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Polymeric porous media (PPM) are widely used as advanced materials, such
as sound dampening foams, lithium-ion batteries, stretchable sensors, and
biofilters. The functionality, reliability, and durability of these materials have a
strong dependence on the microstructural patterns of PPM. One underlying
mechanism for the formation of porosity in PPM is phase separation, which
engenders polymer-rich and polymer-poor (pore) phases. Herein, the phase
separation in polymer solutions is discussed from two different aspects:
diffusion and hydrodynamic effects. For phase separation governed by
diffusion, two novel morphological transitions are reviewed: “cluster-to-
percolation” and “percolation-to-droplets,” which are attributed to an effect
that the polymer-rich and the solvent-rich phases reach the equilibrium
states asynchronously. In the case dictated by hydrodynamics, a deterministic
nature for the microstructural evolution during phase separation is
scrutinized. The deterministic nature is caused by an interfacial-tension-
gradient (solutal Marangoni force), which can lead to directional movement
of droplets as well as hydrodynamic instabilities during phase separation.

1. Introduction

Polymeric porous media (PPM) have received an increased level of
interest over recent decades,!!! not least because PPM fulfill tasks
where alternatives are technically and economically impractical.”?
The success story of PPM originates from the concept of intro-
ducing pores into a dense polymer matrix in a controlled fashion,
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which produces porous layers with adjust-
able properties. As the porosity is estab-
lished by the introduced pores, there exist
strong correlations between the resulting
specific surface area, the volume fraction,
and the size distribution of pores as essen-
tial properties. Depending on the constella-
tion of the properties, PPM with beneficial
capabilities, such as permeability, particle
retention as well as acoustic and thermal
insulation effects are realized with pores
sizes at different length scales ranging from
nanometer to millimeter. The pore sizes of
PPM are categorized according to the Inter-
national Union of Pure and Applied Chem-
istry (IUPAC) recommendation into three
groups:?l macropores (pore size > 50 nm),
mesopores (pore size = 2-50 nm), and
micropores (pore size < 2 nm) where
a porosity varying from 20% to 90%
is attainable.

Since the way of introducing pores into
polymers has been investigated for many years now, a large
number of formation processes thrive on both industrial and aca-
demic fields. Commercially relevant methods!®! include tearing,
foaming, self-assembling templates, track edge, weaving,
polymer mixing, and block copolymers, covalent organic frame-
works, and phase separation where the last one is the focus of
this review. In academia, another method is proposed based on
the pore formation through templating. Herein, the polymer
grows around a template matrix which could be a solid (hard
templating),}! an emulsion (emulsion templating),! or a
dispersed gaseous phase (foam templating),”! to name a few. As
a result, the intrinsic properties of the template are inherited to
the PPM. Since in general, purely synthetic polymers are used,
the controllability of the formation processes is promoted and a
broad range of pore sizes can be achieved.!

While in earlier days of engineering materials, the avoidance
of porosities was the main objective,/®! in PPM it is explicitly
utilized to provoke the aforementioned beneficial capabili-
ties of the polymer materials and to facilitate versatile and
momentous applications.!!] For instance, PPM shows its extraor-
dinary efficiency in various membrane separation processesl’!
where a transmembrane gradient forces a fluid to pass the
porous membrane through the pores and particles are filtered
by the physical principle of size exclusion.?l Very commonly,
these processes are widely used for purifying water by removing
pollutants (e.g., agricultural chemicals, endocrine disrupters,
pathogens) on distinct length scales (e.g., nano-, ultra-, and
microfiltration).®°! During the purification, a pressure gradient
is imposed on wastewater, whereas in dialysis, the separation
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is driven by a concentration gradient.'% Additional applications
comprise biomaterials and lab-on-a-chip technologies including
lateral flow assays, such as blood glucose analyzer!'!l and preg-
nancy tests,!'213 respectively. Furthermore, thanks to alterable
ultrahigh surface areas, PPM have been adopted for catalyst sup-
ports to increase the efficiency of chemical reactions'"*'*! and for
electrodes of lithium-ion battery to enhance the electrochemical
performance.'®'8l PPM have also been exploited for energy
storage devices,”) fuel cells,?”) low-dielectric-constant mate-
rials,?l photonic bandgap materials,?>?% scaffolds for tissue
engineering,”l proton exchange membranes,?**! masks for
nanopatterning or lithography,?®l antireflection coating,?’]
and many other applications. In these high-value applications,
the functionality, the reliability, and the durability of PPM
crucially depend on the microstructural patterns resulting
from different formation processes associated with diverse
underlying mechanisms.

One underlying mechanism for the formation of PPM is
phase separation, which gives rise to a polymer-rich phase and
a polymer-poor (pore) phase. Figure 1a lists a number of phase
separation microstructuresi?®3% in different polymer solutions.
The phase separation in polymer solutions is premised on the
Flory-Huggins theory,*%*l according to which the Gibbs free
energy of a polymer solution depends on the average degree of
polymerization (DP). When the monomer (DP = 1) is dissolved in
the solvent with a volume concentration ¢, the Gibbs free energy
fl¢) has a global minimum at ¢ = ¢,,, as sketched by the dashed
line in Figure 1b. Therefore, the system remains a homogeneous
solution at the minimum energy state. When the polymerization,
i.e., crosslinking reaction, takes place, the molecular weight of
the polymerizing species progressively increases and thereby
DP levels up. For sufficiently large DPs, two local minima occur
in the free energy landscape f{¢), as depicted by the solid line in
Figure 1b. In order to decrease the Gibbs free energy, the homo-
geneous polymer solution decomposes into two separate phases
with concentrations around the two local minima.

