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ABSTRACT
A twin-fluid atomizer configuration is simulated by means

of the 2D weakly-compressible Smooth Particle Hydrodynamics

method, and compared to experiments. The Gas-to-Liquid-Ratio,

the momentum flux ratio and the velocity ratio are set constant

for different ambient pressures, which leads to different gaseous

flow sections. The objectives of this study are to (i) investigate

the effect of ambient pressure at constant global parameters, and

(ii) to verify the capability of 2D SPH to qualitatively predict

the proper disintegration mechanism and to recover the correct

evolution of the spray characteristics. The setup consists of an

axial liquid jet of water fragmented by a co-flowing high-speed

air stream (Ug = 80 m/s) in a pressurized atmosphere up to 16

bar. The results are compared to the experiment, and presented

in terms of (i) mean velocity profiles, (ii) drop size distributions

and (iii) Sauter Mean Diameter of the spray. It is found that

there exists an optimal pressure to minimize the mean size of the

spray droplets. Finally, two new quantities related to atomiza-

tion are presented: (i) the breakup activity that quantifies the

number of breakup events per time and volume unit and (ii) the

fragmentation spectrum of the whole breakup chain, which char-

acterizes the cascade phenomenon in terms of probability. The

breakup activity confirms the presence of the optimal pressure

and the fragmentation spectrum gives information on the type of

breakup, depending on the ambient pressure.
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NOMENCLATURE
Symbols Greek Symbols

D Diameter Ω Sphere of influence

H Height µ Dynamic viscosity

M Momentum flux ratio ρ Density

U Bulk velocity σ Surface tension

V Particle volume φ Bulk velocity ratio

W Kernel ψ Momemtum flow

h Smoothing length rate ratio

ṁ Mass flow rate

p Pressure

q Fragmentation ratio

r Particle position

u Local velocity

Abbreviations Subscripts

GLR Gas to Liquid Ratio e Entrainment

LDA Laser Doppler Anemometry g Gas

PAT Pressurized Atomization Test-rig l Liquid

PDA Phase Doppler Anemometry

SMD Sauter Mean Diameter

SPH Smooth Particles Hydrodynamics

INTRODUCTION

Air-assisted atomization is investigated in the context of

fuel production from biomass [1]. A key-step of this process

chain is high pressure entrained flow gasification, where a high



viscous biomass based fuel has to be atomized with a small

amount of atomization agent (oxygen and steam). This biomass

must be transformed into a fine spray to increase its contact

surface to the gas, and in turn, to enhance the gasification

reaction [2]. Due to constraints on the chemical equilibrium

of the gasification reaction, typical Gas-to-Liquid-Ratio (GLR)

has to be lower than one. This is challenging for atomization of

high viscous liquids at system pressures up to 80 bar. Therefore,

the design of the spraying nozzle is primordial to ensure a

proper atomization with a constrained GLR. Some advances

on entrained flow gasification were recently achieved at atmo-

spheric pressure [3–6]. On the other hand, the influence of

ambient pressure on the atomization process inside an entrained

flow gasifier is a important parameter, which is still not well

understood. The study of the air-assisted atomization of a highly

viscous liquid at high pressure is very scarce in the literature.

Sänger et al. [7] experimentally investigated the breakup process

on a lab-scale geometry, while Chaussonnet et al. [8] conducted

numerical simulations of the same geometry.

The objective of the present study is to numerically inves-

tigate the influence of the ambient pressure when keeping global

flow parameters and velocity ratio constant. This is an original

investigation, because usually the increase of pressure leads

to the reduction of the gas velocity in order to conserve the

global parameters. In our case, as detailed in the following, the

nozzle geometry is adapted to the pressure in order to deliver

the same bulk velocity. The numerical method is the Smooth

Particle Hydrodynamics (SPH) method, which was originally

developed for astrophysics [9] and later adapted to free surface

flows [10]. It is a mesh-free Lagrangian method where the

discretization elements are particles moving at the fluid velocity.

The physical quantities such as pressure or density are carried

and transported inside the numerical domain. Recently, this

method has been successfully applied in the field of air-assisted

atomization [8, 11, 12].

