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fact that in the bosonic sector (i.e., the half-BPS soliton-impurity model), only one soliton

(for example, the kink) is a BPS configuration which solves the pertinent Bogomolnyi

equation and saturates the topological energy bound. On the other hand, the topological

charge conjugate state (the antikink) is not a BPS solution. This means that it obeys the

full Euler-Lagrange equation and does not saturate the topological energy bound.

The supersymmetric approach also allows us to construct half-BPS soliton-impurity

models in (2+1) dimensions. Concretely, in the case of the CP 1 model, its BPS impurity

generalisation preserves one-quarter of the N = 2 SUSY, while for the Abelian Higgs model

at critical coupling both impurity generalisations preserving one-quarter (the case of a new,

so-called Higgs impurity) as well as one-half of the N = 2 SUSY (the case of the previously

known magnetic impurity) are possible.

We also discuss a possible relation between the BPS CP 1-impurity model and the

Dzyaloshinskii-Moriya interaction energy.
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1 Introduction

It is widely known that the BPS (self-dual) solitons in (1+1) dimensions are intimately

related to the existence of a N = 1 supersymmetric extension of the bosonic model. Here,

by a BPS solution we understand a static solution of the so-called Bogomolnyi equations
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(which are of lower order than the Euler-Lagrange (EL) equations), which saturates a perti-

nent topological energy bound. This guarantees the topological stability of the solution for

topologically nontrivial configurations (kinks). Furthermore, the BPS sector is equivalent

to the zero pressure sector, as the Bogomolnyi equation is just the zero pressure condition.

Supersymmetry provides a systematic tool for the derivation and analysis of such

Bogomolnyi equations. Indeed, they can be obtained from the N = 1 supersymmetric

transformations of the fermions. Then, the self-dual sector (supporting kinks with topo-

logical charge Q = 1) is invariant under one-half of the supersymmetry. Of course, the

same happens with the anti self-dual sector.

Furthermore, the model allows for a central extension, where the central charge is the

difference of the values of the superpotential at asymptotical values of the fields (vacua).

The superpotential is related to the potential of the bosonic part of the theory by a target

space differential equation. Hence, for topologically nontrivial solutions (BPS solitons),

the central charge takes a nonzero value.

All these properties concern not only a scalar field theory with the standard kinetic

term and an arbitrary (at least two vacua) potential but can be generalized to a quite

arbitrary target space [1] (multi-field and curved target space) as well as to models with

nonstandard derivative terms [2]–[23]. In fact, very recently it has been proved that the

BPS property is shared even by theories with higher derivatives and, therefore, is a generic

feature of all translational invariant scalar field Lagrangians in (1+1) dimensions [24]. Of

course, this is at odds with higher dimensional models, where only very few models enjoy

the BPS property.

One could ask the obvious question of how to break the BPS-ness in (1+1) dimensions.

This is possible but requires a quite drastic modification of the action, i.e., the addition of

a term which breaks the translational invariance of the model, that is, an impurity (defect).

Then, typically, no Bogomolnyi equations exist and solitons are solutions of the full EL

equations. However, it has been found that there is a very special coupling of the defect

which preserves one-half of the BPS-ness [24]. This means that a kink (or antikink) is a

BPS solution (solving a Bogomolnyi equation and saturating the pertinent bound) while its

topological charge conjugated partner, i.e., the antikink (kink) does not have this property.

In the present work, we want to understand these half-BPS soliton-impurity standard

scalar theories in (1+1) dimensions from a supersymmetric point of view. In particular, we

will show that the Bogomolnyi equation again emerges via a supersymmetry transforma-

tion of fermions, leading to an invariance of the BPS sector under one-half of the SUSY.

Similarly, we will obtain a central charge extension which, however, possesses only one

nontrivial supercharge. Also the fermionic and bosonic zero modes coincide. This further

explains the existence of the generalized translational symmetry of the BPS soliton. Fi-

nally, our approach allows for a derivation of a whole family of impurity deformed models

which preserve one-half of the BPS-ness (and in the limit of the vanishing impurity reduce

to the original scalar soliton BPS model). All such extensions preserve 1/2 of the original

N = 1 supersymmetry.

As N = 1 supersymmetry in (1+1) and (2+1) dimensions have basically the same

structure, all our findings can be generalized to the (2+1) case. This gives us a chance

– 2 –



J
H
E
P
0
7
(
2
0
1
9
)
1
6
4

to understand half-BPS preserving impurities in a unified way. Using these results, we

construct half-BPS impurity extensions for the baby BPS Skyrme model. The Lagrangian

with the impurity presents the same type of couplings as the scalar model in (1+1) di-

mensions. The only difference is the particular form of the topological current used in the

construction, which for (1+1) gives the usual kinetic term while for the baby BPS Skyrme

model is just the topological degree current. As a result, we get a model which preserves

1/4 of N = 2 sypersymmetry.

Interestingly, such a partially BPS preserving coupling of the impurity to a BPS model

resembles in many aspects the partially BPS Abelian Higgs model at critical coupling with

a magnetic impurity [25]. In both theories, only half of the solitons enjoy the BPS prop-

erty (are solutions of the pertinent Bogomolnyi equations) while the other half obey the

full EL equations. Hence, only the former ones saturate the topological bound. More-

over, the impurity enters the Bogomolnyi equations of the original (no impurity) model

as an inhomogenous term. Finally, the action requires the appearance of a coupling be-

tween a ’topological object’ (the topological density or the magnetic field, respectively)

and the impurity.

Even more interestingly, we find the half-BPS preserving coupling of the impurity to the

CP 1 model. In this case, the original Bogomolnyi equations, i.e., the Cauchy-Riemann (or

anti Cauchy-Riemann) equations, are replaced by their non-homogeneous versions where

the inhomogeneity is just the impurity. This implies the complete solvability in the BPS

sector (which hosts half of the solitons of the original model). This result will enable

us to introduce another impurity-Abelian Higgs model where one-half of the BPS-ness is

preserved. This is a different construction than the original one presented in [25].

The last comment concerns our terminology. All impurity models presented here are

theories where one-half of the solitons are still BPS objects, so frequently we call them

half-BPS soliton-impurity models. However, for the sake of simplicity sometimes we call

them just BPS soliton-impurity models. A related but different issue is the amount of

SUSY preserved by the SUSY extensions of the impurity models. Concretely, in the case

of N = 1 SUSY always 1/2 of the SUSY is preserved by the impurity BPS models, whereas

in the N = 2 case both the preservation of 1/4 or of 1/2 of the supersymmetry are possible.

We shall always denote these by 1/4 SUSY and 1/2 SUSY, respectively.