Phase separation in polymer solutions involves not only dif-
fusion but also hydrodynamic effects. From these two mass
transport aspects, we give an overview of recently significant
advances on the microstructural evolution of phase separation
in polymer solutions. For diffusion-governed evolutions, two
novel morphological transitions: “cluster-to-percolation” and
“percolation-to-droplets” are elucidated. These new morpholog-
ical transitions are caused by the fact that the polymer-rich and
the solvent-rich phases reach the equilibrium states asynchro-
nously, which is attributed to the highly asymmetrical phase dia-
gram of polymer solutions. Given that the asynchronous effect
is affected not only by the thermodynamic driving force but also
by the mobility, we give an overview of some recent progress on
the development of the mobility and point out some insight into
constructing the mobility in future works, as an open question.

For phase separation involving hydrodynamic effects, an up-
to-date work from Shimizu and Tanakal* is described. This work
reveals a fundamental understanding that the motion of the drop-
lets resulting from phase separation is a deterministic rather than
a stochastic behavior. Concretely speaking, the motion of drop-
lets is directional, contrary to the Brownian motion mechanism
where stochastic thermal forces exerted by molecules induce
random motion of individual droplets. This deterministic nature
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is engendered by an interfacial tension gradient (Marangoni force)
produced in each droplet as a consequence of composition correla-
tion among droplets. In order to reduce the total surface energy,
the droplets move from a high surface tension to a low surface ten-
sion region, giving rise to a directional movement. The interfacial
tension gradient not only drives the directional motion of droplets
but also expedites a hydrodynamic instability at a fluid—fluid inter-
face during phase separation,*3 which will be summarized as well.

Phase separation in polymer solutions results in compli-
cated porous patterns involving complex physical mecha-
nisms behind. To deeply understand the hidden mechanisms,
it is strongly demanded to develop effective characterization
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Figure 1. a) The blue, yellow, and gray rings represent, respectively, the polymer, the solvent and the porous structures due to phase separation.
I) Reproduced with permission.[?8] Copyright 2006, American Chemical Society; Il) Reproduced with permission.?l Copyright 2000, Elsevier; 111) Repro-
duced with permission.% Copyright 2012, Royal Society of Chemistry; IV) Reproduced with permission.B"l Copyright 2014, American Chemical Society;
V) Reproduced with permission.32l Copyright 1996, Wiley-VCH; VI) Reproduced with permission.®®l Copyright 2006, Elsevier; VII) Reproduced
with permission.?¥ Copyright 2017, American Institute of Physics; VIII) Reproduced with permission.’>] Copyright 2017, MDPI; IX) Reproduced with
permission.B¥ Copyright 2005, Springer Nature; X) Reproduced with permission.’”l Copyright 2017, Royal Society of Chemistry; XI) Reproduced with
permission.B8 Copyright 2005, American Chemical Society; XIl) Reproduced with permission.3% Copyright 2016, The Korean Ceramic Society. b) Free
energy landscape of polymer solutions with an average degree of polymerization (DP) equal to 1 (dashed line) and much greater than 1 (solid line).
The free energy density f(¢) has two contributions: enthalpy and entropy. The former one is proportional to ¢(1 — ¢), which is concave downward. The
convexity of the free energy landscape is controlled by the enthalpy ¢ln ¢/DP. When DP = 1, the homogeneously distributed monomers in the solvent
correspond to a high entropy state, whose free energy density is convex. As DP > 1, long polymer chains are formed and the entropy contribution
becomes less eminent, which gives rise to a double-well free energy density. PS, polystyrene (atactic); PI, polyisoprene; NaN3, sodium azide; G-k-Car.,
Gellan-k-carrageenan; PEG, poly(ethylene glycol); E401, sodium alginate; PVA, poly(vinyl alcohol); PLLA, poly(lactic acid); DEM, diethyl malonate; PEO,
poly(ethylene oxide); PIB, polyisobutylene; PS-P2VP, poly(styrene-b-2 vinyl pyridine); PStNaSS, polystyrene-sodium sulfonate styrene; MeOH, methyl
alcohol; PDMS, poly(dimethylsiloxane); DMF, dimethylformamide; W, water.

morphological transitions governed by diffusion. In Section 5,
we describe a deterministic nature for the microstructural evolu-

techniques to scrutinize the phase separation patterns. The
commonly applied characterization methods are very different

in their operating length scales. Experimental methods, such
as capillary flow pyrometry, specific surface area studied by
nitrogen adsorption using the Brunauer—-Emmett-Teller (BET)
method, and water permeability, are conducted on a mac-
roscopic scale. By employing simplified theoretical models
from Young-Laplace, Fick and Darcy, effective properties are
extracted, but no concrete information about the morpholo-
gies of the microstructures is accessible. Not surprisingly, the
respective concepts have many limitations and the material
behaves rather like a “black box.” In contrast, computational
materials science provides powerful opportunities for charac-
terizing the microstructures on the pore-scale by combining
computer-aided characterization methods and digital represen-
tations of the microstructure. As such, we give an overview of a
novel characterization method for porous microstructures.
Herein, in Section 2, we review the-state-of-the-art phase-field
model which is used to explore the novel microstructural evolu-
tion mechanisms reported in the following sections. In Section 3,
we provide a general background of physical pictures for diffusion
and hydrodynamic effect. In Section 4, we elucidate two new
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tion arising from hydrodynamic effects. Thereafter, an insightful
method for the characterization of porous microstructures is
introduced in Section 6. We conclude the report at the last section.

