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Summary

Plants are closely linked to a range of ecosystem processes and services, providing food and

fresh water, climate regulation, and support soil formation and carbon storage. Therefore, veg-

etation attributes, such as species abundance, biodiversity, and plant traits, can be used to eval-

uate and monitor ecosystem processes. Accurately assessing recent vegetation changes is thus

crucial to understanding current and future ecosystem dynamics.

The use of remote sensing data has been ascribed with high potential to spatially map vegetation

attributes and processes. Whilst the advantages of coarse grain remote sensing to understand

regional and global processes is well known, the study of fine-scale processes has increased in

the last decades due to the growing availability of very-high resolution data. Methods developed

using coarse grain data are often not able to fully harness the full potential of fine-scale data,

due to differences in data properties. Therefore, new approaches are needed for very-high res-

olution data. Advantages of fine-scale data includes the direct detection of species crowns, and

matching between field and remotely sensed data. These foster the use of very-high resolution

data to e.g. map species occurrences at the level of individuals, and predict community-level

attributes such as plant biodiversity, aboveground biomass and floristic compositions with high

spatial detail. Unmanned aerial vehicles (UAVs) are ascribed to be a cost-efficient platform to

obtain very-high resolution data, specially for small areas. However, their use for methodolog-

ical development and ecological experimentation in small scale areas is relatively unexplored.

The aim of this thesis was to assess the strengths and limitations of UAVs for vegetation map-

ping. The thesis focused in two main topics: plant species, and detailed ecosystem process map-

ping. Here, a case study showed that the use of very-high resolution data to classify grasslands

individuals is constrained by the canopy mixture within different species. This suggests that the
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use of remote sensing to directly map grassland species could be of operational value only in

environments with low species cover and structural complexity, such as stress-prone dunes. A

second case study reveled that shadows significantly affect the success of UAV-based classifi-

cations when mapping the invasive woody species Ulex europaeus, Acacia dealbata and Pinus

radiata. This remained true using all sort of variables, such as optical, textural and canopy

structural data. By means of simulations, it was depicted that each species creates shadows

differently due to their specific canopy architecture. Therefore, the optimal UAV acquisition

windows during the day differ among species.

A third case study showed that aboveground community attributes can be used as proxies to im-

prove mapping accuracies of peatland belowground carbon stock. Here, a plot-level empirical

model was fitted to assess the aboveground–belowground interdependencies. The aboveground

variables included vegetation height, biomass, species richness, and species occurrences in con-

tinuous gradients. UAV-based data was then used to map the significantly depicted aboveground

variables. Belowground carbon stock was then mapped by parameterizing the plot-based model

with the UAV extrapolations. This suggests that ecosystem attributes with low direct influences

on reflectance data can be mapped using vegetation parameters as proxies. Because the cou-

pling of empirical models may induce unknown bias into each modeling steps, such approach

is only recommended when strong empirical links are found between the plot-based variables.

This thesis demonstrates that the use of very-high resolution data obtained from UAVs is useful

to semi-automatically acquire field reference data, to develop new methodologies to decrease

classification uncertainties on very-high resolution products, and to link plant community at-

tributes with ecosystem processes. The thesis further make recommendations and suggestions

to improve future research of fine-scale vegetation processes.
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Zusammenfassung

Pflanzen sind eng mit einer Reihe von Ökosystemprozessen und -dienstleistungen wie die Bere-

itstellung von Lebensmitteln und Trinkwasser, die Klimaregulierung sowie die Bodenbildung

und Kohlenstoffspeicherung verbunden. Deshalb können Vegetationseigenschaften wie Arten-

reichtum, Biodiversität und Pflanzenmerkmale zur Bewertung und Überwachung von Ökosys-

temprozessen genutzt werden. Die genaue Beobachtung von Vegetationsveränderungen ist da-

her entscheidend für das Verständnis der aktuellen und zukünftigen Ökosystemdynamik.

Fernerkundungsdaten haben hohes Potenzial Vegetationseigenschaften und -prozesse räumlich

abzubilden. Die zunehmende Verfügbarkeit von sehr hochauflösenden Fernerkundungsdaten er-

möglicht auch die Untersuchung von feinskaligen Prozessen. Die für niedriger aufgelöste Fern-

erkundungsdaten entwickelten Auswertungsverfahren sind häufig nicht auf sehr hochaufgelöste

Daten übertragbar. Daher werden neue Verfahren benötigt, um das volle Potenzial auszuschöpfen.

Die Vorteile von sehr hochauflösenden Daten liegen unter anderem in der Erkennung von einzel-

nen Pflanzen und der besseren räumlichen Feinabstimmung mit Felddaten. Diese Vorteile

ermöglichen die genaue Kartierung von Pflanzenarten auf der Ebene einzelner Individuen

und Vegetationseigenschaften auf der Ebene von Pflanzengesellschaften, wie die Biodiver-

sität, oberirdische Biomasse oder Artenzusammensetzung. Unbemannte Luftfahrzeuge (UAVs)

werden als kostengünstige Plattform zur Gewinnung von Daten mit sehr hoher Auflösung, ins-

besondere für kleine Gebiete, verwendet. Daher ist ihr Einsatz gut zur Entwicklung neuer

Methoden geeignet.

Das Ziel dieser Arbeit war die Feststellung von Vorteilen und Limitierungen der Nutzung

von UAVs zur Vegetationskartierung. Der Fokus der Arbeit lag auf zwei Hauptthemen, die

Kartierung von Pflanzenarten und kleinräumigen Ökosystemprozessen. Eine der Fallstudien
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zeigte, dass die Verwendung von sehr hochauflösenden Daten zur Klassifizierung von Pflanzenarten

durch die Überlappung verschiedener Arten erschwert wird. Daher ist Nutzung solcher Daten

zur direkten Kartierung von Grünlandarten nur für Habitate mit geringer Vegetationsbedeckung

und einfachen Strukturen, wie beispielsweise Dünenhabitate, vielversprechend. Eine zweite

Fallstudie ergab, dass der Schattenwurf von Baumkronen den Erfolg von UAV-basierten Klas-

sifikationen der invasiven Baumarten Ulex europaeus, Acacia dealbata und Pinus radiata erhe-

blich beeinflusst. Dabei machte es keinen Unterschied ob optische Daten oder Informationen

über die Textur oder Kronenstruktur verwendet wurden. Anhand von Simulationen wurde

dargestellt, dass jede Art aufgrund ihrer spezifischen Kronenarchitektur unterschiedliche Schat-

ten erzeugt. Die optimalen Zeitfenster zur Klassifikation im Verlaufe eines Tages unterscheiden

sich daher zwischen den einzelnen Arten.

In einer dritten Fallstudie wurde gezeigt, dass Merkmale der oberirdischen Vegetation als Proxy

genutzt werden können um Kartierungen von unterirdischen Kohlenstoffvorräten in Mooren zu

verbessern. Ein empirisches Modell wurde genutzt um unter- und oberirdische Merkmale zu

verknüpfen. Dafür wurden kontinuierliche Daten mit Informationen über Höhe, Biomasse,

sowie den Artenreichtum und die Artenzusammensetzung der Vegetation verwendet. UAV

Daten wurden genutzt um die relevanten oberirdischen Merkmale zu kartieren. Der unterirdis-

che Kohlenstoffvorrat wurde dann durch die Parametrisierung des plotbasierten Modells mit den

UAV-Extrapolationen kartiert. Dies deutet darauf hin, dass auch Ökosystemeigenschaften mit

geringem direkten Einfluss auf die Reflektanz mit Hilfe von Vegetationsmerkmalen als Proxies

kartiert werden können. Da bei Kopplung empirischer Modelle in jedem Modellierungsschritt

fehlerbehaftete Voraussagen entstehen können, wird ein solcher Ansatz nur empfohlen, wenn

starke empirische Verbindungen zwischen den feldbasierten Variablen vorliegen.

Diese Arbeit zeigt, dass mit UAVs erhobene Erdbeobachtungsdaten geeignet sind, um die tech-

nischen und umweltbedingten Voraussetungen für eine erfolgreiche Kartierung von Pflanzenarten

zu erforschen, um neue Methoden zu entwickeln, welche die Genauigkeit von Klassifikationen

aus sehr hochaufgelösten Daten erhöhen und um Vegetationseigenschaften mit unterirdischen

Gradienten zu verknüpfen. Die Arbeit enthält außerdem Empfehlungen und Vorschläge für die

zukünftige Erforschung von feinskaligen Vegetationsprozessen.
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1 Introduction

1.1 Estimating vegetation properties

Terrestrial plants are crucial to maintaining the Earth’s ecological processes, which include

carbon and water cycling, bio-geochemical interactions, and climate regulation. Vegetation

characteristics, such as species abundance, biodiversity and biomass, are closely linked to a

range of ecosystem processes and services that operate across scales. These provide us with

food and fresh water, regulate Earth’s climate, and support soil formation and carbon storage.

Our society and economy both depend on the healthy functioning of plants and the resilience of

the ecosystems they constitute. Yet, despite international commitments, such as the Convention

on Biological Diversity CBD2010, global plant biodiversity and biomass continue to decline at

unprecedented rates (TEEB, 2010). Ecosystem degradation and the loss of vegetation structure

undermine ecosystem functioning and resilience, threatening the ability of ecosystems to con-

tinuously supply ecosystem services for present and future generations (de Groot et al., 2012).

These threats are expected to grow as our planet’s climate changes and humans consume ever

more resources.

Vegetation characteristics are often used for evaluating ecosystem processes and functioning.

The most commonly used characteristics are species composition and abundance, biodiversity,

canopy structure or architecture, and plant traits or functional attributes (Thackway and Lesslie,

2008). For example, the occurrence and coverage (i.e., abundance) of certain species or plant

functional types are often used to assess threats to biodiversity caused by invasive plant species

(Binggeli, 1996) or to monitor sub-surface soil properties such as carbon stocks (Dorrepaal

et al., 2005; Ma et al., 2017). Accurately assessing vegetation attributes is thus crucial to un-
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derstanding current and future ecosystem dynamics across scales. These assessments are often

measured locally through field surveys.

Field surveys are used to measure structural and compositional attributes of plant communities

either visually, by exhaustive methods or by a mixture of both. Selecting a method is often

a trade-off between accuracy and speed: exhaustive methods are accurate but time consuming,

allowing the monitoring of smaller plots (e.g., the pin-point method of Levy and Madden, 1933);

meanwhile, visual interpretation is faster but may introduce observation bias into the results,

either by incompleteness of the listed flora or by inconsistency between surveyors (Klimeš et al.,

2001; Vittoz and Guisan, 2007). Vittoz and Guisan (2007) found that only 45 % – 63 % of the

species presences were seen by all observers surveying grassland ecosystems, and that a pair of

observers missed 10 % – 20 % fewer species than a single observer. Vegetation surveys are often

restricted to point observations, involve copious field-work, and are dependent on accessibility.

Hence, they are often biased toward areas of easy access (Whittaker et al., 2005). Moreover,

it is hard to generalize in-situ observations spatially or to scale them to larger areas (Kattge

et al., 2011). Consequently, cost-efficient methods are needed to assess changes in vegetation

attributes in a spatially continuous way.

The use of remotely sensed vegetation data represents an alternative to unravel global and local

processes that could not be explained before using traditional local measurement (Ustin et al.,

1991). The increasing availability of remote sensing products and technological advancements

has fostered a new era of earth observation data. These are characterized by depicting detailed

information of the Earth’s surface, creating new opportunities and challenges that need to be

addressed.

1.2 Remote sensing of vegetation

In nature, electromagnetic waves of all frequencies coexist, such as X-rays, visible light and

radio waves. This continuum is referred to as the electromagnetic spectrum, which is usually

divided up into regions (Figure 1.1a): The visible (VIS) region, to which the human eyes re-

sponds, covers only a small portion that partially corresponds with the photosynthetic active
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region. The ultraviolet (UV), the X- and γ-ray regions occur in high-frequencies, while the

infrared (IR) and the microwave regions occur in longer-wavelength of the spectrum. Portions

of this electromagnetic spectrum are measured by optical remote sensing sensors and used to

derive spatial-explicit information of the Earth’s surface (Jones and Vaughan, 2010).

Optical sensors have considerable potential as a objective source of spatially continuous in-

formation of vegetation attributes, by measuring the solar radiance [W/m2] that is reflected

from the earth’s surface at different portions of the electromagnetic spectrum (Figure 1.1; Ustin

et al., 1991). The reflected portion of solar radiation is always smaller than the incoming ra-

diation as some energy is absorbed by the earth’s surface. The reflected radiance can thus be

normalized into reflectance values [%] by comparing the incoming–reflected relation, either by

simultaneous measurements of incoming solar radiance or by using a reference surface with

known reflection properties. Optical sensors typically measure information comprised between

the VIS and the IR (400 nm–2500 nm) in a spatial-explicit manner. This is done by dividing a

‘picture’ of a portion of the Earth’s surface into smaller sections or ‘pixels’. Each pixel has a

multiple reflectance measurements covering a certain area on the ground. The ‘picture’ with all

pixel-reflectance values altogether provide the spatial context that makes remote sensing data

appealing to enhance vegetation-based studies. Reflectance relates to plant properties according

to physical behaviors occurring between the plant and incoming radiation at the leaf and canopy

level.

Due to the absorption characteristics of plants, reflectance data derived from optical sensors

have been widely used to characterize vegetation attributes directly linked to structural and

biochemical plant traits (Ollinger, 2011, Figure 1.2). These traits shape plant reflectance in

different ways: the visible range (VIS, 400 nm–700 nm) depicts overall low reflectance as pig-

ments absorbs the major part of the incident radiation (e.g., chlorophyll and carotenoids); the

near-infrared range (NIR, 700 nm–1300 nm) shows high reflectance as the absorption by leafs is

low due to cell mesophyll and other cell-structure characteristics; while light in the shortwave

infrared (SWIR, 1400 nm–2500 nm) is predominantly absorbed by different leaf constituents

(e.g., proteins, lignin, carbohydrates and waxes) and water content. Because water vapor is also
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Figure 1.1: Optical characteristics of remotely sensed data. a) The electromagnetic spectrum, where the visible
portion is highlighted; b) Sensor measurement of vegetation reflectance; c) Spectral sensor types.

one of the main components of the atmosphere, some SWIR portions are often worthless for

analyses as are continuously undermined by strong noise.

Spectral resolution is defined as ‘the ability of a sensor to define fine wavelength intervals

and hence to discriminate between different component wavelengths in the scene, and is deter-

mined by the number and width of the individual spectral bands that are recorded’ (Jones and

Vaughan, 2010, Figure 1.1c). Sensors measuring discrete and relatively small portions of the

electromagnetic spectrum are called multispectral sensors, while those measuring continuous

portions of the electromagnetic spectrum in narrow bands are called hyperspectral sensors. The

spectral resolution becomes important when detailed spectral information is needed, for exam-

ple for mapping invasive species with similar morphological characteristics as the native species

(He et al., 2011), mapping complex community mixtures (Schmidtlein and Sassin, 2004) or to

retrieve canopy biophysical parameters that are sensitive only to specific narrow areas of the

electromagnetic spectrum (Kattenborn et al., 2018a).
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Figure 1.2: a) Typical vegetation spectral signature with typical wavelength absorption interpretations (Jones
and Vaughan, 2010); b) Sensitivity of plant traits in the optical rage of the electromagnetic spectrum
according to radiative transfer model simulations (PROSAIL). This shows that vegetation traits shape
the spectral behaviors in intricate ways.

The spatial resolution, or the pixel size, of remote sensing products is also an important charac-

teristic to map plant attributes. Fine-scale spatial and spectral data is often best suited to reveal

underlying vegetation mechanisms or plant traits (Anderson, 2018). At larger scales, vegetation

functions are the combination of many fine-scale properties and processes that may combine in

complex ways due to nonlinear responses and intricate feedbacks. Hence, the selected remote

sensing spatial resolution determines to some extent which vegetation processes are detectable

and how. Consequently, remotely sensed observations of vegetation functions and properties

should consider carefully the scale, paying special attentions to possible underlying mecha-

nisms at finer scales that may influence the emergent properties at larger scales (Gamon et al.,

2019).
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1.3 Very-high resolution remote sensing and the concept of scale

In ecological and remote sensing applications, the scale need to be selected carefully depend-

ing on the study aims. Commonly, the selected plot size in field surveys determine the amount

of variations within measurements (Levin et al., 2007; Wiens, 1989). For example, large plot

measurements of community patterns are expected to contain higher species richness per ob-

servation than smaller plots. This often leads to the inclusion of more rare species and en-

vironmental variation per measurement, therefore lowering the species turnover (Keil et al.,

2015; Rosenzweig, 1995). Multiple ecological processes often drive vegetation patterns, acting

across multiple spatial and organismal scales (Chase and Knight, 2013). Hence, there is rarely

a single scale that best identifies how specific vegetation processes drive patterns (Anderson,

2018).

Remote sensing data at varying spatial resolutions can thus be used independently or in combi-

nation to assess different vegetation processes. Traditionally, moderate or coarse grain remote

sensing products have been used more often than fine grain data due to their longer trajectory,

lower price and ease implementation (Ustin et al., 1991). Yet, moderate and coarse grain sys-

tems often have the problem of scale mismatches with the field data. In such cases, the size

of field plots (i.e., response data) are smaller than the grain size of the remote sensing prod-

uct (i.e., predictors or feature data), which can obscure key patterns and processes operating

between these scales (Anderson, 2018). For this reason, very-high resolution (VHRRS; here

< 5 m) sensors and platforms have gained much interest in the scientific community, as their

products share the same scale as field ecologists.

VHRRS allows the direct study of a large number of ecological properties that were not possi-

ble before with regional-scale sensors (Turner et al., 2003), such as detail forest structures for

inventory purposes (Fassnacht et al., 2017), mapping of biodiversity indicators in species rich

environments like tropical forests (Nagendra et al., 2010) and grasslands (Möckel et al., 2016),

floristic mapping (Schmidtlein et al., 2007), tree species detection (Fassnacht et al., 2016), and

urban management assessments (Agarwal et al., 2013). Satellite-based VHRRS data can be ob-

tained nowadays from a varying range of sensor types and platforms (Figure 1.3). Multispectral
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data with pixel sizes below 5 m are available from satellite-based platforms like Worldview-2

and -3, Pleiades, GEOEYE-1 and the recently launched Venus. While some of these sensors

have a relatively high spectral resolution (e.g., Woldview-3 has 16 bands), the general rule is that

sensors with high spatial resolution present low spectral resolution. Satellite-based VHRRS is

often operationally constrained by: 1) high cost per scene for relatively small areas; 2) repetitive

acquisitions are often only possible if oblique view angles are used; and 3) cloud contamination

could obscure features of interest. Alternatively, airborne remote sensing can be used with a

larger range of sensor types for fine-scale ecological studies, such as full-range hyperspectral.

These systems usually obtain high qualities, but are very expensive which also hamper their

use for mapping small areas. Therefore, the use of unmanned aerial vehicles (UAVs) in re-

mote sensing applications has increased as consequence of the technical and economical gaps

of airborne and satellite-based platforms.

1.3.1 Unmanned aerial vehicles (UAVs)

Unmanned aerial vehicles (UAVs), commonly known as drones, are aircrafts without a human

pilot onboard. UAVs were created in a military context, yet their mapping potential was under-

stood already in the late nineteen-seventies (Przybilla and Wester-Ebbinghaus, 1979). Any type

of aerial vehicle able to carry a sensor is potentially a UAV, including balloons, kites or zep-

pelins. However, nowadays most UAVs used for scientific purposes are either rotopters (type of

helicopter) or fix-wings (type of airplane). Rotopters usually cover relatively small spatial areas,

are cheap, can flight at different speeds and are flexible in their deploy because they include ver-

tical takeoff and landing. Fix-wings, however, cover bigger areas due to longer flight autonomy,

but are often more expansive and need large areas for takeoff and landing. Recent advances

in technology have developed hybrid UAVs, where rotopter characteristics are used for verti-

cal takeoff–landing and fix-wing frames are used to maximize flight time and area cover (e.g.,

https://www.altiuas.com/). UAVs can carry all sort of payload, such as RGB consumer

grade cameras (de Sá et al., 2018), multi- and hyperspectral optical sensors (Malenovský et al.,

2017). Data obtained from these sensors are often processed in photogrammetric software’s to

create both 3D canopy data and orthomosaics with optical information.
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Figure 1.3: Typical Structure-from-Motion processing pipeline. a) UAV flight plant, including flight line sep-
aration depending on sensor field of view (FOV) and flight altitude; b) alignment of UAV tiles by
common ground object identification; c) create dense mesh of 3D point clouds, and d) create the
orthomosaic.

User-friendly photogrammetric software with Structure-from-Motion (SfM) capabilities are

available to process UAV data (Dandois and Ellis, 2010). SfM algorithms resolve the align-

ment of camera positions, generating orthorectified aerial imagery and 3D models (i.e., point

cloud and/or raster models) without the allocation of ground control points (Westoby et al.,

2012, Figure 1.4.). Here, typical steps include the alignment of sensor frames, the creation of

a dense mesh of 3D information, and the creation of orthomosaics (Figure 1.4). Some sensors,

however, may need other type of processing pipeline, such as hyperspectral pushboom-based

sensors. Snapshot-based sensors have the advantage of ease of implementation due to the large

availability of processing software’s, including proprietary and open source alternatives (e.g.,

https://www.opendronemap.org/webodm/), and the ability to create 3D information with-

out the need of alternative sensors, such as light detection and ranging (Colomina and Molina,

2014). Such implementation makes the processing of UAV data attractive for natural manage-

ment practitioners with basic knowledge in geomatics.
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The increasing usage of UAVs created a strong economical niche, which forced the governments

to rapidly adapt and create new laws to constrain their use to safe areas and conditions (Stöcker

et al., 2017). From the legal perspective, UAVs can be divided into two main groups: systems

below and over 5 kilos of takeoff including payloads. UAVs weighting less than 5 kilos have

less restrictions: flight permissions are needed only when flying inside governmental areas, such

as national parks, in urban areas and in the proximity of power towers, airports and military

bases. Contrary, UAVs weighting more than 5 kilos always need permissions to flight. Such

permissions are either free or not depending on the country. Bigger UAVs may carry heavier

sensors and are often able to cover larger areas than low-weight systems, but their deployment

restrictions may hamper spontaneous acquisitions due to e.g. good weather conditions. UAV

pilots need certifications in most countries when the aircraft weight more than one kilo.

UAVs have been increasingly used in vegetation science because are often less expensive and

more flexible than satellite or airborne-based VHRRS in their acquisitions when mapping rel-

atively small areas (Anderson and Gaston, 2013), allowing the optimization of revisit times to

the phenological cycle of the target species or community. However, UAV measurements could

be very expensive when mapping large extents as repetitive field labor is often needed (Ørka

and Hauglin, 2016). UAVs have been found useful to complement field labor as interference

and disturbances of the study area are reduced (Jones et al., 2006; Sardà-Palomera et al., 2012).

For example, Getzin et al. (2012) demonstrated how the fine spatial resolution data provided by

UAV photography (7 cm pixel size) is useful for describing canopy-gap metrics relating to the

floristic biodiversity of a forest understory. Meanwhile, de Sá et al. (2018) commented on the

benefits of using the low aboveground altitude flight capabilities of UAVs to avoid contamina-

tion of image data by clouds. Flight planning need site-specific considerations, as low densities

of UAV-tiles overlap may result in large image areas without information around closely spaced

shrubs or trees (Figure 1.5a; Hendrickson et al., 2016).

