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Abstract In this paper we propose a wrapper method for feature selection in
supervised learning. It is based on the global sensitivity analysis; a variance-
based technique that determines the contribution of each feature and their
interactions to the overall variance of the target variable. First-order and total
Sobol sensitivity indices are used for feature ranking. Feature selection based on
global sensitivity is a wrapper method that utilizes the trained model to evaluate
feature importance. It is characterized by its computational efficiency because
both sensitivity indices are calculated using the same Monte Carlo integral.
A publicly available data set in machine learning is used to demonstrate the
application of the algorithm.
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1 Introduction

The purpose of feature selection, as a process for dimensionality reduction, is to
identify the subset of features that provides the most reliable and robust learning
performance. By removing noisy or redundant features, computational cost
is reduced; higher accuracy and better interpretability are achieved. Feature
selection plays a central role in many areas such as natural language process-
ing, computational biology, image recognition, information retrieval, business
analytics and many others.

In this article, we implement a sensitivity analysis approach to feature
selection. Sensitivity analysis is concerned with understanding how the input
variables (features) influence the changes of the output (target) variable. There
exist two categories of techniques for sensitivity analysis: local sensitivity
techniques and global sensitivity techniques. Local sensitivity techniques are
mainly derivative-based techniques that measure the local impact of input
variables on the output variable. On the other hand, global sensitivity techniques
measure the impact on the output variable resulting from varying the inputs in
their ranges of uncertainty. Over the last decade, global sensitivity analysis has
gained acceptance among practitioners of model development. The proposed
feature selection is a variance-based sensitivity technique that decomposes
the target variable variance into summands of variances of the features in an
increasing dimensionality. The approach utilizes the model training algorithm to
compute feature sensitivities. Hence, the effectiveness of the resulting sensitivity
measures depends largely on the precision of the trained model. The article is
organized as follows. Section 2 presents a review of some existing methods for
feature selection. Section 3 describes the global sensitivity analysis approach
and gives some theoretical foundation of the method. Section 4 illustrates
an application of the method and concludes with a discussion of some of its
computational aspects.
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2 Review of Feature Selection Methods

Based on the search strategy used, the existing methods of feature selection
can be classified into three general frameworks (Guyon and Elisseeff, 2003;
Janecek et al, 2008; Maio and Niu, 1981):

1. Filters,
2. wrappers, and
3. embedded methods.

Filters use the data itself to rank the features according to certain criteria
and performs feature selection before the learning algorithm runs. Wrapper
methods, on the other hand, evaluate the importance of features using the
learning algorithm itself. Embedded methods search for the most discriminative
subset of features simultaneously with the process of model construction. What
follows is a brief description of each framework:

1. Filters
Filters evaluate feature importance as a pre-processing operation to model
construction as depicted in Figure 1. They use some information metric
to calculate feature ranking from the data without direct input from the
target. Popular information metrics include t-statistic, p-value, Pearson
correlation coefficient, mutual information and other correlation measures.
Computationally, filters are more efficient than wrappers as they require
only the computation of n scores for n features. A drawback of filter
methods is that they evaluate feature importance based on linear effects.
Nonlinear effects of features are left undiscovered. The Markov blanket,
a technique based on Bayesian networks, was developed to overcome this
drawback of filter methods (Aliferis et al, 2010).

Original
feature set

Choose subset of features
with the highest metric score

Train model on
the feature subset

Figure 1: Filters framework.
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2. Wrappers
Wrapper methods are model-based methods for feature selection and are
considered to be the most effective and computationally stable algorithms.
Figure 2 shows the main principle of the wrapper methods’ framework.
Basically, to find the most relevant set of features, the intended model
is trained for different subsets of features. The subset with the highest
score on a particular performance criterion is selected as best set of
features. Because wrapper methods utilize the learning algorithm they
are considered more effective and hence more desirable than filters and
embedded methods.

