

bio2rdf.org

open.ac.uk

cnr.it

Ratio of doc.s w/ del.s

R
at
io

of
d
o
c.
s
w
/
ad

d
.s

Figure 4.17.: Ratio of documents with additions vs. deletions per domain.

85

4. The Dynamics of Linked Data on the Web

triple subU pred objU objL class

0

2

4

6

8

·10−2

RDF term position

C
h
an

ge
ra
ti
o

Add75th Del75th

Add50th Del50th

Add25th Del25th

Figure 4.18.: Additions (left) and deletions (right) for different RDF elements.

4.10.2. Term-Level Changes

Next we look at the types of terms changing in the RDF content of the kernel. Figure 4.18
plots the 25th, 50th and 75th percentiles26 for the addition/deletion of RDF triples and
the terms they contain. We only consider documents that changed at least once in the
29 weeks and omit blank node terms due to possible homomorphisms (relying on our
approximation for triples involving blank nodes). We compare changes to subject URIs,
predicates, object URIs, object literals and classes (values for rdf:type). The y-axis
reflects the ratio of triples or terms that changed versus the total number of unique such
elements observed in the documents considered (the y-range is small: [0, 0.08]). A ratio of
0.08 for object literal additions thus indicates that, over 29 weeks, the number of unique
object literals added to the documents at that percentile was 0.08× the total number of
unique object literals appearing in those documents.

We see some clear trends. First, we see that additions and deletions are often of a
similar magnitude, reflecting back on previous observations about terms often being
directly replaced. Second, the most dynamic position of an RDF triple is the object, with
a high churn of object literal values in particular. Conversely, predicates are occasionally
added but rarely removed from documents. Analogously, class terms are very rarely
added and very rarely removed (barely even seen above the x-axis). These latter two
observations suggest that the schema signature of documents (set of property/class terms
used) is generally static.

Discussion: The types of terms that change offer interesting high-level patterns
into the dynamicity of RDF in general. For example, the observation that the set of
properties and classes instantiated by a document rarely changes lends empirical strength

26Higher percentiles cause too much compression of the results; hence we omit them.

86

4.10. Results on the Logical Level

to proposals for schema-level summaries of data, such as proposed by Stuckenschmidt
et al. [200]. Conversely, we see that literals are the most dynamic element of RDF. The
following section sheds light on why this might be the case.

4.10.3. Dynamic Predicates

Though we have seen that predicates themselves are rarely added or removed, we are
interested to see which predicates are indicative of dynamic statements. Table 4.12
presents the ten most dynamic predicates according to the ratio of added (+) and deleted
(−) statements involving that predicate, divided by the total number of statements for
that predicate across all snapshots; we only include predicates that appear in all snapshots
and appear in ≥1 000 statements overall. Where added and deleted ratios correspond
closely, this suggests frequent “value updates”. The two dbtont: predicates are used
on the third-party dbtropes.com domain to indicate a time-stamp since the relevant
data were parsed or fetched from the original source (tvtropes.org); the swivt:, prv:
and linkedct: predicates also provide time-stamps indicating the last time data were
refreshed for documents on various domains. The two sioc: predicates are used to
track dynamic discussions and posts on the social gnoss.com domain. The media:image
predicate appears for RDFa image meta-data, most of which are embedded in msn.com

news pages. The xhtml:bookmark predicate represents links embedded as RDFa in
various dynamic XHTML pages.

Discussion: Identifying dynamic predicates allows Triple Stores to know, in a granular
fashion, which parts of an input query relate to static knowledge and which parts to
dynamic knowledge (e. g. see the previous proposals by Umbrich et al. on this topic [205]).
Per our results, when considering cached content, the ratio of additions indicates the
potential to miss answers involving triples with a given predicate, and the ratio of
deletions indicates the potential to return stale answers. With respect to the most
dynamic predicates, we identify that they are often trivial time-stamps. Comparatively,
Fetterly et al. [72] and Ntoulas et al. [163] both discuss how the majority of changes in
HTML documents are very minor, involving hit counters, time-stamps, etc.

4.10.4. RDF Link Structure

Finally, we look at the evolving nature of the link structure of documents over time. We
first want to see if the overall level of links tends to increase or decrease over time, and
are interested to see at what rate fresh links are added to the kernel. We consider any
URI in any position of a triple as a potential link from the kernel. Figure 4.19 plots the
evolution of the volume of such links over time. We see that the number of links can
fluctuate based on the availability of documents (with parallels to e. g. response code
distributions for each week illustrated in Figure 4.9). A second key observation is that
the ratio of fresh URI links added to the kernel is in general quite small: we consider a
URI as fresh if it has not been seen for any kernel snapshot before. This clearly indicates
that the outward link structure of the kernel remains quite static (aside from instability)
over time. In fact, if anything, links are on a decreasing trend as documents die off.

87

4. The Dynamics of Linked Data on the Web

Table 4.12.: Top-10 dynamic predicates.

No. Predicate Total + –

1 dbtont:parsed 35 911 0.94 0.94
2 sioc:has discussion 3 171 0.87 0.99
3 sioc:content 107 387 0.87 0.98
4 dbtont:fetched 34 894 0.53 0.53
5 swivt:creationDate 35 295 0.53 0.53
6 media:image 1 377 0.49 0.49
7 prv:performedAt 16 706 0.45 0.45
8 xhtml:bookmark 17 852 0.45 0.44
9 linkedct:p.t.u∗ 2 652 0.42 0.42
10 linkedct:p.t.a∗ 2 652 0.42 0.42

∗ provenance time updated and provenance time added, respectively.

0 5 10 15 20 25

0

1

2

3

4

·106

Week No.

N
u
m
b
er

o
f
U
R
Is

URIs seen before
URIs never seen before

Figure 4.19.: Links extracted from kernels.

88

4.11. Community Validation

That said, after the initial stabilisation over the first month of observations, we do find
that a few domains are consistently contributing some fresh links to the kernel (as starts or
as ends of links): sec.gov, identi.ca, zitgist.com, dbtropes.org, ontologycentral.
com and freebase.com offer a low-volume but constant stream of fresh outward links from
week to week. Other domains—including bbc.co.uk, bnf.fr, dbpedia.org, linkedct.
org, bio2rdf.org—tend to introduce new links in batches, corresponding with the
update characteristics of domains plotted previously in Figure 4.13. However, such
domains are the exception rather than the rule.

Discussion Knowledge about how links change over time is important for any agent
that traverses Linked Data documents (in terms of reachability, discoverability, etc.) or
analyses link structure (e. g. to compute PageRank). Ntoulas et al. [163] found that
hyperlinks in HTML documents tend to be more dynamic than other forms of content,
estimating that 25% of links are new each week (though considering a growing set of
documents). In comparison, our results seem much more static. This seems counter-
intuitive in that Linked Data itself fundamentally comprises URIs and thus links; however,
we already saw that URI terms in RDF documents change slowly (e. g. compared to
literals).

On a side note, we also analysed some other parameters of the kernel graph and the
extended graph over time, but found them to be relatively static. We found that the
document-level graphs invariably formed a single weakly connected component across
the snapshots: URIs sampled from the examples for LOD datasets were all (weakly)
connected through the expansion of the crawl used in the original sampling. We also
checked the diameters of the document-level graph and found that it varied from between
11–12 for both the kernel and, interestingly, for the extended crawls: this suggests that
the extended crawls intuitively tend to make the graph “more dense” as opposed to
“wider”.

4.11. Community Validation

Since we started the Dynamic Linked Data Observatory in 2012, numerous papers have
cited our papers. As of 2018-07-15, Google Scholar lists 103 citations for [128] and 55
citations for [134]. Of those papers, the works by the following authors used the data
set from the observatory to make own analyses: Gottron and Gottron [87, 86], Dividino
et al. [56, 57, 54, 55], Schaible et al. [187], Fernández et al. [70], Nishioka et al. [159, 160,
161], Abdel-Qader et al. [1], and Meroño-Peñuela et al. [154].

Moreover, Fernández et al. built the BEAR benchmark for RDF archives [69] on 58
snapshots from the Dynamic Linked Data Observatory. Hence, papers using BEAR
partially build on our works, e. g. works by Cerdeira-Pena et al. [36], Taelman et al. [202],
Anderson et al. [4], and Fernández et al. [68].

Given the impact of our work, we conclude that we addressed the challenges presented
in Section 4.3 to an extent that is satisfactory for the Semantic Web community.

89

4. The Dynamics of Linked Data on the Web

4.12. Summary

In this chapter, we studied the dynamics of Linked Data on the web using the Dynamic
Linked Data Observatory. We made the case for the Dynamic Linked Data Observatory,
presented the design of the observatory, described a method to analyse dynamic Linked
Data, and provided analyses to shed light on the dynamics of Linked Data on the web.

Using the Dynamic Linked Data Observatory, we target both Linked Data consumers
and producers. We derived use-cases (Section 4.1) for knowledge about the dynamics
of Linked Data and corresponding research questions (Section 4.2) for both parties to
be answered using the observatory. The use-cases and questions span different levels of
processing Linked Data: From dynamics on the physical level of accessing Linked Data
documents over the network via HTTP, to the logical level of the contents fo the RDF
graphs.

To design the Dynamic Linked Data Observatory, we described challenges (Section 4.3)
and provided an extensive survey of literature of how to set up such an observatory
(Section 4.5). Based on an in-depth statistical analyses of Linked Data on the web, the
literature, requirements from our use-cases, and practical considerations, we described
the design of the Dynamic Linked Data Observatory (Section 4.6). Using the description
of the systematic set-up of the Dynamic Linked Data Observatory, we answer the overall
research question of this thesis RQ2 of how can we construct a corpus to verify and study
the dynamics of Linked Data.

For the concise definition of our analyses, we investigated a method that uses Semantic
Technologies (Section 4.8). Specifically, we provide an RDFS model of dynamic Linked
Data, and corresponding SPARQL queries to answer the research questions on the level
of accessing documents. We applied the method to analysing Linked Data on the physical
level and encountered scalability issues that prevented us from also using the method on
a logical level.

Last, we provided the results of our analyses (Section 4.9 and 4.10). Based on the
monitoring 95 737 URIs for 299 weeks (please find more high-level statistics in Section 4.7),
we found that documents were unavailable about 20% of the time. We then determined
that 17% of documents had no change in that time, where other documents either
changed very frequently (5.7%), or very infrequently (46.3%), with few documents in
between. Based only on 29 snapshots, we can say that of the documents that did
change, many updated individual RDF terms in the document (27.4%) or only ever
added triples (23.1%). We found that domains tended to be either very static (44.5%),
have a high ratio of documents that change infrequently (28.2%), or have a high ratio of
documents that change frequently (25%); most domains contain a balance of documents
with additions and deletions. With respect to the types of changes occurring on an
RDF level, we found that object literals were the most liable to change (0.01× ratio
for median/50th percentile; 0.08× for 75th percentile), whereas the schema signature of
documents –involving predicates and values for rdf:type– changed very infrequently. We
identified predicates involved in the highest ratio of new/removed triples and found that
they often relate to time-stamps. Finally, we showed that the rate of fresh links being
added to the documents is low, and varies between 4 960 to 126 944 per week depending

90

4.12. Summary

on whether domains with bulk update behaviour were updated.
In terms of connecting these observations back to our original use-cases outlined in

Section 4.1, we make the following observations:

Focused Synchronisation: We identified the general rate of change of documents, and
found that dynamicity tended to follow certain predictable patterns for PLDs. For
example, static and steady domains infrequently require light synchronisation, bulk
domains occasionally require heavy synchronisation, dual domains require frequent
light synchronisation, active domains require frequent heavy synchronisation (or
live querying techniques).

Smart Caching: Reversing the previous use-case, we found that 17% of documents did
not change over the 2 ½ years and found that 32.5% of domains were considered
static (and thus are candidates for long-term caching). Applications that rely on a
schema-level index or schema-level cache of documents can rest assured that the
schema-signature of documents tends to be very (though not completely) static.
Furthermore, we identified particular predicates whose triples should not be cached
due to high rates of updates.

Adaptive Processing: A hybrid architecture could be built along a number of logical
data partitions. First, we showed that domains tend to fall into a few clusters,
where domains with static, steady and bulk update behaviour could be supported
by heavy materialisation approaches, whereas active domains are best supported
through decentralised live-querying approaches. Conversely, we also showed, for
example, that different schema patterns in the data were indicators of different
levels of dynamicity, where partitioning could be done on a per-predicate basis
instead, etc.

Temporal Coherence: We investigated the temporal coherence of snapshots and found
only a small error introduced by the dynamics of Linked Data on the web. Never-
theless, if temporal coherence must be guaranteed, it should be possible to mitigate
the small errors through URI ordering when composing a snapshot.

Link Maintenance: We found instability in documents, though much of this instability
was of a temporary nature. However, we found that 5% of documents had died
off during our monitoring period, suggesting an initial estimate for the arrival of
deadlinks.

Versioning: We have not tackled the issue of versioning in depth. Some conclusions could
be applied incidentally to the area of versioning (e.g. about the frequency of change
of different types of RDF terms and the balancing of additions vs. deletions), but
further more specialised analyses of the data (by us or the community) would be
needed to generate concrete guidelines. Moreover, works e. g. by Dividino et al. [57]
and Gottron et al. [87] specifically looked at schema-level changes in Linked Data
on the web using the Dynamic Linked Data Observatory, which could also inform
versioning strategies.

91

5. A Model of Computation for Linked
Data

Parts of this chapter have been published in:
▷ Tobias Käfer and Andreas Harth. “Rule-based Programming of User Agents for Linked Data”.
In: Proceedings of the 11th International Workshop on Linked Data on the Web (LDOW) at the
Web Conference (27th WWW). 2018.

In this chapter, we go beyond the descriptive (or positive) treatment of dynamic Linked
Data of the previous chapters and take a prescriptive (or normative) standpoint, i. e.
we investigate a way that allows for describing what behaviour we want to happen in
Linked Data. To this end, we develop a model of computation for Linked Data, ASM4LD,
that allows us to define the behaviour of user agents that interact with Linked Data
sources. We base the model of computation for Linked Data on Abstract State Machines
(ASM), a model of computation rooted in mathematical logic. We provide a synthesis
of ASMs and Linked Data and show how the combination aligns with the relevant
specifications such as the Request/Response communication in HTTP, the Linked Data
Platform (LDP) specification for updating resource state, and RDF model theory as
formal grounding in logic. Based on the formalisation of changing Linked Data resources,
we present the syntax and operational semantics of a small rule-base language to specify
user agents that use HTTP to interact with the environment. We show the approach to be
Turing-complete. We show the feasibility of the approach in an evaluation involving the
specification of automation in a Smart Building scenario, where the presented approach
serves as theoretical foundation. Moreover, we present how we used the approach to
build a Virtual Reality system, in which sensor data is integrated with data from the
Web.

Example 9. Consider our example with the Internet of Things devices with the lamp
and the temperature sensor. How can we define application logic that, e. g., turns on the
lamp if the temperature is below 20 ◦C and off otherwise? We consider more complex
examples in our evaluation, see Section 5.8.

5.1. Motivation

Web standards around Linked Data such as HTTP [75], RDF [47], RDFS [30], and
OWL [219] facilitate interoperability at a vast scale on the web. For instance, on the
level of data transfer, we have access to billions of resources on the web uniformly using
the transfer protocol HTTP. On the level of describing data, billions of triples1 about

1http://lodlaundromat.org/, visited on 2018-06-10.

93

http://lodlaundromat.org/

5. A Model of Computation for Linked Data

resources can be found on the web that have been published uniformly in the data model
RDF, enriched with ontological information in RDFS and OWL [85]. On such Linked
Data, which is traditionally read-only, developers can build data integration systems
based on queries and ontologies, i. e. approaches grounded in mathematical logic, where
most of the operations are carried out by query processors and reasoners. However,
to integrate such data from read-only sources is only a first step; many scenarios, for
example on the Web of Things, require to change data. But while the W3C’s LDP
(Linked Data Platform) specification [196] combines read-only Linked Data (via the
HTTP-GET operation) with read-write capabilities (HTTP-PUT, POST, and DELETE
operations) for the interface to writeable resources, most user agents that interact with
LDP servers are still programmed in imperative code. We would like to specify the
behaviour of user agents in a language grounded in mathematical logic.

A high-level language for the specification of the behaviour of user agents with a
formal grounding would allow for expressing executable specifications, which are shorter
and cheaper to create than imperative code, and which are easier to validate (e. g. with
subject matter experts) and to analyse (e. g. using formal methods). Moreover, the
language could also serve as execution substrate for agent specifications (the showcase of
the seminal Semantic Web article [22]) created using planning approaches from Artificial
Intelligence.

Several approaches exist for specifying user agents on read-only Linked Data. These
user agents process queries and have the ability to follow links, which can lead to the
discovery of additional data during query processing [24, 105, 98, 206, 106]. An extension
to read and write capabilities in addition to the following of links, which is core to web
architecture [73, 166], would allow for user agents that are able to not only query data
but also to effect change. How to beneficially combine current technologies around Linked
Data and REST into a unified formalism of dynamics is an open research problem [111,
217, 171, 100]. Hence, we cover research question RQ3 (how can we specify computation
using Read-Write Linked Data and rules) in this chapter by presenting contribution C4,
ASM4LD, a model of computation for Linked Data.

5.2. Challenge

An executable formal approach to Linked Data user agents should respect the relevant
standards and practices around Linked Data such as HTTP-based data access and
manipulation, hypermedia-style link following, the model-theoretic formal foundations of
RDF, and allow for semantic reasoning using ontologies. Moreover, the approach should
have a formal foundation with a sufficient expressivity to build applications while at the
same time be feasible to be applied in practice.

5.3. Contributions

Our contributions are as follows:

94

5.4. Example Scenario: Rule-based Control for Building Automation

� We provide a formal account of the standards around Linked Data in combination
with Abstract State Machines (ASMs) [90], a model of computation rooted in
mathematical logic. We believe that ASMs are the right starting point: ASMs
encode state in first-order logic, which is a superset of the RDF-family of languages;
on top, ASMs require only rules to represent state change, and rules have been
proposed for RDF data processing [20, 119]. With our synthesis between Linked
Data, which provides a way to represent and manipulate resource state, and ASMs,
which provides operational semantics based on rules and stepwise execution of these
rules, we are able to specify user agent behaviour with the entire user agent state
maintained in RDF on web-accessible resources.

� We present a syntax for a rule language (based on Notation3 [20], of which the
RDF Turtle language is a specialisation) to define conditions that trigger updates
based on HTTP state manipulation operations. We give an operational semantics
of the language based on the ASM execution semantics.

� We provide a benchmarking system from the building automation domain and
conduct an evaluation of a prototype rule processing system. Moreover, we show
the applicability of our approach.

5.4. Example Scenario: Rule-based Control for Building
Automation

We sketch a behaviour specification for the functionality of Example 9 in our example
scenario with two Internet of Things devices in a room. We give the intuition of the
syntax and the semantics of the rule language employed. The formal treatment of the
rule language is subject of this chapter.

5.4.1. Intuition of the Syntax of a Condition-Action Rule Language

We express rule programs in a subset of the Notation3 (N3) syntax [20], for an example see
Figure 5.1. N3 is a generalisation of the RDF Turtle syntax [180], hence we can express
RDF in N3. To form rules, we use N3’s graph quoting (curly brackets) and variables
(terms starting with question marks). Note that in contrast to RESTdesc [217], which
also uses the N3 syntax, we do not interpret the rules as input and output descriptions
of HTTP interactions, but as executable specifications.

We distinguish derivation rules and request rules. Rules consist of a rule body, an
implication symbol, and a rule head. In both types of rules, the body consists of a set
of triple patterns (triples with variables, cf. triple patterns and basic graph patterns in
SPARQL [93]). In a derivation rule, the head also consists of a set of triple patterns (cf. (2)
in Figure 5.1, which defines the transitivity of sosa:hosts). Derivation rules are not in
the focus of this chapter, but are important when layering higher-level entailment regimes
on top of the work presented in this chapter. Here, we use the Simple Interpretation. In
a request rule, the head specifies an HTTP request. The request specification includes an

95

5. A Model of Computation for Linked Data

HTTP method, a request URI, and optionally a set of triple patterns to form the HTTP
body (cf. Figure 5.1, where (3) dereferences an end of sosa:hosts links, and (4) changes
the state of saref:LightSwitches that fulfil a certain condition).

5.4.2. Intuition of the Semantics of the Condition-Action Rule Language

We informally give the operational semantics for the rule language by describing how
an interpreter would execute the program in Figure 5.1: An interpreter evaluates the
triple patterns of the body of the rules on RDF data that is either given initially (1) or
downloaded as mandated by request rules with HTTP-GET requests (3). Meanwhile,
the interpreter adds data as mandated by derivation rules (2). The interpreter executes
derivations and HTTP-GET requests until it calculated the fixpoint. Last, the interpreter
executes the HTTP-PUT, POST, DELETE requests of all request rules whose body
holds in the data (4). The interpreter operates in a looped fashion. In this chapter, we
give the rationale behind this operational semantics.

5.5. Related Work

In this section, we discuss related work subdivided by topic.

One-step updates of semantic data In Semantic Data Management, people studied
updates to RDF Graphs, e. g. Magiridou et al. schema-preserving updates [151],
and standardised updating the data in a triple store using SPARQL [81]. To
update Linked Data using HTTP has been proposed in a Design Issues article [18]
and detailed out in a W3C recommendation [196]. In previous work, Stadtmüller
et al. proposed Linked Data-Fu, a language and an interpreter for interacting with
Read-Write Linked Data [198]. Those works lack the notion of ASM steps.

Automation on the web Unlike automation systems such as van Kleek et al.’s [214],
IFTTT2, and Arktik3, we do not assume centralised information and event process-
ing, but decentralised information and rule evaluation on state information. Ripple
by Shinavier [192], and Leinberger et al.’s work [148] allow for read-only scripting
and programming with Linked Data. We also cover write operations. Unlike the
multi-agent approach of Ciortea et al. [45], we work without a central platform for
discovery and for distributing notifications.

Descriptive works We monitored, analysed (Chapter 4), and formally described (Chap-
ter 3) the dynamics of Linked Data. Those works are insufficient to specify
computation.

Web Service descriptions A focus of Semantic Web Services are service descriptions and
the processing of such descriptions, with some work on operational semantics [5,
158, 38, 183], mainly used for analysing composed services, instead of execution.

2http://ifttt.com/, visited on 2018-06-10.
3http://arktik.samsumg.com/, visited on 2018-06-10.

96

http://ifttt.com/
http://arktik.samsumg.com/

5.5. Related Work

(1) Language feature: RDF:

<http://my-room.example/#it>

sosa:hosts <http://t2-relay.example/#it> , <http://t2-climate.example/#it> .

(2) Language feature: Derivations:

{ ?systemA sosa:hosts ?systemB . ?systemB sosa:hosts ?systemC . }

=> { ?systemA sosa:hosts ?systemC . } .

Language feature: Conditional requests:

(3) Defining how to retrieve world state (GET requests):

{ ?x sosa:hosts ?y . }

=> { [] http:mthd httpm:GET ; http:requestURI ?y . } .

