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Abstract: Not only in Low-Field NMR, Laplace inversion is a relevant and challenging topic.
Considerable conceptual and technical progress has been made, especially for the inversion of
data encoding two decay dimensions. Distortion of spectra by overfitting of even moderate noise
is counteracted requiring a priori smooth spectra. In this contribution, we treat the case of simple
and fast one-dimensional decay experiments which are repeated many times in a series in order
to study the evolution of a sample or process. Incorporating the a priori knowledge that also in
the series dimension evolution should be smooth, peak position can be stabilized and resolution
improved in the decay dimension. It is explained how the standard one-dimensional regularized
Laplace inversion can be extended quite simply in order to include regularization in the series
dimension. Obvious improvements compared to series of one-dimensional inversions are presented
for simulated as well as experimental data. For the latter, comparison with multi-exponential
fitting is performed.

1 Introduction

Especially in Low Field NMR information on the sample is sought-after by the analysis of
signal decays [1, 2]. If the signal is known beforehand to consist of one, two or maybe three
mono-exponential contributions, the weights as well as decay times can be obtained by a
corresponding least squares fit. If a distribution of relaxation rates exists, the ideal signal is the
Laplace transform of the distribution of interest. Whereas regaining a distribution or spectrum
of oscillation frequencies by discrete inverse Fourier transform is well-established, the inverse
Laplace transform is challenging. Obtaining numerically a discrete positive distribution that
minimizes the squared norm of the residuals between the predicted and observed signal
works reliably. However, already for mildly different measured or simulated noise, quite
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different distributions are obtained. The Laplace inversion can be stabilized by adding a
suitable cost function to the squared residuals in the minimization process. The cost function
favors distributions which are smooth, which is a priori expected to be realistic [3]. Weighting
the cost function with a regularization parameter allows for a trade-off between excessive
smoothing and over-fitting. It can be chosen e.g. by the L-curve method [4, 5]. More
advanced methods yield improved inversion results for distributions that are not necessarily
smooth [6–10].

Laplace inversion has been extended to recover two-dimensional decay distributions, e.g.
T1-T2 or diffusion-T2 [11–14]. Measured data and the discrete distribution can be organized
as one vector, respectively, and the matrix describing the Laplace transform is extended
correspondingly by an operation referred to as Kronecker product. For the large matrix,
data can be reduced by singular-value decomposition (SVD) and limitation to the biggest
singular values. This is still an active field of research, see e.g. [15–19] and literature
cited therein. Regularization can be adapted locally [15], methods making use of two
regularization parameters may be used [16], combinations with parallel particle swarm
optimization algorithms have been applied [17], 2D delta-like distributions were utilized
[18] and inversion without Kronecker product was reported [19].

In this contribution, we demonstrate how Laplace inversion can be improved in applications,
where a simple and fast one-dimensional decay experiment, e.g. CPMG, is repeated in a series
consisting of many experiments, in order to study the evolution of the sample. Series occur e.g.
if reactions such as resin curing are monitored by CPMG measurements of transverse signal
decay [20]. Similar measurements have been conducted to study the hydration of cement
paste [21]. Measuring transverse signal decay for series of temperatures and applying Laplace
inversion is also of interest in cryoporometry, as explained in [22]. Acquisition of longitudinal
signal decay for a series of polarizing fields are performed in field-cycling experiments, see
e.g. [23]. In order to study restricted diffusion, PGSE diffusion signal decay can be acquired
for a series of diffusion timescales, as explained in [24]. If diffusion signal decay is acquired
with chemical-shift spectral resolution, the spectral dimension can be considered as series
dimension [6, 7, 25]. In all of these cases, the data set is 2D, but in the second dimension the
evolution is observed, in contrast to 2D experiments where two properties of the sample are
spread and thus better resolved in two dimensions.

In the special case of a series of measurements where the sample is not expected to change
its properties, a series of relaxation spectra without changes in series dimension is expected
after inversion in decay dimension. Now this can be enforced by using one spectrum for
the simultaneous description of all measurements in the series. Technically, this can be
implemented by organizing all measurements in one vector and column-wise repetition of
the matrix of the discrete Laplace transform. In simulations with different random noise
per repetition, better distributions were recovered using the a priori knowledge of identical
spectra compared to Laplace inversion of the averaged data or averaging the individual
Laplace inversions.

