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With Laplacian eigenmaps the low-dimensional manifold of high-dimensional
data points can be uncovered. This nonlinear dimensionality reduction technique
is popular due to its well-understood theoretical foundation. This paper outlines
a straightforward way to incorporate class label information into the standard
(unsupervised) Laplacian eigenmaps formulation. With the example of hyperspec-
tral data samples this supervised reformulation is shown to reinforce within-class
clustering and increase between-class distances.

1 Introduction

Advances in hyperspectral image acquisition and domain-specific machine learn-
ing methods for clustering and classification of the acquired data are progressing
in tandem. By its very nature hyperspectral images tend to be high-dimensional
as sensors capture many narrow and contiguous spectral bands and algorithms
for analysis often combine spatial as well as spectral information. Due to the
high resolution of many hyperspectral image (HSI) data sets, it has been sug-
gested to employ nonlinear dimensionality reduction (or manifold learning) as
a method to embed high dimensional data points in a lower dimensional space,
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while preserving the local geometry. Nonlinear dimensionality reduction has

proven itself useful in many different domains, like face recognition [CK09],

speech recognition [BO95] and image retrieval [LLC05]. In contrast to a princi-

pal component analysis, where data points are projected onto a linear subspace,

nonlinear dimensionality reduction techniques can find the low-dimensional non-

linear manifold that is possibly embedded inside a higher-dimensional space.

Manifold learning is therefore very suitable for data sets, where an intrinsic low-

dimensional structure is suspected. A classical example of this is an image series

of a person looking in various different directions. The images itself are rather

high-dimensional, the intrinsic lower dimension however, can be characterized by

a Euclidean space, where one axis represents looking right and left, and the other

axis up and down [RYS04]. Manifold learning methods are generally able to find

this structure. In this paper, we focus on Laplacian eigenmaps (LE), a classical

manifold learning algorithm [BN03]. We show how the standard LE formulation

can be adapted in order to take class labels into account and how this supervised

reformulation is an improvement.

Different approaches to incorporate class label information into manifold learn-

ing applications have already been considered. In [RD12] for instance, one

within-class and one between-class graph was constructed to achieve a supervised

manifold learning formulation. In contrast to this, we show that one graph and the

associated affinity matrix equipped with a certain kernel function is sufficient.

The remainder of this technical report is organized as follows: We first begin

by revisiting the standard Laplacian eigenmaps formulation and motivate the

importance of the Laplacian matrix and its relation to the Laplace operator. In

the following section the supervised version of the Laplacian eigenmaps method

is outlined. The algorithm is evaluated by using a hyperspectral dataset that was

acquired by the AVIRIS sensor. We show quantitative and qualitative results.

2 Laplacian Eigenmaps

Given data samples X = {xi}ni=0 ⊆ Rm many classical manifold learning algo-

rithms start with the construction of an undirected weighted graph G = (V,W ),

where each node vj ∈ V represents one data point and W is the n× n affinity

matrix. Affinity or similarity can intuitively be understood as an inverse distance
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measure.1 Note, that the dimensionality m of the data points does not appear in

W , as it encodes all pairwise affinities. One common affinity measure is the so

called Gaussian heat kernel

Wij = kGauss(xi,xj ;β) = e
−||xi−xj ||

2
2

β ,

with β ∈ R. This Gaussian heat kernel is applied to all xj ,xk ∈ X , provided that

the Euclidean distance between the samples is smaller than a certain ε > 0. In

general, we call a symmetric function k : X × X → R a kernel, if the induced

Gram matrix defined by Kij = k(xi,xj) is positive semi-definite. Choosing an

adequate affinity measure is of course one crucial aspect of LE. When dealing

with signals or (hyper)spectral data, one might for instance consider the cosine

similarity or dynamic time warping. For the time being, we focus on the Gaussian

heat kernel. After the construction of the weighted graph G, the eigenmaps, which

define the mapping to the low-dimensional space, must be computed. Therefore,

the generalized eigenvector problem must be solved:

Ly = λDy, (2.1)

where L = D −W is the so called Laplacian matrix, and D the diagonal degree

matrix.

Now, if y0, . . . ,yn−1 are the solutions to the above generalized eigenvalue equa-

tion (2.1), then order the equations according to the eigenvalues, such that λ0 is

the smallest:

Ly0 = λ0Dy0

Ly1 = λ1Dy1

...

