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Abstract

Superconducting quantum circuits operated at microwave frequencies are currently one of
the most promising approaches towards the realization of quantum information processing
devices. A potentially limiting factor of prevalent circuits with low characteristic impedance
∼ 100Ω is their small anharmonicity, which might limit their coherence and logic gate
fidelity. Recently, circuits with high characteristic impedance, larger than the resistance
quantum RQ = h/(4e2) begun to attract interest as a possible alternative. Besides the basic
building blocks of superconducting circuits, which are capacitors, inductors, and Josephson
junctions, high impedance circuits also include so-called superinductors, which feature
an inductance ∼ 102 nH, and characteristic impedance Z > RQ. Superinductors are mostly
realized using compact arrays of large Josephson junctions, and remarkable results were
achieved, albeit their complexity in design and fabrication.

Here, we investigate superconducting granular aluminum (grAl) as a promising material for
the implementation of superinductors. Granular aluminum, i.e. pure aluminum grains in an
insulating AlOx matrix forms by depositing pure aluminum in an oxygen atmosphere. Due to
the amenable kinetic inductance of grAl wires, they are a straightforward technique for the
realization of superinductors. Using microwave resonators, we show that grAl strips can reach
kinetic inductances up to nH/�, while their microwave frequency losses are as low as state
of the art superinductor implementations. We identify excess quasiparticles as a limiting loss
mechanism in superconducting circuits employing grAl, and find quasiparticle relaxation
times on the order of seconds, orders of magnitude longer than previously observed.

Furthermore, to test a grAl superinductor we use it in a superconducting fluxonium quantum
bit, which consists of a small Josephson junction shunted by a superinductor. The measured
coherence times of our grAl fluxonium are comparable to fluxonium implementations using
Josephson junction array superinductors, and demonstrate that granular aluminum is a viable
material for the implementation of superinductors. We believe that granular aluminum
superinductors will enable the realization of increasingly complex, and potentially protected
quantum bit designs, which possibly present a new approach towards scalable quantum
information processing circuits.
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1 Introduction

The ever increasing computational power of classical computers is transforming economic
systems and societies around the globe, and has resulted in the advent of the information age
at the beginning of the 21st century. Fueled by Moore’s law, the digital revolution has lead to
big data methods, and companies whose business model solely relies on the evaluation of
immense amounts of data enabling increasing automation capabilities and efficiency.

However, as transistors get smaller and approach the limits imposed by the fundamental
laws of quantum physics, the search for the next groundbreaking computational development
continues. Quantum information processing, ultimately aiming for a fully digital quantum
computer is currently one of the most exciting concepts. Due to the huge Hilbert space
of 2N dimensions spanned by N quantum bits (qubits), quantum computation promises
to potentially enable the calculation of molecule synthesis, leading to new methods for
drug design and potentially new technological avenues for the nitrogen fixation problem.
Common to these applications is that they exceed the capabilities in terms of memory and
computational speed even of today’s most powerful supercomputers. The current threshold
for brute force simulating of molecules is estimated at a number of atoms on the order of 50.

As Feynman said in 1982: ’[...] nature isn’t classical, dammit, and if you want to make
a simulation of nature, you’d better make it quantum mechanical, [...]’. Fortunately, or
unfortunately, depending on whether one agrees with Feynman when it comes to scientific
problems: ’[...] by golly it’s a wonderful problem, because it doesn’t look so easy’ [1].
Although quantum computation has attracted significant attention and even reached the
mainstream media, with some technology consulting firms predicting that actual applications
and products will be reached in 5 to 10 years a, there is not yet a clear path towards the actual
physical implementation of a fully fledged quantum computer. Regardless, global companies
like Google, IBM, Intel, and Microsoft have begun to invest in quantum computing, with
start-ups and spin-offs also attracting substantial investments. One of the most promising
approaches towards quantum computing today are superconducting circuits, which is also
the technological avenue pursued by Intel, IBM and Google. However, after the remarkable

a http://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-
2018/ - accessed 3rd May 2019.
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1 Introduction

progress during the last two decades [2], the increase in complexity brought about by the
scaling to larger and larger numbers of interconnected qubits has slowed down progress.

Since the demonstration of the first superconducting quantum bit (qubit) by Nakamura et
al. in 1999 [3], the fundamental building block of a future quantum processor, the field of
quantum information processing with superconducting devices has achieved an increase
in terms of the operation time of these systems by 4 to 5 orders of magnitude. The most
important metric still for the evaluation of single qubits is their coherence time, representing
how long the quantum superposition state is conserved. Looking in more detail, the real
metric is the ratio between coherence time and the operation, or gate time of a qubit. As
superconducting circuits have shown a number of remarkable proof of principle experiments
and are transitioning into the realm of higher integration depth and increasing number of
qubits, a major point of emphasis is the gate fidelity, indicating how precisely an actual
operation carries out a theoretically desired qubit manipulation. With increasing number
of qubits on quantum chips, and despite considerable experimental effort, the fidelity of
two-qubit gates is still below the threshold needed for quantum error correction [4]. Problems
such as unintentional crosstalk between on-chip components, signal leakage and fluctuations
of qubit parameters [5–7], necessitating frequent recalibration of superconducting qubit
processors, are among the most pressing issues when it comes to further advancing the field.

Among superconducting circuits used for quantum information processing, the current
workhorse of the field is the so called transmon qubit [8] invented in 2007. The transmon,
an acronym for transmission-line shunted plasma oscillation qubit is essentially a slightly
anharmonic LC-circuit whose lowest two eigenstates span the computational basis. Thanks
to the considerable experimental effort that went into material, design, and fabrication
optimization, transmon qubits and especially their two-qubit gates are on the verge of
what is needed for today’s quantum error correction schemes. Contrary to classical bits
implemented using transistors, the no-cloning theorem for qubits prevents a straightforward
error correction process of just redundantly encoding the qubit state into multiple physical
copies and obtaining the correct result by a simple majority vote. The error correcting
approach predominantly featured in industrial groups, namely the surface code [9] relies on
a multitude of parity measurements to detect whether an error occurred or not. Still, at the
current level of two-qubit gate fidelity in transmons, the overhead of encoding a logical qubit
in an error corrected fashion is on the order of 103−104 [9]. In fact, a major milestone for
commercial companies working towards quantum computing with superconducting circuits
is to demonstrate a smaller version of the error correction scheme.

A recent study investigating the resources and expected speedup of quantum computation
for constraint satisfaction problems, which both belong to the NP-complete complexity class
for classical computation, finds that there exists a substantial quantum speedup of a factor
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1 Introduction

of 103. But, in order to achieve this speedup more than 1012 physical qubits are required
assuming state of the art qubit performance [10]. Considering that the largest number of
qubits currently combined on a single chip is 72 b, significant improvements in terms of gate
error rate and error correction schemes are necessary to imagine actual commercial use of
quantum computers.

Motivated by the immense overhead needed for quantum error correction in current
superconducting qubits, the investigation of alternative concepts realized in superconducting
circuits is a very active research field with approaches ranging from the use of 3D cavity
resonators [11–13] to the pursuit of topologically protected circuits [14]. Another concept
gaining increasing attention recently, are high-impedance qubits such as the fluxonium
qubit [15], which was invented almost 10 years ago. One of the basic building blocks in
many of these alternative approaches is a so-called superinductor, which has a characteristic
impedance larger than the resistance quantum Z > RQ, where RQ = h/(2e)2 ≈ 6.5kΩ. This
value should be compared to the vacuum impedance of ZV = 377Ω, which is the natural scale
for LC circuits. Therefore, superinductors are not easy to obtain. Not only is a large inductance
of several hundreds of nH necessary, while any stray capacitance has to be minimized, but
also one has to keep all self resonant modes of the superinductor well above the operating
frequency range of the quantum circuit. From a design point of view, a superinductor should
ideally act as a fully linear lumped element inductor. Up to now, superinductors have been
implemented using arrays of Josephson junctions. Impressive results of circuits involving
these types of superinductors have already been shown [16–18] and they continue to be a
valuable part of the superconducting quantum circuit toolbox.

In this thesis however, we investigate granular aluminum, an emerging material in the
superconducting quantum circuits community thanks to its ability to provide a high kinetic
inductance, which enables characteristic impedances larger than RQ. Using granular aluminum
for superinductors could simplify the design and fabrication process of these circuit elements
while potentially also reducing the technical complexity to a simple zero angle metal
film deposition. Additionally, granular aluminum provides a large kinetic inductance at
a significantly reduced nonlinearity compared to Josephson junction superinductors. We
characterize the microwave frequency loss mechanisms in granular aluminum, to assess if they
could potentially limit the coherence of superconducting circuits employing this material.

This thesis is organized as follows: the introductory chapter summarizes the main concepts
and results obtained during the course of this thesis. The following chapter provides a
selective literature survey of granular aluminum, which has been investigated since the 1960’s
in different physical contexts. In Chapter 3 we discuss in more details measurements on

b http://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html - accessed 3rd May 2019.
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1 Introduction

superconducting resonators with high characteristic impedance and conclude the description
of the experimental results in Chapter 4 with a discussion of our case study of a superconducting
high-impedance qubit, employing granular aluminum for its superinductor: the fluxonium.
Finally, we summarize the results and provide an outlook of possible future areas of
investigation and development for superconducting circuits using granular aluminum.

1.1 Superconducting qubits

The basic building blocks of superconducting quantum circuits, enabling a variety of systems,
are the following components: capacitors, inductors, and the Josephson junction [19], which
for the purpose of superconducting qubits is essentially a dissipationless, coherent, nonlinear
inductor. Combining these three building blocks in different configurations and with varying
ratios between the elements characteristic energy scales allows for the realization of different
flavors of superconducting qubits.

At the starting point of the field of superconducting qubits lies the so-called Cooper-pair box,
which was experimentally realized in 1999 [3, 20]. A superconducting island is connected to
ground through a Josephson junction, which allows dissipationless and coherent tunneling of
Cooper-pairs on and off the island. Using the circuit quantization technique in Ref. [21] we
can obtain the circuit Hamiltonian,

Ĥ =
1

2C
Q̂2−EJ cos2πΦ̂/Φ0, (1.1)

with C the total capacitance of the Cooper pair box island. The Josephson junction term is
characterized by its energy scale EJ = (h̄Ic)/2e, with Ic the critical current of the junction.
Furthermore, the charge Q̂ and flux Φ̂ are conjugate variables and obey the relation [Φ̂, Q̂] = ih̄.
The generalized magnetic flux across a Josephson junction, given by the integral of the
voltage, is associated with a phase ϕ across the element. Both variables are connected by the
relation ϕ̂ = 2πΦ̂/Φ0 [21]. By adding a gate electrode to the circuit, an additional tuning
parameter is introduced, namely the gate charge Qg, which changes the charge term in the
Hamiltonian to (Q̂−Qg)

2/(2C).