UAVs have been used to obtain detail information of a large range of vegetation applications

at the individual- and community-level. Studies to classify species at the level of individual

have been performed in tree (Nevalainen et al., 2017; Franklin et al., 2017), shrub (de Sá et al.,

2018; Breckenridge et al., 2011) and wetland species (Cao et al., 2018), where many of the tree
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species applications relate to the detection of invasive species (Baena et al., 2017; Dvořák et al.,

2015; Müllerová et al., 2013; Mafanya et al., 2017; Michez et al., 2016). Likewise, community-

level studies have been performed to estimate biodiversity (Getzin et al., 2012), aboveground

biomass (Husson et al., 2014; Dandois and Ellis, 2013; Zahawi et al., 2015), and photosynthetic

pigments (Hernández-Stefanoni et al., 2012). Temporal revisits to study vegetation dynamics

are further possible using UAVs due to the (relatively) nadir acquisitions of the photogrammetric

data (Torres-Sánchez et al., 2014).

1.3.2 Opportunities and challenges of UAV applications

As remarked in the previous sections, remote sensing technologies have been used extensively

to understand vegetation dynamics across scales (Ustin et al., 1991). Nevertheless, there is still

room for improvements and the deploy of new methods and approaches, specially for very-high

resolution technologies such as UAVs. The small pixel size of UAV-based data is beneficial for

mapping plant attributes for two reasons: A) it allows for plant species detection at the level of

individuals, and B) it reduces spatial mismatches between field and remote sensing data.

Concerning A), UAVs have been used extensively to map tree plant species (Lu and He, 2017;

Alvarez-Taboada et al., 2017; Michez et al., 2016). However, most studies focused only in map-

ping the species without searching for possible technical and environmental factors hampering

their classification performance. Technical factors hampering species classification have been

more commonly studied using airborne and satellite-based data, such as the spatial (Nagendra,

2001), spectral (Dalponte et al., 2012) and temporal (Key et al., 2001) resolutions, and data

type (Puttonen et al., 2010). For example, grain sizes smaller than the target species canopies

are recommended, were pixels below 1 m are usually suggested as a rule of thumb (Nagendra,

2001). Nevertheless, the ideal pixel size will depend upon the crown size and the canopy clo-

sure, which can vary widely within and between species and vegetation types. However, the

effects of vegetation attributes on the classification success have been less studied. For exam-

ple, Korpela (2004) found that crown density and size, the influence of neighboring tree and the

composition of the understory are likely to contribute to the success of tree species classification

from any sensor type.
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Further problems relate to the high bias towards woody species mapping compared to species

of other growth forms, such as herbaceous plants encounter in grassland ecosystems. Only few

studies have been focusing on such vegetation types, where usually only one or two species

are studied simultaneously (Lu and He, 2017; Skowronek et al., 2017b; Gebhardt et al., 2006;

Silva et al., 2014; Booth and Cox, 2008; Kumar and Sinha, 2014). This bias could be due

to the small size of the herbaceous individuals and the high environmental heterogeneity of

grassland ecosystems (Möckel et al., 2016), which may further hamper the proper detection of

the individuals. However, the high spatial resolution of UAV-based data may allow for the direct

detection of small-sized herbaceous species. The requirements regarding sensor resolution and

community properties to ensure the successful species classifications in such environments are

needed.

UAV-based data often have pixel sizes in the centimeter-range, causing that canopy characteris-

tics such as brunching and gaps are directly visible from the image. Because of this detail level,

the information captured from UAVs differ from other sources of VHRRS, such as satellites

and airborne. Therefore, approaches developed for general VHRRS data may not be directly

applicable to UAV-based data. Hence, new methodologies are needed to exploit their full po-

tential. For example, UAV data increases the within-class reflectance variability in species

classification caused by extreme values in sunlit and shaded canopies (Figure1.5c). Shadows

result from the obstruction of light, causing a decrease of reflectance. In vegetated areas, cast

shadows receive diffuse radiation (mostly Rayleigh scattering) from light scattered within the

atmosphere or surrounding objects (Gu and Robles-Kelly, 2014). In practice, shadows can lead

to either a reduction or a total loss of the spectral signal of a canopy (Zhang et al., 2015), af-

fecting the success of classification tasks (Saha et al., 2005; Liu and Yamazaki, 2012). This is

particularly harmful in forested areas where shadows may reduce the understory information.

Therefore, careful considerations regarding acquisition time of the day are needed to reduce

shaded canopies.

Finally, an efficient collection of reference data to train and validate UAV models is needed to

efficiently map plant species. The quantity and quality of the training data are known to impact

the accuracy of mapping products and hence play a key role in any operational approach (Foody,
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Figure 1.4: Effects of UAV characteristics on species classification. a) Schematic where UAV acquisitions with
low tile density result in larger data gap (dark gray) around closely spaced canopies (Hendrickson
et al., 2016); b) examples of UAV ortomosaics on different forest types with their respective canopy
shadows; and c) theoretical example of reflectance within-class variation in images with course (top)
and fine (bottom) spatial resolution. Coarser grains have less reflectance extream values due to mixed
sunlit–shaded canopies.

2010; Immitzer et al., 2018). Reference data for remote sensing applications are often acquired

on the ground using GNSS-devices, which presents several limitations (Kaplan et al., 2014;

Anderson, 2018): 1) the quantity of references is usually constrained as field campaigns are

laborious and costly; 2) the quality and representativeness of observations is often impaired by

GPS inaccuracies resulting from dense canopy cover in forested ecosystems (Valbuena et al.,

2010), while accessibility often induce biases toward data obtained in areas of easy access.

Visual estimation methods of species cover is challenging from below the canopy in forested

ecosystems (Lepš and Hadincová, 1992), while species occurrences are often miss-represented

in grasslands (Klimeš et al., 2001; Vittoz and Guisan, 2007); and 3) field data are often mea-

sured as discrete point observations or plots, which are not explicitly matching the continuous

representation of earth observation data and its spatial scales (Turner, 2014; Anderson, 2018).

Therefore, new approaches are needed to increase the quality and quantity of reference data for

both woody and non-woody species mapping.

Concerning B), the reduced errors caused by scale mismatches between field and UAV data is

particularly important to accurately predict community-level attributes. For example, above-
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Figure 1.5: Example of belowground attribute predictions by using UAVs and pre-existing deterministic feed-
backs. a) UAVs are used to estimate aboveground vegetation parameters, such as biomass and
species richness, and b) aboveground–belowground linkages are studied empirically by e.g. inde-
pendent or nested regressions.

ground properties such as biodiversity and biomass predictions have been estimated with high

spatial detail using both spectral and 3D UAV-based information (Getzin et al., 2012; Hus-

son et al., 2014; Dandois and Ellis, 2013; Zahawi et al., 2015). This level of detail is already

a step-forward for spatial ecology and vegetation science, specially in highly-heterogeneous

ecosystems such as grasslands and wetlands. However, the use of such highly detailed data

for subsequent analysis is still rare. Aboveground vegetation properties could thus be used to

estimate ecosystem processes that are less correlated with the UAV data, such as belowground

carbon stocks. Predicting belowground carbon stocks solely with remote sensing data is often

challenging as the links between aboveground (i.e., what is measure by remote sensing sensors)

and belowground properties have usually non-linear or complex interdependencies (Dorrepaal

et al., 2007). Nevertheless, field ecologists have studied deterministic linkages between aerial

plant properties and belowground processes, such as carbon storage, for decades (Figure1.6;
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Dorrepaal et al., 2007; Fenner and Freeman, 2011; Ma et al., 2017). Therefore, UAV-based

remote sensing could directly investigate such relations spatially without scaling problems.

1.4 Research questions and list of publications

By analyzing the research gaps described in Chapter 1 section 3.2, the present thesis approached

specific problems related to three different vegetation types: grasslands, forests and peatlands.

Grasslands are generally characterized by their small-sized plant species, thus only few studies

have classified some of their species at the level of individuals. UAV-based small-sized pixels

may present the opportunity to study sensor–community characteristics supporting or hamper-

ing their individual detection. Forests, however, usually depict large areas of shaded canopies

due to sun angle and complex canopy overlaps at varying levels. Whilst shadows often impairs

the proper classification of woody species, a systematic study comparing the effect of shadows

on the performance of classifiers using varying predictor types has not been done yet. However,

efficient methods are needed to optimize the quantity and quality of reference data to efficiently

perform any species classification. Peatlands, finally, are the terrestrial ecosystems with largest

carbon pools on Earth. Developing cost-efficient monitoring methods is thus important, spe-

cially if destructive and laboratory samples are reduced.

Therefore, this thesis approached the following three research gaps:

• How structural and community plant attributes impair the success of woody and herba-

ceous species mapping with UAVs?

• How very-high resolution data can be used to obtain reference data for subsequent species

classifications?

• How aboveground vegetation structure and composition estimated from UAV relate to

peatland belowground carbon stocks?

These research gaps were addressed within three papers published in international research

journals. Their content is included in full length in the subsequent chapters:
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1. Lopatin, J., Fassnacht, F. E., Kattenborn, T., Schmidtlein, S. (2017). Mapping plant

species in mixed grassland communities using close range imaging spectroscopy. Remote

Sensing of Environment 201, 12-23.

2. Lopatin, J., Dolos, K., Kattenborn, T., Fassnacht, F. E. (2019). How canopy shadow

affects invasive plant species classification in high spatial resolution remote sensing. Re-

mote Sensing in Ecology and Conservation.

3. Lopatin, J., Kattenborn, T., Galleguillos, M., Perez-Quezada, J., Schmidtlein, S. (2019).

Using aboveground vegetation attributes as proxies for mapping peatland belowground

carbon stocks. Remote Sensing of Environment 231, 111217.
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2 Mapping plant species in mixed grassland

communities using close range imaging

spectroscopy

This paper has been published as: Lopatin, J., Fassnacht, F. E., Kattenborn, T., Schmidtlein,

S. (2017). Mapping plant species in mixed grassland communities using close range imaging

spectroscopy. Remote Sensing of Environment 201, 12-23.

2.1 Abstract

Grasslands are one of the ecosystems that have been strongly affected by anthropogenic impacts.

The state-of-the-art in monitoring changes in grassland species composition is to conduct re-

peated plot-based vegetation surveys that assess the occurrence and cover of plants. These

plot-based surveys are typically limited to comparably small areas and the quality of the cover

estimates depends strongly on the experience and performance of the surveyors. Here, we

investigate the possibility of a semi-automated, image-based method for cover estimates, by an-

alyzing the applicability of very high spatial resolution hyperspectral data to classify grassland

species at the level of individuals. This individual-oriented approach is seen as an alterna-

tive to community-oriented remote sensing depicting canopy reflectance as the total of mixed

species reflectance. An AISA+ imaging spectrometer mounted on a scaffold was used to scan

1m2 grassland plots and assess the impact of four sources of variation on the predicted species

cover: (1) the spatial resolution of the scans, (2) complexity, i.e. species number and structural

diversity, (3) the species cover and (4) the share of functional types (graminoids and forbs).
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Classifications were conducted using a support vector machine classification with a linear ker-

nel, obtaining a median Kappa of ∼ 0.8. Species cover estimations reached median r2 and root

mean square errors (RMSE) of ∼ 0.6 and ∼ 6.2 respectively. We found that the spatial resolu-

tion and diversity level (mainly structural diversity) were the most important sources of variation

affecting the performance of the proposed approach. A spatial resolution below 1 cm produced

relatively good models for estimating species-specific coverages (r2 =∼ 0.6;RMSE =∼ 7.5%)

while predictions using pixel sizes over that threshold failed in this individual-oriented approach

(r2 =∼ 0.17;RMSE =∼ 20.7%). Areas with low inter-species overlap were better suited than

areas with frequent inter-species overlap. We conclude that the application of very high reso-

lution hyperspectral remote sensing in environments with low structural heterogeneity is suited

for individual-oriented mapping of grassland plant species.

2.2 Introduction

During the last century, ecosystems have undergone an accelerated rate of environmental change

due to anthropogenic impact (Smart et al., 2006). Among other impacts, these changes have

affected the structure and functional composition of grasslands (Dallimer et al., 2009). Recent

investigations assert that agricultural intensification – caused mainly by nutrient inputs – is one

of the principal drivers of pronounced changes in grassland communities, often with associated

losses in taxonomical and functional diversity (Wesche et al., 2012). Therefore, an accurate

assessment of recent vegetation changes is crucial to understand current and future ecosystem

dynamics. To assess these changes, two main approaches have been used in vegetation science:

the establishment of permanent plots (where several measurements are repeated over time in the

same plots), and the use of distribution data (where different plots are used over time, and the

changes are assessed by modeling), with the first being the more reliable approach (Jandt et al.,

2011).

One drawback of plot surveys is that they are expensive and time consuming when applied

either to large areas or repetitively (Olsen et al., 1999). The effort and cost associated with

plot surveys depend on the applied sampling approach. Most sampling approaches consider the
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presence and the abundance or cover of the species (Vittoz and Guisan, 2007). The cover of

species can be estimated visually, by exhaustive methods or by a mixture of both. Choosing an

appropriate method for cover estimation is often a trade-off between monitoring small plots with

accurate methods (e.g. the pin-point method of Levy and Madden (1933) and monitoring larger

plots with lower accuracy (e.g. visual interpretation; Vittoz and Guisan (2007)). Exhaustive

methods are usually very time consuming and only allow the monitoring of small vegetation

plots, while visual interpretation is less time-consuming but may introduce an unknown level of

observation bias into the measurements (Klimeš et al., 2001; Vittoz and Guisan, 2007).

Further problems of current vegetation survey approaches relate to the completeness of surveys

and the consistency between surveyors. Vittoz and Guisan (2007) found that during vegetation

surveys only about 45-63% of the species were seen by all observers (with the majority of over-

looked species occurring with covers < 0.1 %). The study also reported that a pair of observers

overlook about 10–20% less species than a single observer. The consistency between surveys

also relates to the plot size as reported by Klimeš et al. (2001), who found that in larger plots

the discrepancy between observers varies less (∼ 10−20%) than in smaller plots (∼ 33%). As

species cover is more similarly estimated in small plots than in larger ones (Sykes et al., 1983),

the use of frames that include a known number of grid squares can also increase the similarity of

estimates among observers. This may even result in accuracies more similar than the pin-point

method with trained observers, as well as requiring only half the field time (Sykes et al., 1983).

In summary, the results of current vegetation surveys are likely to vary with the experience of

the surveyor and contain a notable degree of uncertainty due to potentially missed species. The

development of new, user-independent and objective methods that combine the high level of

detail of exhaustive methods with high accuracies and time-efficiency (and eventually also with

an option to cover larger areas), would be a great advance for vegetation monitoring.

Automated remote sensing (RS) techniques have been applied to classify individual trees since

the 1980s (see Fassnacht et al. (2016) for a comprehensive review), while for grassland species

few efforts can be found in the literature. In grasslands, we differentiate between community-

oriented approaches and individual-oriented remote sensing approaches. Community-oriented

approaches treat canopy reflectance as an expression of mixed species reflectance. In gradient-
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based analyses, individual grassland species occurrences can be retrieved in a top-down ap-

proach relying on the occurrence of species along mapped gradients (Neumann et al., 2016,

2015). While this is suited for situations where species are hiding in sub-pixel information,

individual-oriented methods are addressing species separately. Following the latter strategy,

Gebhardt et al. (2006) used very high spatial resolution data ( 0.6 mm) from an RGB camera in

an experimental setup to classify Rumex obtusifolius with an object-oriented approach. Simi-

larly, Silva et al. (2014) used RGB imagery ( 1 cm pixel size) collected from a balloon-mounted

camera to classify two species (Setaria sphacelata and Pteridium arachnoideum) using tex-

ture and object-based information. Booth and Cox (2008) used RGB imagery to estimate cow

manure, green-grass and shrub covers under different grazing intensities in Colorado, USA. Fur-

ther examples include the studies of Kumar and Sinha (2014), who successfully classified four

species of salt-marsh vegetation in Australia using Quickbird data, and the studies of Andrew

and Ustin (2008) and Lu et al. (2009), who used aerial hyperspectral data to identify Lepidium

latifolium in riversides in California.

Nevertheless, no attempt has been made so far to classify all grassland species in a given area

using hyperspectral imagery with very high spatial resolution (< 1 cm). In case of success,

such an approach could be a turning point towards RS-based semi-automatic grassland surveys,

covering reasonably large areas while limiting field-work to few calibration and validation plots.

Unmanned aerial vehicles (UAV) arise as a suitable option for such a monitoring approach, due

to e.g. their high spatial resolution and relatively low acquisition costs. Unfortunately, UAV-

based sensors have not yet reached the ideal geometric or radiometric quality (e.g. close to

the radiometric resolution of airborne spectrometers) for this task. Nevertheless, we believe

that in the future small sensors with appropriate spatial and radiometric resolution will become

available for UAV RS.

In this study, we classified grassland species using an AISA+ Eagle imaging spectrometer

mounted on a scaffold at a height of 2.5 m above ground, in order to simulate future UAV-based

image qualities. We collected hyperspectral images of one square meter field plots and sub-

sequently classified all plants to obtain cover estimates of each species. The aims of the study

were to assess the feasibility of this approach for classifying grassland species, and to determine
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under which conditions this method could be useful in practice. To address these questions, we

analyzed the influence of four sources of variation on the obtained results: the spatial resolution

of the images (leading to an increased proportion of mixed pixels), the complexity of the grass-

land (along a gradient in species numbers and structural diversity), the species-specific cover

values and the functional type of the species. We hypothesized that:

1. As the spatial resolution decreases, the agreement between field-estimated and remotely-

sensed covers will decrease due to an increased proportion of mixed pixels;

2. While the complexity gradient increases, the correlation between field-estimated and

remotely-sensed cover values will decrease due to an increased number of species oc-

curring in the understorey;

3. Species with higher cover will have a higher chance to be classified accurately; and

4. Forbs will be classified with greater accuracy than grasses due to their broader leaves

(higher chances of clearly assignable leaf spectra).

In addition, we examined the role of the classifier and the method for defining training areas in

the hyperspectral scans as potentially influential

2.3 Methods

2.3.1 Study area

The study areas were grassland patches located in the Botanical Garden and other sites be-

longing to the Karlsruhe Institute of Technology, Karlsruhe, Germany. We selected four areas

with different management treatments, including parks and an abandoned construction site. The

treatments, including annual mowing and water irrigation, led to a species and structural diver-

sity gradient which as suitable to test our hypotheses. Field plots were randomly placed inside

those areas, keeping a minimum distance of 10 m between plots (Figure 2.1E).

In August 2016 a one square meter sampling frame was used to sample the grassland species

(Figure 2.1B i) within 11 plots. The frame contained 16 sub-plots of 0.25m× 0.25m, where
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Figure 2.1: Experimental setup. A: image of the AISA+ sensor scanning a plot; B: plot structure (i), species
occurrence and location recording at sub-plot level (ii) and the pin-point density grid to estimate
species covers at the sub-plot level (iii); C: complexity gradient hypothesis, and D: location of the
examined plots on the KIT Campus.

the species’ positions (Figure 2.1B ii) and covers were recorded using the exhaustive pin-point

(or point intercept) method with a systematic grid of 5 cm, and a total of 25 points per sub-plot

(Figure 2.1B iii). The survey resulted in a total of 176 sub-plots.

We sampled a total of 41 species (forbs = 35, graminoids = 5 and bryophyte = 1; see Appendix

A), with a maximum of 15 species per sub-plot (Table 2.1).

2.3.2 Complexity gradient

Diversity levels were defined for each selected study areas according to their species and struc-

tural diversity. Species diversity was determined by species richness and evenness - defined by

Camargo (1992): Evenness = richness∑
n
i=1 |Pi−Pj|, where Pj is the relative abundance of a

species i in a biological community h - while structural diversity was defined using the inter-

species canopy mixture level (see Table 2.1, Figure 2.1D). We will refer to this interaction be-

tween species and structural diversity as the complexity gradient. The four defined complexity

levels are:

• Complexity 1: This category is characterized by high species richness (20-21 spp) and

evenness (0.37-0.4), but low cover values, where the sum of all individual species cover-

ages does not reach 100%. This category represents vegetation on sandy-dry soils, where
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Table 2.1: Summary of plot characteristics.

Complexity levels
Species diversity Structural diversity

Plot id Count Evenness Sum of covers (%)
Min/Mean/Max single

species covers (%)

1
1 20 0.37 70 4/12.22/48

2 21 0.4 48 4/3.38/36

2
3 13 0.25 222 4/32.23/92

4 10 0.19 203 4/33.3/96

3

5 14 0.39 256 4/9.31/36

6 14 0.28 230 2.77/24.17/88

7 17 0.34 208 2.77/27.39/91

8 14 0.28 203 2.77/32.23/92

4

9 23 0.41 324 4/25.92/92

10 26 0.47 332 4/21.64/84

11 24 0.42 284 4/29.42/96

mostly stress-adapted species occur. No management is applied, and the canopies have

no or very limited inter-species overlap. In this class it is common to find bare soil areas.

The most abundant species are Elymus repens, Erigeron annuus and Setaria pumila.

• Complexity 2: Here, the sum of individual species coverages is over 100 % but canopies

show inter-species overlap in only few structural levels. The species richness (10-13

spp) and evenness (0.19-0.25) are rather low, with a sum of inter-species covers of up to

200 %. This category contains plots that are characterized by annual mowing and high

water availability. Common species are Nardus stricta, Medicago lupulina, Plantago

lanceolata, Potentilla reptans and Achillea millefolium.

• Complexity 3: Similar to Complexity 2, but with a larger number of species (14-17 spp).

• Complexity 4: This category has higher richness (23-26 spp) and evenness (0.41-0.47)

than the other categories due to a reduced dominance of individual species, and the sum of

all individual species covers reaches up to 300 %. Inter-species overlap occurs on several

levels. These plots are unmanaged and located on soils with sufficient water availability.

23



2 Mapping plant species in mixed grassland communities using close range imaging spectroscopy

The most abundant species of this category are Trifolium repens, Setaria pumila, Plantago

lanceolata, Daucus carota and Crepis capillaris.

2.3.3 Spectral data

2.3.3.1 Sensor description and plot measurements

Hyperspectral data were acquired using an AISA+ Eagle spectrometer (Specim Limited, Oulu,

Finland), a pushbroom scanner with an instantaneous field of view (IFOV) of 0.648 mRad and

a field of view (FOV) of 36.04°. The scanner was mounted on a scaffold at 2.5 m height above

the ground, obtaining pixel sizes of ∼ 3mm (≤ 0.2 mm of difference between nadir pixels and

pixels at the edge of the plot). As the scanner needs motion to record frames, we applied it with

a mirror scanner (Specim Limited, Oulu, Finland). All measurements were performed close to

solar zenith (i.e. between 11:00 and 15:00 local time) on clear sky days in August 2016, which

corresponds to late summer.

The sensor was used in four times spectral binning mode, which produced data with 61 spec-

tral bands with a full width at half maximum (FWHM) of 8–10.5 nm in the spectral range

between 398 nm and 957 nm. Using 61 bands was considered optimal in terms of the expected

signal-to-noise ratio (Silván-Cárdenas and Wang, 2010). Fewer spectral bands would reduce

computational demands but also lead to the loss of spectral information, while having a FWHM

≤ 8 nm would add more spectral bands but increase the data redundancy due to the increased

band-to-band co-variation. We therefore decided to use a configuration with a FWHM of 10 nm

which also conforms to the current specifications of most Unmanned Aerial Systems (UAV) hy-

perspectral cameras (Colomina and Molina, 2014).

During the image acquisitions, we recorded the internal dark current before each scan and in-

coming radiance during the scans, and performed a radiometric calibration using the CaliGeo-

Pro plugin for ENVI (Specim Limited, Oulu, Finland). For further calibration, a 99 % Spec-

tralonTM (Labsphere Inc., North Sutton, NH) was placed inside the FOV to align the scans

radiometrically by linear interpolation (using the provided white reference reflectance).
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2.3.3.2 Images for model calibration

Due to the small size and mixture of several species within the canopy the number of pure pixel

samples for each species is limited. Therefore, we used a method for collecting independent

species spectra outside the plots. Individuals of each species were first identified in the areas

neighboring the plots. Then surrounding canopies of other species that may interfere in the

reflectance were removed prior to the AISA+ scans to isolate the target species.