Lyn−1 = λn−1Dyn−1

1 Note however, that affinity measures are not necessarily required to be an inverse metric. For

instance, the inverse of the dynamic time warping distance could be used as an affinity measure (see

e.g. [SNNS02]), although it is only a semi-metric, i.e. it does not satisfy the triangle inequality.
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Finally, the mapping Φ : Rm → Rp into a p-dimensional target space is defined
by the p eigenvectors:

Φ(xi) = [y1(i), . . . ,yp(i) ]
T

The goal is to have a mapping, where yi and yj are ”close” together, i.e. we want
to minimize

∑
ij

(yi − yj)
2Wij =

∑
ij

(y2
i + y2

j − 2yiyj)Wij

=
∑
i

y2
iDii +

∑
j

y2
jDjj − 2

∑
ij

yiyjWij

= 2yTLy.

The last step of the above derivation is true because by definition Dii =
∑

j Wji.
Hence, the minimization problem reduces to

argmin
yTDy=1

yTLy.

Finding a vector y that minimizes this objective function is equivalent in finding
the eigenvectors of Equation (2.1).

3 Laplace Operator

The Laplacian matrix plays an important role in graph theory and can for instance
be used to approximate the sparsest cut of a graph [AHK10] or to compute s-t
flows [CKM+11]. Another interesting property of the Laplacian matrix is that
it can be understood as an discrete Laplace operator. In this subsection, we will
motivate this aspect of the Laplacian matrix. To begin with, consider the definition
of the Laplace operator, which is a second order differential operator of a function
φ:

Δφ =
n∑

i=1

∂2φ

∂x2
i

,
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Figure 2.1: Conceptual projection of a data set with ten samples. Every of the vertices of G10 stands
for one such data point. With vk → xk we denote that xk is ”represented” by vk . The length of
the edges is according to a certain affinity/kernel function, i.e. shorter edges mean a higher affinity.
This must be reflected by the projection: A high affinity between nodes must lead to the points being
”close” together in the lower-dimensional space.

where φ is a twice-differentiable function. Δφ is called the Laplacian of φ. Now,
as we want to relate this continuous Laplace operator to the analogous discrete
case, consider a grid, or rather any arbitrary undirected weighted graph G and
let ψ : V → R be a function that maps every node vj of G to a real number
νj = ψ(vj). For the sake of vividness, assume that this number represents a
temperature νtj at a discrete time step t. The following derivation relates the
temperature change Δt:t+1νi = ||νti − νt+1

i || from time step t to t + 1 to the
difference of the neighboring nodes temperatures, where Wij can be thought of as
the heat conduction between nodes vj and vi.

Δt:t+1νi ∝ −
∑
j

Wij(νi − νj)
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= −(νi
∑
j

Wij −
∑
j

Wijνj)

= −(νi degW (vi)−
∑
j

Wijνj)

= −
∑
j

(δij degW (vi)−Wij)νj

= −
∑
j

Lijνj

degW (vi) denotes i-th row (or column)2 sum of W and δij is the Kronecker delta.

We see that from the simple fact that the change in temperature is proportional
to the difference of the neighboring temperatures (Newton’s law of cooling), the
Laplacian matrix L emerges. The above derivation of heat transfer on a graph
resembles the heat equation

∂u

∂t
= −αΔu,

where the Laplacian matrix replaces the Laplace operator.

Consider the weighted graph from Figure 3.1 and its corresponding weight matrix
W , diagonal degree matrix D and the resulting Laplacian matrix L. Multiplying
the vector of node numbers with the Laplacian matrix, gives the negative change
of those node temperatures for the next time-step.

4 Supervised Laplacian Eigenmaps

In order to incorporate class label information, we construct the affinity matrix as
follows. Let (xi, �) ∈ Rm × {1, . . . , L} or x	

i for short be a data sample and its
associated label in a multi-class setting. The entries of W ∈ (0, 1]n×n are then
computed as:

2 Since W is symmetric, row and column sums are equal.



Wi,j :=







√

kGauss(xℓi ,x
o
j ;β) if ℓ = o

γ kGauss(x
ℓ
i ,x

o
j ;β) if ℓ 6= o,

(4.1)

where β is set to the average pairwise Euclidean distance of all {xi}ni=0 ⊆ Rm.

