
Guaranteed Verification of Dynamic
Systems

Zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS

von der KIT-Fakultät für

Elektrotechnik und Informationstechnik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Stefan Schwab geb. Maier, M.Sc.

geb. in Rastatt

Tag der mündlichen Prüfung:

22. Juli 2019

Hauptreferent: Prof. Dr.-Ing. Sören Hohmann

Korreferent: Prof. Dr. Vicenç Puig

Preface

This thesis was written during my time at the Institute of Control Systems (IRS) at
Karlsruhe Institute of Technology (KIT) and the department of Control in Information
Technology (CIT) at FZI Research Center for Information Technology.

First of all I want to thank Prof. Dr.-Ing Sören Hohmann for providing the necessary
environment to allow successful scientific work like this. I really appreciate your never
ending support and guidance throughout the years that enabled this thesis.
Also I’d like to thank Prof. Dr. Vicenç Puig for reviewing this thesis. Besides that, I
really enjoyed our fruitful discussions that led to the collaborative development of the
zonotopic method that forms a part of this thesis.

Further credits go to the IRS and FZI staff. I’ll never forget this time and the vivid -
not always work related - discussions. Also I’d like to thank all students and graduates
that supported this work in some perspective.

Very special thanks go to Dr.-Ing. Gunter Diehm and Prof. Dr.-Ing. Mathias Kluwe for
their very careful review of preliminary stages of this thesis. Your comments were very
constructive, precise and rarely contradicting. You helped me very much to get the right
focus and to add the correct final touch.

Last but not least I’d like to thank my wonderful wife Elisa. Without your support and
understanding it would not have been possible to finish this work. Thank your for your
constant optimism and for allowing me to spent that much time on science.

The very last sentences need to be understandable for two very special German boys:

Lieber Jonathan, lieber Samuel, das ist Papas Buch.
Es ist jetzt fertig.

Karlsruhe, in June 2019

There is no substitute for persistence!
It cannot be supplanted by any other quality.
With persistence will come success.

∼ Napoleon Hill

Abstract

This thesis introduces a new specification and verification approach for dynamic systems.
The introduced approach is able to provide type II error free results by definition, i.e.
there are no hidden faults in the verification result. The approach is thus suitable to
provide a reliable verification of safety critical systems.

A new notion of set based consistency for dynamic systems with a given specification
is presented. Therefore Kaucher interval arithmetic is used to enclose the measurement
data in a bounded error sense. The resulting method is able to verify the specified
behavior of a dynamic system against its measurement data even in the presence of
noise and sensor uncertainty. Consistency is defined using the Kaucher arithmetic united
solution set which leads to mathematically guaranteed results.

It is proven mathematically that the desired property holds for a wide class of systems,
including time invariant, interval type and hybrid systems, which can be used to de-
scribe even nonlinearities. Several extensions are introduced, leading to a new iterative
identification and segmentation algorithm for hybrid systems which is able to handle
even unknown switching times. In case the calculations can be done fast enough, the
developed approach can also be used for the diagnosis of dynamic systems.

The presented methods are successfully applied to several example systems, including
theoretic settings and a variation of different tank settings.

The new theories, methods and algorithms developed in this thesis form the foundation
for reliable safety analysis of highly automated safety critical systems.

Zusammenfassung

Diese Arbeit beschreibt einen neuen Spezifikations- und Verifikationsansatz für dynamis-
che Systeme. Der neue Ansatz ermöglicht dabei Ergebnisse, die per Definition frei von
Fehlern 2. Art sind. Dies bedeutet, dass das Ergebnis der Verifikation keine versteck-
ten Fehler enthalten kann. Somit können zuverlässige Ergebnisse für die Analyse von
sicherheitskritischen Systemen generiert werden.

Dazu wird ein neues Verständnis von mengenbasierter Konsistenz dynamischer Systeme
mit einer gegebenen Spezifikation eingeführt. Dieses basiert auf der Verwendung von
Kaucher Intervall Arithmetik zur Einschließung von Messdaten. Konsistenz wird anhand
der vereinigten Lösungsmenge der Kaucher Arithmetik definiert. Dies führt zu mathema-
tisch garantierten Ergebnissen. Die resultierende Methode kann das spezifizierte Verhal-
ten eines dynamischen System auch im Falle von Rauschen und Sensorungenauigkeiten
anhand von Messdaten verifizieren.

Die mathematische Beweisbarkeit der Konsistenz wird für eine große Klasse von Sys-
temen gezeigt. Diese beinhalten zeitinvariante, intervallartige und hybride Systeme,
wobei letztere auch zur Beschreibung von Nichtlinearitäten verwendet werden können.
Darüber hinaus werden zahlreiche Erweiterungen dargestellt. Diese führen bis hin zu
einem neuartigen iterativen Identifikations- und Segmentierungsverfahren für hybride
Systeme. Dieses ermöglicht die Verfikation hybrider Systeme auch ohne Wissen über
Schaltzeitpunkte. Die entwickelten Verfahren können darüber hinaus zur Diagnose von
dynamischen Systemen verwendet werden, falls eine ausreichend schnelle Berechnung
der Ergebnisse möglich ist.

Die Verfahren werden erfolgreich auf eine beispielhafte Variation verschiedener Tanksys-
teme angewendet.

Die neuen Theorien, Methoden und Algortihmen dieser Arbeit bilden die Grundlage für
eine zuverlässige Analyse von hochautomatisierten sicherheitskritischen Systemen.

Contents

1 Introduction . 1

2 State of Science . 3
2.1 Conceptualization and Terminology . 3

2.1.1 Behavior Description . 3
2.1.2 Behavior Deviation . 4
2.1.3 Behavior Assessment . 5

2.2 Interval Arithmetic Methods . 11
2.3 Governing Complexity: Time Variant and Hybrid Verification Approaches . 12
2.4 Other Common Verification and Falsification Approaches 13

2.4.1 Testing . 14
2.4.2 Reachability Analysis . 16
2.4.3 Formal Verification . 16

2.5 Scientific Gap and Related Research Question . 17

3 Methodical Approach and Mathematical Preliminaries 18
3.1 Mathematical Preliminaries . 18

3.1.1 Basic Interval Arithmetic . 18
3.1.2 Kaucher Interval Arithmetic . 26
3.1.3 Interval Type Linear Equation Systems . 30

4 Guaranteed Verification of Point Real Systems . 37
4.1 System Setup . 37
4.2 Time Invariant Full Consistency . 40
4.3 Conclusion . 46

5 Guaranteed Verification of Interval Type Systems 47
5.1 Interval Type Full Consistency . 49
5.2 Interval Type Basic Consistency . 54

5.2.1 Algorithmic Solutions . 55
5.3 Conclusion . 59

Contents VI

6 Guaranteed Verification of Hybrid Systems . 60
6.1 Verification of Hybrid Systems with Mapped State Signal 65

6.1.1 Verification of the Dynamic Subsystems . 67
6.1.2 Verification of the Discrete Event System . 69
6.1.3 Combination of the Dynamic and the Discrete Verification Results . 74

6.2 Verification of Hybrid Systems With Given Switching Times 81
6.3 Verification of Hybrid Systems With Unknown Switching Times 85

6.3.1 Convergence of the Identification and Segmentation Algorithm 91
6.4 Conclusion . 92

7 Extended Kaucher Based Guaranteed Verification 94
7.1 Solution Set Approximations . 95

7.1.1 Hyperrectangular Solution Set Approximation 96
7.1.2 Zonotopic Solution Set Approximation . 98
7.1.3 Polytopic Solution Set Approximation . 102

7.2 Kaucher Based Diagnosis . 104
7.2.1 The Center Misplacement Effect . 108

7.3 Conclusion . 109

8 Application and Results . 110
8.1 Application: Guaranteed Verification for Interval Type Systems (Single-

Tank) . 111
8.2 Application: Guaranteed Verification for Hybrid Systems (Two-Tank) . . . 116

8.2.1 Measurement With Mapped State Signal . 118
8.2.2 Measurement Without Mapped State Signal 122

8.3 Simulation: Diagnosis Using Kaucher Based Guaranteed Verification (Four-
Tank) . 123
8.3.1 Fault Free Setting . 125
8.3.2 Additive Faults . 128
8.3.3 Multiplicative Faults . 132

8.4 Application: Diagnosis Using Kaucher Based Guaranteed Verification
(Single-Tank) . 134
8.4.1 Fault Free Setting . 134
8.4.2 Additive Faults . 136
8.4.3 Scaling Faults . 141

8.5 Conclusion . 144

9 Conclusion . 145

Contents VII

A Analysis Perspectives . XVI

B Derivation of the Interval Distribution . XVIII

C Full Rank Criteria . XXI

D Existence and Uniqueness of the Algebraic Solution Set XXIII

E System Behavior Specification . XXV
E.1 Time Domain Specification . XXV
E.2 Frequency Domain Specification . XXVII

F Excitation Signal Design . XXX
F.1 Path Calculation . XXX
F.2 Persistent Excitation Based on Fisher Information Matrix XXXI
F.3 Transfer to the Switch Threshold . XXXII

G Tables of Geometric Parameters . XXXIV

References . XXXVI

List of Figures

2.1 Set Based Specification . 4
2.2 Failure Terminology . 5
2.3 Venn Diagram . 6
2.4 Approximation Venn Diagram . 7
2.5 V-Model . 14

3.1 Graphical Representation of Interval Boxes in 2𝐷 and 3𝐷 20
3.2 Example: Dependency Effect . 22
3.3 Example: Wrapping Effect . 23
3.4 Example: Proper System . 24
3.5 Example: Proper Parameter Distribution . 25
3.6 Geometric Interpretation Proper and Improper Intervals 27
3.7 Example: Improper System . 28
3.8 Example: Improper Parameter Distribution . 28
3.9 Example: Different Solution Sets . 35

4.1 Measurement Setup . 40
4.2 Example: Measurement Data of Linear Time Invariant System 44
4.3 Example: United Solution Set of Linear Time Invariant System 45

5.1 Example: Interval Type Specification . 53
5.2 Approximation Venn Diagram (Large Specification) . 54
5.3 Consistent Set Depending on the Consistent Vertexes . 55
5.4 Constraints of the Feasibility Problem . 57
5.5 Example: Feasibility Based Consistency . 58

6.1 Hybrid System Model . 60
6.2 Switch Diagram . 65
6.3 Example: Specified State Machine . 76
6.4 Example: Measurement Data . 77
6.5 Example: Verification Result with Mapped Set of States 78
6.6 Flowchart: Mapping Algorithm . 83
6.7 Example: Verification result Without Mapped Set of States 85
6.8 Flowchart: Identification and Segmentation Algorithm 88
6.9 Example: Verification and Segmentation Result . 90
6.10 Switch Segments . 92

List of Figures IX

7.1 Example: Hyperrectangular Approximation . 98
7.2 Zonotopic Shape Specified by the Constraints . 99
7.3 Example: Zonotopic Approximation . 102
7.4 Example: Polytopic Approximation . 104
7.5 Flowchart: Diagnosis Algorithm . 106
7.6 Overview Approximation Shapes . 107
7.7 Center Misplacement Effect . 108

8.1 Three-Tank Lab Setting . 110
8.2 Single-Tank Setting . 111
8.3 Time Variant Parameter Range Single-Tank . 113
8.4 Verification Result Consistent Single-Tank (Simulation) 114
8.5 Verification Result Inconsistent Single-Tank (Simulation) 115
8.6 Two-Tank Setting . 117
8.7 Time Variant Parameter Range Two-Tank . 119
8.8 Hybrid Verification Result With Mapped State Signal 121
8.9 Four-Tank Setting . 123
8.10 Verification Result Consistent Four-Tank . 126
8.11 Center-Misplacement Effect . 127
8.12 Verification Result Freeze Fault (Simulation) . 129
8.13 Verification Result Offset Fault (Simulation) . 131
8.14 Verification Result Multiplicative Fault (Simulation) 133
8.15 Verification Result Consistent Single-Tank (Measurement) 135
8.16 Verification Result Freeze Fault (Measurement) . 137
8.17 Verification Result Offset Fault 𝑓𝑜 = 5cm (Measurement) 139
8.18 Verification Result Offset Fault 𝑓𝑜 = 0.35cm (Measurement) 140
8.19 Verification Result Scaling Fault 𝑓𝑠 = 0.95 (Measurement) 142
8.20 Verification Result Scaling Fault 𝑓𝑠 = 1.01 (Measurement) 143

A.1 Evaluation Terminology . XVI

B.1 Example: Probability Density Function Proper Case XX
B.2 Example: Probability Density Function Improper Case XX

E.1 Example: Time Domain Specification Toolbox . XXVII
E.2 Example: Frequency Domain Specification Toolbox XXIX

F.1 Graph Transformation . XXXI

List of Tables

2.1 Error Types . 10

3.1 Solution Set Definitions . 36

5.1 Vertexes of a Hyperrectangle . 51

6.1 Consistency Criteria . 75
6.2 Example: Nominal Dynamic Sub System Parameters . 76

8.1 Result Table Freeze Fault (Simulation) . 130
8.2 Result Table Offset Fault (Simulation) . 130
8.3 Result Table Parameter Fault (Simulation) . 132
8.4 Result Table Freeze Fault (Measurement) . 136
8.5 Result Table Offest Fault (Measurement) . 138
8.6 Result Table Scaling Fault (Measurement) . 141

G.1 System Properties Three-Tank . XXXIV
G.2 System Properties Four-Tank . XXXV

Abbreviations and Symbols

Abbreviations

Abbreviation Description

ARX AutoRegressive System with eXogenous Input
CIT Control in Information Technology
CMP Center MisPlacement Effect
FS Formal Specification
FZI Research Center for Information Technology
HiL Hardware-in-the-Loop
ILES Interval Type Linear Equation System
IRS Institute of Control Systems
KIT Karlsruhe Institute of Technology
LMI Linear Matrix Inequality Constraints
LTI Linear Time Invariant System
PO Prager-Oettli
PT1 Proportional Gain First Order Time Delay System
RRT Rapidly Exploring Random Trees
SUT System Under Test
VO Verification Object

Symbols

Symbol Description

�* Nominal Value / Specification
�𝑚𝑒𝑎𝑠 Measured Values
�𝑡𝑟𝑢𝑒 True Values of the VO
�𝑘 Values at Time Step 𝑘
�𝑠 Specific Sample from an Interval Value
�(𝑖) 𝑖-th Element of an Vector / Set
�−1 Inverse of a Matrix

Symbols XII

Symbol Description

�d Pseudo Inverse of a Matrix
�𝑇 Transposed Vector or Matrix
�̂ Estimated Value
⟨�⟩𝑇𝑘=1 Time Series / Measurement Vector
𝛼 Scaling Parameter
𝑎𝑖 Input Parameter
𝑎𝑛 Cross Section of Pipe 𝑛
𝐴𝑛 Cross Section of Tank 𝑛
𝐴 Interval Type Regressor Matrix
𝐴C Interval Type Regressor Matrix with Arbitrary Assigned Quantor
𝐴∃ Interval Type Regressor Matrix with Assigned Exists Quantor
𝐴∀ Interval Type Regressor Matrix with Assigned Forall Quantor
𝐵 Interval Type Measurement Vector
𝐵C Interval Type Measurement Vector with Arbitrary Assigned Quantor
𝐵∃ Interval Type Measurement Vector with Assigned Exists Quantor
𝐵∀ Interval Type Measurement Vector with Assigned Forall Quantor
𝑐𝑖 Output Parameter
𝑐ℳ Constraints Given by the Measurement Data
𝑐𝒩 Constraints Given by the Nominal Set
𝒞 Consistent Set
𝛿 General Sensor Fault
𝛿𝑎

𝑢 Maximum Absolute Sensor Fault on Signal 𝑢
𝛿𝑟

𝑢 Maximum Relative Sensor Fault on Signal 𝑢
Δ𝑝 Passband Width
Δ𝑠 Stopband Width
Δ𝑡 Sampling Time
𝜖𝑘 Additive Noise of Measurement
𝑒𝑛,𝑘 Additive Noise of Model
𝑒𝑎 Neutral Element of Addition
𝑒𝑚 Neutral Element of Multiplication
𝑒(𝑖) Discrete Event
ℰ Set of Discrete Events
𝑓 Frequency
𝑓𝑙𝑜𝑛 Nominal Outflow of Tank 𝑛
𝑓𝑓 Sensor Freeze Value
𝑓𝑜 Sensor Offset Value
𝑓𝑠 Scaling Fault

Symbols XIII

Symbol Description

𝑓𝜃 Multiplicative Fault on System Parameter 𝜃
ℱ Feasible Set
ℱ (𝑘) Feasible Set at Time Index 𝑘
ℱ𝑘 Feasible Set for all Measurement Data until Time Index 𝑘
ℱ2 Hyperrectangular Approximation of the Feasible Set
ℱ◇ Zonotopic Approximation of the Feasible Set
ℱD Polytopic Approximation of the Feasible Set
𝛾𝑛 Skaling Parameter of Tank 𝑛
𝑔 Gravitational Force
𝒢𝑍 Graph of the State Machine 𝑍
ℎ𝑛 Water Level in Tank 𝑛
ℎ𝑛𝑚𝑙 Height of Lower Valve, Connecting Tank 𝑛 and Tank 𝑚
ℎ𝑛𝑚𝑢 Height of Upper Valve, Connecting Tank 𝑛 and Tank 𝑚
𝐻0 Zonotope Radius Matrix
ℋ Hybrid System
IR Set of Proper Intervals
IR* Set of Proper and Improper Intervals
ℑ Imaginary Part
𝑘 Discrete Time Step
𝑘𝑑𝑒𝑡 Detection Time of a Fault
𝑘𝑒𝑛𝑑 End Time of a Segment
𝑘𝑒𝑟𝑟 Activation Time of a Fault
𝑘𝑚𝑖𝑛 Minimum Number of Necessary Measurement Points for the First

Evaluation of an ARX System
𝑘𝜏 Switch
𝑘𝜏 ′ End of Segment
𝑘𝑝 Proportional Gain
𝐾 Unitary Interval Vector
KR Set of Improper Intervals
𝜆 Scaling Factor
𝑙(𝑖) Activation Limit of Discrete Event 𝑒(𝑖)

𝜇 Mean Value
𝑀 Fisher Matrix
𝑛 System Order
𝑛𝑎 Input System Order
𝑛𝑐 Output System Order
𝑛𝑒 Number of Events

Symbols XIV

Symbol Description

𝑛𝑞 Number of States
𝑛𝑠 Number of Samples per Dimension
𝑛𝑐ℎ𝑒𝑐𝑘 Number of Samples Used to Verify an Interval Type Specification
𝑛𝑠𝑤𝑖𝑡𝑐ℎ Number of Switches
𝒩 Nominal Set
Ω𝑝 Passband Frequency
Ω𝑠 Stopband Frequency
𝑝 Proportional Gain
𝑝 Interval Type Proportional Gain
𝑃 0 Zonotope Center
𝑞 Denominator Order
𝑞(𝑖) Discrete State
𝒬 Set of Discrete States
𝑄 Penalty Matrix
𝑟 Arbitrary Interval Value
R Set of Real Numbers
ℜ Real Part
𝜎2 Variance
𝑠𝑘 General Measurement Signal
𝑠𝑓,𝑘 Signal with Freeze Fault
𝑠𝑜,𝑘 Signal with Offset Fault
𝑠𝑠,𝑘 Signal with Scaling Fault
𝑠(𝑖) Subsystem 𝑖
𝒮 Set of Subsystems
𝒮𝑐𝑜𝑛 Consistent Set of Subsystems
𝑆 Penalty Matrix∑︀ Solution Set∑︀

∃∃ United Solution Set∑︀
∀∃ Tolerable Solution Set∑︀
∃∀ Controllable Solution Set∑︀
∀∀ Strong Solution Set∑︀
𝑎 Algebraic Solution Set

𝜃 System Parameter
𝜃𝑐𝑜𝑚 Common System Parameter
𝜃𝑒𝑟𝑟,𝑘 Faulty System Parameter
𝜃 Interval Type System Parameter
Θ System Parameter Vector

Symbols XV

Symbol Description

𝑇 Measurement Time
𝑇𝑐𝑎𝑙𝑐 Calculation Time (Runtime) of the Algorithm
𝑇 Delay Time
𝑢 Input
𝑢𝑚𝑒𝑎𝑛 Mean of Signal 𝑢
𝑈*

𝑖𝑛𝑖𝑡 Initial Input Values
𝜙 Measurement in Regressor Form
𝑣𝑛 Measurement-Signal of Pump 𝑛
𝑣𝑜𝑢𝑡𝑛 Nominal Outflow Valve of Tank 𝑛
𝑣𝑛𝑚𝑙 Lower Connection Valve between Tank 𝑛 and Tank 𝑚
𝑣𝑛𝑚𝑢 Upper Connection Valve between Tank 𝑛 and Tank 𝑚
𝑣 Vertex
𝑣𝑑𝑒𝑐 Index of a Vertex in Decimal Value
𝑉𝑏𝑖𝑛 Index of a Vertex in Binary Value (Vectorial)
𝒱 General Set of Vertexes
𝒱2 Vertexes Defining a Hyperrectangle
𝒱◇ Vertexes Defining a Zonotope
𝒱D Vertexes Defining a Polytope
𝑊 Enabler Signal
𝑥 Infimum of Interval Variable
𝑥 Supremum of Interval Variable
𝑥𝑐 Center of Interval Variable
𝑥Δ Radius of Interval Variable
𝑥⊖ Negative Part
𝑥⊕ Positive Part
𝑥+ Magnitude
𝑥 Interval Variable
𝑋 Interval Type Solution Vector
𝑦 Output
𝑌 *

𝑖𝑛𝑖𝑡 Initial Output Values
𝑍 State Machine
𝒵 General Zonotopic Set

1 Introduction

The fast technological development in computer engineering in recent years led to very
powerful computing capacities that are now available at very low costs [Wil17]. As a
result those chips are used in an increasing number of products to make them “smart”
and to enhance user experience and functionality. These smart devices are interleaving
the daily life of millions of people and are used for an increasing number of tasks [Gho17].
State of the art techniques are powerful and mature enough to take over even very
complex and sensitive tasks - for example in autonomous cars, in flight assistance systems
or in the control of critical infrastructure. Tasks that can potentially harm human beings
or destroy valuable infrastructure are called “safety critical” and special measures need
to be taken during the development cycle to ensure correct operation of such safety
critical systems [IEC10][ISO11].

These special measures are given by safety analysis methods. A very relevant property
of all safety analysis methods is given by the amount of their type I and type II errors.
Thereby type I errors (false alarms) denote the situation in which a safety analysis
method evaluates a correct system to be faulty. The complementary condition is given
by type II errors (hidden faults). In this case a safety analysis method evaluates a faulty
system to be correct. Type II errors are of major importance in the context of safety
critical systems. A faulty system that is evaluated to work correctly poses uncontrollable
risk to the user and the environment. Thus there is a need for safety analysis methods
that do not suffer from type II errors.
In the context of this thesis, verification of dynamic systems means applying safety
analysis methods in an offline setting to ensure consistency of the verification object
(VO) with the specification. Guaranteed verification means that type II errors are
impossible by design. In case the safety analysis is fast enough, it can be applied in
an online setting which is then called “diagnosis”. Diagnosis can also be used to detect
runtime errors.
It is common opinion that there is currently no sufficient type II error free method
available in the state of the art and the state of science [Kap16].

Currently safety analysis methods use mostly falsification approaches, e.g. methods from
the field of testing. To achieve confidence about the absence of failures based on testing
methods it is necessary to use a sufficiently large amount of test cases. This leads to the
fact that safety analysis is more expensive as the development itself [Fos15] and costs are
expected to rise further with increasing complexity of the tasks assigned to the technical
system.

1 Introduction 2

Besides costs, current safety measures are often based on the experience of the respon-
sible engineer or brute-force simulation approaches are applied [ZN09]. It is widely
recognized that those methods will not keep up with the complexity given by currently
developed or future systems [Ram17][Ott18].
The example which is predominant in public perception is located within the automotive
industry. Current systems like automatic cruise control or autonomous parking pilots are
analyzed by applying the previously mentioned experience and simulation based safety
methods [Zan12]. Nevertheless it is known that those are not suitable for the arising
challenges, e.g. in the context of autonomous driving [Wac17][Koe18].

A possibility to avoid this dilemma is to use formal methods that can proof specific
properties of a verification object. A promising approach that gained great attention in
recent years is given by interval arithmetic safety analysis methods, see among others
[Uga03][Wol10][San17]. Results obtained using those method are guaranteed to include
all possible nominal system behavior as well as additional non-nominal behavior (so
called spurious solutions). Due to this overapproximating property, there are no type I
errors. However, for the same reason type II errors are possible by design.

The goal of this thesis is to close the gap by developing a formal method for the safety
analysis of dynamic systems that is guaranteed to be free of type II errors.

2 State of Science

There are numerous methods and approaches concerned with (safety) analysis of devel-
opment results in different communities. Also, there is a broad terminology with respect
to the verification question. The primary goal of this chapter is to build a basic concep-
tualization and the resulting terminology used in this thesis. This is necessary to follow
the ideas and approaches introduced in later chapters.
Furthermore, the most important and wide spread notions and methods used in engi-
neering and engineering science are introduced and discussed.

2.1 Conceptualization and Terminology

System behavior analysis can be conducted with respect to different perspectives. This
thesis addresses the verification of dynamic systems. A classification of other perspec-
tives is given in Appendix A. To conduct the verification of dynamic systems it is neces-
sary to define three components. First a description of the intended system behavior is
set up. The next step is to define the concept of deviating behavior. Finally the devel-
oped real system behavior has to be assessed with respect to the intended behavior.

2.1.1 Behavior Description

The desire of the costumer needs to be documented in some kind of specification to allow
any analysis in terms of verification. There are as many specification methods to define
the nominal behavior as there are methods to check their fulfillment. The variety includes
very formless approaches in human language [Mac95] as well as very formal definitions
using (runnable) models [AI15] or special specification languages ([Par72][Spi89][Abr96]).
The choice of a suitable specification formalism to be used in a project is a trade-off.
The less formal a specification, the less effort is necessary to set it up, leaving the ef-
fort to the developer who needs to interpret the specification. During the verification
procedure it is necessary to interpret the specification which leads to a need for ex-
perienced experts [ZN09, p. 120][Raj13][Bal16]. The more formal a specification, the
more effort is necessary to set it up. An advantage of formal specifications is that they
force the specification engineer to capture the requirements in a precise and structured
way. Standardized specification routines help to avoid careless mistakes during the setup
[Par86][Hal90][Sch15a].

2 State of Science 4

On the other hand all properties that should be covered need to be representable in the
specification, which can lead to requirements being impossible to be captured in a spe-
cific formalism. However, due to the precision of very formal specifications it is possible
to analyze them in a rather automated or “proof-like” way.
Throughout this thesis it is assumed that the specification itself is known, correct and
represents the whole functionality, behavior and all properties that are necessary to fulfill
the customers desire.

This work assumes a set based specification. It is assumed that it is possible to represent
the desired behavior of a dynamic system in terms of a specific abstract set. This formal
specification (FS) can be interpreted to include all dynamic system parametrizations
that are able to create the intended behavior. The set of intended or desired behavior
can be given by differently shaped sets e.g. a circle or a square. In case there is no
variation in the desired behavior, the set consists only of one parametrization which
is given by a distinguished point. Different possible specification sets are depicted in
Fig. 2.1.

Figure 2.1: Exemplary set based specifications (Point, Circle, Square)

2.1.2 Behavior Deviation

Implemented systems can show behavior deviating from the desired behavior due to
several causes. From a very basic point of view it is possible to differentiate between
mistake by misfortune, mistake by accident without intention and mistake by deliberate
wrong-doing by an individual.1
The setting of this work tackles the second kind, mistake by accident without intention
that can happen at every point during the development process. A wide range of expres-
sions is used to differentiate the field of unintended behavior or unintended properties.
However, different fields of research and profession are using different naming conven-
tions.
The naming convention used in this thesis is given in Fig. 2.2. The foundation of all
unintended behavior is given by the basic mistakes. The next instance is called fault
and denotes the deviation of at least one system value from its intended value. This de-
viation can happen due to all three of the basic mistakes. If a fault leads to unintended
system behavior it is called error.

1 This categories are inspired by Aristotle (384 - 322 BC) who thought about ethics and mistakes of
human behavior [Res07].

2 State of Science 5

A system perturbed by a fault and a resulting error can still be able to operate correctly.
Only if there is a persistent interruption of correct behavior the system is called to show
a failure. This failure introduces a hazard into the environment the system operates in.
The hazard can lead to consequences in the environment that potentially harm objects
or even human beeings.

Misfortune | Accident | Wrong-doing
Basic Mistakes

Fault

Error

Failure

Hazard

Figure 2.2: Failure terminology

Complementary, there is the concept of disturbance in a control engineering sense. The
process of capturing real world data and transferring them into any control system is
always superimposed by a process that creates a deviation between the real values and
the measurement values [Fra16, p. 65]. This deviation is called disturbance or noise and
every system needs to be adapted to the specific noise present in itself as well as in the
particular environment.

2.1.3 Behavior Assessment

The assessment of the verification object is done with respect to its behavior. Therefore
it is necessary to set up the formal specification (FS) and additionally describe the
behavior of the verification object (VO) using the same formalism. Both descriptions
are assumed to be represented by a convex set. The notion of set based basic consistency
that is used throughout this thesis is given in Definition 2.1.

Definition 2.1 (Set Based Basic Consistency)
A set based verification object VO is called basic consistent with its set based formal
specification FS if and only if there is an intersection between the formal specification
and the verification object behavior:

(𝐹𝑆 ∩ 𝑉 𝑂 ̸= ∅)⇔ 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦.

2 State of Science 6

A special case is given by full consistency, which means that all behavior given by the
formal specification is available in the verification object.

Definition 2.2 (Set Based Full Consistency)
A set based verification object VO is called full consistent with its set based formal
specification FS if and only if the formal specification behavior is an subset of the
verification object behavior:

(𝐹𝑆 ⊆ 𝑉 𝑂)⇔ 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦.

The inverse is given by inconsistency according to Definition 2.3.

Definition 2.3 (Set Based Inconsistency)
A set based verification object VO is called inconsistent with its set based formal
specification FS if and only if there is no intersection between the verification object
behavior and the formal specification behavior:

(𝐹𝑆 ∩ 𝑉 𝑂 = ∅)⇔ 𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦.

This means that none of the available VO behavior is given in the specification.

The resulting situations are depicted in Fig. 2.3. It is assumed that the formal specifica-
tion FS is given by the blue circle. The set of real VO behavior is given by the green and
red circles. Definition 2.1 and Definition 2.2 are fulfilled in the left and middle subfig-
ures, leading to the verdict 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 and 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 for the depicted
VO and the FS. Definition 2.3 is fulfilled in the right subfigure, leading to the verdict
𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 for the depicted VO and the FS.

VO Behavior
(Basic Consistency)

Formal Specification FS

VO Behavior
(Full Consistency)

Formal Specification FS

VO Behavior
(Inconsistency)

Formal Specification FS

Figure 2.3: Basic consistent, full consistent and inconsistent result of set based verification

2 State of Science 7

In the context of this thesis the verification object is considered to be correct if there is
specified behavior within the VO behavior. This is called “consistent behavior”.
For the ease of notation, the term 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 is used as soon as there is “consistent
behavior”, either due to 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 or due to the even stricter 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦.
The following considerations apply equivalently to both definitions.

In general, the VO behavior is not directly available and thus needs to be captured by
an approximation. If the behavior is given in terms of dynamic system parameters, the
approximation can be calculated using identification methods [Lju99]. Therefore it is
necessary to interact with the real VO to determine the underlying behavior. Assump-
tion 2.1 has to hold to allow a successful identification.

Assumption 2.1 (Persistent Excitation of the VO)
The verification object VO is sufficiently excited to show all relevant behavior.

Only behavior of the VO that is triggered or excited is included in the approximation
and can thus be analyzed [Ast95, p. 41][Ise10, p. 250]. Throughout this thesis it is
assumed that Assumption 2.1 holds.

There are two main set based calculation paradigms that can be used to determine the
approximation of the VO: underapproximation (−) and overapproximation (+).
In case of overapproximation, there is spurious behavior in the resulting outer enclosure
(see rectangle in the left of Fig. 2.4). If underapproximation is used, some VO behavior
is missing in the inner enclosure (see rectangle in the right of Fig. 2.4).

Overapproximated
Behavior VO+

VO Behavior

Spurious
Behavior

VO Behavior

Underapprox.
Behavior VO−

Missing
Behavior

Figure 2.4: Set based overapproximation and set based underapproximation

2 State of Science 8

As the true VO behavior is not available, the approximated behavior is used to reason
about 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦. In case an overapproximation of the verification object behavior
(VO+) is used, this leads to

(︁
𝐹𝑆 ∩ 𝑉 𝑂+ ̸= ∅

)︁
⇔ 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦+. (2.1)

It is very important to note that (2.1) yields the verdict 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦+ that holds only
for the overapproximated behavior VO+. It does not have to be valid for the true
VO behavior. To relate the verdict with the true VO behavior, the overapproximating
property

(︁
𝑉 𝑂 ⊆ 𝑉 𝑂+

)︁
⇒ 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 ⊆ 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦+ (2.2)

has to be taken into account, leading to
(︁
𝐹𝑆 ∩ 𝑉 𝑂+ ̸= ∅

)︁
⇔ 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦+ ⇐ 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 ⇔

(︁
𝐹𝑆 ∩ 𝑉 𝑂 ̸= ∅

)︁
. (2.3)

It can be seen from (2.3) that the 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦+ verdict can not be extended to the true
system behavior VO. This situation is depicted in the lower left field of Tab. 2.1. This
property holds for both, 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 and 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦.
If an overapproximating method yields the result 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦+ and this result is gener-
alized to 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦, it is possible that there is a “hidden fault” present in the system.
This situation is called type II error and it is a severe problem in the field of safety crit-
ical systems. Type II errors are likely to harm people or the environment as the VO is
showing wrong behavior but the supervising system assumes correct functionality. Cor-
rective actions that are designed to prevent fault induced damage are not activated in
case of a hidden fault. This type of fault can thus proceed and potentially harm people.
In safety critical systems, type II errors need to be avoided under all circumstances.

Therefore it is beneficial to use the underapproximation of the verification object behav-
ior (VO−), leading to

(︁
𝑉 𝑂− ⊆ 𝑉 𝑂

)︁
⇒ 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− ⊆ 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦. (2.4)

The resulting verdict 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− can be extended to the true system property:
(︁
𝐹𝑆 ∩ 𝑉 𝑂− ̸= ∅

)︁
⇔ 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− ⇒ 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 ⇔

(︁
𝐹𝑆 ∩ 𝑉 𝑂 ̸= ∅

)︁
. (2.5)

If the underapproximation of the verification object VO− is consistent with the spec-
ification, it is guaranteed that the true verification object is also consistent with the
specification (see Tab. 2.1, lower right field). Thus the verdict is guaranteed to be free of
type II errors. Again this property holds for 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 and 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦.

2 State of Science 9

The new verification approach developed in this thesis is based on the concept of under-
approximation to avoid type II errors by design. This essential property is necessary to
solve the currently unsolved reliable verification problem of safety critical systems.
However, the property comes at the costs of possible false alarms (see Tab. 2.1, upper
right field). Instead of additional spurious solutions there are missing solutions gener-
ated by the underapproximation VO−. Even though there is consistent behavior in the
VO, this behavior is not included in the underapproximation, leading to a false alarm
(type I error).
The situations in the remaining upper left field of Tab. 2.1 depicts the correct verdict
𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 than can be obtained using both, under- or overapproximation. This is
due to the fact that there is no consistent behavior for the real VO as well as for both
approximations.

2 State of Science 10

Table 2.1: Error types

System is Faulty System is Correct

Verification Result:
“Inconsistency”

Overapprox.
of VO Behavior

VO Behavior

Nominal Behavior
(Inconsistent)

VO Behavior

Underapprox.
VO Behavior

Nominal Behavior
False Alarm

Correct Result Type I Error

Verification Result:
“Consistency”

Overapprox.
VO Behavior

VO Behavior

Nominal Behavior
Hidden Fault

VO Behavior

Underapprox.
VO Behavior

Nominal Behavior
(Consistent)

Type II Error Correct Result

2 State of Science 11

2.2 Interval Arithmetic Methods

The overapproximating property introduced in the previous section can be achieved
using the notion of interval arithmetic. Interval arithmetic is thereby used to enclose
the effects of noise and epistemic lack of knowledge that is always present in real systems.
A fixed lower and upper bound is used to describe a set of possible true values 𝑥𝑡𝑟𝑢𝑒 that
are associated with a given measurement value 𝑥𝑚𝑒𝑎𝑠:

𝑥𝑡𝑟𝑢𝑒 ∈ [𝑥𝑚𝑒𝑎𝑠 − 𝛿, 𝑥𝑚𝑒𝑎𝑠 + 𝛿]. (2.6)

The maximum tolerance 𝛿 is the only parameter needed to set up the interval. This
interval arithmetic notation of maximum deviation is widely used by sensor manufac-
turers [Kre95] and in the fault detection community (e.g. in [Arm09][Zai14][AI17]). The
true measurement value is guaranteed to be included in the interval and it is guaranteed
that the true value is never outside the interval.
When interval enclosure is used on the measurement data, all succeeding calculations
have to apply the notions of interval arithmetic to preserve the guaranteed properties.
The basic property of interval arithmetic calculations is that all possible solutions are
included in the result. Therefore, interval arithmetic results are able to create the intro-
duced overapproximation properties. The interval arithmetic solution set consists of real
solutions and spurious solutions. Spurious solutions denote solutions that do not exist
in the real system but are inevitable artifacts that are introduced by interval arithmetic
calculations and the final interval arithmetic (and thus axis parallel) enclosure of the
real solution [Bau87].

Interval arithmetic is widely used for verification [Bal16] and diagnosis methods as type I
errors (false alarm) are prevented by definition. Therefore, models of the nominal system
are used to calculate a set of predicted outputs for the measured inputs of the system
[Ven15]. This can be done by using intervals on the system parameters to calculate an
interval range of outputs [Pui06][Mes10][Wol10]. The system is assumed to be correct as
long as the measured output values are within the predicted output interval, i.e. within
the so called direct image. Due to the used outer enclosure of the prediction, type II
errors are possible using this class of methods.
An alternative approach uses the so called inverse image [Pui06] or feasible set [Cas14],
also known as set-membership approach [Ing09]. In this case the input-output mea-
surement data is used to calculate the set of parameters that is able to generate the
observed mapping. This is possible if the system is linear or nonlinear but linear with
respect to the parameters. If there is a member of the set of nominal models within the
feasible set of the measurement, the measured data can be explained by the nominal
model. This class of methods utilizes interval arithmetic identification based on outer
enclosures. Therefore there are type II errors possible by definition.
The feasible set resembles the solution set of the identification problem given by the
measurement data that can be computationally hard to calculate [Hor13].

2 State of Science 12

A wide spread possibility to approximate the solution set is given by subpavings using the
SIVIA algorithm (see [Jau01, p. 45ff][Pui06][Mes10]). The bisection approach of SIVIA
leads to a large set of different intervals with various size. Even though this result is very
precise, the great amount of intervals leads to a complex handling and to long calculation
times. A more efficient approach is given using a zonotope2 representation as shown in
[Ing09]. The question how this approximation can be calculated in an efficient way is
still an active research topic. Latest results [Koc19] use sparse polynomial zonotopes.
Additionally, there are methods to reduce the solution set by pruning spurious parts
if possible. For example the approach presented in [Wol10] uses measurement data to
reduce the overapproximated state set. Nevertheless, all approximation methods use
outer enclosures and are thus prone to type II errors.
Besides the field of diagnosis, different interval arithmetic approaches are used for state
estimation ([Jau01][Ram09][Mes10][Efi13][Kre16][Kre18][Wan18]) and control [Rau06].
None of these methods addresses type II errors.
Therefore it is necessary to develop a new verification method that is able to guarantee
the absence of type II errors. This can be achieved by calculating an inner enclosure
that consists of a subset of the real solution as shown in the previous section. This thesis
utilizes a special extension of interval arithmetic called Kaucher interval arithmetic that
provides powerful theories to calculate the necessary inner enclosures.

2.3 Governing Complexity: Time Variant and
Hybrid Verification Approaches

Linear time invariant (LTI) systems form the base for the most system theoretic meth-
ods and approaches. Nevertheless, real world systems are normally neither linear nor
time invariant. It is thus the question how to handle the complexity inherently given
in real world systems. Some nonlinear systems can be handled using nonlinear theory
which provides methods for analysis and control [Kha15]. However those approaches
are often subject to very strict preliminaries and only applicable for a narrow class of
systems. Therefore linearization is often used in practice to handle nonlinearities. An-
other possibility is to model nonlinearities by using time variant parameters in a linear
system [Ble11]. In this case, the set of feasible parameters can be bounded using interval
arithmetic or any other set definition. It is also possible to split the nonlinear dynamic
into a sequence of linear dynamics [Oza14] that are activated by a superimposed switch-
ing mechanism. The resulting model belongs to the class of hybrid systems. Hybrid
systems can also be used to model time variant linear systems with piecewise constant
parameters. Therefore the different piecewise constant parameters are represented using
an individual dynamic subsystem each.

2 A zonotope is a convex polytope that is point symmetric with respect to its center.

2 State of Science 13

There is a wide theoretical framework available for hybrid systems [Eng02][Mah10]. The
topic of hybrid verification is subject to current research in the cyber physical systems
community (see e.g. [Sch15b][Kap16][Sch17a][Ara17] [Bar18][Har18][Lau18]). There are
also large research clusters in this area [AVA19][ENA19].

To apply the set based approach introduced in this thesis in a hybrid setting, it is neces-
sary to use hybrid identification methods to determine the unknown system parameters
from given measurement data. The most relevant hybrid identification approaches given
in the literature are introduced in the following.
The algebraic approach provided in [Vid08] interprets the identification setting as a ge-
ometric problem. The measurement data as well as the parameters are interpreted as
vectors that have to be perpendicular in case the identified parameters match the true
parameters. The goal is to find the parameter vector with minimal projection on the
family of all measurement vectors. A Bayesian approach based on stochastic properties
is given by [Jul05]. The number of models and the model order need to be known a priori
for this procedure. A cluster based approach was developed by [FT03] were machine
learning methods are used to form groups of similar behavior. Identification methods
based on optimization were developed and presented in [Mün05][Bor09][Lau18]. The
bounded error approach introduced in [Bem05] and used for time variant systems in
[Bra16] assumes errors that are characterized by their maximum value. Even though
this is close to the basic interpretation used in this thesis, those approaches do not use
interval arithmetic notations. Therefore they lack the guarantees that are necessary in
the safety critical context of this thesis.
A greedy approach based on [Oza12] was developed in [Die13a] and [Die13b]. This ap-
proach is different from the others as it is the only one that uses a multi-step prediction
error instead of the common one step prediction error. It was extended to cyber-physical
systems in [Sch17a] and to Kaucher interval arithmetic in [Sch19].

2.4 Other Common Verification and Falsification
Approaches

There is a wide range of verification methods with different degree of abstraction and
formalization.
A strong diagnosis community is active in the control engineering field (see e.g. [Ise93]
[Sch03][Ven03a][Ven03b][Ven03c][Bla06][Arm09][Sch09][Pui10][Ise11][Cac13][Zol14]).
Also, a large testing and verification community formed in the information technology
community. This leads to a great range of verification and validation methods, unfor-
tunately using a similar terminology (e.g. [Bar78][Boe84][Hay86] [TF91][Bar05]). Three
of the most relevant approaches are introduced in this section.

2 State of Science 14

2.4.1 Testing

A wide spread - if not the most wide spread - approach to assess the properties of a
technical system is given by testing. Testing is a classic falsification method, aiming
on the detection of counter examples that do not show the intended behavior. It is
therefore necessary to define a well-chosen set of test cases, consisting of the system
state at the beginning of the test case, inputs that are applied during the run of the test
case and outputs that are expected to appear during or at the end of the test case. If
the system under test (SUT) shows outputs deviating from the expected outputs, the
test case is called a “failed test” and further inspections of the test case are necessary to
identify the reason. In contrast to verification methods, each result is only valid for the
specific applied test case. It is long known that the confidence of the results can only
be increased by increasing the amount of test cases [Fut89, p. 3].
Testing can be applied at different stages of the development cycle and at different
abstraction levels. The state of the art testing scheme is given by the V-model (see e.g.
[Web09][ZN09][Raj13][Ott18]) as depicted in Fig. 2.5.

System
Requirements
Analysis

System
Design

SW / HW
Requirements
Analysis

Preliminary
Software
Design

Detailed
Software
Design

Software
Implementation

Prototype
Integration

Assessment
of System
Concept

Software
Integration

System
Integration
“System Level”

Transition to
Utilization
“Acceptance Level”

M
odel-in-the-Loop

Ra
pi

d
Pr

ot
ot

yp
in

g

Software-in-

th
e-

Lo
op

H
ar

dw
ar

e-
in

-th
e-

Lo
op

(H
iL

)
Co

m
po

ne
nt

H
iL

Fi
eld

Tr
ai

ls
Cl

us
te

r H
iL

Figure 2.5: V-model diagram (based on [Ott18])

2 State of Science 15

The left part of the V-model is the specification branch. It is applied in a top-down
fashion. The specification is initialized on the highest level representing the customers
desire. Then it is propagated to lower levels and refined to match the degree of for-
malization of each level. This structured procedure includes the decomposition of the
overall task in several sub tasks accompanied by the definition of interfaces between the
sub tasks.
After every refinement step the result is checked against the superimposed level to verify
that both requirements are consistent. The final (software) specification is implemented
at the bottom level. The resulting SUT is checked against its specification at the same
level. If the test succeeds, the function is used in higher levels and combined with other
parts to meet superimposed specifications. If a test fails, the system under test is re-
jected to the previous level. The complexity of the SUT increases with rising level on
the right verification branch of the V-model. It is also possible that a failed test at
high levels (e.g. at system or acceptance level) leads to changes in the respective high
level specification. This results in the need of repeating the whole development process
starting with the changed high level specification [Raj13][ZN09].
There are several technologies that are used in different phases of the V-model, some-
times leading to additional branches. Fig. 2.5 includes cutting edge technologies like
rapid prototyping, component HiL and cluster HiL that are used to speed up the time
effort to perform a complete cycle of the V-model.
An important part of the testing process is the test case generation. There are several
possibilities to set up the test cases. If there is experience with this kind of product, it
is likely that an existing test case database can be reused and adapted [Sax08][Bal16].
Another straight forward approach is to determine the feasible range of all input vari-
ables and divide this range in so called “equivalence classes” [Utt06]. The test cases are
then formed by combining one representative (or the minimum and maximum values)
from each equivalence class with all possible representatives of the other input variables
[Utt06]. If it is not possible to form equivalence classes, it is also possible to sample
the valid range of a variable randomly or in equidistant steps. This approach is straight
forward and easy to understand but it will lead to very large sets of test cases with
increasing number of variables in the system or if a fine resolution of the variable ranges
is necessary (i.e. [Hei05][AI15]).
The runtime for testing or simulation rises with the number of test cases, leading to large
computation times. If equidistant sampling is used, it is possible that much calculation
time is spent assessing “uninteresting” regions of the input space or that “interesting”
regions are only covered with few test cases. One major drawback of the testing ap-
proach is that all test cases need to be redone if the SUT changes. As there are frequent
iterative changes during a development cycle (i.e. more than one iteration of the V-
model is necessary), the test cases need to be applied several times which leads to even
longer computation times.