(4) Defining the logic (PUT, POST, DELETE requests):

{ <http://my-room.example/#it> sosa:hosts ?lightswitch , ?tempsensor .

?tempsensor a saref:TemperatureSensor ;

rdf:value ?temperatureInCelsius .

?temperatureInCelsius math:lessThan 20 .

?light a saref:LightSwitch ;

saref:hasState saref:Off .

?ir foaf:primaryTopicOf ?light . }

=> { [] http:mthd httpm:PUT ; http:requestURI ?ir ;

http:body

{ ?light a saref:LightSwitch ;

saref:hasState saref:On .

?ir foaf:primaryTopicOf ?light . } . } .

{ <http://my-room.example/#it> sosa:hosts ?lightswitch , ?tempsensor .

?tempsensor a saref:TemperatureSensor ;

rdf:value ?temperatureInCelsius .

?temperatureInCelsius math:notLessThan 20 .

?light a saref:LightSwitch ;

saref:hasState saref:On .

?ir foaf:primaryTopicOf ?light . }

=> { [] http:mthd httpm:PUT ; http:requestURI ?ir ;

http:body

{ ?light a saref:LightSwitch ;

saref:hasState saref:Off .

?ir foaf:primaryTopicOf ?light . } . } .

Figure 5.1.: Example for a simple rule program that turns on the lights in a room
depending on the room temperature.

97

5. A Model of Computation for Linked Data

Descriptions/formalisations and HTTP Lately, descriptions in a Semantic Web Services
fashion have gained traction again, especially on the Internet of Things [40], and
even when working with HTTP [146, 171, 111]. The descriptions express in a
standardised manner what you can do with a (server) API. Instead, we formally
address user agent specifications. Our approach can be extended with planning
(e. g. [217, 183]) if service descriptions are available. Thus, our Linked Data-based
formalisation (which respects the HTTP message semantics) gives an alternative to
approaches to service composition and execution that build on BPEL, an executable
workflow language.

Application of ASMs in Semantic Technologies Before the advent of RDF and Linked
Data, van Eck et al. [213] compared formalisms to specify dynamics for knowledge
bases. Abstract State Machines (ASMs) stood out for their simplicity and ease of
operationalisation. ASMs have also been used to describe the communication of
services in a choreography in WSMO [183], a ontology to describe web services.

Combination of static and dynamic modelling Huang et al. [121] executed queries in
linear temporal logic (LTL) over evolving ontologies, which is complementary to
our approach. Similar to our work, Kifer [138] combined approaches for static
and dynamic modelling for object-oriented modelling. While Graph Rewriting
could serve as an alternative to ASM for the specification of the evolution of RDF
Graphs, we think ASM is more compatible to the Semantic Web stack, as ASMs
and Semantic Web languages are based on first-order logic.

5.6. Preliminaries

In this section, we extend our treatment of the foundational definitions of the technologies
around Linked Data, which we covered in Chapter 2, with those aspects that are relevant
to our proposed synthesis with Abstract State Machines. Moreover, we give the basic
definitions of Abstract State Machines.

Specifically, we assume the following knowledge about technologies around Linked
Data: Uniform Resource Identifiers (URIs) [21] for identifying things, the Hypertext
Transfer Protocol (HTTP) [75] for interacting with things (with the HTTP message
semantics in particular), the Resource Description Framework (RDF) [47] for static
descriptions of things, and the RDF dataset to maintain descriptions of things from
different sources. As the technologies are about the transfer and the description of state
information, we first discuss the relations of different kinds of state (e. g. world and
resource state). Next, we refresh the reader’s knowledge of the model-theoretic semantics
of RDF. We use model-theoretic semantics to describe static aspects in our formalisation.
Last, we introduce Abstract State Machines (ASMs), on which we base our formalisation
of dynamic aspects. If two approaches use the same term, we introduce subscripts for
the origin (·rdf vs. ·asm).

98

5.6. Preliminaries

5.6.1. State

We distinguish different kinds of state: When successfully retrieving state using HTTP
GET from a URI, we obtain a description the resource’s state, e. g. the light in a room.
The corresponding HTTP request’s state can e. g. be “successful”. We call the union of
the state information about all resources world state, i. e. all resources in the world. An
application (e. g. implemented as rule program) can maintain state (e. g. in writeable
resources), which then represents the application’s state, e. g. a note that something just
happened. The application state is a subset of the world state. ASM terminology uses
the term system state, which can be translated to our terminology as the subset of the
world state that is relevant for an application, e. g. the building description and the
weather report.

5.6.2. RDF Model-Theoretic Semantics

We use the graph-based data model Resource Description Framework (RDF) to describe
things and their relations [47]. The RDF standard uses model theory to specify
the meaning of an RDF Graph (e. g. that the URI for the light is interpreted as the
resource that represents the light). We paraphrase the definitions as they are given in
the corresponding W3C Recommendation [109].

Definition 9 (InterpretationRDF, name, vocabularyRDF, universe). An interpretation is
defined as a mapping from U and L into some set called the universe. Both the mapping
and the set can be constrained. A name is an element from the union U ∪ L, i. e. URIs
and Literals. A set of names is also called vocabulary.

The basic interpretation for an RDF Graph is the simple interpretation. The simple
interpretation defines the following mappings and constraints.

Definition 10 (Simple interpretation, extension). A simple interpretation is defined
using the following sets and mappings: IR and IP denote the subsets of the universe
that contain all resources and properties respectively. IEXT(p), called the extension of a
property p, is a mapping IP → 2IR×IR that maps p to all pairs in IR that are connected
by p. IS is a mapping U → IR ∪ IP. IL is a partial mapping L → IR.

To make the presentation succinct, we assume ground RDF Graphs in this thesis. The
extension to Blank Nodes should be straight-forward.

5.6.3. Abstract State Machines (ASM)

For the dynamic aspects of our approach, we use Abstract State Machines (ASMs).
Concretely, ASMs help us to define how to evolve Linked Data, which we interpret
as RDF Dataset. Here, we give the standard definitions for ASMs to make the paper
self-contained. The approach of ASMs has been developed towards the end of the 1980s
with the aim to bridge between the specification and computation of programs [90]. ASMs
are meant to improve on Turing’s thesis. Turing Machines have proven too low-level to

99

5. A Model of Computation for Linked Data

specify algorithms larger than toy examples. In ASMs however, the level of abstraction
can be adapted to the requirements of the use-case. ASMs have been extensively used to
give operational semantics to programming languages including C, Prolog, and Java4.
An ASM consists of an algebraic first-order structure and a set of transition rules on

how to modify the structure. In the following, we give the basic definitions for ASMs.

Definition 11 (VocabularyASM, function name, relation name, characteristic function
name, variable, term). The vocabulary Υ be defined as a finite set of function names
and their arity n ≥ 0. The vocabulary also contains the nullary function names undef,
and the boolean constants true and false. Moreover, the vocabulary contains the usual
boolean operators as function names. Relation names and characteristic function names
are function names for relations and characteristic functions (see Definition 12). Terms
can be defined recursively: Variables are terms. If f is an n-ary function name and
t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

When considering terms, note the case of a nullary function name. For the presentation
in this chapter, we characterise a function name with arity > 0 with their correctly sized
argument list, e. g. to talk about an RDF Dataset for Linked Data in Section 5.7.2, we
define quad(·, ·, ·, ·), which defines the function name quad with an arity of 4. We omit
the argument list for nullary function names.

Definition 12 (Super-universe, function, relation, characteristic function). The super-
universe X is a non-empty set. X contains e. g. all functions Xn → X, true, false,
and undef. The boolean functions behave the usual way on {true, false}. Relations
are functions that map Xn → {true, false}. A characteristic function for a set is a
function X → {true, false} that maps to true iff the operand belongs to the set.

To be able to visually tell the elements of Υ and X from each other, we use typewriter
font for the nullary function names and small caps for their counterparts in the super-
universe.

Definition 13 (InterpretationASM, transition rule, function update, static and dynamic
function). An interpretation I : Υ → X maps the terms from an ASM vocabulary to a
super-universe. A transition rule R is a function update, e. g. f(t1, . . . , tn) := t0, or a
guarded function update, which has a boolean condition, e. g. if condition then function
update(s). A function update changes the interpretation of a function name at given
arguments. A static function is not subject to change by the function updates of an ASM,
as opposed to a dynamic function.

Definition 14 (Value and evaluated form). The value of a term from the vocabulary
Υ is the term’s referent in the super-universe X under the current interpretation I.
We denote the referent of a term t under an interpretation I using eval(t, I). If t is
a tuple, we have: eval(t, I) := (eval(t1, I), . . . , eval(tn, I)). If t is a function, we have:
eval(f(t1, . . . , tn), I) := eval(f, I)(eval(t1, I), . . . , eval(tn, I))).A function update in its

4See the annotated ASM bibliography at http://web.eecs.umich.edu/gasm/index.html, visited on
2018-06-10.

100

http://web.eecs.umich.edu/gasm/index.html

5.7. Abstract State Machines and Linked Data + Rules

so-called evaluated form is eval(f(t1, . . . , tn) := t0, I) = f(eval(t1, I), . . . , eval(tn, I))) :=
eval(t0, I).

Definition 15 (Algebra, state, run, step). A (static) algebra or state is a triple (Υ, X, I)
of a vocabulary Υ, a super-universe X, and an interpretation I. A step is a transition
from one state to the next by the means of firing transition rules. A run is a sequence of
steps.

The transition rules to be fired in one step are composed in an update set.

Definition 16 (Update set). The update set to be fired in an interpretation I un-
der the transition rule set T can be defined as updates(I, T) := {eval(u, I)|u ∈ T ∧
(the condition of u holds in I ∨ u has no condition)}

In ASM, we assume discrete time. Time progresses from one state to the next, i. e. in
a run, there is an ordered sequence of system states. There may be multiple transition
rules that fire in one state. If multiple transition rules want to update the interpretation
of a function name for the same arguments, then the system halts because of the conflict.

Definition 17 (Abstract State Machine). An Abstract State Machine (ASM) can be
defined as a quadruple of a vocabulary Υ, a super-universe X, an interpretation I0 for
time t0, and a set of transition rules T : ASM := (Υ, X, I0, T)

We now introduce variables to be able to range over names in conditions and updates.
In ASMs, we have to state from which set of individuals those individuals are to take
that are to be bound to variables. Therefore, a variable declaration is of the following
form:

Variable(s) ?varname range(s) over set
End variable scope

Formally, the variables can be covered by the help of an auxiliary vocabulary that contains
the variables as nullary function names [90].

5.7. Abstract State Machines and Linked Data + Rules

This section is about our proposed synthesis of ASM, and Linked Data + Rules with
the help of RDF model theory and HTTP semantics. We first describe on a high level
the commonalities between ASM and RDF model theory, which motivate our synthesis,
and then the different foci of both approaches. After that, we provide a synthesis of
ASM and Linked Data + Rules. While the formalisation has the user agent in the focus,
which regards Linked Data as external functions, we next sketch how a server fits into
the picture. Then, we sketch how the synthesis can be used for specifying computation.
Subsequently, we use the synthesis to give semantics to a rule language and discuss
our findings. Last, we derive requirements for a Linked Data user agent specification
language.

101

5. A Model of Computation for Linked Data

5.7.1. Overview

While both, ASMs and RDF, are defined in terms of interpretations of vocabularies into
a (super-)universe, the focus of each approach is different: RDF model theory is about
whether different RDF Graphs entail each other or whether models can exist for an RDF
Graph. Therefore, conditions on the universe are in the focus. The interpretation is
static in RDF model theory. ASMs are all about the evolution of system state, which
manifests itself in the evolution of the interpretation of a vocabulary into a super-universe.
Therefore, the transition function T is in the focus, in which updates to the interpretation
are stated and the conditions under which the updates happen. Linked Data is about
the publication and the updating of RDF data on the web using HTTP, where the RDF
describes the state of a resource.

The high-level idea of the synthesis, which is described in the subsections of Section 5.7.2,
is to (1) define RDF model theory for Linked Data using RDF Datasets, (2) define ASM
functions statement(·, ·, ·) and quad(·, ·, ·, ·) for Linked Data/RDF Datasets and the
functions’ interpretations, (3) define an ASM transition function for Linked Data/RDF
Datasets using rules with HTTP requests in the head (4) define how the ASM evaluation
of the statement(·, ·, ·) function and the ASM updates to the quad(·, ·, ·, ·) function can be
done in accordance with the semantics of HTTP requests, and (5) use above definitions
in the definition of an ASM.

5.7.2. Synthesis

In this section, we take the definitions from the simple interpretation from RDF model
theory and use them, slightly amended, for RDF Datasets, in the definition of an ASM.
The synthesis allows us to specify the evolution of an RDF Dataset using ASM semantics.
Note that the terms vocabulary and interpretation used in ASM and RDF model theory
mean the same. The term universe in RDF maps to the term super-universe in ASM.

Define RDF model theory for Linked Data using RDF Datasets

We base our considerations on two semantics for RDF Datasets that have been discussed
in Sections 3.2 and 3.5 of a note of the W3C RDF Working Group [225].

We start out with definitions to simplify our presentation: Like the W3C Recommen-
dation on model-theoretic semantics for RDF [109], we use as vocabulary the infinite sets
of all URIs U and Literals L in our definitions, in contrast to the fixed vocabulary used
by the Linked Data sources under consideration. Correspondingly, IS and IL interpret
all U and L, and IR has corresponding elements. We point to [109] for how to amend
the definitions to finite vocabularies. To further ease the presentation, we assume ground
graphs. Moreover, be IP = IR, such that we only need to address different IEXT in our
considerations. When working with RDF Datasets, we assume that the same terms in
the vocabularies of the different graphs have the same referent when interpreted using IS
and IL. We do not consider redirects in the definitions, although they can be layered on
top by defining a function for the correspondence between a non-information resource
and an information resource. In the definitions, we also assume all Linked Data sources

102

5.7. Abstract State Machines and Linked Data + Rules

to be in N , the named graphs of our RDF Dataset, i. e. we assume web-completeness in
the terminology of [101]. By restricting N , we can implement other completeness classes.
Of the W3C RDF WG Note on RDF Dataset semantics [225], two sections are of

particular use for our considerations:

3.5 “Named graph[s] are in a particular relationship with what the graph name deref-
erences to” defines an interpretation for each graph in the RDF Dataset, hence we
can define an extension function per dereferenceable source

IEXT c := Extension function of the graph available at c

3.2 “Default graph as union or as merge” defines the default graph of an RDF Dataset
as RDF union or merge of all named graphs in the RDF Dataset. As we assume
ground graphs, there is no difference in RDF union or merge. Hence, we can define
the extension function of the union as:

IEXTunion(p) :=
⋃
c∈N

IEXT c(p)

The default graph can be regarded as knowledge of the client, e. g. knowledge that is not
available at any n ∈ N . Derivations also go into the default graph. The default graph
can also be used in the case of higher-level entailment regimes for stating axiomatic
triples in case they cannot be dereferenced from a Linked Data source.

Define ASM functions quad(·, ·, ·, ·) and statement(·, ·, ·) for Linked Data/RDF
Datasets and the functions’ interpretations

We define
quad(s, p, o, c) : IR × IR × IR ×N → {true,undef}

as the characteristic ASM function for IEXT c. Moreover, be

statement(s, p, o) : IR × IR × IR → {true,undef}

the characteristic ASM function for IEXTunion. The statement function has also been
used in [193] to process RDF using Prolog.
So far, we have defined Linked Data as static ASM functions. Now, we proceed by

introducing dynamics.

Define how the ASM transition function for Linked Data/RDF Datasets can be
stated

The rules can be given as usual in ASM in rules of the form if condition then up-
date(s) modifying the interpretations of function names. We use conjunctions of the
statement(·, ·, ·) function for the conditions (reflecting BGP queries from SPARQL [93])
and the conjunctions of the quad(·, ·, ·, ·) function for the updates. Both the conditions
and updates can contain variables.

103

5. A Model of Computation for Linked Data

Define how the ASM evaluation of the statement(·, ·, ·) function and the ASM
updates to the quad(·, ·, ·, ·) function can be done in accordance with the semantics
of HTTP requests

For the evaluation of the conditions, we conceptually consider statement(·, ·, ·) an external
function in ASM. When evaluating the function statement(·, ·, ·), we make HTTP-GET
requests to all n ∈ N and evaluate the graph patterns on the data thus received. For
the default graph, no request needs to be made. The updates are done using the
quad(·, ·, ·, ·) function, which takes an additional c as parameter. The updates correspond
to HTTP-PUT, POST, DELETE requests.

We perform the requests ordered in accordance with ASM steps, i. e. we first evaluate
all HTTP-GET requests, and collect the updates that are mandated by the transition
functions. After we collected the updates to be performed, we carry out the corresponding
requests in bulk, i. e. multiple HTTP PUT, POST, DELETE requests at a time. After
all updates in the form of HTTP-PUT, POST, DELETE requests have been performed,
we continue with the next ASM step. The result of the HTTP-PUT, POST, DELETE
requests is dependent on server implementations, see Section 5.7.3.

Define the ASM

We next define the ASM for Linked Data. We follow Definition 17, and detail what the
vocabulary, the super-universe, and the interpretation of the ASM are in Linked Data.
The transition function can then be defined as usual in ASM. We present the analogy to
Notation3 in 5.7.4.

ASM := (Υ, X, I0, T)

The vocabulary Υ contains all RDF names (all URIs and Literals), the boolean operator
∧, and constant names. We omit (1) the boolean name false and the boolean operator
¬ because of the open world assumption, which is typically made on the Semantic
Web [113], and (2) the operator ∨, because in a BGP, conditions are only connected using
conjunctions. Disjunctions can be stated by using multiple rules. We add the function
names statement and quad :

Υ := U ∪ L ∪ {true, undef} ∪ {∧} ∪ {quad , statement}

The super-universe X is a set that contains elements for all RDF Graphs, and functions
Xn → X including the boolean and.

X := IR ∪ IP ∪ {true,undef} ∪ {f |f : Xn → X}

The interpretation It of an element y of the vocabulary Υ at time t, consists of IS (·) and
IL(·) from RDF model-theoretic semantics for the RDF names, mappings for the boolean

104

5.7. Abstract State Machines and Linked Data + Rules

true, and undef, and functions for quad(·, ·, ·, ·) and statement(·, ·, ·), and ∧:

It(y) :=

IS (y) if y ∈ U
IL(y) if y ∈ L
true if y = true

undef if y = undef

∈ {f |f : Xn → X} if y ∈ {quad , statement ,∧}

5.7.3. Linked Data Servers

Although our formalisation is made for the user agent, we show for completeness the
server behaviour, which reflects the update of the quad(·, ·, ·, ·) function for HTTP-PUT,
POST, and DELETE requests: A server processing an HTTP-PUT request to the target
information resource http://t2-relay.example/modules/relay/1 with the body

<> foaf:primaryTopic <#it> .

<#it> a saref:LightSwitch ;

saref:hasState saref:On.

sets
quad(·, ·, ·, http://t2-relay.example/modules/relay/1)

to true for the arguments

(<>, foaf:primaryTopic, <#it>)

(<#it>, a, saref:LightSwitch)

(<#it>, saref:hasState, saref:On)

and undef for all other triples. A server processing an HTTP-POST request with the
target of a LDP container, e. g. http://ldpc.example/ and the RDF payload payl first
determines a new URI sub that is subordinate to the container resource, then defines
a new graph by relativising all URIs in the payl against sub and PUTs the new graph
at sub into the RDF Dataset. Moreover, a membership triple for sub is added to the
representation of the container resource.

5.7.4. Operational Semantics for the Condition-Action Rule Language

In this section, we give operational semantics to our condition-action rule language using
the synthesis. We use the program in Figure 5.1 as example: The program consists of
RDF (1), derivations (2), and requests (3+4), the latter to interact with the environment.
Remember that in an ASM step, updates are executed after the update set has been
constructed entirely. To construct the update set, all rules have to be evaluated on the
current state.
In our language, information about the current system state is given by RDF, by

evaluating all derivations, and by evaluating all GET requests on the Linked Data

105

5. A Model of Computation for Linked Data

sources until the fixpoint has been calculated. In our example, we know from the RDF
(1) that the room http://my-room.example/#it has a relation of type sosa:hosts to
http://t2-relay.example/#it and http://t2-climate.example/#it. The presence
of a triple with predicate sosa:hosts triggers the conditional HTTP-GET request (3).
The information obtained using the HTTP-GET request again contains triples with
sosa:hosts predicate (see Example 5). The derivation rule (2) derives triples based on
the transitivity of the sosa:hosts predicate. Hence, we know that the room not just
hosts the two devices, but also the sensors and actuators. After no further knowledge can
be derived using rules, the fixpoint has been calculated. The updates in our language are
the unsafe requests. The conditional PUT, POST, DELETE requests (4) are collected
during the information gathering about the current state, and are executed after the
fixpoint calculation. Note that using conditional requests, we can do hypermedia-style
link following. In our example, the condition for the last rule holds in the knowledge
after the fixpoint calculation. Hence, the light is turned on or off depending on the
temperature.

To execute programs in our language along the ASM step semantics, an interpreter
operates in nested loops (see Figure 5.2 for its algorithm). The algorithm takes as input
a rule program and emits a sequence of sets of safe and unsafe requests, depending on
the available state information. Note that ASM steps in combination with GET requests
implement polling.

5.7.5. Discussion: Computation, ASMs, Simple Reflex Agents, and Linked
Data

ASMs are a model of computation, i. e. one can specify arbitrary computation using the
model, e. g. algorithms and programs. In the previous section, we defined an ASM view
on Linked Data. Hence, we now can specify arbitrary computation with the state of
the computation represented in Linked Data. Our ASM-based formalisation of Linked
Data is based on the assumption that we have exclusive read and write access to all
relevant URIs during an ASM step. When generalising to a setting with multiple agents,
ASMs typically assume circulating exclusive access to the system state. As there is no
central control in a web setting, we cannot circulate the access right. Thus, there is
no general solution to the problem of concurrent access, but a number of remedies: (1)
in a realistic setting, we do not have the entire Linked Data in our system state (i. e.
web-completeness in the terminology of [101]), but a considerably smaller subset. (2)
on the web, most access is typically reading, and only little is writing [173]. (3) if the
servers use ETags [74], a client can send conditionally writing requests, which fail if a
concurrent update has happened. (4) with sufficiently fast data processing, the problem
can be mitigated.

Using our ASM view on Linked Data, we can also implement simple reflex agents for
Linked Data, the simplest agent type in Russell and Norvig [185]. Simple reflex agents
perceive the environment and choose their action by matching condition-action rules on
the perceived environment. Then, the agent carries out the action and repeats. This
sense-act cycle aligns with an ASM step of first, matching rules and second, acting in the

106

5.7. Abstract State Machines and Linked Data + Rules

Require: assertions ▷ Triples to be asserted in every ASM step
Require: rules ▷ Derivation and request rules
var unsafeRequests: set<request>
var data, oldData: set<triple>
var fixpointReached: boolean
while true do ▷ Loop of the ASM steps

unsafeRequests.clear()
data.clear()
data.add(assertions)
repeat ▷ Loop for determining the update set

fixpointReached � true
for rule : rules do

if rule.matches(data) then ▷ Also empty rule bodies
oldData = data.copy()
if rule.type==derivation then

data.add(rule.match(data).data)
else ▷ So the rule must be an interaction rule

if rule.match(data).request.type==GET then
data.add(rule.match(data).request.execute())

else
unsafeRequests.add(rule.match(data).request)

end if
end if
if ! data.copy().remove(oldData).isEmpty() then

fixpointReached � false
end if

end if
end for

until fixpointReached
for request : unsafeRequests do ▷ Enacting the update set

request.execute()
end for

end while

Figure 5.2.: The nested loops for the ASM-based operational semantics for the rule
language.