Image scans were taken on the same day as their corresponding plot to minimize the effects of

changing radiation conditions. If more than one plot was scanned on the same day, validation

samples were shared for co-occurring species within plots of the same complexity gradient with

corresponding similar soil-water conditions. In total 41 calibration reference image scans were

taken.

We further tested a second alternative to obtain the training areas, in which complete individuals

were dug out and transplanted into small pots to maintain the structure of the individual plants

prior the scans. Nevertheless, this approach depicted slightly lower accuracies and hence their

results are not presented here. For the complete method description and a comparison of the

results obtained with the two sampling methods we refer to Supplementary data 1.

2.3.4 Species classification and cover estimation

The whole work-flow of the species classification and cover estimation is summarized in Figure

2.2.

2.3.4.1 Training data collection

For the training spectra collection in the scanned hyperspectral reference images, we followed a

polygon-based approach instead of collecting single pixels. Manually delineating training areas

for 41 images would have been very time intensive. Therefore, we used a segmentation ap-

proach to delineate relatively homogeneous spectral regions. The applied algorithm is based on

K-means clustering, which generates seeds for the segmentation. The segmentation approach

has two key parameters: (1) the number of clusters (k), which are used to seed the K-means
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Figure 2.2: Schematic work flow of the analysis.

algorithm; and (2) the minimum object size. We set the minimum object size to one (pixel),

considering that grass species with oblong leafs may have only one pixel width, while k was

set to 100 so that the objects’ sizes remained smaller than the average leaf sizes. The seg-

mentation algorithm is available in the Remote Sensing and GIS library (RSGISLib) of Python

(Clewley et al., 2014). After the segmentation, we manually selected polygons with relatively

homogeneous areas of target species (visual interpretation supported by field recording).

We obtained a minimum of 30 samples per species for each plot (except for a few cases where

some species were too scarce to reach this number). With the 30 samples we tried to cover the

full spectral variability of each target species by for example equally sampling sunlit and shaded

areas as well as areas rather at the center of leaves and areas closer to the edges of leaves. In

total we collected 1412 samples for training and validation.
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2.3.4.2 Image classification

When high spatial resolution imagery is used, the intra-species spectral heterogeneity is usually

pronounced (Zhang et al., 2006). Even within the same individual, the reflectance can change

drastically between one leaf and the other due to differing leaf angles and shadows. For these

reasons, we used a Support Vector Machines (SVM) classifier, which is known for its capability

in dealing with complex shapes in the feature space (Vapnik, 2000). SVM is a non-parametric

classifier that works by constructing an optimal hyperplane separating two classes within a

multidimensional feature space. When the linear separability of the two classes is not possible,

SVM successively maps the data into a higher dimensional feature space via a kernel function

until it finds a linear separation. More information on the concept of SVMs can be found in

(Burges, 1998).

SVM was applied to all plots separately using a linear kernel. A radial basis kernel was also

tested, but achieved slightly lower accuracies. To avoid overfitting, a bootstrap procedure with

500 iterations were applied to the models. In each bootstrap iteration, we used the samples that

were not drawn in the bootstrap (on average, 36.8 % of the total number of samples) as holdout

sample for an independent validation (Lopatin et al., 2015). Furthermore, as some species were

rarer than others, we applied a stratified random sampling strategy – in which random samples

of each species were drawn independently - to ensure that all existing species were always

included. Model parameters cost and gamma were tuned (using a five-fold cross-validation

with 5 repetitions) to find the best settings for each plot.

Subclasses were created for plants with spectrally clearly differing parts (e.g. leaf, flower and

stem). The subclasses were merged after the classification. Furthermore, an NDVI mask was

applied to remove areas without vegetation cover (NDVI < 0.3).

We furthermore analyzed the relative importance of each band when discriminating between all

species and between graminoids and forbs using the Multiple Response Permutation Procedure

(MRPP) algorithm (full description of the methods presented in Supplementary data 2).

All statistical analyses were performed in R, while the image processing was accomplished

using Python 3 (The respective scripts are available in Appendix B).
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2.3.4.3 Cover estimation

From the prediction maps of each bootstrapped SVM classification, the cover (%) of each

species was estimated at the sub-plot level by counting the number of pixels of each class.

Before this step, species with more than two classes (e.g. leaf and flower) were combined into

single classes. The predicted coverages obtained by the classification were compared against

the measured covers obtained by the pin-point method. The agreement of the predicted and

measured cover values were estimated based on the coefficients of determination (r2 – cal-

culated as the squared Pearson’s correlation coefficient), the root mean square error (RMSE),

where RMSE =
√

1
n ∑(y j− ŷ j)2, and the bias, measured as one minus the slope of a regression

without intercept of the predicted versus observed cover values of each species.

Finally, we obtained the Shannon Index of Entropy to quantify the variability in the class pre-

dictions per pixel during the bootstrapping. The Shannon Index is defined as , where in this case

S is the proportion of times that the pixel to-be-classified was assign to the class i during the

bootstrapped classification. This is a measure of the prediction consistency, where the higher

the index the more variable are the class predictions, and hence less accurate the predictions.

2.3.4.4 Impact of spatial resolution, canopy complexity, species cover and functional types on

cover estimates

The applicability of the proposed method for proximal sensing in the field and UAV surveys

was examined by investigating four factors likely to affect the performance of the approach:

1. Spatial resolution: the spatial resolution of the hyperspectral images was resampled (bi-

linearly) with factors of 2, 4, 6, 8, 10 and 12 times the original size (∼3 mm – 36 mm).

The procedure was used to identify the minimum resolution required to obtain reliable

results for the classification of grassland species.

2. Complexity gradient: plots were divided and analyzed independently in the four complex-

ity categories explained in section 2.2. These categories are related to the architectural

complexity of vegetation.
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3. Species cover: the species predictions were separated by their measured cover at the sub-

plot level in five categories between 0 % and 100 %, with steps of 20 %. These values are

related to the inter-species canopy mixtures of the ecosystem.

4. Species growth form analysis: the species cover estimation accuracies were divided into

two growth forms of functional relevance: graminoids and forbs. Even though the number

of forbs is greater than graminoids (35 and 5 respectively), their coverages were found to

be similar along the complexity gradients. Graminoids usually have vertical leafs while

forbs are more diverse, depicting small structures with planar big leafs (e.g. Plantago

major) or complex structures with small vertical leafs (e.g. Cichorium intybus). Due to

their sparsity (in both number of species and cover), we did not include bryophytes as an

additional growth form class. This analysis indicates the importance of the growth forms

being present in the target ecosystem.

2.4 Results

2.4.1 Model performances

Model performances are summarized in Figure 2.3. The median value of the classification

accuracies (Kappa; Figure 2.3A) reached 0.8, while cover estimation reached median r2 val-

ues of 0.59 (Figure 2.3B), RMSE of 6.23 % (Figure 2.3C) and a bias of -0.002 (Figure 2.3D),

indicating relatively high performances. However, the range of r² values indicating the correla-

tion between predicted and field-estimated cover values was large and reached from almost no

correlation to almost perfect correlation (Figure 2.3B).

2.4.2 What causes the differences in model quality?

Figure 2.4A shows a high variance of predicted values for low coverages and a general underes-

timation in the predicted cover values. Also, the presence of false negatives (species observed

in a plot that were not detected) and false positive (species not observed in a plot that were de-

tected) in the species classifications are shown in Figure 2.4A. In Figure 2.4B, the frequencies

of false negatives, false positives and correctly classified species per sub-plot are presented. The
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Figure 2.3: Bootstrap distribution of classification results using all sub-plots. In (A), the overall accuracy and
Kappa of the SVM classification are presented, while in (B-D) the prediction accuracies (r2, RMSE
and bias) of the measured against the predicted species covers are displayed. Beanplots show the
relative distribution of the bootstrap results with the width indicating the frequency of a given value,
while black horizontal lines indicate the median values of the distribution.

model correctly classified most of the species occurrences, while within sets of misclassifica-

tions, false positives were more frequent than false negatives.

Figure 2.5 shows RGB visualizations of AISA+ scans, the corresponding classified images and

maps of the Shannon Index of Entropy indicating the diversity of the classes to which the pixels

were allocated to during the bootstrapped classifications for one exemplified sub-plot for each

complexity gradient class. It can be seen that high uncertainty areas (Shannon > 1.5) occur in

similar proportions across the whole complexity gradient. Figure 2.6 depicts detailed examples

of the two main sources that led to high diversity values: shadows and leaf edges. On the

contrary, planar leaves, unique spectra (e.g. flowers) and homogeneous illumination areas show

lower diversity values.
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Figure 2.4: Model covers predictions. A: scatter plot of observed versus predicted species cover values; B: fre-
quency distribution of false negative, false positive and correctly classified species (presence de-
tected) at the sub-plot level are displayed.

Table 2.2: Summary of accuracies per functional types. The percentiles (P) 5 %, 25 %, 50 %, 75 % and 95 % are
depicted.

P05 P25 P50 P75 P95

Graminoids

r2 0.42 0.45 0.46 0.74 0.83

RMSE 6.98 12.03 14.29 29.77 37.28

Bias -0.45 -0.18 0.06 0.12 0.27

Forbs

r2 0.38 0.43 0.56 0.7 0.91

RMSE 1.33 4.14 9.35 20.78 32.14

Bias -0.35 -0.18 -0.04 0.35 0.93

Classification accuracies (producer’s and user’s accuracies) and r2, RMSE and bias of the cover

estimation per species can be found in Appendix A, while a summary of accuracies according to

functional types is presented in Table 2.2. Concerning cover estimates, the classification based

results for forb species showed higher agreement with field-estimated covers than graminoid

species as indicated by higher median r2 values, lower median RMSE values and median bias

value closer to zero. The single bryophyte species obtained an r2 of 0.8 and a RMSE of 6.5 %

(result not presented in Table 2.2).
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Figure 2.5: Examples of prediction maps at the sub-plot level for the four complexity categories. Images ob-
tained with a RGB color composition of the AISA+ scan, the classification results and the coefficient
of variation map of the bootstrap procedure are presented. For the classification, the mode class of
the bootstrapping procedure is drawn in each pixel.

2.4.3 Impact of spatial resolution, canopy complexity, species cover and functional

types on cover estimates

Figure 2.7 summarizes how the examined technical and ecological variables affected the agree-

ment between classification-based and field-estimated cover values. The spatial resolution anal-

ysis (Figure 2.7A) shows that the pixel size is key to classify grassland species accurately. In

the considered range of pixel sizes, the agreement between classified and field-estimated cov-

ers constantly decreases with increasing pixel size. For the species composition and complexity

analysis (Figure 2.7B), our hypothesis was confirmed: the complexity of grassland species com-

position was negatively related to the agreement between classified and field-estimated covers.

Sub-plots of the first complexity class obtained ∼4.5 times better agreements than plots located
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Figure 2.6: Per pixel variability in the classification results. Zoom-ins within two sub-plots (A and B) are pre-
sented with the RGB compositions (left) and the Shannon Index maps (right). Main sources for high
variabilities are shadows and structural edges (mixed pixels).

in the complexity 4 category, while complexity 2 and 3 categories showed similar results. The

results also agree with our hypothesis that with increasing cover of a species, the agreement of

its classification-based cover value and the field estimates also increases (Figure 2.7C). More-

over, errors (RMSE) were smaller in the 20 % - 40 % species cover range than in the cover range

of 0 % - 20 %. Finally, forbs obtained slightly higher agreements than graminoids, but not cleat

tendency was found (Figure 2.7D).

2.5 Discussion

2.5.1 Model performances

The species classification performances and the agreement between classification-based and

field estimated covers indicated a good potential of the suggested approach. Nevertheless,

cover estimation agreements showed high variances in the bootstrapped results (Figure 3B-D;

r2 fluctuating between 0 and 1) indicating less stable results as compared to the classification
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Figure 2.7: Impact of different sources of variation on the predicted cover. The sources of variation are: (A) the
spatial resolution of the scans, (B) the complexity gradient of the plots, (C) the species cover within
the sub-plots, and (D) the species functional types. All analyses (except for the spatial resolution)
were performed with ∼3 mm pixel size. The beanplots show the distribution of model performances
for all sub-plots, where wider areas represent a higher frequency. Black dots show the mean distribu-
tion value and horizontal lines the standard deviation.

accuracies (Figure 3A; overall accuracy and Kappa fluctuating between approximately 0.75 and

0.9). The classification results are likely to be more stable than the cover predictions due to two

reasons: First, they are based on training data collected from pure pixels of each species, which

supports a better separation of the considered classes in the classification process, and second,

the training and validation of the classification algorithm bases on samples that were collected

with the same work-flow.

On the contrary, when applying the classifier on the full image to subsequently obtain the cover

predictions, a notable portion of the to-be-classified pixels for each species were mixed pixels.
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This particularly applies to species with cover values of below 5 %. These effects are likely

to get stronger along the increasing complexity gradient, as in more complex canopies, more

species will tend to grow in the understorey of dominant species and thereby further increase

the number of mixed pixels. This assumption is backed up with the results of Figure 2.7, where

the cover predictions are notably more stable for the complexity class 1 as compared to all other

classes. Furthermore, the cover predictions are validated with a completely independent dataset

collected with a field-method (pin-point method) that quantifies cover values in a very distinct

way which further reduces the chances of reaching high performances for cover predictions (see

also section 2.4.3).

We also tested several other classification and pre-processing approaches including a Partial

Least Squares Discriminant analysis and Random Forest algorithms, along with a minimum

noise fraction transformation (MNF) of the spectral bands, and the brightness normalization

proposed by Feilhauer et al. (2010) to reduce the effect of shadowing in the scans. Never-

theless, judging from a bootstrap significance test (Lopatin et al., 2016) these models did not

significantly differ from the model described above. The results of all examined approaches are

available in Supplementary data 3.

The Shannon Index of Entropy maps (Figure 2.5) showed that certain areas in the images pre-

sented higher diversity in the allocated classes than others. Especially image parts with higher

fractions of shadows and leaf borders were found to have a low stability of the classes to which

they were assigned to (Figure 2.6). Shadows are known to alter the magnitude of the spectral

signal and hence contribute to misclassifications. This is likely to be especially pronounced

in the classification of vegetation where most of the inter-species differences in reflectance are

related to the amplitude rather than the shape of the spectrum (Fassnacht et al., 2016). On the

other hand, leaf borders provoke mixed pixels effects that increase the spectral differences be-

tween training and target data and hence complicate the allocation of the corresponding pixel

to one of the defined training classes. It can be seen that the Shannon Index maps presented

some level of stripping noise in some of the plots. This problem is probably related to the mir-

ror scanner that was applied during the AISA+ scans, however, we could not identify a sound

explanation for the exact problem.
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The classification accuracies and cover prediction agreements per species (Appendix A) de-

picted that forbs tend to obtain better results (Table 2.2), but not clear tendency was found.

Species with noticeable low performances could be mostly allocated to three classes: (1) species

with high intra-species heterogeneity (e.g. Conyza canadensis); (2) species occurring in the

understorey (e.g. Medicago lupulina) and finally (3) spectrally very similar species such as

Echinochloa crus-galli and Elymus repens.

These findings are only partly comparable to earlier studies attempting to classify grassland

species due to notable differences in the methodical approach. Earlier studies typically either

applied multi- or hyperspectral data with coarser spatial resolution (e.g. Andrew and Ustin,

2008; Kumar and Sinha, 2014) or used similarly high resolution but RGB imagery (e.g. Geb-

hardt et al., 2006; Silva et al., 2014). Furthermore, most of these studies focused on the detection

of a single or few species, while a full classification of all species has not yet been attempted.

Studies applying data with pixel sizes over 1 m have been tested in environments where the

target species or vegetation type occur in sufficiently large, homogeneous patches (Andrew and

Ustin, 2008) or when the spectral characteristics of such species is sufficiently distinct from

the background species (Kumar and Sinha, 2014). The studies focusing on RGB imagery with

pixel sizes below 1 cm focused more on differences in texture and shape between the target

and background species. Correspondingly, the authors used object-based approaches including

segmentation algorithms, RGB enhancements and transformations to intensity (to maximize

RGB band differences) and textural variables from the gray-level co-occurrence matrix to clas-

sify the species of interest. The studies obtained good accuracies and judging from these results,

object-based approaches to obtain variables related to species’ shapes and textures could further

improve our proposed method.

2.5.2 Impact of spatial resolution, canopy complexity, species cover and functional

types on cover estimates

Based on the results of Figure 2.7 we assume that starting at a 1 cm pixels size, the cover

agreements between classification-based and field-estimated covers decrease notably due to an

increase of fraction of pixels containing mixed information from several species. Likewise, the
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degree of mixture increases along the canopy complexity gradient. The results of the complexity

gradient analysis support our hypothesis that the agreement between classification-based and

field-estimated covers decreases with increasing complexity. For areas where the species occur

without, or with only moderately overlapping canopies, the agreements in cover estimates were

high with a median value of 0.86 r2, RMSE of 2.62 % and a slight tendency to overestimate

cover values (bias of 0.3). When plants started to overlap the agreements decreased rapidly. In

future works, we cannot expect any improvement of the agreements through better detection

models when the understorey species do not appear at least partially in the image.

The species cover analysis showed that when the species abundance within one sub-plot in-

creases, the agreement of the classification-based cover of that species with the field-estimated

cover also increases. Along with this result, the scatterplot of observed against predicted species

covers (Figure 2.4A) shows a general tendency towards higher variation with lower covers. Ex-

ceptions were species coverages ranging from 0 % to 20 %, which obtained lower agreements

than species coverages of 20 % - 40 %. One potential explanation of this could be a larger

effect of the background on small plants. The size of species’ individuals may also influence

the classification accuracies, since acquiring pure spectra is more likely for species with larger

organs.

The comparison of the results between functional types presented a tendency towards higher

classification accuracies and cover agreements in the discrimination of forbs. This may be due

to the fact that graminoids usually have thinner leafs, which may induce a higher presence of

mixed pixels. According to the MRPP analysis, the discrimination between graminoid species

relied more on the NIR wavelengths - possibly related to structural information, such as leaf area

index and leaf angle Ollinger (2011) – while forbs were better discriminated in the VIS spectral

region – typically related to photosynthetic pigments, but also containing structural information

Ganapol et al. (1999); Jacquemoud et al. (2009); Posada et al. (2009). For a comprehensive

description of these results we refer to Supplementary data 2.

The effects of structural complexity on cover estimations can be seen in the prediction maps

(Figure 2.5), where predicted classes of the low complexity category visually agree better with

the real patterns (RGB image) than the other maps. Nevertheless, the Shannon Index maps
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feature approximately the same relative amounts of high diversity (index over 1.5) pixels along

the complexity gradient, indicating that the structural diversity may not have an influence on

the predicted spatial patterns. Instead, the structural diversity does have a clear influence on the

model accuracies (Figure 2.7).

Finally, other factors not considered in our analysis could contribute to the variability in classifi-

cation accuracies and the corresponding estimates of species’ covers, including for example leaf

size, species height and phenology. Fung et al. (1998) found the classification success to be de-

pendent upon leaf size when they applied hyperspectral data (400 nm – 900 nm) to discriminate

subtropical tree species using a linear discriminant classifier. Moreover, the vegetation structure

(e.g. height) and phenology have been found to be useful to separate between functional traits

(e.g between graminoids and forbs; McIntyre et al. (1999)).

2.5.3 Semi-automatic field survey: strength, limitations and future considerations

The main drawback of the study is that the presented approach requires a large number of scans

which is associated to (1) to a notable amount of post processing and model preparation time

and (2) the need for an appropriate calibration of each scan as otherwise differences in day light

conditions may induce spectral variability affecting spectral signatures in the training data.

Furthermore, we assessed the quality of the classification-based species cover predictions by

comparing them to cover estimates obtained in the field using the pin-point method. This is

rather a comparison between two different estimation approaches than a real validation. The

pin-point method records the presence of all species occurring at fixed locations defined in a

grid within a plot. The species’ covers are then estimated based on these samples. The pin-

point method is explicitly able to quantify cover values in plots with overlapping canopies. On

the contrary, the classification-based estimation of cover values can only allocate a single class

to a single pixel and hence is inherently unable to accurately depict multi-layered canopies.

Furthermore, with the examined approach we were only able to assess the agreement between

the absolute species cover estimates of the two approaches and could not validate the spatial

agreement of the species’ covers. This would have been only possible by comparing the species

located at the top of the canopy at each sampling location within the pin-point grid with the cor-
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responding classified pixel. However, this would require mayor sampling efforts as the location

of each pin-point must either be precisely known or directly visible in the images. Within the

given time-restrictions of this study, we were not able to develop an appropriate approach for

this issue.

2.5.4 Transferring the present approach to UAVs

Some of the shortcomings discussed above might be resolved using data from a UAV system.

For example, issues related to differing sun-sensor geometries during the individual scans are

minimized if all plots are covered by an individual flight which typically does not last longer

than 20-30 min.

Training data could then be collected from the same overflight. For instance, one option could

be to add visible signs on the ground outlining individuals positions (as in this investigation,

around 5 individuals per species may be reasonable) for the training data collection. Of course,

this requires knowing in advance which species are present in the study area. For some purposes,

this might be challenging, however, in the context of permanent monitoring plots with repeated

measurements it might be feasible as species lists might already exist.

Also related to long-term monitoring, achieving a sub-centimeter positioning accuracy in

an absolute geographic coordinate-system to allow for comparisons between multiple UAV-

acquisition will be challenging. However, using species coverages as target measure within

permanent plots could be an approach to reduce positioning accuracy requirements for repeated

monitoring. For example small plots (e.g. 50 cm × 50 cm) could be permanently marked in the

study area. During the UAV flights, sufficiently thick frames (visible in the UAV images) can be

accurately positioned at the plots and serve as easily identifiable objects to co-register imagery

from repeated UAV-flights. These plots can at the same time serve as reference area to collect

species presence and cover data for validation purposes.

We believe that a UAV-based semi-automatic approach for grasslands surveys may have a partic-

ularity interesting potential for long term monitoring, where relative large areas can be mapped

at the field scale with high temporal flexibility and resolution. This approach may allow us

to achieve robust seasonal data collection without the errors and biases of visual interpretation
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methods, but also with the discussed limitations of the remote sensing approach. In this in-

vestigation the analysis was carried out during late summer (August 2016), which corresponds

to a theoretically reliable time in the year to perform the analysis. For example, Feilhauer

and Schmidtlein (2011) found that June, July and August were suitable to link hyperspectral

data with floristic gradients in a nutrient-poor grassland, a wet heath and a floodplain meadow.

However, more investigation (for example also related to flowering events) is needed to fully

understand how seasonality affects grassland species classification.

Furthermore, even without the use of a UAV, plot-based monitoring using a fixed sensor –

such as the AISA+ sensor applied in this investigation – could already represent a step forward

towards an objective and robust (seasonal) monitoring of grasslands. With the continued minia-

turization of the sensor-systems, such an approach could become notably more flexible in the

near future.

2.5.5 Suitable environments and applications of the model

Based on our analyses, the application of future field-based hyperspectral proximal sensing or

UAV-based remote sensing for classifying individual grassland species is feasible under the

following considerations:

First, the spatial resolution has to be appropriately high to avoid or minimize mixed pixels of

all classes. The recommended resolution for obtaining reasonably high accuracies will vary

greatly between grassland ecosystems, but we assume that the resolution requirements will

increase with the structural complexity of the plant community and with a decreasing size of

the plant individuals or leaves. In our study, pixel sizes below 1 cm are recommended due to

the structural diversity of the plant communities.

Second, probably the most restrictive feature in classifying grassland species is their diversity

level, or complexity gradient. We found that increasing complexity of the examined ecosys-

tem – especially the structural component – leads to decreased classification accuracies and

corresponding decreases in agreement between classification-based and field estimated cover

values.
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Taking into account these two major factors, we assume that in ecosystems where the structural

heterogeneity is high and the canopy overlap occurs in several layers, the presented classifica-

tion techniques will not be possible. Nevertheless, for target ecosystems where the plant com-

munity grows in separate species patches or the average species size is comparably large and

species tend to have hardly overlapping canopies, the approach is feasible. Examples of such

plant communities could be stress-prone grassland such as dune communities, where above-

ground competition is reduced. This means that species tend to grow in patches, decreasing the

chance of inter-species canopy overlap. The importance of environmental context for classify-

ing grassland species has also been discussed in Andrew and Ustin (2008).