2 State of Science 16

2.4.2 Reachability Analysis

By including more system theoretic knowledge, testing can be developed to reachability
analysis. The basic requirement for this purpose is a specification that includes some
kind of state space the system is operating in. Further, the specification has to define
forbidden areas in this state space.
The main idea of reachability analysis is to determine whether there is a sequence of
inputs that leads the SUT to enter the forbidden area. If an input sequence leading
to a forbidden area is found, the SUT is falsified and needs to be improved to match
the requirements (see among others [Bha04][Alu06][Mit07][Alt08][Don10]). Reachability
analysis is also aiming on finding a counter example which has the same basic problem
as the testing scenario: no detected counter example does not mean there is no fault
present in the system as faults can be hidden in uncovered parts of the state space.
Runtime limitations restrict all methods to a finite number of samplings and thus to par-
tial coverage of the state space. There are smart coverage criteria available that allow an
effective calculation of the most important regions of the state space e.g. using rapidly
exploring random trees (RRT) (see i.e. [Bha04][Kap16][Pan17]). These approaches can
be extended to the so called method of star discrepancy [Dan11] or by applying the
underminer method [Bal16].
Nevertheless, reachability analysis is still a falsification method, based on the specifica-
tion of the faulty case (forbidden areas). Therefore reachability analysis is not suitable
to solve the verification problem addressed in this thesis.

2.4.3 Formal Verification

One possibility to avoid the counter example problem is given by more abstract ap-
proaches from the verification field. Those formal methods are used to reason about
system properties in a mathematical rigorous way. To apply formal methods, the VO
needs to be transferred to a strict mathematical notation, e.g. by using the Z specifica-
tion language (see e.g. [Spi89][Bro05, p. 325]) or Prolog [Bro05, p. 334]. The formalized
VO can then be used to carry out mathematical proofs showing that specific system
properties hold in all operating conditions. The proof is thereby conducted by a so
called theorem prover.
This approach is very powerful as the results are valuable and mathematically sound.
Nevertheless, formal proofs can only be done for very distinct properties. Furthermore
the methods need very long runtime even for “small” academic problems. This leads to
still unsolved runtime issues for real world problems ([Bro05, p. 325][Bar18]).
A basic problem that cannot be omitted is that formal proofs cannot be conducted on
the VO directly. Therefore the results hold only for the image of the VO which is given
in the used formalism. Mistakes that are introduced when the system is transferred from
the real world into the modeling formalism cannot be detected.

2 State of Science 17

2.5 Scientific Gap and Related Research Question

Testing is the state of the art for current systems and is successfully applied in various
communities. Nevertheless there are current systems, e.g. autonomous driving func-
tions, that show a number of relevant scenarios that cannot be covered by testing or
simulations. Even if this was possible, falsification methods cannot prove the absence
of all faults. They need to stop at some point and have to assume that no undiscovered
fault is present in the system.
There are established methods available that use interval enclosures to mathematically
bound the system behavior. Those methods use classic interval arithmetic, leading to
overapproximating properties. Overapproximating methods are able to provide type I
error free results, meaning that there are no false alarms generated by the method. Nev-
ertheless, the overapproximation can cover missing behavior, leading to an undetected
hidden fault. In the case of safety critical systems, hidden faults (type II errors) can lead
to severe consequences threatening human life. It can be concluded that the verification
of safety critical dynamic systems is currently not solved.

A new verification method has to be developed to close this gap. This method has to be
free of hidden failures, meaning that there are no type II errors. Therefore the specifi-
cation is assumed to be formally given in terms of a set of dynamic system parameters.
The behavior of the VO has to be given in the same formalism, leading to an identi-
fication problem. Safety critical systems are often implemented as embedded systems
that consist of a closely connected discrete event system (the controller) and a dynamic
system (the plant). Thus it is necessary to develop a hybrid identification method that
is able to provide the desired guarantees.

The comprehensive research question tackled by this thesis is:

“How can the consistency of highly automated safety critical dynamic systems be eval-
uated by a guaranteed verification method?”

3 Methodical Approach and
Mathematical Preliminaries

Considering the state of science as well as the current and future challenges of system
theory there is a need for a new verification method. The rising importance of safety
critical systems emphasizes the need for formal methods that target type II errors. This
thesis introduces such a formal method based on the notions of interval arithmetic,
extended to Kaucher interval arithmetic. First the necessary notations and definitions
are given to provide a sound theoretical base for further considerations.

3.1 Mathematical Preliminaries

All methods introduced in this thesis are based on interval arithmetic, appended by the
properties of Kaucher interval arithmetic. In the following, the basic properties and
notations of interval arithmetic are introduced.
The goal of this chapter is to provide a brief overview of interval arithmetic that is neces-
sary for this thesis. The interested reader is referred to [Bau87][Rze08][Roh12][Sai14] for
an extensive coverage of the topic. Throughout this thesis the well known notation of in-
terval arithmetic extended by Kaucher interval arithmetic introduced in [Kup95][Sha96]
is used.

3.1.1 Basic Interval Arithmetic

Interval arithmetic was initially developed to handle numerical calculation errors due to
floating point calculation used in computer algebra systems [Apo67]. It gained popularity
outside the numerical community with the rise of electronic computing in various fields.
When measurement data is used in computing - as it is normally the case in engineering
and natural science - faults are already created by the measurement process itself [Kre95].
Furthermore, the used values are given as samples at discrete time steps 𝑘. Every
measurement 𝑦𝑚𝑒𝑎𝑠,𝑘 is compromised by some noise 𝜖𝑘 that leads to a deviation between
the real value 𝑦𝑡𝑟𝑢𝑒,𝑘 and its measurement

𝑦𝑚𝑒𝑎𝑠,𝑘 = 𝑦𝑡𝑟𝑢𝑒,𝑘 + 𝜖𝑘. (3.1)

3 Methodical Approach and Mathematical Preliminaries 19

It is possible to define intervals around the measurement that are guaranteed to include
the real system value

𝑦𝑡𝑟𝑢𝑒,𝑘 ∈ [𝑦𝑚𝑒𝑎𝑠,𝑘 − 𝛿, 𝑦𝑚𝑒𝑎𝑠,𝑘 + 𝛿] (3.2)

if the maximum 𝛿 of the absolute noise is known i.e. ∀𝑘 : |𝜖𝑘| ≤ 𝛿. Suitable values of 𝛿
can be determined from the data sheets provided by the sensor manufacturers.

The definition of a classical interval type variable 𝑥 as given in [Sai14] is

𝑥 := [𝑥, 𝑥] = {𝑥 ∈ R | 𝑥 ≤ 𝑥 ≤ 𝑥} . (3.3)

This definition includes all real numbers that are between or on the infimum 𝑥 and the
supremum 𝑥. In case 𝑥 > 0 and 𝑥 > 0 the interval is called positive interval. If the
infimum is negative (𝑥 < 0) and the supremum is positiv (𝑥 > 0) i.e. if 0 ∈ x, the
interval is called zero interval. A negativ interval is given if 𝑥 < 0 and 𝑥 < 0. One last
definition covers the case of supremum and infimum being the same, i.e. 𝑥 = 𝑥, which
is called a degenerated interval [Dja17] or point real interval [Sai14].
The set of so called proper intervals is given by

IR := {𝑥 = [𝑥, 𝑥] | 𝑥 ≤ 𝑥 and 𝑥, 𝑥 ∈ R} . (3.4)

Despite this infimum-supremum notation, each proper interval can be given using the
center

𝑥𝑐 := 1
2 (𝑥 + 𝑥) (3.5)

and the radius

𝑥Δ := 1
2 (𝑥− 𝑥) . (3.6)

of an interval. The interval can now also be stated in the center-radius notation

𝑥 = ⟨𝑥𝑐, 𝑥Δ⟩ . (3.7)

Furthermore, it is important to introduce the interval type vector matrix notation based
on [Jau01]. Vectors and matrices are written as capital letters 𝑋 and interval values are
given in bold font 𝑥, leading to interval matrices denoted as 𝑋.

3 Methodical Approach and Mathematical Preliminaries 20

𝑥(1)

𝑥(2)

𝑥(1)

𝑥(2) 𝑋 ∈ IR2

𝑥(3)

𝑥(1)

𝑥(2)

𝑥(3)

𝑥(1)

𝑥(2)

𝑋 ∈ IR3

Figure 3.1: Examples of the graphical representation of 𝑋 ∈ IR2 (left) and 𝑋 ∈ IR3 (right)

An interval vector 𝑋 is defined as cartesian product of 𝑛 closed intervals that includes
a subset of the real numbers R:

𝑋 := 𝑥(1) × 𝑥(2) × . . . × 𝑥(𝑛), with 𝑥(𝑖) =
[︁
𝑥(𝑖), 𝑥(𝑖)

]︁
for 𝑖 ∈ {1, 2, . . . , 𝑛}. (3.8)

This notation can be interpreted as projection of the 𝑖-th interval component 𝑥(𝑖) to the
𝑖-th axis of the vector space. An illustration for 𝑛 = 2 and 𝑛 = 3 is given in Fig. 3.1.

An (𝑚×𝑛), 𝑚, 𝑛 ∈ N, interval matrix 𝐴 can be interpreted as subspace of R𝑚×𝑛. Again
it is defined using the cartesian product of 𝑚 · 𝑛 closed intervals:

𝐴 =

⎛
⎜⎜⎝

𝑎(1,1) . . . 𝑎(1,𝑛)

... ...
𝑎(𝑚,1) . . . 𝑎(𝑚,𝑛)

⎞
⎟⎟⎠ (3.9)

= 𝑎(1,1) × 𝑎(1,2) × . . . × 𝑎(𝑚,𝑛)

=
(︁
𝑎(𝑖,𝑗)

)︁
(3.10)

with 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛. The center matrix is defined element-wise as in [Hla14] to

𝐴𝑐 ∈ R𝑚×𝑛 :
(︁
𝑎(𝑖,𝑗)

𝑐

)︁
= 1

2
(︁
𝑎(𝑖,𝑗) + 𝑎(𝑖,𝑗)

)︁
(3.11)

as well as the radius matrix

𝐴Δ ∈ R𝑚×𝑛 :
(︁
𝑎

(𝑖,𝑗)
Δ

)︁
= 1

2
(︁
𝑎(𝑖,𝑗) − 𝑎(𝑖,𝑗)

)︁
(3.12)

with 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛.

3 Methodical Approach and Mathematical Preliminaries 21

The four basic arithmetic operations addition, subtraction, multiplication and division,
i.e. ⋆ ∈ {+,−, ·, /}, are well defined for intervals. The general application of each
operator on two interval values 𝑥 = [𝑥, 𝑥] and 𝑦 =

[︁
𝑦, 𝑦

]︁
is given by

[𝑥, 𝑥] ⋆
[︁
𝑦, 𝑦

]︁
=
{︁
𝑧 = 𝑥 ⋆ 𝑦

⃒⃒
⃒ 𝑥 ≤ 𝑥 ≤ 𝑥, 𝑦 ≤ 𝑦 ≤ 𝑦

}︁
(3.13)

according to [Apo67], which leads to the interval type calculation rule

[𝑥, 𝑥] ⋆
[︁
𝑦, 𝑦

]︁
=
[︁

min
(︁
𝑥 ⋆ 𝑦, 𝑥 ⋆ 𝑦, 𝑥 ⋆ 𝑦, 𝑥 ⋆ 𝑦

)︁
,

max
(︁
𝑥 ⋆ 𝑦, 𝑥 ⋆ 𝑦, 𝑥 ⋆ 𝑦, 𝑥 ⋆ 𝑦

)︁]︁
.

(3.14)

The different elements within the min(·) and max(·) operations are due to the fact that
the combination of all extreme values need to be taken into account.
Unfortunately, this property also causes two major drawbacks of interval arithmetic, the
dependency effect and the wrapping effect. Those effects are explained in Example 3.1
and Example 3.2.

With the assumption 0 /∈
[︁
𝑦, 𝑦

]︁
it is possible to explicitly state the four basic operations

as in [Apo67]:

[𝑥, 𝑥] +
[︁
𝑦, 𝑦

]︁
=
[︁
𝑥 + 𝑦, 𝑥 + 𝑦

]︁

[𝑥, 𝑥]−
[︁
𝑦, 𝑦

]︁
=
[︁
𝑥− 𝑦, 𝑥− 𝑦

]︁

[𝑥, 𝑥] ·
[︁
𝑦, 𝑦

]︁
=
[︁
min

(︁
𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦

)︁
, max

(︁
𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦

)︁]︁

[𝑥, 𝑥] /
[︁
𝑦, 𝑦

]︁
= [𝑥, 𝑥] ·

[︃
1
𝑦

,
1
𝑦

]︃
.

(3.15)

It is shown in [Apo67] that associative and commutative property hold for interval values
as well. However, the distributive law is not applicable anymore and needs to be changed
to

𝑥 · (𝑦 + 𝑧) ⊆ 𝑥 · 𝑦 + 𝑥 · 𝑧 (3.16)
which is known as the subdistributive property for the interval values 𝑥, 𝑦 and 𝑧.

While evaluating an expression, every appearance of an interval variable is treated in-
dividually as if it was independent from its other occurrences. Multiple occurrences
of the same variable thus lead to a widening of the enclosure. This property is called
dependency effect and is illustrated in Example 3.1. One approach to mitigate the de-
pendency effect is to reformulate the expression such that each variable occurs only once,
if possible.

3 Methodical Approach and Mathematical Preliminaries 22

Example 3.1:
Assume the function

𝑓 (𝑥) = 1 + 1
𝑥

. (3.17)

The resulting enclosure for the interval 𝑥 = [1, 3] can be calculated straight forward
using the interval arithmetic definitions of (3.15) to 𝑓(𝑥) =

[︁
4
3 , 2

]︁
, which matches

the true range of the function within the interval. It is depicted by the blue dotted
frame in Fig. 3.2.
If (3.17) is reformulated such that there are multiple occurences of 𝑥 e.g.

𝑓 (𝑥) = 𝑥 + 1
𝑥

(3.18)

the interval arithmetic evaluation yields 𝑓 (𝑥) =
[︁

2
3 , 4

]︁
. It can be seen that this is

a large overestimation of the true values of the function within 𝑥, depicted by the
dashed frame in Fig. 3.2.

0 1 2 3
0

1

2

3

4

𝑥
𝑥

𝑓 (𝑥)

Function 𝑓 (𝑥) Enclosure using 𝑓(𝑥) Enclosure using 𝑓(𝑥)

Figure 3.2: Dependency effect based on 𝑓(𝑥) and 𝑓(𝑥)

3 Methodical Approach and Mathematical Preliminaries 23

Another effect occurring with interval calculations is the wrapping effect. This effect
is caused by iterative calculations based on previous overestimations. Such iterative
calculations are e.g. necessary to solve an initial value problem or to evaluate a state
space equation. An example for the wrapping effect is given by the initial value problem
of Moore [Bau87] and is depicted in Example 3.2.

Example 3.2:
Assume the initial value problem for the differential equation

𝑌̇ (𝑡) =
(︃

0 1
−1 0

)︃
𝑌 (𝑡) (3.19)

with 𝑌 (0) = [[−𝜖, 𝜖] , [1− 𝜖, 1 + 𝜖]]𝑇 , 𝜖 > 0. When the equation is evaluated, the
resulting solution set needs to be framed by axis parallel enclosures after each step.
The solution sets for 𝑡𝑖 = 𝑖 · Δ𝑡 , Δ𝑡 = 𝜋

6 , 𝑖 ∈ {0, 1, 2, 3} are depicted in Fig. 3.3.
It can be seen, that the overestimation is continually increasing, as the inherited
overestimation is passed on and used as base for further calculations.

𝑡 = 0
𝑡 = 𝜋

6

𝑡 = 𝜋
3

𝑡 = 𝜋
2

𝑡

𝑦(1)

𝑦(2)

Figure 3.3: Example for the wrapping effect using the initial value problem of Moore [Bau87]

The wrappig effect can reach a serious extent even after only one iteration. A minimal
example illustrating the extent of the problem after two steps is given in Example 3.3.

3 Methodical Approach and Mathematical Preliminaries 24

Example 3.3:
This example clarifies the effect of interval calculations in the setting of a proportional
gain system with unknown gain 𝑝:

𝑢 · 𝑝 = 𝑦. (3.20)

The system setup is depicted in Fig. 3.4. The input and output ranges of the system
are given and can be included in the intervals 𝑢 = [2, 3] and 𝑦 = [4, 9]. The goal is
to calculate the gain that maps all possible input values 𝑢 ∈ 𝑢 to the specified output
range 𝑦.

𝑝

𝑢 = [2, 3] 𝑦 = [4, 9]

Figure 3.4: Proportional gain system with proper solution

Using the introduced interval arithmetic calculations leads to

𝑝 = 𝑦/𝑢

=
[︁
𝑦, 𝑦

]︁ [︂1
𝑢

,
1
𝑢

]︂

=
[︂4
3 ,

9
2

]︂

≈ [1.3, 4.5] . (3.21)

Re-substituting 𝑝 into the system equation yields

𝑦 = 𝑝𝑢

= [1.3, 4.5] [2, 3]
= [2.6, 13.5] ̸= [4, 9] (3.22)

which is a strong overestimation of the genuine output range.

The example shows that the system parameter calculated from input and output ranges
cannot be used to reason about the parameter set that is suitable to map the given input
on the given output. The wrapping effect is caused by considering the combination of
the extreme values of both intervals. Nevertheless, when regarding the task at hand in
Example 3.3, the goal is not to find all possible gains connecting the two intervals but to
find those gains reasonably connecting “the most” elements of the intervals. This slight
but very important change is illustrated in Example 3.4.

3 Methodical Approach and Mathematical Preliminaries 25

Example 3.4:
Assume the setting of Example 3.3. The parameter interval is calculated as before

using 𝑝 = 𝑦/𝑢. The question is now how many pairs (𝑢, 𝑦)|(𝑢 ∈ 𝑢), (𝑦 ∈ 𝑦) exist
for each parameter 𝑝 ∈ 𝑝. Therefore the intervals 𝑢 and 𝑦 are divided into equidis-
tant parts of Δ𝑢 = Δ𝑦 = 0.0001. The resulting 10′001 discrete samples of 𝑢𝑠 are
combined with the resulting 50′001 samples of 𝑦𝑠 to calculate the connecting param-
eter 𝑝𝑠 = 𝑦𝑠/𝑢𝑠. The histogram formed by 500′060′001 values of 𝑝𝑠 is depicted in
Fig. 3.5. It can be seen that the extreme values of the outer enclosure of the solution
𝑝 = [1.3, 4.5] are only connected by a single input-output pair each. On the other
hand, there is a plateau between 𝑝𝑖 = [2, 3] that connects a nearly constant number
of input-output pairs. Substituting this interval value into the system equation leads
to

𝑦𝑖 = 𝑝𝑖𝑢

= [2, 3] [2, 3]
= [4, 9] = 𝑦 (3.23)

which is exactly the given output range. The interval 𝑝𝑖 is an inner enclosure of the
solution set of 𝑝 = 𝑦/𝑢.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

500,000
1,000,000
1,500,000
2,000,000
2,500,000

Parameter 𝑝

C
ou

nt

Figure 3.5: Distribution of parameters in the proper case

The plateau in Fig 3.5 contains those parameters 𝑝 that are able to map any 𝑢 ∈ 𝑢
to a value 𝑦 ∈ 𝑦. Note that not necessarily all values 𝑦 ∈ 𝑦 have to be met by 𝑝𝑢.
The contour of the histogram given in Fig. 3.5 can also be analytically calculated. The
derivation of the exact distribution is given in Appendix B.
The property leading to the wrapping effect displayed in Example 3.3 and Example 3.4
is the non-existence of an inverse element in classical interval arithmetic [Apo67]. The
inverse element in the real numbers is defined with respect to an operation and denotes an
element that maps itself on the neutral element of this operation (see [Bro08, p. 340]).

3 Methodical Approach and Mathematical Preliminaries 26

Thereby the neutral element is also defined with respect to the same operation and
denotes an element that maps each other element on itself (see [Bro08, p. 339]).
There are neutral elements in classical interval arithmetic. For example the neutral
element for addition is given by 𝑒𝑎 = [0, 0] and for multiplication by 𝑒𝑚 = [1, 1].
Applying the neutral elements to an arbitrary interval value 𝑟 = [𝑟, 𝑟] leads to

𝑟 + 𝑒𝑎 = [𝑟 + 0, 𝑟 + 0] = [𝑟, 𝑟] (3.24)
𝑟 · 𝑒𝑚 = [𝑟 · 1, 𝑟 · 1] = [𝑟, 𝑟] . (3.25)

However, in general there is no inverse element as can be seen in the following:

𝑟 + (−𝑟) = [𝑟 + (−𝑟), 𝑟 + (−𝑟)] ̸= 𝑒𝑎 if 𝑟 ̸= 𝑟 (3.26)

𝑟 ·
(︂1

𝑟

)︂
=
[︂
𝑟

𝑟
,

𝑟

𝑟

]︂
̸= 𝑒𝑚 if 𝑟 ̸= 𝑟. (3.27)

Equations (3.26) and (3.27) hold if and only if 𝑟 = 𝑟 which means that 𝑟 is a degenerated
point real interval [Apo67].

3.1.2 Kaucher Interval Arithmetic

It is beneficial to define an extension to interval arithmetic that provides the existence
of an inverse element for all arithmetic operations. By using Kaucher interval arithmetic
[Kau80], the set of proper intervals can be extended by the introduction of a new set
of so called improper intervals. These improper intervals are defined complementary to
classical intervals:

KR = {x = [𝑥, 𝑥] | 𝑥 < 𝑥 and 𝑥, 𝑥 ∈ R} . (3.28)

The set of all proper and improper intervals is given by IR* = IR ∪KR and is depicted
in Fig. 3.6. The set of point real intervals is depicted as diagonal line in the figure. The
set of proper intervals IR is formed by the half plain above the point real line. It can be
seen, that the improper intervals KR complete the IR* by covering the half plain below
the point real line.

The definitions of the basic arithmetic operations ⋆ ∈ {+,−, ·, /} need to be adapted to
hold as well for classical as for Kaucher interval arithmetic [Sha02].
Therefore, the definition of the negative part 𝑥⊖ and the positive part 𝑥⊕ of a real
number 𝑥 is given by

𝑥⊖ = max (−𝑥, 0) and 𝑥⊕ = max (𝑥, 0) . (3.29)

3 Methodical Approach and Mathematical Preliminaries 27

𝑥 ∈ R

KR

IR

𝑥

𝑥

Figure 3.6: Geometric interpretation of IR*. The diagonal line represents point real values (based on
[Sai14, p. 18])

The four classic operations can thus be written as follows:

𝑥 + 𝑦 =
[︁
𝑥 + 𝑦, 𝑥 + 𝑦

]︁
(3.30)

𝑥− 𝑦 =
[︁
𝑥− 𝑦, 𝑥− 𝑦

]︁
(3.31)

𝑥 · 𝑦 =
[︁
max

(︁
𝑥⊕𝑦⊕, 𝑥⊖𝑦⊖

)︁
−max

(︁
𝑥⊕𝑦⊖, 𝑥⊖𝑦⊕

)︁
,

max
(︁
𝑥⊖𝑦⊖, 𝑥⊕𝑦⊕

)︁
−max

(︁
𝑥⊖𝑦⊕, 𝑥⊕𝑦⊖

)︁]︁
(3.32)

𝑥/𝑦 = 𝑥 ·
[︁
1/𝑦, 1/𝑦

]︁
, for 𝑦 · 𝑦 > 0. (3.33)

In addition the two unary operators

opp ([𝑥, 𝑥]) = [−𝑥, −𝑥] (3.34)
dual ([𝑥, 𝑥]) = [𝑥, 𝑥] . (3.35)

are introduced to toggle between proper and improper intervals. Using this operators
leads to the definition of inverse elements in Kaucher interval arithmetic:

𝑥 + opp (𝑥) = [𝑥, 𝑥] + [−𝑥, −𝑥] = [0, 0] =: 0 (3.36)
𝑥/dual (𝑥) = [𝑥, 𝑥] · [1/𝑥, 1/𝑥] = [1, 1] =: 1. (3.37)

Those comply with the classic interval analysis definitions if all used intervals are proper
[Sha02].

It is hard to imagine the nature of an improper interval as it is neither empty nor does it
include the same values as a proper interval with inverse borders. A possibility to grasp
an idea of the nature of an improper interval is given in Example 3.5.

3 Methodical Approach and Mathematical Preliminaries 28

Example 3.5:
Assume the proportional gain setting of Fig. 3.7 which is similar to Example 3.3 but

with a different output range 𝑦.

𝑝

𝑢 = [2, 3] 𝑦 = [4, 5]

Figure 3.7: Proportional gain system with improper solution

The question is again which values can be used as gain 𝑝 ∈ 𝑝 that maps all input
values 𝑢 = [2, 3] to the output range 𝑦 = [4, 5]. The intervals are again divided
into equidistant parts of Δ𝑢 = Δ𝑦 = 0.0001. The resulting 10′001 discrete samples
of 𝑢𝑠 are combined with the 10′001 samples of 𝑦𝑠 to calculate the connecting param-
eter 𝑝𝑠 = 𝑦𝑠/𝑢𝑠. The resulting 100′020′002 parameter values are used to set up the
histogram given in Fig. 3.8.

1.0 1.7 2.0 2.5 3.0 3.5 4.0 4.5 5.0

500,000

1,000,000

1,500,000

Parameter 𝑝

C
ou

nt

Figure 3.8: Distribution of parameters in the improper case

In this case it can be seen that there is no plateau in the histogram. However, there
are two edges at 𝑝1 = 5/3 and 𝑝2 = 2. Substituting 𝑝1 into the system equation leads
to

𝑦𝑝1 = 𝑝1𝑢

= 5/3 [2, 3]
≈ [3.33, 5] ̸= [4, 5] . (3.38)

3 Methodical Approach and Mathematical Preliminaries 29

The evaluation for 𝑝2 yields

𝑦𝑝2 = 𝑝2𝑢

= 2 [2, 3]
≈ [4, 6] ̸= [4, 5] . (3.39)

It can be seen that both parameters are able to map some values of the input range
𝑢 into the output range. Nevertheless there is not a single parameter that can map
all values of 𝑢 to 𝑦. This observation can be combined with the fact that the inner
enclosure is an improper interval:

𝑝 = 𝑦/dual (𝑢)

=
[︁
𝑦, 𝑦

]︁ [︂1
𝑢

,
1
𝑢

]︂

=
[︂4
2 ,

5
3

]︂

≈ [2, 1.7] (3.40)

Therefore improper intervals can be interpreted as solutions of a setting with “eroded
plateau”.

3 Methodical Approach and Mathematical Preliminaries 30

3.1.3 Interval Type Linear Equation Systems

The introduced interval arithmetic considerations can now be extended to a vector ma-
trix notation. Assume there are 𝑇 measurement values ⟨𝑢𝑘⟩𝑇𝑘=1 = [𝑢1, 𝑢2, . . . , 𝑢𝑇]𝑇 and
⟨𝑦𝑘⟩𝑇𝑘=1 = [𝑦1, 𝑦2, . . . , 𝑦𝑇]𝑇 , containing a valid range for each sample 𝑘 ∈ {1, 2, . . . , 𝑇}.
Each suitable parameter 𝑝 ∈ 𝑝 has to comply with all input and all output ranges. This
problem can be stated as an interval type linear equation system

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑢1𝑝 = 𝑦1
𝑢2𝑝 = 𝑦2

... = ...
𝑢𝑇 𝑝 = 𝑦𝑇

(3.41)

or more general, for vectorial input
[︁
𝑢

(1)
𝑘 , · · · , 𝑢

(𝑛)
𝑘

]︁
, scalar output 𝑦𝑘 and 𝑛 parameters

[︁
𝑝(1), · · · , 𝑝(𝑛)

]︁𝑇
:
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑢
(1)
1 𝑝(1) + 𝑢

(2)
1 𝑝(2) + . . . + 𝑢

(𝑛)
1 𝑝(𝑛) = 𝑦1

𝑢
(1)
2 𝑝(1) + 𝑢

(2)
2 𝑝(2) + . . . + 𝑢

(𝑛)
2 𝑝(𝑛) = 𝑦2

...
𝑢

(1)
𝑇 𝑝(1) + 𝑢

(2)
𝑇 𝑝(2) + . . . + 𝑢

(𝑛)
𝑇 𝑝(𝑛) = 𝑦𝑇 .

(3.42)

The variables are used to set up the regressor matrix 𝐴 ∈ IR(𝑇 ×𝑛), the measurement
vector 𝐵 ∈ IR(𝑇 ×1) and the respective parameter vector 𝑋 ∈ IR*(𝑛×1) with

𝐴 =
(︁
𝑎(𝑖,𝑗)

)︁
1≤𝑖≤𝑇, 1≤𝑗≤𝑛

=
(︁
𝑢

(𝑗)
𝑘

)︁
1≤𝑘≤𝑇, 1≤𝑗≤𝑛

(3.43)

𝐵 =
(︁
𝑏(𝑖)

)︁
1≤𝑖≤𝑇

= (𝑦𝑘)1≤𝑘≤𝑇 (3.44)

𝑋 =
(︁
𝑥(𝑗)

)︁
1≤𝑗≤𝑛

=
(︁
𝑝(𝑗)

)︁
1≤𝑗≤𝑛

(3.45)

The interval type linear equation system can thus be stated as

𝐴 ·𝑋 = 𝐵. (3.46)

This system can be interpreted as the collection of all point real linear equation systems
that can be formed from the enclosed interval values [Sha96].
Equation systems with a regressor matrix of dimension 𝑇 = 𝑛 are called quadratic.
Dimension 𝑇 < 𝑛 stands for an underdetermined and dimension 𝑇 > 𝑛 results in
an overdetermined equation system. Underdetermined systems do not carry enough
information to solve the problem unambigiously. This thesis focuses on overdetermined
systems which is the most relevant case when regarding reasonable measurement times
𝑇 and system orders 𝑛.

3 Methodical Approach and Mathematical Preliminaries 31

The inverse of a quadratic point real matrix 𝐴 is defined if the matrix is non-singular
i.e. 𝐴−1 exists if det(𝐴) ̸= 0. Analogously a quadratic interval type matrix 𝐴 is non-
singular if all point real matrices contained in the interval matrix are non-singular i.e.
det(𝐴) ̸= 0 ∀𝐴 ∈ 𝐴 [Sha14].
For overdetermined point real systems the criterion changes to a rank condition. The
point real matrix 𝐴 ∈ R(𝑇 ×𝑛) with 𝑇 > 𝑛 is said to have full rank if rank (𝐴) = 𝑛.
For interval type overdetermined systems, this condition again changes to rank (𝐴) = 𝑛,
∀𝐴 ∈ 𝐴. This means that all point real matrices included in the interval matrix need
to show full rank.
Determining the rank of an interval type matrix is in general an 𝑁𝑃 -Hard problem
[Sha14]. Nevertheless, several criteria to check if an interval matrix has full rank were
collected in [Sta16] based on [Sha14]. An introduction of the most relevant ones is given
in Appendix C.

The full rank condition is connected with persistent excitation according to Assump-
tion 2.1. If the used input signal provides persistent excitation, the regressor matrix has
full rank [Sha14][Lak14]. This leads to Assumption 3.1.

Assumption 3.1 (Rank of the Regressor Matrix)
The interval type regressor matrix 𝐴 shows full rank according to [Sha96].

Throughout this thesis it is assumed that all specifications and measurements lead to
an interval regressor matrix 𝐴 that has full rank.

In general there is no unique, component wise point real solution vector 𝑋 for such an
interval linear equation system. Instead, (3.46) is solved by a set of point real solu-
tions ∑︀. The elements of the solution set 𝑋(𝑖) ∈ ∑︀ depend on the specific interpretation
of (3.46). This interpretation is done by the interval quantors ∀ and ∃ as explained in
[Sha02]. The notation of

∀ [𝑎, 𝑎] 𝑥 = ∃
[︁
𝑏, 𝑏

]︁
(3.47)

means that 𝑥 has to solve (3.47) for all elements of {𝑎 ∈ R|𝑎 ∈ [𝑎, 𝑎]} but only for at
least one specific element of

{︁
𝑏 ∈ R|𝑏 ∈

[︁
𝑏, 𝑏

]︁}︁
[Sha02].

Each element of a vector or matrix can be assigned with an individual quantor, i.e. it is
possible to precisely define a specific solution set for the interval type matrix equations.
Vectors and matrices with assigned quantors are denoted as 𝐵C or 𝐴C, respectively. A
vector or matrix containing only the elements with assigned ∀ quantor are denoted by
𝐵∀ and 𝐴∀, the elements assigned with an ∃ quantor are given by 𝐵∃ and 𝐴∃. To split
an assigned vector 𝐵C or a matrix 𝐴C depending on the quantors, the dualization of the
intervals as given in (3.37) has to be used.

3 Methodical Approach and Mathematical Preliminaries 32

According to [Sha02] the splitting is different for matrices and vectors and it is given by
the following relation:

Vector: 𝐵C := dual
(︁
𝐵∀

)︁
+ 𝐵∃ (3.48)

Matrix: 𝐴C := 𝐴∀ + dual
(︁
𝐴∃
)︁

. (3.49)

The specific elements of the matrices 𝐴∀ and 𝐴∃ are given by

𝑎∀(𝑖,𝑗) =
⎧
⎨
⎩

𝑎C(𝑖,𝑗) , if C = ∀
0 , else

(3.50a)

𝑎∃(𝑖,𝑗) =
⎧
⎨
⎩

𝑎C(𝑖,𝑗) , if C = ∃
0 , else.

(3.50b)

The elements for the vectors 𝐵∀ and 𝐵∃ are given by

𝑏∀(𝑖) =
⎧
⎨
⎩

𝑏C(𝑖) , if C = ∀
0 , else

(3.51a)

𝑏∃(𝑖) =
⎧
⎨
⎩

𝑏C(𝑖) , if C = ∃
0 , else.

(3.51b)

The most general solution set is given by a mixed assignment of both quantors to the
interval matrix 𝐴 as well as to the interval vector 𝐵. The resulting 𝐴𝐸-solution3 set∑︀

𝐴𝐸 according to [Hla14] is given by
∑︀

𝐴𝐸

(︁
𝐴C, 𝐵C

)︁
=
{︁
𝑋 ∈ R𝑛

⃒⃒
⃒ (3.52)

(︁
∀𝐴∀ ∈ 𝐴∀

)︁
∧
(︁
∀𝐵∀ ∈ 𝐵∀

)︁
∧
(︁
∃𝐴∃ ∈ 𝐴∃

)︁
∧
(︁
∃𝐵∃ ∈ 𝐵∃

)︁
:
(︁(︁

𝐴∀ + 𝐴∃
)︁

𝑋 = 𝐵∀ + 𝐵∃
)︁}︁

.

Based on the general 𝐴𝐸-solution it is possible to define four distinct solution sets as
given in [Sha96][Fie06][Hla14].

Definition 3.1 (United Solution Set ∑︀∃∃)
The united solution set is formed by all solutions of any of the point real systems
𝐴 ·𝑋 = 𝐵 with 𝐴 ∈ 𝐴 and 𝐵 ∈ 𝐵 that are included in the interval system:

∑︀
∃∃ (𝐴, 𝐵) := {𝑋 ∈ R𝑛| (∃𝐴 ∈ 𝐴) ∧ (∃𝐵 ∈ 𝐵) : (𝐴 ·𝑋 = 𝐵)} . (3.53)

3 The genuine notation of [Hla14, p. 2] is:
𝑋 ∈ R𝑛 is an 𝐴𝐸-solution if ∀𝐴∀ ∈ 𝐴∀,∀𝐵∀ ∈ 𝐵∀,∃𝐴∃ ∈ 𝐴∃,∃𝐵∃ ∈ 𝐵∃ : (𝐴∀ +𝐴∃)𝑋 = 𝐵∀ +𝐵∃.
This notation is slightly adapted for the sake of readability.

3 Methodical Approach and Mathematical Preliminaries 33

Note that not all 𝐴 ∈ 𝐴 can match any element 𝐵 ∈ 𝐵 by multiplication with any
𝑋 ∈ ∑︀∃∃, and that not all 𝐵 ∈ 𝐵 can be calculated using any 𝑋 ∈ ∑︀∃∃ and all available
𝐴 ∈ 𝐴. Furthermore, the set ∑︀∃∃ is not necessarily connected and not necessarily con-
strained by borders parallel to the coordinate axes. Using an enclosing interval 𝑋 ⊇ ∑︀∃∃
will likely create spurious solutions.

Definition 3.2 (Tolerable Solution Set ∑︀∀∃)
The tolerable solution set includes all values of 𝑋 that solve the interval type linear
equation system regardless of the chosen point real matrix 𝐴 ∈ 𝐴. This means the
solution holds for all included point real matrices:

∑︀
∀∃ (𝐴, 𝐵) := {𝑋 ∈ R𝑛| (∀𝐴 ∈ 𝐴) ∧ (∃𝐵 ∈ 𝐵) : (𝐴 ·𝑋 = 𝐵)} . (3.54)

Note that not all 𝐵 ∈ 𝐵 can be calculated using any 𝑋 ∈ ∑︀∀∃ and all available 𝐴 ∈ 𝐴.
The set ∑︀∀∃ is not necessarily connected and not necessarily constrained by borders
parallel to the coordinate axes. Using an enclosing interval 𝑋 ⊇ ∑︀∀∃ will likely create
spurious solutions.
The controllable solution set applies the same principle to the measurement vector 𝐵.

Definition 3.3 (Controllable Solution Set ∑︀∃∀)
The elements of the controllable solution set are feasible regardless of the chosen
point real measurement vector 𝐵 ∈ 𝐵. This means there is a suitable regressor
matrix 𝐴 ∈ 𝐴 for all possible point real measurement vectors:

∑︀
∃∀ (𝐴, 𝐵) := {𝑋 ∈ R𝑛| (∃𝐴 ∈ 𝐴) ∧ (∀𝐵 ∈ 𝐵) : (𝐴 ·𝑋 = 𝐵)} . (3.55)

Note that not all 𝐴 ∈ 𝐴 can match an element 𝐵 ∈ 𝐵 by multiplication with any
𝑋 ∈ ∑︀∃∀. The set ∑︀∃∀ is not necessarily connected and not necessarily constrained
by borders parallel to the coordinate axes. Using an enclosing interval 𝑋 ⊇ ∑︀∃∀ will
likely create spurious solutions.
A very strict criterion is given by the strong solution set.

Definition 3.4 (Strong Solution set ∑︀∀∀)
The strong solution set includes only parameters 𝑋 that solve the interval type
linear equation system for any regressor matrix and any measurement vector:

∑︀
∀∀ (𝐴, 𝐵) := {𝑋 ∈ R𝑛| (∀𝐴 ∈ 𝐴) ∧ (∀𝐵 ∈ 𝐵) : (𝐴 ·𝑋 = 𝐵)} . (3.56)

3 Methodical Approach and Mathematical Preliminaries 34

None of the limitations of the previous solution sets is necessary for the strong solution.
Nevertheless, the set ∑︀∀∀ is not necessarily connected and not necessarily constrained
by borders parallel to the coordinate axes. Using an enclosing interval 𝑋 ⊇ ∑︀∀∀ will
likely create spurious solutions.
The algebraic solution differs in its definition as it is not quantor based.

Definition 3.5 (Algebraic Solution Set ∑︀𝑎)
The algebraic solution is defined by the interval type vectors 𝑋𝑎 that solve the
interval type linear equation system straight forward:

∑︀
𝑎 (𝐴, 𝐵) := {𝑋𝑎 ∈ IR𝑛| (𝐴 ·𝑋𝑎 = 𝐵)} . (3.57)

Even though the elements of the algebraic solution are constrained parallel to the co-
ordinate axes, the solution is ambiguous, i.e. there might be several or none solution
vectors 𝑋𝑎 that fulfill the equation [Kup95].
The different solution sets are related as they are subsets of each other. The united
solution set is a superset of the algebraic solution set [Kup95], as well as of the tolerable
and the controllable solution set [Sha96]

∑︀
𝑎 (𝐴, 𝐵) ⊆ ∑︀∃∃ (𝐴, 𝐵) (3.58)

∑︀
∀∃ (𝐴, 𝐵) ⊆ ∑︀∃∃ (𝐴, 𝐵) (3.59)

∑︀
∃∀ (𝐴, 𝐵) ⊆ ∑︀∃∃ (𝐴, 𝐵) . (3.60)

The strong solution set on the other hand is a subset of the tolerable as well as of the
controllable solution set [Fie06]

∑︀
∀∀ (𝐴, 𝐵) ⊆ ∑︀∀∃ (𝐴, 𝐵) (3.61)

∑︀
∀∀ (𝐴, 𝐵) ⊆ ∑︀∃∀ (𝐴, 𝐵) . (3.62)

A visualization of the solution sets and their relations is given in Example 3.6.

3 Methodical Approach and Mathematical Preliminaries 35

Example 3.6:
Consider the following 2× 2 interval type linear equation system (ILES) taken from

[Sha96]:
(︃

[2, 4] [−2, 1]
[−1, 2] [2, 4]

)︃
·𝑋 =

(︃
[−2, 2]
[−2, 2]

)︃
. (3.63)

The controllable solution set ∑︀∃∀ and the strong solution set ∑︀∀∀ are empty for the
ILES (3.63). It can be seen in Fig. 3.9 that the algebraic solution ∑︀

𝑎 is a subset of
the tolerable solution set ∑︀∀∃ which is a subset of the united solution ∑︀∃∃. It is also
clearly visible that neither the tolerable nor the united solution can be included in
classical intervals parallel to the axes without creating spurious solutions.

−4 −3 −2 −1 1 2 3 4

−4
−3
−2
−1

1
2
3
4

∑︀
∃∃

∑︀
∃∀ = ∅ and ∑︀

∀∀ = ∅

∑︀
∀∃

∑︀
𝑎

𝑥(1)

𝑥(2)

Figure 3.9: Different solution sets for the interval type linear equation system

The calculation of all given solution sets is computational expensive, as the calculation
of the hulls is 𝑁𝑃 -Hard according to [Hor13]. Even to check whether a solution set is
empty is still an 𝑁𝑃 -Complete problem as shown by [Sha96].

The problem becomes more tractable, if it is regarded from a different point of view.
Assume a given point real solution candidate 𝑋𝑠. The question is now to determine
whether the solution candidate 𝑋𝑠 belongs to any of the defined solution sets without
calculating the sets explicitly. The approach used in this thesis was introduced by
[Bee72] and uses the so-called theorem of Prager-Oettli [Oet64]. The resulting criterion
for interval arithmetic problems in Def. 3.6 is used to determine whether 𝑋𝑠 is a member
of the united solution set ∑︀∃∃.

3 Methodical Approach and Mathematical Preliminaries 36

Definition 3.6 (Theorem of Prager-Oettli)
A given solution candidate 𝑋𝑠 is part of the united solution set ∑︀∃∃ i.e.

𝑋𝑠 ∈
∑︀

∃∃ (3.64)

if and only if 𝑋𝑠 fulfills the inequality

|𝐴𝑐𝑋𝑠 −𝐵𝑐| ≤ 𝐴Δ |𝑋𝑠|+ 𝐵Δ (3.65)

based on center and radius of the regressor matrix 𝐴 = ⟨𝐴𝑐, 𝐴Δ⟩ and the mea-
surement vector 𝐵 = ⟨𝐵𝑐, 𝐵Δ⟩, given by the 𝑇 interval type measurement values
⟨𝑢𝑘⟩𝑇𝑘=1 and ⟨𝑦𝑘⟩𝑇𝑘=1 [Bee72, p. 235].

This theorem was extended by [Hla14] to the general 𝐴𝐸-solution:

𝑋𝑠 ∈
∑︀

𝐴𝐸 ⇔ |𝐴𝑐𝑋𝑠 −𝐵𝑐| ≤
(︁
𝐴∃

Δ − 𝐴∀
Δ

)︁
|𝑋𝑠|+ 𝐵∃

Δ −𝐵∀
Δ. (3.66)

A solution candidate vector 𝑋𝑠 is part of the 𝐴𝐸-solution if and only if (3.66) holds.
This criterion can be specialized to fit the four other solutions sets as given in Tab. 3.1.

Table 3.1: Conditions for the membership of 𝑋𝑠 to a specific solution set.

Solution set Condition
∑︀

∃∃ (united) |𝐴𝑐𝑋𝑠 −𝐵𝑐| ≤ 𝐴Δ |𝑋𝑠|+ 𝐵Δ∑︀
∀∃ (tolerable) |𝐴𝑐𝑋𝑠 −𝐵𝑐| ≤ −𝐴Δ |𝑋𝑠|+ 𝐵Δ∑︀
∃∀ (controllable) |𝐴𝑐𝑋𝑠 −𝐵𝑐| ≤ 𝐴Δ |𝑋𝑠| −𝐵Δ∑︀
∀∀ (strong) |𝐴𝑐𝑋𝑠 −𝐵𝑐| ≤ −𝐴Δ |𝑋𝑠| −𝐵Δ

Further considerations regarding existence and uniqueness of the solution are only avail-
able for the algebraic solution set ∑︀𝑎. Two approaches for this purpose are sketched in
Appendix D.

4 Guaranteed Verification of Point Real
Systems

The theoretical foundation of the thesis is developed and illustrated in this chapter.
Therefore a very simple and comprehensive linear time invariant model structure is used
to focus on the method itself. The general principles introduced in this chapter can be
extended to other types of system models.

4.1 System Setup

Definition 4.1 (Linear Time Invariant System)
A discrete time, linear time invariant (LTI) system can be modeled as

𝑦𝑘 =
𝑛𝑎∑︁

𝑖=1
𝑎𝑖𝑦𝑘−𝑖 +

𝑛𝑐∑︁

𝑖=1
𝑐𝑖𝑢𝑘−𝑖 (4.1)

with the discrete time input 𝑢𝑘 and output 𝑦𝑘, the input and output order 𝑛𝑎 and
𝑛𝑐 as well as the input parameters [𝑎1, 𝑎2, . . . , 𝑎𝑛𝑎]𝑇 and the output parameters
[𝑐1, 𝑐2, . . . , 𝑐𝑛𝑐]

𝑇 . This modeling approach is also known as AutoRegressive system
with eXogenous input (ARX).

Based on the model assumption of Def. 4.1 it is possible to set up the specification of
the nominal system, as given in Def. 4.2. The set of nominal parameters as introduced
in Sec. 2.1.1 is assumed to be given in the specification.4 Two possibilities to determine
these parameters in practice are introduced in Appendix E.
Throughout this thesis the superscript �* will be used to denote values that are part
of a specification or the nominal value. Note that the set of parameters is given by a
distinguished point real vector for the current LTI setting.5

4 For other applications, e.g. fault-tolerant control, the method works similarly but the specification
is given in a different manner.

5 The used model assumption does not allow a direct feedthrough as this property is not regarded in
the given setting. To allow a direct feedthrough the second sum needs to be changed to start from
zero, leading to 𝑖 ∈ {0, 1, . . . , 𝑛𝑐}.

4 Guaranteed Verification of Point Real Systems 38

Definition 4.2 (Specification of a Linear Time Invariant System)
The (direct) specification 𝑆*

𝑑 of an LTI system according to Def. 4.1 is given by the
mandatory values

• 𝑛*
𝑎, the nominal output order

• 𝑛*
𝑐 , the nominal input order

• Θ* =
[︁
𝑎*

1, 𝑎*
2, . . . , 𝑎*

𝑛*
𝑎
, 𝑐*

1, 𝑐*
2, . . . , 𝑐*

𝑛*
𝑐

]︁𝑇
, the nominal parameters

and the optional values

• 𝑌 *
𝑖𝑛𝑖𝑡 = ⟨𝑦𝑘⟩max(𝑛*

𝑎,𝑛*
𝑐)

𝑘=1 , the initial output values

• 𝑈*
𝑖𝑛𝑖𝑡 = ⟨𝑢𝑘⟩max(𝑛*

𝑎,𝑛*
𝑐)

𝑘=1 , the initial input values

leading to the overall specification

𝑆*
𝑑 = {Θ*, 𝑛*

𝑎, 𝑛*
𝑐 , 𝑈*

𝑖𝑛𝑖𝑡, 𝑌 *
𝑖𝑛𝑖𝑡} . (4.2)

If the initial values are known, the future evolution of the system output trajectory
is only dependent on the input signal. It is thus possible to compare the behavior of
the trajectory for different inputs. If there are no initial values, the behavior of the
trajectory will differ for the same inputs in the case of different used initial values. If
they are provided, there need to be at least 𝑘𝑚𝑖𝑛 = max (𝑛*

𝑎, 𝑛*
𝑐)+1 initial values to enable

the first evaluation of the autoregressive system description according to Def. 4.1.