In the general case of a sample with properties evolving during the series, we suggest adding
a cost function favoring also a smooth evolution in the series dimension. As peaks in the

©2019 This preprint was submitted to
Magnetic Resonance in Chemisty.
DOI: 10.1002/mrc.4836

2

https://dx.doi.org/10.1002/mrc.4836


relaxation spectrum may appear and disappear, at least in series dimension smoothing
using the discrete second derivative rather than the identity matrix is advisable, as it is also
recommended for two decay dimensions [15]. Technically, measured data can be vectorized
as in the special case of no evolution, but now the Kronecker product of the identity matrix
with the Laplace transform matrix yields as many spectra as experiments in the series. The
matrices implementing the cost functions in decay and series dimension are weighted by
two different regularization parameters. The resulting large amount of data is reduced
using SVD. In [13], the more complex case of series of 2-D decay experiments, termed as
2.5-D experiment, is treated using the identity matrix for regularization of the series. This is
equivalent to a separate 2-D Laplace inversion for each experiment in the series, however,
the same regularization parameter is chosen for the entire series. Regularization of series of
2-D decay experiments with second-derivative regularization in series dimension would be
more complex.

As a further improvement in view of a quantitative analysis of the series of spectra, the
cumulative sum of the spectra rather than the spectra are used for smoothing in series
dimension. Frequently, quantitative analysis is based on integration of spectral regions, as
it is the case for the calculation of quantiles. Spectral contributions at decay times close to
the dead time have only little influence on the predicted signal but a constant influence on
the integrated spectrum, including the overall integral. As constraint in the optimization,
the cumulative spectra have to be monotonically increasing, corresponding to non-negative
spectra.

After a more specific description of the methods and their implementation, the benefits of
second-derivative regularization of cumulative spectra in series dimension is first demon-
strated on simulated experimental data. Next, a series of experimental CPMG decay data
measured during a Furfuryl alcohol polymerization are inverted with regularization in series
dimension and for comparison with standard regularization. Finally, CPMG decay data of a
hydration experiment are inverted and compared to tri-exponential fitting. The evolution
of the time constants and corresponding weights can be compared with the results of the
inversion.

2 Methods

2.1 Laplace Inversion

The vector ~y ∈ RnT collecting nT ∈ N digitized measurement data yi at times t i can be written
as

~y = A · ~g + ~r

with the Laplace transformation matrix A ∈ RnT×nS , the vector ~g ∈ RnS
>0 containing nS ∈ N

weights g j for previously chosen decay times s j ∈ R>0 and the vector ~r ∈ RnT holding the
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residues. The matrix A represents the discrete Laplace transformation and is defined as

A=
�

Ai j
�

=

�

exp

�

−
t i

s j

��

∈ RnT×nS ,

with nT as the number of measurement points and nS as the number of predefined decay
times. Obviously, the decay times s j have to be chosen with regard to the expected real
decay times of the components in the sample. Since the Laplace inversion is ill-defined, the
singular values of matrix A decay quickly towards zero. Hence, a method is to be found that
reduces the amount of data and increases the calculation speed. Therefore, the matrix A is
compressed using SVD:

A= U ·Σ · VT .

The matrix A is split into three matrices U ∈ RnT×nT , Σ ∈ RnT×nS and V ∈ RnS×nS , where Σ is
a diagonal matrix containing the singular values in decreasing order and the matrices U and
V are unitary. In this study only the 30 largest singular values are considered. The remaining
singular values are neglected. Since the necessary amount of singular values is dependent on
the decay times and the sample times, the number of singular values has to be adjusted for
each purpose carefully. Using the SVD the compressed data (indicated with the hat symbol)
equals to