Original
feature set

Choose sub-
set of features

Train model on
the feature subset

Prediction
performance criterion

Figure 2: Wrappers framework.

However, wrapper methods are generally criticized for their excessive
computational cost. They require training and evaluation of the perfor-
mance of the learning algorithm for every selected subset of features.
For n features, the number of feature subsets is equal to O(2n), i.e., the
computational needs of wrappers exponentially increase with the number
of features in the model. This makes the search for all possible subsets
of features impractical for even moderate values of n. Sequential search
methods such as forward selection, backward elimination and stepwise
regression became popular techniques used to overcome some of the
computational demands of wrappers. Other efficient search strategies
have also been developed to find the desired optimal subset of features
(Hocking and Leslie, 1967).

3. Embedded methods
Embedded methods combine the characteristics of filter and wrapper
methods. They are implemented by learners that have built-in search
procedures for the optimal subset of features (Figure 3). Embedded
methods aim at maximizing the performance of the learning algorithm
while minimizing the number of features in the algorithm.
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Original feature set Train model on the
original feature set

Choose feature subset
based on model parameters

Figure 3: Embedded methods framework.

Regularization regression methods such as Ridge Regression (Hoerl,
1970), Least Absolute Selection and Shrinkage Operator (LASSO,
Tibshirani, 1996) are the most popular forms of embedded methods.
Regularized decision tree algorithms, such as random forests (Breiman,
2001), are other examples of embedded methods.

For more comprehensive reviews of feature selection methods, the reader is
referred to Guyon and Elisseeff (2003) and Clarke et al (2009).

3 Global Sensitivity Indices

In this section we propose a variance-based feature selection approach for
supervised learning in which the variance of the target variables is decomposed
into contributions of individual or subsets of features. The technique which was
first developed by Sobol (1990, in Russian) and Sobol (1993, in English) relies on
the theory of ANOVA decomposition (Efron and Stein, 1981; Scheffé, 1959).

For a model function Y = f (X), the importance of input variables (features)
X = (X1, ... ,Xn) is quantified in terms of the reduction in the variance of Y
when X are fixed at some value. For a particular Xi, this is expressed as

Si =
Vi

V(Y )
=

VXi [EX−i (Y |Xi)]

V(Y )
, i = 1,2, ... ,n , (1)

and the joint (interaction) effect is given by

Si j =
Vi j

V(Y )
=

VXi ,Xj [EX−i j (Y |Xi,Xj)] − Vi − Vj

V(Y )
, i, j = 1,2, ... ,n , i , j, (2)

where X−i is the set of all variables except Xi and E(.) and V(.) represent the
expected value and variance. Si and Si j represent the first order and interaction
effects for Xi and (Xi,Xj), respectively. These effects measure the reduced
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portion of the output (target) variable uncertainty caused by the input Xi and
its interactions when the true value of Xi is known. Higher order interaction
effects can be defined in a similar fashion. Another popular variance measure of
Xi is the total effect index defined by:

TSi =
TVi

V(Y )
=

EX−i [VXi (Y |X−i)]

V(Y )
= 1 −

VX−i [EXi (Y |X−i)]

V(Y )
. (3)

TSi is the ratio of the remaining uncertainty of the output to the unconditional
variance V(Y )when the true values of all inputs except Xi are known. It measures
the total effect comprising of first order, interaction and higher order effects
involving Xi, i.e.,

TSi = Si +
n∑

j:j,i
Si j + ... + S1 ... i ... n. (4)

The underlying theory of the above variance-based measures is related to the
decomposition of the function f (X) (Sobol, 1993):

f (x) = f0 +
n∑
i=1

fi(Xi) +
∑

1≤i< j≤n

fi j(Xi,Xj) + ... + f12...n(X1, ... ,Xn)

= f0 +
2n−1∑
s=1

fIs (XIs ), (5)

I = 1 ≤ i1 < ... < is ≤ n, s = 1,2, ... ,2n − 1, (6)

where

f0 = E(Y ) (7)
fi(Xi) = EX−i (Y |Xi) − f0 (8)

fi j(Xi,Xj) = EX−i j (Y |Xi,Xj) − fi − fj − f0 (9)

and so on.
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The decomposition in Equation (5) holds true if the model function f (x) is
square-integrable and defined over the n-dimensional unit hypercube:

Kn = {X | 0 ≤ Xi ≤ 1, i = 1, ... ,n} (10)

and the integral of every summand over any of its variables is zero, i.e.