107

5. A Model of Computation for Linked Data

form of updates.

5.7.6. Requirements for a Linked Data User Agent Specification Language

What current languages to specify queries and updates are missing is a way of expressing
the transition function T . In ASM, T is given using rules in the form if condition then
function update(s). T is then executed in ASM steps. Thus, we need a language

1. that allows to express conditions on state information

2. that allows to define updates that send state information,

3. whose semantics adhere to ASM steps, i. e. one repeatedly first evaluates all con-
ditions of all rules and collects all updates, and then one evaluates all updates in
bulk.

We chose N3 as rule language in the context of RDF data and gave ASM-based semantics
to N3. Other approaches including SPARQL updates [81] or RUL [151] as very elaborate
ways to address point 1. They do not implement server interaction using exchange of
state representation, but RPC-style interaction (point 2). They also do not implement
bulk updates, as required by ASM steps (point 3).

5.8. Evaluation

In this section, we provide a formal evaluation by studying the expressivity of the approach
and an experimental evaluation using a synthetic benchmark in the building automation
domain.

5.8.1. Formal Evaluation

To show the expressiveness of our approach, we implemented a Turing Machine in
ASM4LD. A Turing Machine is typically defined as a septuple of a set of machine states,
a tape alphabet, the blank symbol as part of the tape alphabet, an input alphabet, the
initial state, the set of final states, and a transition function [118]. For our considerations,
we omit the alphabets and the machine states states and assume them as given implicitly
in the transition function.

Our Turing Machine operates on a tape that is deployed as Read-Write Linked Data.
The tape is described as a linked list using the RDF List vocabulary. However, we use
URIs of writeable Linked Data resources instead of blank nodes to describe the list, as
follows. For instance, the (finite) tape with element zero followed by one followed by zero
can be described using the Turtle list syntax as (0 1 0). The corresponding RDF
graph contains the following triples (given in Turtle without using the list syntax):

_:bn1 rdf:first 0 ;

rdf:rest _:bn2 .

_:bn2 rdf:first 1 ;

108

5.8. Evaluation

rdf:rest _:bn3 .

_:bn3 rdf:first 0 ;

rdf:rest rdf:nil .

We divide the triples of the RDF Graph by the subject, and create URIs of writeable
Linked Data resources for the blank nodes. The graphs obtained when dereferencing the
URIs consist of the triples with the blank nodes substituted by the URIs. The result of
the processing of the RDF list can be described using the following RDF dataset:

Name Graph

http://ldpc.example/ldpr1 <ldpr1> rdf:first 0 ;

rdf:rest <ldpr2> .

http://ldpc.example/ldpr2 <ldpr2> rdf:first 1 ;

rdf:rest <ldpr3> .

http://ldpc.example/ldpr3 <ldpr3> rdf:first 0 ;

rdf:rest rdf:nil .

Hence, we can write to the individual list elements (i. e. the tape) using HTTP-PUT
requests.

The transition function of a Turing Machine is typically given as a set of quintuples of
current state, scanned symbol on the tape, symbol to be printed, the direction of the
head, and the next state. We give the transition function as an RDF graph available as
Linked Data, where one quintuple can be written as follows:

@prefix tm: <http://www.example.org/turing-machine#> .

[] tm:hasCurrentTapeSymbol 0 ;

tm:hasCurrentState <q0> ;

tm:hasNextState <q0> ;

tm:hasDisplacement tm:R ;

tm:hasWriteSymbol 0 .

Last, we have to give the state of the Turing Machine, which we give as writeable
Linked Data:

@prefix tm: <http://www.example.org/turing-machine#> .

<> tm:hasInitialPosition <ldpr2> ;

tm:hasCurrentPosition <ldpr2> ;

tm:hasCurrentState <q0> .

Then, we can run the Turing Machine using four Linked Data-Fu rules with ASM4LD
semantics, see Appendix B. While the Turing-completeness is, of course, an inherent
property of the ASM part of the approach, it persists despite the restrictions we imposed
to make ASM fit Linked Data. All parts of our approach are necessary: Read-Write
Linked Data for tape and machine state, and request rules executed in ASM steps.

109

5. A Model of Computation for Linked Data

Figure 5.3.: Building 3 of IBM Research Dublin. Image from Google Maps.

5.8.2. Experimental Evaluation

To describe our empirical evaluation, we start out with defining the data and different
scenarios for data access. Next, we present different workloads. Then, we describe
the experimental setup. Next, we present and discuss our results. Last, we showcase
applications of our approach.

Data

While we used two devices from the Internet of Things in the examples of this thesis, we
use a scaled-up version as the scenario of our experiments. Specifically, we use examples
from the Smart Building domain, where also lights and temperature sensors are deployed,
inspired by recent work in Building Management Systems: NIST identified interoperability
as a major challenge for the building industry [79]. To raise interoperability in Building
Management Systems, Balaji et al. developed Brick [11], an ontology to model buildings
and corresponding building management systems.

We use a description of building 3 at IBM Research Dublin in Ireland, see Figure 5.3.
Balaji et al. provide a static description of this building using the Brick ontology5. The

5https://github.com/BuildSysUniformMetadata/GroundTruth/blob/2e48662/building_

instances/IBM_B3.ttl, visited on 2018-06-10.

110

https://github.com/BuildSysUniformMetadata/GroundTruth/blob/2e48662/building_instances/IBM_B3.ttl
https://github.com/BuildSysUniformMetadata/GroundTruth/blob/2e48662/building_instances/IBM_B3.ttl

5.8. Evaluation

:Location

:Building :Floor :HVAC_Zone :Lighting_Zone :Room

:Equipment

:Fire_Safety_System :HVAC :Lighting_System :Water_System

:Point

:Alarm

:Command

:Sensor

:Setpoint

:Status

Figure 5.4.: Excerpts from the Brick ontology as UML Class Diagram. UML class
inheritance denotes RDFS sub class relations. The empty prefix expands to
http://buildsys.org/ontologies/Brick#.

description covers the building and the building’s parts (e. g. rooms) and the different
parts of the building’s systems (e. g. lights and switches). As there is nothing to automate
in the static description, we introduce dynamics by adding information about the state
of these system parts (e. g. on/off) in the form of properties from the SSN ontology [92].
We serve those properties as writeable Linked Data.

In the example of Section 5.4, we use ASM4LD to program an user agent that controls
one light in the building in a straight-forward fashion (turn the light off or on depending
on the room temperature). For the evaluation, we use more complex control schemes
with up to 30 rules and control the lights of the entire building based on time of day, a
weather API and luminance sensor values. We use the building 3’s lighting subsystem,
as lamps and switches can be regarded as having a discrete state. We use this particular
building, as the provided building description includes a lighting subsystem.

The core classes of the Brick ontology are depicted in Figure 5.4. The first part of
the ontology, Location and subclasses, allows for describing a building in terms of the
subdivisions provided by the brickwork, e. g. floors and rooms. The second part of the
ontology, Equipment and subclasses, allows for describing different systems that run the
building, where we focus on the lighting system. Other systems include water, and HVAC
(heating, ventilation, and air conditioning). The third part of the ontology, Point and
subclasses, allow to talk about sensors and actuators in the building.

111

5. A Model of Computation for Linked Data

Building 3 is box-shaped with its long side oriented from north to south, see Figure 5.3.
In the RDF description, the building is subdivided into floors and wings. The rooms are
assigned to their corresponding floor and wing (also has-part relationships). The lights
are directly assigned to rooms or wings. A light system can consist in (1) an occupancy
sensor that determines whether there are people in its vicinity, (2) a luminance command,
in other words, a switch to control the lights, and (3) a luminance sensor that we consider
to be triggered by daylight. We provide basic statistics in Table 5.1.

We bring the static building description “to life” by adding ssn:hasProperty links
to dynamic Linked Data resources representing switches, occupancy sensors, luminance
sensors, and lights. The state of each resource relevant for the evaluation is on/off for
the lights, and a numeric value for the luminance sensors.

Workload

In our evaluation, we implement different user agents that provide automation. We run
the rules on different parts of the buildings to investigate how the approach scales. In
terms of data access, i. e. the evaluation of the quad function, there are two extremes:

D1 The whole building description is available as one file, which is loaded from one single
Linked Data source on the network

D2 The building description is available subdivided into one Linked Data source per
resource in the building. The Linked Data sources can thus be accessed as required
following links. We built the Linked Data representation as follows: We subdivided
the description into one-hop RDF Graphs around each URI from the building and
provide each graph for dereferencing at the corresponding URI. No data is lost in
the subdivision, as there are no blank nodes in the description.

We scale the scenario from one room to the whole building.

In terms of automation workloads, we scale both the rule complexity, and energy
efficiency and comfort of the building. According to UNEP [209], lighting is the second-
highest energy consumer in commercial buildings, optimised control can yield substantial
savings.

W1 Turn all light switches on (no conditions / baseline; 9 rules)

W2 Working hours (conditions and another source, a Linked Data clock / clock-based
straight-forward control; 46 rules): The lights are on per default during working
hours.

W3 Weather API (more complex rules, another source / raising energy efficiency; 20
rules): We turn the lights on only if a lack of sunlight indicates illumination.

W4 Luminance sensor (numerical computations / further raising efficiency; 34 rules):
We consider luminance sensor values in the rooms to determine whether the lights
should be on.

112

5.8. Evaluation

Table 5.1.: Basic counts for building 3 and the benchmark.

Rooms 281
Floors 2
Wings 3
Lights 166
Lights w/occupancy sensors 156
Lights w/luminance commands 126
Lights w/luminance sensors 60
Lights w/all three 48

Triples in IBM B3.ttl 24 947
Resources in the LDP Container 3 281
Dynamic resources 551

W5 Luminance sensor w/room-individual thresholds (more complex computation /
raising individual comfort; 19 rules): We assign an individual light threshold per
room.

Experimental Setup

We use the engine Linked Data-Fu version 0.9.126 to run the rule programs. We use
LDBBC version 0.0.67 as LDP Container to serve the static building data. We implement
the following dynamic sources: (1) an RDF weather API built from a sample file from
OpenWeatherMap8, a JSON-LD context, and a sunset/sunrise simulation for Dublin,
and (2) luminance sensor readings according to time of day and season. We run the
experiments on a laptop with an Intel Core i7-5600U CPU, 12GB of RAM, and Ubuntu
Linux 17.04. After the dynamic sources simulated one year, i. e. one minute in wall-clock
time, we stop one experiment leading to repetition counts of up to 7’500 depending on
the runtime of one ASM step. The evaluation system including data and rules can be
found online9.

Results and Discussion

We present the results for D1 in Table 5.3a and for D2 in Table 5.3b. We report median
values as we observed that when firing requests with high frequency, there are high
outliers in the 99th percentile, which spoil mean and standard deviation. The median,
however, is stable. The order of magnitude of the measurements in varies in Table 5.3b,
in contrast to Table 5.3a. This is owed to the fact that each ASM step, regardless of
the data that is actually needed, the whole building description has to be transferred in

6http://linked-data-fu.github.io/, visited on 2018-06-10.
7http://github.com/kaefer3000/ldbbc, visited on 2018-06-10.
8http://www.openweathermap.org/, visited on 2018-06-10.
9http://github.com/kaefer3000/rwld-brick-benchmark, visited on 2018-06-10.

113

http://linked-data-fu.github.io/
http://github.com/kaefer3000/ldbbc
http://www.openweathermap.org/
http://github.com/kaefer3000/rwld-brick-benchmark

5. A Model of Computation for Linked Data

Table 5.2.: Median times [ms] for one ASM step.

Rooms W1 W2 W3 W4 W5

1 484 572 510 554 561
5 480 582 501 574 582
10 498 584 529 605 618
20 537 631 562 719 687
First Floor 563 629 590 750 728
Wing 42 527 595 550 651 604
Building 3 605 734 613 794 788

(a) In scenario D1, data access from one single Linked
Data source.

W1 W2 W3 W4 W5

8 8 8 8 8
40 38 38 40 40
85 80 79 88 88

259 238 228 320 268
938 1 690 891 1 063 1 048

1 435 1 427 1 371 1 664 1 408
2 442 2 187 2 192 2 542 2 497

(b) In scenario D2, data access via Linked
Data + link following.

D1, which is 2.3MB per transfer. Compared to that, the link following approach D2 can
access the building data as required. This fine granularity comes at the price of additional
requests, which make the processing of the whole building more expensive. The drop in
time between W2 and W3 can be explained by the reasoning that is employed in W2 to
check whether the current day and hour is a working hour, which is not needed in W3.
The increase between W3 and W4 underestimates the real cost of the computations, as
we go from all lights in W3 to only those lights with sensors in W4, cf. Table 5.1. The
drop between W4 to W5 can be explained by the smaller number of lights with luminance
sensors. The rise in time for the workloads in Table 5.3a is due to that different workloads
need to access different amounts of data.

Applicability

We give two examples of how we applied our approach.

Composition of RESTful services to VR systems We used our approach to connect
different parts of Virtual Reality systems: In the i-VISION project, we connected a
flight simulator to a workflow analysis software [132] (ca. 90 rules). In a demo [137],
we connected a Microsoft Kinect sensor and APIs from the Web to a 3D engine
(ca. 60 rules), where the interpreter running the rules performed about 30 ASM
steps per second (i. e. the refresh rate of the Kinect sensor).

Specification of Operational Semantics Similar to previous applications of ASMs to
define the operational semantics of programming languages, we can use our approach
to define the operational semantics of a workflow language using our approach (ca.
30 rules), see the Chapter 6.

114

5.9. Conclusion and Future Work

5.9. Conclusion and Future Work

We have presented a formal approach for capturing the dynamics of Linked Data with
the aim of specifying user agents. To this end, we gave a synthesis of RDF model theory,
ASMs, and HTTP, and described requirements for implementing the synthesis. We
applied the approach to give semantics to a rule language such that we can specify Linked
Data user agents. We presented application scenarios and showed our approach to be
Turing complete. We evaluated our approach in a Smart Building setting.

In the paper, we took the first step towards autonomous agents that operate on Linked
Data: We presented a formal basis for the execution of agents. Still, there are more steps
to take, a formal notion of (1) internal state in the agent, and (2) a notion of goals and
capabilities, which we will address in future work.
Yet, we believe our work can already be applied today: Although experts built the

applications in Section 5.8.2, the experiments of van Kleek et al. [214] or the success of
IFTTT [210] show that rules are a way of programming that is highly relevant also for
end-users.

115

6. Workflows in Linked Data

Parts of this chapter have been published in:
▷ Tobias Käfer and Andreas Harth. “Specifying, Monitoring, and Executing Workflows in Linked
Data Environments”. In: Proceedings of the 17th International Semantic Web Conference (ISWC).
2018, pp. 424–440.

Using the model of computation of the previous chapter, we can specify computation in
rules in the context of Linked Data. Hence, we can compose applications from components
that provide Linked Data interfaces and specify the application behaviour in rules. Yet,
it is workflows, which have been identified as paradigm to specify behaviour that is
suitable for in integration scenarios by Jablonski and Bussler [125], easy to understand
(for validation and specification by humans), and formal (for execution and verification
by machines). E. g., consider an evacuation support workflow for a smart building (cf.
task 4 in our evaluation, Section 6.8.3), which integrates multiple systems of the building,
should be validated by the building management and the fire brigade, verified to be
deadlock-free, and executable. Hence, we address the research question: How to specify,
monitor, and execute applications given as workflows in the environment of Read-Write
Linked Data?

Example 10. Imagine the Internet of Things devices from our example. Using a
(admittedly very simple) workflow, we can specify that two lights should be turned on
sequentially, see Figure 6.1. Our approach also works in complex scenarios, which we
consider in our evaluation, see Section 6.8.

6.1. Challenges

To use workflows in the environment of Read-Write Linked Data is difficult as the
environment is fundamentally different from traditional environments where workflows are
used. Elmroth et al. argue that the properties of the environment determine the model of
computation, which serves as the basis of a workflow language [61]. Consequently, we have
developed ASM4LD, see Chapter 5, a model of computation for the environment of Read-
Write Linked Data. In this chapter, we investigate an approach for a workflow language
consisting of an ontology and operational semantics in ASM4LD. In the investigation of
the approach, the differences between traditional environments of workflow languages
and the environment of Read-Write Linked Data (i. e. RDF and REST) pose challenges:

Querying and reasoning under the open-world assumption [181] Ontology languages
around RDF such as RDFS and OWL make the open-world assumption (OWA) [181].
However, approaches from workflow management operate on relational databases,

117

6. Workflows in Linked Data

which make the CWA. Closedness allows e. g. to test if something holds for all parts
of a workflow.

The absence of events in REST HTTP implements CRUD (the operations create, read,
update, delete), but not the subscriptions to events. However, approaches from
workflow management use events as change notifications.

While both challenges could be mitigated by introducing assumptions (e. g. negation-as-
failure once we reach a certain completeness class [101]) or by extending the technologies
(e. g. implement events using Web Sockets [71] or Linked Data Notifications [34]), those
mitigation strategies would restrict the generality of the approach, i. e. we would have
to exclude components that provide Linked Data, but do not share the assumptions or
extensions of the mitigation strategy.

6.2. Contributions

The two main contribution of this chapter are as follows:

� An ontology to specify workflows and workflow instances modelled in OWL LD [85]
(Section 6.5), which allows for querying and reasoning over workflows and workflow
instances under the OWA. The ontology is strongly related to the standard graphical
workflow notation, BPMN, via the workflow patterns [211].

� An operational semantics for our workflow ontology. The operational semantics
allows for both, monitoring and executing workflows. We use ASM4LD, a model of
computation for Read-Write Linked Data in the form of a condition-action rule
language (Section 6.7), which does not require event data and is directly executable.
We maintain workflow state in an LDP container.

Fast data processing thanks to OWL LD and the executability of ASM4LD allow to
directly apply our approach in practice. In the evaluation (Section 6.8), we present a
Virtual Reality showcase, and a benchmark in an Internet of Things setting. We also
show correctness and completeness of our approach. We conclude in Section 6.9.

6.3. Related Work

We now survey related work grouped by field of research.

Workflow Management Previous work in the context of workflow languages and work-
flow management systems is based on event-condition-action (ECA) rules, whereas
our approach is built for REST, and thus works without events. This ECA rule-based
approach has been used to give operational semantics to workflow languages [122],
and to implement workflow management systems [35]. Similar to the case handling
paradigm [212], we employ state machines for the activities of a workflow instance.

118

6.4. Preliminaries

Web Services WS-*-based approaches assume arbitrary operations, whereas our ap-
proach works with REST resources, where the set of operations is constrained. The
BPM community has compared WS-*- and REST-based approaches [174, 226].
Pautasso et al. proposed extensions to BPEL such that e. g. a BPEL process [170]
can invoke REST services, and that REST resources representing processes push
events [172]. While those extensions make isolated REST calls fit the Web Services
processing model of process variable assignments, we propose a processing model
based on integrated polled state.

Semantic Web Services We can only present a selection of the large body of research
conducted in the area of SWS. Approaches like OWL-S, WSMO and semantic
approaches to scientific workflows like [84] are mainly concerned with service
descriptions and corresponding reasoning for composition and provenance tracking.
In contrast to our work, which is based on REST, SWS build on Web Service
technology for workflow execution, e. g. the execution in the context of WSMO,
WSMX [91], is entirely event-based. European projects such as “Super” and
“Adaptive Services Grid” build on WSMO.

Ontologies for Workflows Similar to workflows in our ontology, processes in OWL-S
are also tree-structured (see Section 6.5) and use lists in RDF. Unlike OWL-S, our
ontology also covers workflow instances. Rospocher et al. [184] and the project
“Super” developed ontologies that describe process metamodels such as BPMN,
BPEL, and EPC1. Their ontologies require more expressive (OWL) reasoning or
do not allow for execution under the OWA.

6.4. Preliminaries

We assume that the reader is familiar with Read-Write Linked Data and ASM4LD, i. e.
Chapter 5. Again, we remark on the notion of state.

State

In our remarks on the notion of state in Section 5.6.1, we distinguished a resource’s
state, which can be obtained using one HTTP-GET request, the world’s state, which
is the union of the state of all resources, and an application’s state, which is the subset
of the world’s state where an application maintains the application’s state. In this
chapter, applications are defined as workflows. Our application state is thus the state of a
workflow instance, which we maintain in writeable Linked Data. Where in the Chapter 5
on ASM4LD, the application logic was, generally speaking, stateless and given in rules,
in this chapter, the application logic is indeed stateful as the workflow instance state
(e. g. which activities are active, which are done) is core to the application.

1http://www.ip-super.org/content/view/129/136/, available in the Web Archive as of 2018-06-10.

119

http://www.ip-super.org/content/view/129/136/
https://web.archive.org/web/20110726185128/http://www.ip-super.org/content/view/129/136/

6. Workflows in Linked Data

→

<#relay1on> <#relay2on>

Figure 6.1.: Workflow (solid: BPMN notation) with sequential activities (<#relay1on>,
<#relay2on>). Dashed: the tree representation with the parent node marked
as sequential.

6.5. Activity, Workflow Model and Instance Ontology

To describe workflow models and instances as well as activities, we propose an ontology.
We developed the ontology, see Figure 6.22, with execution based on querying and
reasoning under the OWA in mind. In this section, we define activities, workflows, and
instances using the workflow in Figure 6.1 as example.

Activities We regard an atomic activity as a basic unit of work. We characterise an
activity by a postcondition, which states what holds in the world’s state after the activity
has been executed. We give the postcondition as a SPARQL ASK query3. For the
execution of an atomic activity, the activity description needs an HTTP request (cf.
Figure 6.2). The workflow model in Figure 6.1 contains two activities (<#relay1on>,
<#relay2on>), but omits postconditions and HTTP requests. For the example, the activ-
ities are described using the RDF graph in Figure 6.3: In this example, the postconditions
are very close to the body of the requests. While in this example, the postconditions
can be expected to be fulfilled in the next snapshot of the world state, this is not true in
other scenarios. Imagine for instance that the request causes a valve to be opened such
that water flows into a jar. In the postcondition, we could check for a certain threshold
of the water level, i. e. the activity is only finished if the jar is filled to a certain extent.

Workflow Models A workflow model is a set of activities put into a defined order. As
notation to describe workflow models, BPMN is a popular choice. In the simplest form,
the course of action (i. e. control flow) in a BPMN workflow model is denoted using arrows
that connect activities and gateways (e. g. decisions and branches). For example 10, the
middle arrow in the workflow model in Figure 6.1 orders activities <#relay1on> and
<#relay2on> sequentially.