A natural basis for this Hamiltonian is the Cooper pair number basis, where the energy
associated with the charge is diagonal, while the Josephson junction introduces off-diagonal
coupling terms. Introducing N̂ = Q̂/2e, the Hamiltonian has the following form,

Ĥ = 4EC(N̂−ng)
2− EJ

2 ∑
N
|N〉〈N +1|+ |N +1〉〈N| , (1.2)
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1.1 Superconducting qubits

Figure 1.1 shows the electrical schematic of the Cooper-pair box qubit and the energy level
diagram as a function of the gate charge ng = Qg/(2e). For small EJ/EC we observe two
effects, first at ng =±0.5 a gap opens up between two neighboring parabolae (grey). The
transition energy between these two states is significantly different compared to the higher
transitions, expressed as the systems anharmonicity a = E01−E12 . For circuits with large a,
the two lowest levels form an effective two-level system, well separated in frequency from
the higher levels, allowing the use of this system as a qubit. Secondly, Fig. 1.1 shows a rapid
change in the transition energy as a function of the gate charge. Since any fluctuation in the
qubit transition frequency leads to decoherence, and charge fluctuations are ubiquitous in
nature, the Cooper-pair box in the regime of small EJ/EC is challenging to operate.

Vg E12

E01

Figure 1.1: Circuit diagram of the Cooper-pair box (CPB) and its eigenenergies. The CPB consist of a
superconducting island (indicated in red), which is connected to the outside via a Josephson junction with energy
EJ. Cooper-pairs can tunnel via the Junction on and off the island, and their transfer is associated with the
charging energy EC, due to the circuit capacitance. Introducing a gate capacitor connected to a voltage source Vg

allows to model the influence of fluctuating charges on the CPB. Increasing the ratio EJ/EC leads to smaller
variations of the transition energies, at the cost of a more harmonic energy level diagram. In the case EJ/EC ∼ 50,
the charge dispersion is strongly reduced, but also the anharmonicity is only a few percent. Indicated in grey are
the quadratic eigenenergies of the Hamiltonian without Josephson coupling.

However, as the ratio EJ/EC is increased, the change of the transition energies with ng is
exponentially suppressed proportional to

√
EJ/EC [8]. In this regime, the circuit is called a

transmon [8], which currently is the predominantly used superconducting qubit in academia
and also in industrial pursuits of a quantum computer. As already mentioned, the transmon’s
susceptibility to charge noise is strongly suppressed, by adding a shunting capacitor to the
Cooper-pair box circuit, which decreases EC. The price one has to pay for this charge noise
insensitivity is a greatly reduced anharmonicity compared to the CPB, which for typical
transmons is on the order of 250MHz at operating frequencies ∼ 5GHz.

Over the last decade the transmon qubit has enabled an increase in coherence times of 3 to 4
orders of magnitude and has been used to show a number of hallmark proof of principle
experiments towards the realization of quantum computing in superconducting circuits
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[22–24]. One of the major challenges in scaling up to a larger number of qubits is the
already mentioned small anharmonicity, which could lead to frequency crowding for larger
systems and also potentially result in single qubits leaving the computational subspace of the
transmon level structure. A promising alternative for the transmon qubit, albeit currently
only at the level of single qubits, could be circuits with high characteristic impedance. The
most widely known example, the fluxonium qubit, will be discussed in the following section.

1.2 The fluxonium qubit

1.2.1 Quantum fluctuations of charge and phase

Before diving into the details of the fluxonium qubit Hamiltonian, first we shall discuss the
term high characteristic impedance and give it a quantitative meaning. To gain insight into
circuits with high characteristic impedance, we first look at a the most basic superconducting
quantum circuit, the harmonic LC oscillator, which is described by the Hamiltonian

Ĥ =
1

2C
Q̂2 +

1
2L

Φ̂
2. (1.3)

Following the standard procedure of expressing the harmonic oscillator Hamiltonian in terms
of creation â† and annihilation operators â we find the following equations [25]

Φ̂ = ΦZPF
(
â+ â†) , Q̂ =−iQZPF

(
â− â†) .

The zero point fluctuations of flux ΦZPF =
√

(h̄Z)/2 and charge QZPF =
√

h̄/(2Z) are defined
such that the uncertainties of the quantum mechanical ground state in the phase and charge
degree of freedom are given by the respective squared zero point fluctuations. Rewriting both
uncertainties in terms of their characteristic scale, and introducing an impedance normalized
to the resistance quantum z = Z/RQ = Z/[h/(2e)2], we find [25]

ΦZPF = Φ0

√
z

4π
,

QZPF = 2e

√
1

4πz
,
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1.2 The fluxonium qubit

with the flux quantum Φ0 = h/(2e). An interesting consequence of these expressions is
that for circuits with a characteristic impedance larger than RQ their quantum fluctuations
of the charge degree of freedom are suppressed in favor of larger fluctuations of the flux
degree of freedom. For that reason, we call an impedance Z larger than RQ high characteristic
impedance.

1.2.2 The uncoupled fluxonium Hamiltonian

As already touched on in Sec. 1.1, the tremendous popularity of the transmon qubit can be
attributed to its insensitivity to charge noise, the simplicity of the circuit, and the availability of
analytical formulae, which approximate the characteristics of the Hamiltonian very well [8].
Nevertheless, one of the main drawbacks of transmon qubits is their low anharmonicity, which
potentially limits the speed of single qubit gates. A promising alternative superconducting
qubit is the so called fluxonium. This circuit was invented in 2009 [15] and recently gained
increasing popularity [17, 18, 26].

Figure 1.2: Equivalent circuit of the fluxonium qubit. A small Josephson junction with energy EJ is shunted by a
large inductor, with characteristic impedance Z > RQ. This so called superinductor adds a characteristic energy
EL to the circuit. The Josephson junction capacitance is lumped together with other capacitances in the circuit
and gives rise to a charging energy EC. See Eq. (1.4) for the circuit Hamiltonian.

Figure 1.2 shows the fluxonium equivalent circuit, which is a small Josephson junction
shunted by a large inductor with high characteristic impedance, the so called superinductor.
In principle, the fluxonium circuit is comparable in simplicity to the transmon circuit, in
practice however the complexity lies in the realization of the superinductor, which needs an
inductance on the order of hundreds of nH, while minimizing its parasitic capacitance to
ground (cf. Sec. 1.3.1).

Again relying on the circuit quantization technique [21], the bare fluxonium Hamiltonian reads

Ĥ = 4ECN̂2 +
1
2

ELϕ̂
2−EJ cos

(
ϕ̂−2π

Φext

Φ0

)
, (1.4)

where similarly to the CPB Hamiltonian in Sec. 1.1 we have introduced the characteristic energy
scales of the circuit, with charging energy EC = e2/(2C), inductive energy EL = (Φ0/2π)2/L,
and Josephson energy EJ = (h̄Ic)/2e = (Φ0/2π)2/LJ. Note here an important difference to
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the previously shown CPB Hamiltonian [see Eq. (1.2)]: the susceptibility of the circuit to
any offset charge ng can be removed through a gauge transformation [27], which can be
intuitively understood looking at the circuit diagram. The large inductance provides a shunt
to the Josephson junction at low frequencies and the fluxonium circuit possesses no island.
Hence, the fluxonium qubit is intrinsically insensitive to charge fluctuations.

Looking at the first two terms of Eq. (1.4), we identify the Hamiltonian of an LC oscillator.
Through the correspondence principle we associate the phase degree of freedom with the
position and conversely the charge degree of freedom with momentum. In analogy to the
harmonic oscillator, the capacitance C of the fluxonium now corresponds to the mass of
the effective particle, while the frequency ω of the harmonic oscillator corresponds to
1/
√

LC, as expected. Still ignoring the Josephson junction term, we chose the harmonic
oscillator eigenstates [28] as the basis for the ensuing numerical diagonalization of the
Hamiltonian [29, 30],

ψn(ϕ) =
1√
b

1√
2nn!
√

π
Hn

(
ϕ

b

)
e−

1
2 (

ϕ

b )
2
, (1.5)

with b =
[
(8ECh̄2)/EL

]1/4
, and Hn the Hermite polynomials. Taking into account the full

fluxonium Hamiltonian again, we can compute the matrix elements as follows,

〈ψm(ϕ)| Ĥ |ψl(ϕ)〉= h̄ω

(
m+

1
2

)
δm,l−EJ

〈
ψm(ϕ)

∣∣∣∣cos
(

ϕ̂−2π
Φext

Φ0

)∣∣∣∣ψl(ϕ)

〉
. (1.6)

In order to obtain the matrix elements of the Josephson junction term, we use a trigonometric
identity to split the cosine term,

cos
(

ϕ̂−2π
Φext

Φ0

)
= sin (ϕ̂) sin

(
2π

Φext

Φ0

)
+ cos (ϕ̂)cos

(
2π

Φext

Φ0

)
. (1.7)

Finally, the matrix elements can be calculated by [29, 30],
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1.2 The fluxonium qubit

〈ψm(ϕ)|sin (ϕ̂) |ψl(ϕ)〉 (1.8)

=

0, l + m even
1√

2l+ml!m!
2min[l,m](min[l,m])!(−1)(|m−l|−1)/2b|m−l|e−b2/4L|m−l|

min[l,m]

(
b2

2

)
, l + m odd

(1.9)

〈ψm(ϕ)|cos (ϕ̂) |ψl(ϕ)〉 (1.10)

=


1√

2l+ml!m!
2min[l,m](min[l,m])!(−1)|m−l|/2b|m−l|e−b2/4L|m−l|

min[l,m]

(
b2

2

)
, l + m even

0, l + m odd

(1.11)

using the associated Laguerre polynomials Lk
j(x) to solve the integrals [31].

By expressing the matrix representation of the fluxonium in the harmonic oscillator basis, we
can look at the fluxonium potential and its eigenfunctions at different values of the external
magnetic flux, which tunes the Josephson potential with respect to the parabolic potential of
the superinductor. Figure 1.3 shows the fluxonium potential (black line) and its five lowest
eigenfunctions offset by their corresponding eigenenergy. Table 1.1 shows the fluxonium
parameters chosen for the illustration of the potential and fluxonium eigenstates.

Figure 1.3: Fluxonium potential (black) and eigenstates (colored lines, shifted vertically by their eigenenergy) at
different external magnetic flux. By changing the magnetic field threading the fluxonium loop, the potential can be
seamlessly tuned from a single well at Φext/Φ0 = 0.0 to a double well potential at Φext/Φ0 = 0.5, where the two
lowest eigenstates form a well separated effective two-level system. The circuit parameters of the diagonalized
Hamiltonian are EJ/h = 10GHz, EL/h = 0.55GHz, and EC/h = 3.87GHz.
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Table 1.1: Circuit parameters of the fluxonium Hamiltonian plotted in Fig. 1.3.

EJ/h LJ EL/h L EC/h C
10.00 GHz 16.3 nH 0.55 GHz 300.0 nH 3.87 GHz 5 fF

At zero external flux, we observe a potential with a central well, in which the lowest eigenstate
is localized. The three next higher states are localized across three wells, formed by the
parabolic superinductor potential modulated by the Josephson junction term. Finally, the
highest state shown closely resembles an harmonic oscillator eigenstate, justifying the choice
of basis for numerical diagonalization of the fluxonium Hamiltonian.

For an external flux Φext/Φ0 = 0.25, the central panel in Fig. 1.3 shows how the potential
approaches a double well, with the second eigenstate moving down in energy towards the
ground state. At Φext/Φ0 = 0.5 the fluxonium circuit exhibits a symmetric double well
potential with two degenerate eigenstates in the left and right well, which hybridize to form
an effective two-level system. As is clearly visible these two states are well separated in
energy from the higher states, illustrating the large anharmonicity of the fluxonium circuit,
while the circuit is still insensitive to charge noise.