2. The-State-of-the-Art Phase-Field Model to
Simulate Phase Separation in Polymer Solutions

The free energy density of a polymer solution is formulated by
the Flory—-Huggins theory,*?! which is a lattice based model, as
sketched in Figure 2a.! By modifying the entropy of regular
solutions, the free energy density depends on the average
degree of polymerization N and is expressed in terms of the
polymer concentration ¢ and the temperature T by

f(¢,T)=ka[% im0+ (1-0)In(1-0) + 70(1-0) (1)

Here, k;, denotes the Boltzmann constant and y represents
the Flory parameter. For an upper critical point spinodal
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Figure 2. Flory—Huggins theory and the phase diagram: a) Sketch for the lattice-based model of Flory—Huggins. The red and blue circles represent the
polymer and solvent species, respectively. Reproduced with permission.[*!l Copyright 2016, Elsevier. b) Reproduced spinodal regions for an upper critical
point system from the Flory—Huggins theory. Distinct colored areas correspond to different average degrees of polymerization (red: N = 7, green: N =
20, orange: N = 50, blue: N =1000). c) Formation of bicontinuous and droplet structures due to spinodal decomposition with concentrated (upper) and
dilute (bottom) initial polymer solutions. c) Reproduced with permission.B3l Copyright 2006, Elsevier. d) Spinodal regions for a lower critical point system.

decomposition (UCSD), the Flory parameter is inversely pro-
portional to the temperature y = ZAg/k,T, where Z is a coor-
dination number and Ag is the difference of the bond energy
between polymer-solvent epg and the average value of pol-
ymer—polymer &pp and solvent—solvent &g, namely, A€ = gpg —
(€pp + €s5)/2. When Ae is positive, the polymer—polymer and
the solvent—solvent bonds are energetically favored rather than
the polymer—solvent bond of a homogeneous mixture. For a
lower critical point spinodal decomposition (LCSD), the Flory
parameter is linearly proportional to the temperature, y ~T.
The spinodal line 1is calculated by the locus of
9*f]0¢? = 0. The binodal line is given by the conditions:
) ty =0y f lo-0, =09 f lo-o. = s and i) (f = 11p0) |-y, = (f = 1) lo-o.
Here, ¢, and ¢ are the equilibrium polymer concentrations
in the polymer-rich and the polymer-poor phases, respectively,
and u, and g stand for the corresponding equilibrium chem-
ical potentials. Since the average degree of polymerization DP
is a time dependent parameter, N = 1 + kt*>% with k being a
reaction-rate constant, it is noted that the spinodal as well as
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the binodal lines both are dynamic. Figure 2b,d reproduce the
spinodal lines for a series of DPs (red: N = 7, green: N = 20,
orange: N = 50, blue: N = 1000) with a Flory parameter y = 1.5
for UCSD and LCSD, respectively.

When the polymer concentration is initially set inside the
spinodal region, the polymer solution spontaneously decom-
poses into two separate phases, known as spinodal decomposition
(Figure 2¢). In a closed system under isothermal and isobaric
conditions, this decomposition is such as to reduce the free
energy functional, which is expressed asl*’]
F(0.V9)= |, [F(0)+K(Vo))dv @
where V is the domain occupied by the system and k denotes
a gradient energy coefficient which is determined by the
interfacial tension o as K=O‘/(2J.i(d¢/ dx)’dx. The spinodal
decomposition is computed by considering an uphill diffu-
sion flux, J=—M(¢)V(6F /5¢), in the Cahn-Hilliard equation,
reading*®!
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9.9 =V-[M(§)V(5F |5¢)] 3)

where M(¢) is the mobility.

We stress that for liquid phases, on spinodal decomposi-
tion the reduction of the free energy is achieved not only via
diffusion but also via fluid flow or convection which transports
kinetic energy %PIU\Z. Here, p is the density and u is the mean
velocity of the fluid. Thus, the mass flux generally contains
two contributions: one is diffusion arising from the chemical
potential gradient and the other one is caused by convection
¢u describing the transport via the mean velocity. With the
generalized mass flux, J=—M(¢)V(6F /6¢)+ du, the mass con-
servation equation is rewritten ast*’!

0,:0+V-(ug)=V-[M($)V(5F/5¢)] (4)

The kinetic energy 1p|uf has not been considered in the
classic Cahn-Hilliard model, but is taken into account
in recent works.’®>* On account of convection, a portion
of the free energy is transformed into kinetic energy. The
decrease rate of the Gibbs free energy caused by convection
is (AF /dt)cmecion = | (5F/ 50)(@,O)meciondv, Which is  equivalent
to —| (8F/5¢)(u-Ve)dv by using the mass conservation equa-
tion and the incompressibility condition V-u=0. Equating
the increase rate of the kinetic energy st -udv to the decrease
rate of the Gibbs free energy, the capillary force is derived,
f. =—¢V(6F | 89).5% The derivation of the capillary force is actu-
ally in accordance with Noether’s theorem that the action of a
physical system is invariant to a specific transformation of the
coordinates and field variables, yielding a stress tensor°®>7]

O=2kVp®Vo—(kV¢-Vo+ f)I 5)

The tensorial formulation has been used in refs. [52,55,58].
It can be readily shown that =V -©=—¢V(6F /6¢) by using the
equality V - (Vo@V¢) = V2¢V ¢ + (Vo - V)Vo.

Including the capillary force in the Navier—Stokes equation,
we obtain a generalized momentum balance equationl>>¢8!

p(@u+u Vu)=—Vp+V {[x(Vo) + f [I-2Vp @ Vo)
+V-n(Vu+VuT)

where p, 1, and I are the pressure, the viscosity and the iden-
tity tensor, respectively. It is noted that Equation (6) is valid
when the densities of the polymer-rich p, and the solvent-rich
ps phases are nearly the same, i.e., p, = p,. When the ratio of
the densities between the phases is relatively large, an addi-
tional term [%M(‘pw(&f/&p)-v]u has to be added at the left hand
side, as demonstrated by Albel et al.*’]

Equation (4) is coupled with Equation (6) and is called as
the Cahn-Hilliard—Navier—Stokes model or phase-field model,
which is the-state-of-the-art method to simulate phase separa-
tion involving diffusion and convection in polymer solutions.
An important feature of the Cahn-Hilliard-Navier—Stokes
model is that it is consistent with the second law of thermody-
namics in the sense that dE,(¢,u)/dt <0. Here, E, (¢, u) is the
sum of the free energy and the kinetic energy as!**>’)

E.(0w)= [, [f@r+x(Voriavs [ o av )
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Herein, we focus only on Newtonian fluids. For readers who
are interested in non-Newtonian fluids, such as viscoelastic
effect in polymer solutions, we refer to the work of Tanaka.3’!

