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The Minkowski quantum vacuum does not gravitate
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Abstract

We show that a non-zero renormalised value of the zero-point energy in λφ4-theory over Minkowski 
spacetime is in tension with the scalar-field equation at two-loop order in perturbation theory.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Quantum fields give rise to an infinite vacuum energy density [1–4], which arises from 
quantum-field fluctuations taking place even in the absence of matter. Yet, assuming that semi-
classical quantum field theory is reliable only up to the Planck-energy scale, the cut-off estimate 
yields zero-point-energy density which is finite, though, but in a notorious tension with astro-
physical observations.

In the presence of matter, however, there are quantum effects occurring in nature, which can-
not be understood without quantum-field fluctuations. These are the spontaneous emission of a 
photon by excited atoms, the Lamb shift, the anomalous magnetic moment of the electron, and 
so forth [5]. This means quantum-field fluctuations do manifest themselves in nature and, hence, 
the zero-point energy poses a serious problem.

Lorentz symmetry implies that vacuum stress-energy tensor is proportional to the metric ten-
sor [2]. As a consequence, the vacuum energy density must equal a quarter of the stress-tensor 
trace. In the case of Maxwell theory, the photon field cannot thus give a non-vanishing Lorentz-
invariant vacuum stress tensor, due to conformal invariance of the theory. Still, its vacuum energy 
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density is, rigorously speaking, infinite. This tension can be re-solved if the stress-energy tensor 
is (properly) regularised and then renormalised to zero. This procedure does not result in a fine-
tuning problem, because that is actually required for a self-consistent description of the quantum 
vacuum. In view of this argument, the purpose of this article is to re-consider the zero-point en-
ergy in the context of interacting quantum fields by exploiting non-linear equations they satisfy.

Throughout, we use natural units with c = G = h̄ = 1, unless otherwise stated.

2. Zero-point energy

2.1. Quantum kinetic theory

The vacuum expectation value of the stress-energy-tensor operator T̂ μ
ν (x) of a massive non-

interacting quantum scalar field, φ̂(x), in Minkowski spacetime reads

〈0|T̂ μ
ν (x)|0〉 = 1

2(2π)3

∫
d3p
p0

pμpν , (1)

where p0 = (p2 + m2)
1
2 and m is the scalar-field mass. The state |0〉 denotes the Minkowski 

vacuum of the non-interacting theory. This integral quartically diverges and, thereby, leads to the 
zero-point-energy problem [1–4].

Back in 1924, Bose suggested a phase-space description of photons constituting black-body 
radiation [6]. It seems that we can go one step further in this direction, by assuming that “vir-
tual particles” also can be described by a distribution function. Namely, in kinetic theory, the 
stress-energy tensor is defined through a distribution function according to

T μ
ν (x) =

∫
d3p
p0

f (x,p)pμpν . (2)

The function f (x, p) corresponds to a distribution of p at each point x, in the sense that 
f (x, p) d3x d3p gives the average number of particles in the volume element d3x at x with mo-
menta from the interval (p, p + dp) [7]. Leaving aside the physical interpretation of f (x, p), we 
wish formally to introduce a distribution function of quantum-field fluctuations in the Minkowski 
vacuum, i.e.

f0(x,p) = 1

2(2π)3 , (3)

which, if inserted into (2), gives (1). This circumstance provides a motivation for the introduction 
of f0(x, p).

In general, a distribution function can be defined with the help of the covariant Wigner func-
tion

wω(x,p) ≡
∫

d4y

(2π)4 eipy 〈ω|φ̂(x+ 1
2y)φ̂(x− 1

2y)|ω〉 , (4)

where |ω〉 is a given quantum state [7].1 The second moment of the Wigner function corresponds 
to the stress-energy tensor:

1 Note that the Wigner function is renormalised in [7] through the normal ordering. We refrain from doing that, as our 
goal is to study the vacuum energy.
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〈ω|T̂ μ
ν (x)|ω〉 =

∫
d4p wω(x,p)pμpν . (5)

In particular, substituting the Wightman two-point function

〈0|φ̂(x)φ̂(y)|0〉 =
∫

d3k
(2π)3

1

2k0 e−ik(x−y) , (6)

where k0 = (k2 + m2)
1
2 , into (4) with |ω〉 = |0〉, we find

w0(x,p) = 1

(2π)3 θ(p0) δ
(
p2 − m2) ≡ 1

p0
f0(x,p) δ

(
p0 − (p2 + m2)

1
2
)
, (7)

where f0(x, p) agrees with (3).
The Wigner function provides the phase-space description of a quantum system. As a conse-

quence, the distribution function can be of use to couple various observables in local quantum 
field theory. Bearing in mind the standard ultraviolet divergences in particle physics, it is tempt-
ing to conjecture that there is a relation between them and the vacuum-energy problem. We now 
wish to study how the Wigner distribution is related to elementary particle physics and its renor-
malisation procedure.