It is assumed that the nominal system is developed and built and ready to be verified.
Thereby the verification object (VO) is assumed to be available as a (physical) black
box with one or more input and output ports. It is possible to excite the system via
the input and to measure the resulting output. Further insights, like internal structure,
components and wiring, software, plans or internal states are not accessible. This ap-
proach can be applied in various states of system development. Therefore there is a wide
range of exact physical representations of the VO black box such as models, program
code, components or units.

The verification method is running on a digital device that not necessarily generates
the input signal itself. Therefore input and output values need to be measured to be
available for the verification method. Measurement data is always subject to noise which
is assumed to be modeled throughout the thesis based on the following definition.

4 Guaranteed Verification of Point Real Systems 39

Definition 4.3 (Sensor Noise Properties)
All available information about the VO is given in terms of measurement data of
the input ⟨𝑢𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 and output ⟨𝑦𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1. The measurement data is obtained
using sensors providing guaranteed notions of sensor precision that allow interval
type enclosure of the measurement values.
All measurement values 𝑢𝑚𝑒𝑎𝑠,𝑘 and 𝑦𝑚𝑒𝑎𝑠,𝑘 are extended to intervals such that the
true system values 𝑢𝑡𝑟𝑢𝑒,𝑘 and 𝑦𝑡𝑟𝑢𝑒,𝑘 are guaranteed to be included in the interval
𝑢𝑚𝑒𝑎𝑠,𝑘 and 𝑦𝑚𝑒𝑎𝑠,𝑘, respectively. There are three different ways these guarantees
can be obtained:

a) Absolute deviation
The sensor precision is denoted by a maximum deviation of ±𝛿𝑎. This leads
to the interval enclosure of

𝑢𝑡𝑟𝑢𝑒,𝑘 ∈ 𝑢𝑘 = [𝑢𝑚𝑒𝑎𝑠,𝑘 − 𝛿𝑎
𝑢, 𝑢𝑚𝑒𝑎𝑠,𝑘 + 𝛿𝑎

𝑢] (4.3)
𝑦𝑡𝑟𝑢𝑒,𝑘 ∈ 𝑦𝑘 =

[︁
𝑦𝑚𝑒𝑎𝑠,𝑘 − 𝛿𝑎

𝑦 , 𝑦𝑚𝑒𝑎𝑠,𝑘 + 𝛿𝑎
𝑦

]︁
. (4.4)

b) Relative deviation
In this case the sensor precision is given in terms of a relative deviation of
𝛿𝑟 ∈ [0, 1] which is leading to

𝑢𝑡𝑟𝑢𝑒,𝑘 ∈ 𝑢𝑘 = [𝑢𝑚𝑒𝑎𝑠,𝑘 · (1− 𝛿𝑟
𝑢), 𝑢𝑚𝑒𝑎𝑠,𝑘 · (1 + 𝛿𝑟

𝑢)] (4.5)
𝑦𝑡𝑟𝑢𝑒,𝑘 ∈ 𝑦𝑘 =

[︁
𝑦𝑚𝑒𝑎𝑠,𝑘 · (1− 𝛿𝑟

𝑦), 𝑦𝑚𝑒𝑎𝑠,𝑘 · (1 + 𝛿𝑟
𝑦)
]︁

. (4.6)

c) Combined deviation
A common case is the combination of the both aforementioned deviation types.
The deviation is defined to be 𝛿𝑟 ∈ [0, 1] times the current measurement value
but at least ±𝛿𝑎, resulting in

𝑢𝑡𝑟𝑢𝑒,𝑘 ∈ 𝑢𝑘 = 𝑢𝑚𝑒𝑎𝑠,𝑘 ·
[︃
min

(︃
(1− 𝛿𝑟

𝑢),
(︃

1− 𝛿𝑎
𝑢

𝑢𝑚𝑒𝑎𝑠,𝑘

)︃)︃
,

max
(︃

(1 + 𝛿𝑟
𝑢),
(︃

1 + 𝛿𝑎
𝑢

𝑢𝑚𝑒𝑎𝑠,𝑘

)︃)︃]︃
(4.7)

𝑦𝑡𝑟𝑢𝑒,𝑘 ∈ 𝑦𝑘 = 𝑦𝑚𝑒𝑎𝑠,𝑘 ·
[︃
min

(︃
(1− 𝛿𝑟

𝑦),
(︃

1− 𝛿𝑎
𝑦

𝑦𝑚𝑒𝑎𝑠,𝑘

)︃)︃
,

max
(︃

(1 + 𝛿𝑟
𝑦),
(︃

1 +
𝛿𝑎

𝑦

𝑦𝑚𝑒𝑎𝑠,𝑘

)︃)︃]︃
. (4.8)

4 Guaranteed Verification of Point Real Systems 40

The properties of Def. 4.3 are used to set up interval type enclosures of the measurement
data that are guaranteed to include the true system value. The resulting structural setup
of the measurement process is depicted in Fig. 4.1.

𝑢𝑚𝑒𝑎𝑠,𝑘

[︀
,

]︀

𝑢𝑚𝑒𝑎𝑠,𝑘

𝑦𝑚𝑒𝑎𝑠,𝑘

[︀
,

]︀

𝑦𝑚𝑒𝑎𝑠,𝑘

𝜖𝑢,𝑘
Measurement

𝜖𝑦,𝑘
Measurement

Verification Object
(VO)

𝑢𝑡𝑟𝑢𝑒,𝑘 𝑦𝑡𝑟𝑢𝑒,𝑘

Figure 4.1: Structure of measurement setup

A basic assumption in the field of parameter identification is the property of persistent
excitation according to Assumption 2.1. The information provided in any data set is
highly dependent on the input signal that was used to generate the output. According
to [Ast95, p. 63ff] there are several methods to ensure persistent excitation of a system.
Exemplary persistently exciting inputs are e.g. white noise, pseudorandom binary se-
quences or a moving average process [Ise10, p. 251]. One possible excitation procedure
fitted to the specific settings regarded in this thesis was developed in [Rie17]. The main
idea is sketched in Appendix F.

4.2 Time Invariant Full Consistency

The general notion of consistency introduced in Chapter 2 is now transferred to the
specific setting of LTI systems. The direct specification 𝑆*

𝑑 includes one distinctive point
real nominal parameter vector. Thus all results show 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 according to
Def. 2.2.
The observed behavior of the regarded VO is given in terms of input output measurement
data. The nominal behavior is specified according to Def. 4.2. The VO is called full
consistent with its specification if the measurement data can be explained by all specified
parameters. The verification question is formally stated in Problem 4.1.

4 Guaranteed Verification of Point Real Systems 41

Problem 4.1 (Time Invariant Full Consistency)
Is the nominal system, specified by a direct specification

𝑆*
𝑑 = {Θ*, 𝑛*

𝑎, 𝑛*
𝑐 , 𝑈*

𝑖𝑛𝑖𝑡, 𝑌 *
𝑖𝑛𝑖𝑡} , (4.9)

full consistent with the input-output behavior given by the interval type enclosures
of 𝑇 measurement values

[U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] =
[︁
⟨u𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 , ⟨y𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1

]︁
(4.10)

i.e. can the measurement data be explained by the nominal system?

Problem 4.1 can be solved using the united solution set according to Def. 3.1.

Proposition 4.1 (Time Invariant Full Consistency)
The interval enclosure of the measurement data [U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠], given for the dis-
crete sampling points 𝑘 = {1, 2, . . . , 𝑇}, leading to the interval type regressor ma-
trix 𝐴𝑚𝑒𝑎𝑠 and the interval type measurement vector 𝐵𝑚𝑒𝑎𝑠, of a VO is called
full consistent with a direct specification 𝑆*

𝑑 , if the specified system parameters
Θ* =

[︁
𝑎*

1, 𝑎*
2, . . . , 𝑎*

𝑛*
𝑎
, 𝑐*

1, 𝑐*
2, . . . , 𝑐*

𝑛*
𝑐

]︁𝑇
are part of the united solution set ∑︀∃∃ given

by the measurement data, i.e.

(Θ* ∈ ∑︀∃∃ (𝐴𝑚𝑒𝑎𝑠, 𝐵𝑚𝑒𝑎𝑠))⇔ 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− ⇒ 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦. (4.11)

Proof:
The nominal parameter vector Θ* =

[︁
𝑎*

1, 𝑎*
2, . . . , 𝑎*

𝑛*
𝑎
, 𝑐*

1, 𝑐*
2, . . . , 𝑐*

𝑛*
𝑐

]︁𝑇
, given by a direct

specification 𝑆*
𝑑 according to Def. 4.2, can be interpreted as a solution candidate for the

ILES (3.46) which is set up by the interval type enclosure of the measurement data. If
Θ* is part of the solution set of the ILES (3.46), the specification 𝑆*

𝑑 is able to explain
the measurement data.
The problem is formulated in Kaucher interval arithmetic, therefore it is necessary to
define which solution set is used. Considering the interval enclosure of the measurement
data given in Def. 4.3, it is obvious that it is not possible to determine the true value
𝑢𝑡𝑟𝑢𝑒,𝑘 and 𝑦𝑡𝑟𝑢𝑒,𝑘 as there are two distortion steps between the true values and the
interval enclosure. First the true value is changed by the measurement random noise 𝜖.
Second, the sensor is only as precise as given by its property.

4 Guaranteed Verification of Point Real Systems 42

However, it is guaranteed that the true values of 𝑢𝑡𝑟𝑢𝑒,𝑘 and 𝑦𝑡𝑟𝑢𝑒,𝑘 are included in the
measurement intervals

𝑢𝑡𝑟𝑢𝑒,𝑘 ∈ 𝑢𝑚𝑒𝑎𝑠,𝑘 (4.12)
𝑦𝑡𝑟𝑢𝑒,𝑘 ∈ 𝑦𝑚𝑒𝑎𝑠,𝑘. (4.13)

Starting from time 𝑘𝑚𝑖𝑛 = max (𝑛*
𝑎, 𝑛*

𝑐) + 1 there are enough measurement values to set
up the regressor equations. Each additional measurement value leads to an additional
row in the regressor matrix 𝐴.
The unknown true values can be assumed to form an unknown true point real regressor
matrix

𝐴𝑡𝑟𝑢𝑒 =

⎡
⎢⎢⎢⎢⎣

𝑦𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛−1 · · · 𝑦𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛−𝑛*
𝑎

𝑦𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛
· · · 𝑦𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛+1−𝑛*

𝑎...
𝑦𝑡𝑟𝑢𝑒,𝑇 −1 · · · 𝑦𝑡𝑟𝑢𝑒,𝑇 −1−𝑛*

𝑎

⃒⃒
⃒⃒
⃒⃒
⃒⃒
⃒⃒

𝑢𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛−1 · · · 𝑢𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛−𝑛*
𝑐

𝑢𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛
· · · 𝑢𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛+1−𝑛*

𝑐...
𝑢𝑡𝑟𝑢𝑒,𝑇 −1 · · · 𝑢𝑡𝑟𝑢𝑒,𝑇 −1−𝑛*

𝑐

⎤
⎥⎥⎥⎥⎦

(4.14)

and an unknown true point real measurement vector

𝐵𝑡𝑟𝑢𝑒 = [𝑦𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛
, 𝑦𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛+1, . . . , 𝑦𝑡𝑟𝑢𝑒,𝑇]𝑇 . (4.15)

These elements are linked via an unknown true parameter vector Θ𝑡𝑟𝑢𝑒, that fulfills

𝐴𝑡𝑟𝑢𝑒Θ𝑡𝑟𝑢𝑒 = 𝐵𝑡𝑟𝑢𝑒. (4.16)

Based on the enclosure of the true values in Def. 4.3 holds:

𝐴𝑡𝑟𝑢𝑒 ∈ 𝐴𝑚𝑒𝑎𝑠 (4.17)
𝐵𝑡𝑟𝑢𝑒 ∈ 𝐵𝑚𝑒𝑎𝑠. (4.18)

With the set definition (3.53) follows that Θ𝑡𝑟𝑢𝑒 is an element of the united solution set∑︀
∃∃ (𝐴𝑚𝑒𝑎𝑠, 𝐵𝑚𝑒𝑎𝑠).

It is impossible to determine the true values 𝐴𝑡𝑟𝑢𝑒 and 𝐵𝑡𝑟𝑢𝑒 from the given measurement
data. Therefore each point real element of the interval type regressor matrix and the
interval type measurement vector is a possible true value. Thus the whole united solution
set can be considered as correct solution of the ILES.
The given direct specification 𝑆*

𝑑 shows 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− with the given measurement
data [𝑈𝑚𝑒𝑎𝑠, 𝑌𝑚𝑒𝑎𝑠], if and only if the nominal parameter vector Θ* is part of the united
solution set ∑︀∃∃ (𝐴𝑚𝑒𝑎𝑠, 𝐵𝑚𝑒𝑎𝑠). Due to the underapproximating property holds

𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− ⇒ 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 (4.19)

and thus the VO is full consistent in the sense of this thesis.

4 Guaranteed Verification of Point Real Systems 43

The calculation of the united solution set is computationally expensive as introduced in
Section 3.1.2. However, it is not necessary to calculate the whole solution set in this
setting as there is a candidate solution given in form of the specification. Thus it is
sufficient to check whether the specified parameter vector Θ* is part of the united so-
lution set without calculating the solution set explicitly. Prop. 4.1 can be checked very
efficiently using the theorem of Prager-Oettli according to Definition 3.6 by evaluating
the single equation (3.65). Therefore (3.65) is reformulated for the given measurement
values to

|𝐴𝑚𝑒𝑎𝑠,𝑐Θ* −𝐵𝑚𝑒𝑎𝑠,𝑐| ≤ 𝐴𝑚𝑒𝑎𝑠,Δ |Θ*|+ 𝐵𝑚𝑒𝑎𝑠,Δ ⇔ Θ* ∈ ∑︀∃∃ (𝐴𝑚𝑒𝑎𝑠, 𝐵𝑚𝑒𝑎𝑠) . (4.20)

As stated in Section 3.1.3 the existence and uniqueness of the solution sets is still an
open question. A necessary condition for the existence of any solution set is that the
ILES (3.46) is solvable. For the general overdetermined setting, this can be checked
using the approaches given in Appendix C. However, their application is limited as the
problem is in general 𝑁𝑃 -hard. The only further considerations regard the algebraic
solution set and are sketched in Appendix D.

Note that the introduced method preserves time-invariance when checking for consis-
tency. This is due to the used specification and represents a main difference to the
direct image based methods used in fault detection as introduced in Section 2.2. This
property will become even more clear in Chapter 5.

A further necessary condition is persistent excitation of the VO which is given in As-
sumption 2.1, developed to ensure full rank according to Assumption 3.1.
Therefore it is in general not guaranteed that there is a nonempty united solution set
available and thus there are situation in which the proposed method is not applicable.
However, it is possible to facilitate a favorable situation by proper experiment design.
One possibility to determine a beneficial excitation signal is given in Appendix F.

The application of time invariant full consistency for LTI systems is demonstrated in Ex-
ample 4.1 and was presented to the scientific community in [Sch17b] and [Sch17c][Sch19].

4 Guaranteed Verification of Point Real Systems 44

Example 4.1:

This example shows the verification of a linear, time invariant system as introduced
in Prop. 4.1. Assume the following direct specification

𝑆*
𝑑,1 = {Θ* = [0.9825, 0.0675] , 𝑛*

𝑎 = 1, 𝑛*
𝑐 = 1, 𝑈*

𝑖𝑛𝑖𝑡 = [0] , 𝑌 *
𝑖𝑛𝑖𝑡 = [0]} . (4.21)

The simulations are done with a virtual VO, correctly implemented as discrete time
linear ARX system

𝑦𝑘 = 0.9825𝑦𝑘−1 + 0.0675𝑢𝑘−1 (4.22)

with sampling time Δ𝑡 = 1s. The system is excited using a noise signal with uniformly
distributed amplitude 𝑢𝑡𝑟𝑢𝑒,𝑘 ∈ [0, 10] with mean 𝑢𝑚𝑒𝑎𝑛 = 5. It is assumed that the
input is measured using a sensor with a maximum relative fault of 𝛿𝑟

𝑢 = 0.05. The
resulting enclosure of the input measurement signal U𝑚𝑒𝑎𝑠 is depicted in the first
subplot of Fig. 4.2. Nevertheless the system (4.22) is fed with the undisturbed input
signal 𝑈𝑡𝑟𝑢𝑒. The resulting output signal is measured using a sensor with the same
properties as the input sensor. The enclosed measurement output signal Y𝑚𝑒𝑎𝑠 is
depicted in the second subplot of Fig. 4.2.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 300

5

10

u

Measured Input Measured Output Enclosure

2 4 6 8 10 12 14 16 18 20 22 24 26 28 300

2

4

6

Time step 𝑘 with Δ𝑡 = 1s

y

Figure 4.2: Measured input signal 𝑈𝑚𝑒𝑎𝑠 with 𝛿𝑟
𝑢 = 0.05

4 Guaranteed Verification of Point Real Systems 45

It can be shown that Prop. 4.1 holds for 𝑆*
𝑑,1 and the measurement data 𝑌𝑚𝑒𝑎𝑠 and

𝑈𝑚𝑒𝑎𝑠 which proofs full consistency of measurement and specification formally.
A graphical representation is given in Fig. 4.3. The lines depict borders of the united
solution set, generated by the different rows of the regressor matrix. Feasible parame-
ters need to be located in between the borders of all rows of the measurement matrix.
The parameters given in specification 𝑆*

𝑑,1 are marked with a green cross and form a
feasible solution of the given problem as they are located within the united solution
set of all measurement data. Hence it is possible to explain the measured data with
the parameters given in specification 𝑆*

𝑑,1.
All given measurement values are used in this example to set up the regressor matrix
and the measurement vector. This leads to 𝐴𝑚𝑒𝑎𝑠 ∈ IR(29×2). In this case, the full
rank Assumption 3.1 for 𝑛 = 2 parameters leads to rank (𝐴𝑚𝑒𝑎𝑠) != 2 which is fulfilled
for the given dynamic and excitation signal.
An example with failed verification can be given for the case that the verification
method is applied using a different specification on the same measurement data. For
this purpose

𝑆*
𝑑,2 = {Θ* = [1.15, 0.08] , 𝑛*

𝑎 = 1, 𝑛*
𝑐 = 1, 𝑈*

𝑖𝑛𝑖𝑡 = [0] , 𝑌 *
𝑖𝑛𝑖𝑡 = [0]} . (4.23)

is used.

A graphical representation of the parameters is given by the red mark in Fig. 4.3. In
this case, the parameters do not lie within the borders of the united solution set of
the given measurement data. Thus the system is not verified.

0.02 0.04 0.06 0.08 0.10 0.12 0.140.8

0.9

1.0

1.1

1.2

𝑆*
𝑑,1

𝑆*
𝑑,2

𝜃(2)

𝜃(1
)

Figure 4.3: Visualization of the united solution given by the measurement data

4 Guaranteed Verification of Point Real Systems 46

4.3 Conclusion

The main idea of Kaucher arithmetic based verification was introduced in this chap-
ter. Therefore the precise system and problem setting was defined and explained. The
problem setup leads to a very distinct situation with only poor knowledge about the
true measurement values which are enclosed in intervals. If this setting is regarded from
a different point of view, it can be interpreted as a specific quantor based solution set
definition that matches exactly the united solution set introduced in the mathematical
preliminaries. This property can be used to check full consistency of the measurement
data and the specification in a set membership procedure that is computationally very
effective. The assumption of a full rank interval regressor matrix leads to preliminaries
on the sensors and the noise assumptions. It is possible to check whether a specific solu-
tion candidate is part of the united solution given by measurement data. This property
was demonstrated using an illustrative example.

The main advantage of the introduced method is that it focuses on the united solution
set. Thereby it is possible to avoid wrapping and dependency effects and to calculate
a solution set free of spurious solutions. This property is very beneficial in the case of
safety critical systems as it avoids type II errors (hidden alarms).

5 Guaranteed Verification of Interval
Type Systems

The basic idea introduced in the previous chapter is now extended to an interval type
specification. Thus the parametrization is given by an interval type vector Θ* instead
of a point real vector Θ*.

Definition 5.1 (Interval Type Specification of a Linear System)
An interval type specification 𝑆*

𝑖 of a linear system is given by the mandatory values

• 𝑛*
𝑎, the nominal output order

• 𝑛*
𝑐 , the nominal input order

• Θ* =
[︁
𝑎*

1, 𝑎*
2, . . . , 𝑎*

𝑛*
𝑎
, 𝑐*

1, 𝑐*
2, . . . , 𝑐*

𝑛*
𝑐

]︁
, the interval type nominal system pa-

rameter vector

and the optional values

• 𝑌 *
𝑖𝑛𝑖𝑡 = ⟨𝑦𝑘⟩max(𝑛*

𝑎,𝑛*
𝑐)

𝑘=1 , the initial output values

• 𝑈*
𝑖𝑛𝑖𝑡 = ⟨𝑢𝑘⟩max(𝑛*

𝑎,𝑛*
𝑐)

𝑘=1 , the initial input values.

This leads to the overall specification

𝑆*
𝑖 = {Θ*, 𝑛*

𝑎, 𝑛*
𝑐 , 𝑈*

𝑖𝑛𝑖𝑡, 𝑌 *
𝑖𝑛𝑖𝑡} . (5.1)

Based on this specification the system is implemented. It is assumed that the resulting
VO is given in a form that provides the input and output signals as described in the
specification. Again, this can be the case for a variety of test objects, depending on
the specific point of the development cycle for which the specification 𝑆*

𝑖 was defined.
Methods to determine the nominal parameters in practice are given in Appendix G.

Even though the specification is now given by interval type values, the implemented
system has to provide real output data at any given time. Thus the real implementation
of the VO has to use a specific real parametrization. This leads to the definition of
interval type linear systems as given in Def. 5.2.

5 Guaranteed Verification of Interval Type Systems 48

Definition 5.2 (Interval Type Linear System)
A discrete time, linear, interval type system can be modeled as

𝑦𝑘 =
𝑛𝑎∑︁

𝑖=1
𝑎𝑖,𝑘𝑦𝑘−𝑖 +

𝑛𝑐∑︁

𝑖=1
𝑐𝑖,𝑘𝑢𝑘−𝑖 (5.2)

with the discrete time input 𝑢𝑘 and output 𝑦𝑘, the input and output order 𝑛𝑎 and
𝑛𝑐 as well as the time variant parameters

Θ𝑘 = [𝑎1,𝑘, 𝑎2,𝑘, . . . 𝑎𝑛𝑎,𝑘, 𝑐1,𝑘, 𝑐2,𝑘, . . . 𝑐𝑛𝑐,𝑘]𝑇 ∈ Θ*. (5.3)

The necessary data is available as disturbed, discrete time measurement data enclosed
in intervals according to Def. 4.3. Also the persistent excitation Assumption 2.1 and the
full rank Assumptions 3.1 are still required to hold.

The given system definition leads to the time variant regressor vector

𝐴𝑘 = [𝑦𝑘−1, 𝑦𝑘−2, . . . , 𝑦𝑘−𝑛𝑎 , 𝑢𝑘−1, 𝑢𝑘−2, . . . , 𝑢𝑘−𝑛𝑐] (5.4)

and thus the system equation can be transferred to

𝑦𝑘 = 𝐴𝑘Θ𝑘 (5.5)

for a specific time step 𝑘 ≥ 𝑘𝑚𝑖𝑛 with 𝑘𝑚𝑖𝑛 = max (𝑛𝑎, 𝑛𝑐) + 1.

This can be interpreted as the realization of a time variant system whose interval type
specification is given according to Def. 5.3.

Definition 5.3 (Interval Enclosure of Time Variant Parameter)
The parameter values Θ𝑘 evolve during a specific time 𝑘 ∈ {1, 2, . . . , 𝑇} and can be
enclosed in the interval

Θ𝑘 ∈ Θ =
[︁
𝜃(1), 𝜃(2), . . . , 𝜃(𝑛)

]︁𝑇
(5.6)

with 𝑛 = 𝑛𝑎 + 𝑛𝑐 and 𝜃(𝑖) =
[︂
min

(︂⟨
𝜃

(𝑖)
𝑘

⟩𝑇

𝑘=1

)︂
, max

(︂⟨
𝜃

(𝑖)
𝑘

⟩𝑇

𝑘=1

)︂]︂
, denoting the

minimum and maximum value of the 𝑖-th component within the regarded time.

The time variance is given only in the parameters, the model structure, especially the
model orders 𝑛𝑎 and 𝑛𝑐, are time constant. Furthermore this interpretation is not
necessarily beneficial for all time variant systems as the resulting interval enclosures
can be very large depending on the time variant dynamic of the system parameters.

5 Guaranteed Verification of Interval Type Systems 49

5.1 Interval Type Full Consistency

In the case of an interval type specifications both consistency definitions (𝐹𝑢𝑙𝑙 and
𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦) according to Def. 2.2 and Def. 2.1 are possible. In this section, the
idea of 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 is extended to interval type systems. Then the situation is
relaxed to 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 in the next section.

Problem 5.1 (Interval Type Full Consistency)
Is the nominal system, specified by an interval type specification

𝑆*
𝑖 = {Θ*, 𝑛*

𝑎, 𝑛*
𝑐 , 𝑈*

𝑖𝑛𝑖𝑡, 𝑌 *
𝑖𝑛𝑖𝑡} , (5.7)

full consistent with the input-output behavior given by the interval type enclosures
of 𝑇 measurement values

[U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] =
[︁
⟨u𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 , ⟨y𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1

]︁
(5.8)

i.e. do all elements of the parameter vector Θ* fulfill Prop. 4.1 for all measurement
data?

The full consistency problem is solved by Prop. 5.1.

Proposition 5.1 (Interval Type Full Consistency)
The interval enclosure of the measurement data [U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] given for the dis-
crete sampling points 𝑘 = {1, 2, . . . , 𝑇}, forming the regressor matrix 𝐴𝑚𝑒𝑎𝑠 and the
measurement vector 𝐵𝑚𝑒𝑎𝑠 of a VO, is called to be full consistent with an interval
type specification 𝑆*

𝑖 , if the complete set of specified parameters Θ* is part of the
united solution set ∑︀∃∃ given by the measurement data, i.e.

(Θ* ⊆ ∑︀∃∃ (𝐴𝑚𝑒𝑎𝑠, 𝐵𝑚𝑒𝑎𝑠))⇔ 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− ⇒ 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 (5.9)

Proof:
Full consistency follows directly from applying Prop. 4.1 to all possible point real pa-
rameter vectors Θ* ∈ Θ* given in the interval type specification 𝑆*

𝑖 .

The inverse relation of Prop. 5.1 leads to the implications given in Prop. 5.2.

5 Guaranteed Verification of Interval Type Systems 50

Proposition 5.2 (Inverse of Full Consistency)
If there is at least one Θ* ∈ Θ* that does not show full consistency according to
Prop. 4.1, the interval type specification 𝑆*

𝑖 is not full consistent with the measure-
ment data.

Proof:
Full consistency according to Prop. 5.1 is defined for all parameters Θ* ∈ Θ*. A param-
eter Θ̃* ∈ Θ* that does not show full consistency according to Prop. 4.1 leads to

Θ* ̸⊆ ∑︀∃∃ (𝐴𝑚𝑒𝑎𝑠, 𝐵𝑚𝑒𝑎𝑠) . (5.10)

and thus the interval type specification 𝑆*
𝑖 is not full consistent with the measurement

data.

Theoretically, Prop. 5.1 can be checked by applying the verification equation (4.20) based
on the theorem of Prager-Oettli to each parameter vector Θ* ∈ Θ*. However, to realize
this approach in an algorithmic implementation it is necessary to draw 𝑛𝑐ℎ𝑒𝑐𝑘 discrete
samples from the continuous intervals. The number of discrete parameter vectors to
check 𝑛𝑐ℎ𝑒𝑐𝑘 thus becomes a relevant design parameter. According to Prop. 5.2, a single
inconsistent vector falsifies the full consistency property. This leads to the requirement
that 𝑛𝑐ℎ𝑒𝑐𝑘 has to be very large to cover the given parameter range sufficiently. Even
though a single evaluation of the theorem of Prager-Oettli is computationally very ef-
fective as stated in Chapter 4, the computation time rises proportionally with 𝑛𝑐ℎ𝑒𝑐𝑘.
Additionally, as this thesis aims on calculating guaranteed results, the step size used to
sample the interval type parameter vector needs to be very fine, even tending to zero.
This high resolution needs to be applied to each component of the parameter vector.
Afterwards it is used to build all possible combinations including the samples of the
different components. Assuming a resolution of 𝑛𝑠 samples on each component of Θ*

leads to

𝑛𝑐ℎ𝑒𝑐𝑘 = 𝑛𝑛*
𝑎+𝑛*

𝑐
𝑠 (5.11)

applications of the theorem of Prager-Oettli . This number increases polynomial with 𝑛𝑠

and leads to large computation times for sufficiently high resolutions. Thus the sampling
based approach is computationally infeasible.

Restructuring the problem can be used to avoid the necessity to cover the whole pa-
rameter area. The verdicts can be calculated based on the vertexes 𝒱 of the nominal
parameter set only and then can be generalized to the whole nominal set if convexity
properties are fulfilled.

5 Guaranteed Verification of Interval Type Systems 51

The maximum number of points to check is thus reduced to
𝑛𝑐ℎ𝑒𝑐𝑘 = 2𝑛*

𝑎+𝑛*
𝑐 (5.12)

which resembles a computationally feasible number, especially for low system orders 𝑛*
𝑎

and 𝑛*
𝑐 . The vertexes 𝒱 of the hyperrectangle given by the interval type parameter

vector Θ* can be determined according to Def. 5.4.

Definition 5.4 (Vertexes of a Hyperrectangle)
The nominal interval vector Θ* ∈ IR𝑛*

𝑎+𝑛*
𝑐×1 defines

𝑛 = 2𝑛*
𝑎+𝑛*

𝑐 (5.13)

vertexes 𝒱 ∈ IR𝑛*
𝑎+𝑛*

𝑐×1 of a hyperrectangle that can be indexed using a decimal
index 𝑣𝑑𝑒𝑐 ∈ {0, 1, . . . , 𝑛− 1}. The index is subsequently transformed to its binary
representation 𝑉𝑏𝑖𝑛 that can be interpreted as (1×𝑛*

𝑎 + 𝑛*
𝑐) dimensional vector were

the 𝑖-th vector component is denoted as 𝑉
(𝑖)

𝑏𝑖𝑛.
The specific values of the vertexes 𝑉𝑣𝑑𝑒𝑐

can be generated by interpreting the binary
index 𝑉𝑏𝑖𝑛 component wise for 𝑖 ∈ {1, 2, . . . , 𝑛*

𝑎 + 𝑛*
𝑐} and extracting the limits from

the respective nominal parameter vector element:

𝑉 (𝑖)
𝑣𝑑𝑒𝑐

=
⎧
⎨
⎩

Θ*(𝑖) , if 𝑉
(𝑖)

𝑏𝑖𝑛 = 0
Θ*(𝑖) , if 𝑉

(𝑖)
𝑏𝑖𝑛 = 1.

(5.14)

An illustration of Def. 5.4 is given in Example 5.1.

Example 5.1:
Consider the following (2× 1) interval vector with 𝑛*

𝑎 = 𝑛*
𝑐 = 1

Θ* = [[2, 3] , [4, 6]]𝑇 (5.15)
The resulting rectangle has 𝑛 = 22 = 4 vertexes with 𝑣𝑑𝑒𝑐 ∈ {0, 1, 2, 3} and 𝑖 ∈ {1, 2}
leading to the indexes given in Tab. 5.1.

Table 5.1: Vertexes of a hyperrectangle

Decimal index 𝑣𝑑𝑒𝑐 Binary index 𝑉𝑏𝑖𝑛 Coordinates 𝑉𝑣𝑑𝑒𝑐
according to (5.14)

0 [0 0] [2 4]
1 [0 1] [2 6]
2 [1 0] [3 4]
3 [1 1] [3 6]

5 Guaranteed Verification of Interval Type Systems 52

It is now possible to set up an alternative formulation of Prop. 5.1, that solves Prob-
lem 5.1 with vertex based full consistency.

Proposition 5.3 (Vertex Based Full Consistency)
The interval enclosure of the measurement data [U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] given for the dis-
crete sampling points 𝑘 = {1, 2, . . . , 𝑇}, forming the regressor matrix 𝐴𝑚𝑒𝑎𝑠 and the
measurement vector 𝐵𝑚𝑒𝑎𝑠 of a VO, is called to be full consistent with an interval
type specification 𝑆*

𝑖 , if all vertexes 𝒱 defined by the set of specified parameters Θ*

are located in the same orthant and are part of the united solution set ∑︀∃∃ given
by the measurement data, i.e.

(𝒱 ⊆ ∑︀∃∃ (𝐴𝑚𝑒𝑎𝑠, 𝐵𝑚𝑒𝑎𝑠))⇔ 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− ⇒ 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦. (5.16)

Proof:
The united solution set can form various shapes, but it was shown by [Sha10] that the
general AE-solution is convex within each orthant. As the united solution set is a special
case of the general AE-solution, this property does also hold for ∑︀∃∃ (𝐴𝑚𝑒𝑎𝑠, 𝐵𝑚𝑒𝑎𝑠).
The specified parameters Θ* and thus the resulting vertexes 𝒱 are all located within the
same orthant.
The theorem of Prager-Oettli can be checked for the 𝑛 = 2𝑛*

𝑎+𝑛*
𝑐 vertexes in finite time.

Based on the direct application of the definition of a convex set given in [Bro08, p. 662]
follows:
If (3.65) holds for any two of the vertexes 𝑉𝑖 and 𝑉𝑗, with 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛− 1}, 𝑖 ̸= 𝑗,
all vectors Θ = 𝜆𝑉𝑖 + (1 − 𝜆)𝑉𝑗, with 0 ≤ 𝜆 ≤ 1 are also part of the united solution
set.

5 Guaranteed Verification of Interval Type Systems 53

Example 5.2:
Assume the same setting as in Example 4.1. However the specification is now given

as an interval type specification

𝑆*
𝑖 =

{︁
Θ* = [[0.9725, 0.9925] , [0.0665, 0.0685]]𝑇 , 𝑛*

𝑎 = 1, 𝑛*
𝑐 = 1

}︁
. (5.17)

The simulations are done using the linear discrete time ARX system (4.22) leading
to the same measurement data as given in Fig. 4.2 in Example 4.1. The resulting
verification setting is depicted in Fig. 5.1. The nominal parameters given in 𝑆*

𝑖 are
depicted as green square. It can be seen that all four vertexes 𝒱 = {𝑉0, 𝑉1, 𝑉2, 𝑉3}
are located within the united solution set given by the measurement data. The spec-
ification and the measurement are thus guaranteed to be full consistent according to
Prop. 5.3.

0.02 0.04 0.06 0.08 0.10 0.12 0.140.8

0.9

1.0

1.1

1.2

𝑉0

𝑉1

𝑉2

𝑉3

𝜃(2)

𝜃(1
)

Figure 5.1: Example setting for an interval type specification 𝑆*
𝑖

5 Guaranteed Verification of Interval Type Systems 54

5.2 Interval Type Basic Consistency

Until now the set of VO behavior was assumed to be considerably larger than the
specification. When using interval type specifications this is not necessarily the case. It
is possible that the specification set is of the same size as the set of VO behavior or even
larger. Therefore it is not longer possible to enclose the whole specification in the VO
behavior. The resulting verification question can be formulated as follows:

Problem 5.2 (Interval Type Basic Consistency)
Is the nominal system, specified by an interval type specification

𝑆*
𝑖 = {Θ*, 𝑛*

𝑎, 𝑛*
𝑐 , 𝑈*

𝑖𝑛𝑖𝑡, 𝑌 *
𝑖𝑛𝑖𝑡} , (5.18)

basic consistent with the input-output behavior given by the interval type enclosures
of 𝑇 measurement values

[U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] =
[︁
⟨u𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 , ⟨y𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1

]︁
(5.19)

i.e. is there at least one parameter vector Θ* ∈ Θ* that fulfills Prop. 4.1?

The Venn chart of a basic consistent setting is depicted in Fig. 5.2. Due to the inner
enclosure of the VO behavior the achieved verdict is still type II error free. The consistent
set is given by the green shaded square.
This set it formally stated in Prop. 5.4 and solves Problem 5.2.

Underapprox.
VO Behavior

Nominal Behavior
Consistent Set

VO Behavior

Figure 5.2: Basic consistent result for a large specification

5 Guaranteed Verification of Interval Type Systems 55

Proposition 5.4 (Interval Type Basic Consistency)
The interval enclosure of the measurement data [U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] given for the dis-
crete sampling points 𝑘 ∈ {1, 2, . . . , 𝑇}, forming the regressor matrix 𝐴𝑚𝑒𝑎𝑠 and the
measurement vector 𝐵𝑚𝑒𝑎𝑠 of a VO, is called basic consistent with an interval type
specification 𝑆*

𝑖 , if there is a nonempty consistent set, i.e. a nonempty intersection
between the nominal set Θ* and the united solution set ∑︀∃∃ (𝐴𝑚𝑒𝑎𝑠, 𝐵𝑚𝑒𝑎𝑠)

(Θ* ∩∑︀∃∃ (𝐴𝑚𝑒𝑎𝑠, 𝐵𝑚𝑒𝑎𝑠) ̸= ∅)⇔ 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− ⇒ 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦.
(5.20)

Proof:
All parameter vectors included in the interval specification Θ* are suitable represen-
tations of the correct system behavior. Thus 𝑆*

𝑖 can be interpreted as a set of direct
specifications 𝑆*

𝑑 . Each of these direct specifications 𝑆*
𝑑 ∈ 𝑆*

𝑖 can be used to check con-
sistency according to Prop. 4.1. If there is at least one full consistent direct specification
included in the interval specification, the VO behavior can be explained by this param-
eter and the VO is denoted as basic consistent.

𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− is sufficient for the genuine system, as that there is at least one
parameter within the nominal set that is able to explain the measurement data.

5.2.1 Algorithmic Solutions

A straight forward approach to check basic consistency uses the vertexes only. How-
ever, the shape of the resulting consistent set will change if one or more vertexes are
inconsistent. This change is depicted exemplary for the 2𝐷 case in Fig. 5.3.

Feasible
Points 4 3 2 1

Figure 5.3: Degradation of the consistent set for different consistent vertexes (green)

5 Guaranteed Verification of Interval Type Systems 56

The shape changes from a rectangle, in case all four vertexes are part of the consistent
set, to a single point if only one vertex shows consistency. The main drawback of this
procedure is that there might be a consistent set, even if no initial vertex is consistent.
This situation is exemplary depicted in Fig. 5.5. Also, the basic shape of the resulting
consistent set changes which can be a disadvantage for the further algorithmic processing
of the result.
A solution for the first problem is given by checking more points that are not a vertex.
However this leads to the sampling based approach as introduced in the previous section,
with the respective runtime limitations explained there.
The problem of finding the right resolution in the sampling based approach can be solved
using optimization methods. The idea is to use the logic of optimization algorithms to
guide the sampling process.6 Optimization procedures can be used to determine which
discrete points to check if one or more vertexes of the specification are not element of
the consistent set.
To use optimization methods for the choice of sampling points the problem can be
reformulated to a feasibility problem. The interval type measurement data is used
to set up the constraints that frame the united solution set ∑︀∃∃. As derived in the
previous chapter, every parameter within the united solution set ∑︀∃∃ is able to explain
the measurement data. The constraints limit the search area of the feasibility problem.
Feasible solutions need to fulfill all constraints. Parameter values that are located outside
the united solution set ∑︀∃∃ are not feasible with respect to the constraints.

The interval type specification 𝑆*
𝑖 includes the nominal parameter vector Θ* which can

also be denoted as nominal set 𝒩 . The nominal set represents the maximum area of
potentially consistent parameters. This initial restrictions can be stated in terms of
linear inequality constraints as follows:

Definition 5.5 (Constraints Given by the Nominal Set)
The interval type parameter vector Θ* given in the specification 𝑆*

𝑖 can be used
to set up the set 𝑐𝒩 of 2(𝑛*

𝑎 + 𝑛*
𝑐) linear inequality constraints that restrict the

feasibility problem to the nominal set 𝒩 :

𝑐
(𝑖)
𝒩 (Θ) := 𝜃*(𝑖) − 𝜃(𝑖) ≤ 0 (5.21)

𝑐
(𝑛*

𝑎+𝑛*
𝑐+𝑖)

𝒩 (Θ) := −𝜃
*(𝑖) + 𝜃

(𝑖) ≤ 0 (5.22)

with the number of parameters 𝑖 ∈ {1, 2, . . . , 𝑛*
𝑎 + 𝑛*

𝑐}.

6 Suitable optimization methods are e.g. grid search, golden section search or dichotomous search
[Wil64] if there is only minimal information available. If there is further knowledge about the
shape of the problem, there are more sophisticated algorithms that can direct the search effort very
efficiently into the relevant regions, e.g. Newton method, simplex method or interior point method
[Noc06].

5 Guaranteed Verification of Interval Type Systems 57

The united solution set ∑︀∃∃ can be reformulated in terms of the interval type measure-
ment data as linear matrix inequality constraints (LMI) as given in Def. 5.6.

Definition 5.6 (Constraints Given by the Measurement Data)
The measurement data [U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] =

[︁
⟨u𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 , ⟨y𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1

]︁
forming the

regressor matrix 𝐴𝑚𝑒𝑎𝑠 and the measurement vector 𝐵𝑚𝑒𝑎𝑠 of a VO, can be used to
set up the set 𝑐ℳ of 2 (𝑇 −max (𝑛*

𝑎, 𝑛*
𝑐)) linear inequalities

𝑐
(𝑖)
ℳ (Θ) := −(𝐴𝑚𝑒𝑎𝑠 ·Θ)(𝑖) + 𝐵(𝑖)

𝑚𝑒𝑎𝑠 ≤ 0 (5.23)

𝑐
(𝑇 −max (𝑛*

𝑎,𝑛*
𝑐)+𝑖)

ℳ (Θ) := (𝐴𝑚𝑒𝑎𝑠 ·Θ)(𝑖) −𝐵
(𝑖)
𝑚𝑒𝑎𝑠 ≤ 0 (5.24)

with the number of rows in the regressor matrix 𝑖 ∈ {1, 2, . . . , 𝑇 −max (𝑛*
𝑎, 𝑛*

𝑐)},
i.e. the number of system equations instantiated by different measurement points.

Each pair of constraints represents the upper and lower bound of the solution set de-
rived from one line of the ILES (3.46). They can be interpreted as hyperstripes in the
parameter space, leading to the setting shown in Fig. 5.4 for the 2𝐷 case. Using con-
straints according to Def. 5.6 limits the search area of the optimization algorithm to the
inner approximation and thus guarantees that there are no type II errors possible in the
resulting consistent set. The consistent set is given by the shaded region.

𝑐
(3)
ℳ

𝑐
(1)
ℳ

𝑐
(2)
ℳ

𝑐
(4)
ℳ

𝑐
(1)
𝒩

𝑐
(2)
𝒩

𝑐
(3)
𝒩

𝑐
(4)
𝒩

Figure 5.4: Exemplary constraints of the feasibility problem in 2𝐷

Note that the number of constraints in 𝑐ℳ is directly related with the number of used
sampling points 𝑇 and that the number of parameters 𝑛 = 𝑛*

𝑎 + 𝑛*
𝑐 is of minor im-

portance. However there have to be at least 𝑇 = 𝑘𝑚𝑖𝑛 = max(𝑛*
𝑎, 𝑛*

𝑐) + 1 samples in
the measurement to set up the first hyperstripe. It is now possible to determine an
alternative solution for Problem 5.2, based on the constraints of Def. 5.5 and Def. 5.6.

5 Guaranteed Verification of Interval Type Systems 58

Proposition 5.5 (Feasibility Based Basic Consistency)
The interval enclosure of the measurement data [U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] given for the dis-
crete sampling points 𝑘 ∈ {1, 2, . . . , 𝑇}, forming the regressor matrix 𝐴𝑚𝑒𝑎𝑠 and the
measurement vector 𝐵𝑚𝑒𝑎𝑠 of a VO, is called basic consistent with an interval type
specification 𝑆*

𝑖 , if the consistent set 𝒞 is nonempty, i.e. if there is at least one
solution Θ̃ that fulfills all constraints
(︁(︁

𝑐𝒩 (Θ̃) ≤ 0
)︁
∧
(︁
𝑐ℳ(Θ̃) ≤ 0

)︁)︁
⇔ 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− ⇒ 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

(5.25)

Proof:
According to Prop. 5.4 there needs to be at least one parameter that is part of the
united solution set ∑︀∃∃ as well as part of the parameter set given in the interval type
specification 𝑆*

𝑖 to ensure basic consistency. All parameters that fulfill the constraint
set 𝑐ℳ of Def. 5.6 are part of the united solution set ∑︀∃∃. All parameters that fulfill
the constraint set 𝑐𝒩 of Def. 5.5 are part of the parameter set given in the interval type
specification 𝑆*

𝑖 . If there is at least one parameter vector Θ̃ that fulfills 𝑐𝒩 and 𝑐ℳ, all
conditions for basic consistency are fulfilled.

The resulting situation is exemplary depicted in Fig. 5.5. It can be seen that no initial
vertex shows consistency, as none of them is part of the underapproximation. Therefore
there is no vertex based basic consistency. Feasibility based basic consistency can be
achieved as there is a consistent set within the inner approximation and the nominal
set. The consistent set is depicted as the shaded green area.

Underapprox.
VO Behavior

Nominal Set

VO Behavior

Consistent Set

Figure 5.5: Example setting showing feasibility based consistency

5 Guaranteed Verification of Interval Type Systems 59

5.3 Conclusion

This chapter introduced the extension of the Kaucher based method to interval type
specifications. The resulting nominal set is required to be located within one orthant.
The definition of full consistency is still applicable if all parameters given in the interval
type specification are part of the united solution set. A straight forward approach was
introduced that used the orthant wise convexity of the united solution set to define full
consistency based only on the vertexes of the specified parameter set.
Nevertheless, full consistency is a rather strict criterion and it is likely that there are
some specified parameters that are part of the united solution and some that are not.
Following the concept of basic consistency, it is sufficient to show that there is at least
one parameter vector that is part of the united solution set as well as of the specified
parameter range. This property can be verified by checking individual arbitrary points
for consistency. The choice of these points can be structured by using the concept of
a feasibility problem. Therefore the notions defining the united solution as well as the
specified parameter set are transferred to linear matrix inequality constraints. If there
is a solution of the feasibility problem, the VO and the specification are guaranteed to
be basic consistent.
The method is still free of type II errors as the feasibility based consistent set is con-
strained by the genuine united solution set.

6 Guaranteed Verification of Hybrid
Systems

Switched hybrid systems consist of two distinct parts with different properties and mod-
eling goals. The dynamic part is used to model the plant dynamics as introduced and
used in the previous chapters. The additional discrete event part models the super-
imposed switching logic. Based on logical rules, the discrete event part can activate
different discrete states that will show different dynamic behavior. Different operation
modes can thus be modeled as several subsystems, showing individual behavior. All
subsystems are interconnected by the discrete event switching mechanism.
The switched hybrid system structure is depicted in Fig. 6.1 and is formally introduced
in this section7.

𝑠(1)

𝑠(2)

...