Alternative applications for UAV-based approaches in grassland ecosystems include applica-

tions such as weed detection in precision agriculture (Booth and Cox, 2008; Gebhardt et al.,

2006) and invasive or key species mapping (Andrew and Ustin, 2008). In these cases the use of

one-class classifiers may be an option as only the target species is needed, decreasing consider-

ably the time required for field work (Stenzel et al., 2017).

2.6 Conclusions

We assessed the possibility of future applications of UAV hyperspectral data for semi-automatic

field surveys. We classified grassland species and estimated their cover within a gradient of

diversity levels (species and structural diversity). We found that classifications of grassland

species at the level of individuals have strong limitations when inter-species signal mixtures

are present due to either high structural complexity or insufficient spatial resolution of the

applied imagery. Nevertheless, it was found that under favorable conditions - that is a com-

parably low structural complexity with low canopy overlaps - an accurate classification of all

co-occurring species and the subsequent accurate estimation of the species’ cover is possible.

This approach could be combined with earlier presented community-based approaches which

cannot provide accurate species’ cover estimates but are at the same time less affected by the

structural complexity and the spatial resolution and hence can give estimates about the proba-

bilities of a species’ presence in a given area even if it is located in the understorey. Further
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investigations are needed to assess structural and spatial resolution thresholds from which one

alternative turn to be advantageous over the other.

In conclusion, this pioneer study showed that close range imaging spectroscopy has potential to

support the monitoring of grassland ecosystems at individual species level, but more research

concerning validation techniques, efficient collection of training data as well as integration with

community-based approaches in areas of high structural complexity is needed to progress to-

wards an operational approach.

42



3 How canopy shadow affects invasive plant species

classification in high spatial resolution remote

sensing

This paper has been published as: Lopatin, J., Dolos, K., Kattenborn, T., Fassnacht, F. E. (2019).

How canopy shadow affects invasive plant species classification in high spatial resolution re-

mote sensing. Remote Sensing in Ecology and Conservation.

3.1 Abstract

Plant invasions can result in serious threats for biodiversity and ecosystem functioning. Reliable

maps at very-high spatial resolution are needed to assess invasions dynamics. Field sampling

approaches could be replaced by unmanned aerial vehicles (UAVs) to derive such maps. How-

ever, pixel-based species classification at high spatial resolution is highly affected by within-

canopy variation caused by shadows. Here, we studied the effect of shadows on mapping the

occurrence of invasive species using UAV-based data. MaxEnt one-class classifications were

applied to map Acacia dealbata, Ulex europaeus and Pinus radiata in central-south Chile using

combinations of UAV-based spectral (RGB and hyperspectral), 2D textural and 3D structural

variables including and excluding shaded canopy pixels during model calibration. The model

accuracies in terms of area under the curve (AUC), Cohen’s Kappa, sensitivity (true positive

rate) and specificity (true negative rate) were examined in sunlit and shaded canopies separately.

Bootstrapping was used for validation and to assess statistical differences between models. Our

results show that shadows significantly affect the accuracies obtained with all types of vari-
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ables. The predictions in shaded areas were generally inaccurate, leading to mis-classification

rates between 65 % - 100 % even when shadows were included during model calibration. The

exclusion of shaded areas from model calibrations increased the predictive accuracies (espe-

cially in terms of sensitivity), decreasing false positives. Spectral and 2D textural information

showed generally higher performances and improvements when excluding shadows from the

analysis. Shadows significantly affected the model results obtained with any of the variables

used, hence the exclusion of shadows is recommended prior to model calibration. This rela-

tively easy pre-processing step enhances models for classifying species occurrences using high

resolution spectral imagery and derived products. Finally, a shadow simulation showed dif-

ferences in the ideal acquisition window for each species, which is important to plan revisit

campaigns.

3.2 Introduction

Invasive plant species can alter ecosystem functioning and services, causing loss of biodiversity

(Binggeli, 1996) and water availability (Little et al., 2015), alterations in primary production

and shifts in the N- and C-cycle (Vilà et al., 2011). Worldwide annual economic losses caused

by biotic invasions are estimated to be one order of magnitude higher than those caused by all

natural disasters together (Ricciardi et al., 2011). Mapping the arrival and spread of invasive

species is hence crucial for risk assessments and to enable their control and eradication Rocchini

et al. (2015).

Remote sensing has been used to map invasive species occurrences in space and time, usually

by combining field measurements with satellite or airborne data (e.g. see reviwe of Huang

and Asner, 2009). Recently, Unmanned Aerial Vehicles (UAVs) have been used to map the

occurrence of invasive plant species. One advantage of UAVs is that they allow for flexible ac-

quisitions of very-high resolution imagery. This is important for early and accurate prediction of

invasive species occurrences (e.g. Cao et al., 2018; Baena et al., 2017). Such UAV approaches

are especially suitable to: 1) understand the invasion dynamics and processes at local scale

through repetitive acquisitions, and 2) to derive reference data for large-scale satellite-based
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mapping of the invasions (Kattenborn et al. submitted). General benefits of UAV-based sensing

include the possibility of optical data acquisition under cloudy conditions (e.g. de Sá et al.,

2018) and the generation of orthomosaics that allows the comparison of temporal images com-

prising similar view angles (contrary to satellite-based high-resolution imageries were temporal

data often differ in view angles; Anderson and Gaston (2013)). Meanwhile, disadvantages of

UAV-based sensing include their relatively small area cover and the relatively low radiometrical

quality of the sensors (Hruska et al., 2012). UAV-based invasive species mapping has yielded

high accuracies using different data types, like RGB or VNIR information (Michez et al., 2016;

Alvarez-Taboada et al., 2017; Baena et al., 2017; Mafanya et al., 2017; Cao et al., 2018; de Sá

et al., 2018), hyperspectral data (Cao et al., 2018) or 2D textural (Michez et al., 2016; Cao

et al., 2018) and 3D structural Kattenborn et al. (2014); Franklin et al. (2017) information de-

rived from photogrammetric algorithms.

The development of user-friendly photogrammetric software with Structure-from-Motion (SfM)

capabilities makes the processing of UAV data attractive for natural management practitioners

with basic knowledge in geomatics. These SfM algorithms resolve the alignment of camera

positions, which allows to generate orthorectified aerial imagery and 3D models without the

allocation of ground control points (Westoby et al., 2012). Most studies that used such UAV

products focused on mapping a single species using one or a few of the abovementioned data

types. However, a detailed comparison of data types for more than a single species is still

missing. Such a study is relevant to assess the consistency of UAV-based invasive mapping

requirements.

The extremely high spatial resolution and acquisition flexibility of UAV data offers new op-

portunities but also challenges. One drawback of very-high spatial resolution imagery is the

increase of spectral within-class variability caused by canopy structure and shadows, which of-

ten hamper the separability of classes in pixel-based studies (Lopatin et al., 2017). Shadows

result from the obstruction of light, causing a decrease of reflectance. In vegetation areas, cast

shadows receive diffuse radiation (mostly Rayleigh scattering) from light scattered within the

atmosphere or surrounding objects (Gu and Robles-Kelly, 2014). In practice, shadows can lead

to either a reduction or a total loss of the spectral signal of a canopy (Zhang et al., 2015), affect-
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ing the success of classification tasks (Saha et al., 2005; Liu and Yamazaki, 2012). Therefore,

careful consideration regarding acquisition time of the day is particularly important, as during

some parts of the day shadows can cover a large part of the area of interest (Milas et al., 2017).

Many approaches have been developed to reduce the effects of shadows and improve classifica-

tion performances. For instance, increasing pixel size has been found to be helpful to decrease

within-class variability, usually improving classification performances when an ideal relation

between pixel and crown size is obtained (Nagendra, 2001). This ideal relation obviously de-

pends upon the crown size and the canopy closure of the investigated species or ecosystems and

can vary widely. Likewise, object-based analysis have been used to decrease the spectral vari-

ance at individual level (e.g. one spectral value per individual crown), obtaining in some cases

higher classification performances than pixel-based approaches (Yu et al., 2006). However, ob-

taining a meaningful delineation of tree crowns is often challenging, especially for closed and

overlapping canopies and in the presences of shadows (Nevalainen et al., 2017). Deep learn-

ing may also cope with shadows by using the shadows as additional species-specific structure

information. Nevertheless, deep neural networks usually need a large amount of training data

which could hamper their use for practical applications with limited field data (Dyrmann et al.,

2016). Other alternatives to address shadow effects are shadow correction methods, which con-

sist in the radiometric enhancement of shaded pixels usually based on information extracted

from neighbouring non-shadowed regions (empirical models; Singh et al., 2012) or on incident

light sensor information (physical methods; Sismanidis et al., 2014). Yet, these methods may

introduce noise and aberrations to the radiometrically corrected areas (Sismanidis et al., 2014)

that could hamper class separability of spectrally similar classes, such as different plant species.

This may be one reason why these methods have so far been mostly applied in urban contexts,

where the class interfaces are often comparably clear.

In summary, averaging or smoothing the spectral information of adjacent pixels may improve

classification performances, but at the risk of excluding meaningful variance of the target

species’ spectral signal due to canopy architecture. For these reasons, the use of only sunlit

canopies for pixel-based species classification may be a suitable alternative to decrease within-

class variability by excluding the undesirable information given by shadows, while keeping
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important variations related to canopy architecture. Whilst earlier UAV-based studies have

reported negative influences of shadows in invasive species mapping (Franklin et al., 2017;

Müllerová et al., 2017; de Sá et al., 2018), it is still uncertain whether or not the exclusion of

shadows from the training data improves the UAV-based mapping results.

Hence, the main aim of this investigation was to assess the effects of shadows on the occurrence

predictions of the woody species Acacia dealbata, Ulex europaeus and Pinus radiata using

different combinations of spectral, 2D textural and 3D structural UAV-based data in central-

south Chile. This aim is embedded in the overarching effort to develop a UAV-based work-flow

to map individual target species with a minimum amount of training data and with possibly high

accuracies for subsequent ecological analysis. We further investigated by means of simulations

the role of the species-specific canopy structure in the production of daily shadows. This is

important to assess ideal UAV acquisition periods and revisits.

3.3 Materials and methods

The applied workflow consisted of six steps: 1) first, remote sensing data were acquired using

unmanned aerial vehicles (UAV) in three different areas. Each area hosted one of the inva-

sive species along with native woody species; 2) then, canopies of the invasive species were

manually delineated by visual interpretation of the UAV data to create training and validation

data; 3) shadows occurring inside the canopies were identified using an automatic approach; 4)

independent variables were created from the UAV data, to create the datasets needed for mod-

eling (MaxEnt); 5) MaxEnt models were trained to estimate relative likelihoods of occurrences

of each invasive species. Results in sunlit and shaded canopy areas were compared to assess

the relative effects of shadows in the classification performances; 6) finally, simulations were

carried out to assess the effect of day-time and species-specific canopy shape on the quantity of

shadows occurring in the corresponding canopies.

3.3.1 Study sites and target species

Central-south Chile is considered a world’s biodiversity hotspots (Myers et al., 2000), harboring

a high level of endemism because of its geographical isolation. Furthermore, in central-south
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Chile, species from the sclerophyll forest ecosystems of the North and the deciduous Nothofa-

gus forests in the souths are co-occurring which leads to a particularly high biodiversity. This

biodiversity is threatened by diverse biotic and abiotic factors, including pronounced land-use

changes occurring over the last decades but also invasive species which are global drivers of ex-

tinctions; they compete with native species for resources, and can alter the community dynamics

(Binggeli, 1996).With the arrival of the colonists, areas formerly cover by native forests and/or

shrublands were cleared for agriculture and silviculture purposes, causing the introduction of

several European and Oceanic invasive plants (Holmgren and Persson, 2004). We studied the

presence of three woody invasive species, Pinus radiata, Ulex europaeus and Acacia dealbata,

in three study areas including the ‘Maule’, the ‘Biobio’ and the ‘Los Lagos’ regions (Figure

3.1). P. radiata was introduced in the Maule region for timber production (Clapp, 1995), while

U. europaeus was introduced as a hedge plant to contain livestock (Norambuena et al., 2000).

Finally, A. dealbata was introduced for ornamental purposes (Fuentes-Ramírez et al., 2011).

These species have been found to be very noxious worldwide, but particularly in South Amer-

ican countries (Chile, Argentina and Brazil; Richardson et al., 2014), causing serious losses

in biodiversity and affecting water supply (Little et al., 2015). Here, the three invasive species

dominantly occurred in different parts of central-south Chile. We decided to use more than a

single target species to develop an understanding of the reliability and stability of the proposed

methods (Figure 3.1). All of the targeted species are suspected to endanger both native flora

and fauna.

3.3.2 UAV data acquisition and derivation of presence data for the target species

We performed one UAV flight for each study site using an octocopter (Okto-XL, HiSystems

GmbH, Germany). Flights were carried out in March, November and December 2016 for P.

radiata, U. europaeus and A. dealbata, respectively, partly overlapping the flowering season for

A. dealbata and U. europaeus. The octocopter was equipped with two optical sensors: an RGB

standard consumer-grade camera (Canon 100D, 28 mm focal length, 5196 × 3464 pixels) and a

snapshot hyperspectral camera (OXI-II, Gamaya, Switzerland) with 41 spectral bands ranging
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from 450 to 950 nm and a 10 nm bandwidth. The flight plans aimed for an average of 90 % of

forward and 70 % of sideward overlap for both sensors at 150 m above ground.

Photogrammetric point clouds, digital surface models (DSM) and orthomosaics were obtained

for both sensors using a standard Structure-from-Motion (SfM) pipeline (Agisoft Photoscan,

Agisoft, Russia; Kattenborn et al., 2018b). The point cloud densities was at average ∼1,000

points/m2 while the selected pixel size for the final digital surface models (DSM) and RGB

and hyperspectral orthomosaics were ∼0.1 m. The point cloud was filtered using TreesVis

(Weinacker et al., 2004) to ensure uniform spaces between points of ∼0.03 m. The correspond-

ing Agisoft photoscan parameters can be found in Table S1. The UAV GPS trajectory logged

during the flights were used to automatically georeference the tiles during the SfM workflow.

Finally, hyperspectral reflectance data were obtained by calibrating the raw data with a refer-

ence panel with known reflectance, placed in the field during the flights. The final coverage of

the acquired scenes were ∼7, 18 and 37 hectares for U. europaeus, A. dealbata and P. radiata

respectively.

Costs for assessing the invasion status of a species via field sampling are usually high and may

lead to biased results (Cacho et al., 2006; Kaplan et al., 2014). Instead of field sampling, we

hence used the UAV orthomosaics to manually delineate all occurring canopies of the target

invasive species (presences) in each flight (Figure 3.1). The canopy characteristics of the ex-

amined target species differed clearly in terms of their structural and spectral (e.g. flowering)

properties to the native vegetation which enabled reliable delineations.

3.3.3 Shadow detection

All shadows occurring inside the manually delineated invasive species canopies (section 2.2.)

were determined using an RGB-based histogram thresholding, which gives relative high accu-

racies while being straightforward to implement (Adeline et al., 2013). The thresholds were

derived by visual interpretation (e.g. Adeline et al., 2013); where values below 80 digital num-

ber (DN; from a range of 0-255 DN; ∼30 % reflectance) of the red band showed a reliable

separation between sunlit and shaded canopies for the three species. Shaded areas accounted
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Figure 3.1: (A) Study areas in central-south Chile. (B–D) show the UAV-based RGB imageries. Blue polygons
indicate the presence of the invasive species.

for ∼20 % of the invasive species canopies in all cases. Sunlit canopies were obtained by ex-

cluding the shaded areas from the delineated target species canopies.

3.3.4 Derivation of independent variables from the UAV data

Two types of spatial textural metrics were obtained from the RGB products: 1) a set of 2D

texture layers based on the gray-level covariance matrix (GLCM; mean, variance, homogeneity,

and entropy), and 2) a set of 3D structure layers derived from a multi-scale analysis of the

photogrammetric point cloud (Brodu and Lague, 2012). Each metric type was calculated in

10 different spatial scales ranging from 0.25 to 4 m window size (using a 0.25 m and 0.5 m

step between 0.25 m - 1 m and 1 m - 4 m, respectively). The different scales were chosen to

derive information from both branch- and canopy-level. The GLCM indices were obtained by

applying a moving window approach where each pixel was assigned with the above-mentioned
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Table 3.1: Datasets for each invasive species. Texture corresponds to the GLCM variables while Structure corre-
sponds to the CANUPO 3D variables. All datasets were tested at ∼0.1 m pixel size.

# Model Datasets included (number of variables) Model abbreviation

1 RGB (3) rgb

2 Hyperspectral (41) hyper

3 Texture (40) text

4 Structure (10) struct

5 Structure + Texture (50) structtext

6 Structure + RGB (13) structrgb

7 Structure + Hyperspectral (51) structhyper

8 Texture + RGB (43) textrgb

9 Texture + Hyperspectral (81) texthyper

10 Structure + Texture + RGB (53) structtextrgb

11 Structure + Texture + Hyperspectral (91) structtexthyper

metrics of the neighbouring pixels using the original RGB images at a spatial resolution of

0.1 m. The 3D structure algorithm processed principal component attributes at different spatial

scales (3D neighborhood) for each point in the photogrammetric point cloud, representing the

local dimensionality characteristics (shape and density) of the canopy (CANUPO algorithm;

Brodu and Lague, 2012). Metrics calculated form the point clouds were rasterized (0.1 m pixel

size) to facilitate the analysis. The R-package ‘glcm’ was used to create the GLCM, while the

CANUPO toolbox along with LAStools and Python 3.6 were used to create the 3D structure

raster components.

In total, we created eleven datasets by combining layers of spectral (i.e. RGB and hyperspec-

tral), 2D textural and 3D structural information (Table 3.1). RGB and hyperspectral data were

not combined as they contain redundant information.

3.3.5 Modeling and validation

We used the maximum-entropy (MaxEnt) classifier (Phillips et al., 2006) to model the occur-

rence of the invasive species for each UAV dataset. MaxEnt is a one-class classifier that uses

presence (labeled) and background (unlabeled) data to create a relative likelihood distribution
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(between 0 and 1) of the invasive species. MaxEnt has shown reliable results with remote sens-

ing data (Mack et al., 2016; Skowronek et al., 2017a; Stenzel et al., 2017). From an operational

point of view, the application of MaxEnt is very promising, as the delineation of training data of

unwanted classes (e.g. other tree species, bare ground and water bodies) are not required during

modeling, which notably decreases pre-processing or sampling efforts. In each study area, 500

presence samples were selected by randomly sampling pixels inside the delineated polygons of

the invasive species crowns, while 2,000 backgrounds pixels were randomly sampled from the

whole area. We used the R-package ‘dismo’ with default setting for the MaxEnt modeling.

To test how the 11 UAV-based independent variables (Table 3.1) were influenced by the presence

of shadows, two types of models were tested: 1) MaxEnt models calibrated using all available

presence data, including pixels of sunlit and shaded canopies, and 2) MaxEnt models calibrated

using only presence data of sunlit canopies.

A variable selection was applied to each model. Variable selection minimizes the chances of

overfitting (Merow et al., 2013) and enhances model transferability (Duque-Lazo et al., 2016).

First, MaxEnt classifications using all available variables were performed using a 10-fold cross-

validation. Then, the variables that obtained a permutation importance < 5 % were dropped.

Finally, from the remaining variables only the variables with shared correlations r < 0.8 were

kept, while in case of correlation r > 0.8 the variable with higher permutation importance was

considered. The particular method applied here was selected due to its lower CPU processing

time compared to iterative methods (Jueterbock et al., 2016).

An iterative validation based on stratified bootstrapping (Kohavi, 1995) was used to obtain the

distribution of model accuracies and rel. likelihood predictions that enable the estimation of

significant differences among models. The model performances were evaluated for sunlit and

shaded canopies separately. We used a stratified bootstrapping procedure with 100 repetitions.

In each repetition, we randomly selected samples with replacement for the presence and back-

ground datasets, while we used the samples that were not selected in both cases (∼36 %) as

holdout samples for validation. We evaluated the model performances in terms of area under

the curve (AUC), Cohen´s Kappa, sensitivity (true positive rate) and specificity (false positive
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rate). We selected the thresholds for Kappa, sensitivity and specificity according to the values

of maximum Kappa and (sensitivity + specificity), respectively.

We used a one-sided bootstrap pair test to check for significant differences (α = 0.05) in the

obtained accuracy (AUC, Kappa, sensitivity and specificity) between models. We specifically

tested if: 1) models performed significantly better in sunlit canopies than in shaded canopies;

2) models excluding shaded canopies in calibration performed significantly better in sunlit ar-

eas than models including shadows in calibration; 3) models including shadows in calibration

performed significantly better in shaded areas than models excluding shadows in calibration;

4) models including spectral, 2D textural and 3D structural information performed significantly

better than one variable type alone. This bootstrap test has been applied in earlier studies fol-

lowing similar approaches (Lopatin et al., 2016; Castillo-Riffart et al., 2017; Araya-López et al.,

2018).

3.3.6 Species occurrence maps

Relative likelihood prediction maps of the invasive species occurrences were obtained by es-

timating the median value of the 100 bootstrap iterations per pixel. We further estimated the

coefficient of variation (CV) of each pixel as a measure of model stability during bootstrapping,

where pixels with low CV denote higher predictive stability. Finally, binary maps of the invasive

species presence were produced by using the median predicted likelihood maps and applying

the median threshold value according to Kappa.

3.3.7 Shadow fraction simulation analysis

Species-specific canopy architecture influences the way species interact with light and hence

their reflectance (Kattenborn et al., 2018a). The fraction of shadows is highly dependent on the

sun-angle during the acquisition of optical remote sensing data. Understanding the dynamics

of shadow fractions in the acquired images as a function of the sun angle is hence important

to assess the potential effects on classification accuracies and to plan optimal data acquisition

windows accordingly. This is particularly interesting for UAV applications which allow for a

comparably flexible selection of the acquisition times.
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To model how the 3-dimensional canopy architecture of the three examined species influence

the production of shadow fractions throughout the course of a day, we simulated the shadows

using the ∼0.1 m DSMs of the study areas. Here, we varied the solar elevation and azimuth

of beginning, middle and end of the 2017-2018 summer season along a daily period between

09:00 hrs - 18:00 hrs. We masked out all the canopies that did not correspond to the studied

invasive species to exclude the effects of the neighbouring canopies. We used the R-packages

‘insol’ and ‘suncalc’ for the analysis.

3.4 Results

3.4.1 Model performances and independent variable selection

The accuracies of the models based on all presence samples (sunlit + shadows) and only sunlit

canopies are summarized in Figure 3.2, while Table 3.2 shows the occasions where each model

performed significantly better in sunlit areas than in shaded areas. Overall, model accuracies

in terms of Kappa were significantly higher in sunlit canopies compared to shaded areas in

almost all cases. Moreover, the accuracies in sunlit canopies improved when excluding shaded

samples from the calibration data. Inaccurate classifications were found in shaded canopies even

when shadows were included in calibration; presenting median Kappa values < 0.3, uneven

performances of sensitivity and specificity, and coefficient of variation (CV) values near 100%

for Kappa and specificity (Figure S1). Concurrently, AUC values remained high in the shadow

areas, showing less sensitivity to the effects caused by shadows than Kappa. Classification

accuracies were higher for A. dealbata than for P. radiata and U. europaeus.