In this chapter, we assume a different representation of the control flow of a workflow
model: A tree structure, as investigated by Vanhatalo et al. [215]. Tree-structured
workflow languages include BPEL, a popular language to describe executable workflows.
In the tree, activities are leaf nodes. The non-leaf nodes are typed, and the type
determines the control flow of the children. The connection between the tree-based
(dashed) and the flow-based (solid) workflow representation is depicted in Figure 6.1.
Flow-based workflows can be losslessly translated to tree-structured workflows and vice
versa [175]. We use the tree structure, as checks for completion of workflow parts are

2The ontology can be accessed at http://purl.org/wild/vocab
3http://www.w3.org/TR/sparql11-query/

120

http://purl.org/wild/vocab
http://www.w3.org/TR/sparql11-query/

6.5. Activity, Workflow Model and Instance Ontology

:AtomicActivity

http:Request

:hasHttpRequest

:Activity

:CompositeActivity

:has
Atomic
Activity

rdf:List

:has
Child

Activities

:has
Child
Activity

sp:Ask

:has
Postcondition

:has
Precondition

:WorkflowModel

:hasBehaviour

:ConditionalActivity :ParallelActivity :SequentialActivity

(a) Workflow Models

:Instance

<<enumeration>>
:InstanceState

:uninitialised
:initialised
:active
:done

:hasState

:WorkflowInstance

:WorkflowModel

:workflow
Instance

Of

:Activity

:has
Behaviour

:ActivityInstance

:in
Workflow
Instance

:activity
Instance

Of

(b) Workflow Instances

Figure 6.2.: The WiLD ontology to express workflow models (a) and instances (b) as
UML Class Diagram. Shared classes between the diagrams are depicted
in bold. We use the UML Class Diagram’s class, inheritance, association,
and enumeration to denote the RDFS ontology language’s rdfs:Class,
rdfs:subClassOf, rdf:Property with rdfs:domain and rdfs:range, and
instances.

121

6. Workflows in Linked Data

<#relay1on> a :AtomicActivity ;

:hasHttpRequest <#req1> ;

:hasPostcondition <#pc1> .

<#req1> a http:Request ;

http:mthd http_m:GET ;

http:requestURI "http://t2-relay.example/modules/relay/1"^^xsd:anyURI ;

http:body """@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix saref: <https://w3id.org/saref#> .

<> foaf:primaryTopic <#it> .

<#it> a saref:LightSwitch ;

saref:hasState saref:On .""" .

<#pc1> a sp:Ask ;

sp:where ([sp:subject <http://t2-relay.example/modules/relay/1#it> ;

sp:predicate saref:hasState ;

sp:object saref:On]) .

<#relay2on> a :AtomicActivity ;

:hasHttpRequest <#req2> ;

:hasPostcondition <#pc2> .

<#req2> a http:Request ;

http:mthd http_m:GET ;

http:requestURI "http://t2-relay.example/modules/relay/2"^^xsd:anyURI ;

http:body """@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix saref: <https://w3id.org/saref#> .

<> foaf:primaryTopic <#it> .

<#it> a saref:LightSwitch ;

saref:hasState saref:On .""" .

<#pc2> a sp:Ask ;

sp:where ([sp:subject <http://t2-relay.example/modules/relay/2#it> ;

sp:predicate saref:hasState ;

sp:object saref:On]) .

Figure 6.3.: RDF to describe the atomic activities of the example workflow model.

122

6.6. Reasoning and Querying over RDF Lists in OWL LD

:initia-

lised
:active :done

:un-

initia-

lised

Figure 6.4.: State machine for the workflow and activity instance resources. The dashed
part only concerns workflow instance resources.

easier in a tree. Of the multitude of control flow features of different workflow languages,
we support the most basic and common, which have been compiled to the basic workflow
patterns [211].
Based on the previous activity definitions in RDF, we now define the control flow of

the workflow model of example 10, cf. Figure 6.1:

<#wfm> a :WorkflowModel ;

:hasBehaviour <#root> .

<#root> a :SequentialActivity ;

:hasChildActivities (<#relay1on> <#relay2on>) .

As we assume tree-structured workflows, each workflow model (<#wfm>) has a root activity
(<#root>). If an activity is composite, i. e. a control flow element, then the activity has
an RDF list of child activities. Here, <#root> is sequential, with the child activities
<#relay1on>, <#relay2on>. The child activities could again be composite, thus forming
a tree. Leaves in the tree (here <#relay1on> and <#relay2on>) are atomic activities.
We require child activities to be given in an RDF list, which is explicitly terminated.
This termination closes the set of list elements and thus allows for executing workflows
under the OWA, which e. g. includes querying whether all child activities of a parent
activity are :done). Yet, for the operational semantics we also need a direct connection
between a parent activity and a child activity, which we derive from an RDF list using
monotonic reasoning, here:

<#root> :hasChildActivity <#relay1on> , <#relay2on> .

We present details on this list processing in Section 6.6.

Instances Using workflow instances, we can run multiple copies of a workflow model. A
workflow instance consequently consists of instances of the model’s activities. We model
the relation of the instances to their counterparts as shown in Figure 6.2. During and
after workflow monitoring/execution, the operational semantics maintain the states of
instances in an LDP container. At runtime, the instances’ states evolve according to the
state machine depicted in Figure 6.4 (terms from Figure 6.2). Section 6.7 is about the
operationalisation of the evolution.

6.6. Reasoning and Querying over RDF Lists in OWL LD

We identified RDF lists as useful for reasoning over workflows under the open world
assumption, as the RDF lists are explicitly terminated. We hence defined a vocabulary

123

6. Workflows in Linked Data

list:FirstMemberProperty

list:ListMembershipProperty

list:isFirst

rdf:Property

list:accompanying

list:LastMemberProperty

list:isLast

(a) Classes and domain/range of properties as UML class
diagram. UML classes denote classes in RDFS, and UML
associations domain and range in RDFS.

list:isLast

rdfs:subPropertyOf

rdfs:subPropertyOf

list:isFirst

rdfs:subPropertyOf

rdf:rest

list:transitiveRest

rdfs:subPropertyOf

list:equalsOrTransitiveRest

rdfs:subPropertyOf

owl:TransitiveProperty

rdf:type

(b) The hierarchy of properties visualised according to [47].

Figure 6.5.: Classes and properties of our ontology for RDF list processing.

and rules for list processing, which we use when we give the operational semantics of the
workflow language. The vocabulary and the semantics can be found online4 We show the
classes and domain and range of the properties in Figure 6.5a and the property hierarchy
in Figure 6.5b. The property list:accompanying defines the counterpart to a property
that connects a URI to an RDF list. When describing workflows above in Section 6.5, we
stated that :hasChildActivity list:accompanying :hasChildActivity . to connect
all child activities directly to the parent activity. The semantics of the property list:

accompanying can be given using the following rules:

First element

{ ?p :accompanying ?p2 . ?s ?p2 ?list . ?list rdf:first ?listItem . }

=> { ?s ?p ?listItem . } .

Second element

{ ?p :accompanying ?p2 . ?s ?p2 ?list . ?s ?p ?listItem .

4http://purl.org/list/vocab and http://purl.org/list/semantics, visited on 2018-06-10.

124

http://purl.org/list/vocab
http://purl.org/list/semantics

6.7. Operational Semantics

?list :transitiveRest ?bn .

?bn rdf:first ?listItem ; rdf:rest ?bn2 .

?bn2 rdf:first ?anotherListItem . }

=> { ?s ?p ?anotherListItem . } .

>Second element

{ ?p :accompanying ?p2 . ?s ?p2 ?list . ?s ?p ?listItem .

?bn rdf:first ?listItem ; rdf:rest ?bn2 .

?bn2 rdf:first ?anotherListItem . }

=> { ?s ?p ?anotherListItem . } .

The properties list:isFirst and list:isLast can be used to define properties that
point to the first element in a list, or the last respectively. We define the semantics of
the properties as follows:

First

{ ?tlmcp :isFirst ?lmp . ?lmp :accompanying ?lp .

?s ?lp ?list . ?list rdf:first ?leftMostChild . }

=> { ?s ?tlmcp ?leftMostChild . } .

Last

{ ?trmcp :isLast ?lmp . ?lmp :accompanying ?lp .

?s ?lmp ?rightMostChild . ?s ?lp ?list .

?list :transitiveRest ?bn .

?bn rdf:first ?rightMostChild ; rdf:rest rdf:nil . }

=> { ?s ?trmcp ?rightMostChild . } .

6.7. Operational Semantics

In this section, we give operational semantics in rules5 to our workflow language6. Before
we define the rules, we give an overview of what the rules do.

6.7.1. Overview

The rules fulfil the following purposes (the numbers are only to guide the reader):

I. Retrieve state7

1) Retrieve the state of the writeable resources in the LDP container, which maintain
the workflow/activity instances’ state

5A corresponding Notation3 file can be found at http://purl.org/wild/semantics, visited on 2018-
06-10.

6In a production environment, access control to the instances’ LDP container needs to be in place to
keep third parties from interfering with the monitoring/execution.

7A benefit of using Linked Data throughout is that we can access the workflow/activity instances’ state
and the world’s state in a uniform manner.

125

http://purl.org/wild/semantics

6. Workflows in Linked Data

2) Retrieve the relevant world state

II. Initialise workflow instances if applicable

1) Set the root activity’s instance :active

2) Set the workflow instance :initialised

3) Creating instance resources for all activities in the corresponding workflow model
and set them :initialised

III. Finalise workflow instances if their root node is :done

IV. Execute and observe :active activities

1) Execution: if an atomic activity turns :active, fire the HTTP request

2) If the postcondition of an :active activity is fulfilled, set it :done

V. Advance composite activities according to control flow, which includes:

1) Set a composite activity’s children :active

2) Advance between children

3) Finalise a composite activity

6.7.2. Condition-Action Rules

We next give the rules for the listed purposes. To shorten the presentation, we factor out
those rules that, for workflow execution, fire an activity’s HTTP request if the activity
becomes :active. Those rules are not needed when monitoring. The rules are of the
form (the variable method holds the request type):

{ ?act a :AtomicActivity ; :hasHttpRequest ?req .

?req http:mthd ?method ; http:requestURI ?uri ; # etc.

} => { _:h http:mthd ?method ; http:requestURI ?uri ; # etc.

} .

I. Retrieve State

The following rules specify the retrieval of data where the rule interpreter locally maintains
state. Analogously, the world state can get retrieved. Either by explicitly stating URIs
to be retrieved:

{ _:h http:mthd httpM:GET ; http:requestURI webserver:ldpcontainer . } .

Or by following links from data that is already known:

{ webserver:ldpcontainer ldp:contains ?y . }

=> { _:h http:mthd httpM:GET; http:requestURI ?y . } .

126

6.7. Operational Semantics

II. Initialise Workflow Instances

If there is an uninitialised workflow instance (e. g. injected by a third party using a post
request into the polled LDP container), the following rules create corresponding resources
for the activity instances and set the workflow instance initialised:

{ ?wfi a :WorkflowInstance ; :hasState :uninitialised ;

:workflowInstanceOf ?wfm . ?wfm :hasBehaviour ?act . }

=> { _:h http:mthd httpM:POST ;

http:requestURI webserver:ldpcontainer ;

http:body { <#it> :activityInstanceOf ?act ;

:inWorkflowInstance ?wfi ; :hasState :active . } .

Also, the workflow instance is set initialised:

_:z http:mthd httpM:PUT ;

http:requestURI ?wfi ;

http:body { ?wfi a :WorkflowInstance ; :hasState :initialised ;

:workflowInstanceOf ?td . } . } .

Analogously, we initialise instances for the activities in the workflow model.

III. Finalise Workflow Instances

The done state of the root activity gets propagated to the workflow instance:

{ ?wfi a :WorkflowInstance ;

:hasState :active ;

:workflowInstanceOf ?wfm .

?wfm :hasBehaviour ?act ;

:hasState :done . }

=> { _:h http:mthd httpM:PUT ; http:requestURI ?wfi: ;

http:body { ?wfi a :WorkflowInstance ;

:workflowInstanceOf ?wfm ;

:hasState :done . } . } .

IV. Execute and Observe Atomic Activities

In the following, we give a rule in its entirety, which marks an activity as done if its
postcondition is fulfilled.

{ ?wfi a :WorkflowInstance ;

:hasState :active ;

:workflowInstanceOf ?wfm .

?wfm :hasDescendantActivity ?act .

?act a :AtomicActivity ;

:hasPostcondition ?postc .

?acti a :ActivityInstance ;

:activityInstanceOf ?act ;

:hasState :active .

?postc sparql-result:boolean true . }

=> { _:h http:mthd httpM:PUT ; http:requestURI ?acti ; http:body

127

6. Workflows in Linked Data

{ ?acti :activityInstanceOf ?act ; :inWorkflowInstance ?wfi ;

:hasState :done . } . } .

To shorten the presentation of the rules, we introduce the following simplifications: We
assume that (1) we are talking about an active workflow instance, and (2) that the
resource representing an instance coincides with its corresponding activity in the workflow
model. (3), the put requests in the text do not actually overwrite the whole resource
representation but patch the resources by ceteris paribus overwriting the corresponding
hasState(·, ·) triple.

V. Advance According to Control Flow

In this subsection, we give the rules for advancing a workflow instance according to the
basic workflow patterns [211].

Workflow Pattern 1: Sequence If there is an active sequential activity with the first
activity initialised, we set this first activity to active:

{ ?s a :SequentialActivity ;

:hasState :active ;

:hasChildActivities ?child ;

?child rdf:first ?act1 .

?act1 :hasState :initialised . }

=> { _:h http:mthd httpM:PUT ; http:requestURI ?act1 ; http:body

{ ?act1 :hasState :active . } . } .

We advance between activities in a sequence using the following rule:

{ ?seq a :SequentialActivity ;

:hasState :active ;

:hasChildActivity ?childDone .

?childDone :hasState :done .

?childNext :hasState :initialised .

?list rdf:first ?childDone ;

rdf:rest ?l .

?l rdf:first ?childNext . }

=> { _:h http:mthd httpM:PUT ; http:requestURI ?childNext ; http:body

{ ?childNext :hasState :active . } . } .

If we have reached the end of the list of children of a sequence, we regard the sequence as
done (the rule is an example of the exploitation of the explicit termination of the RDF
list to address the OWA):

{ ?seq a :SequentialActivity ;

:hasState :active ;

:hasChildActivity ?child .

?child :hasState :done .

?list rdf:first ?child ;

rdf:rest rdf:nil . }

=> { _:h http:mthd httpM:PUT ; http:requestURI ?seq ; http:body

{ ?seq :hasState :done . } . } .

128

6.7. Operational Semantics

Workflow Pattern 2: Parallel Split A parallel activity consists of several activities
executed simultaneously. If a parallel activity becomes active, all of its components are
set to active:

{ ?p a :ParallelActivity ;

:hasState :active ;

:hasChildActivity ?child .

?child :hasState :initialised . }

=> { _:h http:mthd httpM:PUT ; http:requestURI ?child ; http:body

{ ?child :hasState :active . } . } .

Workflow Pattern 3: Synchronisation If all the components of a parallel activity
are done, the whole parallel activity can be considered done. To find out whether all
components of a parallel are done, we have to mark instances the following way to deal
with the RDF list. First, we check whether the first element of the children of the parallel
activity is done:

{ ?p a :ParallelActivity ;

:hasState :active ;

:hasChildActivities ?list .

?list rdf:first ?child .

?child :hasState :done . }

=> { ?child :hasState :doneFromListItemOne . } .

Then, starting from the first, we one by one check the activities in the list of child
activities whether they are done.

{ ?p a :ParallelActivity ;

:hasState :active ;

:hasChildActivity ?child .

?child :hasState :doneFromListItemOne .

?childNext :hasState :done .

?list rdf:first ?child ;

rdf:rest ?list2 .

?list2 rdf:first ?childNext . }

=> { ?childNext :hasState :doneFromListItemOne . } .

If the check proceeded to the last list element, the whole parallel activity is done:

{ ?p a :ParallelActivity ;

:hasState :active ;

:hasChildActivity ?child .

?list rdf:first ?child ;

rdf:rest rdf:nil .

?child :hasState :doneFromListItemOne . }

=> { _:h http:mthd httpM:PUT ; http:requestURI ?p ; http:body

{ ?p :hasState :done . } . } .

129

6. Workflows in Linked Data

Workflow Pattern 4: Exclusive Choice The control flow element choice implements a
choice between different alternatives, for which conditions are specified. For the evaluation
of the condition, we first have to check whether all child activities are in initialised state,
similarly to the rules for Workflow Pattern 3:

{ ?ca a :ConditionalActivity ;

:hasState :active ;

:hasChildActivities ?list .

?list rdf:first ?child .

?child :hasState :initialised . }

=> { ?child :hasState :initialisedFromListItemOne . } .

{ ?ca a :ConditionalActivity ;

:hasState :active ;

:hasChildActivity ?child .

?child :hasState :initialisedFromListItemOne .

?list1 rdf:first ?child ;

rdf:rest ?list2 .

?list2 rdf:first ?childNext .

?childNext :hasState :initialised . }

=> { ?childNext :hasState :initialisedFromListItemOne . } .

If the check succeeded, we can evaluate the conditions and set an activity active:

{ ?ca a :ConditionalActivity ;

:hasState :active ;

:hasChildActivity ?child .

?child :hasState :initialisedFromListItemOne ;

:hasPrecondition ?prec .

?list rdf:first ?child ;

rdf:rest rdf:nil .

?prec sparql-result:boolean true . }

=> { _:h http:mthd httpM:PUT ; http:requestURI ?child ; http:body

{ ?child :hasState :active . } . } .

We leave it to the modeller to make sure that the preconditions of the children of a
conditional activity are mutually exclusive.

Workflow Pattern 5: Simple Merge If one of the children of a conditional activity is
done, the whole conditional activity is done:

{ ?ca a :ConditionalActivity ;

:hasState :active ;

:hasChildActivity ?child .

?child :hasState :done . }

=> { _:h http:mthd httpM:PUT ; http:requestURI ?ca ; http:body

{ ?ca :hasState :done . } . } .

130

6.8. Evaluation

6.8. Evaluation

First, we formally show the correctness of our approach to specifying workflows by
presenting the relationship of our operational semantics to the formal specification of the
basic workflow patterns, which we support completely. Second, to show the applicability
of our approach in a real-world setting, we report on how we used the approach to do
monitoring of workflows for human-in-the-loop aircraft cockpit evaluation in Virtual
Reality. Third, we empirically evaluate our approach to executing workflows in a Smart
Building simulator.

6.8.1. Formal Evaluation

Van der Aalst et al. use Petri Nets to precisely specify the semantics of the basic
workflow patterns [211]. We now show correctness by giving a mapping of our operational
semantics to Petri Nets. Similar to tokens in a Petri Net that pass between transitions,
our operational semantics passes the active state between activities using rules (linking
to the rules for the workflow patterns from Section 6.7.2.V):

� The rule to advance between activities within a :SequentialActivity may only
set an activity active if its preceding activity has terminated. In the Petri Net for
the Sequence, a transition may only fire if the preceding transition has put a token
into the preceding place, see Figure 6.6a and the workflow pattern 1 rules.

� Only after the activity before a :ParallelActivity has terminated, the rule to
advance in a parallel activity sets all child activities active. In the Petri Net for the
Parallel Split, all places following transition T get a token iff transition T has fired,
see Figure 6.6b and the workflow pattern 2 rules.

� Only if all activities in a :ParallelActivity have terminated, the rules pass on
the active state. In the Petri Net for the Synchronisation, transition T may only
fire if there is a place with a token in all incoming arcs (cf. Figure 6.6c and the
workflow pattern 3 rules).

(a) Sequence

T

(b) Parallel Split and Exclu-
sive Choice

T

(c) Synchronisation

P

(d) Simple Merge

Figure 6.6.: Petri Nets for the Basic Workflow Patterns.

131

6. Workflows in Linked Data

� In the ConditionalActivity, one child activity is chosen by the rule according
to mutually exclusive conditions. Similarly, exclusive conditions determine the
continuation of the flow after transition T in the Petri Net for the Exclusive Choice,
see Figure 6.6b and the workflow pattern 4 rules.

� If one child activity of a :ConditionalActivity switches from active to done, the
control flow may proceed according to the rule. Likewise, the transition following
place P in the Petri Net for the Simple Merge (Figure 6.6d) may fire iff there is a
token in P , cf. the workflow pattern 5 rules.

6.8.2. Applicability: The Case of Virtual Aircraft Cockpit Design

We successfully applied our approach together with industry in aircraft cockpit design [132],
where workflow monitoring is used to evaluate cockpit designs regarding Standard
Operating Procedures. The monitoring is traditionally done by Human Factors experts
using stopwatches in physical cockpits. We built an integrated Cyber-Physical System of
Virtual Reality, flight simulation, sensors, and workflows to digitise the monitoring. The
challenge was to integrate the different system components on both the system interaction
and the data level. We built Linked Data interfaces to the components to cover the
interaction integration, and used semantic reasoning to integrate the data. Our approach
allows monitoring workflows in this setting of Linked Data and semantic reasoning at
runtime of the integrated system. The integrated system also contains a user interface to
model workflows, which Human Factors experts evaluated as highly efficient.

6.8.3. Empirical Evaluation

We provide a performance evaluation in the same Building Automation scenario as the
evaluation of Section 5.8. While in Section 5.8, we evaluated one-step automation tasks
given in rules, we here use multi-step automation tasks given in workflows. In the context
of the scenario of the benchmark, such tasks can include: (1) Control schemes based
on time, sensor data and web data, (2) Automated supervision of cleaning personnel,
(3) Presence simulation, (4) Evacuation support. Those tasks go beyond simple rule-based
automation tasks as typically found in home automation (e. g. Eclipse SmartHome8)
and on the web (e. g. IFTTT9), as the tasks require a notion of task instance state. We
therefore model the tasks as workflow and run them as workflow instances, which access
the building management systems in an integrated fashion using Read-Write Linked Data
interfaces.

The environment for our benchmark is a Linked Data representation of building
3 of IBM Research Dublin. Specifically, we use the building representation 2 from
the evaluation in Section 5.8. While the rule-based automation tasks concerned the
automation of rooms, we here consider the workflow-based automation of whole buildings.
Hence, to evaluate at different scales, we can run multiple copies of the building.

8https://www.eclipse.org/smarthome/, visited on 2018-06-10.
9https://ifttt.com/, visited on 2018-06-10.

132

https://www.eclipse.org/smarthome/
https://ifttt.com/

6.8. Evaluation

Table 6.1.: Average runtime [s] for workflows Wn in different numbers of buildings.

W1 W2 W3 W4 W5

1 Building 2 2 6 12 18
10 Buildings 8 9 26 61 75
20 Buildings 12 13 38 80 109
50 Buildings 19 21 61 156 218

The workload for our benchmark is the control flow of the five representative workflow
models proposed by Ferme et al. [66] for evaluating workflow engines, determined by
clustering workflows from literature, the web, and industry. We interpreted the five
workflow models using the four automation tasks presented above: Task 1 corresponds to
the first two workflow models; the subsequent tasks to the subsequent workflow models.
We distinguish two types of activities in the tasks: activities that are mere checks, i. e.
have only a postcondition (e. g. an hour of the day to build time-based control), and
tasks that enact change (e. g. turn on a light), where we attach an HTTP request. For
instance, the evacuation scenario would involve both: Checks whether certain areas of
the building are empty, and corresponding signalling and locking. We assigned the types
to the workflows’ activities and made sure, for repeatability, that the postconditions are
always fulfilled and that the requests do not interfere with the workflow.