2 The BPS preserving impurity in the scalar model in (1+1) dim

2.1 The BPS property from supersymmetry

We will focus on N = 1 SUSY in d = 1 + 1 dimensions. The modified Lagrangian with

impurity σ preserving one-half of the BPS property of the original model (without impurity)

has the following form [24]

L =
1

2
∂µφ∂

µφ− U − 2σ
√
U −

√
2σφx − σ2. (2.1)

Here U is a (at least) two vacuum potential and φx ≡ ∂xφ. We will give an explanation,

based on a possible SUSY breaking, for the preservation of the BPS property. The first
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two terms in (2.1) have a simple SUSY extension

L0 =
1

4

∫
d2θDαΦDαΦ +

∫
d2θW (Φ)| = 1

2
∂µφ∂

µφ+
1

2
F 2 +Wφ(φ)F (2.2)

where | means setting ψα = 0. Φ is a scalar superfield and Dα is a superderivative, whose

components are

Φ = φ+ θαψα − θ2F, (2.3)

Dα =
∂

∂θα
+ iθβ∂αβ . (2.4)

Since for (2.1) only the kink (or the antikink) are BPS solutions of the model, one should

not expect to have a superfield formulation of the full model with impurity. If this were the

case, then the existence of a BPS kink solution would imply the existence of the antikink

and vice versa. Let us consider the following term

L1
impurity =

√
2φxσ. (2.5)

Taking into account the supersymmetric transformations of the fields

δφ = −εαψα, (2.6)

δψβ = −εβ (CαβF + i∂αβφ) , (2.7)

δF = −εαi∂ β
α ψβ , (2.8)

we have

δL1
impurity = −

√
2σ(εαψα,x). (2.9)

If the impurity σ is trivial (σx = 0), then (2.9) is a total derivative and SUSY is preserved.

If σx 6= 0, this term has to be compensated in order to preserve (a part of) supersymmetry.

The transformation (2.8) suggests the addition of the following term

L2
impurity =

√
2σF. (2.10)

The combination of (2.5) and (2.10) gives the following SUSY (static) transformations

1√
2
δ(L1

impurity + L2
impurity) = −2σε2ψ2,x − σε1ψ2,t + σε2ψ1,t, (2.11)

1√
2
δ(L1

impurity − L2
impurity) = −2σε1ψ1,x − σε2ψ1,t + σε1ψ2,t. (2.12)

The conclusion is as follows: if we add L1
impurity + L2

impurity to the Lagrangian then

1/2 SUSY is preserved (provided that ε2 = 0), while the combination L1
impurity − L2

impurity

preserves 1/2 SUSY (if ε1 = 0). Phrased differently, the addition of the impurity breaks

explicitly one-half of the supersymmetry generators (one real Grassmann degree for N = 1

in d = 1 + 1). We have therefore

δ(L1
impurity + L2

impurity)|ε2=0 = −
√

2ε1∂t(σψ2) (2.13)

δ(L1
impurity − L2

impurity)|ε1=0 = −
√

2ε2∂t(σψ1) (2.14)
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The total Lagrangian Ltot = L0−L1
impurity +L2

impurity has the following form in components

Ltot| =
1

2
∂µφ∂

µφ+
1

2
F 2 +Wφ(φ)F −

√
2φxσ +

√
2σF. (2.15)

After eliminating F (F = −Wφ(φ)−
√

2σ) and for φt = 0 the on-shell Lagrangian reads

Ltot,on−shell| = −
1

2
φ2
x −

1

2
W 2
φ(φ)−

√
2Wφ(φ)σ − σ2 −

√
2φxσ . (2.16)

We recall that (2.16) is invariant under one-half of the SUSY transformations (for ε1 = 0).

As usual, the BPS equation can be obtained from (2.7)

δψ1 = iε2(F − φx), (2.17)

δψ2 = iε1(−F − φx). (2.18)

Since in order to preserve one-half of SUSY at the level of the Lagrangian we have to

impose ε1 = 0, the condition δψ2 = 0 is automatically satisfied. From (2.17) we obtain

the condition

F − φx = 0, or φx = −Wφ(φ)−
√

2σ. (2.19)

It is easy to check that (2.19) implies the Euler-Lagrange equations for (2.16). Also, under

the replacement

Wφ(φ)→
√

2U (2.20)

the Lagrangian (2.16) corresponds to (2.1).

The specific form of introducing the impurity preserving the BPS property gives us

some hints on how to generalize this result to other models. Since the impurity breaks the

translation invariance, one should expect that, if the model preserves part of the SUSY,

the superalgebra contains only time translations (see section 2.2). Now let us assume that

the original model is BPS. From the SUSY point of view, this implies that the fermionic

transformations (after a proper reduction of the parameter space) are either time derivatives

or proportional to the BPS equations. In the previous case we had

δεψ1 = iε2(F − φx), (2.21)

δεψ2 = −iε2φt. (2.22)

On the other hand we have, in general

[δε, δη]X = −2iεαηβ∂αβX. (2.23)

Taking into account (2.21) we have

[δε, δη]ψ1 = 2δεδηψ1 = 2iη2δε(F − φx) = −2iη2ε2ψ1,t . (2.24)

Therefore, after the reduction to the BPS space (ε1 = 0), the transformation of the off-shell

BPS equation is a time derivative. This property can be stated as follows: the addition

of a term of the form σ(x)Σ (where Σ = 0 is the off-shell BPS equation) to a SUSY BPS

Lagrangian preserves the amount of supersymmetry preserved by the BPS solutions of the

original model and, as a consequence, the BPS property.
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2.2 The central charge

Let us consider again the model (2.1). As we discussed above, this model breaks explicitly

one real supersymmetric generator. The supercharge is defined as follows

Qα =

∫
dx J0

α, (2.25)

where Jµα is the supercurrent. The model (2.1) is 1/2-supersymmetric provided that ε1 = 0

and this implies that J0
1 = 0→ Q1 = 0. Thus we have

{Q2, Q2} = 2P0 − 2Z, (2.26)

{Q1, Q1} = 0, (2.27)

{Q1, Q2} = {Q2, Q1} = 0. (2.28)

Now, the impurity only adds an extra term proportional to the supercurrent (2.14). A

direct computation shows that

Q2 =

∫
dx

(
∂tφψ1 + ∂xφψ2 +

1

2
(F +Wφ +

√
2σ)ψ2

)
. (2.29)

With the (anti)commutation relations

[p(x), φ(y)] = iδ(x− y), {ψα(x), ψβ(y)} = δαβδ(x− y). (2.30)

Explicitly

P0 =

∫
dx

(
1

2
φ2
t +

1

2
φ2
x + iψ2,xψ1 +

1

2
W 2
φ +
√

2Wφσ + σ2 +
√

2φxσ

)
(2.31)

Z =

∫
dxφxWφ = W (φ)|x=∞ −W (φ)|x=−∞ . (2.32)

Since

{Q2, Q2} ≥ 0, (2.33)

we have from (2.26) that the energy of a state |φ〉 verifies the following inequality

P0 ≥ Z. (2.34)