Figure 1.4 shows the transition frequencies between the ground and three next higher states
as a function of the external magnetic flux for the circuit parameters given in Tab. 1.1.
Between the maximum of the lowest transition frequency at Φext/Φ0 = 0.0 and the minimum
at Φext/Φ0 = 0.5, the frequency can be tuned over ∼ 10GHz (blue line). At Φext/Φ0 = 0.5,
the usual operation point of the fluxonium qubit the spectrum shows an anharmonicity
of about a factor of 10 between the lowest transition frequency and the transition to the
second excited state. This anharmonicity is about two orders of magnitude larger compared
to typical transmon qubits and illustrates the strong isolation of the computational basis from
higher excited states in the fluxonium qubit, which strongly decreases leakage out of the
qubit subspace.

Different groups have presented energy relaxation times in the range of ms in fluxonium
qubits. However, to achieve this two different approaches were employed. Figure 1.5
compares the two potentials and corresponding eigenstates close to the Φext/Φ0 = 0.5
qubit operating point. The left panel shows the Hamiltonian diagonalization of the device
presented in Ref. [16] with characteristic energy scales EJ/h = 10.2GHz, EL/h = 0.46GHz,
and EC/h = 3.6GHz. In this device T1 times up to 8 ms were measured thanks to optimization
of the fabrication process, the use of a 3D cavity as the readout resonator, which significantly
decreases dielectric losses as already presented in transmon qubits [32], and a strongly
shielded measurement setup.
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1.2 The fluxonium qubit

Figure 1.4: Transition frequencies of the fluxonium qubit as a function of the external magnetic flux. Depending
on the circuit parameters (cf. Tab. 1.1 for the values used in the plot), the transition frequency can be tuned over
several GHz, and the spectrum shows an anharmonicity of a factor ∼ 10 at Φext/Φ0 = 0.5, which is the usual
fluxonium operation point.

Figure 1.5: Conventional (left, [16]) vs. heavy fluxonium (right, [17]) potential and eigenstates. Shunting the
fluxonium with a large capacitor ∼ 10fF to 102 fF results in strongly localized eigenstates and exponentially
suppressed off-diagonal matrix elements [cf. Eq. (1.8) to (1.11)]. Both circuits exhibit energy relaxation times on
the order of ms illustrating the potential as well as versatility of the fluxonium circuit, with the heavy fluxonium
being operated as a Λ-system.

The right panel of Fig.1.5 shows the potential and eigenfunctions of a so called heavy
fluxonium, presented in Ref. [17]. Its characteristic energy scales EJ/h = 8.1GHz, and
EL/h = 0.48GHz are comparable to those of the fluxonium in Ref. [16], the charging energy
EC/h = 0.46GHz however is significantly decreased by shunting the Josephson junction with
a large capacitor. As already mentioned, in analogy to the harmonic oscillator Hamiltonian,
in the fluxonium the capacitance C plays the role of the mass, hence the name heavy
fluxonium. Furthermore, the off-diagonal matrix elements are exponentially suppressed
∝ exp(−EL/EC), leading to strongly localized eigenstates (cf. right panel Fig. 1.5). Due to
this strong localization the operation of the heavy fluxonium relies on cycling the qubit
through side transitions. Nevertheless, for the circuit presented in Ref. [17] energy relaxation
times on the order of ms were also observed. The comparison between the two fluxoniums
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serves to illustrate the tremendous potential in terms of qubit coherence, as well as the
versatility of the fluxonium circuit in exploring different parameter regimes.

1.2.3 Fluxonium qubit loss channels

To quantify the losses limiting the fluxonium qubit T1, which will later on serve as a diagnostic
tool to investigate the grAl superinductor, we recall the relaxation rate expressed using
Fermi’s golden rule [16, 29],

Γ1, j =
1
h̄2

∣∣〈0| Â |1〉∣∣2 S j
II(ω01). (1.12)

Here, 〈0| Â |1〉 is the matrix element between the qubit ground and excited state with the
operator Â, which couples a decay channel j to the qubit. S j

II(ω01) represents the current
spectral density of the noise of channel j at the qubit transition frequency ω01 and is
expressed by [33],

S j
II(ω01) = h̄ω01Re[Yj(ω01)]

(
coth

(
h̄ω01

2kBT

)
+1
)
, (1.13)

where Re[Yj(ω01)] is the real part of the admittance causing the relaxation of the qubit. In
the following we use this general concept of dealing with different sources of dissipation to
calculate the relaxation rates induced on the fluxonium by capacitive, radiative, and inductive
loss by finding the corresponding real parts of the admittance [29]. Additionally, dissipation
induced by quasiparticle tunneling across the small Josephson junction will be evaluated
following the approach detailed in Refs. [34, 35].

Capacitive, inductive, and radiative loss

In accordance with Refs. [16, 36] we model the losses in the fluxonium’s capacitors by a
parallel resistance RC. Using the definition of the quality factor of a capacitor, in this case
Q = ω01CRC [37], we find the admittance of the capacitor

YC(ω01) =

(
Q

ω01C
+ i

1
ω01C

)−1

=
ω01C(Q− i)

Q2 +1
≈ ω01C

Q
− iω01C

Q2 . (1.14)

From which we take the real part for the calculation of the fluxonium relaxation due to
dielectric loss in capacitive elements of the circuit.
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1.2 The fluxonium qubit

In the same fashion we calculate the admittance of an inductor with a resistance in series [37],

YL(ω01) =

(
ω01L

Q
− iω01L

)−1

=
Q(ω01L+ iω01LQ)

ω2
01L2 +ω2

01L2Q2 ≈
1

ω01LQ
+ i

1
ω01L

. (1.15)

In order to obtain the real part of the admittance as seen from the fluxonium junction, which
causes radiative or Purcell loss [38], we employ finite element method simulations. We
obtain the frequency dependent admittance by placing a simulation port at the position of the
Josephson junction in the 3D model of the fluxonium circuit, which also includes the sample
holder. The second simulation port is located on the modeled coaxial line, which connects to
the sample holder. Using this approach, the loss through coupling to the outside world is
encoded in the admittance seen from the port at the junction position.

With the real parts of the admittance for capacitive, inductive and radiative loss now at hand,
the only missing ingredient is the matrix element. Following again the approach presented in
Ref. [29], the energy relaxation can be modeled as the phase across the Josephson junction
coupling to some source of dissipation. Therefore, the matrix element, which needs to be
calculated is (see Fig. 1.6),

〈0| Φ̂ |1〉= 〈0|(Φ0/2π)ϕ̂ |1〉 . (1.16)

Quasiparticle tunneling induced loss

Despite operating quantum circuits at temperatures ∼ 20mK, quasiparticle densities nor-
malized to the total number of Cooper-pairs on the order of xQP ∼ 10−6 have been
reported [16, 39–44]. This value, orders of magnitude larger than the thermally expected
xth

QP =
√

2πkBT/∆0 exp(−∆0/kBT )≈ 10−54 in pure thin film aluminum circuits (with super-
conducting gap ∆0 = 210µeV) [35], has recently been shown to be a non-thermal population
[45]. Its source is still under investigation with possible candidates being high-energy
particles from local radioactive decay or of cosmic origin [46], or residual photons with
energies h f > 2∆0, which reach superconducting quantum circuits despite best efforts to
shield them from any stray radiation [47].

It has been shown that excess quasiparticles cause energy relaxation and decoherence in
superconducting qubits because of their coupling via the Josephson tunneling term [34, 48].
In the following we give the main results of Ref. [34], which allow to connect the normalized
excess quasiparticle density in the fluxonium qubit to its energy relaxation time T1.
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Figure 1.6: Squared absolute of fluxonium matrix elements showing coupling strength to dissipation channels.
Blue solid line (left axis) shows |〈0|sin(ϕ̂/2) |1〉|2, expressing the coupling between quasiparticles tunneling
across the Josephson junction and the fluxonium states. At Φext/Φ0 = 0.5 the matrix element vanishes, which
is a manifestation of the interference between electron- and holelike quasiparticles, experimentally shown in
Ref. [16]. The green solid line (right axis) shows |〈0| ϕ̂ |1〉|2, which is the matrix element used for the calculation
of capacitive, inductive, and radiative loss (cf. Tab. 1.2).

Following Catelani et al. [34] the transition rate between the first excited and ground state of
the qubit can be calculated through Fermi’s golden rule,

ΓQP =

∣∣∣∣〈0
∣∣∣∣sin

(
ϕ̂

2

)∣∣∣∣1〉∣∣∣∣2 SQP(ω01). (1.17)

Here, equal superconducting electrodes of the Josephson junction, and small excitations of
the quasiparticles, δE , and qubit, i.e. h̄ω01,δE� 2∆0 are assumed. It is already interesting
to note that for the fluxonium qubit biased at Φext/Φ0 = 0.5 (cf. Fig. 1.3) the matrix element
vanishes (see Fig. 1.6). This happens thanks to the symmetric potential, ground state, and
sin (ϕ̂/2) term in Eq. (1.17), and the antisymmetric first excited state at this specific bias
point. The effect is a manifestation of the destructive interference between electron- and
holelike quasiparticles tunneling across the Josephson junction and has been experimentally
verified in Ref. [16]. The resulting insensitivity to dissipation caused by quasiparticle
tunneling across the Josephson junction, together with the large anharmonicity, and first
order flux noise insensitivity justify the standard operation point of the fluxonium qubit at
Φext/Φ0 = 0.5.

The normalized quasiparticle current spectral density SQP(ω01), which expresses the
quasiparticle kinetics, is found to be [34]
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SQP(ω01) =
hω01

πe2 Re[YQP(ω01)], with (1.18)

Re[YQP(ω01)] =
1
2

xQP
8EJe2

∆0h

(
2∆0

h̄ω01

)3/2

. (1.19)

Summary of relaxation rates

Table 1.2 summarizes the fluxonium relaxation rates Γ1, j = 1/T1, j due to capacitive, inductive,
radiative, and quasiparticle loss.

Table 1.2: Relaxation rates from the first excited to the ground state due to capacitive, inductive, radiative and
quasiparticle loss in the fluxonium qubit. For the radiative loss contribution the real part of the admittance is
obtained through FEM simulations of the circuit geometry in the sample holder, which includes the coupling to
the external measurement setup.