𝑠(𝑛𝑞)

𝑦
(1)
𝑘

𝑦
(2)
𝑘

𝑦
(𝑛𝑞)
𝑘

𝑢 𝑦

State Machine 𝑍

Hybrid System 𝐻

Set of Dynamic Systems 𝒮

Switch signal / State Signal

𝑦
(1)
𝑘−1

𝑦
(2)
𝑘−1

𝑦
(𝑛𝑞)
𝑘−1

Figure 6.1: Structure of the hybrid system model 𝐻

The hybrid system ℋ consists of set of dynamic subsystems 𝒮 and a superimposed
switching mechanism represented by the state machine 𝑍.
7 To improve readability the term “hybrid system” is used instead of “switched hybrid system”

throughout this thesis.

6 Guaranteed Verification of Hybrid Systems 61

The respective subsystems 𝑠(𝑖) ∈ 𝒮 show different behavior based on an individual
parametrization. The state machine produces a switch signal which resembles its cur-
rent discrete state. This signal is used to control an input and an output switch that
determines which subsystem is activated. The activated subsystem is fed with the gen-
eral input signal and the resulting output signal is connected to the output of the hybrid
system. It is possible to use the optional input and output values that are specified in
the nominal system to start the active subsystem after a switch. Otherwise the current
input and output values are kept across the switch. The input and output signals are also
fed to the state machine where they are used to update the discrete state of the discrete
event system. Due to this extended structure there are additional subjects included in
the verification question that will be covered in this chapter. First the formalized model
structure needs to be appended to a hybrid formulation. Therefore the discrete event
part is modeled in the following, based on [Cas99, p. 66ff].
Then the verification problem is split in two subproblems: verification of the dynamic
part and verification of the discrete event part. If both parts are verified individually,
the next step is to examine their connection and interaction. This is done in three steps
of increasing complexity.
Initially, the setting is simplified by assuming the discrete state to be measurable. This
setting is used to introduce the basic hybrid method. Second this assumption is dropped
such that the current active discrete state needs to be determined for a given set of
switches. Finally an algorithm is developed that is able to determine the switching
times and the active discrete states from measured input and output data only.

The necessary knowledge for the verification procedure is thus the same as in the pre-
vious chapters except that there are now several nominal systems and an additional
specification of the discrete event system part.

Definition 6.1 (Discrete State)
A discrete state

𝑞(𝑖) ∈ 𝒬 :=
{︁
𝑞(1), 𝑞(2), . . . , 𝑞(𝑛𝑞)

}︁
(6.1)

is a vertex of a graph e.g. of a state machine. It is part of a given set of discrete
states 𝒬.

Note that for the ease of notation the “discrete state” is called “state” in the reminder
of this thesis.

6 Guaranteed Verification of Hybrid Systems 62

To implement logical conditions and constraints in the state machine a set of events is
defined:

Definition 6.2 (Event)
There is a set of events

ℰ :=
{︁
𝑒(1), 𝑒(2), . . . , 𝑒(𝑛𝑒)

}︁
. (6.2)

Each event 𝑒(𝑖) is dependent on specific activation limits

𝑙(𝑖) =
[︁
𝑙(𝑖), 𝑙̄(𝑖)

]︁
, (6.3)

with 𝑖 ∈ {1, 2, . . . , 𝑛𝑒}, defined for a given enabler signal 𝑊 := ⟨𝑤𝑘⟩𝑇𝑘=1. The event
𝑒(𝑖) is defined to be active as long as the value of the enabler signal 𝑊 lies within
the given thresholds

𝑤𝑘 ∈ 𝑙(𝑖). (6.4)

Note that Def. 6.2 does not pose any conditions on the activation limits. Therefore it
is possible that several events are active at the same time. In the context of this thesis,
events are allowed to be active for several time steps, e.g. as long as the enabler signal
stays within the specified limits.
The transitions of the state machine are defined by a transition function.

Definition 6.3 (Transition Function)
A transition function

𝑓 : 𝒬× ℰ → 𝒬 (6.5)
represents a directed connection between two states, labeled by an event. In general
𝑓 is a partial function on its domain.

The notation 𝑡(1) : 𝑓
(︁
𝑞(1), 𝑒(1)

)︁
= 𝑞(2) means that transition 𝑡(1) forms a directed con-

nection from state 𝑞(1) to state 𝑞(2), dependent on event 𝑒(1).
A transition can change the state of a state machine if the assigned event is active,
but not necessarily has to. This is due to the fact that several events can be active at
any given time, but there is not more than one transition allowed to conduct a switch.
However it is also possible that the state does not change even though there are several
activated transitions.

6 Guaranteed Verification of Hybrid Systems 63

Based on the above definitions it is possible to set up the state machine representing the
discrete event part.

Definition 6.4 (State Machine)
A state machine is defined to be given by the 4-Tupel

𝑍 :=
{︁
𝒬, ℰ , 𝑓, 𝑞(1)

}︁
, (6.6)

with a finite set of states 𝒬, a finite set of events ℰ , a transition function 𝑓 and an
initial state 𝑞(1).

The state of the discrete event part can be used to determine the system orders and
parameters of the dynamic part necessary to set up a system according to Def. 5.2. This
leads to the definition of a state dependent, discrete time, linear, interval type system:

Definition 6.5 (State Dependent Discrete Time Linear Interval Type
System)
The state dependent, discrete time, linear, interval type system can be modeled as

𝑠(𝑞𝑘) := 𝑦𝑘 = −
𝑛𝑎(𝑞𝑘)∑︁

𝑖=1
𝑎𝑖(𝑞𝑘)𝑦𝑘−𝑖 +

𝑛𝑐(𝑞𝑘)∑︁

𝑖=1
𝑐𝑖(𝑞𝑘)𝑢𝑘−𝑖 (6.7)

with the discrete time input 𝑢𝑘, output 𝑦𝑘 and state 𝑞𝑘. The input and out-
put orders 𝑛𝑎(𝑞𝑘) and 𝑛𝑐(𝑞𝑘) as well as the interval type system parameters
Θ =

[︁
𝑎1(𝑞𝑘), 𝑎2(𝑞𝑘), . . . , 𝑎𝑛𝑎(𝑞𝑘)(𝑞𝑘), 𝑐1(𝑞𝑘), 𝑐2(𝑞𝑘), . . . , 𝑐𝑛𝑐(𝑞𝑘)(𝑞𝑘)

]︁
are dependent on

the current state 𝑞𝑘. All subsystems 𝑠(𝑞𝑘) form the set of subsystems

𝒮 =
{︁
𝑠(1), 𝑠(2), . . . , 𝑠(𝑛𝑞)

}︁
. (6.8)

Each dynamic subsystem is directly linked with a discrete state. Therefore the state
dependent dynamic subsystem 𝑠(𝑞(𝑖)) is denoted by 𝑠(𝑖) for the ease of notation. It is
now possible to define the overall hybrid system.

6 Guaranteed Verification of Hybrid Systems 64

Definition 6.6 (Hybrid System)
A hybrid system ℋ consists of two system parts:

Discrete Event Part The superimposed switching mechanism given by a state ma-
chine

𝑍 =
{︁
𝒬, ℰ , 𝑓, 𝑞(1)

}︁
, (6.9)

according to Def. 6.4.

Dynamic Part The discrete time linear interval type systems are given by a finite
set of subsystems

𝒮 =
{︁
𝑠(1), 𝑠(2), . . . , 𝑠(𝑛𝑞)

}︁
(6.10)

where each subsystem 𝑠(𝑞𝑘) is active if and only if 𝑞𝑘 is the current state. The
subsystems 𝑠(𝑞𝑘) are defined according to Def. 6.5.

In general it is not possible to measure the current state of the state machine. However,
for didactic reasons Assumption 6.1 is introduced and later dropped.

Assumption 6.1 (Measured State Signal)
The current state of the state machine can be measured and it is correctly given in
the state signal

𝑄𝑚𝑒𝑎𝑠 := ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 . (6.11)

The measured state signal 𝑄𝑚𝑒𝑎𝑠 consists of several segments with different active states.
A change in the active state is called switch.

Definition 6.7 (Switch)
The first time index 𝑘 at which a new state is active i.e.

𝑞𝑚𝑒𝑎𝑠,𝑘 ̸= 𝑞𝑚𝑒𝑎𝑠,𝑘−1, (6.12)

is called switch 𝑘𝜏 .

The switches within a state signal are additionally indexed in chronological order 𝑘𝜏,𝑖,
𝑖 ∈ {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ} with the total number of switches denoted by 𝑛𝑠𝑤𝑖𝑡𝑐ℎ. The time
index given by the first sampling point of the measurement data represents the first
occurrence of the initial state and is thus defined to be 𝑘𝜏,1 = 1.

6 Guaranteed Verification of Hybrid Systems 65

The time index right before a switch, i.e. the last time index the current state is active,
is called end of the current segment 𝑘𝜏 ′,𝑖 = 𝑘𝜏,𝑖+1 − 1. The end of the last segment is
given by the last time index of the measurement data 𝑇 which leads to 𝑘𝜏 ′,𝑛𝑠𝑤𝑖𝑡𝑐ℎ

= 𝑇 .
A schematic sketch for 𝑛𝑠𝑤𝑖𝑡𝑐ℎ = 3 is given in Fig. 6.2.

𝑘

1
𝑘𝜏,1

2 3
𝑘𝜏 ′,1

4
𝑘𝜏,2

5 6 7
𝑘𝜏 ′,2

8
𝑘𝜏,3

9 10 11
𝑘𝜏 ′,3

Segment 1 Segment 2 Segment 3

Figure 6.2: Schematic view of switches

6.1 Verification of Hybrid Systems with Mapped
State Signal

The introduced definitions can be used to set up the specification of a hybrid system.

Definition 6.8 (Specification of an Interval Type Hybrid System)
An interval type specification of a hybrid system according to Def. 6.6 is given by

𝑆*
𝐻,𝑖 := {𝑍*,𝒮*

𝑖 } (6.13)

with the nominal state machine 𝑍* according to Def. 6.4 and the set of nominal
dynamic systems 𝒮*

𝑖 , according to Def. 5.1.

A special case of Def. 6.8 is given if the parameters of the dynamic subsystems are point
real values.

Definition 6.9 (Specification of a Point Real Hybrid System)
A point real specification of a hybrid system according to Def. 6.6 is given by

𝑆*
𝐻,𝑑 := {𝑍*,𝒮*

𝑑} (6.14)

with the nominal state machine 𝑍* according to Def. 6.4 and the set of nominal
dynamic systems 𝒮*

𝑑 , according to Def. 4.2.

The dynamic part of a system according to Def. 6.9 is also called linear time variant
system with piecewise constant parameters.

6 Guaranteed Verification of Hybrid Systems 66

The verification method developed in this chapter is again based on interval enclosures
of the input and output measurement data

[𝑈𝑚𝑒𝑎𝑠, 𝑌𝑚𝑒𝑎𝑠] =
[︁
⟨𝑢𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 , ⟨𝑦𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1

]︁
(6.15)

extended by a measured state signal 𝑄𝑚𝑒𝑎𝑠 according to Assumption 6.1. The state
signal 𝑄𝑚𝑒𝑎𝑠 leads to a set of measured states 𝒬𝑚𝑒𝑎𝑠. It is assumed that the elements
of the set of measured states can be mapped on the set of specified states. In this case,
the set is called mapped set of states according to Def. 6.10.

Definition 6.10 (Mapped Set of States)
The set of measured states 𝒬𝑚𝑒𝑎𝑠, consisting of the unique values of the state signal
𝑄𝑚𝑒𝑎𝑠 = ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1, is called mapped with the specification 𝑆*

𝐻,𝑖, if all measured
states 𝑞(𝑗)

𝑚𝑒𝑎𝑠 ∈ 𝒬𝑚𝑒𝑎𝑠 with 𝑗 ∈ {1, 2, . . . , |𝒬𝑚𝑒𝑎𝑠|} can be mapped to an equivalent
nominal state 𝑞(𝑖(𝑗))* ∈ 𝒬* given in the specification i.e.

𝑞(𝑗)
𝑚𝑒𝑎𝑠 = 𝑞(𝑖(𝑗))*, 𝑗 ∈ {1, 2, . . . , |𝒬𝑚𝑒𝑎𝑠|}. (6.16)

As 𝑆*
𝐻,𝑑 is a special case of 𝑆*

𝐻,𝑖, Def. 6.10 is also valid for 𝑆*
𝐻,𝑑. In case 𝒬𝑚𝑒𝑎𝑠 is a mapped

set of states, the state signal 𝑄𝑚𝑒𝑎𝑠 is called mapped state signal. If the mapped state
𝑞𝑖(𝑗)* is known, the respective mapped nominal subsystem 𝑠𝑖(𝑗)* is also known. The
hybrid verification problem can now be formulated as follows:

Problem 6.1 (Mapped Set of States Based Point Real Hybrid Consis-
tency)
Is the nominal hybrid system, specified by a point real hybrid specification

𝑆*
𝐻,𝑑 = {𝑍*,𝒮*

𝑑} (6.17)

consistent with the input-output behavior given by the interval type enclosures of
𝑇 measurement values

[𝑈𝑚𝑒𝑎𝑠, 𝑌𝑚𝑒𝑎𝑠] =
[︁
⟨𝑢𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 , ⟨𝑦𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1

]︁
(6.18)

and the measured mapped state signal 𝑄𝑚𝑒𝑎𝑠, i.e. can the measurement data be
explained by the nominal system?

The problem can be solved by tackling the two system parts individually. This is possible
due to an implicit connection given by the matching of the discrete states which is done
based on the dynamic parameters. First the dynamic subsystem is considered and
verified in the next section. Afterwards the verification of the discrete event part is
introduced. Finally the results are combined to verify the overall hybrid system.

6 Guaranteed Verification of Hybrid Systems 67

6.1.1 Verification of the Dynamic Subsystems

To verify the individual dynamic subsystems it is necessary to split the interval type
measurement data [U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] based on the information given in the mapped state
signal. The resulting segments

⟨[︁
U(𝑗)

𝑚𝑒𝑎𝑠, Y(𝑗)
𝑚𝑒𝑎𝑠

]︁⟩𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1
=
⟨[︂
⟨u𝑚𝑒𝑎𝑠,𝑘⟩

𝑘𝜏 ′,𝑗

𝑘=𝑘𝜏,𝑗
, ⟨y𝑚𝑒𝑎𝑠,𝑘⟩

𝑘𝜏 ′,𝑗

𝑘=𝑘𝜏,𝑗

]︂⟩𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1
(6.19)

can be verified individually against the respective specification in the set of subsystems
𝒮*

𝑑 . It is possible to verify the individual dynamic behavior8 of each state present in the
measurement data 𝑞(𝑗)

𝑚𝑒𝑎𝑠 ∈ 𝑄𝑚𝑒𝑎𝑠 as defined in Prop. 6.1.

Proposition 6.1 (Dynamic Consistency of a Segment)
The interval type enclosure of the measurement data is split into
𝑗 ∈ {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ} parts, given by the segments

[︁
U(𝑗)

𝑚𝑒𝑎𝑠, Y(𝑗)
𝑚𝑒𝑎𝑠

]︁
. Each

segment represents a specific state 𝑞(𝑗)
𝑚𝑒𝑎𝑠, a regressor matrix 𝐴(𝑗)

𝑚𝑒𝑎𝑠 and a
measurement vector 𝐵(𝑗)

𝑚𝑒𝑎𝑠. The segment 𝑗 is dynamic consistent with the
respective mapped subsystem 𝑠(𝑖(𝑗))* ∈ 𝒮*

𝑑 , if the specified system parameters
Θ(𝑖(𝑗))* =

[︁
𝑎*

1(𝑖(𝑗)), 𝑎*
2(𝑖(𝑗)), . . . , 𝑎*

𝑛*
𝑎(𝑖(𝑗))(𝑖(𝑗)), 𝑐*

1(𝑖(𝑗)), 𝑐*
2(𝑖(𝑗)), . . . , 𝑐*

𝑛*
𝑐(𝑖(𝑗))(𝑖(𝑗))

]︁𝑇

are part of the united solution set ∑︀(𝑗)
∃∃ = ∑︀

∃∃(𝐴(𝑗)
𝑚𝑒𝑎𝑠, 𝐵(𝑗)

𝑚𝑒𝑎𝑠), i.e. if

Θ(𝑖(𝑗))* ∈ ∑︀(𝑗)
∃∃ . (6.20)

Proof:
The measured state signal 𝑄𝑚𝑒𝑎𝑠 includes the true active states. It is thus guaranteed
that only measurement data generated by subsystem 𝑠(𝑗)

𝑚𝑒𝑎𝑠 based on the active state
𝑞(𝑗)

𝑚𝑒𝑎𝑠 is included in
[︁
U(𝑗)

𝑚𝑒𝑎𝑠, Y(𝑗)
𝑚𝑒𝑎𝑠

]︁
and that this data is not corrupted by measurement

generated by other subsystems. The current state 𝑞(𝑗)
𝑚𝑒𝑎𝑠 is a mapped state according to

Def. 6.10 and thus the connection between measurement and specification is also correct
and the respective nominal subsystem 𝑠(𝑖(𝑗))* is known.
Using this information, the setting can be reduced to the time invariant consistency
problem given in Problem 4.1 for segment 𝑗 and subsystem 𝑠(𝑖(𝑗))* and time invariant
consistency can be checked according to Prop. 4.1 which proves Prop. 6.1.

The considerations are now extended to the complete set of measurement data, consisting
of several segments.
8 As a direct specification 𝒮*

𝑑 is used in the definition, “dynamic consistency” means “time invariant
full consistency” throughout this chapter.

6 Guaranteed Verification of Hybrid Systems 68

Proposition 6.2 (Dynamic Consistency of the Measurement Data)
The mapped state signal 𝑄𝑚𝑒𝑎𝑠 and the segmented measurement data⟨[︁

U(𝑗)
𝑚𝑒𝑎𝑠, Y(𝑗)

𝑚𝑒𝑎𝑠

]︁⟩𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1
of a VO, leading to the state 𝑞(𝑗)

𝑚𝑒𝑎𝑠, the regressor matrices
𝐴(𝑗)

𝑚𝑒𝑎𝑠 and the measurement vectors 𝐵(𝑗)
𝑚𝑒𝑎𝑠 with 𝑗 = {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ}, are dynamic

consistent with a set of direct specifications 𝒮*
𝑑 , if there is dynamic consistency of

each segment given in the measurement data with its respective mapped subsystem
𝑠(𝑖(𝑗))* i.e.

Θ(𝑖(𝑗))* ∈ ∑︀(𝑗)
∃∃ , ∀𝑗 ∈ {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ}. (6.21)

Proof:
Prop. 6.2 results straight forward by applying Prop. 6.1 to all 𝑗 = {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ}
segments given in the segmented measurement data

⟨[︁
U(𝑗)

𝑚𝑒𝑎𝑠, Y(𝑗)
𝑚𝑒𝑎𝑠

]︁⟩𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1
.

It is possible to reformulate this proposition to get the inverse relation similar to Prop. 5.2.

Proposition 6.3 (Inverse of Dynamic Consistency of the Measurement
Data)
The mapped state signal 𝑄𝑚𝑒𝑎𝑠 and the segmented measurement data⟨[︁

U(𝑗)
𝑚𝑒𝑎𝑠, Y(𝑗)

𝑚𝑒𝑎𝑠

]︁⟩𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1
of a VO, leading to the state 𝑞(𝑗)

𝑚𝑒𝑎𝑠, the regressor matri-
ces 𝐴(𝑗)

𝑚𝑒𝑎𝑠 and the measurement vectors 𝐵(𝑗)
𝑚𝑒𝑎𝑠 with 𝑗 = {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ} are called

dynamic inconsistent with a set of direct specifications 𝒮*
𝑑 , if there is at least one

segment 𝑗 ∈ {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ} given in the measurement data that does not show
dynamic consistency with its respective mapped subsystems 𝑠(𝑖(𝑗))* according to
Prop. 6.1, i.e.

∃𝑗 = {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ}
⃒⃒
⃒ Θ(𝑖(𝑗))* ̸∈ ∑︀(𝑗)

∃∃ . (6.22)

Proof:
For dynamic consistency of the measurement data according to Prop. 6.2 it is necessary
that all segments of the measurement data are dynamic consistent according to Prop. 6.1.
If there is a segment that does not show dynamic consistency, this segment can not be
explained by the specification. Thus there is unspecified behavior and it is not possible
to explain the whole measurement data by the specification.

Note that these propositions are based on the segments given in the measurement data.

6 Guaranteed Verification of Hybrid Systems 69

However it is possible that there is nominal behavior that is not present in the mea-
surement data. Though this will not change the dynamic consistency result for the
measurement, it will influence the discrete event verification result introduced in the
next section. Also note that a mapped state signal is used in Prop. 6.2 and Prop. 6.3.
This means that all segments given in the measurement data can be mapped to the
specification, as stated in Def. 6.10.

6.1.2 Verification of the Discrete Event System

The next step in the verification of the hybrid system is given by regarding the discrete
event part. Therefore it is necessary to determine the state machine 𝑍𝑚𝑒𝑎𝑠 that gener-
ated the measurement data. The active states given in the mapped state signal 𝑄𝑚𝑒𝑎𝑠

represent a trace of the unknown generating state machine 𝑍𝑚𝑒𝑎𝑠. The system dynamics
represent the state of the system and not an emission of a state or an event. Therefore
it is in this case possible to reconstruct 𝑍𝑚𝑒𝑎𝑠 based on this trace. The reconstructed
generating state machine 𝑍𝑚𝑒𝑎𝑠 can then be compared with the specified state machine
𝑍* by comparing the corresponding states and transitions.

Proposition 6.4 (Full State Consistency)
The mapped state signal 𝑄𝑚𝑒𝑎𝑠 given for the discrete sampling points
𝑘 = {1, 2, . . . , 𝑇}, leading to the mapped set of states 𝒬𝑚𝑒𝑎𝑠 of the discrete event
part 𝑍𝑚𝑒𝑎𝑠 of a VO is called full state consistent with the nominal state machine
𝑍*, if

𝒬* = 𝒬𝑚𝑒𝑎𝑠. (6.23)

Proof:
All nominal states 𝒬* are given in the specification of the state machine 𝑍*. The
states implemented in 𝑍𝑚𝑒𝑎𝑠 are given in the mapped set of states 𝒬𝑚𝑒𝑎𝑠. According
to Def. 6.10, this means that both sets are defined on the same elements. Full state
consistency means that exactly the specified states are given in the measurement data,
i.e. that both sets contain the same elements. This comparison is given in (6.23) and
proves full state consistency.

Due to a measurement scenario that does not cover all states it is possible that not
all dynamics are present in the measurement data. This case leads to partial state
consistency.

6 Guaranteed Verification of Hybrid Systems 70

Proposition 6.5 (Partial State Consistency)
The mapped state signal 𝑄𝑚𝑒𝑎𝑠 given for the discrete sampling points
𝑘 = {1, 2, . . . , 𝑇}, leading to the mapped set of states 𝒬𝑚𝑒𝑎𝑠, of the discrete event
part 𝑍𝑚𝑒𝑎𝑠 of a VO is called partial state consistent with the nominal state machine
𝑍*, if

𝒬* ⊃ 𝒬𝑚𝑒𝑎𝑠. (6.24)

Proof:
Based on Prop. 6.4 and Def. 6.10, 𝒬𝑚𝑒𝑎𝑠 and 𝒬* are defined on the same elements,
i.e. there is a mapping 𝑞(𝑗)

𝑚𝑒𝑎𝑠 = 𝑞(𝑖(𝑗))* for 𝑗 ∈ {1, 2, . . . , |𝒬𝑚𝑒𝑎𝑠|}. If additionally (6.24)
holds,

𝑞(𝑗)
𝑚𝑒𝑎𝑠 ∈ 𝒬𝑚𝑒𝑎𝑠 ⇒ 𝑞(𝑗)

𝑚𝑒𝑎𝑠 = 𝑞(𝑖(𝑗))* ∈ 𝒬* (6.25)

holds as well. This means that all implemented states 𝑞(𝑗)
𝑚𝑒𝑎𝑠 ∈ 𝒬𝑚𝑒𝑎𝑠 are also part of

the specification 𝒬*. Thus there are only specified states in the measurement data.
However, there are states in the specification that are not part of the implementation
and prevent full state consistency. The discrete event part 𝑍𝑚𝑒𝑎𝑠 of a VO is hence called
partial state consistent.

Partial consistency of the discrete event part 𝑍𝑚𝑒𝑎𝑠 of a VO is a hint to improve the
measurement scenario or to collect more measurement data.
If there is neither full nor partial consistency, the system is state inconsistent according
to Prop. 6.6.

Proposition 6.6 (State Inconsistency)
The state signal 𝑄𝑚𝑒𝑎𝑠 given for the discrete sampling points 𝑘 = {1, 2, . . . , 𝑇},
leading to the set of states 𝒬𝑚𝑒𝑎𝑠, of the discrete event part 𝑍𝑚𝑒𝑎𝑠 of a VO is called
state inconsistent with the nominal state machine 𝑍*, if

𝒬* ̸⊇ 𝒬𝑚𝑒𝑎𝑠. (6.26)

Proof:
If (6.26) holds, there are implemented states 𝑞(𝑗)

𝑚𝑒𝑎𝑠 ∈ 𝒬𝑚𝑒𝑎𝑠 that are not part of the
specification 𝒬*. Thus there are unspecified states in the measurement data. The
discrete event part 𝑍𝑚𝑒𝑎𝑠 of a VO is hence called state inconsistent.

6 Guaranteed Verification of Hybrid Systems 71

Prop. 6.6 can be connected with the inverse of dynamic consistency of the measurement
data as given in Prop. 6.3. If there is an additional state 𝑞(𝑗)

𝑚𝑒𝑎𝑠 /∈ 𝒬*, the respective
measurement data

[︁
U(𝑗)

𝑚𝑒𝑎𝑠, Y(𝑗)
𝑚𝑒𝑎𝑠

]︁
cannot be explained by any 𝑠(𝑖)* within the specifica-

tion. In this case there is both, dynamic inconsistency according to Prop. 6.3 and state
inconsistency according to Prop. 6.6.

The second part of the discrete event system to be verified is the transition function.
Additionally to the mapped state signal9 ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇 −1

𝑘=1 , the set of measured events ℰ𝑚𝑒𝑎𝑠

needs to be obtained. According to Def. 6.2 there is an active event 𝑒
(𝑖)
𝑚𝑒𝑎𝑠,𝑘 ∈ ℰ𝑚𝑒𝑎𝑠 if

𝑤𝑚𝑒𝑎𝑠,𝑘 ∈ 𝑙(𝑖)*. Full transition consistency is then defined as follows:

Proposition 6.7 (Full Transition Consistency)
The mapped state signal ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇 −1

𝑘=1 and the set of events ℰ𝑚𝑒𝑎𝑠 of the discrete
event part 𝑍𝑚𝑒𝑎𝑠 of a VO are called full transition consistent with the nominal state
machine 𝑍*, if
(︁
∀𝑞𝑚𝑒𝑎𝑠,𝑘 ∈ ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇 −1

𝑘=1

)︁
∧
(︁
∃𝑒(𝑖)

𝑚𝑒𝑎𝑠,𝑘 ∈ ℰ𝑚𝑒𝑎𝑠

)︁
:
(︁
𝑓 *(𝑞𝑚𝑒𝑎𝑠,𝑘, 𝑒

(𝑖)
𝑚𝑒𝑎𝑠,𝑘) = 𝑞𝑚𝑒𝑎𝑠,𝑘+1

)︁
.

(6.27)

Proof:
All nominal transitions are given in the transition function 𝑓 * according to Def. 6.3. The
transition function 𝑓 *(𝑞𝑚𝑒𝑎𝑠,𝑘, 𝑒

(𝑖)
𝑚𝑒𝑎𝑠,𝑘) is evaluated for the current measurement state

𝑞𝑚𝑒𝑎𝑠,𝑘 and the current events 𝑒
(𝑖)
𝑚𝑒𝑎𝑠,𝑘. If the transition function yields the following

measurement state 𝑞𝑚𝑒𝑎𝑠,𝑘+1 for at least one event 𝑒
(𝑖)
𝑚𝑒𝑎𝑠,𝑘 the right hand side of (6.27)

holds. Thus the observed transition at time 𝑘 is part of the nominal transition function.
If the right hand side of (6.27) holds for the measurement sequence 𝑘 = {1, 2, . . . , 𝑇 − 1},
i.e. (∀𝑞𝑚𝑒𝑎𝑠,𝑘 ∈ ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇 −1

𝑘=1), all observed state transitions are defined in the nominal
transition function 𝑓 *. Thus the measurement is full transition consistent.

Prop. 6.7 also implies that the current values of the enabler signal 𝑤𝑚𝑒𝑎𝑠,𝑘 are within
the nominal limits 𝑙(𝑖)* at each switch 𝑘 = 𝑘𝜏,𝑖 − 1 with 𝑖 = {2, 3, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ}.10 Other
than state consistency, full transition consistency can be achieved although a nominal
transition is not triggered by the measurement data.

The notion of partial transition consistency includes specified transitions that are trig-
gered at unexpected times.

9 The last measurement value for 𝑘 = 𝑇 can not be evaluated as there is no following state 𝑘 = 𝑇 +1.
10 It is not necessary to check the first switch, as it represents the begin of the experiment.

6 Guaranteed Verification of Hybrid Systems 72

Proposition 6.8 (Partial Transition Consistency)
The mapped state signal ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇 −1

𝑘=1 , and the set of measured events ℰ𝑚𝑒𝑎𝑠 of the
discrete event part 𝑍𝑚𝑒𝑎𝑠 of a VO are called partial transition consistent with the
nominal state machine 𝑍*, if
(︁
∃𝑞𝑚𝑒𝑎𝑠,𝑘 ∈ ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇 −1

𝑘=1

)︁
∧
(︁
∃𝑒 ∈ ℰ*

)︁
:
(︁
𝑓 *(𝑞𝑚𝑒𝑎𝑠,𝑘, 𝑒) = 𝑞𝑚𝑒𝑎𝑠,𝑘+1

)︁
∧
(︁
𝑒 ̸= 𝑒

(𝑖)
𝑚𝑒𝑎𝑠,𝑘

)︁
.

(6.28)

Proof:
The transition function 𝑓 * is evaluated as explained in Prop. 6.7, but using the set of
nominal events ℰ* instead of the set of measured events ℰ𝑚𝑒𝑎𝑠. Thus 𝑓 *(𝑞𝑚𝑒𝑎𝑠,𝑘, 𝑒) can
yield the correct following measurement state 𝑞𝑚𝑒𝑎𝑠,𝑘+1 for any specified event 𝑒 ∈ ℰ*,
regardless of the current measured events 𝑒

(𝑖)
𝑚𝑒𝑎𝑠,𝑘.

Condition (6.28) is fulfilled if there is at least one transition in the measurement sequence
𝑘 = {1, 2, . . . , 𝑇 − 1} that was triggered by an unexpected event 𝑒 ̸= 𝑒

(𝑖)
𝑚𝑒𝑎𝑠,𝑘.

Unspecified transitions and transitions connecting unspecified states lead to transition
inconsistency according to Prop. 6.9. This represents the situation, where it is not
possible to explain the observed transition by the transition function.

Proposition 6.9 (Transition Inconsistency)
The mapped state signal ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇 −1

𝑘=1 , and the set of events ℰ𝑚𝑒𝑎𝑠 of the discrete
event part 𝑍𝑚𝑒𝑎𝑠 of a VO are called transition inconsistent with the nominal state
machine 𝑍*, if

(︁
∃𝑞𝑚𝑒𝑎𝑠,𝑘 ∈ ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇 −1

𝑘=1

)︁
∧
(︁
∀𝑒 ∈ ℰ*

)︁
:
(︁
𝑓 *(𝑞𝑚𝑒𝑎𝑠,𝑘, 𝑒) ̸= 𝑞𝑚𝑒𝑎𝑠,𝑘+1

)︁
. (6.29)

Proof:
Condition (6.29) is fulfilled if there is at least one unspecified transition at a state
𝑞𝑚𝑒𝑎𝑠,𝑘 ∈ ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇 −1

𝑘=1 that is not defined for any nominal event 𝑒 ∈ ℰ*. Therefore the
measured transition is unspecified, which is inconsistent in the sense of this thesis.

The results of state and transition consistency are combined such that the weakest result
of the individual conditions determines the result of the whole discrete event system.
The respective propositions are given in the following.

6 Guaranteed Verification of Hybrid Systems 73

Proposition 6.10 (Full Discrete Consistency)
The discrete event part 𝑍𝑚𝑒𝑎𝑠 of a VO is called full discrete consistent with the
nominal state machine 𝑍*, if there is full state consistency according to Prop. 6.4
and full transition consistency according to Prop. 6.7.

Proof:
The main components of the discrete event part 𝑍𝑚𝑒𝑎𝑠 according to Def. 6.4 are the set
of states 𝒬*, the finite set of events ℰ* and the transition function 𝑓 *. The consistency of
this components is verified using the propositions about state and transition consistency.
Only if all components show full consistency according to the respective propositions,
the overall system also shows full consistency. Thus full discrete consistency is only given
if there is full state consistency according to Prop. 6.4 and full transition consistency
according to Prop. 6.7.

Proposition 6.11 (Discrete Inconsistency)
The discrete event part 𝑍𝑚𝑒𝑎𝑠 of a VO is called discrete inconsistent with the nominal
state machine 𝑍*, if there is state inconsistency according to Prop. 6.6 or transition
inconsistency according to Prop. 6.9.

Proof:
Discrete inconsistency is also an integral property of the main components of the dis-
crete event part 𝑍𝑚𝑒𝑎𝑠 as shown in Prop. 6.10. Therefore the overall discrete system
is inconsistent as soon as there is at least one inconsistent component, i.e. if there
is state inconsistency according to Prop. 6.6 or transition inconsistency according to
Prop. 6.9.

Proposition 6.12 (Partial Discrete Consistency)
The discrete event part 𝑍𝑚𝑒𝑎𝑠 of a VO is called partial discrete consistent with the
nominal state machine 𝑍*, if there is neither full discrete consistency according to
Prop. 6.10 nor discrete inconsistency according to Prop. 6.11.

Proof:
If there is neither full discrete consistency according to Prop. 6.10 nor discrete inconsis-
tency according to Prop. 6.11, there is at least one main component that shows partial
consistency according to Prop. 6.5 or Prop. 6.8. Even though the other main component
might show full consistency according to Prop. 6.4 or Prop. 6.7, the integral property
can not be better than the properties of the included main components.

6 Guaranteed Verification of Hybrid Systems 74

The implementation of this propositions is straight forward, as all necessary sets and
values are available in the used setting. More realistic scenarios assuming less a priori
knowledge are introduced in Section 6.2 and Section 6.3.

6.1.3 Combination of the Dynamic and the Discrete
Verification Results

The results of the discrete event system part can be joined with the results of the dynamic
system part to achieve the overall assessment of the hybrid system. The solution of
Problem 6.1 is thus given by Prop. 6.13 as follows:

Proposition 6.13 (Mapped Set of States Based Point Real Hybrid Con-
sistency)
The mapped state signal 𝑄𝑚𝑒𝑎𝑠, the interval type enclosures of the measurement
data [𝑈𝑚𝑒𝑎𝑠, 𝑌𝑚𝑒𝑎𝑠] and the set of events ℰ𝑚𝑒𝑎𝑠 of the verification object 𝐻𝑚𝑒𝑎𝑠 are
called consistent with a direct hybrid specification 𝑆*

𝐻,𝑑, if

• the specified state machine 𝑍* is full discrete consistent and

• the specified subsystems 𝑠(𝑖)* ∈ 𝒮*
𝑑 are full dynamic consistent.

Proof:
Based on the mapped state signal according to Def. 6.10 the currently active subsystem
is known at each time step. The resulting trace of the state machine is checked for con-
sistency with the discrete event specification 𝑍* by regarding the states and transitions.
Consistency of the states can be checked by Prop. 6.4 and consistency of the transitions
by Prop. 6.7. If both parts are consistent, the measurement is consistent with the spec-
ified state machine.
The dynamic of the included subsystems can be checked according to Prop. 6.2, again
assuming a mapped set of measured states 𝒬𝑚𝑒𝑎𝑠. If both system parts are consistent,
the overall hybrid system is consistent.

Consistency of the hybrid system results from the combination of results for the dynamic
and discrete subsystems according to Prop. 6.13. Inconsistency of the hybrid system
is given as soon as one subsystem is inconsistent. Else the hybrid system is partial
consistent, meaning that there is no inconsistent subsystem but at least on subsystem
is partial consistent.

6 Guaranteed Verification of Hybrid Systems 75

An overview of the different propositions and possible results is given in Tab. 6.1.

Table 6.1: Consistency criteria

Property
Part of the System full consistency partial consistency inconsistency
Dynamic Subsystems Prop. 6.2 not applicable Prop. 6.3
States Prop. 6.4 Prop. 6.5 Prop. 6.6
Transitions Prop. 6.7 Prop. 6.8 Prop. 6.9
State Machine Prop. 6.10 Prop. 6.12 Prop. 6.11

Prop. 6.3
Hybrid System Prop. 6.13 else or

Prop. 6.11

By applying Prop. 6.2, consistency of the dynamic part of the hybrid system can be
shown in a straight forward way. The results are calculated based on the propositions
of the previous chapters and thus show the same guaranteed properties as defined there.
A direct specification 𝒮*

𝑑 was used throughout the chapter for notational simplicity. It is
straight forward to extend all propositions to hold also for an interval type specification
𝒮*

𝑖 . This is due to the fact that the dynamic verification is based on the united solution
set given by the measurement data. Therefore all properties stay the same except that
the verification of dynamic consistency is done based on Prop. 5.1 instead of Prop. 4.1.
Subsystems that are verified using the Kaucher based approach are guaranteed to be
correct and it is not possible that there are any hidden faults present in the system.
The state machine has to use point real numbers in both cases. Therefore the definitions
and propositions for the discrete event part are unchanged.
An example of the hybrid verification procedure for a mapped set of measured states is
given in Example 6.1.

6 Guaranteed Verification of Hybrid Systems 76

Example 6.1:
Assume a direct hybrid specification 𝑆*

𝐻,𝑑 = [𝑍*,𝒮*
𝑑]. The nominal state machine 𝑍*

is depicted in Fig. 6.3.

𝑞(1)start 𝑞(2)

𝑒(1)

𝑒(2)

𝑒(3) 𝑒(4)

Figure 6.3: Specified state machine 𝑍*

The state machine consists of two states 𝒬* =
{︁
𝑞(1)*, 𝑞(2)*

}︁
= {1, 2}, the events are

based on the enabler signal that is defined to be the output signal 𝑤 = 𝑦:

𝑒(1)* : 𝑤𝑘 ∈ 𝑙(1) = [1, 2] (6.30)
𝑒(2)* : 𝑤𝑘 ∈ 𝑙(2) = [31, 33] (6.31)
𝑒(3)* : 𝑤𝑘 ∈ 𝑙(3) = [−∞, ∞] (6.32)
𝑒(4)* : 𝑤𝑘 ∈ 𝑙(4) = [−∞, ∞] . (6.33)

The events 𝑒(3)* and 𝑒(4)* are enabled for all values of the enabler signal, leading to the
permanent possibility to stay in the current state, based on the transition function:

𝑓 *
(︁
𝑞(1)*, 𝑒(1)*

)︁
= 𝑞(2)* (6.34)

𝑓 *
(︁
𝑞(2)*, 𝑒(2)*

)︁
= 𝑞(1)* (6.35)

𝑓 *
(︁
𝑞(1)*, 𝑒(3)*

)︁
= 𝑞(1)* (6.36)

𝑓 *
(︁
𝑞(2)*, 𝑒(4)*

)︁
= 𝑞(2)*. (6.37)

The set of dynamic systems 𝒮*
𝑑 is given by first order systems, i.e. 𝑛𝑎(𝑖) = 𝑛𝑐(𝑖) = 1,

∀ 𝑖 ∈ {1, 2} leading to

𝑠(𝑖)* : 𝑦𝑘 = 𝑎*
1(𝑖)𝑦𝑘−1 + 𝑐*

1(𝑖)𝑢𝑘−1. (6.38)

The nominal parameters of the dynamic subsystems are given in Tab. 6.2.

Table 6.2: Nominal parameters of the subsystems 𝑠(1)* and 𝑠(2)*

Subsystem 𝑎*
1 𝑐*

1

𝑞(1)* 0.1 1
𝑞(2)* 2.0 1

6 Guaranteed Verification of Hybrid Systems 77

There are no optional initial input and output values given. Thus the input and out-
put values are kept across the switches.
The implementation is assumed to be done by one or more human developers. There-
fore there might be inconsistencies in the resulting VO. Note that the implemented
system is assumed to consist of real hard- and software and to include a given plant
that cannot be changed. Therefore the corresponding state machine 𝑍𝑚𝑒𝑎𝑠 and its
dynamical subsystems 𝒮𝑚𝑒𝑎𝑠 are not directly known. Nevertheless it is possible to
excite the system and measure its output and state signals. The random excitation
signal used in this example is given by

𝑢𝑘 = 1 + 0.2𝜂𝑘, (6.39)
where 𝜂𝑘 is drawn from a standard normal distribution. The resulting measurement
data is given in Fig. 6.4. Thereby the output was enclosed by intervals using an
additive fault of 𝛿𝑎

𝑦 = 0.5. The switching times are based on the information given in
the mapped state signal

𝑄𝑚𝑒𝑎𝑠 = [1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1] (6.40)
leading to the switches 𝑘𝜏 = [1, 6, 10]. The relevant values of the enabler signal are
given at the time steps right before a switch 𝑤𝑘𝜏,𝑖−1 with 𝑖 ∈ {2, 3} i.e. 𝑤5 = [0.6, 1.1]
and 𝑤9 = [31.9, 32.9].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150
5

10
15
20
25
30
35

Time step 𝑘 with Δ𝑡 = 1s

y

Measurement
Enclosure

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

1

2

u

Figure 6.4: Measured trajectory and subsystem switches

6 Guaranteed Verification of Hybrid Systems 78

Dynamic Consistency

The subsystems are verified using the introduced Kaucher based method. The re-
sulting feasibility signals are depicted in Fig. 6.5. The first verification result can
be calculated for 𝑘𝑚𝑖𝑛 = max(𝑛𝑎, 𝑛𝑐) + 1. Due to the autoregressive system of order
𝑛𝑎 = 𝑛𝑐 = 1 in this example it is thus not possible to calculate a verification result
for the very first element of each segment. It can be seen, that all three segments
𝑗 = {1, 2, 3} can be explained by the respective mapped nominal states 𝑖 = {1, 2}
using the Kaucher based method according to Prop. 6.2. Therefore the dynamic
subsystems 𝒮𝑚𝑒𝑎𝑠 are full consistent with the specification 𝒮*

𝑑 .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
infeasible

feasible
Verification Result Segment 2 and 𝑠(2)*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
infeasible

feasible
Verification Result Segment 1 and 𝑠(1)*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
infeasible

feasible
Verification Result Segment 3 and 𝑠(1)*

Figure 6.5: Verification result for each segment (using a mapped state signal)

6 Guaranteed Verification of Hybrid Systems 79

Discrete Consistency

There is a mapped set of states given in this example. Therefore the measured set of
states is given by the unique values in the mapped state signal 𝑄𝑚𝑒𝑎𝑠

𝒬𝑚𝑒𝑎𝑠 = {1, 2} =
{︁
𝑞(1)*, 𝑞(2)*

}︁
= 𝒬* (6.41)

which leads to full state consistency according to Prop. 6.4.
The set of measured events can be extracted from the measurement data. First, the
events leading to the switches in 𝑘 ∈ {6, 10} are determined:

𝑒
(1)
𝑚𝑒𝑎𝑠,5 : 𝑤5 = [0.6, 1.6] ∩ [1, 2] ̸= ∅ : 𝑒(1)* (6.42)

𝑒
(2)
𝑚𝑒𝑎𝑠,5 : 𝑤5 = [0.6, 1.6] ∩ [−∞, ∞] ̸= ∅ : 𝑒(3)* (6.43)

𝑒
(3)
𝑚𝑒𝑎𝑠,5 : 𝑤5 = [0.6, 1.6] ∩ [−∞, ∞] ̸= ∅ : 𝑒(4)* (6.44)

𝑒
(1)
𝑚𝑒𝑎𝑠,9 : 𝑤9 = [31.9, 32.9] ∩ [31, 33] ̸= ∅ : 𝑒(2)* (6.45)

𝑒
(2)
𝑚𝑒𝑎𝑠,9 : 𝑤9 = [31.9, 32.9] ∩ [−∞, ∞] ̸= ∅ : 𝑒(3)* (6.46)

𝑒
(3)
𝑚𝑒𝑎𝑠,9 : 𝑤9 = [31.9, 32.9] ∩ [−∞, ∞] ̸= ∅ : 𝑒(4)* . (6.47)

This means that
{︁
𝑒(1)*, 𝑒(3)*, 𝑒(4)*

}︁
are activated at 𝑘 = 5 and

{︁
𝑒(2)*, 𝑒(3)*, 𝑒(4)*

}︁
are

activated at 𝑘 = 9. The events can now be applied to the nominal transition function:

𝑓 *
(︁
𝑞𝑚𝑒𝑎𝑠,5, 𝑒

(1)
𝑚𝑒𝑎𝑠,5

)︁
= 𝑓 *

(︁
𝑞(1)*, 𝑒(1)*

)︁ != 𝑞(2)* = 𝑞𝑚𝑒𝑎𝑠,6 (6.48)

𝑓 *
(︁
𝑞𝑚𝑒𝑎𝑠,5, 𝑒

(2)
𝑚𝑒𝑎𝑠,5

)︁
= 𝑓 *

(︁
𝑞(1)*, 𝑒(3)*

)︁ != 𝑞(1)* ̸= 𝑞𝑚𝑒𝑎𝑠,6 (6.49)

𝑓 *
(︁
𝑞𝑚𝑒𝑎𝑠,5, 𝑒

(3)
𝑚𝑒𝑎𝑠,5

)︁
= 𝑓 *

(︁
𝑞(1)*, 𝑒(4)*

)︁
= ∅ (6.50)

𝑓 *
(︁
𝑞𝑚𝑒𝑎𝑠,9, 𝑒

(1)
𝑚𝑒𝑎𝑠,9

)︁
= 𝑓 *

(︁
𝑞(2)*, 𝑒(2)*

)︁ != 𝑞(1)* = 𝑞𝑚𝑒𝑎𝑠,10 (6.51)

𝑓 *
(︁
𝑞𝑚𝑒𝑎𝑠,9, 𝑒

(2)
𝑚𝑒𝑎𝑠,9

)︁
= 𝑓 *

(︁
𝑞(2)*, 𝑒(3)*

)︁
= ∅ (6.52)

𝑓 *
(︁
𝑞𝑚𝑒𝑎𝑠,9, 𝑒

(3)
𝑚𝑒𝑎𝑠,9

)︁
= 𝑓 *

(︁
𝑞(2)*, 𝑒(4)*

)︁ != 𝑞(2)* ̸= 𝑞𝑚𝑒𝑎𝑠,10. (6.53)

It can be seen that (6.48) and (6.51) hold. This leads to the verification of the
transition function in 𝑘 ∈ {5, 9}, that generates the switches 𝑘𝜏 ∈ {6, 10}. The events
𝑒(3)* and 𝑒(4)* are enabled for all 𝑘 ∈ {1, 2, . . . , 15} and provide the possibility to stay
in the same state for several time steps. To improve readability, only the verification
of one exemplary step is shown. The activated events are

𝑒
(1)
𝑚𝑒𝑎𝑠,8 : 𝑤8 = [15.3, 16.3] ∩ [−∞, ∞] ̸= ∅ : 𝑒(3)* (6.54)

𝑒
(2)
𝑚𝑒𝑎𝑠,8 : 𝑤8 = [15.3, 16.3] ∩ [−∞, ∞] ̸= ∅ : 𝑒(4)*. (6.55)

6 Guaranteed Verification of Hybrid Systems 80

These are applied to the nominal transition function

𝑓 *
(︁
𝑞𝑚𝑒𝑎𝑠,8, 𝑒

(1)
𝑚𝑒𝑎𝑠,8

)︁
= 𝑓 *

(︁
𝑞(2)*, 𝑒(3)*

)︁
= ∅ (6.56)

𝑓 *
(︁
𝑞𝑚𝑒𝑎𝑠,8, 𝑒

(2)
𝑚𝑒𝑎𝑠,8

)︁
= 𝑓 *

(︁
𝑞(2)*, 𝑒(4)*

)︁ != 𝑞(2)* = 𝑞𝑚𝑒𝑎𝑠,9. (6.57)

Thus the behavior is valid at time 𝑘 = 8. Similar results are obtained for all other
time steps. The nominal transition function holds ∀𝑞𝑚𝑒𝑎𝑠,𝑘 ∈ 𝑄𝑚𝑒𝑎𝑠, which leads to full
transition consistency according to Prop. 6.7. Hence full state consistency (Prop. 6.4)
and full transition consistency (Prop. 6.7) hold in the given example. This leads to
full discrete consistency between 𝑍𝑚𝑒𝑎𝑠 and 𝑍* according to Prop. 6.10.