The experiment is presented in a first part, followed by a

description of the numerical model. The simulation results are

compared to the experiment in the final part.

EXPERIMENT

The experiment is conducted at the Institute of Technical

Chemistry (KIT-ITC) and consists of a twin-fluid atomizer dis-

charging into a pressurized cavity, similar to the investigations of

Sänger et al. [7]. The spray generation mechanism of this noz-

zle is air-assisted atomization. The liquid (blue color in Fig. 1)

is injected at low velocity, and is enclosed in a coflowing high-

speed air stream (green color in Fig. 1). The liquid is sharply

accelerated due to the momentum diffusion from the gas, which

leads to primary instabilities that further evolve to ligament and

ultimately to droplets. The geometrical parameters of the nozzle

exit are the diameter Dl of the liquid duct, the height Hg of the

gas duct and the thickness es of the separator. They are anno-

tated on Fig. 1. The local operating parameters are the density ρ

and the bulk velocity U of both phases, indexed g and l for gas

and liquid, respectively. The global operating parameters are the

mass and the momentum flow rate of gas and liquid injected in

the cavity. They are equal to ṁ = ρUS and ṙ = ρU2S, respec-

tively, where S is the flowing surface.

The investigated liquid is water, with a density ρl , a viscosity

FIGURE 1: Sketch of the nozzle. Left: front view. Right: side

view

µl and a surface tension σ of 998 kg/m3, 1 mPa s and 72 g/s2,

respectively. The non-dimensional groups that characterize this

setup are numerous, and the hierarchy of their influence on spray

formation is still under discussion among the scientific commu-

nity [13]:

Re =
ρDhU

µ
, We =

ρgDlU
2
rel

σ
, M =

ρgU2
g

ρlU
2
l

, GLR =
ṁg

ṁl

(1)

In order of appearance, Eq. (1) shows (i) the Reynolds number

based on the hydraulic diameter Dh of the considered duct, (ii)

the Weber number where Urel is the liquid/gas relative velocity,

(iii) the momentum flux ratio ρg U2
g /ρl U

2
l , and (iv) the Gas-to-

Liquid Ratio, respectively. Note that the GLR is the only global

non-dimensional group whereas Re, We, and M are local quan-

tities. This is because the GLR is a parameter for the chemical

reaction of gasification. In the perspective of investigating the

influence of global parameters, a new ratio is introduced, the mo-

mentum flow rate ratio Ψ = ṙg/ṙl which is equal to M × Sg/Sl .

Finally since the atomization mechanism of this configuration

relies of the momentum transfer from the gas to the liquid, the

shearing of the liquid surface by the air is quantified by the bulk

velocity ratio φ =Ug/Ul .

The objective of this experiment is to investigate the influence of

the ambient pressure when the global operating non-dimensional



groups (GLR and Ψ) as well as the bulk velocity ratio φ are kept

constant. The relationships between these parameters are:

GLR =
ρg Sg

ρl Sl

φ and Ψ =
ρg Sg

ρl Sl

φ 2 (2)

In order to keep these parameters constant for different ambient

pressures (i.e. different ratio ρg/ρl), it is necessary to modify the

ratio Sg/Sl accordingly. Therefore, the flow section of the nozzle

has to be modified for each ambient pressure. The liquid duct Dl

and the separator thickness es are kept constant, as well as the

gas and liquid bulk velocity (Table 1). Only the gas height Hg is

varied according to the pressure, as summarized in Table 2. Note

that the even though the global parameters are constant, the local

non-dimensional parameters (Reg, We and M) increase with the

increasing pressure. The constant parameters selected for this

study are:

GLR = 0.8, Ψ = 36.2, φ = 45.2 (3)

TABLE 1: Constant operating parameters.

Dl es Ug Ul ṁg ṁl

[mm] [mm] [m/s] [m/s] [kg/h] [kg/h]

2 0.5 80 1.77 16 20

TABLE 2: Evolution of parameters with the ambient pressure

Pressure [bar] 2 6 11 16*

Density [kg/m3] 2.4 7.2 13.2 19.3

Hg [mm] 1.59 0.97 0.39 0.28

Reg [×1000] 34.2 42.9 46.3 47.9

We [−] 342 429 463 479

M [−] 4.93 14.8 27.1 39.4

* Case investigated in numerical simulations only.