This relation is clearly saturated for Q2|φ〉 = 0. For static solutions, this condition is

equivalent to the equation (2.29)

φx − F = 0→ φx = −Wφ −
√

2σ, (2.35)

which is the BPS equation previously obtained. Note that if in the original model we

replace σ → −σ the SUSY algebra becomes

{Q2, Q2} = 0, (2.36)

{Q1, Q1} = 2P0 − 2Z, (2.37)

{Q1, Q2} = {Q2, Q1} = 0. (2.38)

After a convenient change Wφ → −Wφ we get the saturating condition φx = Wφ +
√

2σ.
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2.3 The zero modes

2.3.1 The fermionic zero modes

Let us consider the following model

Ltot| =
1

2
∂µφ∂

µφ+
i

2
ψα∂ β

α ψβ+
1

2
F 2 +Wφ(φ)F −

√
2φxσ+

√
2σF +

1

2
Wφφ(φ)ψαψα. (2.39)

The fermion zero mode equations are given by

∂xψ2 −Wφφ(φ)ψ2 = 0, (2.40)

∂xψ1 +Wφφ(φ)ψ1 = 0. (2.41)

In the standard case (without impurity), the fermionic zero mode is simply the derivative of

the solitonic solution which obviously represents the translational zero mode of the soliton.

Hence, the only normalizable solution for the soliton reads

ψα =

(
φsx(x)

0

)
, (2.42)

while for the antisoliton

ψα =

(
0

φax(x)

)
. (2.43)

In the presence of the impurity, the fermion zero mode equations are still given by (2.40)

and (2.41) but there is only one (modified) BPS equation φx = −Wφ−
√

2σ. This leads to

the following fermionic zero mode

ψα =

(
φx(x) exp

(√
2
∫ x

0 dx
σx(x)
φx(x)

)
0

)
. (2.44)

2.3.2 The bosonic zero modes

The linear fluctuation equation in the kink/antikink background can be derived by inserting

the decomposition φ(t, x) = φc(x)+cos(ωt)η(x), where φc is a kink/antikink solution. The

resulting fluctuation equation is

− ηxx(x) +
(
Wφ(φc)Wφφφ(φc) +Wφφ(φc)

2 +
√

2Wφφφ(φc)σ
)
η(x) = ω2η(x). (2.45)

We will show that the bosonic and fermionic zero modes coincide. Let us assume that η

satisfies the fermionic zero mode equation (2.41)

ηx = −Wφφη (2.46)

where φ is a BPS solution i.e., obeys

φx = −Wφ −
√

2σ . (2.47)

Then, acting with ∂x we get

ηxx = −Wφφφφxη −Wφφηx = Wφφφ(Wφ +
√

2σ)η +WφφWφφη (2.48)
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where we used the Bogomolnyi equation and the fermionic zero mode equation. But the

last formula is exactly the bosonic mode equation. Hence, as one could expect, both modes

exactly coincide.

Here we present an example of the BPS-impurity model which allows for the exact

computation of the BPS soliton as well as the related zero mode. Let us take Wφ = (1−φ2)

which corresponds to the φ4 potential while the impurity is

σ(x) =
α− 1√

2

1

cosh2 αx
(2.49)

where α is a real parameter, α 6= 0. Then, the Bogomolnyi equation φx = −Wφ−
√

2σ has

the following exact solution

φ = − tanhαx (2.50)

which is a kink (positive topological charge) for α < 0. For α > 0 we get an antikink

(negative topological charge). For α = 1 we arrive at the usual φ4 theory antikink. The

zero mode can be also explicitly found and reads

η = − α

(coshαx)2/α
. (2.51)

2.4 Generalizing the BPS preserving impurity

As a matter of fact, the addition of the impurity preserving half of the BPS structure is

not unique. As an example, let us assume the following, new impurity term

Limpurity = −1

2
σφ2

x (2.52)

which is added to the standard bosonic, impurity free part of the model. As we will see, it

is again possible to include some extra terms that will preserve a part of the BPS structure.

The form of such new terms can be deduced using our supersymmetric approach. From

the supersymmetric point of view, the impurity term in (2.52) suggests a term of the form

L1 =
1

4

∫
d2θσDαΦDαΦ. (2.53)

But because of the reasons discussed above, this term does not preserve supersymmetry, i.e.,

δL1|ε2=0 = σ∂x
(
ε1ψ1(φx + F )− ε1ψ2φt

)
, (2.54)

which is not a total derivative. Note that the time component of (2.54) is a total derivative

since ∂tσ(x) = 0. On the other hand, we introduce

L2 = σxφ(F + φx), (2.55)

with the following transformation properties

δL2|ε2=0 = −σxε1ψ1(F + φx)− σxφε1ψ2,t. (2.56)

– 8 –
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Again, if we combine (2.54) and (2.56) we have the following term

δ(L1 − L2)|ε2=0 = ε1∂x (σψ1(F + φx)) + ε1∂t(σxφψ2). (2.57)

As a consequence, (L1 −L2) preserves half of the supersymmetry. After including a linear

σ-model term and a superpotential, the full Lagrangian (for φt = 0) reads

Ltot| = L0 + L1 − L2| = −
1

2
φ2
x (1 + σ) +

1

2
F 2(1 + σ) + σxφ(F + φx) + FW ′(φ). (2.58)

Solving for F

F =
σxφ−W ′(φ)

1 + σ
, (2.59)

the on-shell Lagrangian takes the form

Ltot, on−shell = −1

2
φ2
x(1 + σ)− σxφxφ−

1

2

(W ′(φ)− σxφ)2

1 + σ
. (2.60)

Finally, taking into account (2.7) and (2.59), the BPS equation can be expressed as

φx +
σxφ−W ′(φ)

1 + σ
= 0. (2.61)

It is clear from (2.60) that the addition of an impurity (in the last example simply, σφ2
x)

and the conservation of part of the BPS structure can lead to nontrivial Lagrangians. As

we have shown here, the latter condition can be translated into a partial explicit breaking

of the SUSY generators of an underlying supersymmetric model. As a consequence of

this reasoning, one can construct a large family of (half) BPS preserving soliton-impurity

models which in the limit σ → 0 reproduce the pure (no impurity) model

L0 =
1

2
(∂µφ)2 − U. (2.62)

A general coupling to an impurity σ preserving half of the BPS-ness has the following form

Lσ =
1

2
H2(∂µφ)2 − U

H2
−G2 − 2

√
UG

H
−
√

2HGφx (2.63)

where H,G are functions of φ and σ such that for the vanishing impurity i.e., when σ → 0,

H(φ, σ)→ 1 and G(φ, σ)→ 0 to recover the pure bosonic model. The static energy reads

E =

∫
dx

[
1

2
H2φ2

x +
U

H2
+G2 + 2

√
UG

H
+
√

2HGφx

]
(2.64)

=

∫ ∞
−∞

dx

(
H√

2
φx +

√
U

H
+G

)2

−
√

2

∫ ∞
−∞

dxφx
√
U (2.65)

≥ −
√

2

∫ ∞
−∞

dxφx
√
U = −

√
2

∫ φ(∞)

φ(−∞)
dφ
√
U = −Q

√
2

∫ φv−

φv+

dφ
√
U . (2.66)

The bound is saturated if the Bogomolnyi equation is obeyed

H√
2
φx +

√
U

H
+G = 0. (2.67)
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For H = 1 and G = σ we get the first BPS-impurity model, while H =
√

1 + σ, G = σx√
1+σ

leads to the second model (up to a factor of
√

2). Let us remark that such a generalisation

reminds us of the construction of generalised BPS models as presented in [1, 3–5].