Models including RGB information improved significantly (α = 0.05) when excluding shadows

from the calibration data, while hyperspectral, 2D textural and 3D structural data alone did not

vary significantly among model types (Figure 3.2). Sensitivity and specificity were found to

vary more than AUC and Kappa, presenting few stable significant differences among model

types. When using one type of independent variable, spectral information outperformed 2D

textural and 3D structural information in most cases in terms of Kappa: RGB was found to be

the best single option for A. dealbata while hyperspectral information was the best variable for
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Figure 3.2: Model performances for sunlit (a) and shaded (b) canopies using models that include (incl.) and ex-
clude (excl.) shadows in the calibration data. The median iterative values are presented, with dot size
scaled to the values. A.d. = Acacia dealbata; U.e. = Ulex europaeus; P.r. = Pinus radiata. ∗ depicts
significant (α = 0.05) improvements of the models: (a) shows significant improvements of mod-
els excluding shaded canopies. Contrary, (b) shows significant improvements of models including
shaded canopies.
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U. europaeus and P. radiata. The worst type of independent variable for A. dealbata and U.

europaeus was the structural information while for P. radiata it was RGB. When combining

multiple types of independent variables, the best data combination for A. dealbata and P. ra-

diata was RGB + texture + structure. For U. europaeus the best combination of independent

variables was hyperspectral + texture + structure. Only for U. europaeus the use of a single

variable type (i.e. hyperspectral) resulted in higher performances compared to the combination

of independent variable types. Significant differences between the use of the best single inde-

pendent variables and the best combination of variables were obtained for U. europaeus and P.

radiata in terms of Kappa. Only A. dealbata and U. europaeus showed significant differences

among variable types in terms of sensitivity and specificity, respectively (Figure S2).

When combining hyperspectral, 2D textural and 3D structural information the variable impor-

tance (assessed by permutations of MaxEnt) was higher for spectral and 2D textural information

than for 3D structural information (Figure 3.3). Nonetheless, for P. radiata the importance of

3D structural information was higher than for the other species. In most cases, 2D textural

information obtained at canopy-level (1 m - 4 m window size) were more important than in-

formation obtained at branch-level (0.25 m - 1 m window size), except for U. europaeus which

also selected branch-level variables. In all cases 3D structural information was only relevant at

canopy scales.

3.4.2 Model predictions

The predicted rel. likelihood values using different independent variables (Figure 3.4) indicate

good performances of the spectral information for identifying A. dealbata and U. europaeus.

Predicted patterns improved for P. radiata when combining spectral, 2D textural and 3D struc-

tural information. All models had a general tendency towards overpredictions.

In Figure 3.5, examples of the predicted rel. likelihood based on the best models according to

Kappa are displayed. Models where shadows were excluded during calibration obtained higher

contrasts between the target species (higher median and lowed CV rel. likelihood values) and

the rest of the scene (lower median and higher CV rel. likelihood values). However, models cal-

ibrated using only sunlit canopies resulted in occurrence maps with a higher amount of canopy
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Figure 3.3: Variable importance based on MaxEnt permutation for the models including and excluding shaded
canopies in the calibration data. Median and standard deviation values of the iterative validation are
represented by barplots and error bars, respectively.
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Figure 3.4: Relative likelihood predictions using different independent variables. Models including and exclud-
ing shadows during calibration are presented.

gaps (pixels with low rel. likelihood), corresponding to areas with shadows. Hence, mod-

els excluding shadows from the calibration data also yielded high false negative rates (lower

specificity). The exceptions were models based on 2D textural information, which due to their

multi-level window sizes were able to fill the canopy gaps (Figure 3.4).
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Figure 3.5: Comparison of species occurrence maps between models including and excluding shaded canopies
in the calibration data. Models presented: A. dealbata and P. radiata = strcttextrgb, U. europaeus =
hyper.

The relative likelihood, obtained in the shadowed areas by models including shaded canopies

in the calibration data, was predominately lower than the Kappa threshold. Hence, binary pres-

ence/absence maps also presented large amounts of false negatives. The amount of false neg-

atives (i.e. presences falsely predicted as absence) inside the invasive species crowns ranged

between ∼20% and ∼13%, which corresponded to ∼100% and ∼65% of the shadow areas for

the models excluding and including shadow during calibration, respectively. Likewise, false

positives outside the target crowns decreased by ∼17 % when excluding shadows during cali-

bration (e.g. Figure 3.5 blue circles). This can be seen in the increase of sensibility of almost

all models when excluding shadows from the calibration data (Figure 3.2a). Finally, the total

amount of area covered by the invasive species canopies according to the binary maps of the

models excluding shadows were ∼27 %, 29 % and 30 % for A. dealbata, U. europaeus and P.

radiata respectively. Models including shadows during calibration tended to overestimate the

invasive species presence’s with ∼5 % in all three species.

3.4.3 Shadow fraction simulation analysis

The simulations using the digital surface models (DSM; Figure 3.6) showed that the optimal

acquisition window (here defined as less than 20 % shadows) varied among the considered
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species: U. europaeus and P. radiata obtained the longest and the shortest optimal acquisition

period, respectively. The simulated proportion of shaded crowns during the course of the day

(Figure6c) confirms that P. radiata’s canopies are shaded during a large portion of the day, while

U. europaeus canopies are mostly sunlit.

3.5 Discussion

3.5.1 Shadows effects in MaxEnt models

Our analyses show that MaxEnt predicted likelihood values for shaded areas are inaccurate

even when including shaded canopies during calibration (Figure 3.2b). This leads to a general
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decrease of contrast in rel. likelihood between the actual target species canopies and the rest

of the landscape which increases the false positive rate (Figure 3.5). Generally, between 65 %

- 100 % of shaded parts of the target species were wrongly classified as absences. This ∼13 %

- 20 % wrongly classified canopy area could hamper the use of the predicted occurrences for

subsequent ecological analyses, such as the analysis of detailed invasion dynamics or to upscale

the mapping of the invasive species to larger scales via satellite imagery (e.g. Kattenborn et al.

submitted). These errors were comparable to other UAV-based invasive species mapping studies

which obtained user accuracies between 60 % - 95 % (Alvarez-Taboada et al., 2017; Mafanya

et al., 2017; Müllerová et al., 2017; Cao et al., 2018).

Few UAV-based studies discussed the effects caused by shadows on their classification results:

de Sá et al. (2018) found that shadows significantly decreased model accuracies in the detection

of species of the genus Acacia under sunny conditions, while acquisitions under diffuse light

conditions caused by clouds significantly increased classification accuracies due to a reduction

of cast shadows. Nevertheless, cloudy conditions would also decrease the separability of spec-

trally similar classes (Zhang et al., 2015). In contrast, other studies showed that the inclusion

of shadows into the training samples improved classification performances (Milas et al., 2017;

Ishida et al., 2018). However, these classifications involved the separation of classes with less

overlapping spectral signatures compared to the classes considered here. When the separation

of a species from other species with similar spectral characteristics is pursued, the high amount

of intraspecific variance can hamper pixel-based classification performances (Lopatin et al.,

2017).

According to Milas et al. (2017), the amount of detected shadows vary depending on the spa-

tial resolution, which we did not consider in this investigation. We also did not account for

gradients of shadows in our analyses (e.g. Milas et al., 2017), but used a binary classifica-

tion. Nevertheless, from our results (i.e. between 65 % - 100 % of misclassification rate inside

shaded areas) we assume that shadows in general negatively affect the performance of pixel-

based classification algorithms and that should be avoided whenever possible. However, we do

not dismiss the possibility that shadows could at some point enhance classifications when algo-

rithms that efficiently exploit complex neighborhood information are used (e.g. convolutional
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neural networks). This assumption could be supported by the fact that all three species showed

differences in their daily shadow fractions and temporal distributions (Figure 3.6)

The amount of cast shadows could be reduced (and hence the false negative rate) by acquiring

the UAV data at an ideal time. In our simulation exercise, this ideal time was consistently

identified to be around ∼13:00 hrs local time. The shadow simulation performed in our study

sites showed that the width of the optimal temporal acquisition window varied greatly according

to the species-specific canopy characteristics (Figure 3.6). At the spatial scales considered in

this study, U. europaeus usually builds more homogeneous canopies, yielding generally less

shadow fractions in comparison to P. radiata, which depicted the highest amount of shaded

areas during the day (Figure 3.6c). These differences are explained by the canopy architecture

of the species, as the spherical crown shapes from U. europaeus and A. dealbata results in

relatively homogeneous canopy structures when canopies are closed. This leads to generally

low shadow fractions. Contrary, the vertical conical shapes and the star-shape branching pattern

of P. radiata lead to high shadow fractions. Even in high density stands there are relative

distinct height differences between the higher and the lower parts of the neighboring crowns.

Because we were mostly interested in the species-specific shape characteristics of the invasive

species canopies, we did not include the canopies of the native species in the analysis. In highly

heterogeneous interspecific stands such as the one presented in the P. radiata flight, neighboring

species with different canopy shapes and sizes may also influence the shadow fraction of the

general canopy.

In order to minimize shadows and their effects on classification tasks in UAV-based species

mapping applications, species-specific considerations regarding data acquisition are recom-

mended. The approach proposed here to simulate shadows using digital surface models can be

a useful tool to assess the shadow fractions during the course of a day and to plan revisit acqui-

sitions accordingly. The canopy structure of the invasive species also differ from the structure

of the native forests and shrublands. Chilean native forests of the area tend to growth in highly

heterogeneous stands of broadleaf species (e.g. tree species richness between 4 and 30 species

in 225 m2 plots; Lopatin et al., 2016) with many understorey species. On the contrary, woody

individuals in shrublands tend to growth in a scatter manner (Luebert and Pliscoff, 1999). Both
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vegetation types contrast with the clustered growth and relatively uniform canopies of A. deal-

bata and U. europaeus (e.g. Fuentes-Ramírez et al., 2011) and the conical canopy shape of P.

radiata. These characteristics make the selected invasive species suitable for experimentation

with remotely sensed data, as they clearly differ from the native stands in terms of structure and

growth strategy and hence should be comparably easy to detect.

3.5.2 Variable importance

We found that AUC responses were not sensible to the observed negative effects of shadows in

the model predictions, hence we will refer only to Kappa for general tendencies. Our results

show that the best combination of independent variables depends on the target species, and

that shadows significantly affected models using all types of independent variables. Models

including RGB depicted largest improvements when excluding shadows from calibration, while

3D structure varied the least (Figure 3.2a and 5). The models combining RGB, 2D textural and

3D structural information yielded high performances for A. dealbata and P. radiata, maybe

due to the eye-catching silver and dark color of the species leaves respectively (see detailed

subsample of Figure 3.4). This could be advantageous from an operational point of view as the

cost and processing efforts of RGB data are generally lower than for hyperspectral data. This

corroborates the findings of de Sá et al. (2018), which also classified a species of the genus

Acacia (i.e. A. longifolia) with high accuracies using RGB imagery.

Contrary, U. europaeus was mapped with highest accuracies when applying hyperspectral data

alone, which could be due to its rather homogeneous canopy with few structural and hence

textural differences (Figure 3.6c). On the other hand, the 3D structure was particularly relevant

for mapping P. radiata (Figure 3.3). This is because P. radiata have a conical crown shape

that clearly differs from the native broadleaved species (Ishii and Asano, 2010). Contrarily

A. dealbata and U. europaeus have relatively similar crown shapes and structure as the native

flora. The structural specifics of conifer species were found to be well captured in UAV-based

3D structural metrics also in other studies (Franklin et al., 2017).

Generally, the canopy-level information (1 m - 4 m window size) outperformed the branch-level

information (0.25 m - 1 m window size) for both 2D texture and 3D structure variables. This
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indicates that branch characteristics – e.g. branch form, branch orientation and leaf clumping -

are less important than canopy differences. The importance of 2D textural metrics was found

also in other studies (Michez et al., 2016; Lu and He, 2017; Cao et al., 2018). It can be assumed

that, in contrast to information of single pixels (e.g. as for RGB or hyperspectral predictors),

the textural metrics are less affected by small scale variations, since these metrics are based on

larger spatial scales (0.25 m – 4 m). Moreover, it can be assumed that the texture metrics can

even bundle this spatial variation (e.g. small scale variation of sunlit and shaded crowns) in

information that facilitates the classification task.

We found significant performance differences based on the validations in sunlit and shaded

canopies in almost all cases (Table 3.2). This also applied for models trained with only structural

information, indicating that shadows also hampered the creation of the photogrammetric point

clouds (performed in Agisoft Photoscan, Agisoft, Russia). Nevertheless, for spectral variables

(especially RGB) the predicted rel. likelihood differed stronger between models including and

excluding shadows from the calibration than for 2D textural and 3D structural variables (Figure

3.4). This was more pronounced in P. radiata than for the other two species. We assume that

spectral predictors were more affected by shadows in P. radiata, because of its more complex

canopy structure and higher shadow fraction (Figure 3.6c).

For all species we observed false negatives, that were spread in a rather scattered manner (Fig-

ure 3.4). One option to address this issue could be to apply pre- and post-processing techniques,

such as local filters (e.g. clump and sieve operators) and object-based analysis. Object-based

analysis is known to decrease the so called salt-and-pepper effect caused by pixel-based classi-

fications (Yu et al., 2006). This is one reason why many previous UAV-based invasive species

mapping studies have used it. These studies did not considered the elimination of shadows prior

to the allocation of spectral values to the segmented clumps (Alvarez-Taboada et al., 2017;

Baena et al., 2017; Cao et al., 2018). Integrating both sunlit and shaded canopy reflectance

into the segments could hamper the success of classification tasks if shadows are considered as

noise.
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3.5.3 Classification approach

One-class classifiers (OCC) are promising for invasive species mapping as only presence data

of the target species are needed, decreasing field and laboratory work (hence being appealing

for management agencies). MaxEnt is considered to be a robust and transferable OCC (Duque-

Lazo et al., 2016) that yield high performances compared to other OCC algorithms in remote

sensing applications (Stenzel et al., 2017). Because MaxEnt is very CPU demanding (Mack

et al., 2016), especially combined with bootstrapping validation, we reduced CPU processing

time by using a comparable small set of presence/background samples. We used 500/2,000

instead of the sometimes recommended∼5,000/10,000 presences/background samples (Stenzel

et al., 2017). We compared MaxEnt performances for the structtexthyper independent variables

(median accuracies and predictions) using 500/2,000 and 5,000/10,000 presence/background

samples with a 10-fold cross validation for the three species and found no marked differences.

Hence, we assume that the lower number of samples did not affect our result notably in this

study.

3.6 Conclusions

Here, we investigated the effects of shadows on the predicted occurrences of three woody in-

vasive species of central-south Chile using spectral (RGB and hyperspectral data), 2D textural

and 3D structural variables derived from photogrammetry.

We found that shadows significantly affect the results of models trained with all types of vari-

ables. Areas with shadows obtained misclassification rates between 65 % - 100 %, even when

shadows were included during model calibration. Particularly spectral and 2D textural vari-

ables were affected by shadows, leading to inaccurate model predictions in shaded areas and

resulting in an increase of false negative predictions. Accordingly, the use of UAVs for map-

ping invasive plant species benefits from ad hoc pre-processing. The exclusion of shadows

prior to model calibrations improved model predictions in all cases, especially in terms of false

positives. Most accurate and robust results were usually obtained when combining spectral,

2D textural and 3D structural information. The use of hyperspectral instead of RGB data im-
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proved accuracies only for one of the three species (i.e. U. europaeus). Finally, the performed

shadow simulations based on the photogrammetric digital surface models demonstrated that

each species-specific canopy structure result in different shadow fractions during the course of

a day. P. radiata showed a comparably narrow time period with a small shadow fraction. The

rather smooth canopies of A. dealbata and U. europaeus resulted in a longer time span during

the day with smaller shadow fractions. Hence, UAV data acquisitions need careful planning to

minimize shadows and their related problems in species mapping applications. From the results

of this investigation we hypothesize that shadows should not be used during calibration when

pixel-based classifiers are used. Nevertheless, we do not discard the possibility that the negative

effects of shadows on classification results could be reduced by using approaches that include

complex neighborhood information as information (e.g. deep learning). More investigation is

needed to decrease the large amount of false negatives produced by shadows.
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4 Using aboveground vegetation attributes as proxies

for mapping peatland belowground carbon stocks

This paper has been submitted as: Lopatin, J., Kattenborn, T., Galleguillos, M., Perez-Quezada,

J., Schmidtlein, S. (2019). Using aboveground vegetation attributes as proxies for mapping

peatland belowground carbon stocks. Remote Sensing of Environment 231, 111217.

4.1 Abstract

Peatlands are key reservoirs of belowground carbon (C) and their monitoring is important to

assess the rapid changes in the C cycle caused by climate change and direct anthropogenic im-

pacts. Frequently, information of peatland area and vegetation type estimated by remote sensing

has been used along with soil measurements and allometric functions to estimate belowground

C stock. Despite the accuracy of such approaches, there is still the need to find mappable

proxies that enhance predictions with remote sensing data while reducing field and laboratory

efforts. Therefore, we assessed the use of aboveground vegetation attributes as proxies to pre-

dict peatland belowground C stock. First, the ecological relations between remotely detectable

vegetation attributes (i.e. vegetation height, aboveground biomass, species richness and floristic

composition of vascular plants) and belowground C stock were obtained using structural equa-

tion modeling (SEM). SEM was formulated using expert knowledge and trained and validated

using in-situ information. Second, the SEM latent vectors were spatially mapped using random

forests regressions with UAV-based hyperspectral and structural information. Finally, this en-

67



4 Using aboveground vegetation attributes as proxies for mapping peatland belowground carbon stocks

abled us to map belowground C stock using the SEM functions parameterized with the random

forests derived maps.

This SEM approach resulted in higher accuracies than a direct application of a purely data-

driven random forests approach with UAV data, with improvements of r2 from 0.39 to 0.54,

normalized RMSE from 31.33 % to 20.24 % and bias from -0.73 to 0.05. Our case study showed

that: (1) vegetation height, species richness and aboveground biomass are good proxies to map

peatland belowground C stock, as they can be estimated using remote sensing data and hold

strong relationships with the belowground C gradient; and (2) SEM facilitates to incorporate

theoretical knowledge in empirical modeling approaches.

4.2 Introduction

Peatlands are important for the regulation of carbon (C) cycling and store one third of the world

soil C stock (Parish et al., 2008), from which belowground C accounts for ∼95% of the total

peatland C pool (Smith et al., 2004). These are fragile ecosystems and if the conservation of

their peat properties is degraded either due to anthropogenic impact or climate change, they

release accumulated soil C to the atmosphere (in the forms of CH4 and CO2) faster than it is be-

ing sequestered (Fenner and Freeman, 2011). This accelerates the greenhouse effect and global

warming (Phillips and Beeri, 2008; Schaepman-Strub et al., 2008). Although concerns about

the consequences of human-induced changes to the C cycle have generated many international

initiatives to quantify peatland C stocks (Hribljan et al., 2017), the contribution of C stock in

small isolated peatlands in comparison to larger systems is still uncertain (McClellan et al.,

2017).

Remote sensing provides a rapid and economical approach to supplement traditional direct

methods such as coring and probing (Rudiyanto et al., 2018). Frequently, in-situ measurements

include peat thickness, dry bulk density and carbon concentration, which has to be obtained by

laboratory analysis (Dargie et al., 2017), while remote sensing products include the peatland

area and vegetation types. These variables are then used to predict belowground C stock by

applying allometric functions to the obtained vegetation classes. For example, Dargie et al.
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(2017) have used a maximum likelihood classification with radar, optical and DEM-derived

data to classify different land covers including terra firme and peatland classes. Afterwards,

they have used in-situ data to create allometric functions with peat and soil properties as input

to estimate the total C pools of the central Congo basin. Other studies have used remote sensing

to map peatland attributes, such as peat thickness, and derived continuous estimations of be-

lowground C stock by allometric functions using these spatially explicit estimations (Rudiyanto

et al., 2018). Despite the accuracy of such approaches, their application is hampered by high

field and laboratory costs. Hence, linkages between belowground C stock and aboveground

peatland attributes derived by remote sensing, such as vegetation attributes, could be used to

decrease monitoring efforts.

Ecological studies have already established empirical knowledge about linkages between above-

ground vegetation attributes and belowground C stock. For example, vegetation properties such

as aboveground biomass, species richness and plant functional type cover are related to the de-

crease of water-logging and peat mineralization processes in peatlands (Dorrepaal et al., 2005;

Jonsson and Wardle, 2009). The abundance and biomass of certain vascular species have proven

to be good proxies of belowground C stock, while species richness has been shown to be posi-

tively related to soil microbial activity (Chen et al., 2017, 2018; Cong et al., 2014; Lange et al.,

2015) and hence to organic matter decomposition rate (Fenner and Freeman, 2011). Previous

studies have retrieved these proxies in peatlands using remote sensing data directly. For ex-

ample, Castillo-Riffart et al. (2017) and Cabezas et al. (2016) estimated species richness in

anthropogenic peatlands using a combination of satellite optical and textural data, while Turet-

sky et al. (2011) successfully estimated aboveground biomass. Likewise, species composition,

plant functioning and growth forms have been mapped successfully by hyperspectral data with

reasonable accuracies (Harris et al., 2015; Schmidtlein et al., 2012; Schmidtlein and Sassin,

2004).

To assess the relationship between vegetation attributes and belowground C stocks, we propose

to use structure equation models (SEM). SEMs are a family of multivariate methods that allows

the definition of preexisting relationships between variables (expert knowledge). Accordingly,

SEMs are well-suited for hypothesis testing and understanding underlying processes. Further-
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more, SEMs can be constrained using prior knowledge (e.g. causal relationships) of the system

at hand and they thus feature a higher transferability than pure data driven modeling approaches

(Grace et al., 2010).

The main objective of this study was to assess the potential of vegetation attributes as proxies

to predict and map belowground C stock in a small isolated peatland in Chiloé Island, Chile.

First, linkages among vegetation attributes and belowground C stock were investigated using

SEM. Second, we combined hyperspectral and photogrammetric information derived from an

Unmanned Aerial Vehicle (UAV) to spatially extrapolate the previously selected vegetation at-

tributes with random forests regressions. Finally, we fed the SEM with the random forests

extrapolations to obtain the belowground C stocks maps.

Using this general setup, we addressed the following research questions:

• Does the structural equation model outperform a purely data-driven random forests ap-

proach?

• Which mappable aboveground vegetation attributes are reliable indicators of below-

ground C stocks?

4.3 Materials and methods

4.3.1 Study site

The study site is an anthropogenic acidic peatland located at the FLUXNET site Senda Darwin

Peatland (CL-SDP; 418520 S, 738400 W) in the north of Chiloé Island, in the Los Lagos region

of Chile (Figure 1a,b). This peatland was formed due to the burning of a temperate rainforest,

which produced a poorly drained soil that was later colonized by moss species of the genus

Sphagnum (Díaz et al., 2007). The belowground C stock of this peatland were estimated as

∼11.56 ± 1.57 kgm−2 (Cabezas et al., 2016).

The study area is about 16 ha and covers two types of land use (Figure 1b): a conservation area

(∼5.5 ha; southern part of the area) which has been protected and used for scientific investi-

gations for the last 20 years, and a managed area (∼10.5 ha; northern part of the area) where
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Figure 4.1: (a) Location of the study area in Chile; (b) UAV false color composite (R = 765 nm, G =665 nm, B
= 565 nm) of the study area with plot locations scaled with the measured belowgroundC stock (blue
points). The dashed line shows the border between the conservation area (bottom) and the managed
area (upper); (c) detailed sampling design.

Sphagnum mosses are artisanally harvested for commercial purposes (∼10 kg of dry moss per

month) and for grazing of four oxen (see Cabezas et al. (2016) for a full description of the area).

The floristic composition of the area is dominated by Sphagnum magellanicum, but also by the

bryophytes Dicranoloma imponens and Campylopus introflexus. These species can be found

in sites affected by water logging. With less water availability, dominant graminoids species

are Danthonia chilensis, Schoenus rhynchosporoides and Uncinia tenuis. On poorly-drained

and water-saturated areas dominant species are Juncus procerus, Juncus planifolius and Juncus

stipulatus. Common forb species are Anagallis alternifolia, Centella asiatica and Lotus pe-

dunculatus, while common shrub species are Baccharis patagonica, Gaultheria mucronata and

Myrteola nummularia (list of species in Appendix A of Cabezas et al., 2016).