The experiment was instrumented with a high-speed CCD

camera and the disintegration of the liquid jet was investigated

by means of backlight illumination. Laser Doppler Anemometry

and Phase Doppler Anemometry (LDA/PDA) were used 40 mm

downstream the nozzle exit to characterize the spray in terms

of drop size distribution and velocity. The jet disintegration is

displayed in Fig. 2. All the four cases correspond to a fiber-type

breakup regime. It is observed that the liquid fibers decrease with

an increasing ambient pressure, up to p = 6 bar. Interestingly, the

size of the fibers at p = 11 bar are larger than at 6 bar.

4 mm

1 bar 2 bar

6 bar 11 bar

FIGURE 2: Experimental evidences of the liquid jet disintegra-

tion.

NUMERICAL MODEL
In the SPH mehod, the physical quantities and their gradi-

ents at a particle location (a) are expressed by interpolating over

the neighbor particles (b) [14]:

f (rra) = ∑
b∈Ωa

Vb f (rrb)W (rb − ra,h) (4a)

∇ f (rra) = ∑
b∈Ωa

Vb [ f (rb)+ f (ra)]∇W (rrb − ra,h) (4b)

where Vb is the volume of the adjacent particles. The term W

is referred to as the kernel and promotes the influence of closer

neighbors as illustrated in 2D in Fig. 3 (top). It depends on the

inter particle distance rb − ra and a characteristic length scale h



called the smoothing length. The kernel has a compact support,

so that the neighbors located outside the sphere of influence Ωa

(Fig. 3 bottom) are not taken into account.

FIGURE 3: Top part: Surface of a 2-D kernel. Bottom part:

Particle distribution superimposed with the kernel color map and

illustration of the sphere of influence.

In the present study, the evolution of the gas and the liquid phases

are described by the isothermal weakly-compressible Navier-

Stokes equations. The source terms in the momentum conser-

vation are the pressure gradient, the viscous term proportional to

the Laplacian of the velocity, the surface tension force and the

gravity. The flow is supposed weakly compressible, so that a fic-

tive sound speed is set, lower than the real one. As the speed of

sound limit the time step due to the CFL condition, the weakly-

compressible approach allows to increase the time step without

changing the main features of the flow. The governing equations

are formulated in a Lagrangian frame of reference and solved

using the SPH method. Because the simulations presented in

this study are 2D, the equations are modified to take into account

some 3D aspects. First, an artificial surface tension force is added

to take into account the curvature of the jet when it exits the noz-

zle. Second, the Laplacian operator is modified to account the

difference of shearing between the inner and outer surface of an

infinitesimal elements. Third, the radial velocity (i.e. the verti-

cal) is decreased to mimic the mass conservation of a fluid ele-

ment moving radially. The complete numerical model cannot be

presented here due to space limitation. The interested reader is

referred to [8] for a complete description.

NUMERICAL SETUP

The numerical domain is a 2D abstraction of the real experi-

ment. It consists of the 2D-plane crossing the center plane of the

nozzle (Fig. 4). The advantage of this domain compared to a pure

axisymmetric one is that the flapping of the jet can be taken into

account. The 3D corrections presented in the previous section

are introduced to model the different effects of the real geome-

try. In [8], it was shown that even though this numerical setup

can lead to deviations in terms of dynamics of the liquid jet, the

influence of the ambient pressure on the spray characteristics are

well recovered.

3D Model 2D Model

FIGURE 4: Illustration of the 2D abstraction.

The numerical domain is shown in Fig. 5. It consists of the

injector and the quiescent cavity, long by 50 mm downstream

the nozzle orifice and wide by 60 mm. At the gas and liquid in-

lets a turbulent profile is imposed. The bulk velocity is imposed

so that Ug = 80 m/s and Ul = 1.77 m/s at the nozzle exit. The

lengths of the inlet ducts are at least five time the ducts height. A

no-slip boundary condition [15] is imposed on the nozzle walls.