1∫
0

fIs (XIs ) dXk = 0, k ⊂ I, (11)

where Is is a subset of input variables. For statistically independent X1, ... ,Xn,
the terms in Equation (5) are mutually orthogonal and the decomposition is
unique. Additionally, with independent inputs, the unconditional variance V(Y )
can be decomposed in the same way as the model function, i.e.,

V(Y ) =
n∑
i=1

Vi +
∑

1≤i< j≤n

Vi j + ... + V12...n (12)

with

Vi1 ... is = V(f(Xi1, ... ,Xis ))

= V[E(f |Xi1, ... ,Xis )], 1 ≤ i1 < ... < is ≤ n, (13)

where the conditional expectation is taken over all Xj not in Is and the variance
is computed over the range of possible values of Is, s = 1,2, ... ,2n−1. Dividing
both sides of Equation (12) by V(Y ), we obtain:

1 =
n∑
i=1

Si +
∑

1≤i< j≤n

Si j + ... . + S12...n (14)

With the identity in Equation (14) and the definitions of Si and TSi in Equa-
tions (1) and (3), it is easy to verify that, if interaction effects exist,

n∑
i=1

Si < 1 (15)
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and that the difference

1 −

n∑
i=1

Si (16)

is an indicator of the presence of interaction effects among features. It can also
be concluded that

n∑
i=1

TSi ≥ 1. (17)

Saltelli et al (2010) suggested that for independent X1, ... ,Xn, one can avoid
to explicitly include the probability distribution function of each Xi in the
construction of fi , fi j , ... , etc.Therefore and without loss of generality, all input
variables can be conceived as defined in Kn and the mapping from Kn to the
actual probability distribution of Xi is intended to be part of the definition of fi .

3.1 Monte Carlo Estimation

We construct in this section a Monte Carlo algorithm for the numerical estimation
of Sobol sensitivity indices. The Monte Carlo procedure allows the estimation
of both sets of indices Si and TSi using a single set of random samples generated
from the assumed probability distributions of X. The general framework for
the numerical algorithm is as follows:

1. For a given design matrix D of size M × n and a vector of output (target)
values y of size M × 1, use an appropriate learning algorithm to train the
model and obtain predictions f (D). Here M is the number of realizations
of features and of the target variable and n is the number of features.

2. For the assumed probability distributions, generate two independent
samples A and B of X = (X1, ... ,Xn) each of size N × n. N is the number
of simulated observations of X, N ≥ M .

3. For the i-th feature, construct a matrix Ai
B, consisting of all columns of

A except the i-th column which is taken from matrix B.

4. Estimate Vi and TVi , the numerators of Si and TSi in Equations (1) and
(3), respectively, and V(Y ) by the following formulas (Saltelli et al, 2010):

V̂i =
1
N

N∑
r=1

f (B)r [ f (Ai
B)r − f (A)r ] (18)
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ˆTV i =
1

2N

N∑
r=1

[ f (Ai
B)r − f (A)r ]

2 (19)

V̂(Y ) =
1
N

N∑
r=1

f (A)r f (B)r − f 2
0 (20)

where r is the r th row of A and B and

f0 =
1
N

N∑
r=1

f (A)r . (21)

5. Use Equations (1) and (3) to obtain the estimated values for first-order
and total effect indices, Ŝi and T̂Si.

6. For a given k, select the features with the highest k % first-order or total
effect scores. k depends on the desired accuracy of the model.