~̂y = Û · ~y = Σ̂ · V̂T · ~g = Â · ~g

and yields to a compressed transformation matrix Â ∈ R30×nS . To find the weights ~g for the
given decay times s j the residuals || ~̂y − Â · ~g||22 are minimized via an optimization algorithm.
Since this optimization problem is ill-posed, the obtained the results are highly influenced
by the noise in the measured data. To compensate over-fitting, regularization is used to
incorporate a priori knowledge of the expected results. A reasonable assumption is to require
the weights’ spectrum to be smooth. This is achieved by adding penalty functions to the
optimization problem, which lead to a reduction of the second derivative and hence to a
smoother spectrum. The degree of regularization can be adjusted by the regularization
parameter. To find a proper regularization parameter the L-curve method according to [4] is
used. The cost function of the regularization plotted versus the squared residuals for various
regularization parameters leads to an L-shaped curve. In the maximum curvature of this
curve a good trade off between regularization and signal fitting is achieved.

When applied to noisy signals, this method still provides unsatisfactory spectra. In this study
the authors hence introduce a new regularization method which is applicable to measurement
series. Such series could be a time-resolved reaction or a drying experiment. In such cases
the peaks in the decay spectra are assumed not to spontaneously appear or disappear, but
shift and de- or increase. Hence, a regularization in the dimension of measurement series is
introduced to improve the overall Laplace inversion.

Therefore, the nE ∈ N vectors ~yk containing the single measurements are concatenated to a
vector ~yl ∈ RnT nE containing all measurements:

~yl =
�

~y T
1 ~y T

2 · · · ~y T
n,E

�T
∈ RnE nT
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Now the Laplace inversion matrix needs to be adjusted. The matrix Âl ∈ R30nE×nE nS for the
elongated measurement vector can be constructed by using the Kronecker product of the
Identity matrix Il ∈ RnS×nS and the compressed Laplace transformation matrix for a single
dataset Â:

~̂yl = Âl · ~gl = Il ⊗ Â · ~gl

with ~gl ∈ RnE nS . Obviously, the resulting weights vector is also concatenated and holds all
resulting spectra in one vector when performing the Laplace inversion.

The regularization matrices are now added in the same way to the optimization problem. In
the resulting equation

~d =
�

~̂y T
l
~0T ~0T

�T
=
�

Âl
T
αDT γC T

�T
· ~gl

two additional matrices are introduced. The product of matrix D ∈ R(nS−2)nE×nS nE and the
vector ~gl gives the second derivative of the single measurements ~gk with the central difference.
On the left-hand side of the equation the vector is elongated with zeros, hence the optimization
algorithm minimizes the second derivative and thus leads to smoother spectra. The degree of
regularization can be influenced via the regularization parameter α. Low values of α reduce
the influence whereas higher values increase the influence of the second derivative. The same
procedure is used to regularize between measurements with the matrix C ∈ R(nE−2)nS×nE nS

and the according regularization parameter γ. To calculate the derivatives, the matrices are
defined as

D =
�

Di j
�

=
�

δi j − 2δi( j−1) +δi( j−2)
�

C =
�

Ci j
�

=
�

δi j − 2δi( j−nS) +δi( j−2nS)
�

using the Kronecker δi j to achieve a compact notation.

Instead of calculating the spectrum it is possible to calculate the cumulative sum ~Gl ∈ RnS nE

of the spectrum. Therefore, an additional matrix T ∈ RnS×nS is introduced:

T =
�

Ti j
�

= δi j −δ(i−1) j

which leads to
~g = T · ~G .

and hence it is

~d =
�

~̂y T
l
~0T ~0T

�T
=
�

�

Âl · (Il ⊗ T)
�T

αDT γC T
�T

︸ ︷︷ ︸

M

· ~Gl .

Using this method the regularization is applied to the cumulative sum of the spectra.

Fig. 1 shows the cumulative sum of an exemplary spectrum. The black arrows indicate
the direction of the regularization. Typically, only the matrix D is used to regularize in the
direction of decay times. The newly introduced matrix C regularizes additionally in the
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direction of the measurements. Finally, this linear least-squares problem is solved using
MATLAB with the objective function (OF):

OF =min
~Gl

1
2

�

�

�

�M · ~Gl − ~d
�

�

�

�

2
2 such that

�

Tl · ~Gl ≥ ~0,
Fl · ~Gl = ~0.