Dissipation source Relaxation rate Γ1

Capacitive
|〈0| ϕ̂ |1〉|2

(2e)2

[
coth

(
h̄ω01

2kBT

)
+1
]

h̄ω2
01C

Qcap

Inductive
|〈0| ϕ̂ |1〉|2

(2e)2

[
coth

(
h̄ω01

2kBT

)
+1
]

h̄
LQind

Radiative
|〈0| ϕ̂ |1〉|2

(2e)2

[
coth

(
h̄ω01

2kBT

)
+1
]

h̄ω01Re [Y (ω01)]

Quasiparticle |〈0|sin(ϕ̂/2) |1〉|2 8EJ

h̄π

(
2∆0

h̄ω01

)1/2

xQP

1.2.4 Inductively coupled fluxonium-resonator system

To read out the quantum state of the fluxonium qubit we employ the tools of circuit quantum
electro dynamics (cQED), namely the dispersive readout scheme [49, 50]. Concretely,
we achieve this by inductively coupling a readout resonator to the fluxonium qubit, as
schematically illustrated by the circuit diagram in Fig. 1.7. Besides the bare fluxonium (cf.
Fig. 1.2), a readout resonator with inductance Lr and capacitance Cr, as well as the shared
inductance Ls between resonator and qubit now make up the circuit.
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L

Ls

Lr

Cr

Figure 1.7: Circuit diagram of the inductively coupled fluxonium-resonator system. The fluxonium qubit (EJ,
EL, and EC, cf. Fig. 1.2) is coupled to a readout resonator (Lr, Cr) via a shared inductance Ls. Depending on the
fluxonium qubit state, the resonant frequency of the resonator changes, which is monitored and hence provides
information about the qubit state [49, 50].

Using circuit quantization [21], the Lagrangian L of the fluxonium-resonator system in the
limit Lq� Lr, Ls is found as detailed in Ref. [30],

L =
Cr

2
Φ̇

2
r −

1
2(Lr +Ls)

Φ
2
r +

Ls

Lq(Lr +Ls)
ΦrΦq

+
Cq

2
Φ̇

2
q−

1
2Lq

Φ
2
q +EJ cos

(
2π

Φq

Φ0
−Φext

)
.

(1.20)

Following the steps of decoupling the linearized Lagrangian, and applying a Legendre
transformation, as detailed again in Ref. [30], the Hamiltonian of the inductively coupled
fluxonium resonator system is found,

Ĥ =
1

2CR
Q̂2

R +
1

2LR
Φ̂

2
R +

1
2CQ

Q̂2
Q +

1
2LQ

Φ̂
2
Q−EJ cos

(
2π

λ3Φ̂R

Φ0
+2π

λ4Φ̂Q

Φ0
−Φext

)
,

(1.21)

where λ3 and λ4 are chosen such that the linear part of the Lagrangian becomes diagonal.
Here, similarly to the solution of the uncoupled fluxonium Hamiltonian, product states of the
harmonic oscillator eigenfunctions form the basis for the ensuing numerical diagonalization
of the Hamiltonian. The diagonal elements of the matrix are now given by the harmonic
oscillator eigenenergies of the resonator [cf. first two terms in Eq. (1.21)], and qubit
[terms 3 and 4 of Eq. (1.21)], while the off-diagonal elements are again found using the
relations (1.8) - (1.11).

Following numerical diagonalization of the coupled system Hamiltonian, the photon numbers
in resonator and fluxonium now have to be assigned to the obtained level structure. This
is done by an approach, which to the best of our knowledge has first been shown in
Ref. [51]. It relies on the calculation of the transition dipole moments 〈di j〉 between the
numerically obtained eigenstates of the coupled fluxonium resonator Hamiltonian. Basis
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for this assumption is the fact that the readout resonator should have a dipole moment
significantly larger than the fluxonium, which is calculated by,

〈di j〉 ∝ 〈ψi| Q̂R + Q̂Q |ψ j〉 . (1.22)

Starting from the ground state with zero photons in the resonator and fluxonium, one begins
climbing the ladder stepping in every iteration to the state with the largest transition dipole
moment, always assigning an additional resonator photon. Once this is completed for the
states having zero photons in the qubit, the lowest, yet unidentified eigenstate is assigned
with having one photon in the fluxonium. Starting from this state, the ladder of adding
photons in the resonator is climbed again, to assign the next set of photon numbers. This
process continues until all states are assigned a photon number for resonator and fluxonium.
Figure 1.8 shows the output of the numerical diagonalization (left) with states simply sorted
by their energy, and the result after the just described sorting procedure (right). Assignment
of photon numbers to the different lines is now possible, illustrating the effectiveness of the
approach invented in Ref. [51].

Figure 1.8: Spectrum of the inductively coupled fluxonium resonator system. On the left, levels are sorted by
energy. In the right panel states are sorted according to their transition dipole moment (see main text), facilitating
the identification of photon number states of fluxonium and resonator. The legend indicates the number of photons
in the fluxonium for the different levels of same color, whereas the photon number in the resonator increases by
one between every two lines of same color.

With the spectrum of the coupled system now sorted according to photon numbers, one can
extract the dispersive shift of the resonator χ caused by the fluxonium state,
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χ =
(
E|n+1,1〉−E|n,1〉

)
−
(
E|n+1,0〉−E|n,0〉

)
. (1.23)

Figure 1.9 shows the dispersive shift as a function of the external magnetic flux. As
can be seen, it exhibits a rich behavior with changing sign and significantly increased
values at positions where crossings between resonator-like and qubit-like eigenstates of the
Hamiltonian occur.

Figure 1.9: Dispersive shift of the readout resonator [cf. Eq. (1.23)]. Based on the sorted eigenstates of the
inductively coupled resonator fluxonium Hamiltonian (see Fig. 1.8) we extract the dispersive shift χ . As illustrated
by the plot, χ shows a rich behavior, with changing sign and significantly varying magnitude. The dependence of
χ on the external magnetic flux strongly depends on the choice of circuit parameters and large values of the
dispersive shift indicate crossings between resonator-like and qubit-like states.

1.3 Granular aluminum for high impedance environments

1.3.1 Status quo of high impedance environment realization

From a design point of view three key properties of superinductors are of interest: (i) kinetic
inductance, enabling high characteristic impedances, and allowing to add large shunting
inductances into superconducting circuits, (ii) behavior as linear inductors, minimizing the
addition of nonlinearity into a quantum circuit, (iii) sufficiently low microwave frequency
losses avoiding to limit the qubit coherence. In the following we will discuss implementations
of superinductors harnessing the kinetic inductance of two types of structures: on the one
hand Josephson junction arrays, on the other hand disordered superconductors, mainly
different types of nitrides.
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Josephson junction chain superinductors

Since Josephson junctions have already been a basic building block of superconducting qubits,
which have repeatedly demonstrated remarkable times up to hundreds of micro-seconds
[2], the idea to use arrays of large Josephson junctions to realize superinductors naturally
arises. A large body of literature exists, which investigates Josephson junction arrays (JJAs)
from different viewpoints. Among others, JJAs are specifically investigated serving as
superinductors [29, 36, 52, 53], as high impedance environments [54, 55], as resonators
with engineered dispersion relation [56, 57], and quantum limited amplifiers with large
saturation power [58]. In the following, we will discuss some considerations for the design of
superinductors using Josephson junctions and give a brief summary of reported performances.

Due to their relatively easy fabrication by shadow evaporation processes [59–61] and
remarkable coherence properties, practically all Josephson junctions in superconducting
quantum circuits are realized as Al/AlOx/Al tunnel junctions, in which the insulating barrier
is obtained by a controlled oxidation of the first pure aluminum electrode. According to
Kleinsasser et al. [62] the critical current density of tunnel junctions with AlOx barriers is
proportional to the product of oxidation pressure pox and time tox, the so called exposure
Eox = pox× tox. Using the Josephson equations [19] one can furthermore calculate the
Josephson inductance LJ = (h̄Ic)/2e, associated with the inertia of Cooper pairs tunneling
through such a contact. Owing to the fact that Al/AlOx/Al Josephson junctions are two
superconducting electrodes separated by a thin dielectric layer, they form a parallel plate
capacitor with a characteristic capacitance CJ on the order of 50 fF/µm2 to 100 fF/µm2

[63–66], which is in parallel with the Josephson inductance LJ (cf. the resistively and
capacitively shunted junction (RCSJ) model, presented for example in Ref. [67]). This
parallel arrangement of a capacitance and inductance forms an LC-resonator with a
characteristic resonant frequency ωp = 1/

√
CJLJ, called the plasma frequency. Let us now

examine the dependence of the plasma frequency on design parameters of the Josephson
junction, such as junction area A and critical current density.

ωp = 1/
√

CJLJ (1.24)

=

√
1

ACJ
× 2πIc

φ0
(1.25)

∝

√
2πEox

CJφ0
with Ic/A ∝ Eox (cf. Ref. [62]). (1.26)

As briefly discussed earlier, superconducting quantum circuits are commonly operated in
the low GHz regime up to values ∼10 GHz. This means a superinductor as a fundamental
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building block of such a circuit should not possess a self-resonance in this frequency range,
meaning ωp/2π & 10GHz. Since the plasma frequency is independent of the junction area
and only dependent on the critical current density of the junction, i.e. the oxidation exposure
[cf. Eq. 1.26], this places a stringent design bound on the Josephson junctions usable for a
superinductor.

L L L L

Figure 1.10: Circuit model of an array of Josephson junctions and its dispersion relation for different ratios
between Josephson capacitance CJ and capacitance to ground Cg. To form the superinductor N junctions are
connected in series to increase the total inductance and maintain a high characteristic impedance. For illustration
purposes, in the plot we have chosen N = 20. The Josephson inductance LJ and capacitance CJ of the individual
junctions set the plasma frequency ωp = 1/

√
LJCJ, which only depends on the critical current density of the

junction and is independent of the junction area (see main text for a more detailed discussion). This plasma
frequency sets the upper bound for all resonant modes of the junction array, which has a dispersion relation
ω(k) = ωp

√
[1− cos(kπ/N)]/[1− cos(kπ/N)+Cg/(2CJ)], where k is the mode index [36, 68]. Depending on

the ratio Cg/CJ, the dispersion relation changes, with lower resonant frequencies of the first array modes as
Cg/CJ increases (CJ kept constant for all curves).

Furthermore, to fulfill the requirement of a linear superinductor, the phase across the
Josephson junctions making up the array should be small, to permit the expansion of the
cosine to lowest order only. Consequently, the junctions of the superinductor have larger
critical currents, which correspond to Josephson inductances ∼ 3nH [16]. In order to realize
a superinductor only an array of N ∼ 102 Josephson junctions can fulfill all requirements
simultaneously. Since any length of metallic wire is also associated with a capacitance
to its surroundings, one now not only has to take into account the plasma frequency of
the individual Josephson junctions forming the array, but also the collective modes of the
complete array. This means that additionally to the Josephson capacitance any capacitance
of the individual metal islands to ground has to be taken into account. For the same reason as
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1.3 Granular aluminum for high impedance environments

for the plasma frequency, all array modes should be above the operating frequency of the
quantum circuit employing the superinductor. A circuit quantization treatment [21] of the
model for a Josephson junction chain with capacitance to ground Cg (see inset in Fig. 1.10),
presented in Refs. [36, 68], leads to the following dispersion relation

ω(k) = ωp

√
1− cos(kπ/N)

1− cos(kπ/N)+Cg/(2CJ)
. (1.27)

From Eq. 1.27 we see, that all N modes of the Josephson junction array are distributed below
the plasma frequency. This can be intuitively understood by imagining that for the highest
array resonance neighboring islands charge with opposite sign, with the charge concentrated
in the parallel plate capacitor of the Josephson junction, only renormalized by the capacitance
to ground Cg of the islands. For the low frequency spectrum however, Fig. 1.10 shows the
significant influence of Cg assuming a constant CJ. Imagining a junction chain with two
open boundary conditions, the fundamental mode has a λ/2 field distribution, where the
capacitive loading of the line by the capacitance to ground Cg lowers the resonant frequency.
Assuming a plasma frequency ωp/2π = 20GHz and a ratio Cg/CJ = 0.1 (cf. orange squares
in Fig. 1.10), this leads to a lowest resonant frequency of the array on the order of 9 GHz.
Since all self resonances of the superinductor should be well above the qubit operating
frequency, this example illustrates the difficulty in designing a superinductor from an array
of Josephson junctions, which simultaneously fulfills the constraints: Z > RQ, L∼ 102 nH,
linear inductor behavior, and lowest resonant frequency & 10GHz.