3. Diffusion and Hydrodynamics

Diffusion normally prompts the motion of species from a high con-
centration (chemical potential) to a low concentration (chemical
potential) region, resulting in the formation of a uniform system.
Contrary to this, inside the spinodal region, the mass transfer is
reversed, originating from a negative diffusivity. This abnormal
diffusion reduces the free energy functional of the system and is
consistent with the second law of thermodynamics. The abnormal
diffusion leads to the formation of either a bicontinuous or a
droplet-structure (Figure 2c), depending on the initial concen-
tration. When both phases reach their equilibrium concentra-
tions, diffusion still exists between distinct droplets or ligaments
because of the inhomogeneous chemical potential induced by the
difference in the curvature, which is known as Ostwald ripening.
It is noted that in the Ostwald ripening process, the character-
istic time for neighboring droplets with a distance L to exchange
molecules via the surrounding matrix is g = [2/D,. While the
characteristic time for a droplet of radius R to drift over the same
distance is 7, = [?/Dy. Here, D, and Dy, are diffusion coefficients
inversely proportional to the size of the molecule and the radius
of the droplets. At the late stage of spinodal decomposition, the
droplet is much larger than the molecules, thus D, > Dy and
Tq < Tp,. Therefore, the composition correlation between adjacent
droplets via molecule diffusion takes place long before the drift
and collision. It is this composition correlation that engenders
nonuniform concentrations along the surface of the droplets. As
the interfacial tension has a dependence on the interfacial con-
centration, an interfacial-tension gradient is established, driving
the motion of the droplets. Since additional kinetic energy that is
transformed from the free energy appears in the hydrodynamic
case, the energetic state as well as the microstructures both differ
from the scenario only with diffusion.

In summation, the diffusion and the hydrodynamic mecha-
nisms compete with each other in the entire phase separation
process. Since these two mechanisms have distinct character-
istic time scales, the morphological evolution of phase separa-
tion is dominated by either one of them at different stages of
the phase transformation. In the following, we give an overview
of the microstructural evolution from the aspects of diffusion
and hydrodynamic effect.

4, Diffusion-Governed Microstructural Evolution

4.1. Asynchronous Equilibrium

Because of the cross-linking reaction in polymer solutions, DP
increases with time. With an increase of DP, the spinodal as
well as the binodal lines both become highly asymmetrical, as
illustrated in Figure 2b. In contrast to symmetric or nearly sym-
metric miscibility gaps in most metals and ceramics, the highly
asymmetrical phase diagram is one noteworthy characteristic of
polymer solutions. In this section, we give an overview of a recent
work which shows that the highly asymmetrical miscibility gap of
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Figure 3. Two morphological transition mechanisms from ref. [60]. Reproduced with permission.[®¥ Copyright 2017, American Physical Society. The
blue and the red areas represent polymer-rich and solvent-rich phases, respectively. a—c) Transformation from dispersed solvent-droplets into a

solvent-cluster, known as “cluster-to-percolation.” d—f) Transformation from

a continuous polymer-cluster into dispersed polymer-droplets, known as

“percolation-to-droplets.” g) Sketch of the concentration of the polymer-rich (blue line) and the solvent-rich (red line) phases as a function of time. The
light orange region depicts the stage where the solvent-rich phase reaches the equilibrium prior to polymer-rich phase. The light blue area shows the
stage where both phases are in equilibrium. h) The asynchronous effect arising from the asymmetric driving force d’f]d¢?. The black circle illustrates
the composition with a maximal driving force and is closer to the solvent side due to polymerization. The red and blue circles represent the equilibrium

concentrations of solvent and polymer, respectively.

polymer solutions gives rise to novel microstructural evolution
mechanisms in polymer solutions.

Zhang et al.l® simulated the microstructural evolution of
phase separation in polymer solutions by using a Cahn—Hilliard
model coupling with the Flory-Huggins equation with N = 100.
They reported two morphological transition mechanisms: one
is “cluster-to-percolation” (CTP), as shown in Figure 3a—c, where
dispersed solvent-droplets transform into a continuous sol-
vent-cluster. The other one is “percolation-to-droplets” (PTD), as

Adv. Mater. 2019, 31,1806733 1806733 (6 of 14)

portrayed in Figure 3d-f, where a continuous polymer-cluster
decomposes into dispersed polymer-droplets. In Figure 3a—f,
the blue phases represent polymer-rich phases and the red
ones stand for solvent-rich phases. These two morphological
transitions are ascribable to the asynchronous effect, which
is schematically depicted in Figure 3g showing the polymer
concentration versus time. A polymer solution with an initial
concentration ¢, inside the spinodal region decomposes into
two phases with equilibrium concentrations ¢, (polymer-rich)
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and ¢ (solvent-rich). The new finding is that there is an inter-
mediate stage (f; < t < t,) where the solvent-rich phase (red
line) has reached the equilibrium, but the polymer-rich phase
(blue line) is still far from the equilibrium. This asynchronous
effect is due to the high asymmetry of the phase diagram.
The detailed interpretation is illustrated in Figure 3h showing
the second derivative of the free energy density versus the
polymer concentration for N = 100. Spinodal decomposition
takes place when d?f/d¢? < 0. Zhang et al.l) and many other
researchers®3#? assume an equal diffusivity for polymer and
solvent. Thus, in their assumptions, the decomposition rate
solely depends upon the absolute value of d?f/d¢?. Because of
polymerization, the concentration with maximal decomposition
rate (black circle) is more close to the solvent phase, so that the
solvent phase (orange circle) takes less time to reach the equi-
librium than the polymer phase (blue circle). Ipso facto, the dif-
fusivity of long chain polymers in most cases is much less than
monomeric solvents. Thus, the asynchronous effect is expected
to be more pronounced while considering the difference in the
diffusivity of polymers and solvents.