,

and constraints to incorporate a priori knowledge into the solution. For instance the cumula-
tive sum has to increase monotonically and hence the first derivative (T · ~G) of the cumulative
sum has to be greater than zero. Also, the first point of the cumulative sum (F · ~G) must be
zero. The first element of the matrix F ∈ RnS×nS is one, all other elements are zero.

2.2 Evaluating experimental or simulated data

To invert the Laplace transformation, a challenging task is to select suitable regularization
parameters. Since in most cases the original spectrum is unknown, one way to estimate the
regularization parameter is to use the L-Curve method [26]. Therefore, the OF is minimized
for 80 different regularization parameters. The cost function

�

�

�

�D · ~Gl

�

�

�

�

2
2 +

�

�

�

�C · ~Gl

�

�

�

�
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Figure 1: Cumulative sum of the simulated spectrum. The black arrows indicate the direction
of the regularization by the matrices C and D.
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plotted against the squared norm of residuals

�

�

�

�Âl · ~gl − ~̂yl

�

�

�

�

2
2

results in an L-shaped curve. Each point of this curve corresponds with a certain combination
of regularization parameters α and γ. At the point of maximal curvature, a good trade
off between regularization and residuals is obtained. To increase the speed of the L-curve
calculation the ratio between α and γ was fixed to γ = 5α, thus regularizing the second
dimension stronger than the first dimension.

3 Experimental

3.1 Generating simulated data

To compare the performance of two-dimensional with conventional regularization, simulated
measurement data is generated. The simulated spectrum is calculated with the function:

�

gl,s
�

=a1exp
�

−3
l

nE

�

exp



−

�

s−µ1

�

1− 0.2 l
nE

��2

σ2
1



+

a2
�

1− exp
�

−3
l

nE

��

exp



−

�

s−µ2

�

1+ 0.2 l
nE

��2

σ2
2





and the parameters:

a1 0.8 a2 0.65
µ1 7.0 µ2 1.5
σ1 0.8 σ2 0.4
nS 331 nE 64

resulting in a spectrum with one ascending and one descending peak in the series dimension.
The spectrum is calculated for nS = 331 decay times linearly distributed from 0.2 ms to
10.0 ms and nE = 64 measurements. The ideal digitized measurement signal is calculated
with

~yl,simulated = Al · ~gl,simulated

for 250 digitized times ranging from 0.02 ms to 20 ms. 5 % white noise is added to the ideal
measurement signal, resulting in a signal to noise ratio (SNR) from 13.1 dB to 18.7 dB across
the different spectra.

For the Laplace inversion the vector ~s holds 80 digitized decay times ranging from 0.1 ms to
10 ms. Because this vector contains less decay times than the vector of the original noise-free,
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the intensity of the weights ~g differ. Therefore, the simulated spectrum is also calculated for
the shorter vector ~s and the weights are adjusted accordingly, so it can be compared to those
obtained by the Laplace inversion. Fig. 2 shows the simulated measurement signal and the
simulated spectrum obtained with this method.

3.2 Furfuryl alcohol polymerization

Vargas et al. analyzed the transverse NMR relaxation of Furfuryl alcohol polymerization in-situ.
The NMR data was kindly provided by Prof. Guthausen1[20]. To perform the measurements
the “Bruker the minispec” device is used. A total of 64 scans with 5000 echoes and 0.025 ms
echo time are conducted per in-situ measurement with a home-built NMR-device with a 1H
Larmor-frequency of 23 MHz and a measurement depth of 2 mm. Since the polymerization
and curing of resins is usually done in sheets, a single-sided NMR device is used for the
acquisition. The detailed measurement setup is described in [20]. The data is fitted using a
bi-exponential model to calculate the curing degree with the obtained decay times using the
dependence of transverse magnetization relaxation on crosslink density.