Table 1.3: Overview of properties of Josephson junction array superinductors evaluated independently (Refs. [36,
52]) or implemented in fluxonium qubits (Refs. [16, 18]).

Z/RQ L (nH) Qi T1 (µs) Ref.
0.7 150 5×104 - N. A. Masluk et al. [36]
3.8 3000 - > 1 M. T. Bell et al. [52]c

3.1 330 ∼ 3×106 & 103 I. M. Pop et al. [16]
0.6 - 1.4 72 – 430 - 70 – 270 L. B. Nguyen et al. [18]

c It should be noted this superinductor consists of multiple unit cells of asymmetric SQUIDS, where two adjacent
cells share a large Josephson junction. The values quoted in the table are achieved at full SQUID frustration, i.e.
an external magnetic flux of Φ0/2 threading the loops of the arrays. At integer values of the external flux, the
inductance decreases down to 16 nH. Therefore, to operate this type of superinductor in a fluxonium it needs a
local flux control for the superinductor to enable independent tuning of the fluxonium qubit transition frequency.
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Table 1.3 shows exemplary benchmark results of Josephson junction array superinductors
reported in the literature to provide a comparison for the performance of granular aluminum
superinductors. We use the results of four publications involving junction array superinductors,
and give their impedance normalized to the resistance quantum RQ, their total inductance,
internal quality factors, and energy relaxation times of fluxonium qubits realized with such
superinductors. As can be seen, Josephson junction arrays have been successfully used to
implement fluxonium qubits with remarkable energy relaxation times T1 & 1ms. It should
be noted however, that Ramsey fringes and spin echo coherence times of fluxonium qubits
were only reported in the 10’s of microseconds range, two orders of magnitude smaller
than their T1 times. Only very recently T2 & 100µs [18] were reported in fluxonium qubits.
Further investigation into the limiting decoherence mechanisms in fluxonium qubits has
to be performed to elucidate and mitigate noise sources severely reducing T2 below the
theoretically attainable limit of T2 ≤ 2T1.

Finally, we examine the nonlinearity of Josephson junction chains in terms of the quantum
optics Hamiltonian [69],

Ĥ/h̄ = ∑
n=1

(
ωn +Knnâ†

nân
)

â†
nân + ∑

n,m=1;n6=m

Knm

2
â†

nânâ†
mâm. (1.28)

In this framework ωn are the mode frequencies with corresponding bosonic creation and
annihilation operators â†

n and ân. The first order nonlinearity of the n-th mode is accounted for
by the self-Kerr coefficient Knn, which describes the frequency shift of a mode as a function
of its occupation number. Similarly, the interaction between modes is expressed in terms of
the cross-Kerr coefficient Knm, describing how much the frequency of mode n changes as a
function of the occupation of mode m. In Josephson junction array superinductors, self- and
cross-Kerr coefficients are on the order of a few MHz/photon [36, 56].

Disordered superconductors for superinductors

Due to their high kinetic inductance, disordered superconductors are a natural approach for
the realization of superinductors. Different types of nitrides are the most often used materials.
However, they have only recently received attention in the field of superconducting quantum
circuits. Table 1.4 gives an incomplete overview of different superconducting circuits realized
with disordered superconductors. Due to their relatively high kinetic inductance, which leads
to a larger signal for a given incident power in kinetic inductance detectors (KID), a lot of
the research has been performed in the context of microwave kinetic inductance detectors.

As the table shows, most implementations posses moderate kinetic inductances of up to
0.2nH/�, which mostly do not put the circuit’s characteristic impedances above the resistance
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quantum RQ. Additionally, most of the obtained results are measured at readout powers,
where the average number of photons circulating in the resonator n̄� 1. Due to the saturation
of different loss mechanisms at higher readout powers, the measured internal quality factors
of these materials are higher, making it difficult to compare between the different publications
and precisely evaluate their potential for superconducting qubits. Notable exceptions are
Refs. [26, 70], where disordered superconductors were specifically investigated for the
purpose of superinductors in qubits. The kinetic inductances obtained in these experiments
are in the range of 0.08nH/� to 0.2nH/�, while internal quality factors in the single photon
regime are. 5×104. Since both approaches minimized the superinductor’s stray capacitance
by employing a nanowire geometry with width w. 100nm the characteristic impedances of
the superinductors exceed the resistance quantum. From a fabrication point of view, disordered
superconductors, especially different types of nitrides necessitate complex film deposition
processes with stringent requirements for substrate temperature during deposition, exact film
growth rate controls, etc. Despite these challenges, very high internal quality factors have
been achieved in quantum circuits implemented with disordered superconductors [71, 72].

Table 1.4: Overview of properties of superconducting circuits employing disordered superconductors.

Material L� (nH/�) Qi Ref.
TiN ∼ 0.1 ∼ 106 [71, 73, 74]

NbTiN ∼ 0.1 ∼ 105 [26, 72, 75]
NbN ∼ 0.1 ∼ 105 [70, 76, 77]

As already discussed, the added nonlinearity of a superinductor should be as small as possible
(cf. discussion in Sec. 1.3.1). In superconducting wires the nonlinearity arises from the
dependence of the kinetic inductance on the current flowing in the wire [78]

Lk(I) = Lk(0)

[
1+
(

I
I∗

)2
]
, (1.29)

where Lk(0) can be approximated using Eq. (1.35), and I∗ is comparable to the critical
current of the wire ∼ Ic [78]. Since superconducting qubits are operated in the low power
regime, where the circulating current is much smaller than the critical current, the first order
nonlinearity introduced by the inductance of disordered superconductors is in the range
of kHz/photon expressed in terms of the self-Kerr coefficient [cf. Eq. (1.28)] [79]. This is
approximately three orders of magnitude smaller than in Josephson junction arrays.
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1.3.2 Kinetic inductance and nonlinearity of granular aluminum

As described in Section 1.2.1 high impedance quantum circuits require characteristic
impedances Z > RQ to suppress zero point fluctuations of the charge. A rough estimate of the
impedance achievable by simply using the geometric inductance of a wire while minimizing
the capacitance, for example in a microstrip geometry, leaves one with an impedance on the
order of Z = 0.2kΩ assuming a 330 µm thick c-plane sapphire substrate and a strip width
of 1 µm d. A ten times narrower strip of 100 nm width already necessitates a fabrication
process involving electron-beam lithography, and results in an impedance Z ≈ 0.25kΩ or
∼ 4% of RQ. These two estimates already indicate the need for added inductance, aside from
the geometrical one, to achieve significantly higher impedances in the range of RQ. Recently
however, fabrication advances have enabled the implementation of a superinductor based on
the geometric inductance of a long, thin wire, wound in a spiral and placed on a very thin
suspended membrane [80]. Impressive as it is, the complex, multi-layer fabrication process
for this geometric superinductor approach significantly complicates the realization of high
impedance quantum circuits.

Conveniently, in superconductivity the inertia of Cooper pairs gives rise to the so called
kinetic inductance, which can be several times larger than the geometric inductance, without
adding any spurious capacitance. Recalling the Drude model and assuming a general
two-fluid model, where the total number of electrons in a conductor can be divided into a
superconducting part ns and a normal conducting part nn, the response of a superconductor
to an alternating electric field ~E exp(iωt) can be calculated [67].

~J =
(
σ1, j(ω)− iσ2, j(ω)

)
~E (1.30)

σ j =
n je2τ j

m(1+ω2τ2
j )
− i

n je2ωτ2
j

m(1+ω2τ2
j )

(1.31)

Here, the index j discriminates between normal conducting (n) and superconducting electrons
(s), and n is the density of electrons, e stands for the electron charge, τ is the electron
scattering time, m the electron mass, and ω the frequency of the AC electric field. For
superconductors at temperatures T � Tc, for which τs→ ∞, and frequencies ω well below
the superconducting energy gap, Eq. (1.30) reduces to [81]

d Impedances are estimated using a numerical approximation for microstrip lines described for example in
Ref. [37].
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~J ≈−iσ2,s~E. (1.32)

From this, it is clear that for any non-zero frequency of an alternating electric field the
superconducting electrons don’t provide a perfect shunt to the normal conducting electrons.
Hence, even small numbers of unpaired electrons, so-called excess quasiparticles add
dissipation to quantum circuits and potentially limit the coherence of superconducting qubits,
as will be discussed in later chapters. Still, the surface impedance of a thin superconductor
with thickness t is almost purely inductive due to the vanishing resistance [81]

Zs = 1/(σ1− iσ2) = R+ iωLk (1.33)

Lk =
1

ωσ2t
(1.34)

Using the Mattis-Bardeen formula in the low temperature limit (T � Tc) [67], and employing
the definition of the normal state conductivity σn = ρ−1 = [Rt(w/l)]−1 = (R� t)−1 for a
conductor of thickness t, width w, and length l, yields a handy approximation for the kinetic
inductance per square as a function of its normal state sheet resistance per square:

Lk =
h̄R�
π∆0

(1.35)

In order to achieve the high kinetic inductance needed to realize superinductors with
impedances exceeding the resistance quantum RQ, materials with a large normal state
resistance per square R� are desirable. Granular aluminum is a material well suited for this
purpose since one of the key property of grAl is the large tunability of its resistivity ρ which
allows the deposition of superconducting films with ρ = 1µΩ cm to ρ = 104 µΩ cm before
the material undergoes a superconductor to insulator transition [82, 83] (see Fig. 1.11). As
grAl films are simply fabricated by depositing pure aluminum in a slight oxygen atmosphere
(cf. Chapter 2 and Appendix A.1), the film’s resistivity, which controls the kinetic inductance
of the wires, can be adjusted by controlling the oxygen partial pressure during grAl film
deposition. The large tuning range of ρ as shown in Fig. 1.11(a), adjustable over 4 orders of
magnitude, combined with control of the film thickness, allow a fine grained adjustment of
the sheet resistance per square R�, and consequently of the kinetic inductance of a grAl wire.