4.3.2 In-situ / reference data

A vegetation assessment was conducted between January and April 2014, in which 36 plots

were established in a systematic grid with 60 m × 60 m spacing. Each plot was a 2 m × 2 m
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quadrat where the species presence, cover, biomass, vegetation height, soil depth and the C

stocks were estimated.

Species coverages were obtained by averaging visual estimates of two observers. The biomass

and C reservoirs were divided into two type of stocks: the aboveground stock included the vas-

cular flora growing on the substrate, and the underground stock included the peat, live moss, de-

bris (fine and coarse) and buried trunks (remnants from burning the forest). A detailed descrip-

tion of the sampling methods is presented in Cabezas et al. (2016); the aboveground biomass

stock for each plot was estimated by harvesting the vascular flora in a 0.25 m2 sub-plot located in

the center of the plot. Belowground C stock, consisting of peat, living moss, woody debris (fine

and coarse) and buried burnt trunks, were sampled using a peat profile sampler (Eijkelkamp,

Giesbeek, Netherlands) at the central point of the plot (Figure 1c). Soil and aboveground C

stocks were dried at 70 °C for 72 h to obtain the weight and density of the material, and to es-

timate their values in kgm−2. Five composite samples were generated from random sampling

points to obtain the C fraction for each stocks (Cabezas et al., 2016). From these composite

samples a sub-sample of 10 g was extracted, ground mixed and processed in an elemental an-

alyzer (NA2500, Carlo Erba, Milan, Italy). Soil depth was measured by summing up all these

composites.

4.3.3 UAV data acquisition

Hyperspectral data were collected in February 2016 using a UAV (octocopter) based on NAZA-

M V2 flight controller (DJI, Shenzhen, China). The UAV carried two small snapshot mosaic

cameras (Gamaya, Lausanne, Switzerland), one covering the visible spectral region (VIS) with

16 bands and the other the near-infrared (NIR) spectral region with 25 bands. The flight plan

aimed for an average of 80 % of forward and 70 % of sided overlap, and an altitude of 100 m

above the ground. The image frames were processed in a Structure-from-Motion (SfM) pipeline

(Agisoft Photoscan, Russia) to obtain a single hyperspectral brick of 41 bands (450 mn - 950 mn

and 10 nm bandwidth) and a point cloud with elevation information (Kattenborn et al., 2018b;

Lopatin et al., 2019). Reflectance data were obtained by calibrating the raw hyperspectral data

with a reference panel with known reflectance placed in the field during the flight. The resulting
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pixel size of the hyperspectral orthomosaic was ∼0.1 m while the point cloud densities resulted

in ∼1,000 points/m2 (i.e. an average of 1 point every 0.003 m).

The height values of the point cloud were transformed from meters above sea level to meters

above the ground using TreesVis (Weinacker et al., 2004). Retrieving absolute vegetation height

information from SfM-based point clouds can be challenging in peatlands as there is a low

chance that points representing the terrain will be reconstructed (Mercer and Westbrook, 2016).

As we considered peat as part of the belowground stocks, only vascular vegetation height was

measured. We used the measured in-situ vascular vegetation height to correct for possible shifts

in the SfM-based elevations. A bilinear interpolation was applied to the average height values

of the point cloud falling inside the plots using the average plot measurement as targets. The

vegetation height accuracy resulted in root mean square errors (RMSE) of ∼0.02 m.

Finally, both hyperspectral data and the point cloud were georectified with bilinear interpola-

tion using a Pleiades panchromatic image (0.5 m × 0.5 m) collected on January 28, 2014. We

selected 23 steady features (e.g. tree crowns and corners of an elevated footbridge located in

the conservation area) as ground control points. The positional accuracy resulted in RMSE of

∼0.40 m. Moreover, we placed markers without georeference in the corners of all 36 plots to

make the plots directly visible from the hyperspectral orthomosaic. From the 36 plots, only 31

were finally visible in the orthomosaic. Unseen markers were located mainly in the conserva-

tion area, where the visibility was hampered by the high shrub biomass. For plots where the

markers were not visible in the orthomosaic, we retrieved the spectral and vascular vegetation

height information from the GPS position, assuming the small level of errors added to the data.

4.3.4 Selected aboveground vegetation attributes

We reviewed the literature to determine the main vegetation characteristics related to peatland

belowground C stocks. We used this information to develop a structural equation model that

assimilates this knowledge into a network of multivariate interactions, which were trained with

and tested against our data.

The key aboveground vegetation characteristics influencing belowground C stocks were re-

lated to the decrease of water-logging and peat mineralization, which are causing the decline
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of Sphagnum cover and promoting the colonization by vascular plants. Hence, these character-

istics relate to processes that alter belowground fluxes and gas-exchanges, resulting in a slow

decrease in C stocks. Moss species (mainly Sphagnum spp) exude inhibitory polyphenol com-

pounds by the rhizoids that increase the accumulation of belowground C due to a low decom-

position rate of organic matter (i.e. the decomposition rate is lower than the accumulation rate;

Fenner and Freeman, 2011). On the contrary, vascular plants tend to stimulate belowground

microbial activity through increased labile carbon, accelerating the decomposition rate of the

organic matter. This is followed by an expected alteration of soil nutrient content, pH condi-

tions and a water table that further reinforce the vascular plant colonization. This will cause

the decrease of peat abundance and eventually belowground C stocks (Fenner and Freeman,

2011). For this reason, the cover and biomass of growth forms (i.e. bryophytes, graminoids,

forbs and shrubs) and certain vascular species have been shown to be proxies for the C stocks

(Dorrepaal et al., 2005; Ma et al., 2017). Likewise, a higher plant diversity has been demon-

strated to increase rhizosphere C inputs and belowground microbial activity (Chen et al., 2017,

2018; Cong et al., 2014; Lange et al., 2015), hence increasing the organic matter decomposition

rate on peatlands (Fenner and Freeman, 2011).

Following these relations, we selected four aboveground vegetation characteristics from the lit-

erature related to belowground C stocks that can be estimated from remote sensing data with

moderate accuracies: vegetation height (Rudiyanto et al., 2018), species richness (Castillo-

Riffart et al., 2017), aboveground biomass (Turetsky et al., 2011) and the assemblages of vas-

cular species communities or floristic gradients estimated by an ordination algorithm (Non-

metric Multidimensional Scaling, NMDS, see Supplementary data; e.g. Schmidtlein and Sassin

(2004). The range observed for these variables and their indicators are presented in Table 1.

Furthermore, we included soil depth as a key intermediate mediator (Akumu and McLaughlin,

2014).
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Table 4.1: Plot-based variables included in the modeling.

Variables Indicators (unit) Min Mean Max

Vascular vegetation

height
Vegetation height (cm) 2.83 30.3 130.55

Floristic composition NMDS 1 -0.78 0 1.18

NMDS 2 -1.13 0 0.71

NMDS 3 -0.66 0 1.13

Vascular aboveground

biomass
Shrub biomass (kgm−2) 0 0.38 5.36

The sum of graminoid, forb and fern biomass (kgm−2) 0.03 0.13 1.86

Vascular species

richness
Shrub richness (N) 0 4 7

Graminoid richness (N) 0 1.81 4

Forb richness (N) 0 1.43 5

Ferns richness (N) 0 2.01 5

Soil depth

The sum soil depth of peat, live moss, debris (fine and

coarse) and buried trunks (remnants from burned forest)

(cm)

18.5 38.47 91

Belowground C

stocks

The sum carbon stocks of peat, live moss, debris (fine

and coarse) and buried trunks (remnants from burned

forest) (kgm−2)

3.07 11.4 24.91

4.3.5 Algorithms used

4.3.5.1 Random forests

The ensemble regression tree method random forests (RF; Breiman, 2001) has been reported

to be an efficient regression algorithm when the numbers of observations is comparably low in

relation to the number of predictors (Svetnik et al., 2003). RF requires two parameters to be

set: 1) mtry, the number of predictor variables used for the data partitioning at each split and

2) ntree, the total number of trees to be grown in the model run. We set ntree to 500 based

on literature recommendations, whereas mtry was tuned using leave-one-out cross-validation.

The importance of predictor variables was measured by the Gini decrease in node impurity

measure, which is computed by permuting the predictor variables with the out-of-bag data in

the RF validation approach (compare Liaw and Wiener, 2002).
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4.3.5.2 Structural equation modeling

Structural equation modeling (SEM) is a multivariate family of methods that can model a large

number of interactions simultaneously, providing a framework for inferring cause-effect rela-

tionships and estimating direct and indirect relations among variables (Grace et al., 2010).

We used partial least squares path modeling (PLS-PM or PLS-SEM; Tenenhaus et al., 2005), a

non-parametric composite-based SEM, which is mainly used in social science, but has already

shown potential in ecological (Ferner et al., 2018) and remote sensing applications (Lopatin

et al., 2015). PLS-PM is validated at different levels (i.e. loading, weights, R2), and has an

overall model goodness-of-fit (GoF; ranging from 0 to 1, where 1 is a perfect representation)

proposed by Tenenhaus et al. (2005). The significance (α = 0.05) of each interaction and model

outputs were obtained by means of bootstrapping (1,000 iterations).

PLS-PM can create latent variables (LVs) comprised of one or several variables in a supervised

manner. Thus, PLS-PM can create components to separate predictors according to their corre-

lations and reduce overfitting. We used all LVs in reflective mode or type ‘A’ (see Tenenhaus

et al. (2005) for information on the LVs types). The interactions among LVs are explained by

Linear Ordinary Least Squares (OLS). We standardized variables to normalize path coefficients

and intercepts (i.e. turn variables with different raw units into standard deviation units; Grace

and Bollen, 2005). The PLS-PM was tuned using the Cronbach’s alpha index (check for uni-

dimensionality among indicators) and the loading values (correlation within the indicators of a

LV; variables with loadings below 0.5 were dropped).

The theoretical construct of the model is presented in Figure 2 and the indicators used in Table

1. We used Moran’s I index and spatial correlograms to check for spatial autocorrelation on the

residuals of the bootstrapped LVs.

4.3.6 Modeling and validation

Three types of belowground C stocks predictive models were tested (summarized in Figure 3):

1. using random forests and PLS-PM independently with plot-based predictors (Figure 3a);

2. using random forests and PLS-PM independently with UAV-based predictors (Figure 3b);
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Figure 4.2: The hypothesized model for the plot-based PLS-PM. Solid black lines represent expected effects ob-
tained from literature. Examples are (1), (2), (3), (4), (5) and (6) Lawson et al. (2014); (7) Rocchini
et al. (2018); (8) Dorrepaal et al. (2007); (9) and (10) Dorrepaal et al. (2005); (11) and (12) Lange
et al. (2015) and (13) Lawson et al. (2014), Akumu and McLaughlin (2014) and Draper et al. (2014).

3. using a hybrid model combining PLS-PM plot-based information with random forests

UAV estimations (Figure 3c).

In the models depicted in Figure 3 a) and b), PLS-PM and RF were used independently to

compare their performances. For the plot-based models we used the variables presented in

Table 1, while the remote sensing models (Figure 3b) were parameterized with UAV-based

spectral and height information. We applied a brightness normalization (Feilhauer et al., 2010)

to the hyperspectral data to compensate for high heterogeneity in illumination owed due to

the high spatial resolution and a minimum noise fraction transformation (MNF; Green et al.,

1988) algorithm to reduce noise. We selected the first three MNF components (∼99 % of the

original information) for the analysis. The canopy height information was obtained from the

point cloud using FUSION (McGaughey, 2018). The point cloud variables included common

vegetation height metrics, such as the minimum, maximum, mean, median, mode and standard

deviation of the vegetation height (compare Supplementary data for the full list of variables).
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Figure 4.3: Methodological workflow of the predictive models. In (a) and (b) belowground C stocks independent
predictive models using RF and PLS-PM were applied using the plot-based and UAV-based predic-
tors, respectively; and (c) the hybrid models combining the SEM plot-based information with the RF
UAV estimations.

The 3D metrics were rasterized to pixel size of 2 m × 2 m to match the field plots size. The

PLS-PM structural model for the remote sensing estimation is presented in Figure A1.

For the hybrid model c), we trained and validated PLS-PM with plot-based information (Figure

3c i) to find significant vegetation characteristics influencing belowground C stocks and to use

their path coefficients (β ) to build a predictive function (Figure 3c ii) as:
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C =
n

∑
i=1

βi ∗LVi + εi (4.1)

where C is the estimated belowground C stocks, LVi is a significant vegetation LV, βi is the path

coefficient of the LVi, εi is the error and n is the number of significant vegetation characteristics

detected by PLS-PM. We then used RF to extrapolate the selected PLS-PM LV scores using

the UAV-based predictors (Figure 3c iii). Finally, we used equation (1) to predict and map

belowground C stocks using the RF map extrapolations (Figure 3c iv and 3c v respectively).

To avoid overfitting and to assess model accuracy and the map extrapolation stability, all three

types of models (Figure 3a, b and c) were embedded in a bootstrapping procedure with 500 rep-

etitions. In each iteration, 36 observations were randomly selected with replacement from the

36 available samples, from which on average 36.8 % (∼13 samples) were not selected. We used

this observations as holdout samples for the validation (Kohavi, 1995). Model performances

were compared based on differences in the coefficients of determination (r2; calculated as the

squared Pearson’s correlation coefficient), the normalized root mean square error (%RMSE)

and the bias between predicted and observed variables of the holdout samples in the bootstrap.

The normalized root mean square error was calculated as:

%RMSE = (

√
1
n ∑

n
j=1(y j− ŷ j)2

max(C)−min(C)
)∗100 (4.2)

where C is the measured belowground C stocks, while the bias of prediction was measured as

one minus the slope of a regression without intercept of the predicted versus observed values

(Lopatin et al., 2016, 2017).

We applied a one-sided bootstrapping test to check for significant differences (in terms of r2,

%RMSE and bias) among models (Araya-López et al., 2018; Lopatin et al., 2016).We tested for

differences between PLS-PM and RF in the three type of models presented in Figure 3.

Finally, it is worth-mentioning that still in-situ values of belowground C stocks are needed to

calibrate and validate the relationships obtained by the vegetation characteristics. Hence, we

did not obviate soil sampling completely for the analysis. We used the R-packages ‘plspm’
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(Sanchez et al., 2017) and ‘randomForest’ (Liaw and Wiener, 2002) for the analyses, while the

image processing was accomplished using Python 3.6 with the ’Scikit-learn’ (Pedregosa et al.,

2011) and ’Scikit-image’ libraries (van der Walt et al., 2014, scripts available in Appendix C).

4.3.7 Maps

We calculated the median and the coefficient of variation (CV, in percentage, calculated as

CVp = (SDp/mean(C)o) ∗ 100, where CVp is the pixel’s coefficient of variation, SDp is the

pixel’s standard deviation and mean(C)o is the mean belowground C stocks value of all refer-

ence measurements of the 500 predicted belowground C stocks maps produced by the models

in Figure 3b and c during the iterative validation (Araya-López et al., 2018). Pixels with high

CV indicate higher uncertainties of the predictive model, while low values depict areas with

stable predictions.

We masked out areas that were not represented in the plot-based information to avoid predic-

tions outside the training range (non-vegetation: NDVI < 0.3; and areas with presence of trees:

vegetation height > 2 m).

Finally, we used RGB maps of the PLS-PM LV scores extrapolated by RF (Figure 3c iii) to see

the spatial distribution of the plot-based information and support the analysis of the predicted

belowground C stocks gradients. The components were normalized between 0-255 and plotted

with a 20–80 % percentiles linear stretching for visual interpretation of variable interactions.

4.4 Results

4.4.1 Model performances

The PLS-PM plot-based model yielded an overall goodness-of-fit of 0.65. Moran´s I test

showed that LVs (inner models) and their residuals were not significantly affected by spatial

autocorrelation (aboveground biomass: I = -0.02 and P = 0.72; species richness: I = -0.02 and P

= 0.71; soil depth: I = -0.04 and P = 0.42; and belowground C stocks: I = -0.04 and P = 0.41).

Details on the construction of the LVs (outer model) are presented in Table A1. The model

path diagram with significant path feedbacks and total variable importance on belowground C
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Figure 4.4: (a) Resulting PLS-PM model using plot-based information. Arrows represent unidirectional relation-
ships among LVs. Solid and dashed arrows denote positive and negative relationships, respectively.
Arrows with non-significant coefficients (α = 0.05) were not drawn. The thickness of the paths is
scaled based on the magnitude of path coefficient (β ). Path coefficients and internal R² correspond to
mean bootstrap values of the internal PLS-PM validation. (b) Bar plot showing the variable impor-
tance (direct + indirect effects) of the vegetation attributes to predict belowground C stocks. Aster-
isks (*) indicate a significant (α = 0.05) influence over belowground C stocks.

stocks are presented in Figure 4. Only soil depth and vegetation height showed a significant

direct relation to the belowground C stocks. The relation of species richness with belowground

C stocks became significant when the indirect influences were included (mainly caused by the

relation between vascular species richness and soil depth; Figure 4b).

Soil depth appeared to be negatively related to aboveground biomass and species richness. The

latter fits well with the fact that species richness in water-logged, acidic bogs with peat accumu-

lation tends to be low. Surprisingly, no direct link was observed to floristic composition. Hence,

a linear equation was created using vegetation height and soil depth to predict belowground C

stocks. To use only vegetation attributes in the equation, we used aboveground biomass and

species richness path coefficients to predict soil depth, resulting in the following equation:

C =−(H ∗0.34)+([−(BM ∗0.37)− (SR∗0.78)]︸ ︷︷ ︸
Soil depth

∗0.88) (4.3)

where C is the belowground C stocks estimation, H is the vegetation height [cm], BM is the

aboveground biomass [kgm−2] and SR is the species richness.
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Table 2 shows the results of belowground C stocks accuracy prediction using RF and PLS-PM

independently with plot-based predictors (models of Figure 3a). Both algorithms yielded high

median accuracies with r2 over 0.70 and %RMSE below 25 %. However, PLS-PM showed

more parsimony as fewer predictors were used and presented significant improvements α =

0.05) in terms of %RMSE and bias. RF variable importance is presented in Table 3, showing

that soil depth obtained the highest model scores, whereas all vegetation attributes appear were

non-important. Table 4 presents the modeling results using UAV-based predictors (models of

Figure 3b), where it is shown that RF outperformed PLS-PM significantly in all models. The

canopy 3D variables derived from the point cloud showed higher importance than the spectral

MNF components for all models except for the model of belowground C stocks (compare Sup-

plementary data). Finally, Fig. 5 depicts the results of the hybrid model coupling the plot-based

information (PLS-PM) and UAV data (RF). The hybrid model resulted in higher accuracies

than the purely data- driven random forests approach, with improvements from of r² from 0.39

to 0.54, normalized RMSE of from 31.33% to 20.24%, and bias from -0.73 to 0.05.

Table 4.2: Prediction accuracies of belowground C stocks applying plot-based information with random forests
(RF) and PLS path modeling (PLS-PM). The median values of the iterative validation are shown.
Asterisks (*) indicate a significant difference (α = 0.05) between PLS-PM and RF.

Algorithm r2 %RMSE Bias N° predictors

PLS-PM 0.79 14.48* 0.12* 3

RF 0.72 22.35 0.7 5

Table 4.3: Variable importance of the random forests plot-based model (Figure 3a).

Variables Gini purity index

Soil depth 100

Vascular species richness 16.98

Floristic composition 10.41

Vascular vegetation height 1.01

Vascular aboveground biomass 0
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Table 4.4: Prediction accuracies of peatland characteristics (latent variables) using PLS-PM and RF with solely
remote sensing information. Vegetation height was obtained directly from the UAV photogrammetric
point cloud. All values are the median of the bootstrapping validation.

PLS-PM RF

Latent variables r2 %RMSE bias r2 %RMSE bias

Vascular vegetation height - - - - - -

Floristic composition 0.22 26.77 -0.78 0.57*** 22.57** -0.59**

Vascular aboveground biomass 0.3 38.13 -0.69 0.67** 20.18** -0.27*

Vascular species richness 0.32 26.44 -0.69 0.59** 25.30*** -0.58***

Soil depth 0.4 30.93 -0.62 0.45* 28.83** -0.79

Belowground C stocks 0.34 36.67 -0.62 0.39* 31.44** -0.73**
Significant differences: *α = 0.1, **α = 0.05, ***α = 0.001.

4.4.2 Spatial extrapolation of belowground C stocks

The prediction maps (Figure 6) show that the use of RF with UAV-based predictors resulted in

an underestimation of belowground C stocks (see also Figure 5). Furthermore, the hybrid model

depicted lower model uncertainties in prediction, with coefficient of variation (CV) values <

∼30 %.

The extrapolated PLS-PM plot-based LV scores by the RF models (Figure 3c iii) showed clear

differences between land use types (Figure 7). The conservation area (to the south) featured

more interactions (color combinations), with higher LV score values of aboveground biomass,

species richness, floristic composition and soil depth, while the managed area (to the north) was

characterized by simpler and smoother patterns of species richness and floristic composition

scores. Areas where the bootstrap iteration procedure showed higher CV agree with areas of

higher (LV) biomass and species richness.

4.5 Discussion

4.5.1 Linkages between vegetation attributes and belowground C stocks

The conservation area (to the south) presents higher cover of shrub species (more aboveground

biomass) and abundance of native species related to a peatland in the original state (Figure 7),

such as Sphagnum magellanicum, Sticherus cryptocarpus and Blechnum cordatum (low NMDS
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Figure 4.5: Scatterplots of observed versus predicted values of belowground C stocks for: (a) the direct use of
random forests using UAV-based predictors, and (b) the hybrid model combining PLS-PM plot-based
information and RF UAV predictions. The dots and the error bars represent the median and the stan-
dard deviation of the values generated in the iterative validation, respectively. (c) Bootstrapping dis-
tribution of accuracies. Asterisks (*) indicate a significant differences (α = 0.05)

axis score; Figure A2). In contrast, the managed area (to the north) has higher species rich-

ness and presence of vascular invasive species such as Plantago lanceolata, Agrostis capillaris

and Trifolium repens (higher NMDS axis score; Figure A2), which relates to a more degraded

peatland (Dorrepaal et al., 2005; Jonsson and Wardle, 2009). The differences in species compo-

sition relate to the colonization of less water-logged areas by vascular plants. The colonization

of vascular plants decrease the reservoirs of belowground C stocks in the long term by produc-

ing changes in soil nutrient content and pH will eventually hamper further growth of Sphagnum

species (Fenner and Freeman, 2011). Vascular plants further increase the oxigenization of soils,

the microbial activity and decomposition rate of the organic matter, which facilitates liberation

of ancient carbon as CO2 to the atmosphere (Walker et al., 2016) and inhibits further accumula-

tion of C (Chen et al., 2017, 2018; Cong et al., 2014; Gorham, 1991; Lange et al., 2015). This
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process is likely to be faster and occur more frequently under climate change scenarios, as an

increasing temperature promotes drought and accelerates colonization by vascular plants and

microbial activity (Fenner and Freeman, 2011).

The negative effects that the colonization of vascular plants exert over belowground C stocks is

well represented in the PLS-PM model: vegetation height, aboveground biomass, floristic com-

position (higher scores showing an increase of invasive vascular species) and species richness

depicted negative effects (Figure 4b). From all aboveground variables, only vegetation height

showed a significant direct relation to the belowground C stocks. This is clearly an expression

of the fact that bog vegetation is low when peat accumulation is high. When considering also

indirect effects through the use of moderator variables (especially soil depth), all the above

mentioned variables increased their relative importance. This shows the importance of studying

variable inter-dependencies when modeling complex systems (see section 4.4.3 below).

4.5.2 Model performances

The predictions of random forests (RF) and PLS-PM using plot-based information (Figure 3a)

showed high accuracies in both cases. Nevertheless, PLS-PM outperformed RF significantly

using linear relations and fewer variables, indicating that SEM is indeed useful to constrain the

models using ecological expert knowledge.