In Figure 3a, because of the asynchronous effect, the polymer
species in the gap between two adjacent solvent-droplets has to
be rejected into the area outside the gap, leading to a secondary
phase separation in the gap. Ascribable to this secondary phase
separation, the polymer-rich phase (blue) between two neigh-
boring solvent-droplets gradually transforms into the solvent-
rich phase (red). This kind of evolution continues until the two
droplets get in touch with each other and reach the equilibrium
concentration ¢, giving rise to a “cluster-to-percolation” transi-
tion. This transition has been captured in experiments.[®!l The
interpretation of the PTD transition is analogous to CTP. A
Gaussian distributed noise produces a structure with 50% poly-
mer-rich phases and 50% solvent-rich phases, which is fair for
both phases. This structure consists of continuous polymer-clus-
ters, as depicted in Figure 3d. At this stage, the solvent-matrix
has already reached the equilibrium, but the polymer-cluster
is still on the way to arrive at the equilibrium. This asynchro-
nous effect causes a secondary phase separation in the polymer-
clusters, resulting in the PTD transition (Figure 3e). The PTD
transition reported by Zhang et al.l’¥ is observed at the critical
composition and thus differs from the PTD phenomenon at
off-critical compositions in systems with symmetric miscibility
gaps. After PTD, the concentration in the polymer-droplets
has not yet reached the equilibrium value, so that the polymer-
droplets continuously grow with time (Figure 3f) until the
equilibrium volume fraction is achieved according to the
lever rule.

Although the final volume fraction can be predicted by the
lever rule for a giving initial concentration ¢, the morpholog-
ical evolution toward the equilibrium states has not been fully
revealed before this work. From this point of view, the work of
Zhang et al. has made a great step toward the understanding
on the morphological evolution of phase separation in polymer
solutions. After the asynchronous stage (t > t, in Figure 3g)
where both phases reach the equilibrium concentrations, the
dominant mechanism for the morphological evolution is Ost-
wald ripening, where big droplets grow at the expense of small
droplets. This evolution results in a coarse and inhomogeneous
structure, in contrast to the fine and homogeneous structures at
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the asynchronous stage. In order to enhance the structural prop-
erties, it would be of sense to delay the asynchronous stage by
controlling kinetic parameters, such as mobility.

4.2. Mobility

The asynchronous effect is attributed to the asymmetric ther-
modynamic driving force —V(6F/¢) from the phase diagram.
It is noted that the kinetics is affected not only by the thermo-
dynamic driving force but also by the mobility. There are two
kinds of mobility in the literature. The first one is a concentra-
tion-independent mobility that is used, for example, by Zhang
et al.’¥ to explore the asynchronous effect. Two typical concen-
tration-independent mobilities are Rouse and Zimm models.*!]
In the former case, the mobility is inversely proportional to DP,
M = M,y/N, with M, being a positive constant. This derivation
is based on the consideration that a single polymer-chain dif-
fusion is engendered by Brownian motion of beads connected
by harmonic springs. The Rouse mobility has been used by
Chanl®? and Yangl®¥! to simulate phase separation in polymer
solutions. The shortcoming of the Rouse model is ascribed
to the neglect of hydrodynamic interactions. By including
hydrodynamic interactions between beads with the Kirkwood—
Riseman approximation, the Rouse model is improved as*!l

M=M,/N" (8)

which is the Zimm model and v is a Flory exponent. The
Zimm mobility reduces to the Rouse model when v =1 and
is consistent with the experimental data for dilute polymer
solutions. Both the Rouse and Zimm mobilities are time-
dependent. These two models are just interested in the mobility
of one single polymer strand in a solution. They do not take
into account effects of the surrounding solvent and thus is well
appropriate for dilute polymer solutions. The concentration-
independent mobility simplifies the complex transport equa-
tions in polymer solutions and is able to mimic some fluid
dynamic phenomena without solving the hydrodynamic equa-
tions (see ref. [64]).

The second type of the mobility depends on the driving
force of the phase separation as M = D/d?f]d¢?, where D is the
manual diffusion coefficient. This equation is derived by com-
paring the diffusion flux expressed in terms of the chemical
potential J=—MVyu to the Fick’s flux J=—DV¢. This consid-
eration yields a concentration-dependent mobility. A common
used concentration-dependent mobility isl®?

M=Dg(1-9)/(k,T) )

for a binary system, which is based on the ideal solution
free energy model f{¢) = kyT[¢lng + (1 — ¢)In(l — ¢)] with
%]o¢* = ¢(1 — ¢)/k,T. It is evident that the ideal solution
free energy model cannot give rise to phase separation since
the second derivative of the free energy density with respect
to the concentration is always positive. By using the Flory—
Huggins free energy model rather than the ideal solution
model, a more generalized mobility

M=D/k,T[1/(N§)+1/(1-¢)=2%] (10)
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Figure 4. Interpretation of the mobilities used in the literature: a) The dimensionless mobility Mk, T/D as a function of the polymer concentration ¢ for
x = 0. The violet line shows the mobility of Equation (9) used in ref. [62]. The green and the blue lines illustrate the mobility of Equation (10) used in
refs. [48,66] with N =10 and N =100, respectively. b) The free energy density and c) the corresponding second derivative according to the Flory-Hug-
gins theory with N = 5. d) A sketch for the diffusivity varying with the polymer concentration.

is obtained. Equation (10) is a recent important progress for
simulating phase separation in polymer solutions.*® The sig-
nificance of this mobility is that it is asymmetrical when N > 1
and the extent of the asymmetry increases with N, as depicted
in Figure 4a. Since the new mobility shifts toward the solvent
side for large DPs, a direct consequence is that the solvent-rich
phase reaches the equilibrium even earlier than the polymer-
rich phase. Thus, the free energy density dependent mobility
is expected to increase the asynchronous time interval, which
could be an interesting point in a future study.