Hybrid Consistency

The previous partial results are now combined with respect to hybrid consistency as
given in Prop. 6.13. It was shown that 𝑍𝑚𝑒𝑎𝑠 is full consistent with 𝑍* and that 𝒮𝑚𝑒𝑎𝑠

is full consistent with 𝒮*
𝑑 . Therefore the verification object 𝐻𝑚𝑒𝑎𝑠 and the specification

𝑆*
𝐻,𝑑 are consistent. This means that the superimposed state machine as well as the

linear dynamic subsystems of the VO that produced the measurement in Fig. 6.4 are
full consistent with the specification of 𝑆*

𝐻,𝑑 given in this example. Therefore the VO
is verified with respect to the nominal system.

6 Guaranteed Verification of Hybrid Systems 81

6.2 Verification of Hybrid Systems With Given
Switching Times

In general it is not possible to measure the internal signals and states of a VO. Therefore
the setting is changed and the assumption of an available mapped state signal 𝑄𝑚𝑒𝑎𝑠

is dropped. Nevertheless, it is still assumed that the correct times of the switches
𝑘𝜏 are available, even though the respective active states are unknown. The resulting
consistency problem is given in the following:

Problem 6.2 (Point Real Hybrid Consistency with Given Switches)
Is the nominal hybrid system, specified by a direct hybrid specification

𝑆*
𝐻,𝑑 = {𝑍*,𝒮*

𝑑} (6.58)

consistent with the input-output behavior given by the interval type enclosures of
𝑇 measurement values

[𝑈𝑚𝑒𝑎𝑠, 𝑌𝑚𝑒𝑎𝑠] =
[︁
⟨𝑢𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 , ⟨𝑦𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1

]︁
(6.59)

and the set of switches

{𝑘𝜏,𝑗}𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1 , (6.60)

i.e. can the measurement data be explained by the nominal system?

To solve the problem, it is necessary to determine a mapped state signal 𝑄. The measure-
ment data can be segmented based on the given switches. The result can be interpreted
as an unmapped state signal as it is not known which state is active after each switch.
Therefore is is necessary to determine the correct nominal subsystem for each segment.
There are two important assumptions that need to hold to ensure an unambiguous map-
ping from nominal subsystems to measurement segments.

Assumption 6.2 (Prager-Oettli-Distinguishability of the Set of Subsys-
tems)
Each two nominal subsystems 𝑠(𝑖)*, 𝑠(𝑗)* ∈ 𝒮*

𝑑 with 𝑖 ̸= 𝑗 are called Prager-Oettli-
Distinguishable (PO-Distinguishable) with respect to specific segmented measure-
ment data

⟨[︁
U(𝑗)

𝑚𝑒𝑎𝑠, Y(𝑗)
𝑚𝑒𝑎𝑠

]︁⟩𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1
, if there is no segment 𝑗 ∈ {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ} that

fulfills Prop. 4.1 for both subsystems 𝑠(𝑖)* and 𝑠(𝑗)*.

6 Guaranteed Verification of Hybrid Systems 82

This means that two distinct nominal subsystems given in the specification are suf-
ficiently different with respect to the measurement data, noise assumptions and the
interval enclosure.
The second assumption transfers this property to the segments of the measurement
data.

Assumption 6.3 (Mappability of the Measurement)
The segmented measurement data

⟨[︁
U(𝑗)

𝑚𝑒𝑎𝑠, Y(𝑗)
𝑚𝑒𝑎𝑠

]︁⟩𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1
is called mappable to the

set of dynamic subsystems 𝒮*
𝑑 , if there is no specified subsystem 𝑠(𝑖)* ∈ 𝒮*

𝑑 that
fulfills Prop. 4.1 for any segment

[︁
U(𝑗)

𝑚𝑒𝑎𝑠, Y(𝑗)
𝑚𝑒𝑎𝑠

]︁
that was generated by another

dynamic system 𝑠(𝑗) with 𝑠(𝑗) ̸= 𝑠(𝑖)*.

If Assumption 6.2 and 6.3 hold, it is possible to determine a mapped state signal. There-
fore Problem 6.2 can be solved by the following proposition:

Proposition 6.14 (Point Real Hybrid Consistency with Given Switches)
The direct hybrid specification 𝑆*

𝐻,𝑑, the interval type enclosures of the measurement
data [𝑈𝑚𝑒𝑎𝑠, 𝑌𝑚𝑒𝑎𝑠] and the set of switches {𝑘𝜏,𝑗}𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1 of a verification object 𝐻𝑚𝑒𝑎𝑠

can be used to set up a mapped state signal 𝑄 if the specified set of subsystems 𝑆*
𝑑

is PO-distinguishable with respect to the measurement data according to Assump-
tion 6.2 and the measurement data is mappable to 𝑆*

𝑑 according to Assumption 6.3.
The availability of a mapped state signal 𝑄 transforms the problem to a mapped set
of states based point real hybrid consistency problem. This problem can be solved
using Prop. 6.13.

Proof:
An unmapped state signal can directly be constructed from the given correct switches
{𝑘𝜏,𝑗}𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1 according to (6.19). As Assumption 6.2 and 6.3 hold, individual nominal
subsystems within the specification 𝒮*

𝑑 can be distinguished from each other.
Also, the united solution set ∑︀(𝑗)

∃∃ defined by the measurement data of each segment[︁
U(𝑗)

𝑚𝑒𝑎𝑠, Y(𝑗)
𝑚𝑒𝑎𝑠

]︁
, generated by a dynamic system 𝑠(𝑗), cannot be explained by any other

nominal system 𝑠(𝑖)* ∈ 𝒮*
𝑑 , with 𝑠(𝑗) ̸= 𝑠(𝑖)*. The generating subsystem can thus be

determined unambiguously for each segment. The mapped nominal subsystems can be
used to determine the active states 𝑞𝑘 with 𝑘 ∈ {𝑘𝜏,𝑗, 𝑘𝜏,𝑗 + 1, . . . , 𝑘𝜏 ′,𝑗} for all segments
𝑗 ∈ {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ}. The resulting signal 𝑄 is a mapped state signal according to
Def. 6.10. The given measurement data [𝑈𝑚𝑒𝑎𝑠, 𝑌𝑚𝑒𝑎𝑠], together with the given set of
nominal subsystems 𝒮*

𝑑 and the extracted mapped state signal 𝑄 represents the setting
of Problem 6.1 that can be solved by Prop. 6.13.

6 Guaranteed Verification of Hybrid Systems 83

Segments generated by an unspecified subsystem 𝑠 /∈ 𝒮*
𝑑 cannot be mapped to a nominal

subsystem 𝑠(𝑖)* if 𝑠 is PO-Distinguishable from all nominal subsystems 𝑠(𝑖)* ∈ 𝒮*
𝑑 accord-

ing to Assumption 6.2. If this is not the case, the measurement data generated by 𝑠 can
be explained by at least one nominal subsystem 𝑠(𝑖)* ∈ 𝒮*

𝑑 and thus it is impossible to
recognize the subsystem 𝑠. Note that the definition is based on all measurement data of
a segment, i.e. it is possible that partial measurement data of a segment can be included
in more then one nominal subsystem.

The method leads to a mapping algorithm that compares the dynamic of each nominal
subsystem, given by the 𝑛𝑞 states, with every segment 𝑗 ∈ {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ} of the
measurement data. This comparison is done based on the united solution set, as given
in Prop. 4.1. The flowchart of the algorithm is given in Fig. 6.6.
An exemplary application of point real hybrid consistency with known switches is given
in Example 6.2.

𝑗 ≤ 𝑛𝑠𝑤𝑖𝑡𝑐ℎ?

𝑖 ≤ 𝑛𝑞?
No matching state

for segment 𝑗

𝑠(𝑖)* ∈ ∑︀(𝑗)
∃∃ ?

Assign state 𝑖
to segment 𝑗

𝑗 = 0

𝑗 ← 𝑗 + 1

yes

yes

Stop

no

no

no

yes 𝑖 = 0
𝑖← 𝑖 + 1

Figure 6.6: Flowchart of the mapping algorithm

6 Guaranteed Verification of Hybrid Systems 84

Example 6.2:
Assume the same setting as introduced in Example 6.1, without the assumption of a

given measured mapped state signal. Instead, a set of switches is given by

𝑘𝜏 ∈ {1, 6, 10} . (6.61)

Based on the switches and the length 𝑇 = 15 of the measurement data, the endpoints
of the segments can be calculated:

𝑘𝜏 ′ ∈ {5, 9, 15} . (6.62)

The nominal parameters given in Tab. 6.2 and the algorithm of Fig. 6.6 are used to
determine the mapping between segments and states.
To show the correct classification of all subsystems, the algorithm is altered such that
it compares all possible nominal subsystems with each segment instead of proceeding
to the next segment as soon as a consistent subsystem is found.
The results are depicted in Fig. 6.7. Each subfigure shows the evaluation of both
nominal subsystems 𝑠(1)* and 𝑠(2)* for one of the segments 𝑗 ∈ {1, 2, 3}. The shaded
areas mark measurement data that does not belong to the segments and thus is
not taken into account for the respective verification. It can be seen, that only one
generating nominal subsystem can be verified for each of the three segments. This
leads to an unambiguous mapping

𝑄 = [1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1] (6.63)

which is the same as given in (6.40).
The matching algorithm is based on Prop. 6.1. Therefore dynamic consistency is
given, if it is possible to generate a mapped state signal 𝑄. The discrete verification
can be done as described in the previous section. The combination of both yields the
hybrid verification result.
Both results are equivalent with the calculations and results demonstrated in Exam-
ple 6.1 and are thus not repeated here.

6 Guaranteed Verification of Hybrid Systems 85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
infeasible

feasible
Verification Result Segment 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
infeasible

feasible
Verification Result Segment 1

𝑠(1)*

𝑠(2)*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
infeasible

feasible
Verification Result Segment 3

Figure 6.7: Verification Result for each segment (without mapped set of states)

6.3 Verification of Hybrid Systems With Unknown
Switching Times

In the last step even the knowledge about the switching times is dropped. Only the spec-
ification and the input and output measurement data are available. Thus the switching
times as well as the respective modes need to be reconstructed from the measurement
data only. Therefore an additional segmentation step is necessary in the procedure. This
step aims at finding the unknown switches 𝑘𝜏 , at which the active generating subsystem
changes. The corresponding verification problem is given in Problem 6.3.

6 Guaranteed Verification of Hybrid Systems 86

Problem 6.3 (Point Real Hybrid Consistency)
Is the nominal hybrid system, specified by a direct hybrid specification

𝑆*
𝐻,𝑑 = {𝑍*,𝒮*

𝑑} (6.64)

consistent with the input-output behavior given by the interval type enclosures of
𝑇 measurement values

[𝑈𝑚𝑒𝑎𝑠, 𝑌𝑚𝑒𝑎𝑠] =
[︁
⟨𝑢𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 , ⟨𝑦𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1

]︁
(6.65)

without any knowledge about the state or the switching times?

The problem can be solved, if it is possible to determine a mapped state signal from
the input-output data only. If this signal is constructed, Problem 6.3 can again be re-
duced to Problem 6.1 which is solved by Prop. 6.13. However, in this setting there is
no information about the active states or the switches. Therefore an additional iden-
tification and segmentation procedure is necessary. The procedure introduced in this
thesis is based on previous work of the author, published in [Die13a], [Die13b] and used
in [Die17]. However, while the original work aims on identifying an a priori unknown
library of subsystems from the measurement data, the concept is adapted in this thesis
to consider a given set of nominal subsystems. Additionally, it is extended to the interval
arithmetic context of guaranteed verification.
First, switches that are detected by the segmentation and identification method are
defined.

Definition 6.11 (Detected Switch)
The time instant 𝑘 that does not show dynamic consistency according to Prop. 6.1
of any nominal subsystems 𝑠(𝑖)* ∈ 𝒮*

𝑑 with the current regressor matrix 𝐴𝑚𝑒𝑎𝑠,𝑘 and
the current measurement vector 𝐵𝑚𝑒𝑎𝑠,𝑘 is called detected switch 𝑘𝜏,𝑗+1 = 𝑘.

To ensure correct segmentation, the available measurement data needs to be Prager-
Oettli-Segmentable:

Assumption 6.4 (Prager-Oettli-Segmentability)
The measurement data

[︁
U(𝑗)

𝑚𝑒𝑎𝑠, Y(𝑗)
𝑚𝑒𝑎𝑠

]︁
and

[︁
U(𝑗+1)

𝑚𝑒𝑎𝑠 , Y(𝑗+1)
𝑚𝑒𝑎𝑠

]︁
of two consecutive seg-

ments 𝑗 and 𝑗 +1 that are generated by distinct subsystems 𝑠(𝑗)* ̸= 𝑠(𝑗+1)* are called
Prager-Oettli-Segmentable with respect to a given set of subsystems 𝒮*

𝑑 , if there is
no subsystem 𝑠(𝑖)* ∈ 𝒮*

𝑑 that fulfills Prop. 6.1 for all measurement data points in
the combined segment [𝑘𝜏,𝑗, 𝑘𝜏 ′,𝑗+1].

6 Guaranteed Verification of Hybrid Systems 87

Assumption 6.4 implies Prager-Oettli-Distinguishability of the set of subsystems 𝒮*
𝑑 ac-

cording to Assumption 6.2. Based on the segmentability assumption it is possible to
extract a mapped state signal to solve Problem 6.3.

Proposition 6.15 (Point Real Hybrid Consistency)
The direct hybrid specification 𝑆*

𝐻,𝑑 and the interval type enclosures of the mea-
surement data [𝑈𝑚𝑒𝑎𝑠, 𝑌𝑚𝑒𝑎𝑠] of a verification object 𝐻𝑚𝑒𝑎𝑠 can be used to set up a
mapped state signal 𝑄, if the measurement data is PO-segmentable with respect to
𝑆*

𝐻,𝑑.
The availability of a mapped state signal 𝑄 transforms the problem to a mapped set
of states based point real hybrid consistency problem. This problem can be solved
using Prop. 6.13.

Proof:
If Prager-Oettli-Distinguishability (Assumption 6.2) and mappability of the measure-
ment (Assumption 6.3) are fulfilled, there is only one possible consistent subsystem
𝑠(𝑖)* ∈ 𝒮*

𝑑 at the end of a segment 𝑘𝜏 ′,𝑗 = 𝑘𝜏,𝑗+1 − 1. This subsystem needs to represent
the active state of the whole segment

[︁
𝑘𝜏,𝑗, 𝑘𝜏 ′,𝑗

]︁
.

On the other hand, it is impossible that this subsystem is consistent with the mea-
surement data of the entire next segment generated by a different subsystem 𝑠(𝑗+1). A
nominal subsystem 𝑠(𝑖)* ∈ 𝒮*

𝑑 that fulfills Prop. 6.1 for all measurement points in the
entire combined segment [𝑘𝜏,𝑗, 𝑘𝜏 ′,𝑗+1] will also fulfill Prop. 6.1 for any part of the com-
bined segment. This holds especially for the parts [𝑘𝜏,𝑗, 𝑘𝜏 ′,𝑗] and [𝑘𝜏,𝑗+1, 𝑘𝜏 ′,𝑗+1], i.e. the
same nominal subsystem is consistent with two distinct segments

[︁
U(𝑗)

𝑚𝑒𝑎𝑠, Y(𝑗)
𝑚𝑒𝑎𝑠

]︁
and[︁

U(𝑗+1)
𝑚𝑒𝑎𝑠 , Y(𝑗+1)

𝑚𝑒𝑎𝑠

]︁
. This is only possible if 𝑠(𝑖)* = 𝑠(𝑗) = 𝑠(𝑗+1) which is not allowed in the

case of mappability of the measurement according to Assumption 6.3.
Thus it is possible to determine a switch 𝑘𝜏,𝑗 ≥ 𝑘𝜏,𝑗 for each 𝑗 ∈ {2, 3, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ},
i.e. the true number of segments is determined even if the detected switches do not ex-
actly match the real ones. Based in this result it is possible to determine the respective
active subsystem for all segments, whereas each estimated segment

[︁
𝑘𝜏,𝑗, 𝑘𝜏 ′,𝑗

]︁
at least

partly overlaps with the true segment [𝑘𝜏,𝑗, 𝑘𝜏 ′,𝑗]. This leads to a mapped state signal
with correct mapping for all segments, even if the detected segment boundaries might
slightly differ from the true ones.11

Thus Problem 6.3 is transformed to Problem 6.1 which completes the proof.

If Prager-Oettli-Segmentability according to Assumption 6.4 does not hold, it is not
possible to determine the switch. The flowchart of the algorithm implementing the
introduced identification and segmentation method is given in Fig. 6.8.
11 A detailed proof of this property is given in Section 6.3.1.

6 Guaranteed Verification of Hybrid Systems 88

𝑖 ≤ 𝑛𝑞? 𝑠(𝑖)* ∈ ∑︀(𝑗)
∃∃ ? Add 𝑠(𝑖)* to 𝒮𝑐𝑜𝑛,𝑘

𝒮𝑐𝑜𝑛,𝑘 = ∅?

Switch
𝑘𝜏,𝑗+1 = 𝑘 detected

Store
𝒮𝑐𝑜𝑛,𝑘−1

for segment 𝑗

Reinitialization

𝑗 = 0
𝑗 ← 𝑗 + 1, 𝑘 = 𝑘𝑠𝑡𝑎𝑟𝑡 − 1
𝑘 ← 𝑘 + 1, 𝑖 = 0
𝑖← 𝑖 + 1

no

yes

yes yes

no

no

𝑖-loop
𝑘-loop
𝑗-loop

Figure 6.8: Flowchart of the identification and segmentation algorithm

The inner loop (’𝑖-loop’) depicted in the flow chart compares all 𝑛𝑞 = |𝒮*
𝑑 | nominal sub-

systems 𝑠(𝑖)* ∈ 𝒮*
𝑑 , with the current segment. If there is a consistent nominal subsystem,

it is added to the set of consistent subsystems 𝒮𝑐𝑜𝑛. The next loop (’𝑘-loop’) is running
as long as the set of consistent subsystems 𝒮𝑐𝑜𝑛,𝑘 is non-empty. If this is the case, the
current segment can be explained by at least one nominal subsystem. Therefore the
segment is extended by one time step.
This new segment is again verified by the 𝑖-loop. If the set of consistent subsystems
is empty, i.e. 𝒮𝑐𝑜𝑛 = ∅, none of the nominal subsystems is able to explain the current
segment. However, the measurement was verified in the previous step. Therefore a de-
tected switch12 is recognized at 𝑘𝜏,𝑗+1 = 𝑘 and the active subsystems for the segment 𝑗
are given by 𝒮𝑐𝑜𝑛,𝑘−1.
12 The first switch of a system is defined to be 𝑘𝜏,1 = 1, according to Def. 6.7ff.

6 Guaranteed Verification of Hybrid Systems 89

Note that due to Assumption 6.3 only one subsystem is allowed to explain an entire
segment of the measurement data. This leads to

⃒⃒
⃒𝒮𝑐𝑜𝑛,𝑘𝜏 ′,𝑗

⃒⃒
⃒ != 1.

However, multiple consistent subsystems |𝒮𝑐𝑜𝑛,𝑘| ≥ 1 are possible for partial segments
𝑘 ∈ {𝑘𝜏,𝑗 + 1, 𝑘𝜏,𝑗 + 2, . . . , 𝑘𝜏 ′,𝑗 − 1}.
Detecting a switch and determining the state of the finished segment ends the 𝑘-loop of
the algorithm in Fig. 6.8. The measurement values belonging to the just finished segment
are removed from the considered measurement data. All counters and intermediate
values are reinitialized and the next iteration of the outer loop (’𝑗-loop’) starts for the
following segment.

In order to achieve the hybrid verification result, the discrete and dynamic results are
combined according to Section 6.1.3. An application of the procedure is given in Exam-
ple 6.3.

Example 6.3:
Assume the same setting as introduced in Example 6.1 except that there are neither

a mapped state signal nor any information about the switches.
The first iteration of the 𝑗-loop of the identification and segmentation algorithm
(Fig. 6.8) is depicted in the first subplot of Fig. 6.9.

Both subsystems are considered for verification in each step of the 𝑘-loop. It is possible
to verify subsystem 𝑠(1)* for 𝑘 ∈ {2, 3, 4, 5}. The first result can again be calculated
for 𝑘 = 2 and the first switch is recognized at 𝑘𝜏,2 = 6. This is the first time both
dynamic subsystems show inconsistency, i.e. 𝒮𝑐𝑜𝑛,6 = ∅.
Note that the algorithm will break the 𝑘-loop at 𝑘 = 6. However this was not done in
Fig. 6.9 to show that the verification results stay infeasible for all regarded segments
in the remaining measurement time.
In the reinitialization step, the detected first segment is deleted from the measurement
data. This is depicted as shaded area in subfigure 2 and 3 of Fig. 6.9. The second
iteration of the 𝑗-loop verifies subsystem 𝑠(2)* for 𝑘 ∈ {7, 8, 9} and detects the next
switch at 𝑘𝜏,3 = 10. Subsystem 𝑠(1)* is evaluated to be infeasible for the whole available
measurement. Again the infeasible result for both subsystems are given until the end
of the measurement in contrary to the genuine break of the 𝑘-loop.
The third segment shows consistency with subsystem 𝑠(1)* for 𝑘 ∈ {11, 12, 13, 14, 15}
which leads to 𝑘𝜏 ′,3 = 𝑇 . This is feasible with respect to Def. 6.7ff. The subsystem
𝑠(2)* is evaluated to be infeasible for segment 3.
The results can be used to set up the matched state signal

𝑄 = [1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1] (6.66)

which corresponds again with the ground truth given in (6.40). The successful map-
ping for all time steps implies continuous consistency as there is an unambiguous
nominal subsystem mapped to each time step.

6 Guaranteed Verification of Hybrid Systems 90

The nominal state machine 𝑍* of Example 6.1 is used here as well. Due to 𝑄 = 𝑄𝑚𝑒𝑎𝑠,
all values needed for the verification of the discrete part are the same as in Exam-
ple 6.1. This leads to full discrete consistency between the unsegmented measurement
data and the specification.
Finally, full hybrid consistency can also be concluded for this setting. This shows a
successful verification of a hybrid system only based on interval type measurements
of the input-output data and the nominal system 𝑆*

𝐻,𝑑.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
infeasible

feasible
Verification Result Segment 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
infeasible

feasible
Initial Verification Result 𝑠(1)*

𝑠(2)*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
infeasible

feasible
Verification Result Segment 3

Figure 6.9: Verification result for each segment (without segmentation)

6 Guaranteed Verification of Hybrid Systems 91

6.3.1 Convergence of the Identification and Segmentation
Algorithm

To show convergence of the identification and segmentation algorithm it is possible to
extract more information about the switches from the measurement data by adding a
backward iteration. As a basic property of the identification and segmentation algorithm
the true switches are always overestimated and never underestimated. This can be shown
by considering extreme values of the additive noise 𝜖 as follows:

Noise tending to zero (𝜖→ 0) When the noise tends to zero, the interval enclosure
necessary to bound the noise tends to zero, too. Prop. 4.1 has thus to be fulfilled
for each line of the regressor matrix individually without any deviations. If there is
at least one measurement point added to the regressor matrix that is generated by
a different and Prager-Oettli-Distinguishable subsystem, the data is not consistent
anymore. The switch can thus be detected at the first time step of the new interval,
i.e. at the true switch with 𝑘𝜏,𝑗 = 𝑘𝜏,𝑗.

Noise tending to infinity (𝜖→∞) When the noise tends to infinity, the enclosing in-
terval width also tends to infinity to contain the noisy data. Therefore the regressor
matrix provides as well infinite possible entries to fulfill Prop. 4.1 which leads to
consistency for any measurement data. Hence it is ensured that for the detected
switch holds 𝑘𝜏,𝑗 ≥ 𝑘𝜏,𝑗.

Note that 𝜖→∞ will also lead to the violation of Prager-Oettli-Segmentability given in
Assumption 6.4, as well as the violation of the full rank Assumption 3.1. In practice it
is thus important to ensure a suitable 𝜖 such that all assumptions of distinguishability,
segmentability and the rank are met.
It is not possible to determine the precise amount of time 𝑘𝑜𝑣𝑒𝑟 = 𝑘𝜏,𝑗 − 𝑘𝜏,𝑗 the switch
will be overestimated. Nevertheless there will be a gradient from instantaneous detection
𝑘𝑜𝑣𝑒𝑟 = 0 in the case of 𝜖→ 0 and the maximum overestimation in the case of 𝜖→∞.

To determine the switch more precisely, the detection algorithm can be extended with
an antichronological iteration. The end time of the last segment is thereby given as
the time of the last measurement 𝑘𝜏 ′,𝑛𝑠𝑤𝑖𝑡𝑐ℎ

= 𝑇 by definition. The regressor matrix
is set up such that it includes the values from a variable time 𝑘𝑠𝑡𝑎𝑟𝑡 up to the final
time 𝑇 . If the dynamic consistency of Prop. 4.1 is fulfilled for all measurement values[︁
⟨u𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=𝑘𝑠𝑡𝑎𝑟𝑡

⟨y𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=𝑘𝑠𝑡𝑎𝑟𝑡

]︁
, the segment is extended backwards in time by reducing

𝑘𝑠𝑡𝑎𝑟𝑡 ← 𝑘𝑠𝑡𝑎𝑟𝑡 − 1. If the segment extends over a switch, i.e. 𝑘𝑠𝑡𝑎𝑟𝑡 < 𝑘𝜏,𝑗, data from
two distinct subsystems is included in the regressor matrix. The detection of this switch
is dependent on the same assumptions as in forward direction, namely Prager-Oettli-
Distinguishability and Prager-Oettli-Segmentability. The switches detected backwards
in time show the same behavior of overestimation as the switches detected in the forward
iteration.

6 Guaranteed Verification of Hybrid Systems 92

The initial switch is guaranteed to be correct, as it is given by the first measurement
data point by definition. The results of the backward and forward iteration will occur
chronologically alternating, see Fig. 6.10. The time between the switch detection in
backward direction and the switch detection in forward direction is guaranteed to frame
the true switching time. The true switching time is thus overapproximated as well in
forward direction 𝑘𝜏,𝑗,𝑓 as in backward direction 𝑘𝜏,𝑗,𝑏, leading to a switch segment

𝑘𝜏,𝑗 ∈ [𝑘𝜏,𝑗,𝑏, 𝑘𝜏,𝑗,𝑓]. (6.67)

The measurement data between the switch segments, i.e. for the time steps

𝑘 ∈ [𝑘𝜏,𝑗,𝑓 , 𝑘𝜏,𝑗+1,𝑏] (6.68)

belong to a so called trust segment. The trust segment is guaranteed to contain only
measurement data generated by a single subsystem. Verification results calculated based
on trust segments are not disturbed by measurement data generated by other dynamic
systems. The results of the algorithm converge to the true values for a suitable setting
of the enclosed noise 𝜖 and the enclosing interval width 𝛿.

𝑘

𝑘𝜏,1 = 1 𝑘𝜏 ′,3 = 𝑇

Switch segment 1

𝑘𝜏,2

𝑘𝜏,2,𝑏 𝑘𝜏,2,𝑓

Switch segment 2

𝑘𝜏,3

𝑘𝜏,3,𝑏 𝑘𝜏,3,𝑓

Trust segment 1 Trust segment 2 Trust segment 3

Figure 6.10: Example of the alternating occurrence of trust and switch segments

6.4 Conclusion

The concept of verification of dynamic systems based on Kaucher interval arithmetic
introduced in Chapter 4 was extended to hybrid systems in this chapter. Therefore
a hybrid model consisting of a discrete time, value continuous, dynamic system and a
discrete event state machine were formally introduced. The behavior of the dynamic
part is given by parameters that are determined by the discrete event states. As long
as there is only one discrete state active, the dynamic verification can be done as in
the nonhybrid case. If the active state changes, the procedure has to be adapted. Each
segment of measurement data generated by a single active subsystem can be verified
individually.

6 Guaranteed Verification of Hybrid Systems 93

The problem becomes more complex, if it is necessary to determine the segments and the
active subsystems within the segments. Three different approaches to solve this problem
were introduced.

In a first step, the state signal was measured and the given states were assumed to be
mapped with the specification. In a second step, only the switching times were known
and it was necessary to determine the respective active states. Conditions of Prager-
Oettli-Distinguishability on the specification and the mappability of the measurement
data were introduced that ensure the theoretical possibility of determining this infor-
mation. In a third step, there was no information at all about the switches and the
active states. Therefore an algorithm was developed that is able to determine both,
switches and states, in an iterative identification and segmentation procedure. If the in-
troduced property of Prager-Oettli-Segmentability holds, this procedure can be applied
successfully.

The verification of the discrete event part can be done in the same way for all three
settings. The trace given by the mapped state signal is used to set up the measured
state machine which can be compared easily with the defined state machine. Therefore
the set of states and the transition function are compared with the nominal values given
in the specification.

This approach was partially developed in [Hen15] and published in [Sch17a]. Also it was
applied to the practical example of a battery management system [Lem15] and a hybrid
braking system [Glü17] and it was presented in [Sch16][Sch18a][Sch19].

7 Extended Kaucher Based Guaranteed
Verification

This chapter introduces several extensions to the Kaucher based verification framework
developed in the previous chapters. Therefore the point of view is changed from finding
“at least one” consistent parameter to calculating the “largest possible set” of param-
eters within the united solution set. This is beneficial as the calculation of the exact
solution set is an 𝑁𝑃 -Hard problem as stated in Section 3.1.3. This chapter introduces
a method that combines the Kaucher based method with optimization techniques to
calculate the maximum inner approximation of the feasible set.
This approximation is done using different shapes given by the combination of the ob-
jective function and the constraints. Three different shapes are presented and analyzed.
The basic approach uses orthogonal enclosure leading to classic interval type borders.
In a second step, this approach is extended to zonotopic sets to exploit specific proper-
ties of the measurement data. It is widely known in the interval community that using
zonotopic sets avoid large underapproximations that arise from axis parallel orthogonal
enclosure [Jau01][Asa06][Pui06][Alt08][Ing09][Mai16][Roe16][Wan17]. Finally all restric-
tions on the shape of the resulting set are dropped and a general polytope is accepted as
result. Although this is the most general shape and yields the largest inner enclosures, it
is impossible to describe the result in terms of interval values, thus limiting the usability
of this approach.
The last section of the chapter introduces an alternative application of the Kaucher
based verification method in an online setting. Therefore the verification procedure is
extended to allow an iteratively increasing measurement set. It is thus necessary to
provide repeated approximations of the solution set as well as repeated verdicts to eval-
uate the consistency. This resembles the situation of an ongoing diagnosis process of a
running application.

7 Extended Kaucher Based Guaranteed Verification 95

7.1 Solution Set Approximations

Instead of solving the problem whether a particular (nominal) parameter vector is part
of the united solution set, the question is now to find the (whole) feasible set given by
the measurement data. Therefore the constraints 𝑐ℳ of the feasibility problem given by
the measurement data - as defined in Def. 5.6 - are regarded.13 The feasible set is based
only on the measurement data and thus no information about the consistency of the VO
is included. The feasible set is defined as:

Definition 7.1 (Feasible Set)
The feasible set ℱ is given by

ℱ =
{︁
Θ ∈ R𝑛*

𝑎+𝑛*
𝑐 : 𝑐

(𝑖)
ℳ (Θ) ≤ 0, ∀𝑖 ∈ {1, 2, . . . , 2 (𝑇 −max (𝑛*

𝑎, 𝑛*
𝑐))}

}︁
, (7.1)

i.e. the set of all parameters Θ that fulfill the constraints given by the measurement
data as defined in Def. 5.6.

Note that the genuine feasible set here is given according to Def. 5.6 which represents
the united solution set ∑︀∃∃. The feasible set is thus not necessarily connected and not
necessarily constrained by borders parallel to the axis (see Section 3.1.2).

The feasible set can also be defined by a set of vertexes:

Definition 7.2 (Vertex Based Feasible Set)
The feasible set ℱ is constrained by the convex hull (see [Bro08, p. 663]), given by
the set of vertexes 𝒱 =

{︁
𝑉0, 𝑉1, . . . , 𝑉|𝒱|−1

}︁
:

ℱ (𝒱) =
⎧
⎨
⎩Θ ∈ R𝑛*

𝑎+𝑛*
𝑐 : Θ =

|𝒱|−1∑︁

𝑖=0
𝛼𝑖𝑉𝑖

⃒⃒
⃒⃒
⃒⃒ (∀𝑖 : 𝛼𝑖 ≥ 0) ∧

|𝒱|−1∑︁

𝑖=0
𝛼𝑖 = 1

⎫
⎬
⎭ . (7.2)

With this definition it is possible to transfer the setting into an optimization problem
based on the vertexes of the convex hull. The shape of the resulting approximation of
the feasible set ℱ becomes a design parameter that is reflected by the objective function
and the constraints. The solution of the optimization is thus not necessarily of the same
shape as the genuine feasible set.
The approximation of the feasible set can be done in different ways. This thesis uses

three different approaches: hyperrectangular approximation, zonotopic approximation
and polytopic approximation. All three approaches are introduced in the next sections.

13 The constraints of the nominal set 𝑐𝒩 defined in Def. 5.5 are not necessary for the calculation of
the feasible set.

7 Extended Kaucher Based Guaranteed Verification 96

7.1.1 Hyperrectangular Solution Set Approximation

In the hyperrectangular case, the objective function is set up such that the optimization
yields the largest hyperrectangle area within the united solution set. This shape repre-
sents an interval type result, constrained parallel to the coordinate axis.
The solution set is determined using an optimization setting as given in Prop. 7.1.

Proposition 7.1 (Optimization Based Hyperrectangular Solution Set)
The hyperrectangular approximation of the feasible set ℱ2 is given by the set of
vertexes 𝒱2. The set of vertexes 𝒱2 is calculated based on the measurement data
[U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] given for the discrete sampling points 𝑘 ∈ {1, 2, . . . , 𝑇} of a VO. It
is defined as the solution of the optimization problem

𝒱2 = argmax
Θ

(𝐽2 (Θ)) (7.3)

with the objective function

𝐽2 (Θ) =
𝑛*

𝑎+𝑛*
𝑐∏︁

𝑖=1

(︂
𝜃

(𝑖) − 𝜃(𝑖)
)︂

(7.4)

that is subject to the constraints

𝑐
(𝑖)
𝒫 (Θ) := 𝜃(𝑖) − 𝜃

(𝑖) ≤ 0 (7.5)

𝑐ℳ(Θ) ≤ 0 (7.6)

for 𝑖 = {1, 2, . . . , 𝑛*
𝑎 + 𝑛*

𝑐}. Thereby 𝑐𝒫 constrains the solution to be proper and 𝑐ℳ
is given by the measurement data according to Def. 5.6.

Proof:
The result of the optimization problem (7.3) is given by the set of vertexes 𝒱2 that defines
the hyperrectangular approximation ℱ2. The hyperrectangular approximation is proper
in all dimensions due to (7.5). The united solution set is given by the measurement data
and consists of all parameters that fulfill (7.6) according to Def. 5.6. As the optimization
problem (7.3) is constrained by (7.6), all elements of the resulting set of vertexes are
part of the united solution set ∑︀∃∃ and thus

ℱ2 = ℱ (𝒱2) ⊆ ℱ = ∑︀
∃∃ . (7.7)

7 Extended Kaucher Based Guaranteed Verification 97

In general, an 𝑛-dimensional parameter space leads to |𝒱2| = 2𝑛 different vertexes that
determine the solution set. In the hyperrectangular case, the set of vertexes 𝒱2 is directly
given by the interval type parameter vector as illustrated in Example 7.1.

Example 7.1:
For an 𝑛 = 2 dimensional interval type parameter vector

Θ =
[︁
𝜃(1), 𝜃(2)

]︁𝑇
(7.8)

the resulting rectangle is given by the set of |𝒱2| = 2𝑛 = 4 vertexes:

𝒱2 =
{︂[︁

𝜃(1), 𝜃(2)
]︁

,
[︂
𝜃

(1)
, 𝜃(2)

]︂
,
[︂
𝜃

(1)
, 𝜃

(2)
]︂

,
[︂
𝜃(1), 𝜃

(2)
]︂}︂

. (7.9)

Without the constraint set 𝑐𝒫 given in (7.5), the setting can lead to improper solutions.
These solutions cannot be interpreted and therefore are useless with respect to a real
system. This is due to the fact that there is no width defined for improper intervals.
Nevertheless, the objective function is defined on infimum and supremum of the intervals
and can thus be evaluated even for improper intervals. In case of an even number of
parameters being improper, the area multiplication in (7.4) yields a positive value. This
value can be increased to infinity in the “improper direction” leading to impossible
results. Such improper solutions are not suitable for the verification setting, as the
measurement was obtained from a real system, with real generating parameters.
An illustration of the rectangular inner enclosure is given in Example 7.2.

7 Extended Kaucher Based Guaranteed Verification 98

Example 7.2:
Assume the united solution of the measurement data to be given as the blue shape in
Fig. 7.1. The solution is in general not unique because there might be other possible
solutions of the same size. Two possible area maximal inner enclosures are given by
the green rectangles. Note that this example is showing the basic concept of the
enclosure and thus the denoted values are chosen arbitrary.

1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20 1.22 1.24 1.26

0.64

0.66

0.68

0.70

𝜃(2)

𝜃(1
)

United Solution Set of the Measurement Data
Hyperrectangular Approximation

Figure 7.1: Area maximal axis parallel hyperrectangular inner approximation of the united solution
set

7.1.2 Zonotopic Solution Set Approximation

In this approach, the united solution set is constrained by a set of hyperstripes in the
parameter space, generated by the measurement data. The orientation of these hyper-
stripes is similar for consistent measurement data. This leads to a united solution set
showing a zonotopic shape which is depicted as the shaded area in Fig. 7.2.

The formal description of the hyperstripes is done based on [Ble11] such that each line
of the regressor matrix defines a set of feasible parameters ℱ (𝑘). Thereby ℱ (𝑘) denotes
the feasible set at the specific time step 𝑘. The feasible hyperstripes are given by

ℱ (𝑘) = {Θ ∈ R𝑛*
𝑎+𝑛*

𝑐 : −𝛿𝑎 ≤ 𝐵𝑚𝑒𝑎𝑠,𝑘 − 𝐴𝑚𝑒𝑎𝑠,𝑘Θ ≤ 𝛿𝑎} (7.10)

with 𝛿𝑎 being the width of the interval enclosure, i.e. the maximum absolute sensor fault.
The hyperstripe can be written in normalized form as

ℱ (𝑘) =
{︂

Θ ∈ R𝑛*
𝑎+𝑛*

𝑐 :
⃒⃒
⃒⃒𝐵𝑚𝑒𝑎𝑠,𝑘

𝛿𝑎
− 𝐴𝑚𝑒𝑎𝑠,𝑘

𝛿𝑎
Θ
⃒⃒
⃒⃒ ≤ 1

}︂
. (7.11)

7 Extended Kaucher Based Guaranteed Verification 99

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01

0.05

0.10

0.15

𝜃(1)

𝜃(2
)

Figure 7.2: Constraints showing the general zonotopic shape (shaded area) of the united solution set
in the case of two parameters

The feasible set ℱ𝑘 that includes all measurement information up to time step 𝑘, can be
determined recursively by intersecting the hyperstripes ℱ (𝑘):

ℱ𝑘 = ℱ𝑘−1 ∩ ℱ (𝑘). (7.12)

Therefore the resulting feasible set for all available measurement data is given by ℱ𝑇 .
The approximation of this set can be done by a zonotopic set with a very good fit.
Definition 7.3 describes such a general zonotopic set 𝒵 as given in [Ble11].

Definition 7.3 (Zonotopic Set)
A zonotopic set 𝒵 is constrained by the convex hull of the set of vertexes
𝒱◇ =

{︁
𝑉0, 𝑉1, . . . , 𝑉|𝒱◇|−1

}︁
. The calculation of the vertexes is done by

𝒱◇ = 𝑃 0 ⊕𝐻0𝐾𝑉 =
{︁
𝑃 0 + 𝐻0𝑧 : 𝑧 ∈𝐾𝑉

}︁
(7.13)

with the center of the zonotope 𝑃 0 ∈ R(𝑛*
𝑎+𝑛*

𝑐×1), the radius matrix 𝐻0 ∈ R(𝑛*
𝑎+𝑛*

𝑐×𝑉)

and a unitary box 𝐾𝑉 composed of an arbitrary number of 𝑉 unitary interval vectors
𝐾 = [−1, 1].

The ⊕-operator denotes the Minkowski-Sum [Ber08, p. 291] that is used to calculate the
vertexes of the zonotope. This means that the center 𝑃 0 is added to the given unitary
vectors (i.e. corners) that are scaled by the respective radius value. The adaption to the
zonotopic approximation of the feasible set is done in Def. 7.2, leading to the notation
ℱ◇. The respective optimization problem is set up such that a zonotopic approximation
ℱ◇ of the united solution ∑︀∃∃ is achieved.

7 Extended Kaucher Based Guaranteed Verification 100

Proposition 7.2 (Optimization Based Zonotopic Solution Set)
The zonotopic approximation of the feasible set ℱ◇ is given by the set of vertexes 𝒱◇.
The set of vertexes 𝒱◇ is calculated based on the measurement data [U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠]
given for the discrete sampling points 𝑘 ∈ {1, 2, . . . , 𝑇} of a VO. It can be computed
based on the optimal scaling parameter

𝛼◇ = argmax
𝛼

(𝐽◇ (𝛼)) , (7.14)

the initial center 𝑃 0 and the radius matrix 𝐻0 given by the outer enclosure of the
measurement data. The vertexes of the zonotope 𝒱◇ are calculated by

𝒱◇ = 𝑃 0 ⊕ 𝛼◇𝐻0𝐾𝑉 =
{︁
𝑃 0 + 𝛼◇𝐻0𝑧 : 𝑧 ∈𝐾𝑉

}︁
. (7.15)

The optimization problem consists of the objective function

𝐽◇ (𝛼) = 𝛼 (7.16)

that is subject to the constraints

𝑐ℳ(𝒱◇) ≤ 0 (7.17)

given by the measurement data according to Def. 5.6.

Proof:
The result of the optimization problem (7.14) is given by the set of vertexes 𝒱◇ that
defines the zonotopic approximation ℱ◇. The zonotopic approximation is proper in
all dimensions as it is based on an initial outer approximation calculated using classic
interval arithmetic and subsequently scaled using a point real parameter. The united
solution set is given by the measurement data and consists of all parameters that fulfill
(7.17) according to Def. 5.6. As the optimization problem (7.14) is constrained by (7.17),
all elements of the resulting set of vertexes are part of the united solution set ∑︀∃∃ and
thus

ℱ◇ = ℱ (𝒱◇) ⊆ ℱ = ∑︀
∃∃ . (7.18)

This method has its roots in [Ble11] and [Sch17c] and was developed in [Sch18b]. The
initial parameters of the optimization are given by the center 𝑃 0 and the radius ma-
trix 𝐻0 which are determined by calculating the outer enclosure as in [Ble11], given in
(7.10)-(7.12) extended to Kaucher arithmetic notation.

7 Extended Kaucher Based Guaranteed Verification 101

The initial zonotope to calculate this outer enclosure needs to be chosen suitably. One
possibility is to use the nominal region Θ* = [Θ*

𝑐 −Θ*
Δ, Θ*

𝑐 + Θ*
Δ] expressed as 𝑃 0 = Θ*

𝑐

and 𝐻0 = 𝐼Θ*
Δ. It is also possible to calculate the point real central solution Θ𝑐 using

the center matrizes 𝐴𝑚𝑒𝑎𝑠,𝑐 and 𝐵𝑚𝑒𝑎𝑠,𝑐. The initial zonotope is then given by 𝑃 0 = Θ𝑐

and 𝐻0 = 𝐼𝜖 with an arbitrary small value 𝜖 > 0.
Each measurement interval is iteratively interpreted as a hyperstripe containing the pos-
sible parameters. The intersection between the hyperstripe and the zonotope is calcu-
lated and the common region is used to calculate the new radius matrix. This procedure
leads to a zonotopic outer enclosure of the feasible parameter set. Due to the repeated
calculation of outer enclosures, the area of the zonotope might grow with the considered
measurement data.
Starting from the final outer enclosure that frames the intersection of all available mea-
surement data, the scaling factor 𝛼 is minimized until all vertexes of the zonotope are
part of the united solution. This can be checked using Prop. 4.1.
The center point of the zonotope is not moved by the shrinking procedure. The idea of
maximum possible parameter variability within the zonotope is realized by the objective
function (7.16) that maximizes the scaling factor 𝛼.
Additional assumptions on the optimization problem are:

• The interval solution has to be bounded to one orthant.

• All values of the input signal need to have the same sign, either all positive or all
negative.

The first assumption is due to the fact that intervals containing zero can be interpreted
erroneously as inverse elements and thus cancel the influence of some parameters. The
second assumption is necessary to prevent increasing intervals that may arise even when
Kaucher interval arithmetic is used.
A sketch of a zonotopic inner approximation is given in Example 7.3.

7 Extended Kaucher Based Guaranteed Verification 102

Example 7.3:
Assume the united solution of the measurement data to be given as the blue shape

in Fig. 7.3. The center of the zonotope is depicted by the green circle. It is given by
the center of the outer enclosure that is used as initial zonotope. The algorithm does
not change the center, leading to the area maximal inner enclosure given by the green
zonotope.
Note that there might be solutions of equal or larger size possible for a different
zonotope center. However the choice of an optimal center is not included in the
current version of the algorithm. The denoted values are chosen arbitrary in this
example.

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03

0.05

0.10

0.15

0.20

𝜃(1)

𝜃(2
)

United Solution Set of the Measurement Data
Outer Zonotopic Approximation
Inner Zonotopic Approximation

Figure 7.3: Exemplary area maximal zonotopic approximation of the united solution set

7.1.3 Polytopic Solution Set Approximation

The most general enclosure is given by the shape of a convex polytope. However in this
case the solution is represented by a list of points instead of a mathematical description
such as intervals (in the hyperrectangular case) or center and radius matrix (in the
zonotopic case). The only conditions on a valid polytopic enclosure consists of the
requirement that points of the list are part of the united solution set ∑︀∃∃ according to
Prop. 4.1 and that the resulting polytope is convex. The computational effort of the
polytopic approximation is in the same order of magnitude as the computational effort
of the hyperrectangular approximation. The respective solution of the optimization
problem is given in proposition Prop. 7.3.

7 Extended Kaucher Based Guaranteed Verification 103

Proposition 7.3 (Optimization Based Polytopic Solution Set)
The polytopic approximation of the feasible set ℱD is given by the set of vertexes 𝒱D.
The set of vertexes 𝒱D is calculated based on the measurement data [U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠]
given for the discrete sampling points 𝑘 ∈ {1, 2, . . . , 𝑇} of a VO.
It is defined as the solution of the optimization problem

𝒱D = argmax
ΘD

(𝐽D (ΘD)) (7.19)

with the objective function

𝐽D (ΘD) = area (ΘD) . (7.20)

The function area (·) calculates the hypervolume of a polytope given by a list of
points ΘD. All points of the list, i.e. vertexes of the set ℱD, are subject to the
constraints

𝑐ℳ(ΘD) ≤ 0 (7.21)

with 𝑐ℳ given by the measurement data according to Def. 5.6.