2.2. λφ4-theory

The Standard Model of particle physics is a theory of interacting quantum fields [8]. To sim-
plify our analysis, we intend to study the simplest non-linear field model, namely λφ4-theory. 
This model is described by

S[g,φ] =
∫

d4x
√−gL(g,φ) , (8)

where g is a determinant of the metric tensor gμν [9], which equals ημν = diag[+1, −1, −1, −1]
in Minkowski spacetime, and

L(g,φ) = 1

2
gμν∂μφ ∂νφ − 1

2
m2

0φ
2 − λ0

4! φ4 (9)

with the bare mass m0 and coupling constant λ0. Note that a constant term can be always added 
to L(g, φ) without changing the scalar-field dynamics. At quantum level, this shift of L(g, φ) can 
be accounted for the ambiguity in working with local products of operator-valued distributions 
which represent quantum fields [10].2

For the same reason, radiative corrections to m0 and λ0 diverge. All divergences must be 
regularised and then absorbed into the non-physical parameters m0, λ0 and the field-strength 
renormalisation factor Z which is defined as follows:

φ̂r (x) ≡ Z− 1
2 φ̂(x) , (10)

where the index r stands for “renormalised”, and

2 In this sense, the Wigner distribution is well-defined as based on the product of quantum fields placed at different 
space-time points, in contrast to its moments, due to the integration over momentum space.
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δZ ≡ Z − 1 =
∞∑

n=1

λnδ
(n)
Z , (11a)

δm ≡ m2
0Z − m2 =

∞∑
n=1

λnδ(n)
m , (11b)

δλ ≡ λ0Z
2 − λ =

∞∑
n=2

λnδ
(n)
λ , (11c)

according to [8], where m and λ are, respectively, the physical mass and coupling constant.

2.2.1. Vacuum Wigner function
In the presence of non-linear terms in the scalar-field equation, we define the Wigner function 

of the Minkowski vacuum as follows:

w�(x,p) ≡
∫

d4y

(2π)4 eipy 〈�|φ̂r (x+ 1
2y)φ̂r (x− 1

2y)|�〉 , (12)

where |�〉 denotes the Minkowski state of the interacting theory. Since |�〉 is invariant under 
the Poincaré group, the vacuum Wigner function cannot depend on the space-time point x and, 
therefore, we shall denote w�(x, p) by w�(p) in what follows.

The distribution function can be used to compute the stress tensor in the Minkowski vacuum. 
Varying (8) with respect to gμν and then setting gμν = ημν , we find

T̂ μ
ν = ∂μφ̂ ∂νφ̂ − 1

2
δμ
ν

[
(∂φ̂)2 − m2

0φ̂
2 − λ0

12
φ̂4

]
. (13)

From this result and (12), we obtain

〈�|T̂ μ
ν (x)|�〉 = Z

∫
d4p w�(p)pμpν

− 1

2
δμ
ν

[
m2δZ−δm−λ + δλ

4

∫
d4k w�(k)

]∫
d4p w�(p) . (14)

In the derivation of (14), we have taken into account that the Minkowski vacuum is Gaussian in 
λφ4-theory, implying that 〈�|φ̂4

r (x)|�〉 = 3(〈�|φ̂2
r (x)|�〉)2 generically holds, and

〈�|φ̂2
r (x)|�〉 =

∫
d4p w�(p) , (15)

which directly follows from (12).
Next, we find from the scalar-field equation,[

Z
(�x + m2

0

) + λ0Z
2

3! φ̂2
r (x)

]
φ̂r (x) = 0 , (16)

that [
Z

(
p2 − m2

0

) − λ0Z
2

2

∫
d4k w�(k)

]
w�(p) = 0 , (17)

where we have taken into consideration that the state |�〉 is Lorentz invariant and Gaussian, pro-
viding for 〈�|φ̂r (y)φ̂3

r (x)|�〉 = 3〈�|φ̂r (y)φ̂r (x)|�〉〈�|φ̂2
r (x)|�〉 (cf. (14) in Sec. III.2 of [7]). 