Although the utilization of a generalized mobility is a
remarkable step, there are still some issues open for discus-
sion. A fact is that the second derivative of the free energy
density, which is the denominator in Equation (10), is negative
inside the spinodal region and positive outside the spinodal
region. Therefore, we have a constraint for the sign of the diffu-
sivity that depending upon the sign of 9%f/d¢? to ensure M > 0,
as pointed by Janssens et al.l®®] In most studies, the diffusivity
D is assumed to be a positive constant, which apparently does
not fulfill this constraint. Even a concentration-dependent
mobility D(¢) is used in few cases,*®l the sign of the diffusivity
remains positive. Another issue is that if we postulate that
the diffusivity is continuous and differentiable, the diffusion
coefficient would be zero at the spinodal points. As a result, a
“0/0”-type mobility occurs at the spinodal points. The scenario
elucidated here is sketched in Figure 4b-d. According to the
aforegoing discussions, the diffusivity should be a nonlinear
function depending on the concentration ¢. The asymmetry of
the mobility is affected by the nonlinear relation D(¢).

5. Hydrodynamic Effects

Phase separation in polymer solutions is a very complex phys-
ical phenomenon involving not only diffusion but also fluid
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flow. In this section, we give an overview of a novel micro-
structural evolution mechanism from Shimizu and Tanakal*2l
by considering hydrodynamic effects. We shall see that the
motion of the droplets during phase separation follows a
deterministic rather than a stochastic nature. The determin-
istic mechanism revealed by Shimizu and Tanaka is on the
basis of a solutal Marangoni force induced by inhomogeneous
interfacial concentrations. This mechanism significantly
changes the understandings on the microstructural evolution
of phase separation.

Figure 5a sketches two different sized droplets from phase
separation. Let us assume that the droplets and the matrix both
have reached the equilibrium states. According to the Ostwald
mechanism, the big droplet always grows at the expense of
the small droplets due to the difference in the curvature. The
growing flux is represented by the black arrows, perceptually
from the small to the big droplets. The concentration gradient
in the gap between the two droplets is higher than the one out-
side the gap because of distinct lengths of the diffusion paths.
If the diffusivity is isotropic, the magnitude of the diffusion flux
in the gap is greater than that outside the gap. As a result, the
difference in the diffusion fluxes gives rise to a concentration
gradient around the surface of each droplets, as sketched by the
blue dashed lines. In most cases, the surface tension increases
with the concentration, so that the surface tension adjacent to
the gap is less than other positions. The established surface
tension or concentration gradients consequently prompt the
motion of the droplet arising from the hydrodynamic force,
-V.oor =V¢.

In a system consisting of multidroplets as in Figure 5b—e,
which are typical phase separation microstructures at off-critical
compositions, the motion of the resulting droplets seems to be
stochastic, governed by the Brownian motion mechanism, also
known as Binder—Stauffer—Siggia mechanism. In this case,
the trajectories of the mass-center of two adjacent droplets are
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Figure 5. Spontaneous motion of droplets. a) Sketch for the concentration gradient due to different diffusion paths. b—e) Phase separation micro-
structures at different times with an initial concentration ¢, = 0.25. f,g) Schematic pictures for random and directional motions, respectively. h) An
example of the temporal evolution of the barycenter of a single droplet from the microstructures shown in (b)—(e). i) Symbols with different colors
depict the dimensionless displacements of different droplets shown in (b)—(e) as a function of time. The blue straight line illustrates the displacement
from Brownian motion and the red dashed line has a slope of 1 corresponding to Marangoni effect. b—i) Reproduced with permission.*s Copyright

2015, Springer Nature.

random as illustrated in Figure 5f. However, as demonstrated
by Shimizu and Tanaka, the motion of the droplets resulting
from phase separation does not follow the stochastic behavior
of Brownian motion. Instead, the movement of the droplets is
directional, as sketched by the red line in Figure 5g. A clear evi-
dence is shown in Figure 5h, where the mass-center of a single
droplet in the microstructures from phase separation shifts
toward a particular direction with time. This directional moving
behavior is further confirmed by analyzing the displacements
of different droplets with time in Figure 5i. For the Brownian
motion governed movement, the mean-square displacement
&r follows the t'/%-relation as dr=fk,T/(57nR)~/t (the blue solid
line). However, the displacements of different droplets before
collision during the phase separation, which are represented by
different colored symbols, are much greater than the ones of
the Brownian motion mechanism and almost obey a linear law
Or ~ t (the red dashed line), which is a characteristic of hydro-
dynamic effect. This observation contradicts to the behavior of
the conventional stochastic motion.

Adv. Mater. 2019, 31,1806733 1806733 (9 of 14)

A more heedful scrutiny on Figure 5i shows that the dis-
placements of the droplets lay in between the Brownian motion
line and the Marangoni line. This is a strong evidence that the
Marangoni effect is as crucial as the Brownian motion in a mul-
tidroplets system. Moreover, we notice that in Figure 5i, there
are few displacements (open red and filled black circles) below
the Brownian motion line. These displacements correspond to
tiny droplets shrinking with time due to Oswald ripening. The
physical picture for those tiny droplets is that the molecular
diffusion transport is much faster than the Brownian motion as
well as the Marangoni effect. In other words, the characteristic
time for the molecular diffusion 14 is much less than the ones
of the Brownian motion 7, and the fluid flow 7, = nR/c. The
importance of directional movements of droplets due to Maran-
goni force in a multidroplets system has also been realized in
diffusiophoresis and diffusioosmosis.[*”!

The nonstochastic behavior reported by Shimizu and
Tanakal*? indicates a new type of droplet motion from a sto-
chastic to deterministic nature. This deterministic phenomenon
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has also been studied in refs. [68,69]. In the deterministic sce-
nario where the hydrodynamic effect is more significant than
diffusion, the small droplets swim faster than the large ones, /%8l
which eventually leads to an intercollision that large droplets
eat neighboring small droplets, similar to the classic Lifshitz,
Slyozov, Wagner (LSW)7%71 scenario. We stress that this deter-
ministic hydrodynamic effect is only significant when the drop-
lets have a strong interaction with each other, which occurs
if the initial concentration is relatively high. When the initial
concentration is low, i.e., dilute solution, the volume fraction of
the droplets is fairly small, so that the interaction between the
droplets is weak and the hydrodynamic effect is irrelevant. In
dilute solutions, diffusion is more important than the hydrody-
namic transport and the microstructural evolution follows the
LSW theory.