Proof:
The result of the optimization problem (7.19) is given by the set of vertexes 𝒱D that
defines the polytopic approximation ℱD. The polytopic approximation is proper in
all dimensions as it is the convex hull of 𝒱D. The united solution set is given by the
measurement data and consists of all parameters that fulfill (7.21) according to Def. 5.6.
As the optimization problem (7.19) is constrained by (7.21), all elements of the resulting
set of vertexes are part of the united solution set ∑︀∃∃ and thus

ℱD = ℱ (𝒱D) ⊆ ℱ = ∑︀
∃∃ . (7.22)

The choice of the vertexes of the initial list is of minor importance. Possible choices
are the vertexes of the nominal set, the vertexes of a zonotopic outer enclosure or the
vertexes given by the central solution disturbed by a small parameter 𝜖 > 0.

7 Extended Kaucher Based Guaranteed Verification 104

Example 7.4:
Assume the united solution of the measurement data to be given as the blue shape

in Fig. 7.4. A possible inner enclosure is given by the green polytope.
Note that this solution is not unique. There might be other possible solutions of the
same size. Again, this example is showing the basic concept of the enclosure and thus
the denoted values are chosen arbitrary.

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01

0.05

0.10

0.15

𝜃(1)

𝜃(2
)

United Solution Set of the Measurement Data
Polytopic Approximation

Figure 7.4: Exemplary polytopic inner approximation of the united solution set

7.2 Kaucher Based Diagnosis

The consistency for interval type systems was introduced in Chapter 5. Prop. 5.4 focuses
on basic consistency and includes the main result that forms the foundation of the
considerations in this chapter. All other assumptions and definitions are assumed to be
fulfilled and applicable as well.
In case the calculation of the verification method can be fast enough with respect to the
regarded dynamic system, the method can be applied in an online setting to tackle the
diagnosis problem. In the resulting diagnosis setting, the interpretation of the problem
includes the temporary feasible set ℱ𝑘 that is approximated using one of the three
approximation shapes introduced in Section 7.1. The intersection between the temporary
feasible set ℱ𝑘 and the nominal set 𝒩 forms an inner enclosure of the consistent set for
the whole measurement time according to Sec. 5.2.

7 Extended Kaucher Based Guaranteed Verification 105

Proposition 7.4 (Approximation Based Basic Consistency)
The input-output behavior given by all available interval type enclosures of 𝑇 mea-
surement values

[U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] =
[︁
⟨u𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 , ⟨y𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1

]︁
(7.23)

is basic consistent with the nominal system specified by an interval type specification

𝑆*
𝑖 = {Θ*, 𝑛*

𝑎, 𝑛*
𝑐 , 𝑈*

𝑖𝑛𝑖𝑡, 𝑌 *
𝑖𝑛𝑖𝑡} , (7.24)

if the intersection between nominal set𝒩 and temporary feasible set ℱ𝑘 is nonempty,
i.e.

𝒩 ∩ ℱ𝑘 ̸= ∅. (7.25)

Proof:
The nominal set 𝒩 consists of all parameters within the specification Θ*. Basic consis-
tency according to Prop. 5.4 is given, if there is at least one parameter Θ ∈ Θ* within
the specified parameter set that is able to explain the measurement data.
According to Def. 7.1, all parameters of the feasible set ℱ𝑘 are able to explain the mea-
surement data for 𝑘 ∈ {1, 2, . . . , 𝑇}.
The intersection between the nominal set 𝒩 and the feasible set ℱ𝑘 contains parameters
that are both, part of the nominal set and part of the feasible set. If this intersection is
nonempty, there is at least one parameter that is consistent according to Prop. 4.1.

It is in general not possible that the method yields full consistency in the diagnosis
setting. However, the approximation methods described in the previous section can be
used to verify dynamic systems given by an interval type specification 𝑆*

𝑖 .14

In the diagnosis setting, an approximation of the feasible set is used to calculate an
inner enclosure of the consistent set. The verification result is guaranteed in the sense
of this thesis as it is based on Kaucher arithmetic. The definition of consistency uses
the united solution set as given in Def. 3.1. The choice of vertex points used during the
verification is done based on the introduced optimization procedure hence ensuring an
effective coverage of the feasible area given by the measurement data.

14 This method is also applicable to a point real specification. Nevertheless a point real specification
can be verified directly by Prop. 4.1 and does not need the optimization based extensions in order
to approximate the feasible set.

7 Extended Kaucher Based Guaranteed Verification 106

The shape of the calculated solution is determined directly by the setup of the objective
function and the additional constraints. Furthermore, the calculated inner approxima-
tion aims at finding an area maximal representation of the united solution set in terms
of the defined approximation shape. Thus the feasible set represents the maximum pos-
sible parameter variability in the given setting that is guaranteed to be able to explain
the measurement data.
It is assumed that the diagnosis algorithm is running in parallel with the VO. The di-
agnosis system is supplied with a new measurement value in each sampling cycle which
is used to calculate a temporary result. This leads to the diagnosis algorithm as given
in Fig. 7.5.

Initialization of
the Iterative
Algorithm

Get Nominal
Set 𝒩 from
Specification

Calculate Ap-
proximation of
Feasible Set ℱ𝑘

Intersect Approxi-
mation of Feasible

Set ℱ𝑘 with
Nominal Set 𝒩

𝒩 ∩ ℱ𝑘 = ∅
Measurement is
basic consistent

with Specification

Measurement
might be in-

consistent with
Specification

𝑘 = 1
𝑘 ← 𝑘 + 1

no yes

Figure 7.5: Diagnosis algorithm

A VO that is basic consistent for all measurement data at the final time 𝑇 , considering
all measurement data with 𝑘 < 𝑇 according to Prop. 7.4, is assumed to be also basic
consistent for 𝑇 < 𝑇 .

7 Extended Kaucher Based Guaranteed Verification 107

If the algorithm yields basic consistency between the measurement data and the spec-
ification, the verdict is guaranteed to be correct. Therefore there are no hidden faults
i.e. no type II errors possible.
If the algorithm yields inconsistency, the verdict might be erroneous, i.e. showing a false
alarm. This is due to the used inner approximation of the feasible set which does not
necessarily cover all feasible parameters.

Zonotopic Approximation

Rectangular Approximation

Polytopic Approximation

Figure 7.6: Exemplary results for the three different approximation shapes

Three exemplary settings and the resulting solution sets are depicted in Fig. 7.6. The
black lines depict the constraints given by the measurement data that frame the united
solution. The nominal parameters are given by the black dashed rectangle. The first
plot shows an inner approximation using an rectangular shape. It can be seen that
the location and shape of the rectangle is not unique and that other rectangles of the
same size might be possible within the united solution. The second picture shows the
approximation by a zonotope. The general fit of the zonotope is better as it can follow
the contour of the constraints to some extent.

7 Extended Kaucher Based Guaranteed Verification 108

The third figure shows the approximation by a polytope. This setting shows the best fit,
even though the resulting shape is given by a list of four points instead of an algebraic
description. All three examples show an intersection between the nominal set and the ap-
proximation of the united solution set, given by the shaded areas. The regarded example
setting thus shows a situation with guaranteed basic consistency between measurement
and specification.

7.2.1 The Center Misplacement Effect

The zonotopic approximation leads to the best tradeoff between accuracy and ease of
description. This shape is chosen for the further explanations of the diagnosis approach.
As already mentioned, false alarms are possible for all regarded shapes due to the usage
of inner approximation of the feasible set.
In the special case of a zonotopic approximation, false alarms can also result from the
so called Center MisPlacement Effect (CMP). CMP denotes the effect of disregarding
feasible results due to a bad center and shape of the zonotope.
An exemplary situation showing a CMP effect is given in Fig. 7.7.

0.955 0.960 0.965 0.970 0.975 0.980

0.029

0.040

0.050

𝑉1

𝑉3

𝑉2

𝑉0

𝜃(1)

𝜃(2
)

Figure 7.7: Center misplacement effect

The blue lines depict the constraints given by the measurement data. The center of the
zonotope is given by the green circle within the green zonotope. Center and shape of the
zonotope were calculated from an outer approximation of the solution set as in [Ble11].
Afterwards the scaling parameter 𝛼 was adapted such that all vertexes of the zonotope
are within the united solution of the problem, given by the shaded area. Temporary
feasible vertexes of the zonotope that were checked during this optimization procedure
are given by green crosses.15 Due to the location of the center and the shape of the
zonotope, the scaling factor 𝛼 needs to be very small to ensure that the vertexes 𝑉2 and
𝑉3 stay within the united solution set.
15 Temporary vertexes of the zonotope that were checked during the optimization procedure and found

to be infeasible are marked as red circles.

7 Extended Kaucher Based Guaranteed Verification 109

The resulting zonotope does not intersect with the nominal set, from which the lower
right corner is depicted by the dashed black square in the left of the figure.
Even though the final vertex is rejected there are consistent intermediate vertexes (green
crosses within the nominal set) that are rejected because the respective temporary zono-
tope was rejected as not all vertexes were part of the united solution for this value of
the scaling parameter 𝛼.

Certain measures can be taken to avoid CMP. The most straight forward is to move
the center of the zonotope or to change its shape. However, in general it is not trivial
to chose a suitable change in center and shape algorithmically. As the method is also
designed for higher dimensions and should work as automatically and autonomously as
possible, it is neither possible nor suitable to visualize the setting and request a human
operator to adapt the center or the shape.
An algorithmic workaround is given by the use of intermediate vertexes that are checked
during the optimization. The optimization can be stopped as soon as there is at least
one feasible intermediate vertex detected, i.e. if a green cross is evaluated. Nevertheless
this will lead to point-wise results instead of a feasible set of a given shape. An effective
way to avoid CMP is provided by the enclosure of the nominal set in the constraints of
the optimization problem. However, this will also pose higher restrictions on the feasible
set.

7.3 Conclusion

This chapter introduced extensions to the Kaucher based verification method developed
in the previous chapters.
The first extension is given by calculating the largest inner approximation of the united
solution set. This was done using an optimization setting. The precise setup of the
objective function and the constraints determines the resulting shape of the so called
feasible set. The feasible set was approximated using three different geometric shapes
(hyperrectangle, zonotope, polytope). The resulting set is an inner approximation of
the united solution set, meaning that there are several equivalent approximations within
the united solution set.

The second extension is given by the application of the verification method in a diagno-
sis setting. The diagnosis algorithm was introduced in an iterative setting, calculating
temporary results for each sampling cycle. Due to the inner approximation used, the
results can show a false alarm. A vivid cause of a false alarm is given by the center mis-
placement effect, that can occur in case of a zonotopic approximation. The applicability
of the Kaucher based diagnosis method depends on the specific settings of the regarded
system. Therefore it is necessary to evaluate each system individually before applying
Kaucher based diagnosis.

8 Application and Results

This chapter presents the application of the developed methods to tank systems with a
varying number of tanks and an adjustable set of connections. The settings are analyzed
in simulation and practice.
Tank systems form a class of wide spread theoretic control applications. The basic
setting is usually given by one or more tanks with a nominal outflow and a controllable
inflow. The goal is to adjust or maintain a nominal height of the fluid in a tank. The
process can be disturbed by additional leakages or inflows or by congestions in the in- or
outflow pipes. Depending on the specific setup, cross flows between tanks are possible.
Those cross flows are in general dependent on the current filling level of the concerned
tanks. All measurement data is obtained using a real three-tank process available at
the Institute of Control Systems (IRS) at the Karlsruhe Institute of Technology (KIT).
A picture of the lab setting is shown in Fig. 8.1. The algorithmic calculations are done
on a Lenovo ThinkPad T460s powered by an Intel® Core™ i7-6600 CPU using 12GB
main memory. The implementation was done in Matlab© 2012b.

Figure 8.1: Three-tank process lab setting at the Institute of Control Systems (IRS)

8 Application and Results 111

The following subsections set up the dynamic models and introduce the properties and
possibilities of the different scenarios. First the methods of Chapter 5 “Guaranteed Ver-
ification of Interval Type Systems” are applied to real measurement data obtained from
a single-tank process.
Second, the application is extended to a two-tank setting showing hybrid behavior. A
mapped state signal is used to demonstrate the basic functionality of the method de-
veloped in Chapter 6 “Guaranteed Verification of Hybrid Systems”. The results are
discussed and interpreted.
Third, the diagnosis method developed in Chapter 7 “Extended Kaucher Based Guar-
anteed Verification” is applied to simulation data of a four-tank process. Three different
fault types are used to demonstrate the fault detection properties of the Kaucher based
method. Several fault intensities demonstrate the possibility of the method to detect
even very small faults.
Finally the diagnosis method is applied to real measurement data provided by a single-
tank process. It is shown that all of the regarded faults can be detected successfully
using the introduced methods.

8.1 Application: Guaranteed Verification for
Interval Type Systems (Single-Tank)

The basic setting is given by a single-tank process which is sketched in Fig. 8.2.

ℎ2

Tank 2

Leakage outflow valve

Leakage outflow

Lower connection valve 𝑣32𝑙

Lower connection flow

Nominal outflow valve 𝑣𝑜𝑢𝑡2

Nominal outflow 𝑓𝑙𝑜2

Pump 2 𝑣2

Inflow 𝑓𝑙𝑖2

Figure 8.2: Sketch of the single-tank

8 Application and Results 112

It is possible to set up a single-tank system consisting only of tank 2 by closing the
respective valves in the three-tank lab system.16 All valves in the system are binary
valves which are only open or closed. The height ℎ2 of tank 2 is measured, as well as
the flow 𝑣2 of pump 2. The outflow of each tank is governed by the formula of Torricelli
[Tip00, p. 360] which leads to the nonlinear time continuous dynamic of a single-tank

dℎ2(𝑡)
d𝑡

= − 1
𝐴2

𝑎2

√︁
2𝑔ℎ2(𝑡)

⏟ ⏞
outflow

+ 1
𝐴2

𝛾2𝑣2(𝑡).⏟ ⏞
inflow pump 2

(8.1)

with the outflow pipe cross section 𝑎2, the tank cross section 𝐴2, the gravitational force
𝑔 and the constant 𝛾2 according to Appendix G, Tab. G.1. The following simplifications
and the resulting model equations are based on the considerations in [Ble11].

The model is discretized using the Euler method with sampling time Δ𝑡 leading to

ℎ2,𝑘 =ℎ2,𝑘−1 −
𝑎2

𝐴2

√︁
2𝑔ℎ2,𝑘−1Δ𝑡 + 𝛾2

𝐴2
𝑣2,𝑘−1Δ𝑡 + 𝑒2,𝑘 (8.2)

where 𝑒2,𝑘 is the additive disturbance including sensor and discretization faults. Equation
(8.2) is reformulated to the pseudo linear regressor form

𝜙𝑘𝜃𝑘 = 𝑦𝑘 (8.3)

with

𝜙𝑘 = ℎ2,𝑘−1 (8.4)

𝜃𝑘 = 1− 𝑎2

𝐴2

√︃
2𝑔

ℎ2,𝑘−1
Δ𝑡 + 𝑒2,𝑘

ℎ2,𝑘−1
(8.5)

𝑦𝑘 = ℎ2,𝑘 −
𝛾2

𝐴2
𝑣2,𝑘−1Δ𝑡. (8.6)

It can be seen that the parameter 𝜃𝑘 given in (8.5) is depending on the height ℎ2,𝑘−1
which renders it time variant. The range of the time variant parameter can be interpreted
as an interval set that includes all possible parameter values as well as some spurious
solutions. The interval enclosure of the parameter is given by the bounding box of the
time variant parameter.

It is possible to calculate the interval enclosure of the time variant parameter 𝜃𝑘 for
a specific nominal setting (𝑒2,𝑘 = 0). This setting consists of a given operation range
ℎ2 ∈ [ℎ2,𝑚𝑖𝑛, ℎ2,𝑚𝑎𝑥] and a fixed sampling time Δ𝑡. The calculated parameter interval
can then be used as the nominal set in further considerations.
16 Note that the number of the tanks in the lab setting is (from left to right) 1 - 3 - 2.

8 Application and Results 113

Based on the tank properties given in Appendix G, Tab. G.1 it is possible to set up the
parameter range for a nominal and a faulty tank configuration. To realize the faulty
behavior all available valves are opened. This means the leakage outflow valve, the
lower connection valves and the nominal outflow valves. The resulting height depen-
dent parameter 𝜃𝑘 is depicted in Fig. 8.3 and can be used a priori to reason about
detectability.

0 5 10 15 20 25 30 35 40 45 500.80

0.85

0.90
0.93

0.98
1.00

Height ℎ2 in cm

𝜃 𝑘

Nominal Faulty

Figure 8.3: Values of 𝜃𝑘 depending on ℎ2 for different outflow configurations

It can be seen that there is a gap between the nominal behavior (green line) and the
faulty behavior using all possible outflows (red line). This leads to the hypothesis that
it is possible to separate the nominal behavior from the faulty tank configuration using
the method from Chapter 5. Due to the upper valve position ℎ𝑣𝑢 = 30cm, the depicted
values are valid in the case of a closed upper connection valve 𝑣23𝑢 only. The nominal
parameter 𝜃* = [0.93, 0.98] is used for tank levels in the range ℎ2 ∈ [5, 30] cm.

The hypothesis is verified using the following steps: First, a nominal description i.e. a
specification, of the system in the necessary ARX form is set up. Second, the system is
implemented i.e. the real tank is manufactured and used to collect measurement data.
Third, a faulty version of the system is implemented, i.e. unspecified outflows are added
to the tank by opening the respective valves.
The collected measurement data for ℎ2 is then enclosed by interval values

ℎ2,𝑘 =
[︁
ℎ2,𝑘(1− 𝛿𝑟

ℎ2), ℎ2,𝑘(1 + 𝛿𝑟
ℎ2)
]︁

(8.7)

and used to verify the correct system with respect to the nominal parameters. Finally,
measurement data from the faulty system is used to show that it is not possible to verify
the faulty behavior using the nominal parameters.

8 Application and Results 114

The initial height is set to ℎ2,𝑚𝑖𝑛 = 5cm, the nominal outflow valve 𝑣𝑜𝑢𝑡2 is open and
pump 2 is constantly running, providing the maximal inflow of 𝑣2 = 6.5l/m. The
resulting nominal setting is depicted in Fig. 8.4. It can be seen that it is possible to
verify the measurement of the fault free system supposing a relative fault of 𝛿𝑟

ℎ2 = 0.02
for the measurement signal of the height ℎ2. The basic consistency as introduced in
Chapter 5 is used to calculate the results. The calculation time for the algorithm is
𝑇𝑐𝑎𝑙𝑐 = 16.8s which is less than the duration of the experiment 𝑇 = 60s.

0 5 10 15 20 25 30 35 40 45 50 55 600

10

20

30

ℎ
2

in
cm

Measurement
Enclosure

0 5 10 15 20 25 30 35 40 45 50 55 600

2

4

6

8

𝑣 2
in

l/
m

in

0 5 10 15 20 25 30 35 40 45 50 55 60
infeasible

feasible

Time step 𝑘 with Δ𝑡 = 1s

Verification Result

Figure 8.4: Implementation of the single-tank setting that is basic consistent with the specification

8 Application and Results 115

Now a faulty implementation of the tank system is considered. Therefore the faulty
setting is realized by opening the leakage outflow, the lower connection and the nominal
outflow valves which leads to a major change in the system dynamics.
The changed dynamics are not able to reach the nominal final height of ℎ2,60 = 29.1cm
as the maximum pump flow cannot compensate the additional outflow. The resulting
measurement data is depicted in Fig. 8.5. It is again analyzed using a relative fault of
𝛿𝑟

ℎ2 = 0.02. Fig. 8.5 shows that it is not possible to verify the faulty implementation for
𝑘 ≥ 4. The necessary calculation time is 𝑇𝑐𝑎𝑙𝑐 = 47.5s.

0 5 10 15 20 25 30 35 40 45 50 55 600

10

20

30

ℎ
2

in
cm

Measurement
Enclosure

0 5 10 15 20 25 30 35 40 45 50 55 600

2

4

6

8

𝑣 2
in

l/
m

in

0 5 10 15 20 25 30 35 40 45 50 55 60
infeasible

feasible

Time step 𝑘 with Δ𝑡 = 1s

Verification Result

Figure 8.5: Implementation of the single-tank setting that is inconsistent with the specification due
to additional outflows

8 Application and Results 116

The change in the system dynamics has to be strong to prevent the verification of the
faulty system. If there is only a slight change in the system dynamics, the faulty system
is verified because the new behavior can be explained with the range of the nominal
parameter set. This is the case, if a faulty system is implemented consisting of other
combinations of outflows and connection valves except the introduced setting.
When having a closer look on the tank parameters, this is rather intuitive. The con-
nection valves cross section 𝑎32𝑙 and 𝑎32𝑢 are the same as the nominal outflow 𝑎2. The
leakage 𝑎𝑙𝑒𝑎𝑘 is only slightly bigger that the nominal outflow. Thus each individual valve
leads to none, respectively very slight variations with respect to the nominal behavior.
Any combination of two outflows is also verified using the original setting.

This concludes the first application example concerning the guaranteed verification for
interval type systems as introduced in Chapter 5. It is clear that the results are depend-
ing on the value of the used relative fault 𝛿𝑟

ℎ2 . Increasing the fault increases the variety
of enclosed trajectories and can thus be interpreted as increasing the available system
behavior. This leads to a higher chance to achieve nominal behavior enclosed in the
measurement data and thus to verify the system.

8.2 Application: Guaranteed Verification for Hybrid
Systems (Two-Tank)

The sinlge-tank-system can be extended by adding another tank, connected via two
horizontal valves. There is no additional pump and thus no external inflow to the new
tank. However the new tank has a nominal outflow and it is possible to open and close
the connection valves. A schematic description is depicted in Fig. 8.6.
The dynamic of the main tank needs to be extended with the flows induced by the new
tank. Those flows depend on the height differences between the two levels, related to
the static height of the lower and upper valves ℎ32𝑙 and ℎ32𝑢:

Δ2,3,𝑙,𝑘 = max(ℎ2,𝑘, ℎ32𝑙)−max(ℎ3,𝑘, ℎ32𝑙) (8.8)
Δ2,3,𝑢,𝑘 = max(ℎ2,𝑘, ℎ32𝑢)−max(ℎ3,𝑘, ℎ32𝑢). (8.9)

The resulting model is again discretized using the Euler method with sampling time Δ𝑡

ℎ2,𝑘 = ℎ2,𝑘−1 −
1

𝐴2
𝑎2
√︁

2𝑔ℎ2,𝑘−1Δ𝑡
⏟ ⏞

outflow

− 1
𝐴2

sign(Δ2,3,𝑙,𝑘−1)𝑎32𝑙

√︁
2𝑔|Δ2,3,𝑙,𝑘−1|Δ𝑡

⏟ ⏞
lower cross flow tank 3

− 1
𝐴2

sign(Δ2,3,𝑢,𝑘−1)𝑎32𝑢

√︁
2𝑔|Δ2,3,𝑢,𝑘−1|Δ𝑡

⏟ ⏞
upper cross flow tank 3

+ 1
𝐴2

𝛾2𝑣2,𝑘−1Δ𝑡
⏟ ⏞
inflow pump 2

+𝑒2,𝑘 (8.10)

with all values according to Appendix G, Tab. G.1.

8 Application and Results 117

ℎ3 ℎ32𝑢

ℎ32𝑙

ℎ2

Tank 2Tank 3

Leakage outflow valve

Leakage outflow
𝑣32𝑙

𝑣32𝑢

𝑣𝑜𝑢𝑡2

𝑓𝑙𝑜2

𝑣𝑜𝑢𝑡3

𝑓𝑙𝑜3

Pump 2 𝑣2

𝑓𝑙𝑖2

Figure 8.6: Schematic sketch of the two-tank experiment

The cross sections of both tanks are the same, i.e. 𝐴2 = 𝐴3, leading to symmetric height
changes induced by the cross flow. The term 𝑒2,𝑘 is the additive disturbance including
sensor and discretization fault. The system description can again be transformed to the
pseudo linear regressor form (8.3) with

𝜙𝑘 = [ℎ2,𝑘−1, |Δ2,3,𝑙,𝑘−1|, |Δ2,3,𝑢,𝑘−1|] (8.11)

Θ𝑘 =
[︁
𝜃

(1)
𝑘 , 𝜃

(2)
𝑘 , 𝜃

(3)
𝑘

]︁𝑇
(8.12)

𝑦𝑘 = ℎ2,𝑘 −
𝛾2

𝐴2
𝑣2,𝑘−1Δ𝑡. (8.13)

The elements of the parameter vector Θ𝑘 are given by

𝜃
(1)
𝑘 = 1− 𝑎2

𝐴2

√︃
2𝑔

ℎ2,𝑘−1
Δ𝑡 + 𝑒′

2,𝑘 (8.14)

𝜃
(2)
𝑘 = sign(Δ2,3,𝑙,𝑘−1)

𝑎32𝑙

𝐴2

√︃
2𝑔

|Δ2,3,𝑙,𝑘−1|
Δ𝑡 + 𝑒′′

2,𝑘 (8.15)

𝜃
(3)
𝑘 = sign(Δ2,3,𝑢,𝑘−1)

𝑎32𝑢

𝐴2

√︃
2𝑔

|Δ2,3,𝑢,𝑘−1|
Δ𝑡 + 𝑒′′′

2,𝑘 (8.16)

with unknown composition of the fault 𝑒2,𝑘 = 𝑒′
2,𝑘/ℎ2,𝑘−1 +𝑒′′

2,𝑘/|Δ2,3,𝑙,𝑘−1|+𝑒′′′
2,𝑘/|Δ2,3,𝑢,𝑘−1|. The

parameters 𝜃
(2)
𝑘 and 𝜃

(3)
𝑘 given in (8.15) and (8.16) show singularities in case |Δ2,3,𝑙,𝑘−1|

or |Δ2,3,𝑢,𝑘−1| approach zero.

8 Application and Results 118

Therefore the enclosing intervals 𝜃(2) and 𝜃(3) become very large when the operation
range [ℎ2,𝑚𝑖𝑛, ℎ2,𝑚𝑎𝑥] is including or close to the height of the valve ℎ32𝑢. It is thus
necessary to chose the operation range with a sufficient distance to ℎ32𝑢 to achieve
meaningful parameter intervals.

8.2.1 Measurement With Mapped State Signal

The first approach for the verification of the resulting hybrid system was introduced in
Section 6.1 and used a so called “mapped state signal” according to Definition 6.10.
This means that the exact switching times and the respective active subsystems are
known correctly. Therefore the hybrid verification task is reduced to sequential verifica-
tion of the subsystems present in the measurement data.
The general system behavior given in equation (8.10) is therefore transferred to a more
specific setting. Tank 3 is assumed to be empty (ℎ3,1 = 0cm) with its nominal outflow
valve open and the lower connection valve 𝑣32𝑙 closed. The upper connection valve 𝑣32𝑢

is open, as well as the nominal outflow valve of tank 2.
The resulting hybrid scenario consists of two states: State 1 is active if ℎ2,𝑘 ≤ ℎ32𝑢, i.e.
the upper connection valve does not influence the system dynamics. State 2 is active for
ℎ2,𝑘 > ℎ32𝑢, i.e. an additional outflow is given through the upper connection valve.

The hybrid scenario is described as follows:
In state 1, starting at ℎ2,1 = 5cm, pump 2 is used to fill tank 2. The nominal behavior
of tank 2 is identical with the single-tank behavior described in Section 8.1.
State 2 is reached, when ℎ2 rises above the height of the upper connection valve,
i.e. ℎ2,𝑘 > ℎ32𝑢 = 30cm. Thus the system dynamic changes due to the additional
cross flow from tank 2 to tank 3 through the connection valve.

The resulting dynamic of state 2 is given by

ℎ2,𝑘 = ℎ2,𝑘−1 −
1

𝐴2

⎛
⎜⎜⎝𝑎2

√︁
2𝑔ℎ2,𝑘−1Δ𝑡

⏟ ⏞
nominal outflow

+ 𝑎32𝑢

√︁
2𝑔|ℎ2,𝑘−1 − ℎ32𝑢|Δ𝑡

⏟ ⏞
upper cross flow to tank 3

− 𝛾2𝑣2,𝑘−1Δ𝑡
⏟ ⏞

inflow by pump 2

+𝑒2,𝑘

⎞
⎟⎟⎠ .

(8.17)

In state 2 the level of tank 2 is always higher than the upper connection valve i.e.
ℎ2,𝑘−1 ≥ ℎ32𝑢. Therefore the absolute value operator |·| on (ℎ2,𝑘−1−ℎ32𝑢) can be dropped
and the singularity present in (8.16) is avoided.

8 Application and Results 119

The upper cross flow to tank 3, given in (8.17) can thus be reformulated:

𝑎32𝑢

√︁
2𝑔(ℎ2,𝑘−1 − ℎ32𝑢)Δ𝑡 (8.18)

= 𝑎32𝑢(ℎ2,𝑘−1 − ℎ32𝑢)
√︃

2𝑔

(ℎ2,𝑘−1 − ℎ32𝑢)Δ𝑡 (8.19)

= 𝑎32𝑢ℎ2,𝑘−1

√︃
2𝑔

(ℎ2,𝑘−1 − ℎ32𝑢)Δ𝑡− 𝑎32𝑢ℎ32𝑢

√︃
2𝑔

(ℎ2,𝑘−1 − ℎ32𝑢)Δ𝑡 (8.20)

= ℎ2,𝑘−1

⎛
⎝𝑎32𝑢

√︃
2𝑔

(ℎ2,𝑘−1 − ℎ32𝑢)Δ𝑡− 𝑎32𝑢ℎ32𝑢

⎯⎸⎸⎷ 2𝑔

ℎ2
2,𝑘−1(ℎ2,𝑘−1 − ℎ32𝑢)Δ𝑡

⎞
⎠ (8.21)

Finally, the model for state 2 is given in in pseudo linear regressor form (8.3) with

𝜙𝑘 = ℎ2,𝑘−1 (8.22)

𝜃𝑘 = 1− 𝑎2

𝐴2

√︃
2𝑔

ℎ2,𝑘−1
Δ𝑡 − 𝑎32𝑢

𝐴2

⎯⎸⎸⎷ 2𝑔

(ℎ2,𝑘−1 − ℎ32𝑢)Δ𝑡

+ 𝑎32𝑢

𝐴2
ℎ32𝑢

⎯⎸⎸⎷ 2𝑔

ℎ2
2,𝑘−1(ℎ2,𝑘−1 − ℎ32𝑢)Δ𝑡 + 𝑒2,𝑘

ℎ2,𝑘−1
(8.23)

𝑦𝑘 = ℎ2,𝑘 −
𝛾2

𝐴2
𝑣2,𝑘−1Δ𝑡. (8.24)

The nominal parameter 𝜃𝑘 can again be determined depending on the level ℎ2,𝑘−1 for
different outflow configurations. The resulting parameter ranges are depicted in Fig. 8.7.
and are used to determine the nominal values of the system parameters.

0 5 10 15 20 25 30 35 40 45 500.80

0.85

0.90
0.93

0.98
1.00

State 1 State 2

Height ℎ2 in cm

𝜃 𝑘

Nominal Faulty

0.965
0.974

Figure 8.7: Values of 𝜃𝑘 depending on ℎ2 for different outflow configurations at state 1 (left) and
state 2 (right)

8 Application and Results 120

State 1 is assigned with the same values as in Section 8.1 i.e.

𝜃(1)* = [0.93, 0.98] . (8.25)

In state 2, i.e. starting from ℎ2,𝑘−1 = 30cm, the time variant parameter for nominal
outflow only can be enclosed by the interval

𝜃(2)* = [0.965, 0.974] . (8.26)

The nominal parameters are now used to verify the hybrid setting. Again the collected
measurement data of the height ℎ2 is enclosed by interval values

ℎ2,𝑘 =
[︁
ℎ2,𝑘(1− 𝛿𝑟

ℎ2), ℎ2,𝑘(1 + 𝛿𝑟
ℎ2)
]︁

(8.27)

with 𝛿𝑟
ℎ2 = 0.15.

The upper part of Fig. 8.8 shows a hybrid test run, starting with tank 3 being empty
and the level of tank 2 being at ℎ2,1 = 5cm. The level of tank 2 is increased using
pump 2 and thus crosses the valve height ℎ32𝑢 at 𝑘 = 64 seconds. The tank dynamics
are changed by the crossing as the upper connection valve now acts as an additional
outflow of tank 2.
The verification results are depicted in the lower part of Fig. 8.8. State 1 can be verified
as long as the level in tank 2 is below the connection valve, i.e. ℎ2,𝑘 ≤ ℎ32𝑢. Afterwards,
state 2 is verified until the end of the measurement sequence.

Note that in this case it is not necessary to perform cross validation, i.e. applying the
parameters of state 2 to measurement from state 1 and vice versa. This is due to the
fact that the real switching time and the respective active state are given by the mapped
state signal.

8 Application and Results 121

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 1600

10

20

30

40
45

ℎ
2

in
cm

Measurement
Enclosure

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 1600

2

4

6

8
𝑣 2

in
l/

m
in

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
infeasible

feasible
Verification Result State 1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
infeasible

feasible

Time step 𝑘 with Δ𝑡 = 1s

Verification Result State 2

Figure 8.8: Verification result in the hybrid case for state 1 and state 2 with a mapped state signal

8 Application and Results 122

8.2.2 Measurement Without Mapped State Signal

The introduced setting is now generalized by omitting the mapped state signal, still as-
suming known switching times. This means that it is still known there is a state change
at 𝑘 = 64 in the scenario, but now it is unknown whether the system switches from
state 1 to state 2 or vice versa. Therefore all segments have to be analyzed twice, using
the nominal parameters of both states. This cross verification is used to determine the
active state of the respective subsystem.
To ensure successful cross validation, Prager-Oettli-Distinguishability as given in As-
sumption 6.2 has to be fulfilled. Therefore the nominal parameters of state 1 and state 2
are investigated. It is obvious that the nominal parameters of state 2 are a subset of the
nominal parameters of state 1, as

𝜃*(1) = [0.93, 0.98] ⊃ [0.965, 0.974] = 𝜃*(2) (8.28)

which leads to the existence of a common parameter

𝜃*
𝑐𝑜𝑚 = 𝜃*(1) ∩ 𝜃*(2) = [0.965, 0.974] . (8.29)

Therefore all parameters that are within the set of common parameters 𝜃*
𝑐𝑜𝑚 are consis-

tent with both states by definition.
It is hence not possible to distinguish the states as Prager-Oettli-Distinguishability is
not fulfilled in the current setting. Since this property is the main preliminary of hybrid
verification without mapped state signal it is formally impossible to demonstrate the
viability of the method using this setting.

The performance of the algorithm in case of fulfilled Prager-Oettli-Distinguishability
was demonstrated in Example 6.2. Furthermore it was shown that it is possible to
segment and verify the measurement data even without information about the switches
if Prager-Oettli-Segmentability holds. The respective setting and the results are given
in Example 6.3.

8 Application and Results 123

8.3 Simulation: Diagnosis Using Kaucher Based
Guaranteed Verification (Four-Tank)

ℎ1

ℎ3

ℎ2

ℎ4

Tank 2Tank 1

Tank 4Tank 3

Pump 1 𝑣1 Pump 2 𝑣2

𝑣𝑖𝑛2𝑣𝑖𝑛1

Figure 8.9: Schematic view of the used four-tank system

The regarded setting is now changed to a slightly different four-tank setup. The four-
tank process is an established benchmark in literature and was proposed by [Joh00].
Here it is used to apply the diagnosis method introduced in Chapter 7. This application
was published and presented in [Sch18b].
The four-tank setting is depicted in Fig. 8.9. For symmetry reasons the setting can be
reduced to tank 1 and tank 3.
The dynamic of tank 1 is chosen to be the objective of the verification. The heights ℎ1
and ℎ3 of both tanks are measured, as well as the on/off signal 𝑣1 of pump 1. The flow
of pump 1 is split by the input valve 𝑣𝑖𝑛1 leading to 𝑣𝑖𝑛1 = 0.7 of the flow going to tank 1
and (1− 𝑣𝑖𝑛1) of the flow going to tank 4. The flows from pump 1 as well as from tank 3
are considered as inputs. The respective equations are similar to (8.2), now taking into
account an additional inflow depending on ℎ3.

All simplifications and the resulting model equations are based on the considerations of
[Ble11].

8 Application and Results 124

Discretization using Euler Method and sampling time Δ𝑡 leads to

ℎ1,𝑘 =ℎ1,𝑘−1 −
𝑎1

𝐴1
𝑎1
√︁

2𝑔ℎ1,𝑘−1Δ𝑡
⏟ ⏞

outflow

+ 1
𝐴3

𝑎3
√︁

2𝑔ℎ3,𝑘−1Δ𝑡
⏟ ⏞
inflow from tank 3

+ 1
𝐴1

𝑣𝑖𝑛1𝛾1𝑣1,𝑘−1Δ𝑡
⏟ ⏞
inflow by pump 1

+𝑒1,𝑘 (8.30)

with parameters according to Appendix G, Tab. G.2. The additive disturbance 𝑒1,𝑘

includes sensor and discretization faults.
The pseudo linear regressor form (8.3) is now given by

𝑦𝑘 = ℎ1,𝑘 −
𝑣𝑖𝑛1𝛾1

𝐴1
𝑣1,𝑘−1Δ𝑡 (8.31)

𝜙𝑘 = [ℎ1,𝑘−1 ℎ3,𝑘−1] (8.32)

Θ𝑘 =
[︁
𝜃

(1)
𝑘 𝜃

(2)
𝑘

]︁𝑇
(8.33)

with the time variant parameters

𝜃
(1)
𝑘 = 1− 𝑎1

𝐴1

√︃
2𝑔

ℎ1,𝑘−1
Δ𝑡 (8.34)

𝜃
(2)
𝑘 = 𝑎3

𝐴3

√︃
2𝑔

ℎ3,𝑘−1
Δ𝑡. (8.35)

It is assumed that the operation range of the tank system is ℎ1,𝑘 ∈ [2, 10.5] cm and
ℎ3,𝑘 ∈ [1, 15] cm which leads to 𝜃(1)* = [0.921, 0.965] and 𝜃(2)* = [0.029, 0.112]. The
resulting midpoint radius expressions of the parameters are 𝜃(1)*

𝑐 = 0.943, 𝜃
(1)*
Δ = 0.022

and 𝜃(2)*
𝑐 = 0.0705, 𝜃

(2)*
Δ = 0.0415.

The optimization based diagnosis approach using a zonotopic approximation is chosen
in this example. Therefore the measurement data and the nominal parameter set are
used to set up the constraints of the optimization problem.
The nominal feasible parameter box Θ* is used to build the initial zonotope with:

𝑃 0 =
[︁

𝜃(1)*
𝑐 𝜃(2)*

𝑐

]︁𝑇
(8.36)

𝐻0 =
[︃

𝜃
(1)*
Δ 0

0 𝜃
(2)*
Δ

]︃
. (8.37)

Afterwards the outer enclosure of the intersection between initial zonotope and measure-
ment data is calculated using (7.10)-(7.12). The resulting zonotope is used as starting
point 𝑃 0

0 , 𝐻0
0 of the optimization problem. The solution of the optimization problem is

thus a zonotopic approximation of the united solution set given by 𝒵. All parameter
vectors included in the optimal solution set 𝒵 are solutions of the ILES (3.46). If the
intersection of the specification and measurement is nonempty, the algorithm calculates
a feasible set in this area. The results and limitations of the approach are demonstrated
in the following, using several different settings.

8 Application and Results 125

8.3.1 Fault Free Setting

First a fault free scenario is given as depicted in Fig. 8.10. The scenario includes parts
with pump on and off and thus shows a variety of different water level dynamics both
in tank 1 and tank 3. The measurement data of ℎ1 and ℎ3 are enclosed using intervals
with radius 𝛿𝑎

ℎ1 = 𝛿𝑎
ℎ3 = 0.05cm leading to the interval values

ℎ1,𝑘 =
[︁
ℎ1,𝑘 − 𝛿𝑎

ℎ1 , ℎ1,𝑘 + 𝛿𝑎
ℎ1

]︁
(8.38)

ℎ3,𝑘 =
[︁
ℎ3,𝑘 − 𝛿𝑎

ℎ3 , ℎ3,𝑘 + 𝛿𝑎
ℎ3

]︁
. (8.39)

The results of the optimization based zonotopic method are given in subplot 4 of
Fig. 8.10. The algorithm calculated a feasible set of parameters for the time segments
[1, 𝑘𝑒𝑛𝑑] with 𝑘𝑒𝑛𝑑 ∈ [[1, 1297] , [1572, 2000]]. However, time segments starting in the
beginning and ending in 𝑘𝑒𝑛𝑑 ∈ [1298, 1571] are not verified. Therefore there is tem-
porarily no consistency according to Prop. 7.4 given in this segment. This is due to the
CMP effect as introduced in Section 7.2.1.
A detailed view on the relevant time instants is given in Fig. 8.11 which displays the
change of the result from consistent to inconsistent and back.

The constraints given by the measurement data are depicted by the blue lines in Fig. 8.11,
the nominal set by the shaded area and the zonotopic approximation of the united so-
lution set is shown as the green zonotope.
At 𝑘 = 1297, the measurement data is proven to be basic consistent with the specifica-
tion as there is a nonempty intersection between nominal set and the approximation of
the united solution set (orange part of the zonotope in Fig. 8.11, subfigure 1).
At 𝑘 = 1298, the verification result is inconsistent for the first time. However, there
is still a feasible region within the nominal parameter set, shown by the green crosses
that depict vertexes fulfilling Prop. 4.1 (Fig. 8.11, subfigure 2). Those points were used
by the algorithm while calculating a suitable factor 𝛼. However there is no intersection
between the final green zonotope and the shaded nominal region. This behavior reflects
exactly the definition of the CMP effect introduced in Section 7.2.1. The CMP effect is
observable until 𝑘 = 1571, (Fig. 8.11, subfigure 3).
Starting from 𝑘 = 1572, additional constraints given by new measurement data are taken
into account. Therefore, the center and shape of the outer enclosure is changed. This
results in a zonotopic approximation of the united solution set that provides a nonempty
intersection with the nominal set again (Fig. 8.11, subfigure 4), leading to a successful
verification.
As those later results are calculated based on all measurement data, including the possi-
bly inconsistent times 𝑘 ∈ [1298, 1571], the results showing the CMP effect are corrected
and the verification result for 𝑘 > 1571 can be generalized for all 𝑘 ∈ [1, 2000].

8 Application and Results 126

0 200 400 600 800 1000 1200 1400 1600 1800 20000

2

4

6

8

10

ℎ
3

in
cm

Measurement Enclosure

0 200 400 600 800 1000 1200 1400 1600 1800 20000

5

10

ℎ
1

in
cm

0 200 400 600 800 1000 1200 1400 1600 1800 2000
off

on
𝑣 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
infeasible

feasible

Time step 𝑘 with Δ𝑡 = 1s

Verification Result

Figure 8.10: Verification result for the fault free setting

8 Application and Results 127

0.950 0.960 0.965 0.970 0.980

0.029

0.040

0.050

𝜃(1)

𝜃(2
)

𝑘 = 1297

0.950 0.960 0.965 0.970 0.980

0.029

0.040

0.050

𝜃(1)

𝜃(2
)

𝑘 = 1298

0.950 0.960 0.965 0.970 0.980

0.029

0.040

0.050

𝜃(1)

𝜃(2
)

𝑘 = 1571

0.950 0.960 0.965 0.970 0.980

0.029

0.040

0.050

𝜃(1)

𝜃(2
)

𝑘 = 1572

Figure 8.11: Zoom on the time instants showing the CMP effect

8 Application and Results 128

The method is applied iteratively to calculate an individual verification result for each
time step 𝑘. The calculations are done offline and the necessary calculation time for the
complete data set is 𝑇𝑐𝑎𝑙𝑐 = 703.8s < 2000s = 𝑇 .
Regarding the calculation time of each measurement time step shows that 𝑇𝑐𝑎𝑙𝑐,𝑘 < 1s
which means that the method might in general be real time capable. However, the algo-
rithm is based on an optimization procedure with non-deterministic runtime. Therefore
special measures need to be taken to ensure deterministic runtime of each step. For an
initial estimate the average runtime of the optimization algorithm is used by regarding
the total runtime of the method throughout this chapter.

8.3.2 Additive Faults

There are several phenomena that can lead to an additive fault of an sensor. A possible
sensor fault is called “freeze”, when the sensor will return a fixed constant value. Another
common sensor fault is “offset”, which means that the sensor will add a constant bias
to the true measurement value. A third additive sensor property is the specific sensor
noise. Noise is not regarded as an effect to be detected here. However it is crucial to
know the sensor noise precisely to choose the bound of the interval enclosure correctly.

Given the correct faultless but noisy sensor data 𝑠𝑘, a freeze fault of value 𝑓𝑓 , occurring
at time 𝑘𝑒𝑟𝑟, can be expressed as follows:

𝑠𝑓,𝑘 =
⎧
⎨
⎩

𝑠𝑘 ∀𝑘 ∈ [1, 𝑘𝑒𝑟𝑟 − 1]
𝑓𝑓 ∀𝑘 ∈ [𝑘𝑒𝑟𝑟, 𝑇] .

(8.40)

The measurement values of ℎ1 and ℎ3 are enclosed using 𝛿𝑎
ℎ1 = 𝛿𝑎

ℎ3 = 0.05cm. The case
of a freeze fault of 𝑓𝑓 = 6.0cm on measurement ℎ1 at 𝑘𝑒𝑟𝑟 = 650 is depicted in Fig. 8.12.
It can be seen that the detection time is equal to the fault time 𝑘𝑑𝑒𝑡 = 650 = 𝑘𝑒𝑟𝑟 which
means that the freeze fault is detected instantaneously.
The results for several different freeze fault amplitudes on ℎ1 and the respective fault
detection times 𝑘𝑑𝑒𝑡 are given in Tab. 8.1. All detected faults were checked in detail to
identify settings showing the CMP effect.
In case of 𝑓𝑓 = 6.2cm a CMP condition occurred. This is due to the fact that the used
freeze fault intensity is enclosed in the 𝛿𝑎

ℎ1 = 0.05cm interval around the real value of
ℎ1,650 = 6.22cm. Thus at 𝑘 = 651 the freeze fault case is really close to the correct value
of ℎ1,650+1, meaning that there is a feasible parameter mapping ℎ1,𝑘 = 6.2 to ℎ1,𝑘+1 = 6.2.
Subsequent points do not provide additional information, as the sensor value is fixed by
the freeze fault. The only additional information is provided by the pump signal 𝑣1. The
varying pump signal leads to a movement of the center of the outer enclosing zonotope.
At 𝑘𝑑𝑒𝑡 = 684 the center of the zonotope is moved to a position that generates a CMP
effect that is erroneously interpreted as an inconsistency.

8 Application and Results 129

0 200 400 600 800 1000 1200 1400 1600 1800 20000

5

10

ℎ
1

in
cm

0 200 400 600 800 1000 1200 1400 1600 1800 20000

2

4

6

8

10

ℎ
3

in
cm

Measurement Enclosure Fault Free

0 200 400 600 800 1000 1200 1400 1600 1800 2000
off

on
𝑣 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
infeasible

feasible

Time step 𝑘 with Δ𝑡 = 1s

Verification Result

Figure 8.12: Verification results for freeze fault of 𝑓𝑓 = 6.0cm at 𝑘𝑒𝑟𝑟 = 650

8 Application and Results 130

All calculation times for freeze faults given in Table 8.1 are less than the time of the
measurement signal 𝑇𝑐𝑎𝑙𝑐 < 2000s = 𝑇 .