The set-up for our evaluation using the benchmark contains a server with a 32-core
Intel Xeon E5-2670 CPU and 256GB of RAM running Debian Jessie. We use the server
to run the buildings and the workflow management. For the workflow management, we
deploy the operational semantics and required OWL LD reasoning on Linked Data-Fu
0.9.1210. We add rules for inverse properties as presented in the examples of the Brick
ontology. The buildings and the workflow state are maintained in individual Eclipse Jetty
servers running LDBBC 0.0.611 LDP implementations. We add workflow instances each
0.2 s after a warm-up time of 20 s. The workflow models and more information can be
found online12.

The results of our evaluation can be found in Table 6.1. Varying the number of
activities (W1-W5), and varying the number of devices (proportional to buildings), we
observe linear behaviour. The linear behaviour stems from the number of requests to
be made, which depends on the number of activities and workflow instances. With no
data and reasoning results reusable between buildings, there is no benefit in running the
workflows for all buildings on one engine. Instead, we could run one engine per building,
thus echoing the decentralisation of data.

10http://linked-data-fu.github.io/
11http://github.com/kaefer3000/ldbbc, visited on 2018-06-10.
12http://people.aifb.kit.edu/co1683/2018/iswc-wild/, visited on 2018-06-10.

133

http://linked-data-fu.github.io/
http://github.com/kaefer3000/ldbbc
http://people.aifb.kit.edu/co1683/2018/iswc-wild/

6. Workflows in Linked Data

6.9. Conclusion

In this chapter, we presented an approach to use workflows to specify, monitor, and
execute applications that build on distributed data and functionality provided as Read-
Write Linked Data. We defined a workflow ontology and corresponding operational
semantics to monitor and execute workflows. We aligned our approach to the basic
workflow patterns, reported on an application in Virtual Reality, and evaluated using a
benchmark in an Internet of Things scenario.

The assumptions of the environment of Read-Write Linked Data (i. e. RDF and REST)
present peculiar challenges for a workflow system: We work under the open-world
assumption and without notifications. Our approach addresses the challenges without
adding assumptions to the architecture of the environment, but by modelling a closed
world where necessary and by using polling.

We believe that our approach, which brings workflows in a language that is closely
related to the popular BPMN notation to Read-Write Linked Data, enables non-experts
to engage in the development of applications for Read-Write Linked Data that can be
verified, validated, and executed.

134

7. Summary and Conclusion

In this thesis, we investigated the notion of behaviour on the Linked Data web. We
presented approaches for specifying, monitoring, and executing behaviour on Linked
Data. We summarise by revisiting the hypotheses, research questions, challenges, and
contributions, and point to directions for future research. Last, we conclude by positioning
the thesis in the broader context of the Semantic Web research and application, and
recent trends in industrial applications.

7.1. Specification of Behaviour

We investigated hypothesis H2 (we can describe the dynamics of Linked Data using formal
methods) by showing on different levels that we can indeed formally describe the dynamics
of Linked Data. On the lowest level, contribution C1, the Linked Data Transition System,
is a descriptive approach to formally specify the dynamics of Linked Data from an
omniscient observer’s perspective. The Linked Data Transition System introduced the
snapshot-based view on dynamic Linked Data, which we used throughout the subsequent
chapters. We evaluated this view using an analysis for temporal coherence (C3). On a
higher level than the Linked Data Transition System, we provided more formal accounts
of dynamics Linked Data when investigating hypothesis H4 (web technologies can serve
as framework for computation and application specification). Using contribution C4,
ASM4LD, we addressed RQ3 (how can we specify computation using Read-Write Linked
Data and rules) and provided an approach that combines the model-theoretic semantics
of RDF, the semantics of HTTP messages, and rules that change state, with Abstract
State Machines, a model of computation. We showed that despite the restrictions we
introduced, our approach is Turing-complete. Hence, ASM4LD is a formal way to specify
user agent behaviour to interact with dynamic Linked Data. Using contribution C5,
WiLD, we address RQ4 (how can we combine control flow specifications in workflows
with semantic reasoning and RESTful access) by providing an approach that combines
RESTful interaction, reasoning in OWL LD, and specifications of application control flow
in a workflow language that supports the basic workflow patterns. Thus, we provided
three contributions to answer RQ1, how can we describe the dynamics of Linked Data
using formal methods.

Future directions regarding the specification of behaviour on Linked Data include the
investigation of suitable validation and verification techniques for our contributions C1,
C4, and C5, e. g. based on Model Checking [10]. Another direction to investigate are
artefact-centric workflow languages instead of the control-flow-centric WiLD, which could
provide a good fit to the resource-based web architecture. Moreover, our considerations

135

7. Summary and Conclusion

mostly regarded user agents. Hence, another open question is the specific investigation
of servers.

7.2. Monitoring of Behaviour without Specifications

To investigate hypotheses H1 (Linked Data is dynamic across application domains)
and H3 (we can derive coherent snapshots of Linked Data), we built contribution C2,
the Dynamic Linked Data Observatory. Building C2, we addressed the RQ2 of how to
construct a corpus to study the dynamics of Linked Data. To answer the question, we
extensively surveyed literature and contrasted two views on Linked Data on the web, a
crawl-based and a registry-based, using an in-depth data analysis. We built our corpus on
a synthesis of the two views taking into account previous undertakings to build corpora
in other web-related domains and practical considerations. Based on the corpus, we
investigated dynamics in Linked Data on the web on different levels: On the lowest
level, we looked at the dynamics that occur when accessing Linked Data and found e. g.
that documents were unavailable about 20% of the time. We looked at the dynamics
of documents and found e. g. that only 17% of the documents never changed during
our observation. Yet, we confirm H1 as we found that no application domain under
consideration (i. e. topics in the classification of the LOD-cloud) consists only in static
PLDs. Moreover, we looked at the dynamics of triples in documents and found that
schema information is fairly static, and the most dynamics can be observed in RDF
literals that contain time stamps. We conducted a statistical analysis to investigate
hypothesis H3. We found that temporal coherence is fairly unlikely in snapshots of the
size, the network characteristics, and the change characteristics of the Dynamic Linked
Data Observatory, yet the error introduced by incoherence can be regarded as very small.
For our analyses, we investigated the applicability of semantic technologies to conduct
the analyses by defining an ontology for dynamic Linked Data against which we wrote
analytic queries. We found that while the expressivity of SPARQL and RDF is sufficient
to cover basic analyses, the performance of state of the art triple stores only partially
suffices. We evaluated the Dynamic Linked Data Observatory by pointing to the uptake
and the interest of the community towards the corpus.

Future directions in this area are manifold, and the community is constantly adding
new analyses based on the Dynamic Linked Data Observatory (C2), mostly in the area
of schema dynamics. As we are concerned with crawling to compose the Dynamic Linked
Data Observatory and as ASM4LD and WiLD allow for and make use of the following of
hyperlinks, it would be interesting to investigate the reliability and the repeatability of
hyperlink following approaches using the Dynamic Linked Data Observatory. Another
strand of future investigations is to put the results of the Dynamic Linked Data Observa-
tory into practice, where the BEAR benchmark [69] is a good starting point, using which
people can evaluate the update performance of triple stores and which uses 58 snapshots
from the Dynamic Linked Data Observatory. Moreover, we believe that the application
of semantic technologies in our analyses could also be a source of benchmarks. With the
analytic queries regarded as continuous queries that are executed after each new snapshot

136

7.3. Execution of Behaviour and Monitoring of Behaviour with Specifications

is produced, and the data regarded as snapshots of the state of networked sensors and
actuators, we believe that optimising for our queries and data could help design SPARQL
engines to cover monitoring use-cases, e. g. in production environments.

7.3. Execution of Behaviour and Monitoring of Behaviour with
Specifications

Our contributions ASM4LD (C4) and WiLD (C5) allow not only for the specification of
behaviour, but also for the execution of behaviour. In ASM4LD, we specify behaviour in
rules. We can execute specifications in ASM4LD by performing rule evaluation and HTTP
requests in ASM steps. Based on ASM4LD, we derived requirements for a language
to specify user agents for Linked Data and gave operational semantics to the Linked
Data-Fu [198] language. In WiLD, we specify behaviour using workflows. To make the
specifications of WiLD executable, we provided operational semantics to the workflow
language in ASM4LD. Depending on the specifications of the activities in WiLD, we
can use WiLD both to monitor and to execute behaviour specified in workflow models.
To evaluate ASM4LD and WiLD, we provided a benchmarking environment from the
building automation domain (C6).

Future directions for research around the execution of behaviour include extensions to
ASM4LD and WiLD to include the handling of errors in the context of accessing Linked
Data, be it on the HTTP level or the networking level. For instance, if a user agent
can successfully dereference a URI at all times, i. e. open a TCP/IP network connection,
send an HTTP request and receive an HTTP response, except for one point in time,
where the network connection cannot get established, what should the user agent do?
When analysing dynamic Linked Data from the web in Chapter 4, we assumed that the
representation received last also applies to this one point in time, in which no connection
can be established. But an application given as ASM4LD, where we want to act according
to the information received – should the application halt instead? An answer to this
question should be formally grounded and practically relevant. Furthermore, as we
consider a networked setting in which we work with data produced in a decentralised
fashion, standards and practices to formally handle errors in the data are an open
problem. For instance, any triple that contains a literal, which represents a numerical
value greater than 231−1, and is typed as xsd:int instead of xsd:integer, is false under
any interpretation that recognises those data types. Hence, with the logical principle ex
falso sequitur quodlibet, we can entail any graph from graphs that contain such a triple.
To address this problem, we can educate publishers [116] or apply resilient reasoning
techniques [150], yet a standardised treatment is still to be developed.

7.4. Conclusion

After years of research and development, (Semantic) web technologies around Linked
Data, specifically REST/HTTP and RDF, find widespread and growing mainstream
adoption across industries. In this thesis, we were concerned with foundational aspects

137

7. Summary and Conclusion

of behaviour on Linked Data, regardless of the application domain. Using the Dynamic
Linked Data Observatory, we provided empirical findings on the dynamics of Linked Data
that shall help to design applications that use Linked Data and follow both established
paradigms such as Triple Stores and novel paradigms such as Link Traversal-Based Query
Execution. We presented ASM4LD as a rule-based model of computation for Linked Data
that is Turing-complete, i. e. we presented a universal way to specify the behaviour of
user agents whose state is maintained in Linked Data. Moreover, we presented WiLD to
specify behaviour in workflows for monitoring and execution in the environment of Linked
Data. In other words, ASM4LD and WiLD allow for composing networked applications
at different levels of abstraction in an environment that has been designed for data
integration. Such applications are especially relevant in the emerging application areas
of the Internet of Things and Industrie 4.0, where myriads of heterogeneously described
sensors and actuators from different vendors need to get composed into applications to
fulfil business goals. Last, we remark from a more abstract point of view, that with
ASM4LD, we provided a way to specify simple reflex agents, and with WiLD, we provided
a way to specify user agents with internal state. Hence, thus specified user agents can
be classified into to the lowest levels of the spectrum of intelligent agents in Artificial
Intelligence [185] and therefore can serve as basis for rational agents on the web.

138

List of Figures

1.1. The Semantic Web Layer Cake. 19
1.2. Another Semantic Web Layer Cake. 19
1.3. The distribution of the investigation of hypotheses, answers to the research

questions, and contributions to chapters in this thesis. 23
1.4. Two Internet of Things devices, which we use in our examples. One has a

thermometer attached, the other controls two lamps via relay switches. . . 25

2.1. UML Sequence Diagram of an HTTP-GET request from a user agent to a
server. 32

2.2. RDF Datasets for two points in time of three resources from the Internet
of Things device with the light. 33

3.1. Two RDF Datasets as states in a Linked Data Transition System and an
HTTP-PUT request/response pair as transition. 38

4.1. Hi5.com dominates in statistics about the BTC2011 dataset. 49
4.2. Number of statements and documents per crawl experiment. 56
4.3. Number of PLDs per round per crawl experiment. 56
4.4. Distribution of the number of documents per PLD. 57
4.5. Number of requests made over time. 59
4.6. Our proposed ontology to describe dynamic Linked Data in RDFS. 62
4.7. The proposed processing pipeline to produce data in our model of Figure

to describe dynamic Linked Data in RDF. 65
4.8. Appearances of documents. 71
4.9. Response distributions. 72
4.10. Last heartbeat of documents. 74
4.11. Documents reported dead. 74
4.12. Document change distribution. 75
4.13. Clustering of domain changes. 77
4.14. Illustration of the problem of coherent snapshots. 80
4.15. Frequency over the duration between two changes for sources with n changes. 82
4.16. Mean and standard deviation of the age of URIs in the snapshot. 83
4.17. Ratio of documents with additions vs. deletions per domain. 85
4.18. Additions and deletions for different RDF elements. 86
4.19. Links extracted from kernels. 88

5.1. Example for a simple rule program that turns on the lights in a room
depending on the room temperature. 97

139

List of Figures

5.2. The nested loops for the ASM-based operational semantics for the rule
language. 107

5.3. Building 3 of IBM Research Dublin. 110
5.4. Excerpts from the Brick Ontology as UML Class Diagram. 111

6.1. Example workflow model . 120
6.2. The WiLD ontology to express workflow models and instances as UML

Class Diagram. 121
6.3. RDF to describe the atomic activities of the example workflow model. . . 122
6.4. State machine for the workflow and activity instance resources. 123
6.5. Classes and properties of our ontology for RDF list processing. 124
6.6. Petri Nets for the Basic Workflow Patterns. 131

140

List of Tables

1.1. This dissertation’s technology layer cake. 22
1.2. URIs of resouces on the two Internet of Things devices for the example,

and the content of message bodies in responses to HTTP-GET requests. . 24

2.1. HTTP status code classes and explanations. 29
2.2. The semantics of HTTP message bodies. 30
2.3. Properties of HTTP methods. 31

4.1. Statement counts for top-25 PLDs from BTC2011 and Cloud2011. 51
4.2. Reasons for largest ten PLDs in Cloud2011 not appearing in BTC2011. . 52
4.3. Top 10 PLDs based on the number of URIs. 57
4.4. Overall statistics across all 299 snapshots. 59
4.5. Assigning exceptions to HTTP status code classes. 64
4.6. SPARQL features used by different queries. 67
4.7. Times for loading and querying data. 69
4.8. The Top-5 PLDs with URIs that always returned HTTP status 200 OK,

but never returned data. 70
4.9. Top-10 static PLDs by number of documents. 76
4.10. Dynamicity of Linked Data domains per topic and per party involved . . 78
4.11. Static PLDs by topic. 79
4.12. Top-10 dynamic predicates. 88

5.1. Basic counts for building 3 and the benchmark. 113
5.2. Median times [ms] for one ASM step. 114

6.1. Average runtime [s] for workflows Wn in different numbers of buildings. . 133

141

Acronyms

API application programming interface.
ASM4LD Abstract State Machines for Linked Data.

BPEL Business Process Execution Language [3].
BPMN Business Process Model and Notation [165].
BTC Billion Triple Challenge.

CKAN Comprehensive Knowledge Archive Network.
CRUD create, retrieve, update, delete.
CWA closed-world assumption [181].

FOAF Friend of a Friend.

HTML Hypertext Markup Language [112].
HTTP Hypertext Transfer Protocol [75].

IETF Internet Engineering Task Force.

JSON JavaScript Object Notation [26].

LDP Linked Data Platform [196].
LDTS Linked Data Transition System.
LOD Linking Open Data.

OWA open-world assumption [181].
OWL Web Ontology Language [113].

PLD pay-level domain [147].

RDF Resource Description Framework [47].
RDFS RDF Schema [30].
REST Representational State Transfer [73].

143

Acronyms

SIOC Semantically-Interlinked Online Communities.
SPARQL SPARQL Protocol and RDF Query Language [195].

URI Uniform Resource Identifier [21].

W3C World Wide Web Consortium.
WiLD Workflows in Linked Data.

XML Extensible Markup Language [27].

144

Bibliography

[1] Mohammad Abdel-Qader, Ansgar Scherp and Iacopo Vagliano. “Analyzing the
Evolution of Vocabulary Terms and Their Impact on the LOD Cloud”. In: Pro-
ceedings of the 15th European Semantic Web Conference (ESWC). 2018.

[2] Keith Alexander, Richard Cyganiak, Michael Hausenblas and Jun Zhao. “De-
scribing Linked Datasets”. In: Proceedings of the 2nd International Workshop on
Linked Data on the Web (LDOW) at the 18th International Conference on World
Wide Web (WWW). 2009.

[3] Alexandre Alves, Assaf Arkin, Sid Askary, Charlton Barreto, Ben Bloch, Francisco
Curbera, Mark Ford, Yaron Goland, Alejandro Gúızar, Neelakantan Kartha,
Canyang Kevin Liu, Rania Khalaf, Dieter König, Mike Marin, Vinkesh Mehta,
Satish Thatte, Danny van der Rijn, Prasad Yendluri and Alex Yiu, eds. Web
Services Business Process Execution Language Version 2.0. OASIS Standard.
11th Apr. 2007. url: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-
v2.0-OS.html (visited on 10/06/2018).

[4] James Anderson and Arto Bendiken. “Transaction-Time Queries in Dydra”. In:
Joint Proceedings of the 2nd Workshop on Managing the Evolution and Preserva-
tion of the Data Web (MEPDaW) and the 3rd Workshop on Linked Data Quality
(LDQ) at the 13th European Semantic Web Conference (ESWC). 2016.

[5] Anupriya Ankolekar, Frank Huch and Katia P. Sycara. “Concurrent Semantics for
the Web Services Specification Language DAML-S”. In: Proceedings of the 5th
International Conference on Coordination Models and Languages. 2002.

[6] Carlos Buil Aranda, Aidan Hogan, Jürgen Umbrich and Pierre-Yves Vandenbuss-
che. “SPARQL Web-Querying Infrastructure: Ready for Action?” In: Proceedings
of the 12th International Semantic Web Conference (ISWC). 2013.

[7] Marcelo Arenas, Sebastián Conca and Jorge Pérez. “Counting beyond a Yottabyte,
or how SPARQL 1.1 property paths will prevent adoption of the standard”. In:
Proceedings of the 21st World Wide Web Conference (WWW). 2012.

[8] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak
and Zachary G. Ives. “DBpedia: A Nucleus for a Web of Open Data”. In: Proceed-
ings of the 6th International Semantic Web Conference (ISWC) and 2nd Asian
Semantic Web Conference (ASWC). 2007.

[9] Sören Auer, Jan Demter, Michael Martin and Jens Lehmann. “LODStats - An
Extensible Framework for High-Performance Dataset Analytics”. In: Proceedings
of the 18th International Conference on Knowledge Engineering and Knowledge
Management (EKAW). 2012.

145

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Bibliography

[10] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

[11] Bharathan Balaji, Arka Aloke Bhattacharya, Gabriel Fierro, Jingkun Gao, Joshua
Gluck, Dezhi Hong, Aslak Johansen, Jason Koh, Joern Ploennigs, Yuvraj Agarwal,
Mario Berges, David Culler, Rajesh E. Gupta, Mikkel Baun Kjærgaard, Mani B.
Srivastava and Kamin Whitehouse. “Brick: Towards a Unified Metadata Schema
For Buildings”. In: Proceedings of the 3rd International Conference on Systems
for Energy-Efficient Built Environments (BuildSys). ACM. 2016.

[12] Dave J. Beckett. “The design and implementation of the redland RDF application
framework”. In: Proceedings of the 10th International World Wide Web Conference
(WWW). 2001.

[13] Wouter Beek, Laurens Rietveld, Hamid R. Bazoobandi, Jan Wielemaker and Stefan
Schlobach. “LOD Laundromat: A Uniform Way of Publishing Other People’s
Dirty Data”. In: Proceedings of the 13th International Semantic Web Conference
(ISWC). 2014.

[14] Behaviour. Oxford Living Dictionaries. url: https://en.oxforddictionaries.
com/definition/behaviour (visited on 01/05/2018).

[15] Tim Berners-Lee. Information Management: A Proposal. 1989. url: http://www.
w3.org/History/1989/proposal.html.

[16] Tim Berners-Lee. “WWW: Past, Present, and Future”. In: Computer 29.10 (1996).

[17] Tim Berners-Lee. Linked Data. Design Issues. 2006. url: http://www.w3.org/
DesignIssues/LinkedData.html.

[18] Tim Berners-Lee. Read-Write Linked Data. Design Issues. 2009. url: http :
//www.w3.org/DesignIssues/ReadWriteLinkedData.html.

[19] Tim Berners-Lee, Yuhsin Chen, Lydia Chilton, Dan Connolly, Ruth Dhanaraj,
James Hollenbach, Adam Lerer and David Sheets. “Tabulator: Exploring and
analyzing Linked Data on the Semantic Web”. In: Proceedings of the 3rd Interna-
tional Semantic Web User Interaction Workshop (SWUI) at the 5th International
Semantic Web Conference (ISWC). 2006.

[20] Tim Berners-Lee and Dan Connolly. Notation3 (N3): A readable RDF syntax. Team
Submission. W3C. Mar. 2011. url: http://www.w3.org/TeamSubmission/n3/.

[21] Tim Berners-Lee, Roy Fielding and Larry Masinter. Uniform Resource Identifier
(URI): Generic Syntax. Internet Standard. RFC 3986. IETF, Jan. 2005. url:
http://www.ietf.org/rfc/rfc3986.txt.

[22] Tim Berners-Lee, James Hendler and Ora Lassila. “The Semantic Web”. In:
Scientific American (2001).

[23] Gaetano Borriello and Roy Want. “Embedded Computation Meets the World
Wide Web”. In: Communications of the ACM 43.5 (2000).

146

https://en.oxforddictionaries.com/definition/behaviour
https://en.oxforddictionaries.com/definition/behaviour
http://www.w3.org/History/1989/proposal.html
http://www.w3.org/History/1989/proposal.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/ReadWriteLinkedData.html
http://www.w3.org/DesignIssues/ReadWriteLinkedData.html
http://www.w3.org/TeamSubmission/n3/
http://www.ietf.org/rfc/rfc3986.txt

[24] Paolo Bouquet, Chiara Ghidini and Luciano Serafini. “Querying the Web of Data:
A Formal Approach”. In: Proceedings of the 4th Asian Semantic Web Conference
(ASWC). 2009.

[25] Tim Bray. “Measuring the Web”. In: Computer Networks 28.7-11 (1996).

[26] Tim Bray, ed. The JavaScript Object Notation (JSON) Data Interchange Format.
RFC 8259 (Internet Standard). IETF, June 2017. url: http://www.ietf.org/
rfc/rfc8259.txt.