Shimizu and Tanaka explored this deterministic nature for
systems with a perfectly symmetric miscibility gap. So far, the-
state-of-the-art investigation has seldomly considered this deter-
ministic nature for the phase separation in polymer solutions
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with a highly asymmetric phase diagram. As mentioned above,
the polymer-rich and the solvent-rich phases asynchronously
arrive at the equilibrium states when phase diagram is not sym-
metric. In the asynchronous stage, there are three mechanisms
for the microstructural evolution: i) a second phase separa-
tion in the nonequilibrium polymer-rich phase, ii) the Ostwald
mechanism where big polymer-droplets eat small ones, and
iii) directional movement of polymer-droplets because of the
nonuniform concentration around the surface of the droplets
induced by the droplet-interaction. If the hydrodynamic effect
is dominant over diffusion, the droplets may move fast enough
such that the second phase separation between two adjacent
droplets is completely suppressed.

A recent important progress is an extension of this determin-
istic nature to a ternary polymer—solvent-nonsolvent system,
as done by Tree et al.¥l The difference is that a flat interface
is considered here rather than spheres. Their main results are
shown in Figure 6a—d. Initially, a phase composed of polymer,
solvent and nonsolvent is placed on top of another phase mostly

© (d)

00¢ = ?# 00T =7

00€ =1

N

® (® (h)

§00nm 500nm

Figure 6. Hydrodynamic instability in polymer structures. a—d) The Sternling and Scriven instability during phase separation in a ternary polymer
solutions shown by Tree et al.*3l Reproduced with permission. [“3] Copyright 2018, American Chemical Society. e-h) Plateau-Rayleigh instability for
a polymer nanorod. Reproduced with permission.[”3l Copyright 2015, American Chemical Society. The interpretation for the curvatures k; and k; in

(e) is from the present authors.
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containing the nonsolvent species. The concentrations in these
two phases are not in equilibrium, so that the polymer species
is transported across the interface via diffusion. The diffusion
from one phase to another phase provokes a surface-directed
spinodal decomposition, which produces droplet-structures at
off-critical compositions (Figure 6a,d) and lamellar-structures
nearby the critical compositions (Figure 6b,c). However, the
mass flux is governed not only by diffusion but also convection.
Because of the difference in the ratio of diffusivity to viscosity
in these two phases, polymer-rich and polymer-lean regions
appear at the interface due to a competition effect between
diffusion and convection. This inhomogeneous concentration
along/near the interface leads to a surface tension gradient,
yielding a hydrodynamic force -V 6 or —V,¢, as in the case of
Shimizu and Tanaka. The hydrodynamic force further gives
rise to a hydrodynamic instability, which is known as Sternling
and Scriven instability.”? This instability leads to the breakup
of the lamellar structure of spinodal decomposition, as depicted
in Figure 6b,c). This is a first work to simulate the Sternling
and Scriven instability in a ternary polymer system. Con-
trasting to most previous simulations which only consider the
diffusion mechanism, the work of Tree et al. demonstrates that
the deterministic hydrodynamic effect can result in different
microstructures of phase separation. For instance, a bicontin-
uous or lamellar phase separation structure is formed at the
critical composition only with diffusion. But the hydrodynamic
instability can engender a transformation from the bicontin-
uous structure into dispersed droplets.

It should be noted that the Sternling and Scriven instability is
applied to a 2D semi-infinite system, where the mean curvature
is zero. An important contribution from the mean curvature to
the microstructural evolution in polymer solutions is shown
in a recent work of Yan et al.”3l In this work, it is found that
a polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) nanorod
decomposes into several polymer-particles. The morphological
transition is sketched in Figure 6e and the corresponding exper-
imental results are illustrated in Figure 6f~h. This morpho-
logical transition is well-known as the Plateau—Rayleigh insta-
bility. The mechanism behind this transition is that the mean
curvature has two contributions in three dimensions, namely,
K = K; + Ky, where k3 is the two dimensional curvature, the
radius of which is shown by the orange circle in Figure Ge. In
two dimensions, the mean curvature is positive at the crest and
negative at the trough, so that the diffusion or hydrodynamic
fluxes are always from the crest to the trough, smoothing out
the roughness at the interface. The other curvature x, is the
contribution from the third dimension and the radius is sche-
matically depicted by the green circles. The third dimensional
curvature at the trough is greater than the one at the crest.
Thus, the total curvature at the trough could be greater than
the one at crest, which results in a diffusion or hydrodynamic
flux from the trough to the crest, provoking an amplification
of the roughness, which is another hydrodynamic instability. In
the study of Shimizu and Tanaka, the particles have uniform
curvatures. The simulations of Tree et al. are performed in two
dimensions. Hence, this hydrodynamic effect originating from
curvature has not been shed light on in both works. It would be
insightful to consider both deterministic natures: curvature as
well as interfacial-tension-gradient in future studies.
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6. Structure Characterization

As phase separation processes result in porous microstructures
in which a certain degree of randomness, e.g., pore size dis-
tributions, is unavoidable, statistical characterization concepts
get increasingly attractive.”*77] The statistical characterization
is based on functions which essentially capture the spatial cor-
relation among different locations in the microstructure. Since
microstructures of phase separation show different natures,
e.g., bicontinuous clusters and dispersed droplets, a variety of
statistical functions exist.”®! For instance, two-point correla-
tion functions provide a very comprehensive picture of the
salient features of bicontinuous microstructures, but gener-
ally creates an extremely large feature space as well. In order to
reduce the dimensionality of the data, a principal component
analysis (PCA)’381 is performed on the two-point statistics.
By PCA the data is represented on a transformed coordinate
system where the axes are oriented according to the variance in
structure properties. Typically, the principal components (PC 1,
PC 2, etc.) are ordered from the highest to the lowest variance
starting with PC 1. As a main advantage, PCA is capable of
emerging the main characteristics in microstructures as well as
classifying a huge set of data in an unsupervised manner. That
is, no prior information about the characteristics of the data is
needed. The features are solely identified by representing the
microstructures in low dimensional space.