3.3 Cement hydration

The hydration of ordinary portland cement (CEM I 42.5 R-NA/LA according to DIN EN 197-1)
was investigated with a Bruker minispec mq10 low field NMR analyzer with custom-built
probe head. The used cement paste has a water to cement ratio of 0.4 and is mixed before
filling it into a sample tube with 10 mm diameter. The sample height of 20 mm fits into the
entire field of view of the NMR device. Moisture exchange is prevented by sealing the sample
tube. The ambient temperature in the measurement chamber is set to 35 ◦C. CPMG echos are
recorded during acquisition. 16 single scans are recorded and averaged by the measurement
device per acquisition. To improve the signal-to-noise ratio 25 scans per time step are averaged
resulting in a total of 400 scans per timestep during the in-situ measurement.

4 Results and discussion

4.1 Simulated data

The simulated measurement signal prepared as described in sec. 3.1 with 5 % white noise
was used for the Laplace inversion. The inversion was performed with the second derivative
regularization in the conventional way and with the newly introduced two-dimensional
regularization in the series dimension.

1Institute of Mechanical Process Engineering and Mechanics, KIT, Germany
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Figure 2: Top left: simulated measurement signal with noise; Top right: simulated spectrum;
Bottom left: spectrum obtained with one-dimensional Laplace inversion of the
simulated signal; Bottom right: spectrum obtained with two-dimensional Laplace
inversion of the simulated signal.

Fig. 2 shows the results for the Laplace inversion. Four exemplary simulated measurement
signals with noise are depicted on the top left. On the top right the original spectrum, which
is the ideal solution to the Laplace inversion is shown. On the bottom left the calculated
spectrum is shown for the one-dimensional Laplace inversion with a regularization parameter
of α= 4.86 determined by the L-curve method [4]. The two peaks of the original spectrum
can be seen, however they are much broader and hence the intensity is lower. On the bottom
right, the result of the two-dimensional regularization is shown with the regularization
parameters α = 0.15 and γ = 0.74. As can be seen, with the additional regularization the
spectra are in good agreement to the original spectra. The peaks are narrower and especially
the second peak is clearer. The first drop of the second peak is not reproduced for the first 15
spectra and in the last spectra the second peak disappears completely. However, using the
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Figure 3: Left: Spectra of Furfuryl alcohol polymerization obtained with one-dimensional
regularization and regularization parameter obtained with the L-curve method.
Right: Spectra for the same sample using a lower regularization parameter.

regularization in the series dimension, peaks in the spectra can be separated whereas the
conventional Laplace inversion would yield one broad peak.

4.2 Furfuryl alcohol polymerization

To monitor Furfuryl alcohol polymerization reaction in-situ NMR measurements were con-
ducted as described in sec. 3.2. The conventional one-dimensional Laplace inversion spectra
are depicted in Fig. 3. On the left side, the regularization parameter of α= 5.58 was chosen
using the L-curve method. The resulting spectra show two main peaks, which are broad and
shift towards smaller decay times with increasing reaction time. Selecting a suitable regular-
ization parameter is often a challenging task. The L-curve method provides an instrument
to estimate such a regularization parameter, but then often leads to quite broad peaks. On
the right-hand side of Fig. 3, an arbitrarily chosen lower regularization parameter α= 0.32
is used. As can be seen, a third peak between the two previous main peaks is formed. The
total spectrum however is not as clear because the position and width of peaks shift between
the single spectra. Also, several additional peaks between the main features appear and
disappear which makes the interpretation of such spectra a difficult task.

Fig. 4 on the top shows spectra obtained with the proposed two-dimensional regularization
procedure for the Furfuryl alcohol polymerization data set. With the determined regularization
parameters of α = 0.018 and γ = 0.090, four peaks appear in the spectrum. Those peaks
are separated clearly and are narrower than the peaks obtained with the regular Laplace
inversion method. All four peaks shift towards smaller decay times with increasing reaction
time. The peaks at the smallest and highest obtained decay times also increase in intensity
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Figure 4: Top: Two-dimensional regularization for the Furfuryl alcohol polymerization. Bot-
tom: Top-view of the spectra with added bi-exponential (white markers) fit.
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Figure 5: Two-dimensional Laplace inversion of T2 decay on a hydrating cement sample. The
white symbols show the calculated tri-exponential fit for the NMR measurement
data.

whereas the intensity of the two middle peaks does not change significantly. It is remarkable,
that for the peak on the right hand side the calculated decay times shift to higher decay times
for the first hours of the reaction. Afterwards, they decreasing for the remaining reaction
time. This is not visible in the spectra depicted in the right-hand side of Fig. 3 because this
effect is not distinguishable from the artifacts of the Laplace inversion.