[27] Tim Bray, Jean Paoli, Michael Sperberg-McQueen, Eve Maler, François Yergeau
and John Cowan. Extensible Markup Language (XML) 1.1 (Second Edition).
Recommendation. W3C, Aug. 2006. url: http://www.w3.org/TR/xml11/.

[28] Brian E. Brewington and George Cybenko. “How dynamic is the Web?” In:
Computer Networks 33.1-6 (2000).

[29] Brian E. Brewington and George Cybenko. “Keeping Up with the Changing Web”.
In: IEEE Computer 33.5 (2000).

[30] Dan Brickley and Ramanathan Guha, eds. RDF Schema 1.1. Recommendation.
W3C, Feb. 2014. url: http://www.w3.org/TR/rdf-schema/.

[31] Sergey Brin and Lawrence Page. “The Anatomy of a Large-Scale Hypertextual
Web Search Engine”. In: Computer Networks 30.1-7 (1998).

[32] Jeen Broekstra, Arjohn Kampman and Frank van Harmelen. “Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema”. In: Proceedings
of the 1st International Semantic Web Conference (ISWC). 2002.

[33] Alison Callahan, Jose Cruz-Toledo, Peter Ansell and Michel Dumontier. “Bio2RDF
Release 2: Improved Coverage, Interoperability and Provenance of Life Science
Linked Data”. In: Proceedings of the 10th European Semantic Web Conference
(ESWC). 2013.

[34] Sarven Capadisli, Amy Guy, Christoph Lange, Sören Auer, Andrei Vlad Sambra
and Tim Berners-Lee. “Linked Data Notifications: A Resource-Centric Communi-
cation Protocol”. In: Proceedings of the 14th European Semantic Web Conference
(ESWC). 2017.

[35] Fabio Casati, Stefano Ceri, Barbara Pernici and Giuseppe Pozzi. “Deriving Ac-
tive Rules for Workflow Enactment”. In: Proceedings of the 7th International
Conference on Database and Expert Systems Applications (DEXA). 1996.

[36] Ana Cerdeira-Pena, Antonio Fariña, Javier D. Fernández and Miguel A. Mart́ınez-
Prieto. “Self-Indexing RDF Archives”. In: Proceedings of the 27th Data Compres-
sion Conference (DCC). 2016.

[37] Soumen Chakrabarti, Martin van den Berg and Byron Dom. “Focused Crawling: A
New Approach to Topic-Specific Web Resource Discovery”. In: Computer Networks
31.11-16 (1999).

147

http://www.ietf.org/rfc/rfc8259.txt
http://www.ietf.org/rfc/rfc8259.txt
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/rdf-schema/

Bibliography

[38] Senthilanand Chandrasekaran, John A. Miller, Gregory A. Silver, Ismailcem Budak
Arpinar and Amit P. Sheth. “Performance Analysis and Simulation of Composite
Web Services”. In: Electronic Markets 13.2 (2003).

[39] K. Mani Chandy and Leslie Lamport. “Distributed Snapshots: Determining Global
States of Distributed Systems”. In: ACM Transactions on Computer Systems
(TOCS) 3.1 (1985).

[40] Victor Charpenay, Sebastian Käbisch and Harald Kosch. “Introducing Thing
Descriptions and Interactions: An Ontology for the Web of Things”. In: Proceedings
of the 1st Workshop on SemanticWeb technologies for the Internet of Things
(SWIT) at the 15th International Semantic Web Conference (ISWC). 2016.

[41] Junghoo Cho and Hector Garcia-Molina. “Synchronizing a Database to Improve
Freshness”. In: Proceedings of the ACM 26th International Conference on Man-
agement of Data (SIGMOD). 2000.

[42] Junghoo Cho and Hector Garcia-Molina. “The Evolution of the Web and Implica-
tions for an Incremental Crawler”. In: Proceedings of 26th International Conference
on Very Large Data Bases (VLDB). 2000.

[43] Junghoo Cho and Hector Garcia-Molina. “Effective page refresh policies for Web
crawlers”. In: ACM Transactions on Database Systems (TODS) 28.4 (2003).

[44] Junghoo Cho and Hector Garcia-Molina. “Estimating frequency of change”. In:
ACM Transactions on Internet Technology (TOIT) 3.3 (2003).

[45] Andrei Ciortea, Olivier Boissier, Antoine Zimmermann and Adina Magda Florea.
“Responsive Decentralized Composition of Service Mashups for the Internet of
Things”. In: Proceedings of the 6th International Conference on the Internet of
Things (IoT). 2016.

[46] Edward G. Coffman Jr., Zhen Liu and Richard R. Weber. “Optimal robot schedul-
ing for web search engines”. In: Journal of Scheduling 1.1 (1998).

[47] Richard Cyganiak, David Wood and Markus Lanthaler. RDF 1.1 Concepts and
Abstract Syntax. Recommendation. W3C, Feb. 2014. url: http://www.w3.org/
TR/rdf11-concepts/.

[48] Mathieu d’Aquin and Enrico Motta. “Watson, more than a Semantic Web search
engine”. In: Semantic Web Journal 2.1 (2011).

[49] Laura Daniele, Frank T. H. den Hartog and Jasper Roes. “Created in Close Inter-
action with the Industry: The Smart Appliances REFerence (SAREF) Ontology”.
In: Proceedings of the 7th International Workshop on Formal Ontologies meet
Industry (FOMI). 2015.

[50] Frank DeRemer and Hans H. Kron. “Programming-in-the-Large Versus Programming-
in-the-Small”. In: IEEE Transactions on Software Engineering 2.2 (1976).

[51] Edsger Wybe Dijkstra. “On the role of scientific thought”. In: Selected Writings
on Computing: A Personal Perspective. Springer, Aug. 1974.

148

http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/

[52] Li Ding and Timothy W. Finin. “Characterizing the Semantic Web on the Web”.
In: Proceedings of the 5th International Semantic Web Conference (ISWC). 2006.

[53] Li Ding, Timothy W. Finin, Anupam Joshi, Rong Pan, R. Scott Cost, Yun Peng,
Pavan Reddivari, Vishal Doshi and Joel Sachs. “Swoogle: a search and metadata
engine for the semantic web”. In: Proceedings of the 13th International Conference
on Information and Knowledge Management (CKIM). ACM. 2004.

[54] Renata Queiroz Dividino, Thomas Gottron and Ansgar Scherp. “Strategies for
Efficiently Keeping Local Linked Open Data Caches Up-To-Date”. In: Proceedings
of the 14th International Semantic Web Conference (ISWC). Vol. 2. 2015.

[55] Renata Queiroz Dividino, Thomas Gottron, Ansgar Scherp and Gerd Gröner.
“From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources”.
In: Proceedings of the 1st International Workshop on Dataset PROFIling &
fEderated Search for Linked Data (PROFILES) at the 11th Extended Semantic
Web Conference (ESWC). 2014.

[56] Renata Queiroz Dividino, André Kramer and Thomas Gottron. “An Investigation
of HTTP Header Information for Detecting Changes of Linked Open Data Sources”.
In: Proceedings of Posters & Demos at the 11th European Semantic Web Conference
(ESWC). 2014.

[57] Renata Queiroz Dividino, Ansgar Scherp, Gerd Gröner and Thomas Grotton.
“Change-a-LOD: Does the Schema on the Linked Data Cloud Change or Not?”
In: Proceedings of the 4th International Workshop on Consuming Linked Data
(COLD) at the 12th International Semantic Web Conference (ISWC). 2013.

[58] Fred Douglis, Anja Feldmann, Balachander Krishnamurthy and Jeffrey C. Mogul.
“Rate of Change and other Metrics: a Live Study of the World Wide Web”. In:
Proceedings of the 1st USENIX Symposium on Internet Technologies and Systems
(USITS). 1997.

[59] Donald E. Eastlake 3rd and Aliza R. Panitz. Reserved Top Level DNS Names.
RFC 2606 (Best Current Practice). Updated by RFC 6761. Internet Engineering
Task Force, June 1999. url: http://www.ietf.org/rfc/rfc2606.txt.

[60] Marc Ehrig and Alexander Mädche. “Ontology-Focused Crawling of Web Doc-
uments”. In: Proceedings of the 18th ACM Symposium on Applied Computing
(SAC). 2003.

[61] Erik Elmroth, Francisco Hernández-Rodriguez and Johan Tordsson. “Three funda-
mental dimensions of scientific workflow interoperability: Model of computation,
language, and execution environment”. In: Future Generation Computer Systems
26.2 (2010).

[62] Patrick Th. Eugster, Pascal Felber, Rachid Guerraoui and Anne-Marie Kermarrec.
“The many faces of publish/subscribe”. In: ACM Computing Surveys 35.2 (2003).

[63] Peter C. Evans and Rahul C. Basole. “Revealing the API Ecosystem and Enterprise
Strategy via Visual Analytics”. In: Communications of the ACM 59.2 (2016).

149

http://www.ietf.org/rfc/rfc2606.txt

Bibliography

[64] Lee Feigenbaum, Gregory Williams, Kendall Clark and Elias Torres. SPARQL
1.1 Protocol. Recommendation. W3C, Mar. 2013. url: http://www.w3.org/TR/
sparql11-protocol/.

[65] Dieter Fensel. “Triple-Space Computing: Semantic Web Services Based on Persis-
tent Publication of Information”. In: Proceedings of the International Conference
on Intelligence in Communication Systems (INTELLCOMM). 2004.

[66] Vincenzo Ferme, Marigianna Skouradaki, Ana Ivanchikj, Cesare Pautasso and
Frank Leymann. “Performance Comparison Between BPMN 2.0 Workflow Man-
agement Systems Versions”. In: Proceedings of the 18th International Conference
on Business Process Modeling, Development, and Support (BPMDS). 2017.

[67] Javier D. Fernández, Miguel A. Mart́ınez-Prieto, Claudio Gutiérrez, Axel Polleres
and Mario Arias. “Binary RDF representation for publication and exchange
(HDT)”. In: Journal of Web Semantics 19 (2013).

[68] Javier D. Fernández, Miguel A. Mart́ınez-Prieto, Axel Polleres and Julian Reindorf.
“HDTQ: Managing RDF Datasets in Compressed Space”. In: Proceedings of the
15th European Semantic Web Conference (ESWC). 2018.

[69] Javier D. Fernández, Jürgen Umbrich and Axel Polleres. BEAR: Benchmarking
the Efficiency of RDF Archiving. Tech. rep. 02/2015. Department of Information
Systems and Operations, WU Vienna, Austria, 2015.

[70] Javier D. Fernández, Jürgen Umbrich, Axel Polleres and Magnus Knuth. “Eval-
uating Query and Storage Strategies for RDF Archives”. In: Proceedings of the
12th International Conference on Semantic Systems (SEMANTICS). 2016.

[71] I. Fette and A. Melnikov. The WebSocket Protocol. RFC 6455 (Proposed Standard).
Internet Engineering Task Force, Dec. 2011. url: http://www.ietf.org/rfc/
rfc6455.txt.

[72] Dennis Fetterly, Mark S. Manasse, Marc Najork and Janet L. Wiener. “A large-
scale study of the evolution of web pages”. In: Proceedings of the 12th International
Conference on World Wide Web (WWW). 2003.

[73] Roy Fielding. “Architectural Styles and the Design of Network-based Software
Architectures”. PhD thesis. University of California, Irvine, USA, 2000.

[74] Roy Fielding and Julian Reschke, eds. Hypertext Transfer Protocol (HTTP/1.1):
Conditional Requests. RFC 7232 (Proposed Standard). IETF, June 2014. url:
http://www.ietf.org/rfc/rfc7232.txt.

[75] Roy Fielding and Julian Reschke, eds. Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing. RFC 7230 (Proposed Standard). IETF, June 2014.
url: http://www.ietf.org/rfc/rfc7230.txt.

[76] Roy Fielding and Julian Reschke, eds. Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content. RFC 7231 (Proposed Standard). IETF, June 2014. url:
http://www.ietf.org/rfc/rfc7231.txt.

150

http://www.w3.org/TR/sparql11-protocol/
http://www.w3.org/TR/sparql11-protocol/
http://www.ietf.org/rfc/rfc6455.txt
http://www.ietf.org/rfc/rfc6455.txt
http://www.ietf.org/rfc/rfc7232.txt
http://www.ietf.org/rfc/rfc7230.txt
http://www.ietf.org/rfc/rfc7231.txt

[77] Valeria Fionda, Giuseppe Pirrò and Claudio Gutiérrez. “NautiLOD: A Formal
Language for the Web of Data Graph”. In: Transactions on the Web 9.1 (2015).

[78] Martin Fowler. Richardson Maturity Model. Mar. 2010. url: http://martinfowler.
com/articles/richardsonMaturityModel.html (visited on 12/12/2016).

[79] Michael P. Gallaher, Alan C. O’Connor, John L. Dettbarn Jr. and Linda T. Gilday.
Cost analysis of inadequate interoperability in the US capital facilities industry.
NIST GCR 04-867. 2004.

[80] David Garlan, Robert Allen and John Ockerbloom. “Architectural Mismatch:
Why Reuse Is So Hard”. In: IEEE Software 12.6 (1995).

[81] Paula Gearon, Alexandre Passant and Axel Polleres, eds. SPARQL 1.1 Update.
Recommendation. W3C, Mar. 2013. url: http://www.w3.org/TR/sparql11-
update/.

[82] David Gelernter. “Generative Communication in Linda”. In: Transactions on
Programming Languages and Systems (TOPLAS) 7.1 (1985). ACM.

[83] Yolanda Gil and Varun Ratnakar. “A Comparison of (Semantic) Markup Lan-
guages”. In: Proceedings of the 15th International Florida Artificial Intelligence
Research Society Conference (FLAIRS). 2002.

[84] Yolanda Gil, Varun Ratnakar, Ewa Deelman, Gaurang Mehta and Jihie Kim.
“Wings for Pegasus”. In: Proceedings of the 19th Conference on Innovative Appli-
cations of Artificial Intelligence (IAAI). 2007.

[85] Birte Glimm, Aidan Hogan, Markus Krötzsch and Axel Polleres. “OWL: Yet to
arrive on the Web of Data?” In: Proceedings of the 5th Workshop on Linked Data
on the Web (LDOW) at the 25th International Conference on World Wide Web
(WWW). 2012.

[86] Thomas Gottron. “Of Sampling and Smoothing: Approximating Distributions
over Linked Open Data”. In: Proceedings of the 1st International Workshop on
Dataset PROFIling & fEderated Search for Linked Data (PROFILES) at the 11th
Extended Semantic Web Conference (ESWC). 2014.

[87] Thomas Gottron and Christian Gottron. “Perplexity of Index Models over Evolving
Linked Data”. In: Proceedings of the 11th European Semantic Web Conference
(ESWC). 2014.

[88] Carrie Grimes and Sean O’Brien. “Microscale evolution of web pages”. In: Pro-
ceedings of Posters at the 17th International Conference on World Wide Web
(WWW). 2008.

[89] Christophe Guéret, Paul T. Groth, Frank van Harmelen and Stefan Schlobach.
“Finding the Achilles Heel of the Web of Data: Using Network Analysis for
Link-Recommendation”. In: Proceedings of the 9th International Semantic Web
Conference (ISWC). 2010.

[90] Yuri Gurevich. “Evolving Algebras 1993: Lipari Guide”. In: Specification and
Validation Methods. Ed. by Egon Börger. Oxford University Press, 1995.

151

http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/articles/richardsonMaturityModel.html
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/sparql11-update/

Bibliography

[91] Armin Haller, Emilia Cimpian, Adrian Mocan, Eyal Oren and Christoph Bussler.
“WSMX - A Semantic Service-Oriented Architecture”. In: Proceedings of the 3rd
International Conference on Web Services (ICWS). 2005.

[92] Armin Haller, Krzysztof Janowicz, Simon Cox, Danh Le Phuoc, Kerry Taylor and
Maxime Lefrançois. Semantic Sensor Network Ontology. Recommendation. W3C,
Oct. 2017. url: https://www.w3.org/TR/vocab-ssn/.

[93] Steven Harris and Andy Seaborne, eds. SPARQL 1.1 Query Language. Recom-
mendation. W3C, Mar. 2013. url: http://www.w3.org/TR/sparql11-query/.

[94] Andreas Harth. Billion Triples Challenge data set. 2009. url: http://km.aifb.
kit.edu/projects/btc-2009/ (visited on 10/06/2018).

[95] Andreas Harth. Billion Triples Challenge data set. 2010. url: http://km.aifb.
kit.edu/projects/btc-2010/ (visited on 10/06/2018).

[96] Andreas Harth. Billion Triples Challenge data set. 2011. url: http://km.aifb.
kit.edu/projects/btc-2011/ (visited on 10/06/2018).

[97] Andreas Harth. Billion Triples Challenge data set. 2012. url: http://km.aifb.
kit.edu/projects/btc-2012/ (visited on 10/06/2018).

[98] Andreas Harth, Katja Hose, Marcel Karnstedt, Axel Polleres, Kai-Uwe Sattler and
Jürgen Umbrich. “Data summaries for on-demand queries over Linked Data”. In:
Proceedings of the 19th International Conference on World Wide Web (WWW).
2010.

[99] Andreas Harth and Tobias Käfer. “Towards Specification and Execution of Linked
Systems”. In: Proceedings of the 28th Workshop Grundlagen von Datenbanken
(GvD). GI. 2016.

[100] Andreas Harth and Tobias Käfer. “Specifying and Executing Application Behaviour
with Condition-Request Rules”. In: Proceedings of the Workshop on Decentralizing
the Semantic Web at the 16th International Semantic Web Conference (ISWC).
2017.

[101] Andreas Harth and Sebastian Speiser. “On Completeness Classes for Query
Evaluation on Linked Data”. In: Proceedings of the 26th AAAI Conference on
Artificial Intelligence. 2012.

[102] Andreas Harth, Jürgen Umbrich and Stefan Decker. “MultiCrawler: A Pipelined
Architecture for Crawling and Indexing Semantic Web Data”. In: Proceedings of
the 5th International Semantic Web Conference (ISWC). 2006.

[103] Olaf Hartig. “How Caching Improves Efficiency and Result Completeness for
Querying Linked Data”. In: Proceedings of the 4th International Workshop on
Linked Data on the Web (LDOW) at the 20th International Conference on World-
Wide Web (WWW). 2011.

[104] Olaf Hartig. “Zero-Knowledge Query Planning for an Iterator Implementation
of Link Traversal Based Query Execution”. In: Proceedings of the 8th Extended
Semantic Web Conference (ESWC). 2011.

152

https://www.w3.org/TR/vocab-ssn/
http://www.w3.org/TR/sparql11-query/
http://km.aifb.kit.edu/projects/btc-2009/
http://km.aifb.kit.edu/projects/btc-2009/
http://km.aifb.kit.edu/projects/btc-2010/
http://km.aifb.kit.edu/projects/btc-2010/
http://km.aifb.kit.edu/projects/btc-2011/
http://km.aifb.kit.edu/projects/btc-2011/
http://km.aifb.kit.edu/projects/btc-2012/
http://km.aifb.kit.edu/projects/btc-2012/

[105] Olaf Hartig, Christian Bizer and Johann Christoph Freytag. “Executing SPARQL
Queries over the Web of Linked Data”. In: Proceedings of the 8th International
Semantic Web Conference (ISWC). 2009.

[106] Olaf Hartig and Jorge Pérez. “LDQL: A query language for the Web of Linked
Data”. In: Web Semantics 41 (2016).

[107] Bernhard Haslhofer and Erich J. Neuhold. “A Retrospective on Semantics and
Interoperability Research”. In: Foundations for the Web of Information and
Services – A Review of 20 Years of Semantic Web Research. Springer, 2011.

[108] Ali Hasnain, Qaiser Mehmood, Syeda Sana e Zainab and Aidan Hogan. “SPORTAL:
Profiling the Content of Public SPARQL Endpoints”. In: International Journal
on Semantic Web and Information Systems 12.3 (2016).

[109] Patrick Hayes and Peter Patel-Schneider, eds. RDF 1.1 Semantics. Recommenda-
tion. W3C, Feb. 2014. url: http://www.w3.org/TR/rdf11-mt/.

[110] James A. Hendler. “Where Are All the Intelligent Agents?” In: IEEE Intelligent
Systems 22.3 (2007).

[111] Antonio Garrote Hernández and Maŕıa N. Moreno Garćıa. “A formal definition
of RESTful semantic web services”. In: Proceedings of the First International
Workshop on RESTful Design (WS-REST). 2010.

[112] Ian Hickson, Robin Berjon, Steve Faulkner, Travis Leithead, Erika Doyle Navara,
Edward O’Connor and Silvia Pfeiffer. HTML5. Recommendation. W3C, Oct. 2014.
url: http://www.w3.org/TR/html5/.

[113] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter Patel-Schneider and Sebastian
Rudolph. OWL 2 Web Ontology Language Primer (Second Edition). Recommen-
dation. W3C, Dec. 2012. url: http://www.w3.org/TR/owl2-primer/.

[114] Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph and York Sure. Semantic
Web. Heidelberg, Germany: Springer, 2008.

[115] Aidan Hogan. “Skolemising Blank Nodes while Preserving Isomorphism”. In:
Proceedings of the 24th International Conference on World Wide Web (WWW).
2015.

[116] Aidan Hogan, Andreas Harth, Alexandre Passant, Stefan Decker and Axel Polleres.
“Weaving the Pedantic Web”. In: Proceedings of the 3rd International Workshop
on Linked Data on the Web (LDOW) at the 19th International Conference on
World Wide Web (WWW). 2010.

[117] Aidan Hogan, Andreas Harth, Jürgen Umbrich, Sheila Kinsella, Axel Polleres and
Stefan Decker. “Searching and browsing Linked Data with SWSE: The Semantic
Web Search Engine”. In: Journal of Web Semantics 9.4 (2011).

[118] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

153

http://www.w3.org/TR/rdf11-mt/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/owl2-primer/

Bibliography

[119] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof and Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL
and RuleML. Member Submission. W3C, May 2004. url: http://www.w3.org/
Submission/SWRL/.

[120] Arnaud Le Hors, Martin Nally and Steve Speicher. “Using Read/Write Linked
Data for Application Integration – Towards a Linked Data Basic Profile”. In:
Proceedings of the 5th Workshop on Linked Data on the Web (LDOW) at the 25th
International Conference on World Wide Web (WWW). 2012.

[121] Zhisheng Huang and Heiner Stuckenschmidt. “Reasoning with Multi-version
Ontologies: A Temporal Logic Approach”. In: Proceedings of the 4th International
Semantic Web Conference (ISWC). 2005.

[122] Richard Hull, Elio Damaggio, Fabiana Fournier, Manmohan Gupta, Fenno F. Terry
Heath III, Stacy Hobson, Mark H. Linehan, Sridhar Maradugu, Anil Nigam,
Piyawadee Sukaviriya and Roman Vacuĺın. “Introducing the Guard-Stage-Milestone
Approach for Specifying Business Entity Lifecycles”. In: Proceedings of the 7th
International Workshop on Web Services and Formal Methods (WS-FM). 2011.

[123] Kingsley Uyi Idehen. Semantic Web Layer Cake Tweak, Explained. 13th July 2017.
url: https://medium.com/openlink-software-blog/semantic-web-layer-
cake-tweak-explained-6ba5c6ac3fab (visited on 10/06/2018).