The pressurized cavity in the experiment is larger than the nu-

merical domain. Hence, a slip condition is imposed on the walls

of the cavity to cancel any boundary layer effects far away from

the nozzle. A constant pressure condition is imposed at the out-

let. An entrainment stream of 7.5 m/s is imposed on the sides of

the nozzle (i) to mimic the entrainment of the jet, (ii) to reduce

the influence of the artificial recirculation zones in the cavity and

(iii) to ensure a steady outflow velocity at the outlet. Both inlet

and outlet conditions are implemented to damp reflected pres-

sure waves, as detailed in [16]. The fictive sound speed is set to

342 m/s for the gas and 45 m/s for the liquid. Note that in this

case the gas sound speed corresponds to the real value, thus ac-

counting for compressible effects.

The same nozzle was simulated with different gas flow sections

depending on the ambient pressure. The modification of Hg is

illustrated in Fig. 6.

The space discretization is given by the mean inter parti-

cle distance of 12.5 µm, which leads to 23.5 million particles.

According to a previous study [8], this discretization is enough

resolve the volume Probability Density Function (PDF) of the

spray. At the beginning of the simulation, the cavity is filled

with gas particles. The simulations are run for a physical time of
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FIGURE 5: Sketch of the numerical domain.

FIGURE 6: Closeup view of the nozzle for 2 (left) and 11 (right)

bar.

50 ms on 1920 processors. This leads to 18 convective times, en-

suring converged statistics for the gas flow. The mean time step

∆t is 20 ns, and the instantaneous solutions are exported at a rate

of 21.5 kHz.

RESULTS AND DISCUSSION

Instantaneous solutions

Figure 7 represents a superposition of three instantaneous

snapshots for an ambient pressure of 11 bar, colored by the mean

liquid volume fraction αl . It was chosen to superimpose several

snapshots to qualitatively compare with the experiment. Indeed,

the experimental image represent a full 3D configuration whereas

one snapshot from the 2D simulation consists of a plane only.

Therefore, to qualitatively represent as much liquid in the simula-

tion as in the experiment, several snapshots were superimposed.

Comparing Figs. 2 and 7 show that the spray structure is well re-

covered by the numerical simulation. However, the intact length

is strongly underestimated in the simulation. The spray angle

is also overestimated, due to a too large flapping phenomenon

compared to the experiment.

Time-averaged quantities

The global features of the mean flow are depicted in Fig. 8,

where the mean velocity is superimposed with the streamlines

issued from the inlets. Both gas and liquid particles were used to

FIGURE 7: Superposition of instantaneous snapshots.

compute the axial velocity. The acceleration of the gas in the duct

upstream of the nozzle exit as well as the opening angle of the

turbulent gaseous jet are visible. The streamlines illustrate very

well the entrainment flux due to the high speed air stream. Due to

the entrainment inlets, no strong recirculation zone is observed.

It is to be noted that the high velocity zones induced by the two

air streams join at the centerline, at x ≈ 4 mm. This means that

the liquid is strongly accelerated in this region

FIGURE 8: Mean axial velocity superimposed with the stream-

lines.

To monitor the time-average of the spray quantities (volume

fraction αl , droplet concentration Nd , Sauter Mean Diameter),

the liquid particles are projected onto a Cartesian background

grid and averaged over the time. The result is depicted in Fig. 9



for 11 bar. First of all, it is visible in the outer part of the spray

that the statistical convergence is not reached. Indeed, some large

liquid blobs are accounted several time along their motion to-

wards the exit, which leads to depict the trajectory of such struc-

tures. Nevertheless, the inner part of the spray is regular and well

converged. At the nozzle exit, the intact liquid jet is visible with a

mean value equal to one. The early detachment of small droplets

is visible with a very low αl around the liquid jet at 0<x<5 mm.

At x ≈ 5 mm, the flapping of the jet is visible with a distribution

of αl in the shape of a trumpet opening.

FIGURE 9: Mean liquid volume fraction αl for p=11 bar.