Note, that G is a completely arbitrary function of the field as well as the impurity (and

can depend, for example, on its higher derivatives). As we will see in the next section, this

result can be understood in a more general framework.

3 N = 1 SUSY BPS impurities - a general construction

The standard N = 1 SUSY algebra in 1 + 1 dimensions has the following form

[δε, δη]X = −2iεαηβ∂αβX. (3.1)

After the restriction to the BPS subspace, ε2 = 0 (or ε1 = 0) it reduces to

[δε, δη]X = −2iε1η1∂tX. (3.2)

Since the BPS subspace has only one SUSY parameter we have the following property

[δε, δη]X = 2δεδηX = −4iε1η1∂tX. (3.3)

As a consequence, for Y = δX, i.e. Y ∈ Im(δ), we have: if Y ∈ Im(δ)⇒ δηY ∝ ∂tX, or in

words, the SUSY transformation of a term in the image of the SUSY transformation gives

a time derivative. This has a nice consequence for the models with impurities, since the

addition of any term of the form σ(x)Y with Y ∈ Im(δ) will preserve the amount of SUSY

preserved by the BPS soliton of the original model. Therefore, if L is a BPS model with

N = 1 SUSY, then ∀X, the following Lagrangian is also BPS

L̃ = L+ σ(x)δεX| (3.4)

where | means that the SUSY parameter has been removed. The following question arises

naturally: is it possible to add a term Y , Y 6∈ Im(δ) and such that 1/2 of SUSY is

preserved? Let us assume that the statement is true. In order to have 1/2 SUSY the

following must hold

δL̃ = δL+ σ(x)δY = ε1∂µj
µ
1 + σ(x)ε1∂tJ. (3.5)

But if we choose χ =
∫
dtδY = ε1J , we have δχ =

∫
dtδδY ∝ Y , and therefore Y ∈ Im(δ).

On the other hand, if δY = 0 then Y 6∈ Imδ. But if δY = 0, Y does not depend on

the fields and, therefore, Y must be a constant (or an impurity). Let us take Y = µ(x),

then if σ(x)µ(x) ∈ L1(R), the model L̃ is still BPS, but the topological bound is shifted

by a amount ∆ =
∫
dxσ(x)µ(x) (the effect of the impurity is trivial: it does not affect

the e.o.m.).

Nontrivial situation: Y ∈ Im(δ). Since Y contains bosonic terms (non-vanishing when

ψα → 0), it has to be the image of a term linear in fermions (X). We have two possibilities

X = ψ1H(F, φ, µ(x)), or X = ψ2H(F, φ, µ(x)), (3.6)
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where µ(x) is another impurity. From the SUSY variation of fermions in the restricted

subspace, we obtain

Y = δψ1H(F, φ, µ(x)) + (fermions) ∝ ∂tφH(F, φ, µ(x)) + (fermions) (3.7)

or

Y = δψ2H(F, φ, µ(x)) + (fermions) ∝ (F + ∂xφ)H(F, φ, µ(x)) + (fermions). (3.8)

In both cases the topological bound does not change: for (3.7), because the static

energy functional does not change, while in the second, because the modification is pro-

portional to the BPS equation. Note also that, depending on the form of H, it may be

necessary to add fermionic terms in order to preserve 1/2 SUSY. We can gather these

results in the following lemma:

Lemma 1 Let L be a 1 + 1 dimensional scalar model with N = 1 SUSY and a topological

bound T . Let L̃ be a BPS preserving impurity model based on L of the form L̃ = L−σ(x)Y

with topological bound T̃ . Then all possible impurity terms Y , preserving one supersym-

metric generator (and one BPS sector) are of one of the following forms:

i) Y ∈ Im(δ) (= δX, ∀X) and T̃ = T .

ii) Y 6∈ Im(δ) (= µ(x)) and T̃ = T + ∆, with ∆ =
∫
dxσ(x)µ(x).

4 The impurity baby BPS Skyrme model

Having systematically investigated the BPS preserving impurities in (1+1) dimensions, we

want to apply the same supersymmetric approach to implement such impurities also in

(2+1) dimensions.

4.1 The model

We begin our analysis of (2+1) dimensional theories with the baby BPS Skyrme model [26],

which provides also a lower dimensional counterpart of the BPS Skyrme model [27]. The

static energy reads

Ebaby BPS =

∫
d2x

[
λ2B2

0 + µ2U
]

(4.1)

where B0 is a temporal component (topological charge density) of the pertinent topological

current

Bµ =
1

8π
εµνρ~φ ·

(
∂ν~φ× ∂ρ~φ

)
(4.2)

such that B =
∫
d2xB0 is the topological charge. Furthermore, ~φ ∈ S2 is a three component

isovector with unit length ~φ2 = 1 and U is a non-derivative part, that is, a potential (with at

least one isolated vacuum). It is known that the model possesses the following topological

bound (where dΩS2 is the “volume” (area) form on the (target space) unit sphere)

Ebaby BPS ≥ 2µλ|B|
〈√
U
〉
,
〈√
U
〉
≡ 1

volS2

∫
dΩS2

√
U . (4.3)
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The bound is saturated if the following Bogomolnyi equation is obeyed,

λB0 ± µ
√
U = 0. (4.4)

Solutions of this equation exist in any topological sector and can be found in an exact form

once a potential is chosen. This model is a higher-dimensional counterpart of the standard

scalar model in (1+1) dimensions. Indeed, both Lagrangians are sums of a potential (a

function of the fields) and the square of a topological current.

Again, it is possible to couple an impurity in such a way that one-half of the BPS

property of the model remains preserved. Namely, the energy functional reads

E =

∫
d2x

[
λ2B2

0 + µ2U − 2λσB0 + 2µσ
√
U + σ2

]
. (4.5)

Then we find the topological bound

E =

∫
d2x

(
λB0 − µ

√
U − σ

)2
+ 2λµ

∫
d2xB0

√
U (4.6)

≥ 2λµ

∫
d2xB0

√
U = 2λµB

〈√
U
〉

(4.7)

which is saturated if the following modified, impurity dependent, Bogomolnyi equation is

obeyed,

λB0 − µ
√
U − σ = 0. (4.8)

One can easily prove that the Bogomolnyi equation implies the full Euler-Lagrange equa-

tion, see appendix A.