Figure 1.11(b) shows a chip with three rectangular strip grAl resonators. The dimensions of the
resonators, patterned on a sapphire substrate without any backside metalization (cf. Sec. 1.4
for more details on the sample geometry), are 400 µm×5.4 µm (left), 1000 µm×40 µm
(middle), and 600 µm×10 µm, with corresponding frequencies of 6.994 GHz, 6.025 GHz,
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and 6.287 GHz. By comparing these results to finite elements methods (FEM) simulations,
we extract a kinetic inductance Lk = 2nH/� for the ρ = 4×103 µΩ cm2, 20 nm thick film.
Using Eq. 1.35, we expect a kinetic inductance of Lk = 1.5nH/� assuming a superconducting
gap of 290 µeV [46], which is 25% smaller than concluded from FEM simulations. The
reason for this could be on the one hand a geometry of the fabricated samples, which differs
from the designed one and hence causes an overestimation of the number of squares, which
results in a larger kinetic inductance per square. On the other hand, recent results show
that the ratio between the superconducting gap and the critical temperature ∆/kB Tc differs
from the conventional BCS result of 1.764 and is increased to ∼ 2.2 [82, 84], which could
also result in a correction factor for the Mattis-Bardeen formula explaining the observed
discrepancy between the calculated and simulated kinetic inductance per square.

grAl: Tc
max≈ 2.2 K

thin film Al: Tc ≈ 1.4 K

in
su

la
tin

g

(a) (b)

2 mm

ρ = 4×103 μΩ cm
t = 20 nm
Lkin = 2 nH

Figure 1.11: Critical temperature of grAl as a function of the room temperature resistivity. The critical temperature
of grAl thin films deposited on a room temperature substrate shows a dome shape with Tc (open circles)
increasing up to T max

c ≈ 2.2K at ρ ∼ 4×102 µΩ cm. At a resistivity on the order of 104 µΩ cm grAl undergoes a
superconductor to insulator transition (cf. filled circles). Dashed lines are a guide to the eye, connecting the
points. The plot is reproduced according to the results presented in Ref. [82], and based on measurements of
samples fabricated at KIT (cf. Appendix A.1 for a detailed description of the fabrication process). The results are
in agreement with previous reports about the grAl phase diagram obtained by Deutscher et al. in 1973 [83].

As discussed in the previous paragraph, at high resistivities, granular aluminum reaches kinetic
inductances per square approximately a factor of 10−20 larger than demonstrated in other
disordered superconductors (cf. Tab. 1.4). If converted into a kinetic inductance per length,
granular aluminum wires exhibit a comparable or even larger kinetic inductance per length
than Josephson junction array superinductors (cf. Tab 1.3). Therefore, granular aluminum is
a promising material for the realization of high-kinetic inductance wires with characteristic
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impedance larger than the resistance quantum, while maintaining a straightforward fabrication
process and in-situ integrability with current conventional Al/AlOx/Al Josephson junction
fabrication techniques [59–61].

In the following, we will briefly discuss the nonlinearity of granular aluminum wires and
compare it to the already presented alternatives for the implementation of superinductors.
Motivated by the microstructure of grAl, i.e. pure aluminum grains with 3 nm diameter
embedded in a non-stoichiometric AlOx matrix, Maleeva et al. devised a model of the low
frequency resonances of grAl wires [79]. Due to its microstructure, a reasonable idea is the
description of grAl as a 1D array of effective Josephson junctions, much like depicted in
Fig. 1.10 (cf. Chapter 2). Since the grain size a of the pure aluminum grains is approximately
independent of the resistivity for ρ > 10µΩ cm, and constant at (3±1)nm, the entire resonator
length of a grAl rectangular resonator is divided into 3 nm wide slices. Each of these slices
has an effective, identical critical current Ic, capacitance CJ, and capacitance C0 to ground.
A transformation from the discrete circuit model illustrated in Fig. 1.10 to a continuous
description allows to calculate the dispersion relation of a rectangular grAl resonator with
length l [79], and mode index n,

ωn =
naπ

l

√√√√ 2eIc

h̄
(

C0 +
n2a2π2

l2 CJ

) . (1.36)

A further analysis detailed in Ref. [79] yields the self- and cross-Kerr coefficients for the
fundamental mode,

K1n ≈ πea
ω1ωn

jcVgrAl
, with n≥ 1, (1.37)

where ωn are the eigenfrequencies, jc is the critical current density of the film, and VgrAl

is the total volume of granular aluminum. In grAl, jc is proportional to 1/ρ [84], meaning
that as the kinetic inductance of grAl is increased by Lk ∝ ρ , also its nonlinearity increases.
This can be counteracted by increasing the volume of grAl. As shown by a large number of
measurements in Ref. [79] (some of which are discussed in Ch. 3), Eq. 1.37 predicts the
nonlinearity of granular aluminum within an order of magnitude and the measured self-Kerr
in grAl ranges from 2×10−2 Hz/photon to 3×104 Hz/photon. Therefore, grAl is a material
ideally suited to realize superinductors with characteristic impedance Z > RQ and total
inductance in the range of 102 nH, while introducing a small nonlinearity into the circuit
only, equivalent to self-Kerr coefficients on the order of Hz/photon [46].
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1.4 Loss mechanisms in granular aluminum

Having established that granular aluminum is a suitable material to fabricate circuit elements
with high kinetic inductance, and an impedance larger than the resistance quantum, the
following section briefly examines the loss mechanisms in grAl.

1.4.1 Resonator measurements to evaluate losses

A straightforward and universal approach to evaluate the losses of a material at microwave
frequencies is to incorporate it into a resonator. Commonly, the losses in any sort of resonant
system are described by their quality factors, i.e. the inverse of the loss tangent Q = 1/ tanδ ,
which is defined as Q = (ωWtot)/Ploss with ω the resonant frequency, Wtot the total average
energy stored, and Ploss the dissipated power [37]. Depending on the resonator geometry,
which determines the distribution of electric and magnetic fields of the standing modes,
and the area or volume that is filled with the material in question, the resonator exhibits a
variable susceptibility to losses caused by the investigated material.

In order to distinguish between losses that arise due to the intentional coupling of the
resonator to an external environment, for example the measurement setup, and losses or
dissipation mechanisms that are intrinsic to the resonator, one uses an external or coupling
quality factor Qc to quantify the former and an internal quality factor Qi for the latter. The
total quality factor combines both and is defined as the inverse sum of the coupling and
internal quality factors Ql = (1/Qc +1/Qi)

−1.

Starting from the Norton equivalent of a circuit that models the reflection measurement of a
parallel RLC resonator, which is connected to a vector network analyzer (VNA) through a
coupling impedance Re + iXe and a transmission line (cf. Fig. 1.12), we define the coupling
coefficient κ as the ratio between the power dissipated outside the resonator, modeled by a
resistor Rex, and inside the resonator, described by the parallel resistor R0. In terms of the
initial circuit parameters shown in Fig. 1.12 this reads,

κ =
R0

Rex
=

R0(Z0 +Re)

(Z0 +Re)2 +X2
e
. (1.38)

In practice, we assume a lossless coupling mechanism, i.e. Re = 0, as well as a coupling
reactance, which is constant over the frequency range of interest in the vicinity of the resonant
frequency. Using a commercial VNA, we measure the complex scattering parameters and
evaluate the ratio of the reflected over the sent AC voltage S11 = Vout/Vin, also called the
reflection coefficient Γ, which in terms of impedances can be expressed as [37],
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Figure 1.12: Electrical schematic of a parallel RLC resonator connected to external circuitry and the corresponding
Thevenin and Norton equivalent circuits. (a) A resonator, modeled as a lumped element, parallel RLC circuit
couples through an impedance (Re + iXe), and a transmission line with characteristic impedance Z0 and length L to
a vector network analyzer (VNA) with an impedance matched to Z0. (b) Thevenin equivalent circuit of (a). Since
the transmission line is terminated in a matched load, the input impedance seen from port 2 is independent of the
length L of the transmission line [37]. The resonator with frequency ω0 = 1/

√
L0C0 is therefore loaded by an

external series impedance of Z0 +Re + iXe. [85, 86].(c) Norton equivalent of the circuit shown in panel (b), where
the Norton impedance parallel to the current source is split into a parallel combination of an external resistor
Rex and external reactance Xex. From this circuit, one can define the coupling quality factor of the resonator as
Qc = ω0RexC0 and the coupling coefficient κ as the ratio between power dissipated in the resonator and power
dissipated outside the resonator κ = R0/Rex.

S11 = Γ =
Zin−Zout

Zin +Zout
(1.39)

From the equivalent circuit (cf. Fig. 1.12) it is now possible to calculate the frequency
dependent reflection coefficient in terms of the resonator’s quality factors [85, 86],

Γ( f ) = Γd
(1−κ)/(1+κ)+ i2Qlδ ( f )

1+ i2Qlδ ( f )
, with (1.40)

δ ( f ) = ( f − f0)/ f0, (1.41)

κ = Qi/Ql−1. (1.42)

Here, Γd accounts for a constant phase shift introduced by the coupling reactance Xe. Plotted
in the real-imaginary plane, the reflection coefficient traces out a circle (cf. Fig. 1.13) which
is the basis for a multitude of fitting algorithms, see for example Refs. [86–88].

In a real measurement two effects associated with the measurement setup and coupling can
be observed. First any coupling reactance will rotate the entire circle away from the real
axis. The same syndrom occurs if the reference plane of the VNA is not correctly set to
take into account the signal delay caused by the length of transmission line. Secondly, any
attenuation or amplification in the cryogenic measurement setup will rescale the diameter of
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the circle in the real-imaginary plane. This results in a shift of the so-called off resonant
point of S11, which is several linewidths detuned in frequency from the resonant frequency,
from its expected value of Soff res

11 = 1+ i0. To account for both effects, measured data is
preprocessed such that the off resonant point lies at the expected value, which amounts to a
rescaling of the amplitude signal, and the data is furthermore rotated such that the resonators
circle is centered on the real axis. These operations largely take out the effect of the setup
wiring from the measured data, which means that one can assume Γd = 1+ i0. For the fitting
procedure we rely on the technique described in Ref. [86], which is crosschecked with an
algorithm presented in Ref. [88]e.

(a) (b)

Figure 1.13: Complex reflection coefficient of a resonator measured in a single-port (reflection) setup. (a)
Depending on the ratio Qi/Qc (see upper panel in (b) for the legend) three distinct regimes are visible: Qi > Qc

the circle has a diameter d > 1, which approaches limQi→∞ d = 2 (blue and orange circles), Qi = Qc (green), the
circle’s diameter is exactly 1, and Qi < Qc (red), where the circle has a diameter smaller than 1. (b) Amplitude
(top) and phase (bottom) signal of the three regimes Qi/Qc. As can be seen, with lower Qi the depth of the
dip in the amplitude signal increases. However, the largest value is reached for a critically coupled resonator
Qi = Qc. Checking the phase signal allows to distinguish whether Qi/Qc > 1, which leads to a 2π phase roll, or
Qi/Qc ≤ 1, which corresponds to a phase roll ≤ π .

Figure 1.13(a) shows the complex reflection coefficient plotted in the real-imaginary plane.
The circle can be clearly seen as well as the connection between its diameter d and the
coupling coefficient κ of the resonator to the external circuitry, κ = d/(2−d) [86]. Together
with Eq. 1.40 three coupling regimes can be identified, see Table 1.5. Depending on whether
most of the energy stored in the resonator is lost through coupling to the outside or by
internal dissipation mechanisms, one operates in the over- or undercoupled regime. If the
loss contributions from coupling and from internal dissipation mechanisms are exactly

e Python implementation avaliable at: https://github.com/sebastianprobst/resonator_tools
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equal, the resonator is critically coupled. Since the diameter of the circle approaches d→ 2
for internal quality factors much larger than the coupling quality factor [cf. blue circle in
Fig. 1.13(a)] and small differences in the calculation of the diameter lead to large changes in
the coupling coefficient κ , a reliable measurement of the internal quality factors should be
performed in a regime where Qi is larger, but on the order of the coupling quality factor.