Spray characteristics

In the experiment, the spray characteristics are measured

with LDA/PDA on a plane located at x = 40 mm. In the nu-

merical simulation, the spray characteristics are collected on a

slice located at x between 35 and 45 mm. It is to be noted that

due to the proximity of the measuring device to the nozzle exit

(40 mm), the spray droplets were not all spherical and the rejec-

tion rate due to unvalid sphericity was significant. Therefore, in

order to ensure a fair comparison between the experiment and

the simulation, simulated droplets with a sphericity lower than

95% were dismissed. This lead to dismiss between 5 and 10%

of the total droplets in the collecting region. This data set is re-

ferred to as filtered droplets in the following. On the other hand,

the whole data set corresponds to a more realistic spray, and it

is labeled unfiltered droplets. The local Sauter Mean Diameter

(SMD) is plotted versus the radial coordinate in Fig. 10 (top).

For a pressure of 11 bar, the agreement is very good in terms of

trends and absolute value. For p = 2 and 6 bar, the agreement is

acceptable for y <10 mm. Larger y coordinate lead to an strong

increase of the SMD in the numerical simulations whereas it is

rather constant in the experiment. This can be explained by the

flapping of the jet in the simulation, which eject larger liquid

lumps, whereas the experiment does not exhibit a strong flap-

ping. The axial velocity is plotted versus y in Fig. 10 (bottom).

As in the experiment, the velocity increases in the center of the

spray, and the effect is stronger with a lower ambient pressure.

However, the absolute value of the maximum velocity is not well

predicted, most presumably due to the 2D geometry.
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FIGURE 10: Evolution of the SMD (top) and the axial veloc-

ity (bottom) in the radial direction at the probing slice. Exper-

iment and simulation are represented by symbols and lines, re-

spectively.

The global SMD is plotted versus the pressure for the filtered

and unfiltered droplets in Fig. 11. Concerning filtered droplets,

the SMD follows the same trend as with the experiment, i.e. a

rather constant SMD between 2 and 6 bar, and a larger SMD for

11 bar. Concerning the non-filtered droplets, the SMD at 2 bar

is larger than at 11 and 16 bar, and it is minimal at 6 bar. This

suggests that the rejection of the non-spherical droplets by the

LDA/PDA technique leads to a larger bias at p = 2 bar compared

to 11 bar.

The striking results, highlighted by experiment and numerical

simulation, is that there exists an optimal pressure in order to ob-



tain the smallest SMD, at constant GLR, ψ and φ . This means

that for a given injected mass and momentum of gas, at the same

bulk velocity, the quality of the atomization depends on the am-

bient pressure and the gas flow section of the nozzle. Therefore,

the global parameters (GLR, ψ and φ ) are not sufficient to de-

termine the spray quality. The same comments applied for the

local non-dimensional numbers (Re, We and M in Eq.1). Ta-

ble 2 recalls that in this configuration, Re, We and M increase

with the pressure. This implies that there is also an optimal value

for the non-dimensional numbers to obtain the finest spray. This

observation could be explained as follow. At high pressure, the

air duct is so thin, that most of the air momentum is transferred

to the liquid at the first impact of the gas stream on the jet sur-

face. Since the momentum flux is large, this generates a local

cloud of fine droplets from the outer part of the jet, leaving the

inner jet core intact and dissipating most of the gas kinetic en-

ergy. Downstream, the momentum of the air stream is too weak

to trigger the primary instabilities on the remaining liquid jet. At

lower pressure, the air stream is wider, which ensure a more ho-

mogeneous momentum transfer to the liquid and leads to larger

primary instabilities.
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FIGURE 11: Global SMD versus ambient pressure

Figure 12 shows the volume Probability Density Function

(PDF) of the spray inside the collecting region, for unfiltered

droplets. The general shape of the PDF is similar to the dis-

tributions usually encountered in this type of application. For

p = 6 bar, the peak is slightly shifted towards low diameters and

the distribution is significantly wider at 2 bar.

Tree of fragmentation

Due to the Lagrangian aspect of the SPH method, all nu-

merical particles are tracked during the simulation. For liquid

particles, the cluster (i.e. the droplet) they belong to can be mon-

itored at each time step. Therefore, it is possible to record the

whole genealogy of droplets that contained a given particle dur-
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FIGURE 12: Volume PDF of the spray at the probing slice with-

out filter on sphericity.

ing the simulation. This can be regarded as a causal tree (Fig. 13)

and it is referred to as the tree of fragmentation in the following.

t0 t1 t2 t3 t4

breakup eventno breakup event

FIGURE 13: Sketch of the tree of fragmentation, from [17].