As an example, we consider the potential U = (1 − φ3)2. Then, we can find an exact

solution of the Bogomolnyi equation for any radial impurity σ = σ(r). In fact, introducing,

via the usual stereographic projection, a complex field u

u =
φ1 − iφ2

1 + φ3
(4.9)

and assuming u =
√

g
1−ge

−inϕ, where r, ϕ are the polar coordinates and n is a positive

integer, the Bogomolnyi equation takes a linear form

− λ n
2π
gy = 2µg + σ . (4.10)

Here, for convenience we use y = r2/2. The topologically nontrivial boundary conditions

are g(0) = 1, g(∞) = 0. Then, for an exponentially localized impurity σ = αe−βy we find

g(y) = e−
4πµ
nλ

y +
2π

nλ

α

β − 4πµ
nλ

(
e−βy − e−

4πµ
nλ

y
)
. (4.11)

Observe that for β = 4πµ
nλ , which might occur only for one value of the topological charge,

the solution takes a different form,

g(y) =

(
1 +

2πα

λn
y

)
e−

4πµ
nλ

y. (4.12)
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The corresponding topological charge is positive, B = n > 0. Anti baby Skyrmions, i.e.,

solitons with negative topological charge, do not obey the Bogomolnyi equation and can

only be found after solving the full Euler-Lagrange equations. This is, of course, a much

more difficult task.

4.2 SUSY in the impurity baby BPS Skyrme model

We can use the same strategy as in section 2.1 to build a SUSY BPS baby Skyrme model

preserving the BPS structure. This model has a natural N = 2 SUSY formulation [28],

which can be used to introduce the impurity term. The BPS solitons in the original BPS

baby Skyrme model satisfy the following BPS condition

δψ = 0, δψ̄ = 0. (4.13)

The component expansion of the SUSY BPS baby Skyrme model (after stereographic

projection) has the form

Lbaby| = g(u, ū)
(
∂µū∂

µu+ FF̄
)

+h(u, ū)
(
(∂µu)2(∂ν ū)2 + 2FF̄∂µū∂

µu+ (FF̄ )2
)
, (4.14)

where h(uū) = 1/(1 + |u|2)4. In order to reproduce (4.5) we introduce

Limpurity = 2σ(x)
√
h(u, ū)

(
−∂iu∂iū+ FF̄ + i(∂1ū∂2u− ∂1u∂2ū)

)
. (4.15)

Note that the last term is the topological charge density. In terms of the (anti)holomorphic

derivative, (4.15) reads

Limpurity = 2σ(x)
√
h(u, ū)

(
FF̄ − ∂zu∂z̄ū

)
. (4.16)

The addition of (4.15) will preserve part of the SUSY if it belongs to the image of the

restricted SUSY transformation (see section 7). It is possible to verify that the following

term is the preimage of (4.16) modulo fermionic terms

X =
√
h(u, ū)

(
ψz̄
(
∂z̄ū+ F̄ eiγ

)
+ ψ̄z

(
∂zu+ Fe−iγ

))
, (4.17)

δX| = 2
√

2 ε̄2̇ Limpurity + (fermions). (4.18)

We have finally

Lbaby + Limpurity| = h(u, ū)
(
(∂µu)2(∂ν ū)2 − (∂µū∂

µu)2
)
− g2(u, ū)

4h(u, ū)

−σ(x)
g(u, ū)√
h(u, ū)

+ 2σ(x)B0

√
h(u, ū)− σ2(x) (4.19)

which corresponds to (4.5) after the identification g2(u,ū)
4h(u,ū) = U and λ = µ = 1.
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5 The impurity CP 1 model

5.1 The model

Now we can turn to the simplest solitonic model in (2+1) dimensions (which is also inte-

grable in its static version), that is, the CP 1 model

LCP 1 =
1

2

∂µu∂
µū

(1 + |u|2)2
(5.1)

whose static energy reads

ECP 1 =

∫
d2z

1

(1 + |u|2)2
(uzūz̄ + uz̄ūz) (5.2)

where we use the complex plane coordinate z = x+ iy. Topologically nontrivial solutions

are just (anti)holomorphic maps of degree n, which obey the Bogomolnyi equation (here

the Cauchy-Riemann (CR) equations)

uz = 0 or uz̄ = 0. (5.3)

For solutions of the CR equations, the energy equals the modulus of the topological charge

(the degree of the map)

Q =
1

π

∫
d2z

1

(1 + |u|2)2
(uzūz̄ − uz̄ūz) . (5.4)

The BPS preserving CP 1 model with an impurity is defined as follows (we restrict

ourselves only to the static energy functional)

E = ECP 1 + Eimpurity (5.5)

where

Eimpurity =

∫
d2z

1

(1 + |u|2)2
(2σσ̄ + 2σuz + 2σ̄ūz̄) . (5.6)

Then,

E =

∫
d2z

1

(1 + |u|2)2
[2 (uz + σ̄) (ūz̄ + σ)− uzūz̄ + uz̄ūz] (5.7)

≥
∫
d2z

1

(1 + |u|2)2
[−uzūz̄ + uz̄ūz] = −πQ. (5.8)

The topological bound is saturated if the following Bogomolnyi equation is satisfied,

uz + σ̄ = 0. (5.9)

This is an inhomogeneous generalization of the anti-holomorphic CR equation. One can

check that solutions of this equation obey the full EL equation, i.e., are the critical points

of (5.5). As the Bogomolnyi equation is a non-homogeneous linear differential equation

the BPS sector is still completely solvable. This reminds us of the situation of the so-

called integrable defect, that is, an impurity which does not affect the integrability of the
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underlying scalar field theory (like sine-Gordon) [29, 30]. Here, a solitonic-impurity solution

consists of the homogeneous part, which is still given by an arbitrary antiholomorphic map

f(z̄) and a pertinent unique solution of the non-homogenous part. Therefore, contrary

to the pure CP 1 model, the total solution does not have to be purely antiholomorphic

(or holomorphic). Of course, this strongly depends on the impurity. Furthermore, the

impurity may also contribute to the topological charge (degree) Q of the full soliton-

impurity solution.