Integrating (17) over p and then substituting into (14), we find
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〈�|T̂ μ
μ (x)|�〉 =

∫
d4p w�(p)

[
2(p2 − m2)Z + m2

0Z
]
. (18)

Alternatively, taking the trace of (13) and then using the scalar-field equation to eliminate the 
quartic term, we obtain

〈�|T̂ μ
μ (x)|�〉 = m2

0Z〈�|φ̂2
r (x)|�〉 , (19)

where we have employed 〈�|∂φ̂r∂φ̂r + φ̂r�φ̂r |�〉 = 0, coming from ∂φ̂r = i[P̂ , φ̂r ], where P̂
is the space-time translation operator, and P̂ |�〉 = P |�〉, where P ∈ R4. Comparing these traces 
with (15) taken into account, we find that 

(
p2 − m2

)
w�(p) = 0. This results in

w�(p) = 1

(2π)3 θ(p0) δ
(
p2 − m2) δw . (20)

The as-yet-unknown parameter

δw ≡
∞∑

n=0

λnδ(n)
w (21)

needs to be determined, where, however, δ(0)
w = 1 must hold as it follows from (7).

Now, substituting w�(p) in (17) and then integrating over p, we find the main equation of 
this section:

[
m2δZ − δm

]∫
d4p w�(p) = λ + δλ

2

[∫
d4p w�(p)

]2

. (22)

Note, (22) does not exist if λ = 0. But, since λ �= 0, we have two solutions of this equation, 
namely

1

2

∫
d4p w�(p) = 0 , (23a)

1

2

∫
d4p w�(p) = m2δZ − δm

λ + δλ

. (23b)

The trivial solution (23a) corresponds to the absence of the (regularised) zero-point energy, while 
the non-trivial solution (23b) implies that the vacuum energy is non-zero.

We find from (20) and (23b) that

δ(0)
w = 2(4π)

d
2

(m2)
d
2 −1

m2δ
(1)
Z −δ

(1)
m

�
(
1− d

2

) , (24a)

δ(1)
w = 2(4π)

d
2

(m2)
d
2 −1

m2δ
(2)
Z −δ

(2)
m −[

m2δ
(1)
Z −δ

(1)
m

]
δ
(2)
λ

�
(
1− d

2

) (24b)

and so forth, where we have used dimensional regularisation, 4 → d < 4, on the left-hand side 
of (23b). It follows from (24) that δw can be determined by computing δZ , δm and δλ. These 
come in turn from the renormalisation of self-energy and vertex diagrams [8].
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2.2.2. Self-energy renormalisation
The Feynman propagator gets loop corrections which change its pole structure. We can rep-

resent this circumstance pictorially as follows:

= i

p2 − m2 − M2(p)
, (25)

where the shaded circle denotes the sum of all possible (one-particle irreducible) self-energy 
diagrams. According to the standard renormalisation conditions [8], M2(p) satisfies

M2(p)
∣∣
p2=m2 = 0 , (26a)

d

dp2 M2(p)
∣∣
p2=m2 = 0 . (26b)

These conditions turn out to be sufficient to compute δw up to the linear order in the coupling 
constant λ.

Specifically, at one-loop order, we have

−iM2(p) = + , (27)

where the counter-term vertex

= i
(
p2δZ − δm

)
. (28)

It is straightforward to compute the first diagram in (27), which gives from the renormalisation 
conditions (26) the following results (cf. (10.30) in [8]):

δ(1)
m = −1

2

(m2)
d
2 −1

(4π)
d
2

�
(
1− d

2

)
, (29a)

δ
(1)
Z = 0 . (29b)

Substituting (29) into (24a), we obtain

δ(0)
w = 1 . (30)

At two-loop order, however, we find

−iM2(p) = + + + + , (31)

where the counter-term vertex

= −iδλ . (32)

The first two diagrams in (31) cancel each other, whereas the last three diagrams give[ ]
= −iλ2