Speaking in terms of an heat distribution over the nodes, we want to inhibit the

heat flow between two nodes if they do not have the same label. This is simply

realized by the parameter γ ∈ (0, 1) in Eq. (4.1). This inhibition parameter is a

straightforward way to influence the affinity measure. Setting γ = ε for ε > 0

will have the effect of increasing between-class distances in the target space, while

γ = 1− ε will converge to the standard LE result.

However, similar data points should be close together on the projected space

independent of their class, which is why the kernel function k is used in both

cases. By this approach, both desired goals are achieved: First, samples sharing

the same label are reinforced to fall into the same region. Second, data points with

different labels are repelled from each other by a certain factor, but nevertheless

their overall closeness is still defined by the inhibited but otherwise same kernel

function.
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Figure 3.1: A weighted undirected graph with ν = [ψ(v1), ψ(v2), ψ(v3), ψ(v3)] = [3, 2, 2, 2]T ,

the corresponding diagonal degree matrix, weight matrix and Laplacian matrix. Multiplying

ν with the Laplacian matrix results in the negative change from one time step to another:

Lν = [0.8,−0.3,−0.5, 0.0]T .
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unsupervised, the expectation of different manifold learning algorithms is that
similar data samples must be located close to each other in the projected low-
dimensional space, given any suitable, i.e. domain-specific, distance function.
Therefore, a reasonable approach is to inspect every data point and look for the
label of its 1-nearest neighbor. For the evaluation of the proposed supervised
Laplacian eigenmaps method, we use spectral information that was acquired by
the AVIRIS sensor at the Indian Pines test site in Indiana–a standard dataset, that
is commonly used in remote sensing research. There are all in all 16 different
classes; two-thirds of the scene are composed of agriculture (corn, oats, soybean,
wheat, etc.), one-thirds of forest.

Figure 4.1: Indian pines acquired by the NASA AVIRIS sensor. The same color coding for the classes
is also used for Figure 4.2.

4.1 Experiments & Results

We evaluate the performance of the proposed supervised Laplacian eigenmaps
procedure using the k-nearest neighbor method. Independent of supervised or
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Figure 4.2: Qualitative results: 200-dimensional spectral data points are projected onto the Euclidean
plane. It can be seen that in all cases spectra with the same label cluster together. However, when class
label information is used in the construction of the weight matrix, same-label clusters are denser and
different-label clusters are further apart. This effect is reinforced when using a small γ.

The embedding in a low-dimensional target space depends very much of γ. Figure
4.2 depicts the embedding into the Euclidean space for two different values of
γ ∈ {0.25, 0.75} and also the standard embedding by LE. For γ = 0.25 some
clusters are widely separated from each other, while for γ = 0.75 clusters are
generally closer together.
All in all there are 200 spectral reflectance bands in the range of 400nm to
2500nm. As the data set consists of over twenty thousand hyperspectral pixels,
it is computationally infeasible to solve the generalized eigenvalue decomposi-
tion as its complexity is O(n3). Therefore, we subsample the data set, apply
our method repeatedly to smaller chunks of the data and average the perfor-
mance to get an overall score. We test this procedure for different values of
γ ∈ {0.1, 0.2, . . . , 0.9}.
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Figure 4.3: 1-nearest neighbor accuracy for different values of γ and target dimensions R2, R4 and
R6.

Figure 4.3 shows the 1-nearest neighbor accuracy for different values of γ as
well as for three different target dimensions. It is not surprising that a higher
target dimension allows for a better performance. Note furthermore that γ has
a large impact on the accuracy; decreasing the affinity between different-label
data samples seems to ensure that the variance between the classes is larger than
within.

5 Conclusion & Outlook

Nonlinear dimensionality reduction is a powerful tool for high-dimensional data
analysis and visualization. We have shown an easy way to integrate class labels
into the standard Laplacian eigenmaps formulation. By this it is possible to
embed high-dimensional data into a low-dimensional space, while enhancing the
within-class relations and extending the between-class distances.

Besides applying this method to other (hyperspectral) data sets, future work could
include a way to parameterize γ and evaluate other procedures to build the affinity
matrix. In this technical report, γ was used in order to decrease between-class
affinity. Further research should investigate the impact of choosing γ according
to the overall between-class dissimilarity of two different classes. This could
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be computed using a the very same kernel function that is used to compute the
affinity matrix. An important question in general is how to choose or design a
kernel function k. In this technical report, we only considered the standard heat
kernel. However, other affinity measures might be more suitable for spectral data.
As future steps, we plan to evaluate the performance of various different kernel
functions.
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