Let us consider an antiholomorphic impurity, for example, σm = Bz̄m, where m ∈ N
and B is a complex constant. Hence, a BPS solution is

u = A
(z̄ − z̄1) . . . (z̄ − z̄r)
(z̄ − z̄1) . . . (z̄ − z̄s)

− B̄

m+ 1
zm+1 (5.10)

where we assumed a rational map as a solution of the homogenous part of the Bogomolnyi

equation. Here the polynomials in the numerator and denominator do not have common

divisors. Furthermore, max(r, s) = n and A ∈ C. However, the computation of the degree

of the solution is not a completely trivial task. Even in the case of the constant impurity

m = 0 and the linear antiholomorphic part the topological degree of the solution

u(z, z̄) = Az̄ − B̄z (5.11)

depends on the constants A,B [31]. Concretely

deg u =


1 |A| < |B|
0 if |A| = |B|
−1 |A| > |B|

. (5.12)

This observation can have a nontrivial impact on the moduli space of soliton-impurity

solutions, as different values of the parameters of the homogeneous part of a solution

(with a fixed degree) can lead to different degrees of the total solution and, therefore, to

energetically inequivalent configurations. We will address this problem (and its dependence

on a particular choice of the impurity) in a separate paper.

We also remark that our constant impurity leads to a Bogomolnyi equation which is

identical to the Bogomolnyi equation very recently found for the magnetic planar Skyrmions

with the Dzyaloshinskii-Moriya interaction energy [31]. This may suggest that there is a

deeper relation between our impurity coupling and Dzyaloshinskii-Moriya like terms [32,

33]. Of course, this is of high importance as far as a possible experimental realization of

the BPS-preserving impurity is concerned. Moreover, one can ask whether there exist DM

counterparts of our non-homogenous CR Bogomolnyi equations also in the case of more

complicated (non-constant) BPS-preserving impurities.

A related issue is the global U(1) symmetry. Of course, for an impurity which trivially

transforms under this group, the model (5.5) is no longer invariant under the global U(1).

However, this symmetry is effectively restored in the BPS sector. Indeed, the group can act

nontrivially on the homogeneous part of BPS solutions leading to energetically equivalent

configurations.
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A possibility to restore the global U(1) symmetry completely is to assume that the

impurity also transforms in the fundamental representation of it i.e., σ → eiϕσ, where

ϕ is the transformation parameter. This may apply to impurities which originate as a

spatially frozen lump, which is a mechanism proposed in [25] for the magnetic impurity in

the Abelian Higgs model.

Finally, one can introduce an impurity term which is U(1) invariant, although the

impurity transforms trivially. For example one can consider the following modification

Ẽimpurity =

∫
d2z

1

(1 + |u|2)2
(2σσ̄uū+ 2σūuz + 2σ̄uūz̄) . (5.13)

The resulting Bogomolnyi equation is also deformed and reads

uz + uσ̄ = 0 . (5.14)

However, one can still find exact solutions, where now the impurity term acts multiplica-

tively on the original antiholomorphic map

u = A
(z̄ − z̄1) . . . (z̄ − z̄r)
(z̄ − z̄1) . . . (z̄ − z̄s)

e−
∫
dzσ̄ . (5.15)

A particular choice for the treatment of the global U(1) transformation depends, of

course, on the physical application one has in mind. Obviously, it will affect the possibility

to promote this global symmetry to a local one, that is, the gauging of the impurity model.

5.2 SUSY in the impurity CP 1 model

The N = 2 formulation of the CP 1 model is well-known. It can be constructed in terms

of the following Kähler potential ∫
d2θd2θ̄ ln(1 + Φ†Φ), (5.16)

where Φ(Φ†) are chiral (antichiral) superfields. Inspired by our one-dimensional construc-

tion is not very difficult to guess the SUSY form of (5.5):

Limpurity =
1

(1 + |u|2)2
σ(x)(F − ∂z̄u) + h.c. + fermions. (5.17)

In addition, this term lies in the image of δ, as can be seen explicitly by taking the following

transformation

Limpurity = σ(x) δ

(
1

(1 + |u|2)2
ψ1 + h.c.

)
+ h.c.|. (5.18)

As we will see (section 7), this allows us to conclude that both the impurity (5.17) and the

BPS solutions of the model preserve 1/4 of SUSY.
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6 The impurity Abelian Higgs model at critical coupling

6.1 Magnetic impurity

It was observed by Tong and Wong [25] that the standard Abelian Higgs model at the

critical coupling admits a half-BPS preserving impurity extension. The impurity couples

to the magnetic field B and therefore is referred to as the magnetic impurity σm,

Em =
1

2

∫
d2x

(
B2 +DiuDiu+

1

4
(1 + σm − |u|2)2 − σmB

)
. (6.1)

Here, Fµν = ∂µAν−∂νAµ is the field strength of the U(1) gauge field Aµ and Dµu = ∂µu−
iAµu is the covariant derivative of the complex Higgs field u. The pertinent Bogomolnyi

equations read

Dxu+ iDyu = 0 (6.2)

B − 1

2
(1− |u|2) =

1

2
σm, (6.3)

and its solutions saturate the following energy bound

Em ≥ πN, N =
1

2π

∫
d2xB. (6.4)

6.2 Higgs impurity

As we have shown in section 5, the CP 1 model couples to an impurity in a half-BPS pre-

serving manner, provided that the original CR equations get modified to an inhomogeneous

version. The resulting model preserves the global U(1) symmetry (not only in the BPS

sector) if the impurity is assumed to transform in the fundamental representation. This

opens a new path to implement a partially BPS preserving impurity in the Abelian Higgs

model. Now, contrary to the above case, the impurity multiplies the derivatives of the

matter field and therefore we call it a Higgs impurity σh. Specifically, the model is

Eh = EAH + Eimpurity (6.5)

where to the standard Abelian Higgs part

EAH =
1

2

∫
d2x

(
B2 +DiuDiu+

1

4
(1− |u|2)2

)
(6.6)

we add the impurity term

Eimpurity =
1

2

∫
d2x

(
σhσ̄h + σh(Dxu+ iDyu) + σ̄h(Dxu+ iDyu)

)
(6.7)

which, after using complex coordinates z, z̄, is a gauged version of the CP 1 impurity term

Eimpurity =
1

2

∫
d2z

(
1

2
σhσ̄h + σ̄hDz̄u+ σhDzu

)
. (6.8)
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The lower energy bound reads

Eh =
1

2

∫
d2x

((
B − 1

2
(1− uū)

)2

+ (Dxu+ iDyu+ σh)(Dxu+ iDyu+ σh)

)
(6.9)

+
1

2

∫
d2xB − i

2

∫
d2x (∂x(ūDyu)− ∂y(ūDzu)) (6.10)

≥ πN (6.11)

where the last term in the second line integrates to zero. The bound is saturated if the

following Bogomolnyi equations are satisfied

Dxu+ iDyu+ σh = 0 (6.12)

B − 1

2
(1− |u|2) = 0. (6.13)

As expected, this impurity enters only into the gauged CR equations, leaving the magnetic

field equation unchanged. Of course, one should remember that this construction makes

sense only if the local U(1) transformation continues to be a symmetry also after the

inclusion of the impurity. This implies that σh → eiϕ(x,y)σh. As in the case of the CP 1

model, this can be relevant for an impurity originating from a spatially frozen vortex.