Table 1.5: The three coupling regimes for resonators connected to external circuits. Each regime comes with a
characteristic reflection coefficient shape (cf. Fig. 1.13) whose hall mark signs are listed in the table below.

coupling regime Qi/Qc κ d amplitude arg(S11)

overcoupled > 1 > 1 > 1 2π

critically coupled 1 1 1 π

undercoupled < 1 < 1 < 1 < π

1.4.2 Dielectric loss

To quantify different loss mechanisms, the concept of participation ratios is used [8, 89–93].
It is based on the assumption that the total dielectric loss measured in a resonator tan(δtot)

is the sum of different loss channels with specific loss tangents tan(δi), scaled by their
corresponding participation ratio pi. Since dielectric loss, which couples to the electric field
of a resonator, is one of the main dissipation mechanisms in superconducting circuits, the
participation ratio technique is mostly used to investigate which of the various interfaces
contributes most to the total dielectric loss. Therefore, the participation ratio expresses the
ratio of energy stored in the electric field in some specific volume Vi to the total energy
stored in the resonator Wtot,

tan(δtot) = ∑
i

pi tan(δi) (1.43)

pi =
1

Wtot

∫
Vi

d~r3
εi|~E|2. (1.44)

In superconducting resonators the main contributions to the total dielectric loss originate in
the following four areas: the metal-substrate interface, the metal-air interface, the substrate-air
interface, and the bulk substrate [90–93]. Figure 1.14 schematically shows the location of
different interfaces where dielectric loss in superconducting microwave resonators originates.
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bulk substrate
metal film

metal - substrate interface
metal - air interface
substrate - air interface

Figure 1.14: Schematic drawing of a microwave resonator fabricated from a thin metal film and the different
interfaces responsible for dielectric loss.

Due to the fact that grAl is a granular material where pure metal grains are embedded
in a matrix of non-stoichiometric AlOx, we investigate dielectric loss as the limiting loss
mechanism in grAl microwave resonators. Therefore, we compare the internal quality
factors of different resonator geometries which cover a wide range of participation ratios.
Since the resonators mainly investigated during the course of this thesis have a geometry
similar to microstrip lines [cf. Fig 1.11(b)], albeit without the backside metalization usually
providing the ground reference, for the investigation we concentrate on the substrate-air
and metal-substrate interface participation ratios for our loss analysis, which are the main
contributions for our geometry [90, 91]. We neglect the influence of the metal-air interface
in the investigated geometries, since this interface has a participation ratio approximately
one order of magnitude smaller than the other two, and a comparable loss tangent associated
with it [92, 93]. This means the limit on Qi imposed by this interface is significantly higher
and therefore not taken into account.

Figure 1.15 shows the internal quality factors Qi at an average number of photons circulating
in the resonator n̄ ≈ 1 (n̄ = 4PinQ2

l /
(
h̄ω2

r Qc
)
, with Pin the incident power on the sample

holder [94]) for different sample geometries covering a surface participation ratio range of
almost two orders of magnitude (for more details on the samples see Ch. 3). According to the
results presented in Ref. [91] the surface loss tangent in superconducting circuits fabricated
by lift-off technique can be well approximated by tan(δ ) = 2.6×10−3 based on a comparison
of published results from different research groups. Furthermore, recent results by Woods et
al. [93] confirm the observed values of interface loss tangents. However, since in this work
(Ref. [93]) resonators were fabricated by an etch process, where the metal-substrate interface
remains pristine and is not covered with photoresist, the loss tangents for the metal-substrate
interface are reported lower, which could be due to the fabrication process and cleaning
steps involved.

As can be seen in Fig. 1.15 for higher surface participation ratios p & 10−3, the internal
quality factors scale according to their participation ratio and are limited by a surface
dielectric loss tangent tan(δ ) = 2.4× 10−3 in good agreement with previously reported
results obtained on pure Al resonators. From these results we conclude that grAl microwave
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resonators are not limited by particularly lossy surface dielectrics. Decreasing the surface
participation ratio further by using a 3D rectangular waveguide as a sample holder and
no backside metalization (cf. Fig. 1.11(b) and Ch. 3) we find an internal quality factor
on the order of Qi = 1.5× 105 comparable with previously reported superinductors from
Josephson junction arrays or other disordered superconductors (cf. Sec. 1.3.1). These results
already hint at sufficiently low microwave losses in granular aluminum thin films to realize
superinductors in superconducting quantum circuits, where grAl should not limit the circuit
coherence significantly below the state of the art.

Figure 1.15: Internal quality factor Qi in the single photon regime as a function of the surface participation ratio
for different resonator geometries. For a surface participation ratio, which we define here as the sum the of
substrate-air and metal-air interface participation ratios, p& 10−3 the measured Qi of resonators fabricated from
grAl scales according to Qi ≈ 1/(p tan(δ )) with a loss tangent in good agreement with previously reported values
in pure aluminum superconducting quantum circuits [91]. Granular aluminum resonators with a participation ratio
∼ 10−4 have an internal quality factor significantly lower than expected from dielectric loss and significantly
lower than control samples in the same sample holder geometry but fabricated from pure aluminum [95]. From
these results we conclude that grAl does not form particularly lossy dielectric interfaces and that it should be
suited to be used in superconducting quantum circuits [46]. Furthermore, grAl resonators in a planar antenna
geometry [cf. Fig. 1.11(b)] are likely limited by excess quasiparticles in the single photon regime at a level of
Qi ∼ 1.5×105 (cf. Sec. 1.4.3).

A control experiment with resonators of similar participation ratio, also measured in the
same 3D waveguide sample holder as grAl resonators with p∼ 10−4, reveals internal quality
factors as expected from the dielectric loss tangent. Therefore, we conclude that the antenna
geometry grAl resonators are not limited by dielectric loss, but by excess quasiparticles as
will be further discussed in Sec. 1.4.3.
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1.4.3 Excess quasiparticles in grAl resonators

Following the discussion presented in Section 1.4.2, we find a strong indication for the fact
that grAl resonators with a low surface participation ratio are not limited by dielectric loss.
A large number of results presented in the literature show that the quasiparticle density in
superconducting quantum circuits is several orders of magnitude higher than expected from
the usual operating temperature ∼ 20mK and the density of quasiparticles normalized to the
total number of Cooper-pairs xQP, the so called excess quasiparticle density is on the order
of 10−6 [16, 39–44]. If one assumes that the loss limiting the internal quality factor of grAl
resonators A2, B2, and C2 (cf. Fig. 1.15) is entirely dominated by excess quasiparticles, we
calculate an excess quasiparticle density xQP = 1/(pQP Qi)≈ 5×10−6, which is in the range
of previously reported values.

Figure 1.16: Measurement of a quasiparticle producing event and its subsequent relaxation. After a sudden drop
of the resonant frequency, indicated by a lower arg(S11), the resonator relaxes back to its equilibrium state over a
period on the order of seconds. This time scale is orders of magnitude longer than previously observed in KIDs
fabricated from different materials.

Through a continuous monitoring of the phase signal of quasiparticle limited grAl resonators,
and subsequent inversion of the resonator’s phase response as a function of frequency,
we observe sudden drops in the resonant frequency followed by a relaxation back to
the equilibrium value over a timescale of seconds (see Fig. 1.16) [46]. The signature of
the observed events is reminiscent of the signal shape produced by the impact of high
energy particles in kinetic inductance detectors (KIDs) [96–98]. Breaking a large number
of Cooper pairs by energy deposition into the resonator increases the kinetic inductance
of the superconducting wire due to the fact that Lkin ∝ 1/nCP. The resulting frequency
shift of the resonator is monitored and constitutes the signal in KIDs, which are used as
sensitive detectors in radio astronomy [99, 100]. Figure 1.16 shows the signature of such a
quasiparticle producing event measured in a resonator fabricated from a 20 nm thick grAl
film with resistivity ρ = 4×103 µΩ cm. The sudden drop of the phase signal, corresponding
to a drop of the resonant frequency, at a time scale much faster than resolvable with VNA
is clearly visible. In addition, the plot shows the unexpectedly long time on the order of
seconds over which the resonant frequency relaxes back to the equilibrium value. This time
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scale is several orders of magnitude longer than what has been observed previously in KIDs
made from pure aluminum [96].

By performing a long measurement over 45 min on two of the grAl resonators shown in
Fig. 1.11(b), we find an average event rate of Γb = 1/20s (see Fig. 1.17. Furthermore,
by performing the same measurement shown in Fig. 1.17 at different readout powers, i.e.
different average numbers of photons circulating in the resonator, we find a faster relaxation
time after the impacts with an increased photon number. As the internal quality factor of the
resonators also increases with higher photon numbers, we developed a phenomenological
model attributing the increase in Qi to a faster quasiparticle recombination and a resulting
smaller excess quasiparticle density (for details see Sec. 3.4).

The results briefly summarized in this section classify granular aluminum as a potential
material for the fabrication of superinductors in superconducting quantum circuits. At the
same time, they indicate that high energy impacts could be a source of the unexpectedly
large excess quasiparticle density observed in several quantum circuits fabricated from
pure aluminum, and show the need for further investigation into the origin of the impacts
and possible strategies to mitigate their effects in order to allow longer coherence times of
superconducting qubits. For a more detailed discussion of the presented summary, we refer
the reader to Ch. 3.
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Figure 1.17: Measurement of the rate of quasiparticle producing events. Measurements at readout powers
corresponding to ∼ 102 average photons circulating in the resonator of the weakest coupled antenna geometry
grAl resonator (Qc = 60× 103, top panel), and strongest coupled resonator (Qc = 4× 103, bottom panel) are
shown. The smaller linewidth of the weaker coupled resonator results in a higher sensitivity to QP producing
events. From a statistical evaluation of the time between events we find an exponential distribution of the time,
indicative of a Poisson process of individual, uncorrelated stochastic events. We extract an average rate of the
bursts Γb = 1/20/s. For a more detailed discussion see Ch. 3.
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1.5 Fluxonium qubit case study

Measurements of microwave resonators fabricated from grAl show encouraging results to use
the material for the fabrication of superinductors in superconducting quantum circuits. As
discussed in Section 1.3, granular aluminum offers a large, tunable kinetic inductance, and
microwave losses comparable to Josephson junction arrays, while maintaining much smaller
nonlinearities similar to other disordered superconductors. As a case study for the performance
of grAl superinductors, we designed, fabricated, and measured a superconducting fluxonium
qubit. The present section briefly summarizes the obtained results. A more thorough
discussion of the design, fabrication, measurements, and results can be found in Ch. 4.

1.5.1 Design

To briefly recall the discussion presented in Section 1.1, the superconducting fluxonium qubit
is a small Josephson junction with an area A∼ 0.1µm2, a Josephson energy EJ/h∼ 10GHz
and a junction plasma frequency ωp/2π ∼ 20GHz shunted by a large, linear inductor with
an inductance L∼ 102 nH, with an impedance Z ≥ RQ, and lowest self-resonant mode of the
inductor sufficiently above the qubit frequency operating range, i.e. & 12GHz.