Some insightful examples are presented in Figure 7 where
two-point correlation functions and PCA are applied for
porous two-phase systems. Figure 7a shows the classifica-
tion of two dissimilar porous components of polymer elec-
trolyte fuel cells. Here, PCA classifies the gas diffusion layer
(GDL) and microporous layer (MPL) by their distinct intrinsic
structure properties. In the PC space, the characterization is
expressed by so called point clusters where each point repre-
sents a different representative volume element of the micro-
structures.®? In Figure 7D, the resulting two-point correlation
function is visualized for three different microstructures. The
depicted spatial statistics highlights the evident differences in
the three morphologies.® Figure 7c illustrates an example for
the feature extraction in X-ray computer tomography scans
(X-CT) from a polymeric porous structure. For the characteri-
zation, a set of 8424 porous structures with defined features
are algorithm-based generated and both the X-CT scans and
the generated structures are scrutinized. In low dimensional
space, PC 1 and PC 2 are interpreted as porosity and mean
pore sizes, respectively, while PC 3 and PC 4 characterize geo-
metrical anisotropies in x-, y-, and z-direction. By searching for
point clusters of X-CT and the generated structures, a geomet-
rical anisotropy in z-direction is detected for the investigated
PPM. 84

7. Conclusion

In conclusion, we have given an overview of several novel evo-
lution mechanisms for the microstructures of phase separa-
tion from two different aspects: diffusion and hydrodynamics.
In the case of diffusion-governed evolution, the polymer-rich
phase always reaches the equilibrium state later than the
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Figure 7. Selected examples from literature where two-point correlation functions and principal component analysis are used for characterization
and classification of porous microstructures. a) Classification of porous components (GDL, MPL) in a polymer electrolyte fuel cell by their structural
properties in the principal component space (PC 1 and PC 2). Reproduced with permission.®2 Copyright 2014, Elsevier. b) Visualization of the two-
point correlations for three different microstructures. Reproduced with permission.®3l Copyright 2018, Elsevier. c) Feature extraction of X-ray computer
tomography scans of PPM by generating algorithm-based 8424 porous structures with defined properties and investigating the variances in the PC
space. PC 1 and PC 2 are interpreted as the porosity and the mean pore (bottom middle), respectively, while in PC 3 and PC 4, geometrical anisotropies
(stretched structures) in x-, y-, and z-direction are found (bottom right). Reproduced with permission.4 Copyright 2017, Elsevier.

solvent-rich phase because of the asymmetrical thermody-
namic driving force. This asynchronous effect results in two
novel morphological transitions: “cluster-to-percolation” and
“percolation-to-droplets.” This finding is a great step toward
understandings on the microstructural evolution of phase
separation in polymer solutions. The asynchronous effect
is affected not only by the thermodynamic driving force but
also by the mobility, which is assumed to be a constant value
in the work of Zhang et al.l’f As reviewed, the mobility in
general depends on the thermodynamic driving force and
becomes high asymmetric for large DPs. Thus, the asynchro-
nous effect is expected to be more pronounced when using an
asymmetric mobility.

A second focus herein is the microstructural evolution of
phase separation dedicated by hydrodynamics. One noteworthy
finding is that the droplets resulting from phase separation
exhibit a directional moving behavior, contrary to the conven-
tionally stochastic movement of Brownian motion. This direc-
tional movement is essentially caused by an interface-tension-
gradient which is induced by the composition correlation
between neighboring droplets. The interface-tension-gradient
can also be achieved through a competition effect between
diffusion and convection, which could produce a hydrody-
namic instability during phase separation. This hydrodynamic
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instability is a new freedom to affect the microstructural evolu-
tion of phase separation in polymer solutions.

In a pure diffusion case, the mean radius of the drop-
lets follows the LSW theory% as (R(#)) ~ t'/3. However, this
quintessential theory is only applicable when the matrix and
the droplets are at rest. When the droplets exhibit directional
center-to-center movement induced by Marangoni force, the
mean radius obeys another power law®! (R(#)) ~ t'/2. These
different mechanisms of microstructural evolution have
respective characteristic time scales related to the size of the
droplets. Thus, the microstructural evolution and the mean
pore size of PPM from phase separation shall be contemplated
distinguished from the time stage associated with different
underlying mechanisms.

It is noteworthy that the asynchronous effect is intrinsically
caused by the diffusion mechanism. As Marangoni flow influ-
ences the spatial arrangement of droplets, the diffusion routes
between droplets are consequently altered. Therefore, this asyn-
chronicity is indirectly affected by the Marangoni convection.
It remains an open question to elaborate the coupling effects
of these two mechanisms. Moreover, each mechanism has its
individual time scale. It is insightful to shed light on a better
understanding about the dominant mechanism at different
stages of phase separation. Furthermore, diffusion normally
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generates a bicontinuous PPM at the critical composition.
Combining with Marangoni flow, the bicontinuous PPM show
more variations in morphologies, such as magnum droplets,
tiny dispersion or clusters.

Last but not least, an overview of the recent progress in a
novel characterization technique, namely, PCA, used to porous
structures is given. In contrast to other conventional charac-
terization methods, PCA is capable of analyzing the spatial
statistics of porous structures. This capability can be applied
to achieve a deep insight into the underlying mechanisms of
phase separation, for instance, scrutinizing the correlation
between droplets in the deterministic nature of droplet-motion
and revealing unknown morphological characteristics, such as
anisotropy, in the asynchronous stage.
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