It is also possible to implement a partially BPS preserving impurity term which is

invariant under the gauge group even for a trivially transforming impurity, σh → σh. For

example, one can use the globally U(1) invariant CP 1 model with impurity as a hint. Hence,

Ẽimpurity =
1

2

∫
d2z

(
1

2
σhσ̄huū+ σ̄hūDz̄u+ σhuDzu

)
. (6.14)

This leads to the the following modification of the gauge CR equations,

Dxu+ iDyu+ uσh = 0. (6.15)

Note that, although the gauge independent impurity seems to be physically more relevant,

the impurity which transforms under fundamental representation of the U(1) gauge group

might also find some applications. Concretely, the BPS impurity might be realised as

a frozen vortex, in a model with an extended target space (number of fields), in whose

background the rest of the fields evolve. The assumption that the vortex is frozen means

that all gauge invariant observables (quantities as energy density, topological charge density,

magnetic field) are fixed. On the other hand, it does not mean that the corresponding gauge

transformations (related to this additional set of fields) cease to exist. On the contrary,

they should still act on this frozen vortex. This may gives rise to BPS-impurities with a

nontrivial gauge transformation.

We comment that, in contrast to the magnetic impurity, the Higgs impurity does not

have any impact on the corresponding Bradlow law. Note that both impurities can be

implemented in a completely independent way which results in the most general partially

BPS preserving impurity Abelian Higgs model

Em, h = Emagnetic + Eimpurity . (6.16)
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This model possesses the same topological energy bound as the above impurity models,

and the Bogomolnyi equation is of the following form,

Dxu+ iDyu+ σh = 0 (6.17)

B − 1

2
(1 + σm − |u|2) = 0. (6.18)

The above remarks on the gauge invariance apply.

6.3 SUSY in the impurity Abelian-Higgs model

The magnetic impurity can be introduced in a 1/2 SUSY invariant way as long as it is

compensated by the auxiliary field of the vector multiplet [25, 34]. In its simplest form, it

can be written as

Lhimpurity = σm(x)(B −D). (6.19)

It is easy to see that (6.19) corresponds to the image of λα (the fermion in the vector

multiplet) under the gauge invariant SUSY transformation. It should be noted that (6.19)

is proportional to the gauged BPS equation and, therefore, the addition of the magnetic

impurity cannot change the Bogomolnyi bound. The Higgs impurity, on the other hand,

takes the form

Lhimpurity =
1

(1 + |u|2)2
σh(x)(F −Dz̄u)ū+ h.c. + fermions, (6.20)

which is an obvious generalization of (5.17), up to a factor. But, as in the impurity CP 1

model, the impurity (6.20) only preserves 1/4 of the SUSY. Since the subalgebra preserved

by (6.20) is contained in the subalgebra preserved by (6.19), the presence of both impurities

breaks the SUSY to 1/4. It is interesting to note that (6.19) and (6.20) are perhaps the

simplest nontrivial impurities that one can introduce in N = 2 theories, but they are not

unique. In fact, in section 7, we explicitly show how to generate an infinite number of them.

7 N = 2 SUSY BPS impurities — A general construction

Let us consider a scalar theory in 2 + 1 dimensions with a complex field φ. The general

BPS equations in terms of the auxiliary fields can be written as follows

F = ∂zφe
iγ or F = ∂z̄φe

iγ (7.1)

where γ is an arbitrary constant phase. Now we have two complex SUSY generators (four

real supercharges) and the BPS structure is more complex. When F = 0, for example

in the CP 1 model, the BPS solutions take the familiar Cauchy-Riemann form and they

preserve half of the supersymmetry. This can be seen easily from the SUSY transformation

of the fermions

δψα = i
√

2σµ α̇α ξ̄α̇∂µφ+
√

2ξαF . (7.2)

It is easy to see that for

ξ̄1̇ = iξ̄2̇ and ξ1 = −iξ2 (7.3)
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and ∂zφ = 0, ∂tφ = 0 the condition δψα = 0 is satisfied. We say therefore that if F = 0

the BPS solitons are 1/2-BPS. If F 6= 0 we need an extra constraint, namely

ξ2 = iξ̄2̇e
−iγ . (7.4)

The expression (7.2) can be rewritten as

δψ1 =
√

2ξ̄2̇

(
∂0φ+ e−iγF − ∂zφ

)
, (7.5)

δψ2 = −i
√

2ξ̄2̇

(
∂0φ− e−iγF + ∂zφ

)
. (7.6)

The condition δψα = 0 is again achieved for static solutions satisfying (7.1), but this time

only preserving 1/4 of the supersymmetry.

7.1 1/4 and 1/2 BPS impurities: scalar sector

The general commutator between two supersymmetric transformations has the form

[δη, δξ] = −2i
(
ησµξ̄ − ξσµη̄

)
∂µ . (7.7)

If we restrict the SUSY algebra to the 1/4 subspace by imposing (7.3) and (7.4) we have

[δη, δξ] = 8e−iγ η̄2̇ξ̄2̇∂0. (7.8)

Since there is only one SUSY parameter we have

δηδξ = 4e−iγ η̄2̇ξ̄2̇∂0. (7.9)

As a consequence, the results found in section 3 for N = 1 SUSY apply here: Y ∈
Im δ ⇒ δηY ∝ ∂0X. Therefore a impurity of the form σ(x)Y preserves 1/4 of SUSY.

Regarding the 1/2 preserving impurities in the scalar sector, we do not have a general

answer. But since the preservation of 1/2 SUSY requires F = 0, the impurity cannot

change the BPS equations of the underlying model. For example in the CP 1 model one

can add the following term

δ (ψ1 (F + ∂zu)) |γ=0 =
(
F 2 − (∂zu)2

)
+X∂0u+ fermions. (7.10)

Taking into account that (7.10) is the image of δ it preserves at least 1/4 of SUSY, but

since the solution F = F̄ = 0 is still available the BPS impurity solutions are 1/2 and the

BPS equations are not modified.

7.2 1/4 and 1/2 BPS impurities: gauge sector

In the gauge sector, the previous results for 1/4 SUSY still apply since the subalgebra (7.9)

holds. The possible impurities are again in the image of the SUSY transformation. As a

consequence, if one considers an impurity of the form

σ(x) δ (λαF (Aµ, D)) , (7.11)
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at least one supercharge will be preserved. Moreover, the SUSY transformation of the

fermion in the vector multiplet has the form

δλ = σµνξFµν + iξD. (7.12)

The reduction to the 1/4 BPS subspace leads to

δλ2|static = iξ2 (F12 −D) (7.13)

which is proportional to the BPS equation. Therefore, as in the previous cases, the impurity

does not change the BPS bound. It is also interesting to note that if one considers an

impurity of the form (7.13) alone, not only 1/4 but 1/2 of SUSY is preserved. Unlike in

the scalar sector, the gauge 1/2 BPS impurity also modifies the BPS equation because

D 6= 0 allows for the existence of 1/2 BPS solitons.