The number of model evaluations required by the above estimation algorithm
for the combined set of Ŝi and T̂Si is N(n + 2). A larger N produces more
accurate estimates. Another important aspect of the computation is the random
sampling of the two matrices A and B. The Monte Carlo method makes use
of quasi-random (QR) points of the Sobol sequences (Bratley and Fox, 1988).
QR sequences possess the desired uniformity property and optimally fill the unit
hypercube Kn in a fashion that avoids inhomogeneity of selected points. Sobol
sequences possess the additional favored property of being low discrepancy
points and they perform well in existing QR methods. More details about the
characteristics and generation of Sobol QR sequences can be found in Saltelli
et al (2010).

4 Numerical Example

The above described computational algorithm of Sobol sensitivity indices is ap-
plied here to a published data set containing 100 independent variables (features)
and one output (target) variable (source: https://drive.google.com/
file/d/0ByPBn4rtMQ5HaVFITnBObXdtVUU/view). The features rep-
resent various profiles of certain stocks while the target variable represents a
rise in the stock price (1) or a drop in stock price (−1).

https://drive.google.com/file/d/0ByPBn4rtMQ5HaVFITnBObXdtVUU/view
https://drive.google.com/file/d/0ByPBn4rtMQ5HaVFITnBObXdtVUU/view


10 Hana Sulieman and Ayman Alzaatreh

The data set includes 3000 observations. The model was first trained by a Random
Forest (RF) utilizing 67 % of the data set and the model was validated on the
remaining 33 % of the observations. The reported accuracy of the validated
model – measured by the Area Under Curve (AUC) – was 0.4523. Using the
mean decrease in the Gini index measure for feature importance (Clarke et al,
2009), the top 20 features were selected and the model was retrained with these
most important 20 features. The resulting validated prediction accuracy was
0.4767 (5.4 % increase in accuracy). We followed the same learning algorithm
and applied instead the global sensitivity analysis to select the top 20 features.
We used N = 15000 simulations. A filter method based on the point-biserial
correlation coefficient of each feature with the binary target variable is added to
the analysis. The results are shown in the following Figure 4 and Table 1.

Figure 4: Scatter plots of feature importance values for the stock data based on four different measures.
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Figure 4 depicts scatter plots of the feature relevance (importance) values
computed based on mean decrease in the Gini index (as reported in the source
article), point-biserial correlation coefficient and Sobol sensitivity indices versus
feature index. A quick examination of the scatter plots reveals that the first-order
Sobol sensitivity index Si has the strongest discrimination ability of the most
important features, followed by biserial correlation and total sensitivity index
TSi. The three measures possess more dispersed scatters in the upper range as
compared to the Gini index.This is confirmed by the values of the coefficient
of variation which are from highest to lowest: 73 % for Si, 45 % for biserial
correlation, 37 % for TSi and 9 % for Gini index.

Table 1: Prediction accuracy of reduced model.

Selection Method Top 20 features AUC % accuracy increase
(baseline 0.4523)

Mean Decrease Gini 0.4767 5.4
Biserial correlation 0.5170 14.3
First-order Sobol effect 0.5185 14.6
Total Sobol effect 0.5207 15.2

Table 1 clearly indicates that the Sobol sensitivity indices produce the highest
predictive accuracy when the model is trained on the top 20 selected features.

5 Conclusion

In this paper a supervised feature selection approach is proposed based on the
global sensitivity analysis. Feature importance is measured by the first-order
and total Sobol sensitivity indices that quantify the contribution of individual
features and their interactions to the overall variance of the target variable.
A computational algorithm of the two sensitivity indices was described and
applied to a publicly available data set. It is shown that Sobol sensitivity indices
identify the most important features more distinctly than other existing feature
selection techniques and provide a higher predictive accuracy.
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The classical Sobol-based sensitivity analysis presented in this paper assumes
statistically independent features. In subsequent work, the authors wish to extend
the analysis to include dependent features and also compute sensitivity indices
for subsets of features.
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