(
m2δ

(2)
Z − δ(2)

m + δ(1)
m δ

(2)
λ

)
, (33)

where the renormalisation condition (26a) has been taken into account and the square brackets 
mean that the diagram is taken on the mass shell, i.e. p2 = m2. Making use of (29) and (33), we 
obtain from (24b) that
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δ(1)
w = 2(4π)

d
2

(m2)
d
2 −1

i/λ2

�
(
1− d

2

)
[ ]

�= 0 . (34)

2.2.3. Vacuum bubbles
From another side, the parameter δw can be determined by considering vacuum-bubble dia-

grams. In general, we have

−i〈�|T̂ 0
0 (x)|�〉 = + + + O

(
λ2) . (35)

Up to the linear order in the coupling constant λ, we find from (14) with (20) that

〈�|T̂ 0
0 (x)|�〉 = 1

d

(m2)
d
2

(4π)
d
2

�
(
1− d

2

)(
δ(0)
w + λδ(1)

w

)

− λ

8

(m2)d−2

(4π)d
�2(1− d

2

)(
2 − δ(0)

w

)
δ(0)
w + O

(
λ2) , (36)

where (29) have been used.
Computing the first diagram in (35), we find

δ(0)
w = 1 , (37)

which is consistent with the result (30). The second and third diagrams shown in (35) give

δ(1)
w = 0 , (38)

which does not agree with the result (34).

2.3. Discussion

The tension between (34) and (38) is not an artifact of dimensional regularisation. In fact, it is 
straightforward to show that the same problem also takes place at two-loop order in Pauli-Villars 
regularisation.

To summarise, it follows from the non-vanishing value of the vacuum energy density that the 
Wigner function of the Minkowski state, w�(p), is non-zero. But, the substitution of w�(p)

into (22) does not solve this equation at two-loop order in perturbation theory. Thus, w�(p) �= 0
violates the scalar-field equation. Since this is the main equation describing the quantum-field 
dynamics, its violation is unacceptable. According to (22), the only option left is to choose its 
trivial solution (23a). Consequently, w�(x, p) defined in (12) has to be renormalised to zero. 
This implies in turn that the Minkowski vacuum has neither energy nor pressure.

Alternatively, we may consider L(g, φ) →L(g, φ) − 0/8π , where L(g, φ) is defined in (9)
and 0 is a constant which cancels the sum of all vacuum-bubble diagrams in the scalar-field 
model. This procedure does not pose a fine-tuning problem, as that is a self-consistency condi-
tion.

As emphasised above, the crucial equation (22), which results in the tension between the 
renormalisation conditions (26) and the non-renormalised Wigner function, arises from the 
scalar-field equation. We have studied λφ4-theory so far, but the same conclusion holds for other 
non-linear models. For example, the field equation in gφ3-theory gives
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g0Z
3
2

2

∫
d4p w�(p) = 0 . (39)

We are again forced to renormalise the Wigner function here, in such a way (39) is trivially 
satisfied.

The microscopic effects due to quantum-field fluctuations are observable only in the presence 
of matter. The fact that the renormalised vacuum Wigner function has to vanish does not lead to 
any tension with the up-to-date observations. It is because vacuum-bubble diagrams do not have 
external legs and, for this reason, these diagrams are not coupled through non-gravitational fields 
to elementary particles or atoms.

3. Conclusion

The Universe we observe is not Minkowski spacetime, although we have made this approx-
imation as it is common in elementary particle physics [8]. In particular, the expectation value 
of (13) in a given quantum state represents a source term in the Einstein field equations, which 
distorts the spacetime. Still, the Universe locally looks as Minkowski spacetime, in accordance 
with the Equivalence Principle. Our computations are therefore valid in any local Lorentz frame. 
The conclusion is then that the Minkowski quantum vacuum in elementary particle physics is not 
a source of the gravitational field.

In curved spacetime, the vacuum expectation value of the stress-energy-tensor operator ac-
quires, in general, curvature-dependent corrections. On dimensional grounds, the first non-trivial 
covariantly-conserved correction has the form

Gμ
ν (x)〈�|φ̂2(x)|�〉 , (40)

where Gμ
ν (x) is the Einstein tensor and we have taken into account that 〈�|φ̂2(x)|�〉 does 

not depend on x, due to local homogeneity of the Minkowski state. This correction quadrati-
cally diverges, while higher-order curvature corrections are at worst logarithmically divergent. 
Hence, (40) leads to an infinite shift of the inverse gravitational constant, 1/G. This shift co-
incides up to a numerical factor with the result from effective-action computations (see, e.g., 
Sec. 6.2 in [9]). However, according to the self-consistency argument, the renormalised Wigner 
function is zero, which, according to (15), implies that (40) vanishes.