From this tree structure, the breakup activity Nφ can be de-

termined. It is defined as the number of breakup events per time

and volume unit. Its location is defined as the average coor-

dinates between the mother drop and the fragmented droplets.

When Nφ is zero, it means that no breakup occurs, and therefore

that the spray is in a stable form. With respect to industrial ap-

plications such as combustion, this quantity is of interest for pre-

liminary study because it could determines the location where to

ignite the spray.



Figure 14 shows the profile of Nφ versus the axial position. The

region with the largest breakup activity is at x = 10 mm, directly

downstream the intact jet. The ambient pressure with largest

breakup activity is 6 bar, which corroborates the experimental

and numerical data on the spray characteristics. At the outlet of

the domain (x = 50 mm), the breakup phenomenon is still active

(Nφ > 0), suggesting that the sprays is not in a stable state at the

outlet.
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FIGURE 14: Axial profile of the breakup activity Nφ .

One more interesting quantity can be extracted from the

tree of fragmentation, the fragmentation spectrum. It is ex-

pressed as follow. The ratio of child-to-mother droplet diame-

ter q = Dchild/Dmother is computed for every breakup event and

collected in a statistical set. The PDF of this set determines the

probability to obtain a breakup event of a given ratio. Figure 15

(top) displays the whole PDF of q. The zone with q < 1 corre-

sponds to breakup regimes while q > 1 corresponds to coales-

cence. Most of the events occur in the breakup regime. With two

distinct slopes, the two regimes show distinct behaviors. As their

trend line is linear in a log-log plot, their expression is of the form

y = AxB. Note that this form of fragmentation spectrum was also

suggested by Brown [18]. Finally, it is observed that the pressure

has no influence on the fragmentation spectrum. Gorokhovski &

Saveliev [19] studied the kinetic evolution of the fragmentation

spectrum in the long time limit, i.e. for a large Weber number.

They showed in [20] that the ratio of the two first logarithmic

moments of q depends on the wavelength of the primary insta-

bilities, which in turn, depend on the Weber number. According

to Table 2, for a pressure between 6 and 16 bar, the Weber num-

ber lies between 429 and 479. This means that a weak variation

of the Weber number shows almost no influence on the fragmen-

tation spectrum. This conclusion is consistent with the theory of

Gorokhovski and coworkers.

Some authors [19] restrain the PDF to the domain q < 1, which

corresponds to the breakup regime only, as illustrated in Fig. 15

(bottom). At 2 bar, the spectrum is slightly stepper than for

the others, suggesting breakup events with smaller q ratio. This

corresponds to a breakup regime closer to shearing breakup or

peeling-off breakup, where very small lumps are torn apart from

a much larger liquid structure.
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FIGURE 15: Whole fragmentation spectrum (top) and restricted

to q < 1 (bottom).

CONCLUSION

In this study, the air-assisted atomization of a water jet was

simulated in a 2D geometry by means of the SPH method and

compared to experiment. The effect of the ambient pressure was

investigated while keeping constant the GLR, the momentum

flow rate ratio and the velocity ratio. This led to use a differ-

ent gas flow section for different pressures, with the same nozzle

design. The numerical simulations showed that there exists an

optimal ambient pressure (6 bar in this case) to obtain the small-

est SMD. These results were confirmed by the experiment, even

though the predicted SMD deviates from the experiment. The

existence of the optimal pressure is explained by the concentra-

tion of momentum of the gas impacting the liquid jet, turning

a small amount of liquid into fine droplets, but leaving intact

the central core of the jet. It was shown that the use of the

SPH method to investigate spray generation enables to extract



advanced spray quantities such as the breakup activity and the

fragmentation spectrum. The former is of interest for predesign

studies of new nozzles, while the latter could bring some missing

knowledge in the fundamental understanding of liquid atomiza-

tion.
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