RF outperformed PLS-PM significantly when using remote sensing data to directly predict be-

lowground C stocks (Figure 3b). This showed that PLS-PM could not handle the high colinear-

ity of the remote sensing data. Although PLS is known to be able to address a certain degree

of colinearity, machine learning algorithms like RF behave more flexible by applying complex

relationships in higher dimensional feature spaces (Svetnik et al., 2003).

We also tested the use of PLS and support vector machines (SVM) regressions for the predic-

tions. Their performances in terms of r2, %RMSE and bias were lower than those obtained by

RF, hence their results were not presented here.

When using UAV-based independent variables, the aboveground vegetation variables were pre-

dicted with higher accuracies than the belowground variables (Table 4). Nevertheless, predic-

tions of aboveground vegetation variables still showed high uncertainties (i.e. average r2 of

85



4 Using aboveground vegetation attributes as proxies for mapping peatland belowground carbon stocks

Median pixel values

0 100 m

Direct RF estimation

0 100 m

Hybrid model (RF + PLS−PM)

5

10

15

20

25

CV pixel values

0 100 m

Direct RF estimation

0 100 m

Hybrid model (RF + PLS−PM)

< 20

30

35

45

> 50

kg m−2

%

25

40

Figure 4.6: Belowground C stocks prediction maps using random forests (RF) with UAV-based predictors (left)
and the hybrid model combining PLS-PM plot-based information and RF UAV estimations (right).
The maps represent the median (top) and the coefficient of variation (CV; below) of the 500 boot-
strapping iterations.

∼0.61 and %RMSE of ∼22.68). In this study, the accuracies for the vascular aboveground

biomass, species richness and floristic composition are likely to be affected by three factors:

1) the destructive sampling performed in a 0.5 m × 0.5 m area located at the center of the 4

m2 plots (Figure 1) prior to UAV acquisition; 2) the time lag of two years between the field

(2014) and the UAV (2016) campaigns. In this time period, Sphagnum and shrub biomass and

abundance were expected to remain stable due to their slow growth but herbaceous properties

may have experienced shifts; 3) the inaccuracies during UAV data georectification of may have

added errors in the five field plots where markers were not visible from the hyperspectral ortho-
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Figure 4.7: Spatial distribution of the PLS-PM LV scores produced by RF regressions (Figure 3 iii). RGB map
representations using only aboveground peatland characteristics (a), and a mix of above with below-
ground variables (b). The variables were normalized (0-255) and plotted with a 20–80 % percentiles
linear stretching. BM = vascular aboveground biomass, FC = floristic composition, SR = vascular
species richness and Depth = soil depth. The dashed line is the border between the conservation
(southern) and the managed (northern) areas.

mosaic. These observations could have been skipped during the analysis, but we decided to use

them anyway as the number of observations was already low.

The prediction of the aboveground variables showed relatively similar results as other studies:

Castillo-Riffart et al. (2017) estimated species richness in the same study are using satellite-

based sensors, yielding model r2 between 0.54 and 0.6 and %RMSE between 18 % and 20 %.

Moreover, Harris et al. (2015) mapped the floristic composition of a temperate peatland in the

west coast of Wales using a full-range airborne-based hyperspectral data and PLS regressions.

They obtained a r2 in validation of 0.72 and RMSE 0.18 (in feature space units). Estimations

of aboveground biomass in acidic peatlands have been obtained mainly by allometric equations

and land cover maps obtained by high resolution imageries (e.g. Beilman et al., 2008).

Compared to the RF models based on UAV-based predictors alone (Fig. 3b), the hybrid model

coupling PLS-PM plot-based information and RF UAV predictions (Figure 3c) resulted in sig-

nificant improvements. This suggests that the use of vegetation attributes as predictors improved

the estimation of belowground C stocks by incorporating known ecological relations constrain-

ing the model. SEM theoretical constructs are generalizable, allowing their comparison across

sites (Grace et al., 2007) and scales Grace and Keeley (2006), while empirical models based on
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remote sensing data alone, despite precision and ease of implementation, lack portability as they

are largely affected by sensor and site-specific conditions (Kattenborn et al., 2017; Schmidtlein

et al., 2012; Vuolo et al., 2013). The proposed approach showed similar accuracies as other

studies using a more complex set of predictors (such as peat thickness, dry bulk density and car-

bon concentration) and/or allometric functions (Akumu and McLaughlin, 2014; Beilman et al.,

2008; Dargie et al., 2017; Draper et al., 2014; Gumbricht et al., 2017; Jaenicke et al., 2008). The

advantage of using aboveground vegetation characteristics as proxies are: 1) field efforts and

costs are reduced by allowing non-destructive sampling. This may decrease soil sampling and

laboratory analyses, and 2) variables can be mapped by remote sensing with higher accuracies

that belowground variables (Castillo-Riffart et al., 2017; Harris et al., 2015). The aboveground

vegetation variables used in the present study relate to changes in C fluxes (e.g. gas-exchange

to the atmosphere) that slowly alter the C stocks (Fenner and Freeman, 2011). Therefore, the

use of such proxies will always require validation as relations between vegetation proxies and

belowground C stocks may depend on site specific conditions, such as floristic composition,

management treatments and successional stages. Nevertheless, improving the understanding of

interactions between below and aboveground plant and community properties could advance

the operationalization of such mapping approaches by decreasing the amount of data required

for training and validation.

The accuracies obtained in this investigation are still not sufficient for an operational moni-

toring of peatland belowground C stocks. To achieve this goal, higher accuracies are needed

(e.g. > 80 % of variance explained) to decrease the amount of field data without compromising

model performances. Likewise, the approach portability need to be assessed, as site specific

approaches are not ideal for management tasks. To improve the estimation of belowground C

stocks with the proposed approach, an increase of the prediction accuracy of the indirect proxies

is needed (i.e. vascular species richness and aboveground biomass). For example, the devel-

opment of an accurate allometric equation to assess aboveground biomass in a non-destructive

manner would facilitate the proposed procedure. The vascular species richness estimation could

be enhanced e.g. by using detailed multi-scale canopy 3D and textural information based on the

point cloud and the orthomosaic Lopatin et al. (2019).
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4.5.3 Variable importance

The plot-based PLS-PM model showed significant links (direct + indirect) between soil depth,

species richness, vegetation height and belowground C stocks (Figure 4). The model showed

that for every centimeter increase of soil depth, centimeter decrease of vegetation height and

reduction of species numbers by one species, there is a belowground C stocks increase of

∼0.88 kgm−2,∼0.53 kgm−2 and∼0.68 kgm−2, respectively. In comparison to these results, the

RF model was rather uninformative: the RF Gini purity index (Table 3) showed that soil depth

was the only meaningful predictor of belowground C stocks in the RF model. This suggest

that considering only direct relations (i.e. regression coefficients or model variable importance)

may lead to an underestimation of the ecological importance of several variables in the model.

For example, in the PLS-PM plot-based model the influences of species richness and floristic

composition on determining the belowground C stocks using the direct links (path coefficients)

yielded non-significant results (β < 0.1 each), whereas presenting strong importance if indi-

rect links were considered (species richness = -0.68; floristic gradient = -0.40); the assessment

of only direct influences may lead to an erroneous evaluation of the ecosystem dependencies

(Irwin, 2006).

Although ecological interdependencies and indirect linkages can be estimated as well by ap-

plying several separate linear or multiple regressions (e.g. Gough et al., 1994) or analyses of

variance (e.g. Dorrepaal et al., 2005), SEM tracks these relationships while allowing the predic-

tion of its variables within a composite model (e.g. Grace and Keeley, 2006).

The variable importance of the random forests models using the UAV-based predictors showed

that the canopy 3D information outperformed the spectral information in all cases except in the

prediction of belowground C stocks (see Supplementary data), where the first MNF component

yielded the highest importance. In addition, variables such as the mode and the coefficient

of variation of the point cloud also depicted a high importance. This indicates that for the

prediction of belowground C stocks, the combination of spectral and canopy 3D information

has a high potential.
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4.5.4 Belowground C stocks extrapolations

The prediction maps (Figure 6) agreed with our knowledge about the study site, where the

belowground C stocks has a smoother transition between the conservation and managed areas

than the aboveground vegetation variables (Cabezas et al., 2015).

The total amount of C stocks estimated with the hybrid model was ∼233,790 kgm−2. This is

a rather low C stocks value compared to other natural peatlands in Chilean Patagonia (Cabezas

et al., 2015), which is attributed to its young stage (Díaz et al., 2008). Chiloé Island presents

many similar isolated small peatlands, which despite their relatively low individual C pools,

sum up to considerable amounts of total C stocks (McClellan et al., 2017). Given the fact that

these wetlands are numerous and isolated, the measurement bias and field sampling costs could

be high (Jobe and White, 2009). The lower field operational costs of assessing aboveground

vegetation attributes compared to soil samples makes the presented mapping approach suitable

to estimate the overall C contribution of the landscape.

Lower CV pixel values were obtained in areas were the vegetation variables presented larger

variability, whereas higher CV were caused mainly by extremes in aboveground biomass and

species richness (Figure 7). The models resulted in higher uncertainties for the conservation

area due to a higher abundance of shrubs, while the managed area presented high uncertainties

in eroded grasses with presence of exotic species. This difference is an expression of the low

representativeness of pure aboveground biomass and exotic rich plots compared to plots with

intermedium gradient values (i.e. only one pure shrub plot in the conservation area and two

plots with high number of invasive species in the managed area were included in the analysis).

Maps of the vegetation attributes evaluated in this study can be obtained at different spatial

scales. For example, vegetation height can be obtained by airborne LiDAR, photogramme-

try based on UAV, airborne or high resolution optical satellites (e.g. WorldView or Pleiades

stereo-imagery; Maack et al. (2015)) or SAR interferometry (e.g. TanDEM-X; Kattenborn

et al. (2015)). More research is needed to link such products with ecological studies to assess

if the hypothesis developed from local ecological studies hold across spatial scales (Pettorelli

et al., 2014). Further work is needed to find stable and mechanistic links between belowground
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C stocks and vegetation characteristics, which would facilitate a continuous monitoring of soil

pools while reducing the amount of destructive soil samples. We believe that SEM is suitable to

find ecological meaningful interactions and to link ecosystem properties with remote sensing.

Nonetheless, the relationships presented in this investigation needs to be tested against new data

to see if their assumptions hold across landscapes.

4.6 Conclusions

This study evaluated the use of remotely sensed vegetation attributes as proxies to predict peat-

land belowground C stocks. By using a hybrid model that combines plot-based ecological

knowledge of the ecosystem functioning (structural equation modeling) with remote sensing

estimates (machine learning), we conclude the following:

1. The use of vegetation characteristics such as vascular vegetation height, aboveground

biomass and species richness as proxies resulted in more accurate belowground C stocks

estimations, compared to the use of raw remote sensing data. The use of vegetation char-

acteristics is advantageous because of their easy and non-destructive assessment. How-

ever, more investigation is needed to check whether the relationships found here hold

across landscapes.

2. The assessment of indirect relationships between the vegetation attributes and below-

ground C stocks improved the interpretation of variable importance. Considering only

direct linkages (coefficients) resulted in underestimation of the vascular species richness

and floristic composition contribution to the model.

3. Structural equation models are suitable to track indirect and bi-directional links among

components in a defined model. Nonetheless, they cannot handle correctly the number

and dimensionality of the remote sensing data, so their integration with machine learning

algorithms is appropriate for mapping purposes.

4. The SEM model showed flexibility to fit the large gradients of peatland vegetation at-

tributes caused by land use differences.
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5. Peatland belowground C stocks is difficult to estimate directly using optical and struc-

tural remote sensing information. Algorithms that take into account more complexity in

the predictors, such as random forests and support vector machines, are able to model the

relations between canopy reflectance/structure and the C gradient, obtaining higher accu-

racies than linear models. Nevertheless, these accuracies were not sufficient for a reliable

estimation of belowground C stocks.

The integration of ecological expertise into remote sensing applications has great potential to

improve not only the final mapping accuracy, but to contribute to the knowledge of ecosys-

tem functioning and processes. Nevertheless, more investigation is needed to find generalized

aboveground proxies of belowground C stocks to effectively decrease the amount of soil sam-

ples needed for model calibration.
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Very-high resolution remote sensing is a promising tool to track detailed Earth’s processes.

Within these, unmanned aerial vehicles (UAVs) have gained special interest for mapping plant

attributes in small areas and for experimentation due to their operational flexibility (Anderson

and Gaston, 2013). However, approaches dealing with the particular characteristics of submeter

spatial resolution are still needed to harvest their full potential. Hence, the aim of this thesis was

to assess the strengths and limitations of UAVs for vegetation mapping, specifically concern-

ing two topics: plant species classifications, and detailed predictions of ecosystem attributes.

The thesis addressed research gaps for grassland, forest and peatland vegetation types sepa-

rately, which were summarized in three main research questions (Chapter 1 section 5). Finally,

operational constrains and future considerations on UAV applications are discussed.

5.1 How structural and community plant attributes impair the success of

woody and herbaceous species mapping with UAVs?

This thesis addressed the effects of plant community attributes in the success of species mapping

with UAV data. Here, the first study focused on the classification of all occurring species in a

semi-natural grassland with hyperspectral data (Chapter 2). The study found that the distribution

patterns of species and plant functional types have high influence in the classification success.

Here, plots with high species cover and low structural complexity resulted in high classification

accuracies. The effect of growth form or plant functional types in the classification was however

less clear.

Forb species were classified with higher accuracies than graminoids, likely because graminoids

often have thinner leaves than forbs, which may have caused higher presence of mixed pixels,
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even at 3 mm pixel size, and/or spectral variability due to varying leaf structure and angles. The

analysis also showed that NIR and VIS accurately discriminate graminoids and forbs, respec-

tively. This suggests that both photosynthetic pigments and structural properties are important

features to classify forb species, while mostly structural attributes are for graminoids (Katten-

born et al., 2018a). Therefore, the use of UAV data to classify grassland species is of opera-

tional interest only in communities with low structural complexity and canopy overlaps, such

as stress-prone dunes, and the ideal sensor technical requirements may differ between grassland

communities.

The second study (Chapter 3) analyzed the effects of shadows in the classification of invasive

woody species. The study found that shadows significantly affect the accuracy of pixel-based

classification procedures using a range of spectral, textural and canopy 3D structure variables.

The amount of daily shadows varied depending on the canopy architecture of each species.

Species with uniform canopies, such as Ulex europaeus, produced less shaded areas over time

than stepped canopies, like Pinus radiata, resulting in less classification errors and broader

suitable daily-window for UAV acquisitions. Therefore, site-specific considerations on species

canopy architecture should be used to constrain UAV campaigns and minimize shadow areas in

the images.

5.2 How very-high resolution data can be used to obtain reference data

for subsequent species classifications?

Both species classification studies (Chapter 2-3) innovated in the reference data collection meth-

ods aimed to enlarge the quantity of observations needed to obtain reliable results. In Chapter

2, data was collected by independent scans of isolated herbaceous individuals. This was com-

bined with object-based analysis to semi-automatically obtain spectrally-homogeneous training

and validation areas for each species. Unuseful objects were obviated by applying vegetation

masks and visual interpretation. This approach obtained > 1,400 observations that otherwise

would have been challenging to collect manually from the field. Yet, the study found mis-

matches between the accuracies depicted during model calibration (training–validation phase)

and prediction (cover estimation in independent scans). This could have been provoked by
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carbon stocks?

differing sun-sensor geometries, where references were usually collected near nadir from the

sensor (↓) while the predicted species had differing viewing angles (↙↓↘).

Likewise, reflectance-based models are often impaired by sensor and local site differences

(Vuolo et al., 2013), hampering their general portability. Therefore, using different sets of im-

ages for training and validation may incur in additional model errors. Model portability could

be improved by adding reflectance variability, for example by permutation–bootstrapping ap-

proaches (Verrelst et al., 2015). The thesis used bootstrapping as cross-validation procedure

and to assess the accuracy and spatial variability of models, where the median and coefficient

of variation was used as model confidence metrics. An assemblage of all bootstrapped models

could be further used to increase model variability and thus enhance portability.

Meanwhile, Chapter 3 innovated in the use of UAVs to acquire presence-absence reference data

of the three invasive species by using visual interpretation of the orthomosaics. This approach

discarded the need of in-situ validations and thus decreased the amount of man labor. This

allowed the collection of < 1,500 samples covering the fully representative extension of the

study areas. This could be of particular interest to e.g. acquire data on sites with restricted

access, such as bird nesting areas. However, field labor is still needed when the species are

complex to differentiate visually from the background.

5.3 How aboveground vegetation structure and composition estimated

from UAV relate to peatland belowground carbon stocks?

Chapter 4 presents an approach to map peatland belowground carbon (C) stocks using above-

ground vegetation attributes as proxies. Reflectance is a powerful type of data to describe

vegetation attributes. It can be further used to depict soil properties that are linearly linked

with vegetation traits (Angelini et al., 2017). However, some belowground properties, such as

C stocks, presents non-linear or complex interdependencies with the aboveground vegetation

attributes (Dorrepaal et al., 2007). Hence, their mapping using solely remote sensing data is

often challenging (Cabezas et al., 2015).

Here, for the first time remotely sensed reflectance and canopy structure data were linked to

peatland belowground C stocks by coupling an ecological-based empirical model of above-
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ground–belowground feedbacks and UAV-based data. This innovated approach differ from pre-

vious studies, where C stocks are mapped using remotely sensed land covers and allometric

equations, as it presents continuous C estimates. This is important as peatland-vegetation types

present high variation within small distances (Cabezas et al., 2015). Therefore, continuous

mapping of C gradients could further enhance scientific knowledge of feedback interactions.

The study used structural equation modeling (SEM) to find significant aboveground–below-

ground feedbacks, and describe how these are related with each other (direction and strength;

Figure 4.4). SEM allowed to incorporate mediator variables, here soil depth, that cannot be

directly estimated with UAV data, but added stability to the overall model as is considered

a key ecological driver (Lawson et al., 2014; Akumu and McLaughlin, 2014; Draper et al.,

2014). Irwin (2006) stated that the assessment of only direct influences may lead to erroneous

evaluation of ecosystem dependencies. Mediator variables can be estimated indirectly during

model prediction by applying a ‘cascade’ modeling approach. For example in A→ B→C, B

is the mediator variable of C, and both B and C can be predicted only by A. Nevertheless, as

noise is added in each modeling step, such approach would be only recommended when the

interdependencies among model variables are high.

The study found that vegetation heights, aboveground biomass and species richness were the

three most important proxies to predict belowground C stocks. Biomass and richness were pre-

dicted by UAV-based differences in spectral and 3D canopy structural data related to varying

environmental conditions. For biomass, both the plot and UAV-based models explained compa-

rable amounts of variance (plot ∼56 % and UAV ∼67 %), meaning that the UAV data was able

to account for the full vegetation height gradient. Likely, the slightly higher accuracy of the

UAV model was produced by the spectral data, which possibly accounted for extra information

such as canopy closure and branch density.

The species richness prediction was more challenging using the UAV-based data. The study

showed that even with∼ 10 cm pixel size, the heterogeneity of spectral values is not sufficient to

fully predict plant diversity. This could be due to spectral similarities among peatland species,

thus full-range hyperspectral sensors are expected to outperform by depicting more detailed

spectral variability. Likewise, diversity indices including neighboring pixel information, such
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as the Rao’s quadratic diversity metric (Rocchini et al., 2018), and temporal data could enhance

models predictions.

5.4 Potentials for future research

Unmanned aerial vehicles (UAVs) are highly dynamic platforms to obtain very-high resolu-

tion data. This thesis demonstrated that UAVs are useful tools to map a range of different

species types, to obtain synoptic reference data, and to predict community and ecosystem at-

tributes in highly heterogeneous environments. The pixel sizes used in the thesis varied between

0.3–10 cm. This level of detail is challenging from an operational perspective as more spectral

variation is presented, hampering e.g. pixel-based species identification (‘The devil is in the

detail’; Nagendra and Rocchini, 2008). However, the common acknowledgment that subme-

ter pixel sizes hamper classification performances should be address carefully, as technological

advances and processing approaches are still under development to harness the full potential of

very-high resolution data.

Here, Chapter 3 showed that∼ 10 cm spatial resolution data could present opportunities instead

of a drawbacks, as this level of detail decreases the amount of shaded–sunlit canopy mixed pix-

els, thus allowing the complete removal of shadows (noise) from the images. Most studies did

not treated UAV data to reduce variance accordingly, applying instead similar approaches as e.g.

with satellite-based data (Zaman et al., 2011; Hill et al., 2017; Lu and He, 2017). Alternatively,

common approaches use object-based analysis, which has been ascribed with high potential to

reduce spectral variability (Alvarez-Taboada et al., 2017; Michez et al., 2016; Mafanya et al.,

2017). However, non of the these studies excluded shaded canopies prior allocating spectral val-

ues to the segmented clumps, hence still adding shadow noise to the models during calibration.

The allocation of only sunlit canopies into the segmented clumps could thus be a straightfor-

ward alternative to decrease both spectral variability from the raw images and false negatives

from the classified results, as shaded areas could at some extent be replaced by sunlit informa-

tion inside the segmented clumps. But, what if canopy shadows could be used as co-variable to

classify plant species? Even when shadows are considered as noise in pixel-based applications
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(Zhang et al., 2015), they could add additional information in algorithms including neighboring

context, such as in convolutional neural networks or deep learning. There, the training observa-

tions are not single values (pixels) but e.g. small frames of UAV orthomosaics, where the 3D

context of the frames are used in classification and regression tasks (compare Li et al., 2018, for

a review of possible models).

UAVs have been increasingly used to map plant species (Lu and He, 2017; Alvarez-Taboada

et al., 2017; Michez et al., 2016), however these studies remain small compared to satellite

and aerial-based approaches. This could be due to the relatively small area cover of small-

sized UAVs, which impair their use for large-scale management. Yet, UAV-based models can

be used as reference data for upscaling procedures because they are often as detailed as field

measurements–e.g. field estimates of species abundance can presents up to 60 % errors using

visual interpretation (Vittoz and Guisan, 2007).

For example, Kattenborn et al. (2019) used UAV-based predicted presence/absence as reference

data to train and validate satellite-based models of species distributions. This approach has

three major advantages: First, both platforms share the same perspective, top of the canopy, and

thus both data can easily be matched. Second, UAV can acquire data in inaccessible terrains,

widening the spatial distribution of samples. Third, larger quantities of observations can be

obtained. These advantages are specially suitable for forested areas, where closed and dense

canopies often hamper the measurement of sample locations due to GPS inaccuracies (Valbuena

et al., 2010), or for areas with denied access, such as wetlands with nesting birds. Therefore,

solving the technical challenges of UAV-based products may enhance both local and regional

remotely sensed models in the near future. However, the solely use of UAV data as reference is

constrained to situations where the target species-vegetation type are directly recognizable from

the images.

Chapter 2, meanwhile, showed that there is only few practical uses of UAV-based data to map in-

dividual grassland species due to their high dynamism and canopy complexity. Instead, species

may be aggregated into functional types to decrease the complexity of classes, which may fur-

ther ease their relation with ecosystem processes. To accomplish this, the use of independent

images to semi-automatically obtain large quantities of reference data showed promising results.
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However, the study found mismatches between the obtained accuracies during calibration and

prediction, possible caused by differing sun-sensor geometries and calibrations (Verrelst et al.,

2015). This might be solved by using UAV acquisitions instead of sensor scans, as differing

view geometries and image calibrations are minimized by using one (near) nadir orthomosaic

covering both the isolated training–validation samples and the area where to predict the occur-

rences.

Traditionally, vegetation processes have been studied at coarse scales using satellite data (Ustin

et al., 1991), which often include complex combinations of fine-scale properties and processes

due to nonlinear responses and intricate feedbacks (Gamon et al., 2019). Likewise, it has been

found that some processes are scale-dependent, meaning that their feedbacks may shift accord-

ing to the scale (Chase and Knight, 2013; Svejcar et al., 2015; van Wesenbeeck et al., 2008).