[124] Robert Isele, Jürgen Umbrich, Christian Bizer and Andreas Harth. “LDspider: An
Open-source Crawling Framework for the Web of Linked Data”. In: Proceedings of
the Posters & Demonstration at the 9th International Semantic Web Conference
(ISWC). 2010.

[125] Stefan Jablonski and Christoph Bussler. Workflow management – modeling con-
cepts, architecture and implementation. International Thomson, 1996.

[126] Ian Jacobs and Norman Walsh. Architecture of the World Wide Web, Volume One.
Recommendation. W3C, Dec. 2004. url: http://www.w3.org/TR/webarch/.

[127] Herbert Jaeger. “Dynamical Systems – A Navigational Guide”. Tutorial at the
18th Interdisciplinary College (IK). Günne am Möhnesee, Germany, 2016.

[128] Tobias Käfer, Ahmed Abdelrahman, Jürgen Umbrich, Patrick O’Byrne and Aidan
Hogan. “Observing Linked Data Dynamics”. In: Proceedings of the 10th European
Semantic Web Conference (ESWC). 2013.

[129] Tobias Käfer and Andreas Harth. Billion Triples Challenge data set. 2014. url:
http://km.aifb.kit.edu/projects/btc-2014/ (visited on 10/06/2018).

[130] Tobias Käfer and Andreas Harth. “Rule-based Programming of User Agents for
Linked Data”. In: Proceedings of the 11th International Workshop on Linked Data
on the Web (LDOW) at the Web Conference (27th WWW). 2018.

[131] Tobias Käfer and Andreas Harth. “Specifying, Monitoring, and Executing Work-
flows in Linked Data Environments”. In: Proceedings of the 17th International
Semantic Web Conference (ISWC). 2018.

154

http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
https://medium.com/openlink-software-blog/semantic-web-layer-cake-tweak-explained-6ba5c6ac3fab
https://medium.com/openlink-software-blog/semantic-web-layer-cake-tweak-explained-6ba5c6ac3fab
http://www.w3.org/TR/webarch/
http://km.aifb.kit.edu/projects/btc-2014/

[132] Tobias Käfer, Andreas Harth and Sébastien Mamessier. “Towards declarative
programming and querying in a distributed Cyber-Physical System: The i-VISION
case”. In: Proceedings of the 2nd International Workshop on Modelling, Analysis,
and Control of Complex CPS (CPSData) at the 9th CPS week. 2016.

[133] Tobias Käfer, Sebastian Lauber and Andreas Harth. “Using Workflows to Build
Compositions of Read-Write Linked Data APIs on the Web of Things”. In: Pro-
ceedings of Posters & Demos at the 17th International Semantic Web Conference
(ISWC). 2018.

[134] Tobias Käfer, Jürgen Umbrich, Aidan Hogan and Axel Polleres. “Towards a
Dynamic Linked Data Observatory”. In: Proceedings of the 5th Workshop on
Linked Data on the Web (LDOW) at the 25th International Conference on World
Wide Web (WWW). 2012.

[135] Tobias Käfer, Alexandra Wins and Maribel Acosta. “Modelling and Analysing
Dynamic Linked Data using RDF and SPARQL”. In: Proceedings of the 4th
International Workshop on Dataset PROFILing and fEderated Search for Web
Data (PROFILES) at the 16th International Semantic Web Conference (ISWC).
2017. Best Paper.

[136] Yiping Ke, Lin Deng, Wilfred Ng and Dik Lun Lee. “Web dynamics and their
ramifications for the development of Web search engines”. In: Computer Networks
50.10 (2006).

[137] Felix Leif Keppmann, Tobias Käfer, Steffen Stadtmüller, René Schubotz and
Andreas Harth. “High Performance Linked Data Processing for Virtual Reality
Environments”. In: Proceedings of Posters & Demos at the 13th International
Semantic Web Conference (ISWC). 2014.

[138] Michael Kifer. “Deductive and Object Data Languages: A Quest for Integration”.
In: Proceedings of the 4th International Conference on Deductive and Object-
Oriented Databases. 1995.

[139] Tim Kindberg, John J. Barton, Jeff Morgan, Gene Becker, Debbie Caswell, Philippe
Debaty, Gita Gopal, Marcos Frid, Venky Krishnan, Howard Morris, John Schettino,
Bill Serra and Mirjana Spasojevic. “People, places, things: Web presence for the
real world”. In: Proceedings of the 3rd Workshop on Mobile Computing Systems
and Applications (WMCSA). IEEE. 2000.

[140] Michel C. A. Klein and Dieter Fensel. “Ontology versioning on the Semantic Web”.
In: Proceedings of the 1st Semantic Web Working Symposium (SWWS). 2001.

[141] Michel C. A. Klein, Dieter Fensel, Atanas Kiryakov and Damyan Ognyanov.
“Ontology Versioning and Change Detection on the Web”. In: Proceedings of
the 13th International Conference on Knowledge Engineering and Knowledge
Management (EKAW). 2002.

[142] Wallace Koehler. “An Analysis of Web Page and Web Site Constancy and Per-
manence”. In: Journal of the American Society for Information Science and
Technology 50.2 (1999).

155

Bibliography

[143] Wallace Koehler. “Web page change and persistence - A four-year longitudi-
nal study”. In: Journal of the American Society for Information Science and
Technology 53.2 (2002).

[144] Martijn Koster. “Robots in the Web: Threat or Treat?” In: ConneXions – The
Interoperability Report 9 (4 Apr. 1995).

[145] Robert Kowalski. In a comment to his blog post “The Sad State Concerning the
Relationships between Logic, Rules and Logic Programming” replying to a question
by Andreas Harth. 2nd Feb. 2015. url: http://disq.us/p/u9od8e.

[146] Markus Lanthaler and Christian Gütl. “Hydra: A Vocabulary for Hypermedia-
Driven Web APIs”. In: Proceedings of the 6th Workshop on Linked Data on the
Web (LDOW) at the 26th International Conference on World Wide Web (WWW).
2013.

[147] Hsin-Tsang Lee, Derek Leonard, Xiaoming Wang and Dmitri Loguinov. “IRLbot:
scaling to 6 billion pages and beyond”. In: Proceedings of the 17th International
Conference on World Wide Web, (WWW). 2008.

[148] Martin Leinberger, Ralf Lämmel and Steffen Staab. “The Essence of Functional
Programming on Semantic Data”. In: Proceedings of the 26th European Symposium
on Programming (ESOP) at the European Joint Conferences on Theory and
Practice of Software (ETAPS). 2017.

[149] Lipyeow Lim, Min Wang, Sriram Padmanabhan, Jeffrey Scott Vitter and Ramesh
C. Agarwal. “Characterizing Web Document Change”. In: Proceedings of the
2nd International Conference on Advances in Web-Age Information Management
(WAIM). 2001.

[150] Yue Ma and Pascal Hitzler. “Paraconsistent Reasoning for OWL 2”. In: Proceedings
of the 3rd International Conference on Web Reasoning and Rule Systems (RR).
2009.

[151] Matoula Magiridou, S. Sahtouris, Vassilis Christophides and Manolis Koubarakis.
“RUL: A Declarative Update Language for RDF”. In: Proceedings of the 4th
International Semantic Web Conference (ISWC). 2005.

[152] James Martin. Managing the Data-base Environment. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1983.

[153] Brian McBride. “Jena: Implementing the RDF Model and Syntax Specification”.
In: Proceedings of the 2nd International Workshop on the Semantic Web (SemWeb).
2001.

[154] Albert Meroño-Peñuela, Peter Wittek and Sándor Darányi. “Visualizing the
Drift of Linked Open Data Using Self-Organizing Maps”. In: Proceedings of the
1st Workshop on Detection, Representation and Management of Concept Drift
in Linked Open Data (Drift-a-LOD) at the 20th International Conference on
Knowledge Engineering and Knowledge Management (EKAW). 2017.

156

http://disq.us/p/u9od8e

[155] Robin Milner, Joachim Parrow and David Walker. “A Calculus of Mobile Processes,
I”. In: Journal of Information and Computation 100.1 (1992).

[156] Robin Milner, Joachim Parrow and David Walker. “A Calculus of Mobile Processes,
II”. In: Journal of Information and Computation 100.1 (1992).

[157] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu and Achille Fokoue.
OWL 2 Web Ontology Language Profiles (Second Edition). Recommendation.
W3C, Dec. 2012. url: http://www.w3.org/TR/owl2-profiles/.

[158] Srini Narayanan and Sheila A. McIlraith. “Simulation, verification and automated
composition of web services”. In: Proceedings of the 11th International Conference
on World Wide Web (WWW). 2002.

[159] Chifumi Nishioka and Ansgar Scherp. “Temporal Patterns and Periodicity of
Entity Dynamics in the Linked Open Data Cloud”. In: Proceedings of the 8th
International Conference on Knowledge Capture (K-CAP). 2015.

[160] Chifumi Nishioka and Ansgar Scherp. “Information-theoretic Analysis of Entity
Dynamics on the Linked Open Data Cloud”. In: Proceedings of the 3rd Interna-
tional Workshop on Dataset PROFIling and fEderated Search for Linked Data
(PROFILES ’16) co-located with the 13th ESWC 2016 Conference, Anissaras,
Greece, May 30, 2016. 2016.

[161] Chifumi Nishioka and Ansgar Scherp. “Keeping linked open data caches up-to-date
by predicting the life-time of RDF triples”. In: Proceedings of the International
Conference on Web Intelligence, Leipzig, Germany, August 23-26, 2017. 2017.

[162] Benjamin Nowack. The Semantic Web Technology Stack (not a piece of cake...)
8th July 2009. url: http://bnode.org/media/2009/07/08/semantic_web_
technology_stack.png.

[163] Alexandros Ntoulas, Junghoo Cho and Christopher Olston. “What’s new on the
web?: the evolution of the web from a search engine perspective”. In: Proceedings
of the 13th International Conference on World Wide Web (WWW). 2004.

[164] Marilena Oita and Pierre Senellart. “Deriving Dynamics of Web Pages: A Survey”.
In: Proceedings of the 4th International Workshop on Linked Data on the Web
(LDOW) at the 20th International Conference on World-Wide Web (WWW).
2011.

[165] OMG, ed. Business Process Model And Notation – Version 2.0. Specification.
3rd Jan. 2011. url: http://www.omg.org/spec/BPMN/2.0.

[166] Kevin R. Page, David De Roure and Kirk Martinez. “REST and Linked Data:
a match made for domain driven development?” In: Proceedings of the 2nd
International Workshop on RESTful Design (WS-REST). 2011.

[167] Sandeep Pandey, Krithi Ramamritham and Soumen Chakrabarti. “Monitoring
the dynamic web to respond to continuous queries”. In: Proceedings of the 12th
International Conference on World Wide Web (WWW). 2003.

157

http://www.w3.org/TR/owl2-profiles/
http://bnode.org/media/2009/07/08/semantic_web_technology_stack.png
http://bnode.org/media/2009/07/08/semantic_web_technology_stack.png
http://www.omg.org/spec/BPMN/2.0

Bibliography

[168] Alexandre Passant and Pablo N. Mendes. “sparqlPuSH: Proactive Notification of
Data Updates in RDF Stores Using PubSubHubbub”. In: Proceedings of the 6th
Workshop on Scripting and Development for the Semantic Web (SFSW) at the
7th Extended Semantic Web Conference (ESWC). 2011.

[169] Cesare Pautasso. “BPEL for REST”. In: Proceedings of the 6th International
Conference on Business Process Management (BPM). 2008.

[170] Cesare Pautasso. “RESTful Web Service Composition with BPEL for REST”. In:
Data and Knowledge Engineering 68.9 (2009).

[171] Cesare Pautasso, Ana Ivanchikj and Silvia Schreier. “A pattern language for
RESTful conversations”. In: Proceedings of the 21st European Conference on
Pattern Languages of Programs (EuroPLoP). 2016.

[172] Cesare Pautasso and Erik Wilde. “Push-Enabling RESTful Business Processes”.
In: Proceedings of the 9th International Conference on Service-Oriented Computing
(ICSOC). 2011.

[173] Cesare Pautasso and Olaf Zimmermann. “The Web as a Software Connector”. In:
IEEE Software 35.1 (2018).

[174] Cesare Pautasso, Olaf Zimmermann and Frank Leymann. “RESTful Web Services
vs. ‘Big’ Web Services”. In: Proceedings of the 17th International Conference on
World Wide Web, (WWW). 2008.

[175] Artem Polyvyanyy, Luciano Garćıa-Bañuelos and Marlon Dumas. “Structuring
Acyclic Process Models”. In: Proceedings of the 8th International Conference on
Business Process Management (BPM). 2010.

[176] Niko Popitsch and Bernhard Haslhofer. “DSNotify: handling broken links in the
web of data”. In: Proceedings of the 19th International Conference on World Wide
Web (WWW). 2010.

[177] Jon Postel, ed. Internet Protocol. RFC 791 (Internet Standard). IETF, Sept. 1981.
url: http://www.ietf.org/rfc/rfc791.txt.

[178] Jon Postel, ed. Transmission Control Protocol. RFC 793 (Internet Standard).
IETF, Sept. 1981. url: http://www.ietf.org/rfc/rfc793.txt.

[179] Eric Prud’hommeaux and Carlos Buil Aranda, eds. SPARQL 1.1 Federated Query.
Recommendation. W3C, Mar. 2013. url: http://www.w3.org/TR/sparql11-
federated-query/.

[180] Eric Prud’hommeaux and Gavin Carothers, eds. RDF 1.1 Turtle. Recommendation.
W3C, Feb. 2014. url: http://www.w3.org/TR/turtle/.

[181] Raymond Reiter. “On Closed World Data Bases”. In: Proceedings of the Symposium
on Logic and Data Bases. 1978.

[182] Eric Rescorla, ed. HTTP Over TLS. RFC 2818 (Informational). IETF, June 2017.
url: http://www.ietf.org/rfc/rfc2818.txt.

158

http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/turtle/
http://www.ietf.org/rfc/rfc2818.txt

[183] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara, Michael
Stollberg, Axel Polleres, Cristina Feier, Christoph Bussler and Dieter Fensel. “Web
Service Modeling Ontology”. In: Applied Ontology 1.1 (2005).

[184] Marco Rospocher, Chiara Ghidini and Luciano Serafini. “An ontology for the
Business Process Modelling Notation”. In: Proceedings of the 8th International
Conference on Formal Ontology in Information Systems (FOIS). 2014.

[185] Stuart J. Russell and Peter Norvig. Artificial intelligence - a modern approach:
the intelligent agent book. Prentice Hall series in artificial intelligence. Prentice
Hall, 1995.

[186] Leo Sauermann and Richard Cyganiak, eds. Cool URIs for the Semantic Web.
SWEO IG Note. W3C, 2008. url: http://www.w3.org/TR/cooluris/.

[187] Johann Schaible, Thomas Gottron and Ansgar Scherp. “TermPicker: Enabling
the Reuse of Vocabulary Terms by Exploiting Data from the Linked Open Data
Cloud”. In: Proceedings of the 13th European Semantic Web Conference (ESWC).
2016.

[188] Claudia Schon and Steffen Staab. “Towards SPARQL Instance-Level Update in the
Presence of OWL-DL TBoxes”. In: Proceedings of the Joint Ontology Workshops
(JOWO) Episode 3: The Tyrolean Autumn of Ontology. 2018.

[189] Nigel Shadbolt, Tim Berners-Lee and Wendy Hall. “The Semantic Web Revisited”.
In: IEEE Intelligent Systems 21.3 (2006).

[190] Claude Elwood Shannon. “A Mathematical Theory of Communication”. In: The
Bell Systems Technical Journal 27 (3 July 1948).

[191] Amit P. Sheth. “Changing Focus on Interoperability in Information Systems:
From System, Syntax, Structure to Semantics”. In: Interoperating Geographic
Information Systems. Boston, MA, USA: Springer, 1999.

[192] Joshua Shinavier. “Ripple: Functional Programs as Linked Data”. In: Proceedings
of the Workshop on Scripting for the Semantic Web (SFSW) at the 4th European
Semantic Web Conference (ESWC). 2007.

[193] Michael Sintek and Stefan Decker. “TRIPLE – A Query, Inference, and Transfor-
mation Language for the Semantic Web”. In: Proceedings of the 1st International
Semantic Web Conference (ISWC). 2002.

[194] Marc Spaniol, Dimitar Denev, Arturas Mazeika, Gerhard Weikum and Pierre
Senellart. “Data quality in web archiving”. In: Proceedings of the 3rd Workshop on
Information Credibility on the Web (WICOW) at the 18th International Conference
on World Wide Web (WWW). 2009.

[195] SPARQL 1.1 Overview. Recommendation. W3C, Mar. 2013. url: http://www.
w3.org/TR/sparql11-overview/.

[196] Steve Speicher, John Arwe and Ashok Malhotra, eds. Linked Data Platform 1.0.
Recommendation. W3C, Feb. 2015. url: http://www.w3.org/TR/ldp/.

159

http://www.w3.org/TR/cooluris/
http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/ldp/

Bibliography

[197] Steffen Stadtmüller. “Dynamic Interaction and Manipulation of Web Resources”.
PhD thesis. Karlsruhe Institute of Technology, 2015. url: http://nbn-resolving.
de/urn:nbn:de:swb:90-519359.

[198] Steffen Stadtmüller, Sebastian Speiser, Andreas Harth and Rudi Studer. “Data-Fu:
A Language and an Interpreter for Interaction with Read/Write Linked Data”. In:
Proceedings of the 22nd International Conference on World Wide Web (WWW).
2013.

[199] Vlad Stirbu. “Towards a RESTful Plug and Play Experience in the Web of Things”.
In: Proceedings of the 2th IEEE International Conference on Semantic Computing
(ICSC). 2008.

[200] Heiner Stuckenschmidt, Richard Vdovjak, Geert-Jan Houben and Jeen Broekstra.
“Index structures and algorithms for querying distributed RDF repositories”. In:
Proceedings of the 13th International Conference on World Wide Web (WWW).
2004.

[201] Rudi Studer, V. Richard Benjamins and Dieter Fensel. “Knowledge Engineering:
Principles and Methods”. In: Data and Knowledge Engineering 25.1-2 (1998).

[202] Ruben Taelman, Miel Vander Sande, Ruben Verborgh and Erik Mannens. “Ver-
sioned Triple Pattern Fragments: A Low-cost Linked Data Interface Feature for
Web Archives”. In: Joint proceedings of the 3rd Workshop on Managing the Evo-
lution and Preservation of the Data Web (MEPDaW) and the 4th Workshop
on Linked Data Quality (LDQ) at the 14th European Semantic Web Conference
(ESWC). 2017.

[203] Andreas Tolk, Saikou Y. Diallo and Jose J. Padilla. “Semiotics, entropy, and
interoperability of simulation systems: mathematical foundations of M&S stan-
dardization”. In: Proceedings of the 44th Winter Simulation Conference (WSC).
2012.

[204] Giovanni Tummarello, Renaud Delbru and Eyal Oren. “Sindice.com: Weaving
the Open Linked Data”. In: Proceedings of the 6th International Semantic Web
Conference (ISWC) and 2nd Asian Semantic Web Conference (ASWC). 2007.

[205] Jürgen Umbrich, Michael Hausenblas, Aidan Hogan, Axel Polleres and Stefan
Decker. “Towards Dataset Dynamics: Change Frequency of Linked Open Data
Sources”. In: Proceedings of the 3rd International Workshop on Linked Data on the
Web (LDOW) at the 19th International Conference on World Wide Web (WWW).
2010.

[206] Jürgen Umbrich, Aidan Hogan, Axel Polleres and Stefan Decker. “Link traversal
querying for a diverse Web of Data”. In: Semantic Web 6.6 (2015).

[207] Jürgen Umbrich, Marcel Karnstedt, Aidan Hogan and Josiane Xavier Parreira.
“Hybrid SPARQL Queries: Fresh vs. Fast Results”. In: Proceedings of the 11th
International Semantic Web Conference (ISWC). 2012.

160

http://nbn-resolving.de/urn:nbn:de:swb:90-519359
http://nbn-resolving.de/urn:nbn:de:swb:90-519359

[208] Jürgen Umbrich, Boris Villazón-Terrazas and Michael Hausenblas. “Dataset Dy-
namics Compendium: A Comparative Study”. In: Proceedings of the 1st Inter-
national Workshop on Consuming Linked Data (COLD) at the 9th International
Semantic Web Conference (ISWC). 2010.

[209] UNEP and SKANSKA. Energy Efficiency in Buildings – Guidance for Facility
Managers. 2009. url: https://group.skanska.com/48dc86/globalassets/
sustainability / environmental - responsibility / energy / unep _ energy -

effic-broch-final.pdf (visited on 10/06/2018).

[210] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah Mennicken,
Noah Picard, Diane Schulze and Michael L. Littman. “Trigger-Action Programming
in the Wild: An Analysis of 200,000 IFTTT Recipes”. In: Proceedings of the 34th
Conference on Human Factors in Computing Systems (CHI). 2016.

[211] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski and
Alistair P. Barros. “Workflow Patterns”. In: Distributed and Parallel Databases
14.1 (2003).

[212] Wil M. P. van der Aalst, Mathias Weske and Dolf Grünbauer. “Case handling: a
new paradigm for business process support”. In: Data and Knowledge Engineering
53.2 (2005).

[213] Pascal van Eck, Joeri Engelfriet, Dieter Fensel, Frank van Harmelen, Yde Venema
and Mark Willems. “A Survey of Languages for Specifying Dynamics: A Knowledge
Engineering Perspective”. In: Transactions on Knowledge and Data Engineering
(TKDE) 13.3 (2001).

[214] Max van Kleek, Brennan Moore, David R. Karger, Paul André and m. c. schraefel.
“Atomate it! end-user context-sensitive automation using heterogeneous informa-
tion sources on the web”. In: Proceedings of the 19th International Conference on
World Wide Web (WWW). 2010.

[215] Jussi Vanhatalo, Hagen Völzer and Jana Koehler. “The Refined Process Structure
Tree”. In: Proceedings of the 6th International Conference on Business Process
Management (BPM). 2008.

[216] Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim van Herwegen, Laurens
de Vocht, Ben de Meester, Gerald Haesendonck and Pieter Colpaert. “Triple
Pattern Fragments: A low-cost knowledge graph interface for the Web”. In: Journal
of Web Semantics 37-38 (2016).

[217] Ruben Verborgh, Thomas Steiner, Davy van Deursen, Sam Coppens, Joaquim
Gabarró Vallés and Rik van de Walle. “Functional descriptions as the bridge
between hypermedia APIs and the Semantic Web”. In: Proceedings of the 3rd
International Workshop on RESTful Design (WS-REST) at the 25th International
Conference on World Wide Web (WWW). 2012.

[218] Julius Volz, Christian Bizer, Martin Gaedke and Georgi Kobilarov. “Discover-
ing and Maintaining Links on the Web of Data”. In: Proceedings of the 8th
International Semantic Web Conference (ISWC). 2009.