Yet, the very fact that the Minkowski vacuum does not gravitate in elementary particle physics 
does not solve the main cosmological constant problem. Indeed, the Higgs condensate con-
tributes a negative energy density of order (100 GeV)4 to the cosmological constant [3]. The 
energy density of dark energy is, however, of order (0.001 eV)4. Besides, it seems that the vac-
uum in quantum chromodynamics makes a contribution of order (0.3 GeV)4 to the total vacuum 
energy of the Universe [4]. The former contribution may be got rid of by re-defining the Higgs 
potential, while the latter, probably, requires novel ideas, such as [10,11], to harmonise the Stan-
dard Model with astrophysical observations.

Admittedly, the physical meaning of the distribution function of “virtual particles” is not en-
tirely clear. In this article, we have used this concept as a mathematical tool to study physics of 
the zero-point energy. We hope to come back to this question later.

Acknowledgements

It is a pleasure to thank Frans Klinkhamer for valuable discussions. I am also grateful to Claus 
Kiefer, Roman Lee and Stefan Liebler for discussions.



V.A. Emelyanov / Nuclear Physics B 946 (2019) 114694 9
References

[1] W.E. Pauli, in: Exclusion Principle and Quantum Mechanics, 1946 (Nobel lecture).
[2] Ya.B. Zeldovich, Sov. Phys. Usp. 11 (1968) 381.
[3] S. Weinberg, Rev. Mod. Phys. 61 (1989) 1.
[4] J. Martin, C. R. Phys. 13 (2012) 566.
[5] P.W. Milonni, The Quantum Vacuum. An Introduction to Quantum Electrodynamics, Academic Press, Inc., 1994.
[6] S.N. Bose, Z. Phys. 26 (1924) 178.
[7] S.R. de Groot, W.A. van Leeuwen, Ch.G. van Weert, Relativistic Kinetic Theory. Principles and Applications, 

North-Holland Publishing Co., 1980.
[8] M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley Publishing Co., 1995.
[9] N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space, Cambridge University Press, 1984.

[10] J. Holland, S. Hollands, Class. Quantum Gravity 31 (2014) 125006.
[11] F.R. Klinkhamer, G.E. Volovik, Phys. Rev. D 77 (2008) 085015.

http://refhub.elsevier.com/S0550-3213(19)30180-4/bib5061756C69s1
http://refhub.elsevier.com/S0550-3213(19)30180-4/bib5A656C646F76696368s1
http://refhub.elsevier.com/S0550-3213(19)30180-4/bib5765696E62657267s1
http://refhub.elsevier.com/S0550-3213(19)30180-4/bib4D617274696Es1
http://refhub.elsevier.com/S0550-3213(19)30180-4/bib4D696C6F6E6E69s1
http://refhub.elsevier.com/S0550-3213(19)30180-4/bib426F7365s1
http://refhub.elsevier.com/S0550-3213(19)30180-4/bib646547726F6F742676616E4C65657577656E2676616E5765657274s1
http://refhub.elsevier.com/S0550-3213(19)30180-4/bib646547726F6F742676616E4C65657577656E2676616E5765657274s1
http://refhub.elsevier.com/S0550-3213(19)30180-4/bib5065736B696E26536368726F65646572s1
http://refhub.elsevier.com/S0550-3213(19)30180-4/bib42697272656C6C26446176696573s1
http://refhub.elsevier.com/S0550-3213(19)30180-4/bib486F6C6C616E6426486F6C6C616E6473s1
http://refhub.elsevier.com/S0550-3213(19)30180-4/bib4B6C696E6B68616D657226566F6C6F76696Bs1

	The Minkowski quantum vacuum does not gravitate
	1 Introduction
	2 Zero-point energy
	2.1 Quantum kinetic theory
	2.2 λφ4-theory
	2.2.1 Vacuum Wigner function
	2.2.2 Self-energy renormalisation
	2.2.3 Vacuum bubbles

	2.3 Discussion

	3 Conclusion
	Acknowledgements
	References