Therefore, understanding local processes may help disentangle feedbacks across scales. Here,

the thesis showed that UAVs can be used to upscale complex plot-based processes to the field

level (Chapter 4), as both field measurements and UAV-based predictions share the same spatial

resolution. Consequently, UAVs hold great potential to spatially test ecosystem feedbacks and

hypothesis based in years of field research. Structural equation modeling (SEM) has been as-

cribed high potential to describe such ecosystem feedbacks (Grace et al., 2016, 2010; de Vries

and Bardgett, 2016), and is thus suitable to be coupled with UAV-based predictions. This cou-

pling may help to spatially assess, for example, shifts of peatland belowground–aboveground

feedbacks depending on scale or phenological stages.

UAVs are flexible in their deploy, thus allowing for high temporal resolution studies. This thesis

did not include temporal data as a co-variable during modeling. However, phenological char-

acteristics have proved to help species and vegetation types identification (Somers and Asner,

2014; Andrew and Ustin, 2008; Melaas et al., 2013) and for describing carbon sequestration

processes (Keenan et al., 2014). Phenological data may, at some extent, help closing the gap

for community-based attributes models, as it largely correlates with e.g. aboveground biomass

(Filella et al., 2004) and plant diversity (Fairbanks and McGwire, 2004). Therefore, the inclu-

sion of phenology data in future UAV approaches is highly encouraging.
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Optical UAV sensors, such as hyperspectral sensors, are still constrained in either radiometric

or spectral resolution compared to airborne and satellite sensors (Colomina and Molina, 2014).

This implies that the efforts of UAV applications are often restricted to empirical instead of

physical models, such as radiative transfer models (but see Zarco-Tejada et al., 2018). How-

ever, UAV can also indirectly increase the physical understanding of reflectance studies. For

example, Zarco-Tejada et al. (2019) used airborne hyperspectral and Sentinel-2 images to esti-

mate chlorophyll content in an open-canopy conifer forest. They used high resolution airborne

data to estimate tree cover, sunlit and shaded areas. This information was then used to improve

the radiative transfer model inversion in the forest. Therefore, UAV could be used to enhance ra-

diative inversions of coarser grain remotely sensed data, such as Sentinel-2, by adding detailed

spatial context.

Overall, this thesis demonstrated that unmanned aerial vehicles (UAVs) are useful for vegetation

mapping and experimentation. From herbaceous to woody species, UAVs showed high potential

to map species occurrences and community attributes in highly heterogeneous situations by

depicting both spectral and 3D information that otherwise will be challenging to obtain from a

single sensor. State-of-the-art software developments in image acquisition and processing make

the use of UAVs suitable even for practitioners with few knowledge in geomatics, broadening

their field of applications from science to management.
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Appendix paper 1

Appendix 1.1: Classification and cover prediction per species Classification

Classification accuracies (producer and user accuracies) and cover predictions (r2, RMSE and

bias) of each species is presented in Table A1.

Table A.1: List of species along with respective producer (PA) and user (UA) accuracies and their r², RMSE and
bias from the cover estimation. Median values of the bootstrap iteration procedure are listed.

Species PA UA r2 RMSE [%] bias

Bryophyte

Rhytidiadelphus squarrosus (Hedw.) Warnst. 0.9 0.84 0.83 6.53 -0.39

Graminoids

Echinochloa crus-galli 0.96 0.86 0.46 24.68 0.17

Elymus repens 0.89 0.84 0.46 9.87 0.31

Nardus stricta 1 0.84 0.8 14.29 0.06

Panicum capillare 0.83 0.84 0.84 5.74 -0.49

Setaria pumila 0.9 0.84 0.67 14.18 -0.36

Forbs

Achillea millefolium 1 0.84 0.69 8.72 -0.04

Anagallis arvensis - 0.84 - - -

Anthemis arvensis 0.92 0.85 0.43 20.66 0.47

Artemisia vulgaris 1 0.83 0.42 20.82 0.97

Bellis perennis 0.91 0.86 0.9 7.94 -0.15

Crepis capillaris 0.91 0.85 0.83 20.77 -0.52

Cichorium intybus 0.99 0.89 0.57 31.09 0.45
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Convolvulus sepium 0.79 0.84 0.67 2.44 -0.12

Conyza canadensis 0.8 0.85 0.31 51.59 -0.03

Daucus carota 0.94 0.86 0.93 8.92 0.14

Echium vulgare 0.87 0.84 0.54 35.27 0.32

Erigeron annuus 0.99 0.84 0.43 17.58 0

Filago arvensis 0.85 0.84 0.36 22.49 0.12

Geranium pusillum 0.9 0.84 0.9 4.21 -0.18

Glechoma hederacea 0.95 0.84 0.52 3.67 -0.32

Hypochaeris radicata 0.81 0.85 0.68 6.67 -0.25

Medicago arabica 1 0.85 0.65 19.77 0.27

Medicago lupulina 1 0.85 0.41 28.63 0.91

Medicago sativa 0.9 0.86 0.5 3.97 0.69

Minuartia hybrida 0.75 0.85 0.73 4.2 -0.38

Oenothera biennis - 0.84 0.42 0.96 0.42

Oxalis stricta 1 0.84 0.77 3.67 -0.19

Plantago lanceolata 0.89 0.85 0.42 15.92 0.05

Plantago major 0.91 0.87 0.52 3.18 0.23

Polygonum persicaria - 0.83 - - -

Potentilla reptans 0.85 0.85 0.68 23.07 -0.25

Prunella vulgaris 1 0.87 1 1.45 -0.34

Rumex obtusifolius 0.93 0.84 0.52 23.06 0.49

Senecio vulgaris 0.74 0.86 0.83 3.5 0.65

Solidago gigantea 1 0.81 0.55 0.96 -0.15

Taraxacum officinale 0.85 0.86 0.41 9.78 -0.06

Trifolium pratense 0.87 0.85 0.68 4.65 -0.29

Trifolium repens 0.86 0.85 0.42 27.31 -0.27

Urtica dioica 1 0.9 0.44 29.91 -0.09

Verbena officinal 1 0.84 0.59 11.06 0.99

Veronica persica 0.97 0.86 0.83 8.79 -0.08

Appendix 1.2: Source codes of the paper

R and Python codes used in the analysis can be accessed at: https://github.com/JavierLo

patin/Grassland-Species-Classification.
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Appendix 1.3: Supplementary data

Images for model calibration: pot versus isolation methods

We tested two methods for collecting independent species spectra outside the plots: 1) a pot

sample method, and 2) an isolation method (presented in the main manuscript):

1. For the pot method, complete individuals of species (i.e. roots included) were dug out

and transplanted into small pots to maintain the structure of the individual plants. We

used the same soil as present in the plots to minimize background effects. We increased

the spectral heterogeneity of the samples by measuring them twice and rotate the pots

90° before the second scan. This ensured that differences in relative angles between leaf

surface and the sensor were accounted for. For small species, several individuals were

located in the same pot to maximize the canopy cover area. Three to five pots were

obtained for each species – except for a few cases where the species individuals were was

too rare in the surrounding of the plots.

2. In the isolation approach, samples of each species were first identified in the areas neigh-

boring the plots. Then surrounding canopies of other species that may interfere in the

reflectance were removed prior to the AISA+ scans to isolate the target species. No scan-

repetitions to change the view angles were performed in this case, because this procedure

would have notably increased the sampling effort (too many movements of the scanner

system), which would make the approach less suitable for operational applications.

In total 122 calibration reference image scans were taken, with 81 corresponding to the pot

method and 41 to the isolation method.

The classification and cover estimations results based on the two sampling strategies are pre-

sented in Figure A1. In general, the isolation collection method obtained higher classification

accuracies and better agreements with the field-estimated cover values than the pot method.

For the classification results (Figure 2.3 A; overall accuracy and kappa), the accuracies of the

isolation method were significantly higher (α = 0.05) than the accuracies obtained with the pot
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Figure A.1: Bootstrap distribution of classification results using all sub-plots. In (A), the overall accuracy and
kappa of the SVM classification are presented, while in (B-D) the prediction accuracies (r2, RMSE
and bias) of the measured against the predicted species covers are displayed. Distributions for the
pot (black) and the isolation (gray) methods (for collecting training data) are depicted. Beanplots
show the relative distribution of the bootstrap results with the width indicating the frequency of a
given value, while black horizontal lines indicate the median values of the distribution and * indi-
cates a significant difference of the distributions (α = 0.05; Lopatin et al., 2016).

method, while non-significant differences were found for the correlations with field-estimated

covers (Figure 2.3 B-D; r2, RMSE and bias).

In terms of practicability, both methods have advantages and disadvantages. The pot method

requires fewer scans and no movement of the AISA+ sensor, as the samples are moved in

their pots. This makes the sampling procedure more effective. Likewise, several individuals

from species with small leaves can be put together in the same pot to generate more consistent

sampling areas. On the negative side, the scans must be performed quickly, otherwise the

samples – particularly forbs – lose turgidity due to the stress caused by the transplantation. This

is mostly apparent in the visible and the short-wave infrared spectral regions (Carter, 1993). In

contrast, scans for the isolation approach are taken without stress problems (as the individuals
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remain untouched), but more scans and scanner movements are required to obtain a scan of all

occurring species and obtaining scans from smaller individuals can be challenging. In some

environments, removal of plants with a destructive sampling method (isolation method) may be

problematic due to for example conservation regulations, while the pot method may allow for

individuals to be returned to their environment.

In the pot sampling method, we increased the spectral heterogeneity of the samples by measur-

ing them twice and turning the pots for 90° before the second scan. Here, we found two scans

with a 90° shift of the pot between the two scans a sound compromise between maximizing

the canopy view perspectives while keeping the method simple and fast. More efforts will be

needed to fully understand how directional information affects species classification on such a

detailed scale.

Wavelength importance analysis

A wavelength relevance analysis procedure was performed to link biochemical (e.g. pigments,

leaf water and leaf area per area) and structural properties (e.g. leaf area, angle, and leaf struc-

ture) that enable the discrimination of species and functional types. For this purpose, we ana-

lyzed the relative importance of each band separately applying the Multiple Response Permuta-

tion Procedure (MRPP) algorithm. MRPP is a non-parametric procedure to test the hypothesis

of no differences between two or more groups of entities (Mielke et al., 1981). The algorithm

calculates a dissimilarity matrix (we used the Mahalanobis distance), obtains an average dis-

tance within groups, and estimates a weighted mean within group distance (δ ). Smaller values

of δ indicate a tendency for clustering while larger δ values indicate a lack of clustering. MRPP

determines the probability of δ to be ’small’ or ’large’ by a brute force approach (test all pos-

sible partitions in the dataset; recommended for small datasets) or by a continuous distribution

(e.g. Pearson type III). Finally, RMPP estimates a chance-corrected within-group agreement

(A), describing the proportion of the distances explained by group identity (a value analogous

to a coefficient of determination in a linear model). A is independent of the sample size of the

groups (classes), and varies between zero (no explanation) and one (all observations identical
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Figure A.2: MRPP wavelength distance analysis of single spectral bands. Results using all species, only
graminoids and only forbs are presented. A describes the proportion of the distances explained by
group identity. Values of A over 0.3 are shown as black areas. In the presented spectral signatures,
the 5, 25, 50, 75 and 95 percentiles of all analyzed spectra are displayed.

within-groups), where normally values over 0.3 are considered high. Finally, MRPP determines

the probability of A by Monte Carlo permutation (we applied 500 permutations) and by ran-

domly assigning sample observations to the classes. See Mielke et al. (1981) for more insights

into the MRPP algorithm.

Figure A2 shows the ability of single bands to differentiate between species using MRPP. We

used the spectra obtained from the isolation training data to perform the analysis. According

to MRPP, the visible region allowed for good differentiation between species. Some additional

features in the near infrared (NIR; ∼750 nm-800 nm and 980 nm) also showed high discrimi-

nation power.

Differences in plant characteristics, such as leaf thickness, tissue density, presence or absence

of waxes, hairs, and/or air spaces, as well as plant-chemical characteristics including pigment

composition and secondary plant materials, and canopy architecture all have an effect on the

reflectance properties of single species (Jones and Vaughan, 2010). The review of Fassnacht
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et al. (2016) showed that for tree species classification, selected spectral regions of the full-

range optical region provide valuable information for species discrimination. For grassland

species, Schmidt and Skidmore (2003) found that 75% of the bands (mainly the NIR) of the full

spectrum were significant in the discrimination of 27 saltmarsh vegetation types (at α = 0.01).

In agreement with the findings for tree species, the visible region showed a high discrimination

potential for grassland species along with some spectral regions of the NIR. The VIS spectral

region is commonly related to leaf pigments and biochemical characteristics of plants while

the NIR is usually related to canopy structure (e.g. leaf area index and leaf angles; Ollinger

(2011)). The VIS spectral region represents complex interactions of leaf and canopy traits, with

strong influences of the leaf internal structure parameter (N) (Ollinger, 2011), leaf angle and

leaf orientation (Ganapol et al., 1999; Jacquemoud et al., 2009; Posada et al., 2009). As in our

study the number of forbs is greater than the number of graminoids and bryophytes, the selected

wavelength may be biased towards forb species discrimination. With other species configura-

tions the selected wavelength may change due to, for example, a higher relative importance

of the NIR (i.e. structure) to discriminate graminoids. More research toward this direction is

needed to obtain more detailed information.

Forbs discrimination follows similar patterns, however, no band reached an A value greater than

0.3 (the level above which a variable is considered to largely explain within-group discrimina-

tion (Mielke et al., 1981). In contrast, the bands located in the NIR plateau showed a better

ability for discriminating within graminoids. The main driver of NIR reflectance differences

are the leaf-area index (LAI) and the leaf angle (Darvishzadeh et al., 2008). This may reveal

that the structural information explains the majority of the graminoid species’ spectral variance.

Algorithm comparison

We tested three classification approaches known for their capability to deal with highly het-

erogeneous data: Partial Least Squares Discriminant Analysis (PLS), Random Forest (RF) and

Support Vector Machines (SVM).
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PLS is a linear parametric algorithm that generates statistically independent latent vectors (LVs)

as a linear combination of the spectral bands to cope with inter-correlation of spectral data.

Unlike other ordination algorithms, PLS takes into account the observed variable (or the clas-

sification classes) in the LVs generation, making the LVs more efficient than other ordination

methods (e.g. principal component analysis) when applied to discrimination of classes (Barker

and Rayens, 2003). To obtain the variable importance of the PLS model the coefficients ob-

tained in the cross-validated procedure are used. When applied with standardized variables, the

sign of the coefficients in PLS indicates a positive or negative relationship, while the absolute

value is a measure of the variable importance (Wold et al., 2001).

RF is a non-parametric classification and regression algorithm that uses bagging (i.e. based on

bootstrapping) to form an ensemble of classification or regression (CART) like trees (Breiman,

2001). In classification, each tree cast a unit vote for the most popular class at the inputs. The

majority votes of trees will determine the output of the classifier. This method can handle high

dimensional datasets (Gislason et al., 2006), with more predictor variables than observations

(Evans et al., 2011). Here, we used the Gini decrease in node impurity measure to obtain the

variable importance, which is computed by permuting the predictor variables with the out-of-

bag data in the RF validation approach (Liaw and Wiener, 2002).

SVM is also a non-parametric classifier. SVM work by constructing an optimal hyperplane

separating two classes within a multidimensional feature space. When the linear separability

of the two classes is not possible, SVM successively maps the data into a higher dimensional

feature space via a kernel function until it finds a linear relationship. More information on the

concept of SVMs can be found in Burges (1998). Here, we use the variable importance proposed

by Üstün et al. (2007), where the inner product of the spectral bands and the α-vectors are used

to incorporate the support vectors. These values can be interpreted as coefficients, where the

sign of the coefficients indicates either a positive or negative relationship, and the absolute value

is the measure for the variable importance.

Furthermore, we tested four different datasets that use either the full spectra of the hyperspec-

tral images, or the minimum noise fraction transformation (MNF) with the first 10 compo-
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nents. MNF is an ordination method similar to Principal Components Analysis, but instead

of maximizing the variance, MNF creates new components based on their signal-to-noise ra-

tio. This allows for obtaining always the components in decreasing order of importance (Green

et al., 1988)(Green et al., 1988) and it has showed to be one of the preferred data transfor-

mations to classify hyperspectral images (Fassnacht et al., 2014). The MNF components vary

between scans due to differences in the spectral composition of each scan. Hence, we calcu-

lated the MNF components of each plot and then applied these components to the reference

scans containing the training samples for the corresponding plot. Before calculating the MNF

components we applied a NDVI mask to eliminate non vegetated areas and thereby maximize

vegetation-related information. In this way we made sure that the MNF components had the

same composition along the scans. Furthermore, due to the high spatial resolution of the scans

we applied a brightness normalization (Feilhauer et al., 2010) to cope with the differences of

spectra caused by shadowing. The normalization transforms a spectrum to a uniform value of

one as Xbn = xi/(∑i=1 x2
i )

1/2, where xi is the hyperspectral data and xbn is the normalize spectra.

Therefore, the four datasets were: Spectra, Spectrabn, MNF and MNFbn. These datasets were

tested using the pot and the rip-it-off reference methods and with the algorithms PLS, RF and

SVM, resulting in 24 models. All image processing were done using the Python 3 programming

language.

Results of all models can be seen in Figure A3. In general, the pot and the isolation methods

to collect the reference spectra obtained similar accuracies, with a small tendency of the isola-

tion method to reach better classification accuracies (Kappa). PLS showed lower classification

accuracies and higher errors and biases in predictions, while RF and SVM show similar perfor-

mances. One major difference is that RF obtains the best performances with the MNF datasets,

while SVM reached highest performances with the spectral datasets. A slight improvement of

accuracies was observed when applying the brightness normalization to the datasets.
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Figure A.3: Bootstrap distributions of classification and cover prediction (%) accuracies of all models. Model
symbols (◦,4, �, +) shows the mean value of the bootstrap distribution while the vertical line de-
pict the standard deviation of the bootstrap distribution. Wider areas represent a higher frequency.
Spectra = spectral bands as input; MNF = minimum noise fraction transformation as input; bn =
preprocessing using brightness normalization of the spectral (Feilhauer et al., 2010).

Appendix paper 2

Appendix 2.1: Data accessibility

R and Python codes used in the analysis can be accessed at: https://github.com/JavierLo

patin/UAV-InvasiveSpp.

Appendix 2.2: Supporting information

Supporting information for paper 2 include Table A.2 and Figure A.4 and A.5.
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Table A.2: Parameterization of Agisoft Photoscan. Settings not included in the table were set as default.

Module Parameter Selection

Alignment Quality High

Mode Reference

Dense cloud Quality High

Depth filtering Mild

Mesh Surface type Height field

Orthomosaic Source Mesh

Blending mode Mosaic

Brightness correction Enabled
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Figure A.4: Model performances for sunlit (A) and shaded (B) canopies using models that include (incl.) and
exclude (excl.) shadows in the calibration data. The coef- ficient of variation (CV) iterative val-
ues are presented, with dot size scaled to the values. A.d. = Acacia dealbata; U.e. = Ulex eu-
ropaeus; P.r. = Pinus radiata. * depicts significant (α = 0.05) improvements of the models excluding
shaded canopies over the models including shaded canopies (A) and of the models including shaded
canopies over the models excluding shaded canopies (B).
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Figure A.5: Significant differences in terms of model performance among models using models excluding shad-
ows in the calibration data.

Appendix paper 3

Appendix 3.1: Applied scripts

The R and Python scripts applied in this investigation can be found in the following repository:

https://github.com/JavierLopatin/Peatland-carbon-stock.

Appendix 3.2: PLS path modeling extra information

Extra information regarding the used PLS path model in paper 3 can be found in table A.3.

Meanwhile, Figure A.6. shows the structural architecture of the PLS-PM used to predict below

ground C stock with UAV-based data (Figure 4.3b).
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Table A.3: PLS-PM outer model specifications. The weights correspond to the outer model coefficients while
the loading are similar to the correlations in regression analysis. Non-significant predictors (n.s.) are
highlighted in gray.

Latent variables Predictor Weight (ω) Loading (l)

Vascular vegetation height Vegetation height 1 1

Floristic composition NMDS 1 1 1

NMDS 2 n.s. n.s.

NMDS 3 n.s. n.s.

Vascular aboveground biomass Bryophytes biomass n.s. n.s.

Herbaceous biomass 0.65 0.94

Shrubs biomass 0.45 0.87

Vascular species richness Graminoid richness 0.5 0.9

Forbs richness 0.59 0.93

Shrub richness n.s. n.s.

SOM Soil organic matter depth 1 1

C stock Belowground C stock 1 1

Spectral 
information

Vegetation height 

Structural 
information 

Floristic composition, 
Aboveground biomass, 

Species richness, 
Soil depth,

Belowground C stocks
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MNF 2
MNF 3
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Figure A.6: PLS-PM structural model for the estimation of vegetation proxies, soil depth and belowground C
stock using UAV-based predictors (Fig. 3b).

Appendix 3.3: Floristic composition information

Figure A.7 depicts the floristic gradient obtained from the ordination procedure and its interpre-

tation. Compare Supplementary information below for a description of the procedure.
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Figure A.7: Results of the floristic gradient. (a) Distribution of plots (sample points) in the two-dimensional
ordination space of NMDS, showing the distribution of the belowground C stock (left) and the man-
agement types (right) along the gradients. Close plots feature a similar species composition, while
remote plots are more dissimilar. Vectors illustrate the correlations of the axes with the PLS-PM la-
tent variables (H = vascular vegetation height, BM = vascular aboveground biomass, Rich = vascular
species richness and Depth = soil depth). (b) Typical species identified with the isopam clustering
algorithms in the NMDS first axis. Underlined species names indicate exotic species. (c) Floristic
gradient obtained in the NMDS first axis with the plot locations (black dots) and the placement of
the commons species on it.
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Appendix 3.4: Supplementary information

Floristic composition

To estimate the floristic composition, we assessed the most important floristic gradients in the

species-by-plot matrix using Nonmetric Multidimensional Scaling (NMDS; Shepard, 1962).

NMDS has been related successfully to remote sensing data before (e.g. Feilhauer et al., 2011;

Schmidtlein et al., 2007) and is one of the most used algorithms in vegetation ordination. NMDS

arranged vegetation plots based dissimilarities ranked by the Euclidean distance in the ordina-

tion space. Similar to principal component analysis, NMDS rotate the ordination space so the

first axis describes the highest floristic variation (Clarke, 1993). To avoid local minima, the best

solution out of 500 iterations was selected. NMDS estimations were carried using the ‘vegan’

R-package (Oksanen et al., 2017).

Two ordination axes were found to contribute the most to the gradient. We analyzed the distri-

bution of the plot-based vegetation traits - i.e. vegetation heights, species richness, aboveground

biomass – and soil depth and C stock in the ordination space to obtain initial information to-

wards their distribution in the floristic gradient. Likewise, management types were plotted to

display floristic differences (see Figure A.7).

Photogrammetric point cloud structural information

The structural metrics derived from the CloudMetrics function of FUSION (McGaughey, 2018).

The estimated variables were: the minimum, maximum, mean, median, mode, standard devi-

ation, variance, interquartile distance, skewness, kurtosis, ADD (average absolute deviation),

percentiles, MADMedian (median of the absolute deviations from the overall median), MAD-

Mode (median of the absolute deviations from the overall mode), L-moments (L1, L2, L3, L4),

L-moment skewness, L-moment kurtosis, canopy relief ratio ((mean – min) / (max – min)) and

generalized means for the 2nd and 3rd power (elev. Quadratic mean and elev. Cubic mean).
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Random forest variable importance using the UAV-based predictors

Figure A.8 shows the variable importance of random forest regressions applying the UAV-based

data (Figure 4.3b).

Figure A.8: Variable importance of the random forest models using the UAV-based predictors
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