161

https://group.skanska.com/48dc86/globalassets/sustainability/environmental-responsibility/energy/unep_energy-effic-broch-final.pdf
https://group.skanska.com/48dc86/globalassets/sustainability/environmental-responsibility/energy/unep_energy-effic-broch-final.pdf
https://group.skanska.com/48dc86/globalassets/sustainability/environmental-responsibility/energy/unep_energy-effic-broch-final.pdf

Bibliography

[219] W3C OWL WG. OWL 2 Web Ontology Language Document Overview. Recom-
mendation. W3C, Oct. 2009. url: http://www.w3.org/TR/owl2-overview/.

[220] Erik Wilde. Putting Things to REST. Tech. rep. 2007-015. iSchool, University of
Berkeley, CA, USA, Nov. 2007. url: http://dret.net/netdret/docs/wilde-
irep07-015-restful-things.pdf (visited on 07/06/2018).

[221] Erik Wilde. REST and RDF Granularity. May 2009. url: http://dret.typepad.
com / dretblog / 2009 / 05 / rest - and - rdf - granularity . html (visited on
10/06/2018).

[222] Lina Yao, Quan Z. Sheng and Schahram Dustdar. “Web-Based Management of
the Internet of Things”. In: IEEE Internet Computing 19.4 (2015).

[223] Dogan Yazar and Adam Dunkels. “Efficient Application Integration in IP-based
Sensor Networks”. In: Proceedings of the First Workshop on Embedded Sensing
Systems for Energy-Efficiency in Buildings (BuildSys) at the 7th Conference on
Embedded Network Sensor Systems (SenSys). ACM. 2009.

[224] Jin Yu, Boualem Benatallah, Fabio Casati and Florian Daniel. “Understanding
Mashup Development”. In: IEEE Internet Computing 12.5 (2008).

[225] Antoine Zimmermann, ed. RDF 1.1: On Semantics of RDF Datasets. RDF WG
Note. W3C, Feb. 2014. url: http://www.w3.org/TR/rdf11-datasets/.

[226] Michael zur Muehlen, Jeffrey V. Nickerson and Keith D. Swenson. “Developing
Web Services Choreography Standards”. In: Decision Support Systems 40.1 (2005).

162

http://www.w3.org/TR/owl2-overview/
http://dret.net/netdret/docs/wilde-irep07-015-restful-things.pdf
http://dret.net/netdret/docs/wilde-irep07-015-restful-things.pdf
http://dret.typepad.com/dretblog/2009/05/rest-and-rdf-granularity.html
http://dret.typepad.com/dretblog/2009/05/rest-and-rdf-granularity.html
http://www.w3.org/TR/rdf11-datasets/

A. Queries

A.1. Preprocessing

A.1.1. Semantics of Unavailable Sources

Run repeatedly until no new data is added.

PREFIX : <http://purl.org/dyldo/vocab#>

PREFIX http: <http://www.w3.org/2011/http#>

Fill an unsuccessful observation with the body of the previous observation.

INSERT {

?respNext http:body ?body .

}

WHERE {

?obs

:hasSeedURI ?uri ;

:hasSnapshot ?snap ;

:hasLastResponse ?resp .

?snap

:next ?snapNext .

?obsNext

:hasSeedURI ?uri ;

:hasSnapshot ?snapNext ;

:hasLastResponse ?respNext .

?resp

http:body ?body .

FILTER NOT EXISTS {

?respNext http:body ?bodyNext .

}

};

Fill an unsuccessful observation with the body of the subsequent observation,

if the unsuccessful observation does not have a successful predecessor.

INSERT {

?respRightBefore http:body ?body1 .

}

WHERE {

163

A. Queries

?obs1

:hasSeedURI ?uri ;

:hasSnapshot ?snap1 ;

:hasLastResponse ?resp1 .

?resp1

http:body ?body1 .

?snapRightBefore

:next ?snap1 .

?obsRightBefore

:hasSeedURI ?uri ;

:hasSnapshot ?snapRightBefore ;

:hasLastResponse ?respRightBefore .

FILTER NOT EXISTS {

?obsAnyBefore

:hasSeedURI ?uri ;

:hasSnapshot ?snapAnyBefore .

?snapAnyBefore

:next* ?snapRightBefore .

?obsAnyBefore

:hasLastResponse ?respAnyBefore .

?respAnyBefore

http:body ?bodyAnyBefore .

}

}

A.1.2. Materialising Intermediary Results

PREFIX : <http://purl.org/dyldo/vocab#>

PREFIX http: <http://www.w3.org/2011/http#>

PREFIX crypto: <http://www.w3.org/2000/10/swap/crypto#>

INSERT { ?observation2 :changed ?changed }

WHERE {

?snapshot1 :next ?snapshot2 .

?observation2

:hasSeedURI ?seedURI ;

:hasSnapshot ?snapshot2 ;

:hasLastResponse ?resp2 .

?resp2 http:body ?body2 .

?observation1

:hasSeedURI ?seedURI ;

164

A.2. High-Level Statistics

:hasSnapshot ?snapshot1 ;

:hasLastResponse ?resp1 .

?resp1 http:body ?body1

?body1 crypto:md5 ?hash1 .

BIND(NOT EXISTS{?body2 crypto:md5 ?hash1}

as ?changed)

}

A.2. High-Level Statistics

A.2.1. Number of PLDs Whose URIs Ever Dereferenced

PREFIX : <http://purl.org/dyldo/vocab#>

PREFIX http: <http://www.w3.org/2011/http#>

SELECT (COUNT(DISTINCT ?pld) AS ?pldCount)

WHERE {

?pld :hosts ?uri .

?obs :hasSeedURI ?uri ;

:hasLastResponse ?resp .

?resp http:statusCodeValue 200 .

}

A.2.2. Number of PLDs Whose URIs Dereferenced Per Snapshot

PREFIX : <http://purl.org/dyldo/vocab#>

PREFIX http: <http://www.w3.org/2011/http#>

SELECT ?snapshot (COUNT(DISTINCT ?pld) AS ?pldCount)

WHERE {

?pld :hosts ?uri .

?obs :hasSeedURI ?uri ;

:hasSnapshot ?snap ;

:hasLastResponse ?resp .

?resp http:statusCodeValue 200 .

} GROUP BY ?snapshot

A.2.3. Number of URIs That Ever Dereferenced

PREFIX : <http://purl.org/dyldo/vocab#>

PREFIX http: <http://www.w3.org/2011/http#>

SELECT (COUNT(DISTINCT ?uri) AS ?uriCount)

WHERE {

?obs :hasSeedURI ?uri ;

:hasLastResponse ?resp .

?resp http:statusCodeValue 200 .

}

165

A. Queries

A.2.4. Number of URIs That Dereferenced Per Snapshot

PREFIX : <http://purl.org/dyldo/vocab#>

PREFIX http: <http://www.w3.org/2011/http#>

SELECT ?snapshot (COUNT(DISTINCT ?uri) AS ?uriCount)

WHERE {

?obs :hasSeedURI ?uri ;

:hasSnapshot ?snap ;

:hasLastResponse ?resp .

?resp http:statusCodeValue 200 .

} GROUP BY ?snapshot

A.3. Queries to Analyse Dynamic Linked Data

A.3.1. Appearance

PREFIX : <http://purl.org/dyldo/vocab#>

PREFIX http: <http://www.w3.org/2011/http#>

SELECT (COUNT(?seedURI) AS ?uris) ?NoSnapshots WHERE {

{

SELECT (COUNT(?snapshot1) AS ?NoSnapshots) ?seedURI WHERE {

?observation :hasSnapshot ?snapshot1;

:hasSeedURI ?seedURI;

:hasLastResponse ?res .

?res http:statusCodeValue "200"^^xsd:integer .

} GROUP BY ?seedURI

}

} GROUP BY ?NoSnapshots

A.3.2. HTTP Responses

PREFIX : <http://purl.org/dyldo/vocab#>

PREFIX http: <http://www.w3.org/2011/http#>

SELECT ?snapshot

(CONCAT(?scDigit1, "xx") AS ?statusClass)

(COUNT(DISTINCT ?seedURI) AS ?seedUriCount)

WHERE { ?observation :hasSnapshot ?snapUri ;

:hasSeedURI ?seedURI ;

:hasLastResponse ?res .

?res http:statusCodeValue ?sc .

?snapUri dc:created ?snapshot .

BIND(SUBSTR(STR(?sc), 1, 1) AS ?scDigit1)

} GROUP BY ?scDigit1 ?snapshot

166

A.3. Queries to Analyse Dynamic Linked Data

A.3.3. Death Rate I

PREFIX : <http://purl.org/dyldo/vocab#>

PREFIX http: <http://www.w3.org/2011/http#>

SELECT (COUNT(?seedURI) AS ?numberOfURIcountsWith200PresentOrFuture)

?snapshotFromWhichToDetermineHistoryForward

WHERE {

?observation

:hasSeedURI ?seedURI ;

:hasSnapshot ?snapshotFromWhichToDetermineHistoryForward .

?snapshotFromWhichToDetermineHistoryForwardMinusOne

:next ?snapshotFromWhichToDetermineHistoryForward .

FILTER(EXISTS {

?snapshotFromWhichToDetermineHistoryForwardMinusOne

:next* ?snap2 .

?observation2 :hasSeedURI ?seedURI ;

:hasSnapshot ?snap2 .

:hasLastResponse ?res2 .

http:statusCodeValue 200 .

}

)

} GROUP BY ?snapshotFromWhichToDetermineHistoryForward

A.3.4. Death Rate II

PREFIX : <http://purl.org/dyldo/vocab#>

PREFIX http: <http://www.w3.org/2011/http#>

SELECT (COUNT(?seedURI) AS ?numberOfURIcountsWithNon404PresentOrFuture)

?snapshotFromWhichToDetermineHistoryForward

WHERE {

?observation :hasSeedURI ?seedURI ;

:hasSnapshot ?snapshotFromWhichToDetermineHistoryForward .

?snapshotFromWhichToDetermineHistoryForwardMinusOne

:next ?snapshotFromWhichToDetermineHistoryForward .

FILTER(EXISTS {

?snapshotFromWhichToDetermineHistoryForwardMinusOne :next* ?snap2 .

?observation2 :hasSeedURI ?seedURI ;

:hasSnapshot ?snap2 ;

:hasLastResponse ?res2 .

?res2 http:statusCodeValue ?scv .

FILTER(?scv != "404"^^xsd:integer)

})

} GROUP BY ?snapshotFromWhichToDetermineHistoryForward

167

A. Queries

A.3.5. Changes and Change Frequency

PREFIX : <http://purl.org/dyldo/vocab#>

PREFIX http: <http://www.w3.org/2011/http#>

PREFIX crypto: <http://www.w3.org/2000/10/swap/crypto#>

SELECT ?numberOfChanges (COUNT (?numberOfChanges) as ?numberOfUris)

WHERE {

SELECT ?seedURI (COUNT(?seedURI) AS ?numberOfChanges)

WHERE {

?observation2

:hasSeedURI ?seedURI ;

:hasSnapshot ?snapshot2 ;

:hasLastResponse ?resp2 .

?resp2 http:body ?body2 .

?snapshot1 :next ?snapshot2 .

?observation1

:hasSeedURI ?seedURI ;

:hasSnapshot ?snapshot1 ;

:hasLastResponse ?resp1.

?resp1 http:body ?body1 .

?body1 crypto:md5 ?hash1 .

FILTER(NOT EXISTS{

?body2 crypto:md5 ?hash1 .

})

} GROUP BY ?seedURI

} GROUP BY ?numberOfChanges

A.3.6. Change Frequency and Change Amount

PREFIX : <http://purl.org/dyldo/vocab#>

PREFIX crypto: <http://www.w3.org/2000/10/swap/crypto#>

PREFIX http: <http://www.w3.org/2011/http#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?pld

(IF(SUM(?changedAtAll) = 0, 0, SUM(?numberOfChanges) / SUM(?changedAtAll))

AS ?meanNoChangesInChangingDocs)

(SUM(?changedAtAll) / COUNT(?seedURI) AS ?ratioOfChangingDocs)

(COUNT (?seedURI) AS ?noSeedURIs)

WHERE {

SELECT ?seedURI

(SUM(?changed) AS ?numberOfChanges)

(IF(SUM(?changed) > 0, 1, 0) AS ?changedAtAll)

WHERE {

?observation2

:hasSeedURI ?seedURI ;

168

A.3. Queries to Analyse Dynamic Linked Data

:hasSnapshot ?snapshot2 ;

:hasLastResponse ?resp2 .

?resp2 http:body ?body2 .

?snapshot1 :next ?snapshot2 .

BIND(

IF(

EXISTS {

?observation1

:hasSeedURI ?seedURI ;

:hasSnapshot ?snapshot1 ;

:hasLastResponse ?resp1 .

?resp1 http:body ?body1 .

?body1 crypto:md5 ?hash1 .

?body2 crypto:md5 ?hash1 .

}, 0, 1)

AS ?changed)

} GROUP BY ?seedURI

?plduri :hosts ?seedURI ;

rdfs:label ?pld .

} GROUP BY ?pld

A.3.7. Change Frequency and Change Amount by LOD-Cloud Classification

PREFIX : <http://purl.org/dyldo/vocab#>

PREFIX crypto: <http://www.w3.org/2000/10/swap/crypto#>

PREFIX http: <http://www.w3.org/2011/http#>

SELECT ?topic (COUNT(?pld) AS ?pldcount)

(SUM(?doccount) AS ?docccount)

(SUM(?static) AS ?staticcount)

(SUM(?dual) AS ?dualcount)

(SUM(?bulk) AS ?bulkcount)

(SUM(?active) AS ?activecount)

WHERE {

{

SELECT (COUNT(?snapshot2) / 2 AS ?halfSnapCount) WHERE {

?snapshot1 :next ?snapshot2 .

}

}

{

SELECT ?pld (COUNT(?doc) AS ?doccount) WHERE {

?pld :hosts ?doc .

} GROUP BY ?pld

}

169

A. Queries

?pld :lod2012topicClassification ?topic .

BIND(IF(?ratioOfChangingDocs > 0.5

&& ?meanNoChangesInChangingDocs > ?halfSnapCount, 1, 0) AS ?active)

BIND(IF(?ratioOfChangingDocs < 0.5

&& ?meanNoChangesInChangingDocs > ?halfSnapCount, 1, 0) AS ?dual)

BIND(IF(?ratioOfChangingDocs < 0.5

&& ?meanNoChangesInChangingDocs < ?halfSnapCount, 1, 0) AS ?static)

BIND(IF(?ratioOfChangingDocs > 0.5

&& ?meanNoChangesInChangingDocs < ?halfSnapCount, 1, 0) AS ?bulk)

{

SELECT ?pld

(IF(SUM(?changedAtAll) = 0,

0,

SUM(?numberOfChanges) / SUM(?changedAtAll))

AS ?meanNoChangesInChangingDocs)

(SUM(?changedAtAll) / COUNT(?seedURI)

AS ?ratioOfChangingDocs)

WHERE {

{

SELECT ?seedURI

(SUM(?changed) AS ?numberOfChanges)

(IF(SUM(?changed) > 0, 1, 0) AS ?changedAtAll)

WHERE {

?observation2

:hasSeedURI ?seedURI ;

:hasSnapshot ?snapshot2 ;

:hasLastResponse ?resp2 .

?resp2 http:body ?body2 .

?snapshot1 :next ?snapshot2 .

BIND(

IF(

EXISTS {

?observation1

:hasSeedURI ?seedURI ;

:hasSnapshot ?snapshot1 ;

:hasLastResponse ?resp1 .

?resp1 http:body ?body1 .

?body1 crypto:md5 ?hash1 .

?body2 crypto:md5 ?hash1 .

}, 0, 1)

AS ?changed)

} GROUP BY ?seedURI

170

A.3. Queries to Analyse Dynamic Linked Data

}

?pld :hosts ?seedURI .

} GROUP BY ?pld

}

} GROUP BY ?topic

171

B. Linked Data-Fu Rules to Implement a
Turing Machine

Assume the following prefix definitions:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix tm: <http://www.example.org/turing-machine#> .

@prefix http: <http://www.w3.org/2011/http#>.

@prefix http_m: <http://www.w3.org/2011/http-methods#>.

Displacement to the Left

{ ?tm tm:hasInitialPosition ?initPos ;

tm:hasCurrentPosition ?currPos ;

tm:hasCurrentState ?currState .

?currPos rdf:first ?currTapeSymbol ;

rdf:rest ?currNext .

?nextPos rdf:rest ?currPos .

?tr tm:hasCurrentTapeSymbol ?currTapeSymbol ;

tm:hasCurrentState ?currState ;

tm:hasNextState ?nextState ;

tm:hasDisplacement tm:L ;

tm:hasWriteSymbol ?writeSymbol . }

=>

{ [] http:mthd http_m:PUT ;

http:requestURI ?currPos ;

http:body

{ ?currPos rdf:first ?writeSymbol ;

rdf:rest ?currNext . } . } .

{ ?tm tm:hasInitialPosition ?initPos ;

tm:hasCurrentPosition ?currPos ;

tm:hasCurrentState ?currState .

?currPos rdf:first ?currTapeSymbol ;

rdf:rest ?currNext .

?nextPos rdf:rest ?currPos .

173

B. Linked Data-Fu Rules to Implement a Turing Machine

?tr tm:hasCurrentTapeSymbol ?currTapeSymbol ;

tm:hasCurrentState ?currState ;

tm:hasNextState ?nextState ;

tm:hasDisplacement tm:L ;

tm:hasWriteSymbol ?writeSymbol . }

=>

{ [] http:mthd http_m:PUT ;

http:requestURI ?tm ;

http:body

{ ?tm tm:hasInitialPosition ?initPos ;

tm:hasCurrentPosition ?nextPos ;

tm:hasCurrentState ?nextState . } . } .

Displacement to the Right

{ ?tm tm:hasInitialPosition ?initPos ;

tm:hasCurrentPosition ?currPos ;

tm:hasCurrentState ?currState .

?currPos rdf:first ?currTapeSymbol ;

rdf:rest ?currNext .

?currPos rdf:rest ?nextPos .

?tr tm:hasCurrentTapeSymbol ?currTapeSymbol ;

tm:hasCurrentState ?currState ;

tm:hasNextState ?nextState ;

tm:hasDisplacement tm:R ;

tm:hasWriteSymbol ?writeSymbol . }

=>

{ [] http:mthd http_m:PUT ;

http:requestURI ?currPos ;

http:body

{ ?currPos rdf:first ?writeSymbol ;

rdf:rest ?currNext . } . } .

{ ?tm tm:hasInitialPosition ?initPos ;

tm:hasCurrentPosition ?currPos ;

tm:hasCurrentState ?currState .

?currPos rdf:first ?currTapeSymbol ;

rdf:rest ?currNext .

?currPos rdf:rest ?nextPos .

174

?tr tm:hasCurrentTapeSymbol ?currTapeSymbol ;

tm:hasCurrentState ?currState ;

tm:hasNextState ?nextState ;

tm:hasDisplacement tm:R ;

tm:hasWriteSymbol ?writeSymbol . }

=>

{ [] http:mthd http_m:PUT ;

http:requestURI ?tm ;

http:body

{ ?tm tm:hasInitialPosition ?initPos ;

tm:hasCurrentPosition ?nextPos ;

tm:hasCurrentState ?nextState . } . } .

175

	Abstract
	Introduction
	Background
	REST, HTTP, and the Web Architecture
	RDF, Ontologies, and The Semantic Web
	(Read-Write) Linked Data

	Research Questions and Contributions
	Challenges
	Hypotheses
	Research Questions
	Contributions

	Scope
	Structure of the Thesis
	Example

	Preliminaries
	(Read-Write) Linked Data
	Resources and URIs
	Hypertext Transfer Protocol (HTTP)
	Resource Description Framework (RDF)

	A Formal Basis for Dynamic Linked Data
	The Linked Data Transition System
	Related Work
	Conclusion

	The Dynamics of Linked Data on the Web
	The Need for a Dynamic Linked Data Observatory
	The Need of Linked Data Consumers
	The Need of Linked Data Publishers

	Research Questions
	Challenges
	Contributions
	Related Work
	The Set-up of the Dynamic Linked Data Observatory
	How to Capture Linked Data on the Web?
	Sampling Technique
	Crawling Setup
	Compiling the Seed List
	Monitoring Scheme
	Validation of the Feasibility the Proposed Set-up

	High-Level Statistics
	Methods to Describe and Analyse the Dynamics of Linked Data
	Steps to Analyse Dynamic Linked Data
	Modelling Dynamic Linked Data in RDFS
	A Processing Pipeline to Extract Data According to Our Model
	Declaratively Specifying Preprocessing using SPARQL UPDATE
	Declaratively Specifying Analyses using SPARQL
	Evaluation of the Declarative Approach to Analyse Dynamic Linked Data
	Discussion

	Results on the Physical Level
	Availability/Occurrence
	Death Rate
	Change Ratio
	Temporal Coherence

	Results on the Logical Level
	Triple-Level Changes
	Term-Level Changes
	Dynamic Predicates
	RDF Link Structure

	Community Validation
	Summary

	A Model of Computation for Linked Data
	Motivation
	Challenge
	Contributions
	Example Scenario: Rule-based Control for Building Automation
	Intuition of the Syntax of a Condition-Action Rule Language
	Intuition of the Semantics of the Condition-Action Rule Language

	Related Work
	Preliminaries
	State
	RDF Model-Theoretic Semantics
	Abstract State Machines (ASM)

	Abstract State Machines and Linked Data + Rules
	Overview
	Synthesis
	Linked Data Servers
	Operational Semantics for the Condition-Action Rule Language
	Discussion: Computation, ASMs, Simple Reflex Agents, and Linked Data
	Requirements for a Linked Data User Agent Specification Language

	Evaluation
	Formal Evaluation
	Experimental Evaluation

	Conclusion and Future Work

	Workflows in Linked Data
	Challenges
	Contributions
	Related Work
	Preliminaries
	Activity, Workflow Model and Instance Ontology
	Reasoning and Querying over RDF Lists in OWL LD
	Operational Semantics
	Overview
	Condition-Action Rules

	Evaluation
	Formal Evaluation
	Applicability: The Case of Virtual Aircraft Cockpit Design
	Empirical Evaluation

	Conclusion

	Summary and Conclusion
	Specification of Behaviour
	Monitoring of Behaviour without Specifications
	Execution of Behaviour and Monitoring of Behaviour with Specifications
	Conclusion

	List of Figures
	List of Tables
	Acronyms
	Bibliography
	Queries
	Preprocessing
	Semantics of Unavailable Sources
	Materialising Intermediary Results

	High-Level Statistics
	Number of PLDs Whose URIs Ever Dereferenced
	Number of PLDs Whose URIs Dereferenced Per Snapshot
	Number of URIs That Ever Dereferenced
	Number of URIs That Dereferenced Per Snapshot

	Queries to Analyse Dynamic Linked Data
	Appearance
	HTTP Responses
	Death Rate I
	Death Rate II
	Changes and Change Frequency
	Change Frequency and Change Amount
	Change Frequency and Change Amount by LOD-Cloud Classification

	Linked Data-Fu Rules to Implement a Turing Machine

