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Abstract—We examined multiple semantic segmentation meth-
ods, which consider the information contained in endoscopic
images at different levels of abstraction in order to predict se-
mantic segmentation masks. These segmentations can be used to
obtain position information of surgical instruments in endoscopic
images, which is the foundation for many computer assisted
systems, such as automatic instrument tracking systems. The
methods in this paper were examined and compared in regard to
their accuracy, effort to create the data set, and inference time. Of
all the investigated approaches, the LinkNet34 encoder-decoder
network scored best, achieving an Intersection over Union score
of 0.838 with an inference time of 30.25 ms on a 640 x 480 pixel
input image with a NVIDIA GTX 1070Ti GPU.

Index Terms—robot-assisted surgery, computer vision, seman-
tic image segmentation, deep learning

I. INTRODUCTION

During minimally invasive surgery the surgeon often has
no direct view of the surgical site within the human body but
utilises an endoscope which is guided by a human assistant.
The optimal positioning of that endoscope is a complex prob-
lem, which in practice often leads to poor visual conditions
and interruptions of the surgical workflow. However, high-
quality camera images are crucial for surgical performance
[1]. This surgical challenge results in the need for an automatic
tracking system, which recognises the presence and position
of surgical instruments in visual data and is able to control the
endoscope’s position based on this information [2].

Early approaches to classical image processing, which use
color and shape information from tools or attached markers,
are not robust against common challenges in endoscopic image
data, such as fluctuating exposure conditions, light reflections,
occlusions, smoke generated by electrocautery, repetitive tex-
tures with low contrast, and large deformations of anatomical
structures. Machine learning approaches are often more robust
than classical image processing methods in regard to these
challenges.

In this work, a variety of machine learning methods were ex-
amined in regard to their suitability for solving these problems

in the task of creating binary segmentation masks to classify
image pixels as belonging to instrument or background. The
investigated methods differ significantly in complexity, the
type of features used to solve the task, and the amount of
data required for training. Gathering data in the medical field
is expensive and time consuming. Especially for pixel-wise
segmented endoscopic images.

II. METHODS

The following sections describe briefly the investigated
approaches for creating binary segmentation masks (instru-
ment/background). For this task, weakly supervised (II-A) and
fully supervised (II-B, II-C, II-D) approaches were examined
in order to compare their performance. The data set used to
train and validate the following methods is comprised of data
from [3] and [4] and consists of 420 pixel-wise annotated
endoscopic images.

A. Class Activation Mapping

Class Activation Mapping is a method which can be used
to visualise the predicted class scores of a classification-
trained convolutional neural network (CNN) on any given
image [5]. Those image regions can be used to perform object
localisation and are obtained in a weakly-supervised manner
using classical CNNs trained on image-level labels (weak-
labels).

B. Random Forest Segmentation

A Random Forest (RF) is trained as a binary (instru-
ment/background) classifier for image pixels. The features
used for the segmentation of endoscopic instruments are the
pixel values in hue, saturation, opponent 2 and opponent 3
color spaces, which are superior to other color spaces like
RGB or CIE XYZ concerning discriminative power between
instruments and background [6].



C. Fully Convolutional Network

A shallow Fully Convolutional Network (FCN) (3 layers
deep and 6331 trainable parameters) is trained to produce
binary segmentation masks. The investigated architecture uses
rectangular image regions of 7× 7 pixels to predict the class
of one pixel centered in the image region. Hereby, in contrast
to the RF, the model is more robust against pixel noise in the
image data.

D. Encoder-Decoder Network

Our final method is a state-of-the-art encoder-decoder net-
work that we trained on solving the problem of semantic
segmentation. The architecture used in this work is based on
the LinkNet model [7] and utilises a pre-trained ResNet34 [8]
network as an encoder similar to [9].

III. RESULTS

A. Weakly Supervised Segmentation

Fig. 1 shows exemplary endoscopic images overlayed with
their corresponding class activation maps (CAMs). Computing
a CAM for a 224× 224 pixel input image takes 3500 ms on
a single NVIDIA GTX 1070Ti GPU.

Fig. 1. Exemplary class activation maps.

The examples in Fig. 1 illustrate that classical CNNs, that
were trained on weakly labelled endoscopic image data, are
able to not only detect the presence of instruments but also
localise the image regions in which they appear. However, the
sole use of CAMs results in relatively coarse detected image
regions and fails to detect instrument boundaries. Therefore
this method is ineligible to create semantic segmentation
masks for endoscopic images on its own.

B. Fully Supervised Segmentation

The qualitative comparison of the investigated fully super-
vised segmentation approaches is presented in Table I and
Fig. 2.

TABLE I
BINARY SEGMENTATION RESULTS AND INFERENCE TIME.

Model Intersection over Union Dice coefficient Time [ms]
RF 0.431 0.602 841.90

FCN 0.529 0.692 7.50
LinkNet34 0.838 0.912 30.25

The inference times of the FCN and LinkNet34 models
were measured using a single NVIDIA GTX 1070Ti GPU. The
current implementation of the RF segmentation model does not
allow GPU processing, which results in a significantly higher
inference time. All metrics were obtained on 640× 480 pixel

Fig. 2. Qualitative comparison between the predicted binary segmentation
masks of different models.

images. Fig. 2 shows examples of typical endoscopic images
and their corresponding predicted segmentation masks.

Table I and Fig. 2 show that the deep LinkNet34 encoder-
decoder architecture, which considers the whole image at once
to predict its segmentation masks, considerably outperforms
the smaller models that have much fewer trainable parameters
and segment an image based on the pixel values of individual
pixels (RF) or small image regions (FCN).

IV. CONCLUSION

In principle, all of the investigated methods are able to
recognise the position of the instruments occurring in en-
doscopic image data qualitatively. The weakly supervised
approach of Class Activation Mapping is appealing, since
no pixel-wise segmented training data is required. However,
the approach lacks segmentation accuracy to be used as a
stand-alone method for semantic segmentation of surgical
instruments. The relatively small RF and FCN models require
little training data and computing time (with appropriate
implementation), but they are not robust against challenges
such as smoke or contaminated instruments. Herein lies the
strength of the deep LinkNet34 encoder-decoder network,
which however requires large amounts of annotated data for
training.

In future work, class activation maps will be used as seed
points for additional segmentation methods. Furthermore, the
combination of active learning methods with segmentation
networks will be investigated in order to further increase the
accuracy of the methods and to limit the annotation effort at
the same time.
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