Table 8.1: Different fault amplitudes and resulting detection times for freeze fault

Fault 𝑓𝑓 Time step of Quality Calculation Time
in cm Fault 𝑘𝑒𝑟𝑟 Detection 𝑘𝑑𝑒𝑡 𝑇𝑐𝑎𝑙𝑐 in s

7.0 650 650 no CMP 1181.0
6.5 650 650 no CMP 1200.9
6.2 650 684 CMP occurred 743.4
6.0 650 650 no CMP 1461.7

The second regarded malfunction is an offset fault. In this case the sensor value is not
fixed, but a specific value is added to each measurement:

𝑠𝑜,𝑘 =
⎧
⎨
⎩

𝑠𝑘 ∀𝑘 ∈ [1, 𝑘𝑒𝑟𝑟 − 1]
𝑠𝑘 + 𝑓𝑜 ∀𝑘 ∈ [𝑘𝑒𝑟𝑟, 𝑇] .

(8.41)

Again the measurement values of ℎ1 and ℎ3 are enclosed using 𝛿𝑎
ℎ1 = 𝛿𝑎

ℎ3 = 0.05cm. The
results for an offset fault of 𝑓𝑜 = 0.7cm on sensor ℎ1 are depicted in Fig. 8.13. Again the
verification result changes to infeasible right at the moment the fault gets effective i.e.,
at 𝑘𝑑𝑒𝑡 = 650 = 𝑘𝑒𝑟𝑟.
Further results for different fault amplitudes are given in Table 8.2. Instantaneous detec-
tion is possible up to a fault amplitude of 𝑓𝑜 = 0.15cm. Note that the measurement noise
is enclosed using 𝛿𝑎

ℎ1 = 𝛿𝑎
ℎ3 = 0.05cm which leads to an interval width of 2𝛿𝑎

ℎ1 = 0.1cm.
This is very close to the fault amplitude 𝑓𝑜 = 0.15cm. When using 𝑓𝑜 = 0.1cm - which
is exactly the interval width - the CMP effect occurs. The necessary calculation time is
less than the signal duration for all regarded offset fault intensities.

Table 8.2: Different fault amplitudes and resulting detection times for offset fault

Fault 𝑓𝑜 Time step of Quality Calculation Time
in cm Fault 𝑘𝑒𝑟𝑟 Detection 𝑘𝑑𝑒𝑡 𝑇𝑐𝑎𝑙𝑐 in s
0.70 650 650 no CMP 1367.9
0.30 650 650 no CMP 1475.0
0.20 650 650 no CMP 1361.5
0.15 650 650 no CMP 1210.0
0.10 650 650 CMP occurred 1036.8

8 Application and Results 131

0 200 400 600 800 1000 1200 1400 1600 1800 20000

5

10

ℎ
1

in
cm

0 200 400 600 800 1000 1200 1400 1600 1800 20000

2

4

6

8

10

ℎ
3

in
cm

Measurement Enclosure Fault Free

0 200 400 600 800 1000 1200 1400 1600 1800 2000
off

on
𝑣 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
infeasible

feasible

Time step 𝑘 with Δ𝑡 = 1s

Verification Result

Figure 8.13: Verification results for offset fault of 𝑓𝑜 = 0.7cm at 𝑘𝑒𝑟𝑟 = 650

8 Application and Results 132

8.3.3 Multiplicative Faults

Multiplicative faults can be related to faults in system components i.e. a congested or
leaking pipe or decreasing pump performance. Such a multiplicative fault 𝑓𝜃 directly
influences the system parameter:

𝜃𝑒𝑟𝑟,𝑘 =
⎧
⎨
⎩

𝜃𝑘 ∀𝑘 ∈ [1, 𝑘𝑒𝑟𝑟 − 1]
𝜃𝑘 + 𝑓𝜃 ∀𝑘 ∈ [𝑘𝑒𝑟𝑟, 𝑇] .

(8.42)

A maximum absolute deviation of 𝛿𝑎
ℎ1 = 𝛿𝑎

ℎ3 = 0.05cm is used to enclose the measurement
values of ℎ1 and ℎ3. An exemplary setting for 𝑓𝜃(1) = 0.035 at 𝑘𝑒𝑟𝑟 = 1200 is depicted in
Fig. 8.14, further results are given in Tab. 8.3.
It can be seen, that the faulty parameter influences the value of ℎ1. This change in
system dynamic is recognized by the verification method at 𝑘𝑑𝑒𝑡 = 1200 = 𝑘𝑒𝑟𝑟.
All detected inconsistencies were checked in detail. Reliable results are possible up to
𝑓𝜃1 = 0.010. This is a very small value with respect to the nominal parameter variability
𝜃

(1)
Δ = 0.025 which shows the new method is very sensitive.

The condition 𝑇𝑐𝑎𝑙𝑐 < 2000s = 𝑇 holds for all entries in Tab. 8.3.

Table 8.3: Different fault amplitudes and resulting detection times for parameter fault

Fault 𝑓𝜃(1) Time step of Quality Calculation Time
Fault 𝑘𝑒𝑟𝑟 Detection 𝑘𝑑𝑒𝑡 𝑇𝑐𝑎𝑙𝑐 in s

0.035 1200 1200 no CMP 1036.6
0.022 1200 1215 no CMP 1123.9
0.020 1200 1227 no CMP 1166.7
0.010 1200 1572 no CMP 764.7
0.005 1200 1638 CMP occurred 746.7

8 Application and Results 133

0 200 400 600 800 1000 1200 1400 1600 1800 20000

5

10

ℎ
1

in
cm

0 200 400 600 800 1000 1200 1400 1600 1800 20000

2

4

6

8

10

ℎ
3

in
cm

Measurement Enclosure Fault Free

0 200 400 600 800 1000 1200 1400 1600 1800 2000
off

on
𝑣 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
infeasible

feasible

Time step 𝑘 with Δ𝑡 = 1s

Verification Result

Figure 8.14: Verification results for multiplicative fault of 𝑓𝜃(1) = 0.035 at 𝑘𝑒𝑟𝑟 = 1200

8 Application and Results 134

8.4 Application: Diagnosis Using Kaucher Based
Guaranteed Verification (Single-Tank)

The diagnosis method is now applied to real measurement data instead of simulation
data as in the previous chapter. Therefore the IRS three-tank setting (introduced in
Section 8.1) is used, again reduced to the single-tank setup. The respective geometric
parameters can be taken from Appendix G, Tab. G.1.
The following scenario is regarded: The water level in tank 2 has an initial height of
ℎ2,1 = 24.48cm and is rising due to the input flow from pump 2. Pump 2 is running at
a high load with varying intensity.
First, the fault free setting is evaluated to show that the method is able to verify the
nominal setting. Then the additive sensor faults “freeze” and “offset” are applied to the
measurement data. Finally a scaling fault on the height measurement data is consid-
ered.

The results of different fault intensities as well as the detection and calculation times
are given in several tables. Each result was evaluated carefully to determine CMP
conditions. The results were initially published and presented in [Sch18c].

8.4.1 Fault Free Setting

The regarded operation range is defined to be ℎ2 ∈ [24, 46] cm and used with (8.5) to
obtain the nominal range 𝜃* = [0.971, 0.979].
The result is calculated by using an interval width of 𝛿𝑎

ℎ2 = 0.4cm to enclose the mea-
surement data of ℎ2. The pump measurement data is assumed to be noiseless and thus
used as point real value.
The fault free behavior is depicted in Fig. 8.15. It is verified for the entire measurement
time.
The necessary calculation time is 𝑇𝑐𝑎𝑙𝑐 = 34.4s < 120s = 𝑇 .

8 Application and Results 135

0 10 20 30 40 50 60 70 80 90 100 110 12020

30

40

50

ℎ
2

in
cm

Measurement
Enclosure

0 10 20 30 40 50 60 70 80 90 100 110 1200

2

4

6

8

𝑣 2
in

l/
m

in

0 10 20 30 40 50 60 70 80 90 100 110 120
infeasible

feasible

Time step 𝑘 with Δ𝑡 = 1s

Verification Result

Figure 8.15: Fault free measurement data of the single-tank diagnosis scenario

8 Application and Results 136

8.4.2 Additive Faults

The first considered additive fault is given by a sensor freeze. The used mathematical
model to distort the fault free measurement data of ℎ2 is given by (8.40). The measure-
ment is enclosed using an absolute deviation of 𝛿𝑎

ℎ2 = 0.4cm. The resulting system run
for 𝑓𝑓 = 37.9cm on the measurement of ℎ2 at 𝑘𝑒𝑟𝑟 = 60 is depicted in Fig. 8.16.
It can be seen that it is not possible to verify the measurement data as soon as the freeze
fault is active. The failure is detected at 𝑘𝑑𝑒𝑡 = 60 = 𝑘𝑒𝑟𝑟, i.e. at the very first time the
measurement is distorted.
An evaluation of the performance of the method for several different freeze fault inten-
sities 𝑓𝑓 is listed in Tab. 8.4. It can be seen that it is possible to detect faults in a large
range from 𝑓𝑓 = 42.0cm to 𝑓𝑓 = 37.9cm. The lower value is very close to the correct
value ℎ2,𝑘𝑒𝑟𝑟 = 37.54cm.
All faults are detected directly at their first appearance, i.e. at 𝑘𝑑𝑒𝑡 = 60 = 𝑘𝑒𝑟𝑟. All re-
sults were checked carefully to ensure that there is no CMP effect present in the results.
All calculation times are less than the measurement time, i.e. 𝑇𝑐𝑎𝑙𝑐 < 120s = 𝑇 .

Table 8.4: Different freeze fault amplitudes for 𝑠𝑘𝑒𝑟𝑟
= ℎ2,60 = 37.54cm

Fault 𝑓𝑓 Time step of Quality Calculation Time
in cm Fault 𝑘𝑒𝑟𝑟 Detection 𝑘𝑑𝑒𝑡 𝑇𝑐𝑎𝑙𝑐 in s
42.0 60 60 no CMP 99.6
39.0 60 60 no CMP 49.6
38.5 60 60 no CMP 50.2
38.0 60 60 no CMP 80.8
37.9 60 60 no CMP 31.0
37.7 60 not detected no CMP 24.9

8 Application and Results 137

0 10 20 30 40 50 60 70 80 90 100 110 12020

30

40

50

ℎ
2

in
cm

Measurement
Enclosure
Fault Free

0 10 20 30 40 50 60 70 80 90 100 110 1200

2

4

6

8

𝑣 2
in

l/
m

in

0 10 20 30 40 50 60 70 80 90 100 110 120
infeasible

feasible

Time step 𝑘 with Δ𝑡 = 1s

Verification Result

Figure 8.16: Measurement data with freeze fault 𝑓𝑓 = 37.9cm

8 Application and Results 138

Second, an offset fault setting is applied. Therefore a constant offset 𝑓𝑜 is added to the
faultless measurement data of ℎ2, according to (8.41). Again, an absolute deviation of
𝛿𝑎

ℎ2 = 0.4cm is used to enclose the measurement. The performance of the method is
shown exemplary in Fig. 8.17 and Fig. 8.18.
The large offset of 𝑓𝑜 = 5cm in Fig. 8.17 is rather obvious and could also be detected by
an expert. On the other hand, the very small offset of 𝑓𝑜 = 0.35cm in Fig. 8.18 is very
hard to distinguish from the fault free measurement depicted in green.
Nevertheless the zonotopic method is able to detect it at the moment of its first appear-
ance. This is a very powerful property as the detected offset of 𝑓𝑜 = 0.35cm is smaller
than the used interval radius of 𝛿𝑎

ℎ2 = 0.4cm.
This performance is due to the dynamic between time instant 𝑘𝑒𝑟𝑟 − 1 and time instant
𝑘𝑒𝑟𝑟 that is created by the appearance of the offset fault. This dynamic is detected
instantaneously as it is outside of the nominal parameter range.

Several results for different offset intensities are given in Tab. 8.5. The table shows that
instantaneous detection, i.e. 𝑘𝑑𝑒𝑡 = 𝑘𝑒𝑟𝑟 is possible within the range of 𝑓𝑜 = 0.35cm and
𝑓𝑜 = 5cm. No result shows the CMP effect which means that they are of good quality
and provide reliable results using a zonotopic approximation of the united solution set.
The calculation time of all results is also given in Tab. 8.5. It can be seen that the mea-
surement data can be processed in less than the genuine signal time, i.e. 𝑇𝑐𝑎𝑙𝑐 < 120s = 𝑇
holds for all fault intensities.

Table 8.5: Different offset fault amplitudes for 𝑠𝑘𝑒𝑟𝑟
= ℎ2,60 = 37.54cm

Fault 𝑓𝑜 Time step of Quality Calculation Time
in cm Fault 𝑘𝑒𝑟𝑟 Detection 𝑘𝑑𝑒𝑡 𝑇𝑐𝑎𝑙𝑐 in s
5.00 60 60 no CMP 97.2
2.00 60 60 no CMP 92.0
1.00 60 60 no CMP 59.3
0.50 60 60 no CMP 60.1
0.35 60 60 no CMP 57.0
0.20 60 not detected no CMP 25.2

8 Application and Results 139

0 10 20 30 40 50 60 70 80 90 100 110 12020

30

40

50

ℎ
2

in
cm

Measurement
Enclosure
Fault Free

0 10 20 30 40 50 60 70 80 90 100 110 1200

2

4

6

8

𝑣 2
in

l/
m

in

0 10 20 30 40 50 60 70 80 90 100 110 120
infeasible

feasible

Time step 𝑘 with Δ𝑡 = 1s

Verification Result

Figure 8.17: Measurement data with offset fault 𝑓𝑜 = 5cm

8 Application and Results 140

0 10 20 30 40 50 60 70 80 90 100 110 12020

30

40

50

ℎ
2

in
cm

Measurement
Enclosure
Fault Free

0 10 20 30 40 50 60 70 80 90 100 110 1200

2

4

6

8

𝑣 2
in

l/
m

in

0 10 20 30 40 50 60 70 80 90 100 110 120
infeasible

feasible

Time step 𝑘 with Δ𝑡 = 1s

Verification Result

Figure 8.18: Measurement data with offset fault 𝑓𝑜 = 0.35cm

8 Application and Results 141

8.4.3 Scaling Faults

In the diagnosis scenario discussed in this section so far, real measurement data from a
single-tank process is used. To realize multiplicative faults with the same measurement
data, a scaling fault in the corresponding sensor of ℎ2 is assumed. This leads to the
following scaling fault model

𝑠𝑠,𝑘 =
⎧
⎨
⎩

𝑠𝑘 ∀𝑘 ∈ [1, 𝑘𝑒𝑟𝑟 − 1]
𝑠𝑘 · 𝑓𝑠 ∀𝑘 ∈ [𝑘𝑒𝑟𝑟, 𝑇]

(8.43)

which replaces the former multiplicative fault (8.42). The absolute deviation to enclose
the measurement of ℎ2 remains 𝛿𝑎

ℎ2 = 0.4cm. The results are depicted in Fig. 8.19 and
Fig. 8.20 for 𝑓𝑠 = 0.95 and 𝑓𝑠 = 1.01 respectively.
It can be seen that even factors very close to one (e.g. 𝑓𝑠 = 1.01, meaning a deviation
of 1%) can be detected.

Results for an extensive range of factors are given in Tab. 8.6.
It is not possible to detect the fault intensity of 𝑓𝑠 = 0.97 as this parameter is very close
to the nominal parameter 𝜃* = [0.971, 0.979] representing the desired system dynamics.
This means there is a deviation of 0.1% between 𝑓𝑠 = 0.97 and 𝜃* = 0.971 which is one
order of magnitude less than for 𝑓𝑠 = 1.01.

All successfully detected faults lead to 𝑘𝑑𝑒𝑡 = 60 = 𝑘𝑒𝑟𝑟, i.e. they are detected right at
their appearance. There was no CMP condition present in the regarded settings.
Again, it is possible to calculate the results for all fault amplitudes in less than the
genuine signal time, i.e. 𝑇𝑐𝑎𝑙𝑐 < 120s = 𝑇 .

Table 8.6: Different scaling fault amplitudes for 𝑠𝑘𝑒𝑟𝑟 = ℎ2,60 = 37.54cm

Fault 𝑓𝑠 Time step of Quality Calculation Time
Fault 𝑘𝑒𝑟𝑟 Detection 𝑘𝑑𝑒𝑡 𝑇𝑐𝑎𝑙𝑐 in s

1.10 60 60 no CMP 77.7
1.05 60 60 no CMP 80.4
1.03 60 60 no CMP 77.3
1.01 60 60 no CMP 64.6
0.97 60 not detected no CMP 31.9
0.95 60 60 no CMP 108.8
0.90 60 60 no CMP 96.6
0.75 60 60 no CMP 75.2
0.50 60 60 no CMP 117.8

8 Application and Results 142

0 10 20 30 40 50 60 70 80 90 100 110 12020

30

40

50

ℎ
2

in
cm

Measurement
Enclosure
Fault Free

0 10 20 30 40 50 60 70 80 90 100 110 1200

2

4

6

8

𝑣 2
in

l/
m

in

0 10 20 30 40 50 60 70 80 90 100 110 120
infeasible

feasible

Time step 𝑘 with Δ𝑡 = 1s

Verification Result

Figure 8.19: Measurement data with scaling fault 𝑓𝑠 = 0.95

8 Application and Results 143

0 10 20 30 40 50 60 70 80 90 100 110 12020

30

40

50

ℎ
2

in
cm

Measurement
Enclosure
Fault Free

0 10 20 30 40 50 60 70 80 90 100 110 1200

2

4

6

8

𝑣 2
in

l/
m

in

0 10 20 30 40 50 60 70 80 90 100 110 120
infeasible

feasible

Time step 𝑘 with Δ𝑡 = 1s

Verification Result

Figure 8.20: Measurement data with scaling fault 𝑓𝑠 = 1.01

8 Application and Results 144

8.5 Conclusion

The methods and theories developed throughout this thesis were applied and demon-
strated in this chapter.

First, simulation data of a single-tank process was used to show the performance of the
verification method based on Kaucher arithmetic and zonotopic inner enclosures of the
united solution set.
This approach was extended to the hybrid setting given by a two-tank system. It was
shown that the introduced method is able to verify the correct system in case of known
switching times and known active subsystems.
The application to a four-tank process showed that it is not possible to verify the system
in various faulty settings even for very small fault amplitudes. This is a relevant indicator
that a fault is present in the system and can thus be used for fault detection. The
performance of the developed method was shown for three different and common fault
types, namely freeze fault, offset fault and multiplicative fault.
The same diagnosis algorithm was finally applied to real measurement data provided
again by the single-tank process. It could be shown that the algorithm obtains valuable
results by detecting even very small faults from real world data.

The calculation time of all introduced examples was less than the genuine time of ex-
periment on a standard laptop. Therefore the application might in general be suitable
for online application in a diagnosis setting.

9 Conclusion

Modern engineering is able to develop and build complex and powerful systems to an
unprecedented extend. The functionality of these systems is rapidly increasing and
masters tasks that used to be subject to highly trained humans. The challenge how to
build such systems is nearly completed. Still remaining is the question how to ensure
correct functionality of such powerful safety critical systems. Current safety analysis
relies on sophisticated methods from the field of testing. Even though these methods are
very mature, they are essentially falsification approaches meaning that there are type II
errors by definition. However, in the case of safety critical systems, it is necessary to
ensure the absence of type II errors.
This thesis provides the foundations for a new specification and verification approach
able to provide the necessary type II error free results.

Therefore a new notion of set based consistency for dynamic systems with a given spec-
ification is presented. Kaucher interval arithmetic is used to enclose the measurement
data in a bounded error sense. Thus, the specified behavior of a dynamic system can
be verified by measurement data even in the presence of noise and sensor uncertainty.
Consistency is defined using the Kaucher arithmetic united solution set which leads to
mathematically guaranteed results. The verdicts calculated by the new Kaucher based
method can not show type II errors (hidden faults) by definition and are thus suitable
to provide a reliable verification of safety critical systems.

It was proven mathematically that this holds for a wide class of systems, including time
invariant, interval type and hybrid systems, which can be used to describe even non-
linearities. The notion of consistency was extended to include the discrete event part
of a hybrid system and requirements on the connection of the two system classes were
derived. Several extensions were introduced, leading to a new iterative identification and
segmentation algorithm for hybrid systems which is able to handle even unknown switch-
ing times. In case the calculations can be done fast enough, the developed approach can
also be used for the diagnosis of dynamic systems. Requirements on sampling time and
hardware performance have to be determined for each specific setting individually.

The presented methods were successfully applied to several example systems, consist-
ing of a variation of different tank settings. The results were shown, interpreted and
discussed.

9 Conclusion 146

The results provide the base to answer the research question that governed this thesis.
The new theories, methods and algorithms developed in this thesis form the foundation
for reliable safety analysis of highly automated safety critical systems. The results of this
thesis can be used to solve the arising problems of current powerful and interconnected
systems that are increasingly interleaving our daily live.

A Analysis Perspectives

A popular definition to distinguish different analysis perspectives was coined by [Boe84]:
validation means “building the right product” whereas verification means “building the
product right”.
This is used to set up a high level differentiation between validation and verifica-
tion/falsification as given in Fig. A.1. Validation is always concerned with the desire
of the customer and evaluates the question whether the developed functionality fulfills
this desire. The field of validation is very important and large research effort including
psychology, behavioral science and linguistics has been put on it in the last decades
[Mac95][Que98][Fau03][Fol08][Bar13]. Nevertheless validation is not part of this thesis.
The objective of security focuses on the detection of intentional misuse by (un)authorized
subjects, e.g. due to hacking attacks or user errors. The whole field of security, including
conscious misuse, hacking or manipulation is also not in the scope of this thesis.

Specification
⇓

Human
Implementation

Verification

Falsification

ValidationCustomer

Diagnosis

Development Process Runtime

Figure A.1: Evaluation terminology

The realization of the specification is done by human engineers, therefore it is likely that
there are mistakes during the process of implementation. A wide spread approach to
find these mistakes is given by the concept of falsification, which tries to determine a so
called counter example that shows unspecified or wrong behavior. If it is not possible
to determine a counter example it is assumed that there are no counter examples at all
and thus the system is considered to be correct. However, due to limited runtime of
the falsification process it is possible that there are undetected (hidden) faults in the
implementation. Therefore type II errors are possible which is an disadvantage in case
of safety critical systems.

A Analysis Perspectives XVII

If the specification is very formal, the implemented system can be analyzed in a formal
way. Verification methods aim on proving the correctness of the implemented system in
(all) operating conditions. The goal is to prove that the system always shows nominal
behavior.
Verification and falsification methods are in general conducted during the development
process, while the system operates in some kind of artificial environment. The evalua-
tion can be done offline and might thus need more calculation time or can be run several
times during the development process. Mistakes occurring during system operation are
tackled by methods of the diagnosis and monitoring field. They need to run online in
parallel to the real system operation and are thus required to be very fast.
In case of model based diagnosis, a model of the nominal system is generated that is
used to calculate the nominal system output in parallel to the real verification object
(VO). Therefore the inputs of the VO are measured and also applied to the nominal
model. The resulting outputs are compared with the measured outputs of the VO which
leads to a so called residual vector (see among others [Ise93][Ven03a][Ven03c][Ble10]).
In case of an undisturbed system, the residual vector is zero if there is no fault present
in the VO. A fault is detected if there is a non-zero residual vector. If it is necessary
to gain further knowledge of the fault, more sophisticated methods can be applied to
localize the exact point of fault occurrence within the VO ([Ven03a][Ven03c][Che14]).
A drawback of the diagnosis approach is that - due to measurement noise and model
imprecision - the residual vector is not always exactly zero even in the fault free case
[Ise06, p. 198].

B Derivation of the Interval Distribution

This appendix provides the derivation of a probability distribution on the parameter 𝑝
connecting two intervals 𝑢 and 𝑦.
Two examples are presented in Chapter 3. Example 3.4 shows a setting with a proper
result of 𝑝 and Example 3.5 demonstrates a setup leading to an improper solution. The
interval ranges of 𝑢 and 𝑦 are sampled with Δ𝑢 = Δ𝑦 = 0.0001 and used to calculate
the resulting parameter 𝑝𝑠 for all possible combinations.
It is also possible to theoretically derive the shown results. Therefore, two random
variables 𝑢 and 𝑦 are defined with uniform distribution between the infimum and the
supremum of the interval values 𝑢 and 𝑦. The probability density functions of the two
random variables are given by:

𝑓𝑢 (𝑢) =
{︃ 1

𝑢−𝑢
, ∀𝑢 | 𝑢 ≤ 𝑢 ≤ 𝑢

0 , else (B.1)

and
𝑓𝑦 (𝑦) =

{︃ 1
𝑦−𝑦

, ∀𝑢 | 𝑢 ≤ 𝑢 ≤ 𝑢

0 , else.
(B.2)

A general probability density function according to [Bro08, p. 816] has to fulfill the
assumptions

𝑓 (𝑥) ≥ 0, ∀𝑥 (B.3)
∫︁ ∞

−∞
𝑓 (𝑥) 𝑑𝑥 = 1. (B.4)

Assumption (B.3) is valid for (B.1) and (B.2) by definition. Assumption (B.4) can be
shown as follows:

∫︁ ∞

−∞
𝑓𝑢 (𝑢) 𝑑𝑢 = 1

=
∫︁ 𝑢

−∞
𝑓𝑢 (𝑢) 𝑑𝑢

⏟ ⏞
0

+
∫︁ 𝑢

𝑢
𝑓𝑢 (𝑢) 𝑑𝑢

⏟ ⏞ [︁
1

𝑢−𝑢
𝑢

]︁𝑢

𝑢

+
∫︁ ∞

𝑢
𝑓𝑢 (𝑢) 𝑑𝑢

⏟ ⏞
0

=
[︂ 1
𝑢− 𝑢

𝑢
]︂
−
[︂ 1
𝑢− 𝑢

𝑢
]︂

= 1. �

B Derivation of the Interval Distribution XIX

The proportional parameter 𝑝 with

𝑢 · 𝑝 = 𝑦 (B.5)

thus can be interpreted as random variable

𝑝 = 𝑔 (𝑢, 𝑦) = 𝑦

𝑢
. (B.6)

There are different possible realizations of 𝑢 and 𝑦 depending on the specific values of 𝑝.
Therefore the probability density function of 𝑝 is according to [Jon02, p. 118] given as

𝑓𝑝 (𝑝) =
∫︁ ∞

−∞
|𝑢| 𝑓𝑢 (𝑢) 𝑓𝑦 (𝑢 · 𝑝) 𝑑𝑢. (B.7)

With the constant densities of the uniform distributions 𝑓𝑢 (𝑢) and 𝑓𝑦 (𝑦), and assuming
only non-negative input values 𝑢 > 0, (B.7) can be relaxed to

𝑓𝑝 (𝑝) =
∫︁ ∞

0
𝑢 𝑓𝑢 (𝑢)

⏟ ⏞
constant for

𝑢≤𝑢≤𝑢
else 0

𝑓𝑦 (𝑢 · 𝑝)
⏟ ⏞
constant for
𝑦/𝑢≤𝑝≤𝑦/𝑢

else 0

𝑑𝑢. (B.8)

The antiderivative is zero for all 𝑝 /∈ [𝑦/𝑢, 𝑦/𝑢] and 1/𝑝 /∈ [𝑢/𝑦, 𝑢/𝑦]. Else the densities
consist of constant values, leading to the antiderivative

𝑓𝑝 (𝑝) =
[︂1
2𝑐𝑢𝑐𝑦𝑢2

]︂∞

0
(B.9)

with 𝑐𝑢 = 1
𝑢−𝑢

and 𝑐𝑦 = 1
𝑦−𝑦

. The evaluation of 𝑓𝑝 (𝑝) depends on the infimum and
supremum of 𝑢 and 𝑦 and can be generalized as

𝑓𝑝 (𝑝) = 1
2𝑐𝑢𝑐𝑦 max

⎛
⎝0,

(︃
min

(︂
𝑢, max

(︁
𝑦/𝑝, 𝑦/𝑝

)︁)︂)︃2

−
(︃

max
(︂

𝑢, min
(︁

𝑦/𝑝, 𝑦/𝑝

)︁)︂)︃2
⎞
⎠ .

(B.10)

It is now possible to draw the derived density function for specific values of 𝑢 and 𝑦.
Exemplary plots for a proper and an improper setting are given in Example B.1.

B Derivation of the Interval Distribution XX

Example B.1:
The plot for the values of 𝑢 = [2, 3] and 𝑦 = [4, 9] according to Example 3.4 is

depicted in Fig. B.1. The density function has the same shape as the sampling based
result given in Fig. 3.5. The plateau in the figure shows that the solution is proper.

1 1.5 2 2.5 3 3.5 4 4.5 50

0.2

0.4

Parameter 𝑝

𝑓 𝑝
(𝑝

)

Figure B.1: Probability density function 𝑓𝑝(𝑝) for the proper case
The plot of an improper setting according to Example 3.5 is given in Fig. B.2. The
input and output intervals are 𝑢 = [2, 3] and 𝑦 = [4, 5] leading to an improper
solution and an eroded plateau.

1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

Parameter 𝑝

𝑓 𝑝
(𝑝

)

Figure B.2: Probability density function 𝑓𝑝(𝑝) for the improper case
These results are in accordance with the theory introduced in Chapter 3.

C Full Rank Criteria

It is in general 𝑁𝑃 -hard to determine whether a given interval matrix 𝐴 has full rank,
respectively to check the matrix for singularity [Sha14]. However, there are some cri-
teria to determine the property of full rank [Sha14]. Four sufficient conditions and one
necessary and sufficient condition are given in the following.
It is necessary to introduce the absolute value of an interval

|𝑥| = max (|𝑥| , |𝑥|) (C.1)

and the magnitude

𝑥+ =
⎧
⎨
⎩

min (|𝑥| , |𝑥|) , if 0 /∈ 𝑥

0 , else.
(C.2)

The first sufficient condition for quadratic problems is based on diagonal dominance.
The interval matrix 𝐴 ∈ IR(𝑛×𝑛) is nonsingular, if it is diagonal dominant. This means
the inequality

𝑎(𝑖𝑖)+ >
𝑛∑︁

𝑗=1
𝑗 ̸=𝑖

⃒⃒
⃒𝑎(𝑖𝑗)

⃒⃒
⃒ (C.3)

holds for 𝑖 ∈ {1, 2, . . . , 𝑛}.
There are two approaches to extend this condition to overdetermined equation systems,
i.e. 𝐴 ∈ IR(𝑚×𝑛) with 𝑚 > 𝑛. The first approach searches for diagonal dominant sub-
squares within the overdetermined interval matrix. If there is such a diagonal dominant
subsquare, the whole interval matrix has full rank. However there might be no diagonal
dominant subsquare even though the matrix has full rank. This can be due to permu-
tation of rows of the matrix. Even though permuted lines do not change the rank of a
matrix, it does change the appearance of diagonal dominant subsquares. However, the
property that permuting rows does not change the rank of the matrix can also be used
to solve the problem. The lines can be permuted algorithmically such that diagonal
dominant subsquares are created. This condition is still sufficient for overdetermined
systems.

C Full Rank Criteria XXII

A second sufficient condition for full rank of an interval matrix 𝐴 ∈ IR(𝑚×𝑛) is based
on the spectral radius. Thereby the spectral radius 𝜌 (𝐴) is defined to be the largest
absolute singular value of the matrix 𝐴 [Lax02, p. 195]. If the spectral radius fulfills

𝜌
(︁⃒⃒
⃒(𝐴𝑐)d

⃒⃒
⃒𝐴Δ

)︁
< 1 (C.4)

and the center matrix 𝐴𝑐 has full rank, also the interval matrix 𝐴 has full rank. Thereby
𝐴d =

(︁
𝐴𝑇 𝐴

)︁−1
𝐴𝑇 denotes the pseudo inverse of the matrix 𝐴 ∈ R(𝑚×𝑛) with 𝑚 ≥ 𝑛.

A third sufficient condition is based on the singular values of the matrix 𝐴 ∈ IR(𝑚×𝑛).
If the condition

𝜎max (𝐴Δ) < 𝜎min (𝐴𝑐) (C.5)
is fulfilled, the interval matrix 𝐴 has full rank. Thereby 𝜎max (𝐴) and 𝜎min (𝐴) denote
the greatest, respectively smallest, singular value of the matrix 𝐴. The singular values
are defined as the nonnegative solutions to the system

(︃
0 𝐴𝑇

𝐴 0

)︃(︃
𝑥
𝑦

)︃
= 𝜎

(︃
𝑥
𝑦

)︃
. (C.6)

Condition four uses an absolute subordinate matrix norm ||·|| of 𝐴 ∈ IR(𝑛×𝑚). Assuming
full rank of the center matrix 𝐴𝑐, the sufficient condition is given by

||𝐴Δ|| < ||𝐴d
𝑐 ||−1. (C.7)

If (C.7) holds, 𝐴 has full rank. The proofs of all four sufficient conditions are given in
[Sha14].

According to [Roh12] there is a fifth, necessary and sufficient condition: An interval
matrix 𝐴 ∈ IR(𝑚×𝑛) with 𝑚 ≥ 𝑛 has full rank iff

|𝐴𝑐𝑋| ≤ 𝐴Δ |𝑋| (C.8)

with 𝑋 ∈ R𝑛 can only be solved by the zero solution 𝑋 = [0, 0, . . . , 0]𝑇 .
Sufficiency is based on the idea that there is a non trivial solution 𝑋 ̸= [0, 0, . . . , 0]𝑇 as
soon as the matrix 𝐴 does not have full rank. Necessity follows from the existence of
the non trivial solution. If this is the case, 𝐴 cannot have full rank or the non trivial
solution does not solve (C.8). An extensive proof of this condition is given in [Sha14].
However, the approach directly aims on an 𝑁𝑃 -Hard problem which means that it can
only be checked approximately.

D Existence and Uniqueness of the
Algebraic Solution Set

The sufficient conditions on the existence of an algebraic solution given in [Sha96],
[Mar99] and [Lak99] are sketched in this appendix. To follow those ideas, two more
interval arithmetic notations are necessary.
Using the dual (·) operator given in (3.37), the proper projection pro (𝑥) is defined as

pro (𝑥) =
⎧
⎨
⎩

𝑥 , if 𝑥 is proper
dual (𝑥) , else.

(D.1)

The second property is 𝚤-nonsingularity. A quadratic point real matrix 𝑄 ∈ R(𝑛×𝑛) is
called 𝚤-nonsingular if

𝑄𝑥 = 0⇔ 𝑥 = 0 ∈ IR𝑛 (D.2)

holds. Otherwise 𝑄 is called 𝚤-singular.

According to [Sha96] there is an algebraic solution ∑︀
𝑎 to the interval linear equation

𝐴𝑥 = 𝐵 with 𝐴 ∈ IR(𝑛×𝑛) for any 𝐵 ∈ IR𝑛, if 𝐴 is sufficiently narrow and pro (𝐴)
contains an 𝚤-nonsingular point matrix.

Thereby “sufficiently narrow” means that |𝐴Δ| is sufficiently small.

The proof of existence given in [Mar99] is based on the iterative approach to determine
the algebraic solution set given in [Kup95]. For this proof, the notation of the diagonal
matrix 𝐷(𝐴) is introduced for an interval matrix 𝐴 ∈ IR(𝑛×𝑛)

𝐷(𝐴) =
(︁
𝑑(𝑖,𝑗)

)︁
1≤𝑖≤𝑛,1≤𝑗≤𝑛

=
⎧
⎨
⎩

𝑎(𝑖,𝑗) , if 𝑖 = 𝑗

0 , if 𝑖 ̸= 𝑗.
(D.3)

The inverse of the diagonal matrix is given by

𝐷−1(𝐴) =
(︁
𝑑(𝑖,𝑗)

)︁
1≤𝑖≤𝑛,1≤𝑗≤𝑛

=
⎧
⎨
⎩

1/dual(𝑎(𝑖,𝑗)) , if 𝑖 = 𝑗

0 , if 𝑖 ̸= 𝑗.
(D.4)

D Existence and Uniqueness of the Algebraic Solution Set XXIV

Using the dual (·) operator from (3.37). The iterative solution algorithm given in [Kup95]
converges to the algebraic solution ∑︀𝑎 if

||𝐷−1 (𝐴) || ≤ 1 (D.5)
||𝐴 + opp (𝐷(𝐴)) || ≤ 1 (D.6)

holds, with opp (·) according to (3.34). The used matrix norm || · || is the maximum of
the linewise sum of the absolute interval values (C.1):

||𝐴|| = max
1≤𝑖≤𝑛

(︃
𝑛∑︁

𝑘=1

⃒⃒
⃒𝑎(𝑖,𝑘)

⃒⃒
⃒
)︃

. (D.7)

The interested reader is referred to [Mar99] for further considerations.

A generalized approach for overdetermined systems 𝐴 ∈ IR(𝑚×𝑛) was introduced in
[Lak99]. The regressor matrix 𝐴 is split in three parts with 𝐴 = 𝐴0 + 𝐴1 + 𝐴2 and

𝐴0 =
(︁
𝑎

(𝑖,𝑗)
0

)︁
1≤𝑖≤𝑚,1≤𝑗≤𝑛

=
⎧
⎨
⎩

𝑎(𝑖,𝑗) , if 𝑎(𝑖,𝑗)𝑎(𝑖,𝑗) ≥ 0
0 , else

(D.8)

𝐴1 =
(︁
𝑎

(𝑖,𝑗)
1

)︁
1≤𝑖≤𝑚,1≤𝑗≤𝑛

=
⎧
⎨
⎩

𝑎(𝑖,𝑗) , if 𝑎(𝑖,𝑗) < 0 < 𝑎(𝑖,𝑗)

0 , else
(D.9)

𝐴2 =
(︁
𝑎

(𝑖,𝑗)
2

)︁
1≤𝑖≤𝑚,1≤𝑗≤𝑛

=
⎧
⎨
⎩

𝑎(𝑖,𝑗) , if 𝑎(𝑖,𝑗) > 0 > 𝑎(𝑖,𝑗)

0 , else.
(D.10)

The problem can be reformulated as an extended system that considers the upper and
lower bounds of the interval values explicitly, as given in [Lak99]. This problem can then
be transferred to a set of inequality conditions. It is possible to show that there is not
more than one solution for any 𝑏 ∈ 𝐵 if the derived set of inequality conditions has zero
as unique solution. The extensive proof is given in [Lak99].

E System Behavior Specification

The verifiation methods developed in this thesis are based on the assumption of a system
specification available in ARX form. In a practical setting, it is necessary to determine
these nominal parameters. Control engineering specifications are in general based on
tolerance bands, steady-state errors, rise and settling times or acceptable overshoots.
Such specifications inherently show interval properties - even though in general no in-
terval arithmetic is used.
This appendix provides two approaches to determine the ARX parameters of such in-
tuitive graphic specifications. In the time domain, a method is introduced to determine
the parameters from a desired step response. This step response can be set up using the
drag-and-drop function provided by a toolbox.
A second method determines the parameters from the frequency domain. Therefore only
the tolerance band widths and pass/cut-off frequencies of a filter function need to be
specified.
In case the Kaucher based method is applied in a diagnosis setting, it is beneficial to
use a nominal physical model of the regarded process. This physical model can also be
used to determine the desired ARX parameters.

E.1 Time Domain Specification

This specification approach allows an intuitive specification of the desired behavior based
on time domain input-output behavior. The first step is to specify an input signal and the
desired resulting output signal. Also the class of the desired system behavior has to be
given. The time domain input-output behavior is then used to determine the parameters
of a transfer function in the complex s-plane. In this appendix a step input is used to
determine the properties of a proportional gain first order time delay system (PT1). The
method given in [Föl13, p. 77] can be used to determine the system parameters based
on a given step response. A time continuous step response denotes the output values
𝑦(𝑡) generated by a step input

𝑢(𝑡) = 𝜎(𝑡) =
⎧
⎨
⎩

0, 𝑘 < 0
1, 𝑘 ≥ 0.

(E.1)

E System Behavior Specification XXVI

The complex frequency domain transfer function of a basic PT1 system is given by

𝐺(𝑠) = 𝑘𝑝

1 + 𝑇𝑠
(E.2)

with gain 𝑘𝑝 and time delay 𝑇 . If both parameters are determined, 𝐺(𝑠) can be trans-
formed to its discrete time representation. The desired nominal parameters Θ* are then
given by the parameters of the discrete time transfer function.
For given input-output data [𝑢(𝑡), 𝑦(𝑡)] with 𝑡 ∈ [0, 𝑇] it is possible to determine the
transfer function parameters. The gain 𝑘𝑝 is given by the stationary value 𝑘𝑝 = 𝑦∞ which
is defined to be the last point of the measurement 𝑦(𝑇), assuming 𝑇 is large enough to
allow 𝑦(𝑡) to settle. If the output signal is sampled with sampling time Δ𝑡, the informa-
tion of the resulting points can be used to calculate the time delay 𝑇 . Therefore each
available sampling point 𝑦𝑘 = 𝑦(𝑘Δ𝑡) is used to calculate an auxiliary value

𝜂𝑘 = 1− 𝑦𝑘

𝑦∞
(E.3)

which is then used to determine the time delay

𝑇𝑘 = − 𝑘Δ𝑡

ln (𝜂𝑘) . (E.4)

The time delay of the transfer function 𝑇 is given by the arithmetic mean of all 𝑛𝑘 = 𝑇
Δ𝑡

values of 𝑇𝑘, i.e.

𝑇 = 1
𝑛𝑘

𝑛𝑘∑︁

𝑘=1
𝑇𝑘. (E.5)

Afterwards the transformation to discrete time is done. The resulting parameters Θ*

are used to determine the ARX step response.
The introduced functionality is implemented in a Toolbox. The application of this
Toolbox is demonstrated in Example E.1.

E System Behavior Specification XXVII

Example E.1:
Based on an initial arbitrary input-output signal, the toolbox provides the possibility
to move the sampling points via drag-and-drop. Fig. E.1 shows an exemplary output
signal that was created as the step response of a PT1 system with gain 𝑘𝑃 = 10
and 𝑇 = 2. The resulting continuous trajectory was sampled with Δ𝑡 = 1s. The
blue points depict the sampling points that can be moved using drag-and-drop. The
user can move the sampling points such that the resulting trajectory shows the de-
sired behavior. In this case, the toolbox calculates the system parameters according
to (E.3)-(E.5). The resulting system is able to generate the desired values for the
given step input. The depicted setting leads to the time discrete ARX parameters
𝑎 = 0.64227, 𝑐 = 3.6077. The respective time discrete step response is given by the
red trajectory in Fig. E.1.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

Time step k with Δ𝑇 = 1s

O
ut

pu
t

sig
na

l

Specification
ARX

Figure E.1: Time domain specification toolbox
It can be seen in Fig. E.1 that the time discrete trajectory (red) is close to the specified
points (blue). This demonstrates that it is possible to determine the ARX parameters
of a system by using a graphical user interface with drag-and-drop to set up the desired
step response.

E.2 Frequency Domain Specification

This specification approach allows an intuitive specification of the desired behavior based
on designing the amplitude response of the system. First order systems can be inter-
preted as low pass filters. Each Filter has a specific frequency domain characteristic
consisting of the location and the width of the passband and the stopband. Based on
this information, the method of [Lüc80, p. 147ff] is used to determine the filter coeffi-
cients. The resulting filter can be transformed to discrete time which leads to the desired
ARX coefficients.

E System Behavior Specification XXVIII

The method is applicable for low-pass, high-pass, bandpass and band-rejection filters. In
this appendix the design of a low-pass is presented. Therefore the cut off frequency Ω𝑝,
the stop band frequency Ω𝑠 and the respective passband width Δ𝑝 and stopband width
Δ𝑠 (see Fig. E.2) need to be defined by the user. These frequencies are defined with
respect to the periodic interval of the frequency response 0 ≤ Ω ≤ 𝜋. The frequencies
are now transformed into the 0 ≤ 𝑓 ≤ ∞ domain by

𝑓𝑝 = tan (Ω𝑝/2) (E.6)
𝑓𝑠 = tan (Ω𝑠/2) . (E.7)

These values lead to the normalized low-pass representation

𝑓𝑝,𝑛𝑜𝑟𝑚 = 1 (E.8)
𝑓𝑠,𝑛𝑜𝑟𝑚 = 𝑓𝑠/𝑓𝑝. (E.9)

The normalized low-pass representation can be achieved for all four kinds of filters, by
using different transformations. The following design routine is thus applicable in every
setting.
To ensure that the given passband and stopband limits are met, the auxiliary variables

Δ̃𝑑 =

√︁
2Δ𝑑 −Δ2

𝑑

1−Δ𝑑

, for 0 ≤ 𝑓 ≤ 1 (Passband) (E.10)

Δ̃𝑠 =

√︁
1−Δ2

𝑠

Δ𝑠

, for 𝑓𝑠,𝑛𝑜𝑟𝑚 ≤ 𝑓 (Stopband) (E.11)

are calculated. The transfer function of an exponential filter is then given by

𝐺(𝑓) = 𝐺0
1

∏︀𝑞
𝑖=1 𝑓 − 𝑓∞,𝑖

(E.12)

with poles 𝑓∞,𝑖 and normalization constant 𝐺0. The denominator order 𝑞 ∈ N can be
calculated with

𝑞 ≥
log10

(︁
Δ̃𝑠/Δ̃𝑑

)︁

log10 (𝑓𝑠,𝑛𝑜𝑟𝑚) . (E.13)

The real part and the imaginary part of a complex pole 𝑓∞,𝑖 are given by

ℜ (𝑓∞,𝑖) = −𝜖
−1/𝑞 sin

(︃
2𝑖− 1

𝑞

𝜋

2

)︃
(E.14)

ℑ (𝑓∞,𝑖) = 𝜖
−1/𝑞 cos

(︃
2𝑖− 1

𝑞

𝜋

2

)︃
. (E.15)

E System Behavior Specification XXIX

The factor 𝜖 and the respective normalization can be used to adjust the level of the
frequency response. The used value of 𝜖 can be chosen from the interval

𝜖 = [𝜖, 𝜖] =
[︃

Δ̃𝑠

(𝑓𝑠,𝑛𝑜𝑟𝑚)𝑞 , Δ̃𝑑

]︃
. (E.16)

Thereby choosing 𝜖 = 𝜖 means that the frequency response touches the constrained
region at the end of the passband 𝑓𝑝,𝑛𝑜𝑟𝑚, whereas 𝜖 = 𝜖 means that it touches the
constraint region at the beginning of the stopband 𝑓𝑠,𝑛𝑜𝑟𝑚.
The normed lowpass is now transformed back to its genuine frequency form and af-
terwards into the time discrete representation in order to extract the desired nominal
parameters Θ* of the transfer function. An application of this method is given in Ex-
ample E.2.

Example E.2:
The frequency domain specification of a low-pass filter is given by Δ𝑝 = 0.1, Δ𝑠 = 0.2,
Ω𝑝 = 0.4𝜋 and Ω𝑠 = 0.7𝜋. This means that the desired frequency response is located
within the green area in Fig. E.2. The introduced filter design procedure of [Lüc80,
p. 147ff] is applied to the setting.
Based on the specified values, the choice 𝜖 = 𝜖 leads to the ARX coefficients

[𝑎1, 𝑎2, 𝑎3] = [0.1425,−0.3387, 0.0130] (E.17)
[𝑐1, 𝑐2, 𝑐3, 𝑐4] = [0.1479, 0.4437, 0.4437, 0.1479] . (E.18)

The respective frequency response is depicted as solid blue line in Fig. E.2.
Using the same values but choosing 𝜖 = 𝜖 leads to

[𝑎1, 𝑎2, 𝑎3] = [−0.2643,−0.3518,−0.0244] (E.19)
[𝑐1, 𝑐2, 𝑐3, 𝑐4] = [0.2051, 0.6152, 0.6152, 0.2051] , (E.20)

displayed as dashed line in Fig. E.2.