Vargas et al. used a bi-exponential fit to obtain the T2 decay times from the measurement
data [20]. Exponential fitting is a method often used for the analysis of NMR relaxation data.
The calculated decay times using a bi-exponential fit (white markers) and the spectra of the
Laplace inversion are depicted at the bottom of Fig. 4. The spectra obtained by the Laplace
inversion indicate that a quad-exponential or tri-exponential fit might be more suitable for
the measurement data. However, whereas tri-exponential fitting is often possible, quad-
exponential fitting is numerically difficult. The right peak at larger decay times is in good
agreement with the long T2 component of the exponential fit. Also, the small decay time
increase at about one hour reaction time is shown by both the Laplace inversion and the
exponential fit. The short T2 component fit lies between the left three peaks of the Laplace
inversion.
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4.3 Cement hydration

The results from hydration measurements with portland cement paste are displayed in Fig. 5.
The intensity of the Laplace inverted spectrum is shown by color coding. The two-dimensional
Laplace inversion regularization parameters α = 0.015 and γ = 0.075 were determined with
the L-curve method. The white markers show the results of a tri-exponential fit. Marker
sizes are scaled according to the intensity of the respective relaxation component. Right after
mixing the cement paste a single characteristic relaxation component close to 10 ms can be
detected with both analysis methods. During the following hours a shift of the decay time
towards smaller decay times can be observed for up to 5 hours hydration time. This can be
explained by the formation of nano-scale Calcium-Silicate-Hydrate phases and the successive
chemical and physical binding of water. For this region a mono-exponential fit may be utilized
as well. Starting at about 5 hours hydration time hydration products with significantly lower
relaxation times evolve whereas intensity of the initially observed component decreases. The
tri-exponential fit is unable to reflect peak broadening as seen with the Laplace inversion. For
long hydration times, two relaxation components are formed and the tri-exponential fit shows
low intensity and high scatter for the longest relaxation component. Both Laplace inversion
with series regularization and tri-exponential fit show similar relaxation components and
intensities. In the case of hydration studies the Laplace inversion leads to refined spectral
information and offers additional information on the spectral shape of T2 decay components.
Regularization in the second dimension, e. g. hydration time, can further reduce the number of
repetition measurements applied to improve signal-to-noise ratio by using a priori knowledge
of the spectral evolution in the hydration time domain.

5 Conclusion

The main requirement for the use of two-dimensional regularization is a steady and continuous
evolution of the spectra in the second dimension. This is true for reaction kinetics, adsorption
and desorption or diffusion processes. The second dimension does not have to be a time
scale. Basically, any series of measurements with a continuous and steady development in
second dimension are suitable for the proposed Laplace inversion method. For other cases
with erratic changes between single measurements the two-dimensional regularization is not
an appropriate data analysis technique.

Finding a good set of regularization parameters is still a challenging task. With the additional
regularization in the second dimension, the amount of regularization in the first dimension
can be reduced and hence seperate peaks, which could not be resolved otherwise. Using the
L-curve method allows to estimate suitable regularization parameters. The disadvantage of
the L-curve method is the requirement to perform the entire Laplace inversion for multiple
regularization parameters to actually get the L-curve. Depending on the dataset size this
can be a time-consuming task. For large series, processing times of several hours can be
required to calculate the L-curve on personal computers, so that e. g. implementations without
Kronecker product could be beneficial.
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The Laplace inversion with two-dimensional regularization presented in this study shows
a significant improvement compared to the one-dimensional regularization method. This
could be shown for simulated data and also for the two practical use cases Furfuryl alcohol
polymerization and hydrating cement paste kinetics. The two-dimensional regularization
allows a more generic approach for the analysis of NMR data than exponential fitting and yields
to more conclusive spectra than the Laplace inversion with one-dimensional regularization.
This method is hence a helpful tool, especially for noisy measurement data with multiple
decay components.
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