8 Summary

In the present work, we have systematically studied the coupling of an impurity to BPS

models in (1+1) and (2+1) dimensions, such that the resulting model preserves half of

the BPS property. It means that half of the solitons existing in the original (no impurity)

theory still obey the pertinent (impurity dependent) Bogomolnyi equations and saturate

a topological energy bound. It turns out that an extremely useful tool for our analysis

is provided by supersymmetry. In particular, in (1+1) dimensions, SUSY not only allows

to understand both the existence of the impurity BPS models (by relating them to the

SUSY transformations of the fermions) and the presence of a generalised translational

symmetry in these models [35, 36] (relating it to the fermionic zero mode). It also permits

to construct the general class of impurity BPS models, see section 3. The construction

of an impurity BPS model requires a BPS theory without impurity as a starting point,

and in (2+1) dimensions not all field theories are BPS. In this case we demonstrated

that, whenever a (gauged or ungauged) scalar field theory is BPS, it allows for an impurity

BPS generalisation, and SUSY provides an easy way to construct this impurity BPS model.

Further, this generalisation is not unique, and each BPS theory allows, in fact, for infinitely

many BPS-preserving impurities (see section 7).

So, one important result is that any BPS model in (1+1) and (2+1) dimensions can

be extended to a half-BPS impurity model. Since the particular form of the impurity is

rather arbitrary, this significantly enlarges the number of theories with the (half) BPS

property. In particular, this applies to (2+1) dimensions where, in contrast to the lower

dimensional case, the BPS-ness puts very strong restrictions on the form of the action. As

a consequence, even in higher dimensions the BPS property is not as rare a feature as one

might expect. Owing to the fact that impurities are easily realized in condensed matter,

as for example dislocations or defects in a periodic lattice (crystal), we believe that some

BPS-impurity models may find applications to realistic physical systems.

The importance of (near) BPS impurity models is not only related to the simplicity

of their mathematical structure. The crucial observation is that they describe topological
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solitons (kinks, lumps, vortices and baby Skyrmions) which have zero (small) interaction

energy with the impurities. The fact that the binding energy between the solitons and

the impurity in the BPS sector of the BPS soliton-impurity model is zero follows from the

existence of the pertinent Bogomolny equations. These equations are solved by a whole

family of solutions parametrised by a set of parameters, i.e., moduli space coordinates. As

a consequence, the position of a soliton with respect of the impurity may be changed (at

least locally) without changing the energy of the system. This results in an extremely

low energy cost for the manipulation of these objects, which might be very interesting,

e.g., for the transport and storage of data by topological solitons (like, for instance, mag-

netic skyrmions).

Furthermore, it is very intriguing that in the case of the planar models (CP 1

and Abelian Higgs models) the BPS preserving impurity has a form similar to the

Dzyaloshinskii-Moriya energy which may additionally contribute to an experimental re-

alization of this kind of impurities.

There are many directions in which one may continue our work. First of all, there

are other physically important (2+1) dimensional models which enjoy the BPS property.

Therefore, one can search for their half-BPS impurity versions. Here one may mention the

non-abelian vortices at critical coupling [39–42], other gauged planar soliton systems as the

gauged BPS baby Skyrme model [43, 44] and the gauged O(3) [45] as well as the conformal

magnetic Skyrmions [46, 47].

Secondly, one should understand how the low energy dynamics, approximated by the

geodesic motion on the corresponding moduli space, is affected by the inclusion of the

half-BPS preserving impurity. This may find some applications also in the study of multi-

soliton interactions in non-impurity models, especially in the cases when impurities would

be connected to frozen solitons. Here, the simplest case can be given by the CP 1 model [48],

where the soliton-impurity BPS solutions can be found in an exact form, which provides a

very good starting point for (even) analytical investigations of the moduli space dynamics.

A similar study has already been performed for the half-BPS impurity φ4 model, where the

scattering of the BPS antikink on the impurity has been shown to be very well described

by the motion on moduli space [35, 36]. It would be even more interesting to analyze

the existence of solitons and their dynamics in the Abelian Higgs model with half-BPS

impurities of both magnetic [37, 38] and Higgs types.

Thirdly, the construction presented here can also be carried over to theories with

more than two spatial dimensions. The suspersymmetry algebra is obviously different,

but the (2+1) dimensional examples can serve as a guidance for the construction of the

bosonic sector.

Another interesting direction is related to the fact that our BPS impurity models

possess (spatially) modulated vacua. They can even be of a periodic form if a periodic

lattice of impurities is used. Modulated vacua have been recently investigated in Lorentz

invariant theories [49, 50] (with higher order derivative terms). However, such vacua break

the supersymmetry completely. In light of the results presented here, it is an interesting

question whether also in Lorentz invariant theories a fractional susy preserving modulated

vacuum may be found.
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Of course, the most exiting direction is to find condensed matter systems which allow

for such a specific, BPS preserving, coupling of the impurity. This requires further stud-

ies of the relation between the BPS preserving impurity and the Dzyaloshinskii-Moriya

interaction observed here. We plan to investigate this issue in a forthcoming paper.
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A BPS and EL equations of the baby BPS Skyrme model

Here we prove that the Bogomolnyi equation for the the impurity deformed baby BPS

Skyrme model implies the full static Euler-Lagrange equations. First of all let us notice that(
∂j

∂

∂ξaj
− ∂

∂ξa

)
B0 = 0 . (A.1)

Now we apply the Euler-Lagrange operator to the static energy density of the impurity

baby BPS Skyrme model

E = λ2π4B2
0 + µ2U − 2π2λσB0 + 2µσ

√
U + σ2 . (A.2)

Hence,(
∂j

∂

∂ξaj
− ∂

∂ξa

)
E = 2λ2π4 (∂jB0)

∂B0

∂ξaj
− µ2 ∂U

∂ξa
− 2π2λ∂jσ

∂B0

∂ξaj
− 2µσ

∂
√
U

∂ξa
(A.3)

= 2λµπ2
(
∂j
√
U
) ∂B0

∂ξaj
− µ2 ∂U

∂ξa
− 2µσ

∂
√
U

∂ξa
(A.4)

= λµπ2 1√
U
∂U
∂ξb

ξbj
∂B0

∂ξaj
− µ2 ∂U

∂ξa
− µσ 1√

U
∂U
∂ξa

(A.5)

= λµπ2 1√
U
∂U
∂ξb

δabB0 − µ2 ∂U
∂ξa
− µσ 1√

U
∂U
∂ξa

(A.6)

=
(
λπ2B0 − µ

√
U − σ

) µ√
U
∂U
∂ξa

= 0 (A.7)

where in (A.3) we have inserted the Bogomolnyi equation λπ2B0 = µ
√
U+σ while in (A.5)

we have used the identity ξbj
∂B0
∂ξaj

= δab.
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