Δ𝑝

Δ𝑠

0 1/4𝜋 Ω𝑝 1/2𝜋 Ω𝑠 3/4𝜋 𝜋

0

0.5

1

Ω

A
bs

ol
ut

e
G

ai
n

Frequency domain specification tool

Figure E.2: Frequency domain specification toolbox

F Excitation Signal Design

Hybrid system verification poses specific requirements on the excitation signal. It is
assumed that these requirements are fulfilled throughout this thesis. However, deter-
mining a suitable excitation signal is in general not trivial. The excitation signal of
a measurement is often chosen depending on the intended purpose of the experiment.
Arbitrary noise signals (white Gaussian noise) can be used to ensure persistent excita-
tion of all frequencies. Arbitrary meaningful signals (impulse or step signal) are used
to perform control theoretic modeling such as impulse response or step response. Also
there are specifically designed input signals fitted to the implemented logic in the current
verification object.
In the context of hybrid systems as regarded in this thesis, there are two properties that
need to be fulfilled. Each subsystem with its respective individual dynamic needs to be
persistently excited. Furthermore, all states of the superimposed state machine need
to be activated once. Therefore the respective switching thresholds have to be met to
enable the switch event. The situation that a switch is triggered during the excitation
and identification phase of each subsystem has to be avoided. A first possible solution
idea was developed in the master thesis [Rie17]. The basic outline is sketched in this
appendix. The method uses three steps:

1. Path calculations to ensure state coverage of the superimposed state machine

2. Design of a persistent excitation signal without leaving the subsystem

3. Efficient transfer of the subsystem to its switch threshold

F.1 Path Calculation

The superimposed state machine is transformed to its graph representation 𝒢𝑍 . A cov-
erage algorithm is used to determine paths that include all states and all transitions of
the graph. Additionally, the length of the path needs to be minimal to enable short
measurement times. If such an optimal excitation signal is used, missing states or tran-
sitions can be used to prove inconsistency.
The problem of state and transition coverage can be reduced to transition coverage only.
This is due to the structure of the specification, where each state needs to be connected
to a transition.

F Excitation Signal Design XXXI

To use a modified depth first state coverage algorithm, the graph 𝒢𝑍 is transformed such
that all transitions are represented by states in the transformed graph 𝒢 ′

𝑍 and vice versa
(see Fig. F.1).

𝑠(1)

𝑠(2) 𝑠(3)

𝑘(2)′ 𝑘(3)′

𝑘(4)′

𝑘(5)′

𝑘(6)′

𝑘(2)

𝑘(1)

𝑘(3)

𝑘(4)

𝑘(5)

𝑘(6)

𝑘(1)′

Figure F.1: Genuine graph 𝒢𝑍 (left) and transformed graph 𝒢′
𝑍 (right)

A modified recursive depth first algorithm is started in a specified initial state and
checks the number of possible successors of each successor of the current state. Also the
distance to the successors are taken into account to enable short paths. The result of
the algorithm is a path that covers all states of 𝒢 ′

𝑍 and thus all transitions of 𝒢𝑍 . This
result is used to identify each subsystem in the path.

F.2 Persistent Excitation Based on Fisher
Information Matrix

Persistent excitation of each subsystem is ensured by a specific input signal. This input
signal is calculated based on the Fisher information matrix [Eba14][Man10], which is only
applicable for stable systems. Using the Fisher information matrix 𝑀 , the parameter
covariance of an estimator is limited by the Cramer Rao Bound [Goo77] to

𝑐𝑜𝑣(Θ) ≥ 1
𝑀

. (F.1)

F Excitation Signal Design XXXII

Thereby 𝑀 is defined using the expectation 𝐸 {·} as

𝑀(Θ, 𝑈) = 𝐸

⎧
⎨
⎩

[︃
𝜕𝑙𝑜𝑔 (𝑝 (𝑦 | Θ, 𝑈))

𝜕Θ

]︃𝑇 [︃
𝜕𝑙𝑜𝑔 (𝑝 (𝑦 | Θ, 𝑈))

𝜕Θ

]︃⎫⎬
⎭ . (F.2)

The probability 𝑙𝑜𝑔 𝑝(𝑦 | Θ, 𝑈) resembles the situation that 𝑦 is observed if the true
parameters are given by Θ while using the input 𝑈 = ⟨𝑢𝑘⟩𝑁𝑘=1. To achieve a parameter
covariance as close as possible to the Cramer Rao Bound, the Fisher matrix has to be
maximal with respect to the input signal used and the parameters. This can be achieved
by using D-optimality for the given nominal parameters as defined in [Man10]:

𝑈* = −min
𝑈

(𝑙𝑜𝑔 𝑑𝑒𝑡(𝑀(Θ*, 𝑈))). (F.3)

To solve the optimization Problem F.3, an initial feasible input signal 𝑈𝑖𝑛𝑖𝑡 is chosen.
This signal is then optimized iteratively for each time step 𝑢𝑖𝑛𝑖𝑡,𝑘 until the optimization
converges. Each input value 𝑢*

𝑘 is thereby bounded to the range of feasible input values
given by the user.

F.3 Transfer to the Switch Threshold

After the identification of the subsystem, it is necessary to activate the successive switch.
This is done by transferring the relevant system value within its activation limits 𝑙(𝑖).
The specific event and thus the activated transition are already determined in the re-
sult of the path calculation. This is done using the well known Hamilton formalism.
Therefore the objective function is set up in terms of the difference between the desired
value 𝑦

𝑙
(𝑖)
𝑐

= 1
2

(︂
𝑙(𝑖) + 𝑙

(𝑖)
)︂

and the current value 𝑦𝑘, i.e. Δ𝑦𝑘 = 𝑦𝑘 − 𝑦
𝑙
(𝑖)
𝑐

. The resulting
objective function is given by

𝐽 =1
2Δ𝑦𝑇 𝑆Δ𝑦𝑇 + 1

2

𝑇 −1∑︁

𝑘=1
Δ𝑦𝑘𝑄Δ𝑦𝑘 (F.4)

with the penalty matrices 𝑆 = 1
𝜖𝑑𝑒𝑠

and 𝑄 = 1. It is now possible to set up and solve the
Hamilton equations [Sag68]. The first step is to transfer the ARX system description to
a vector matrix notation:

⎡
⎢⎢⎢⎢⎣

𝑦𝑘+1
𝑦𝑘
...

𝑦𝑘−𝑛𝑎+2

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

𝑎1 𝑎2 . . . 𝑎𝑛𝑎

1 0 . . . 0
...
0 . . . 1 0

⎤
⎥⎥⎥⎥⎦

⏟ ⏞
𝐴

⎡
⎢⎢⎢⎢⎣

𝑦𝑘

𝑦𝑘−1
...

𝑦𝑘−𝑛𝑎+1

⎤
⎥⎥⎥⎥⎦

⏟ ⏞
𝑌𝑘

+

⎡
⎢⎢⎢⎢⎣

𝑐1 . . . 𝑐𝑛𝑐

0 . . . 0
...
0 . . . 0

⎤
⎥⎥⎥⎥⎦

⏟ ⏞
𝐶

⎡
⎢⎢⎢⎢⎣

𝑢𝑘

𝑢𝑘−1
...

𝑢𝑘−𝑛𝑐+1

⎤
⎥⎥⎥⎥⎦

⏟ ⏞
𝑈̃𝑘

. (F.5)

F Excitation Signal Design XXXIII

Then the Hamilton equation is set up:

𝐻(𝑦𝑘, 𝑢𝑘, 𝑘) = 1
2Δ𝑦𝑘𝑆Δ𝑦 + 𝜆𝑇

𝑘+1(𝐴𝑌𝑘 + 𝐶𝑈̃𝑘). (F.6)

The derivative of 𝐻 is given by

𝜕𝐻

𝜕𝑢
= 𝜆𝑘C𝑇 . (F.7)

with

𝜆𝑘 = Δy𝑘 + A𝑇 𝜆𝑘+1 (F.8)

leading to

Δ𝑢 = − 𝛼
𝜕𝐻

𝜕𝑢
, (F.9)

𝑢
(𝑖+1)
𝑘 = 𝑢

(𝑖)
𝑘 + Δ𝑢𝑘. (F.10)

The parameter 𝛼 is used to scale the result in case the calculated solution violates the
feasible input range.

This procedure is applied to all subsystems within the calculated path to construct the
overall excitation signal. This signal is then applied to the VO and the resulting output
values are measured. The resulting input and output measurement data can then be
used in any of the methods introduced in this thesis.

G Tables of Geometric Parameters

The parameters of the three-tank lab setting at the Institute of Control Systems (IRS)
are given in Tab. G.1.

Table G.1: System properties of the IRS three-tank lab setting

Value Unit Property

ℎ32𝑢 30.0 cm Height of upper connection valve
ℎ32𝑙 0.0 cm Height of lower connection valve

𝑎1 0.5 cm2 Cross section nominal outflow tank 1
𝑎2 0.5 cm2 Cross section nominal outflow tank 2
𝑎3 0.5 cm2 Cross section nominal outflow tank 3
𝑎13𝑢 0.5 cm2 Cross section upper connection valve 𝑣13𝑢

𝑎13𝑙 0.5 cm2 Cross section lower connection valve 𝑣13𝑙

𝑎32𝑢 0.5 cm2 Cross section upper connection valve 𝑣32𝑢

𝑎32𝑙 0.5 cm2 Cross section lower connection valve 𝑣32𝑙

𝑎𝑙𝑒𝑎𝑘 0.8 cm2 Cross section leakage outflow (only tank 2)

𝐴1 154.0 cm2 Cross section tank 1
𝐴2 154.0 cm2 Cross section tank 2
𝐴3 154.0 cm2 Cross section tank 3

𝑔 981.0 cm/s2 Gravitational force

𝛾1 16.7 min cm3/(l s) Constant tank 1
𝛾2 16.7 min cm3/(l s) Constant tank 2

G Tables of Geometric Parameters XXXV

The parameters of the four-tank simulation setting are given in Tab. G.2.

Table G.2: System properties of the simulated four-tank lab setting

Value Unit Property

𝑣𝑖𝑛1 0.7 Valve 1 flow to tank 1

𝑎1 0.071 cm2 Cross section nominal outflow tank 1
𝑎2 0.071 cm2 Cross section nominal outflow tank 2
𝑎3 0.071 cm2 Cross section nominal outflow tank 3
𝑎4 0.071 cm2 Cross section nominal outflow tank 4

𝐴1 28.0 cm2 Cross section tank 1
𝐴2 28.0 cm2 Cross section tank 2
𝐴3 28.0 cm2 Cross section tank 3
𝐴4 28.0 cm2 Cross section tank 4

𝑔 981.0 cm/s2 Gravitational force

𝛾1 3.33 cm3/s Geometric constant
𝛾2 3.33 cm3/s Geometric constant

References

Public References

[Abr96] Abrial, J.-R. The B-book: Assigning Programs to Meanings. Cambridge Uni-
versity Press, 1996.

[AI15] Araiza-Illan, D., Eder, K. and Richards, A. Verification of Control Systems
Implemented in Simulink with Assertion Checks and Theorem Proving: A Case
Study. In European Control Conference (ECC), pages 2670–2675, 2015.

[AI17] Ait-Izem, T., Harkat, M.-F., Djeghaba, M. and Kratz, F. Sensor Fault Detec-
tion Based on Principal Component Analysis for Interval-valued Data. Quality
Engineering, pages 1–13, 2017.

[Alt08] Althoff, M., Stursberg, O. and Buss, M. Verification of Uncertain Embedded
Systems by Computing Reachable Sets based on Zonotopes. Proceedings of the
17th IFAC World Congress, volume 41, pages 5125–5130, 2008.

[Alu06] Alur, R., Dang, T. and Ivančić, F. Predicate Abstraction for Reachability Anal-
ysis of Hybrid Systems. ACM Transations on Embedded Computing Systems,
volume 5, pages 152–199, 2006.

[Apo67] Apostolatos, N. and Kulisch, U. Grundlagen einer Maschinenintervallarith-
metik. Computing, volume 2, pages 89–104, 1967.

[Ara17] Araujo, H., Carvalho, G., Sampaio, A., Mousavi, M. R. and Taromirad, M. A
Process for Sound Conformance Testing of Cyber-Physical Systems. In IEEE In-
ternational Conference on Software Testing, Verification and Validation Work-
shops (ICSTW), pages 46–50, 2017.

[Arm09] Armengol, J., Vehi, J., Sainz, M. A., Herrero, P. and Gelso, E. R. SQualTrack:
A Tool for Robust Fault Detection. IEEE Transactions on Systems, Man, and
Cybernetics, volume 39, pages 475–488, 2009.

[Asa06] Asarin, E., Dang, T., Frehse, G., Girard, A., Guernic, C. L. and Maler, O.
Recent Progress in Continuous and Hybrid Reachability Analysis. In IEEE
Conference on Computer Aided Control System Design, pages 1582–1587, 2006.

[Ast95] Aström, K. and Wittenmark, B. Adaptive Control. Addison-Wesley, 1995.

References XXXVII

[AVA19] Transregional Collaborative Research Center "Automatic Verification and Anal-
ysis of Complex Systems (AVACS)", accessed 23.04.2019.
URL http://www.avacs.org

[Bal16] Balkan, A., Tabuada, P., Deshmukh, J. V., Jin, X. and Kapinski, J. Under-
miner: A Framework for Automatically Identifying Non-converging Behaviors
in Black Box System Models. In Proceedings of the 13th International Confer-
ence on Embedded Software, pages 1–10, 2016.

[Bar78] Bartussek, W. and Parnas, D. L. Using Assertions About Traces to Write Ab-
stract Specifications for Software Modules. Proceedings of the 2nd Conference of
the European Cooperation on Informatics: Information Systems Methodology,
pages 211–236, 1978.

[Bar05] Barnett, M., Rustan, K., Leino, M. and Schulte, W. The Spec# Programming
System: An Overview. In Construction and Analysis of Safe, Secure and In-
teroperable Smart Devices, Lecture Notes in Computer Science, pages 49–69.
Springer, 2005.

[Bar13] Bartoo, G. and Bogucki, T. Essentials of Usability Engineering in Point-of-
care Devices. In IEEE Point-of-Care Healthcare Technologies (PHT), pages
184–187, 2013.

[Bar18] Bartocci, E., Deshmukh, J., Donzé, A., Fainekos, G., Maler, O., Ničković, D.
and Sankaranarayanan, S. Specification-Based Monitoring of Cyber-Physical
Systems: A Survey on Theory, Tools and Applications. Springer, 2018.

[Bau87] Bauch, H., Jahn, K.-U., Oelschlägel, D., Süsse, H. and Wiebigke, V. Intervall-
arithmethik: Theorie und Anwendungen. Teubner, 1987.

[Bee72] Beeck, H. On the Structure and Estimations of the Solution-set of a System
of Linear Equations with Interval Coefficients. Computing, volume 10, pages
231–244, 1972.

[Bem05] Bemporad, A., Garulli, A., Paoletti, S. and Vicino, A. A Bounded-error Ap-
proach to Piecewise Affine System Identification. IEEE Transactions on Auto-
matic Control, volume 50, pages 1567–1580, 2005.

[Ber08] de Berg, M., Cheong, O., van Kreveld, M. and Overmars, M. Computational
Geometry: Algorithms and Applications. Springer, 2008.

[Bha04] Bhatia, A. and Frazzoli, E. Incremental Search Methods for Reachability Anal-
ysis of Continuous and Hybrid Systems. In Alur, R. and Pappas, G. (Editors),
Hybrid Systems: Computation and Control, volume 2993 of Lecture Notes in
Computer Science, pages 142–156. Springer, 2004.

http://www.avacs.org

References XXXVIII

[Bla06] Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. Diagnosis and Fault-
Tolerant Control. Springer, 2006.

[Ble10] Blesa, J., Puig, V. and Saludes, J. Robust Fault Detection using Polytope-based
Set-membership Consistency Test. In Conference on Control and Fault-Tolerant
Systems (SysTol), pages 726–731, 2010.

[Ble11] Blesa, J., Puig, V. and Saludes, J. Identification for Passive Robust Fault Detec-
tion using Zonotope-based Set-membership Approaches. International Journal
of Adaptive Control and Signal Processing, volume 25, pages 788–812, 2011.

[Boe84] Boehm, B. W. Verifying and Validating Software Requirements and Design
Specifications. IEEE Software, volume 1, pages 75–88, 1984.

[Bor09] Borchers, S., Rumschinski, P., Bosio, S., Weismantel, R. and Findeisen, R.
A Set-based Framework for Coherent Model Invalidation and Parameter Esti-
mation of Discrete Time Nonlinear Systems. Proceedings of the 48th IEEE
Conference on Decision and Control (CDC), pages 6786–6792, 2009.

[Bra16] Bravo, J. M., Suarez, A., Vasallo, M. and Alamo, T. Slide Window Bounded-
Error Time-varying Systems Identification. IEEE Transactions on Automatic
Control, volume 61, pages 2282–2287, 2016.

[Bro05] Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M. and Pretschner, A. Model-
Based Testing of Reactive Systems: Advanced Lectures. Lecture Notes in Com-
puter Science. Springer, 2005.

[Bro08] Bronstein, I.N., Semendjajew, K.A., Musiol G. and Mühlig, H. Taschenbuch
der Mathematik. Verlag Harry Deutsch, 2008.

[Cac13] Caccavale, F., Marino, A., Muscio, G. and Pierri, F. Discrete-Time Framework
for Fault Diagnosis in Robotic Manipulators. IEEE Transactions on Control
Systems Technology, volume 21, pages 1858–1873, 2013.

[Cas99] Cassandras, C. G. and Lafortune, S. Introduction to Discrete Event Systems.
The Kluwer International Series on Discrete Event Dynamic Systems, 1999.

[Cas14] Casini, M., Garulli, A. and Vicino, A. Feasible Parameter Set Approximation
for Linear Models with Bounded Uncertain Regressors. IEEE Transactions on
Automatic Control, volume 59, pages 2910–2920, 2014.

[Che14] Chen, W., Chen, W.-T., Saif, M., Li, M.-F. and Wu, H. Simultaneous Fault
Isolation and Estimation of Lithium-Ion Batteries via Synthesized Design of
Luenberger and Learning Observers. IEEE Transactions on Control Systems
Technology, volume 22, pages 290–298, 2014.

[Dan11] Dang, T. Model-Based Testing for Embedded Systems, chapter 14. Model-Based
Testing of Hybrid Systems, pages 383–424. CRC Press, 2011.

References XXXIX

[Die17] Diehm, G. Identifikation des menschlichen Bewegungsverhaltens auf der Basis
von Primitiven. Ph.D. thesis, Karlsruhe Institut of Technology (KIT), KIT
Scientific Publishing, 2017.

[Dja17] Djaballah, A., Chapoutot, A., Kieffer, M. and Bouissou, O. Construction of
Parametric Barrier Functions for Dynamical Systems using Interval Analysis.
Automatica, volume 78, pages 287–296, 2017.

[Don10] Donzé, A. Breach, a Toolbox for Verification and Parameter Synthesis of Hybrid
Systems. Proceedings of the 22nd International Conference on Computer Aided
Verification (CAV), pages 167–170, 2010.

[Eba14] Ebadat, A., Wahlberg, B., Hjalmarsson, H., Rojas C. R., Hägg, P. and Larsson,
C. A. Applications Oriented Input Design in Time-Domain Through Cyclic
Methods. Elsevier, 2014.

[Efi13] Efimov, D., Raïssi, T., Perruquetti W. and Zolghadri, A. Estimation and Con-
trol of Discrete-Time LPV Systems Using Interval Observers. In IEEE 52nd
Conference on Decision and Control (CDC), 2013.

[ENA19] European Initiative to Enable Validation for Highly Automated Safe and Secure
Systems "Enable-S3", accessed 23.04.2019.
URL http://www.enable-s3.eu

[Eng02] Engell, S. H. (Editor). Modelling, Analysis and Design of Hybrid Systems.
Lecture Notes in Control and Information Sciences. Springer, 2002.

[Fau03] Faulkner, L. Beyond the Five-user Assumption: Benefits of Increased Sample
Sizes in Usability Testing. Behavior Research Methods, Instruments, & Com-
puters, volume 35, pages 379–383, 2003.

[Fie06] Fiedler, M., Nedoma, J., Ramík, J., Rohn, J. and Zimmermann, K. Linear
Optimization Problems with Inexact Data. Springer, 2006.

[Fol08] Foltz, C., Schneider, N., Kausch, B., Wolf, M., Schlick, C. and Luczak, H.
Usability Engineering. Collaborative and Distributed Chemical Engineering.
From Understanding to Substantial Design Process Support: Results of the
IMPROVE Project, pages 527–554, 2008.

[Föl13] Föllinger, O. Regelungstechnik: Einführung in die Methoden und ihre Anwen-
dung. VDE-Verlag, 2013.

[Fos15] Foster, H. D. Trends in Functional Verification: A 2014 Industry Study. In
52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6,
2015.

[Fra16] Fraden, J. Handbook of Modern Sensors: Physics, Designs and Applications.
Springer, 2016.

http://www.enable-s3.eu

References XL

[FT03] Ferrari-Trecate, G., Muselli, M., Liberati, D. and Morari, M. A Clustering
Technique for the Identification of Piecewise Affine Systems. Automatica, vol-
ume 39, pages 205–217, 2003.

[Fut89] Futschek, G. Programmentwicklung und Verifikation. Springer, 1989.

[Gho17] Ghorbani, H. R. and Ahmadzadegan, M. H. Security Challenges in Internet
of Things: Survey. In IEEE Conference on Wireless Sensors (ICWiSe), pages
1–6, 2017.

[Goo77] Goodwin, G. and Payne, R. Dynamic System Identification: Experiment Design
and Data Analysis. Academic Press, 1977.

[Hal90] Hall, A. Seven Myths of Formal Methods. IEEE Software, volume 7, pages
11–19, 1990.

[Har18] Harirchi, F. and Ozay, N. Guaranteed Model-based Fault Detection in Cyber-
physical Systems: A Model Invalidation Approach. Automatica, volume 93,
pages 476–488, 2018.

[Hay86] Hayes, I. Specification directed module testing. IEEE Transactions on Software
Engineering, volume SE-12, pages 124–133, 1986.

[Hei05] Heitmeyer, C., Archer, M., Bharadwaj, R. and Jeffords, R. Tools for Construct-
ing Requirements Specifications: The SCR Toolset at the Age of Ten. Interna-
tional Journal of Computer Systems Science and Engineering, volume 20, pages
19–35, 2005.

[Hla14] Hladík, M. AE Solutions and AE Solvability to General Interval Linear Systems.
ArXiv e-prints, 2014.

[Hor13] Horáček, J. and Hladík, M. Computing Enclosures of Overdetermined Interval
Linear Systems. Reliable Computing, volume 19, pages 142–155, 2013.

[IEC10] Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
Related Systems. Standard of the International Electrotechnical Commission
(IEC), 2010.

[Ing09] Ingimundarson, A., Bravo, J. M., Puig, V., Alamo, T. and Guerra, P. Robust
Fault Detection using Zonotope-based Set-membership Consistency Test. Inter-
national Journal of Adaptive Control and Signal Processing, volume 23, pages
311–330, 2009.

[Ise93] Isermann, R. Fault Diagnosis of Machines via Parameter Estimation and
Knowledge Processing - Tutorial Paper. Automatica, volume 29, pages 815–
835, 1993.

References XLI

[Ise06] Isermann, R. Fault Diagnosis Systems: An Introduction from Fault Detection
to Fault Tolerance. Springer, 2006.

[Ise10] Isermann, R. and Münchhof, M. Identification of Dynamic Systems: An Intro-
duction with Applications. Advanced Textbooks in Control and Signal Process-
ing Series. Springer, 2010.

[Ise11] Isermann, R. Fault-diagnosis Applications: Model-based Condition Monitor-
ing: Actuators, Drives, Machinery, Plants, Sensors and Fault-tolerant Systems.
Springer, 2011.

[ISO11] ISO 26262 - Road Vehicles - Functional Safety. International Organization for
Standardization, 2011.

[Jau01] Jaulin, L., Kieffer, M., Didrit, O. and Walter, E. Applied Interval Analysis, with
Examples in Parameter and State Estimation, Robust Control and Robotics.
Springer, 2001.

[Joh00] Johansson, K. H. The Quadruple-tank Process: A Multivariable Laboratory
Process with an Adjustable Zero. IEEE Transactions on Control Systems Tech-
nology, volume 8, pages 456–465, 2000.

[Jon02] Jondral, F. and Wiesler, A. Wahrscheinlichkeitsrechnung und stochastische
Prozesse: Grundlagen für Ingenieure und Naturwissenschaftler. Teubner, 2002.

[Jul05] Juloski, A., Weiland, S. and Heemels, W. A Bayesian Approach to Identification
of Hybrid Systems. IEEE Transactions on Automatic Control, volume 50, pages
1520–1533, 2005.

[Kap16] Kapinski, J., Deshmukh, J. V., Jin, X., Ito, H. and Butts, K. Simulation-
Based Approaches for Verification of Embedded Control Systems: An Overview
of Traditional and Advanced Modeling, Testing and Verification Techniques.
IEEE Control Systems, volume 36, pages 45–64, 2016.

[Kau80] Kaucher, E. Interval Analysis in the Extended Interval Space IR. In Alefeld,
G. and Grigorieff, R. D. (Editors), Fundamentals of Numerical Computation
(Computer-Oriented Numerical Analysis), pages 33–49. Springer, 1980.

[Kha15] Khalil, H. K. Nonlinear Control. Pearson, 2015.

[Koc19] Kochdumper, N. and Althoff, M. Sparse Polynomial Zonotopes: A Novel Set
Representation for Reachability Analysis. arXiv e-prints, volume 66, pages 132–
145, 2019.

[Koe18] Koenig, A., Witzlsperger, K., Leutwiler, F. and Hohmann, S. Overview of HAD
Validation and Passive HAD as a Concept for Validating Highly Automated
Cars. at - Automatisierungstechnik, 2018.

References XLII

[Kre95] Kreinovich, V. Data Processing Beyond Traditional Statistics: Applications of
Interval Computations. A Brief Introduction. In Proceedings of the Interna-
tional Workshop on Applications of Interval Computations, 1995.

[Kre16] Krebs, S., Schnurr, C., Pfeifer, M., Weigold, J. and Hohmann, S. Reduced-
order Hybrid Interval Observer for Verified State Estimation of an Induction
Machine. Control Engineering Practice, volume 57, pages 157–168, 2016.

[Kre18] Krebs, S., Bächle, M. and Hohmann, S. Coupled Boundary Interval Observer
for LPV Systems Subject to Uncertainties in Input, Output and Parameters.
Automatica, volume 95, pages 426–432, 2018.

[Kup95] Kupriyanova, L. Inner Estimation of the United Solution Set of Interval Linear
Algebraic System. Reliable Computing, volume 1, pages 15–31, 1995.

[Lak99] Lakeyev, A.V. On Existence and Uniqeness of Solutions of Linear Algebraic
Equations in Kaucher’s Interval Arithmetic. Reliable Computing, pages 53–65,
1999.

[Lak14] Lakeyev, A. On Unboundedness of Generalized Solution Sets for Interval Linear
Systems. Reliable Computing, volume 19, 2014.

[Lau18] Lauer, F. Global Optimization for Low-dimensional Switching Linear Regression
and Bounded-error Estimation. Automatica, volume 89, pages 73–82, 2018.

[Lax02] Lax, P. D. Functional Analysis. Wiley, 2002.

[Lju99] Ljung, L. System Identification: Theory for the User. Prentice Hall Information
and System Sciences Series. Prentice Hall, 1999.

[Lüc80] Lücker, R. Grundlagen digitaler Filter: Einführung in die Theorie linearer
zeitdiskreter Systeme und Netzwerke. Springer, 1980.

[Mac95] Macias, B. and Pulman, S. G. A Method for Controlling the Production of
Specifications in Natural Language. The Computer Journal, volume 38, pages
310–318, 1995.

[Mah10] Mahmoud, M. S. Switched Time-delay Systems: Stability and Control.
Springer, 2010.

[Mai16] Maiga, M., Ramdani, N., Trave-Massuyes, L. and Combastel, C. A Comprehen-
sive Method for Reachability Analysis of Uncertain Nonlinear Hybrid Systems.
IEEE Transactions on Automatic Control, volume 61, pages 2341–2356, 2016.

[Man10] Manchester, I. R. Input Design for System Identification via Convex Relaxation.
49th IEEE Conference on Decision and Control (CDC), pages 2041–2046, 2010.

[Mar99] Markov, S. An Iterative Method for Algebraic Solution to Interval Equations.
Applied Numerical Mathematics, volume 30, pages 225–239, 1999.

References XLIII

[Mes10] Meslem, N., Ramdani, N. and Candau, Y. Guaranteed Parameter Set Esti-
mation for Monotone Dynamical Systems Using Hybrid Automata. Reliable
Computing, volume 14, pages 88–104, 2010.

[Mit07] Mitchell, I. M. Hybrid Systems: Computation and Control. In Bemporad,
A., Bicchi, A. and Buttazzo, G. (Editors), Hybrid Systems: Computation and
Control: 10th International Workshop (HSCC), pages 428–443. Springer, 2007.

[Mün05] Münz, E. and Krebs, V. Continuous Optimization Approaches to the Iden-
tification of Piecewise Affine Systems. Proceedings of the 16th IFAC World
Congress, volume 38, pages 349–354, 2005.

[Noc06] Nocedal, J. and Wright, S. J. Numerical Optimization. Springer, 2006.

[Oet64] Oettli, W. and Prager, W. Compatibility of Approximate Solution of Linear
Equations with Given Error Bounds for Coefficients and Right-hand Sides. Nu-
merische Mathematik, volume 6, pages 405–409, 1964.

[Ott18] Otten, S., Bach, J., Wohlfahrt, C., King, C., Lier, J., Schmid, H., Schmerler, S.
and Sax, E. Automated Assessment and Evaluation of Digital Test Drives. In
Zachäus, C., Müller, B. and Meyer, G. (Editors), Advanced Microsystems for
Automotive Applications, pages 189–199. Springer, 2018.

[Oza12] Ozay, N., Sznaier, M., Lagoa, C. and Camps, O. A Sparsification Approach to
Set Membership Identification of Switched Affine Systems. IEEE Transactions
on Automatic Control, volume 57, pages 634 –648, 2012.

[Oza14] Ozay, N., Sznaier, M. and Lagoa, C. Convex Certificates for Model
(In)validation of Switched Affine Systems With Unknown Switches. IEEE
Transactions on Automatic Control, volume 59, pages 2921–2932, 2014.

[Pan17] Panchea, A. M., Chapoutot, A. and Filliat, D. Extended Reliable Robust Motion
Planners. In IEEE 56th Conference on Decision and Control (CDC), pages
1112–1117, 2017.

[Par72] Parnas, D. L. A Technique for Software Module Specification with Examples.
Communications of the ACM, volume 15, pages 330–336, 1972.

[Par86] Parnas, D. L. and Clements, P. C. A Rational Design Process: How and Why
to Fake it. IEEE Transactions on Software Engineering, volume SE-12, pages
251–257, 1986.

[Pui06] Puig, V., Ingimundarson, A., and Tornil, S. Robust Fault Detection using
Inverse Images of Interval Functions. In IFAC SAFEPROCESS, 2006.

[Pui10] Puig, V. Fault Diagnosis and Fault Tolerant Control using Set-membership
Approaches: Application to Real Case Studies. International Journal of Applied
Mathematics and Computer Science, volume 20, pages 619–635, 2010.

References XLIV

[Que98] Quesada, J. F. Lexical Object Theory: Specification Level. Grammars, volume 1,
pages 57–84, 1998.

[Raj13] Rajan, A. and Wahl, T. (Editors). CESAR - Cost-efficient Methods and Pro-
cesses for Safety-relevant Embedded Systems. Springer, 2013.

[Ram09] Ramdani, N., Meslem, N. and Candau, Y. A Hybrid Bounding Method for
Computing an Over-Approximation for the Reachable Set of Uncertain Non-
linear Systems. IEEE Transactions on Automatic Control, volume 54, pages
2352–2364, 2009.

[Ram17] Ramesh, S., Vogel-Heuser, B., Chang, W., Roy, D., Zhang, L. and Chakraborty,
S. INVITED: Specification, Verification and Design of Evolving Automotive
Software. In 54th ACM/EDAC/IEEE Design Automation Conference (DAC),
pages 1–6, 2017.

[Rau06] Rauh, A., Hofer, E. and Auer, E. ValEncIA-IVP: A Comparison with Order
Initial Value Problem Solvers. In 12th GRAMM - IMACS International Sympo-
sium on Scientific Computing, Computer Arithmetic and Validated Numerics,
2006.

[Res07] Rescher, N. (Editor). Error: on our Predicament when Things go Wrong. Uni-
versity of Pittsburgh Press, 2007.

[Roe16] Roehm, H., Oehlerking, J., Woehrle, M. and Althoff, M. Reachset Conformance
Testing of Hybrid Automata. In Proceedings of the 19th International Confer-
ence on Hybrid Systems: Computation and Control, pages 277–286, 2016.

[Roh12] Rohn, J. A Handbook of Results on Interval Linear Problems. Technical Re-
port 1163, Institute of Computer Science, Academy of Sciences of the Czech
Republic, 2012.

[Rze08] Rzeżuchowski, T. and Wa̧sowski, J. Solutions of Fuzzy Equations Based on
Kaucher Arithmetic and AE-solution Sets. Fuzzy Sets and Systems, volume
159, pages 2116–2129, 2008.

[Sag68] Sage, A. P. Optimum System Control. Prentice-Hall, 1968.

[Sai14] Sainz, M., Armengol, J., Calm, R., Herrero, P., Jorba, L. and Vehi, J. Modal
Interval Analysis - New Tools for Numerical Information. Springer, 2014.

[San17] d. Sandretto, J. A., Chapoutot, A. and Mullier, O. Formal Verification of
Robotic Behaviors in Presence of Bounded Uncertainties. In First IEEE Inter-
national Conference on Robotic Computing (IRC), pages 81–88, 2017.

[Sax08] Sax, E. H. (Editor). Automatisiertes Testen Eingebetteter Systeme in der Au-
tomobilindustrie. Hanser, 2008.

References XLV

[Sch03] Schröder, J. Modelling, State Observation and Diagnosis of Quantised Systems.
Lecture Notes in Control and Information Sciences. Springer, 2003.

[Sch09] Schlage, T., Schwaiger, M., Krebs, V. and Lunze, J. Comparison of Two Model-
based Methods of Remote Diagnosis of Technological Systems. at - Automa-
tisierungstechnik, volume 57, 2009.

[Sch15a] Schätz, B., Voss, S. and Zverlov, S. Automating Design-space Exploration:
Optimal Deployment of Automotive SW-components in an ISO26262 Context.
In 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6,
2015.

[Sch15b] Schupp, S., Ábrahám, E., Chen, X., Ben Makhlouf, I., Frehse, G., Sankara-
narayanan, S. and Kowalewski, S. Current Challenges in the Verification of
Hybrid Systems. Cyber Physical Systems. Design, Modeling, and Evaluation:
5th International Workshop, pages 8–24, 2015.

[Sha96] Shary, S. Algebraic Approach to the Interval Linear Static Identification, Tol-
erance and Control Problems or one more Application of Kaucher Arithmetic.
Reliable Computing, volume 2, pages 3–33, 1996.

[Sha02] Shary, S. A New Technique in Systems Analysis under Interval Uncertainty
and Ambiguity. Reliable Computing, volume 8, pages 321–418, 2002.

[Sha10] Shary, S. A New Method for Inner Estimation of Solution Sets to Interval
Linear Systems. In Rauh, A. and Auer, E. (Editors), Modeling, Design and
Simulation of Systems with Uncertainties, pages 21–42. Springer, 2010.

[Sha14] Shary, S. On Full-Rank Interval Matrices. Numerical Analysis and Applica-
tions, volume 7, pages 241–254, 2014.

[Spi89] Spivey, J. M. An Introduction to Z and Formal Specifications. Software Engi-
neering Journal, volume 4, pages 40–50, 1989.

[TF91] Thevenod-Fosse, P., Waeselynck, H. and Crouzet, Y. An Experimental Study on
Software Structural Testing: Deterministic Versus Random Input Generation.
In Twenty-First International Symposium on Fault-Tolerant Computing, pages
410–417, 1991.

[Tip00] Tipler, P. A. and Walker, J. S. Physik. Spektrum Akademischer Verlag, 2000.

[Uga03] Ugarte, I. and Sanchez, P. Functional Vector Generation for Assertion-based
Verification at Behavioral Level using Interval Analysis. In Eighth IEEE In-
ternational High-Level Design Validation and Test Workshop, pages 102–107,
2003.

[Utt06] Utting, M., Pretschner, A. and Legeard, B. A Taxonomy of Model-Based Test-
ing. Working Paper Series, 2006.

References XLVI

[Ven03a] Venkatasubramanian, V., Rengaswamy, R., Yin, K. and Kavuri, S. N. A
Review of Process Fault Detection and Diagnosis: Part I: Quantitative Model-
based Methods. Computers & Chemical Engineering, volume 27, pages 293–311,
2003.

[Ven03b] Venkatasubramanian, V., Rengaswamy, R. and Kavuri, S. N. A Review of
Process Fault Detection and Diagnosis: Part II: Qualitative Models and Search
Strategies. Computers & Chemical Engineering, volume 27, pages 313–326,
2003.

[Ven03c] Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N. and Yin, K. A
Review of Process Fault Detection and Diagnosis: Part III: Process History
Based Methods. Computers & Chemical Engineering, volume 27, pages 327–
346, 2003.

[Ven15] Vento, J., Blesa, J., Puig, V. and Sarrate, R. Set-membership Parity Space
Hybrid System Diagnosis. International Journal of Systems Science, volume 46,
pages 790–807, 2015.

[Vid08] Vidal, R. Recursive Identification of Switched ARX Systems. Automatica,
volume 44, pages 2274–2287, 2008.

[Wac17] Wachenfeld, W. H. K. How Stochastic can Help to Introduce Automated Driving.
Ph.D. thesis, Technische Universität Darmstadt, 2017.

[Wan17] Wang, H., Kolmanovsky, I. and Sun, J. Zonotope-based Set-membership Pa-
rameter Identification of Linear Systems with Additive and Multiplicative Un-
certainties: A new Algorithm. In American Control Conference (ACC), pages
1481–1486, 2017.

[Wan18] Wang, Y., Puig, V. and Cembrano, G. Set-membership Approach and Kalman
Observer Based on Zonotopes for Discrete-time Descriptor Systems. Automat-
ica, volume 93, pages 435–443, 2018.

[Web09] Weber, J. Automotive Development Processes: Processes for Successful Cus-
tomer Oriented Vehicle Development. Springer, 2009.

[Wil64] Wilde, D. J. Optimum Seeking Methods. Prentice-Hall, 1964.

[Wil17] Williams, R. S. What’s Next? [The end of Moore’s law]. Computing in Science
Engineering, volume 19, pages 7–13, 2017.

[Wol10] Wolff, F. Konsistenzbasierte Fehlerdiagnose nichtlinearer Systeme mittels Zus-
tandsmengenbeobachtung. Ph.D. thesis, Karlsruhe Institut of Technology (KIT),
KIT Scientific Publishing, 2010.

References XLVII

[Zai14] Zaiser, S., Buchholz, M. and Dietmayer, K. Interval System Identification for
MIMO ARX Models of Minimal Order. 53rd IEEE Conference on Decision and
Control, pages 1774–1779, 2014.

[Zan12] Zander, Justyna, Schieferdecker, Ina and Mosterman, Pieter J. (Editors).
Model-Based Testing for Embedded Systems. Taylor & Francis, 2012.

[ZN09] Zander-Nowicka, J. Model-based Testing of Real-time Embedded Systems in the
Automotive Domain. Ph.D. thesis, Technische Universität Berlin, 2009.

[Zol14] Zolghadri, A., Henry, D., Cieslak, J., Efimov, D. and Goupil, P. Fault Diagnosis
and Fault-Tolerant Control and Guidance for Aerospace Vehicles. Springer,
2014.

References XLVIII

Own Publications and Conference Contributions

[Die13a] Diehm, G., Maier, S., Flad, M. and Hohmann, S. An Identification Method
for Individual Driver Steering Behaviour Modelled by Switched Affine Systems.
In 52nd IEEE Conference on Decision and Control (CDC), pages 3547–3553,
2013.

[Die13b] Diehm, G., Maier, S., Flad, M. and Hohmann, S. Online Identification of
Individual Driver Steering Behaviour and Experimental Results. In IEEE Inter-
national Conference on Systems, Man, and Cybernetics (SMC), pages 221–227,
2013.

[Fla14a] Flad, M., Otten, J., Schwab, S. and Hohmann, S. Necessary and Sufficient
Conditions for the Design of Cooperative Shared Control. In IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pages 1253–1259, 2014.

[Fla14b] Flad, M., Otten, J., Schwab, S. and Hohmann, S. Steering Driver Assistance
Aystem: A Systematic Cooperative Shared Control Design Approach. In IEEE
International Conference on Systems, Man, and Cybernetics (SMC), pages
3585–3592, 2014.

[Lem18] Lemmer, M., Köpf, F., Schwab, S., Flad, M. and Hohmann, S. Modeling of
Human-Centered Cooperative Control by Means of Tracking in Discrete Time
Linear Quadratic Differential Games. In Proceedings of Artificial Intelligence
and Knowledge Engineering, 2018.

[Sch16] Schwab, S. and Hohmann, S. Verification of Battery Management Systems using
Hybrid Identification. In SINO-EU Doctoral School for Sustainability Engineer-
ing, 2016.

[Sch17a] Schwab, S., Holzmüller, B. and Hohmann, S. Automated Verification of
Switched Systems Using Hybrid Identification, pages 87–100. Springer, 2017.

[Sch17b] Schwab, S., Stark, O. and Hohmann, S. Examples on Verified Diagnosis of
Safety Critical Dynamic Systems Based on Kaucher Interval Arithmetik. In
10th Summer Workshop on Interval Methods, 2017.

[Sch17c] Schwab, S., Stark, O. and Hohmann, S. Verified Diagnosis of Safety Critical
Dynamic Systems Based on Kaucher Interval Arithmetic. Proceedings of the
20th IFAC World Congress, 2017.

[Sch18a] Schwab, S. and Hohmann, S. Automatisierte Verifikation hybrider Systeme
am Beispiel eines Batteriemanagementsystems. 15. Fachtagung EKA-Entwurf
komplexer Automatisierungssysteme, 2018.

References XLIX

[Sch18b] Schwab, S., Puig, V. and Hohmann, S. A Robust Fault Detection Method using
a Zonotopic Kaucher Set-membership Approach. 10th IFAC Symposium on Fault
Detection, Supervision and Safety for Technical Processes (SAFEPROCESS),
2018.

[Sch18c] Schwab, S., Puig, V. and Hohmann, S. A Robust Fault Detection Method using
a Zonotopic Kaucher Set-membership Approach - Application to a Real Single-
Tank Process. In 11th Summer Workshop on Interval Methods, 2018.

[Sch19] Schwab, S. and Hohmann, S. Verification of Hybrid Systems Using Kaucher
Arithmetic. at - automatisierungstechnik, volume 67, pages 316–325, 2019.

[Var19] Varga, B., Meier, S., Schwab, S. and Hohmann, S. Model Predictive Control
and Trajectory Optimization of Large Vehicle-manipulators. IEEE International
Conference on Mechatronics, 2019.

References L

Supervised Theses

[Adi16] Adiraju, S. Optimization Based Verification for Battery Management Systems.
Master thesis, Faculty of Electrical Engineering, Karlsruhe Institute of Tech-
nologie (KIT), 2016.

[Glü17] Glück, L. Modellierung und Analyse eines hybriden Bremssystems. Bachelor
thesis, Faculty of Electrical Engineering, Karlsruhe Institute of Technologie
(KIT), 2017.

[Hen15] Henn, Y. Kombinierte Verifikation von dynamischen Subsystemen und ihrem
überlagerten Schaltautomaten. Master thesis, Faculty of Electrical Engineering,
Karlsruhe Institute of Technologie (KIT), 2015.

[Kah15] Kahraman, B. Definition und Implementation eines trajektorienbasierten Spez-
ifikationsverfahrens. Diploma thesis, Faculty of Electrical Engineering, Karl-
sruhe Institute of Technologie (KIT), 2015.

[Lem15] Lemmer, M. Aufbau einer BMS Testumgebung zur garantierten Verifikation
durch hybride Identifikation. Bachelor thesis, Faculty of Electrical Engineering,
Karlsruhe Institute of Technologie (KIT), 2015.

[Rie17] Rieser, L. Inputdesign für ein neuartiges Verfahren zur Verifikation von Cyber-
Physical Systems. Master thesis, Faculty of Electrical Engineering, Karlsruhe
Institute of Technologie (KIT), 2017.

[Sta16] Stark, O. Optimierungsbasierte Verfahren zur intervallhaften Identifikation.
Master thesis, Faculty of Electrical Engineering, Karlsruhe Institute of Tech-
nologie (KIT), 2016.

[Thi16] Thimm, M. Identifikation hybrider Systeme mit einem intervallhaften Mod-
ulationsfunktionsverfahren. Master thesis, Faculty of Electrical Engineering,
Karlsruhe Institute of Technologie (KIT), 2016.

[ZO14] Zotes Orcajo, A. G. Implementierung eines hybriden Batteriemanagementmod-
ells. Bachelor thesis, Faculty of Electrical Engineering, Karlsruhe Institute of
Technologie (KIT), 2014.

	Introduction
	State of Science
	Conceptualization and Terminology
	Behavior Description
	Behavior Deviation
	Behavior Assessment

	Interval Arithmetic Methods
	Governing Complexity: Time Variant and Hybrid Verification Approaches
	Other Common Verification and Falsification Approaches
	Testing
	Reachability Analysis
	Formal Verification

	Scientific Gap and Related Research Question

	Methodical Approach and Mathematical Preliminaries
	Mathematical Preliminaries
	Basic Interval Arithmetic
	Kaucher Interval Arithmetic
	Interval Type Linear Equation Systems

	Guaranteed Verification of Point Real Systems
	System Setup
	Time Invariant Full Consistency
	Conclusion

	Guaranteed Verification of Interval Type Systems
	Interval Type Full Consistency
	Interval Type Basic Consistency
	Algorithmic Solutions

	Conclusion

	Guaranteed Verification of Hybrid Systems
	Verification of Hybrid Systems with Mapped State Signal
	Verification of the Dynamic Subsystems
	Verification of the Discrete Event System
	Combination of the Dynamic and the Discrete Verification Results

	Verification of Hybrid Systems With Given Switching Times
	Verification of Hybrid Systems With Unknown Switching Times
	Convergence of the Identification and Segmentation Algorithm

	Conclusion

	Extended Kaucher Based Guaranteed Verification
	Solution Set Approximations
	Hyperrectangular Solution Set Approximation
	Zonotopic Solution Set Approximation
	Polytopic Solution Set Approximation

	Kaucher Based Diagnosis
	The Center Misplacement Effect

	Conclusion

	Application and Results
	Application: Guaranteed Verification for Interval Type Systems (Single-Tank)
	Application: Guaranteed Verification for Hybrid Systems (Two-Tank)
	Measurement With Mapped State Signal
	Measurement Without Mapped State Signal

	Simulation: Diagnosis Using Kaucher Based Guaranteed Verification (Four-Tank)
	Fault Free Setting
	Additive Faults
	Multiplicative Faults

	Application: Diagnosis Using Kaucher Based Guaranteed Verification (Single-Tank)
	Fault Free Setting
	Additive Faults
	Scaling Faults

	Conclusion

	Conclusion
	Analysis Perspectives
	Derivation of the Interval Distribution
	Full Rank Criteria
	Existence and Uniqueness of the Algebraic Solution Set
	System Behavior Specification
	Time Domain Specification
	Frequency Domain Specification

	Excitation Signal Design
	Path Calculation
	Persistent Excitation Based on Fisher Information Matrix
	Transfer to the Switch Threshold

	Tables of Geometric Parameters
	References