To read out the qubit state, we use the tools of cQED (cf. Sec. 1.1): by coupling the fluxonium
qubit via a shared inductor to a readout resonator, we can measure the shift of the readout
resonator’s frequency, which depends on the state of the qubit. The top panel in Figure 1.18
shows an optical microscope image of a fluxonium (yellow rectangle) coupled to a readout
resonator. Via its dipole moment, the resonator couples to a 3D waveguide sample holder (cf.
Ch. 4 for more experimental details), which connects to the cryogenic measurement setup
(cf. Appendix C.1). The two large pads at both ends of the antenna allow to measure the room
temperature resistance of the grAl wires, which implement the resonator inductance Lr and the
shared inductance Ls. From the measured resistance we can estimate the kinetic inductance
via the Mattis-Bardeen formula (cf. Sec. 1.3), i.e. the pads allow a quick pre-characterization
of the fabricated device.

As can be seen in the false colored scanning electron microscope (SEM) image in the
center panel of Fig. 1.18, all inductive elements besides the small Josephson junction are
implemented with granular aluminum wires (false colored in red). The Josephson junction,
which provides the nonlinearity to the circuit is a Al/AlOx/Al Josephson junction fabricated
in a hybrid Niemeyer-Dolan/bridge-free technique (see. Sec. 4.1.3 and Appendix A) [59–61].
All inductors of the circuit, which are the readout resonator inductor Lr, the shared inductor
between resonator and fluxonium Ls, which provides the coupling, and the superinductor Lq

can be independently tuned by adjusting the length of the corresponding wires. Comparing
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the fabricated design shown in Fig. 1.18 with a fluxonium qubit with a Josephson junction
superinductor, for example shown in Ref. [101], or a NbN nanowire superinductor presented in
Ref. [26], illustrates the reduced design complexity enabled by the use of granular aluminum.

25 μmAl grAl Al + grAl

Lq

Ls

Cr

Lr / 2 Lr / 2

CJLJ

100 μm

Lr / 2Lr / 2

LJ ,CJ

Lq / 4 Ls

Lq / 4Lq / 4

Lq / 4

Φ0

(b)

(a)

(c)

Figure 1.18: Superconducting fluxonium qubit with a grAl superinductor. (a) Optical microscope image of the
readout resonator realized as an antenna coupled to a fluxonium qubit. The resonator couples via its dipole
moment to the T E10 mode of a rectangular waveguide, which serves as the sample holder and connection to the
cryogenic measurement setup following Ref. [102]. (b) False colored optical microscope image showing the
resonator-qubit coupling region and the fluxonium loop [cf. yellow rectangle in panel (a)]. All inductive elements
of the circuit, the resonator inductor Lr, the shared inductor Ls mediating the coupling between resonator and
fluxonium, and the superinductor Lq are realized as grAl wires. The independent control of their lengths enables
the adjustment of the corresponding inductances. (c) Electrical schematic of the fluxonium inductively coupled to
a readout resonator. The circuit elements are colored according to the material they are fabricated from [see
legend in panel (b)].
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1.5.2 Spectroscopy

Using the dispersive readout technique of cQED [49, 50], we perform standard two-tone qubit
spectroscopy. By monitoring the amplitude and phase response of the readout resonator with
a commercial vector network analyzer (VNA), while sweeping a continuous wave microwave
tone in frequency, we measure the fluxonium spectrum as a function of the externally applied
flux Φext, see Fig. 1.19. Through a coil placed around the waveguide sample holder, we
apply the magnetic field controlling the external flux (cf. Appendix C.1).

Figure 1.19 shows the measured fundamental |g〉− |e〉 transition (blue points) together with
a numerical fit of the fluxonium Hamiltonian to the measured data (solid line). The plot
illustrates the large frequency tuning range of the qubit transition frequency and the excellent
agreement between the measured data and the theoretical model. Based on the agreement
between fit and data we conclude that the grAl wires shunting the small Al/AlOx/Al Josephson
junction behave as a superinductor in the previously defined sense: it does not introduce
additional nonlinearity or spurious resonant modes below 12.5 GHz into the circuit.

Lq + Ls

Figure 1.19: Granular aluminum fluxonium spectrum. Employing a standard two-tone microwave measurement
we extract the fundamental grAl fluxonium transition (blue points). Numerically fitting the fluxonium Hamiltonian
to the measured data (black line) yields the circuit parameters, which are given in the plot. By changing the
external magnetic flux, we can tune the fluxonium qubit frequency from 595 MHz to 12.5 GHz. From the good
agreement between the numerical fit and the measured data we conclude that the grAl wire behaves as a linear,
lumped-element superinductor.

From the numerical fit, we extract a superinductor with Lq+Ls = 225.6nH, which corresponds
to an inductive energy EL/h = (h̄/2e)2/(Lq +Ls) = 0.73GHz. From the fitted value for
the total capacitance of the circuit Ct = 5.2 fF, we attribute 3 fF to the Josephson junction
based on a typical Al/AlOx/Al Josephson junction capacitance of 50 fF/µm2 and a junction
area of A ≈ 0.06µm2 measured using a scanning electron microscope image. Following
this argument, the superinductor loop has a capacitance of Cq = 2.2nH, which leads to a
characteristic impedance of Z =

√
(Lq +Ls)/Cq ≈ 10kΩ, well above the resistance quantum
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RQ = 6.5kΩ. The small Josephson junction, providing the circuits nonlinearity adds an
inductance LJ = 13.2nH, corresponding to a Josephson energy EJ/h = 12.38GHz. With a
ratio of EJ/EC = 3.3, with EC = e2/2Ct, our fluxonium is in the range of typical fluxonium
parameters [15–18]. At the half integer sweet spot Φext/Φ0 = n+0.5, the qubit frequency
goes as low as f q

0.5 = 0.594GHz, which can be tuned up to f q
0 = 12.538GHz at the integer

flux sweet spot Φext/Φ0 = n, with n ∈ Z by the externally applied magnetic flux.

1.5.3 Coherence

Time resolved, and pulsed spectroscopy provide the final benchmarking of granular
aluminum superinductors for quantum circuits. By performing free decay energy relaxation
measurements to obtain T1, and Ramsey fringes measurements which yield T2 [103], we are
able to assess the fluxonium coherence and can estimate its limiting mechanisms. These
results should provide an answer to the question about the suitability of granular aluminum
for its application as a material for superinductors in high coherence quantum circuits.
Although Sections 1.3 and 1.4 already provide indications about the performance of the
material, the fluxonium case study presented here should give an answer for the suitability
of grAl when implemented in actual superconducting quantum circuit devices.

The fluxonium spectrum possesses two families of operating points with favorable properties
for qubit coherence, the so-called sweet spots (cf. Fig. 1.19). One of them, which is when
the externally applied magnetic field is such that the flux threading the fluxonium loop
Φext/Φ0 = n+0.5, with n ∈ Z is the standard operation point for the fluxonium qubit, and
referred to as a half flux sweet spot. Regarding the energy relaxation time T1, the dissipation
due to quasiparticles tunneling through the Josephson junction barrier vanishes if the phase
drop across the Josephson junction is exactly π [19]. Since this dissipation mechanism
is suppressed, T1 can exhibit a local maximum, if the limiting loss mechanism is indeed
quasiparticle tunneling through the junction.

The second reason for the half-flux operation point of the fluxonium qubit is the fact that the
derivative of the transition frequency with respect to the external magentic flux vanishes.
Therefore, the qubit frequency is to first order insensitive to small fluctuations of the external
magnetic field. Similar to the flux qubit or tunable transmon qubits, this leads to a sweet spot
for the phase coherence of the fluxonium T2, which ultimately is the limiting timescale for
any qubit in the context of quantum information processing.

The second sweet spot for the operation of the fluxonium qubit ist the so-called zero flux
sweet spot. Here, the qubit is susceptible to dissipation by quasparticle tunneling over its
small junction, but the spectrum exhibits a first order flux noise insensitive point, which is
favorable for T2.
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Figure 1.20: Energy relaxation time T1 at both fluxonium sweet spots. (a) At the Φext/Φ0 = 0.5 sweet spot,
where dissipation due to quasiparticle tunneling across the Josephson junction is suppressed (cf. Sec. 1.2.3), we
measure a single exponential decay (blue points). From the exponential fit (black line) we extract an energy
relaxation time T1 = 23µs. (b) At the Φext/Φ0 = 0.0 sweet spot, we observe a double exponential decay, which is
indicative of dissipation caused by quasiparticle tunneling [16, 43, 104]. From the fit of a sum of two exponentials
to the measured data (blue points) we extract a decay due to quasiparticle dissipation Tq = 3µs, a residual
relaxation rate Tr = 12µs, and a ratio of p = 0.35 between decays limited by Tq and Tr .

Figure 1.20 shows the measured energy relaxation time T1 of the fluxonium qubit at both sweet
spots. Panel (a) is the measurement at Φext/Φ0 = 0.5, where the fluxonium is not susceptible
to dissipation by quasiparticles tunneling across the Josephson junction. Here, we measure
an average T1 time of 23 µs comparable to the current state of the art in superconducting
qubits. Besides quasiparticle tunneling across the small Junction, which is suppressed at the
half-flux sweet spot, excess quasiparticles in the superinductor or dielectric loss could very
well be the main loss mechanisms. Assuming the limiting loss mechanism for the measured
T1 of 23 µs is inductive loss in the superinductor, following the methodology of Refs. [16,
34, 35] (cf. Tab. 1.2 in Sec. 1.2.3), we estimate an excess quasiparticle density normalized to
the number of Cooper-pairs,

xSupInd
QP = 4.5×10−7. (1.45)

The extracted value of xQP = 4.5× 10−7 is about one orders of magnitude larger than
previously observed in a fluxonium qubit with a Josephson junction array superinductor [16],
which could be due to the long quasiparticle relaxation time observed in granular aluminum
(cf. Sec. 1.4.3).

41



1 Introduction

Since capacitive loss ∝ ω2
01 (cf. Sec. 1.2.3), a T1 at Φext/Φ0 = 0.5 limited by lossy dielectrics

in the fluxonium capacitances, where the fluxonium qubit frequency reaches its minimum
would imply a T1 at Φext/Φ0 = 0.0 about a factor of ten smaller than observed in our
experiments. For a more detailed discussion see Sec. 4.3.1.

At the zero flux sweet spot, we observe a double-exponential decay as shown in Fig. 1.20(b),
which is indicative of relaxation dominated by the dissipative tunneling of excess quasiparticles
across the small Josephson junction of the fluxonium qubit [16, 43, 104]. Therefore, we
assume that the limiting loss mechanism for Tq is indeed the excess quasiparticle density
close to the Josephson junction, which can be estimated as described in Sec. 1.2.3,

xJJ
QP = 1.5×10−5. (1.46)

This value is calculated using a superconducting energy gap of thin film aluminum
∆0 = 210µeV, and Josephson energy EJ/h = 12.38GHz, which we obtained from the
numerical fit to the fluxonium spectrum (see. Sec. 1.5.2). The extracted excess quasiparticle
density xJJ

QP, is about an order of magnitude larger than previously reported in superconducting
circuits fabricated from pure aluminum thin films [16, 39–44]. A possible explanation for
this fact could be the larger superconducting gap of the grAl forming the superinductor
∆0 = 300µeV compared to thin film aluminum ∆0 = 210µeV. Therefore, quasiparticles
could potentially be trapped in the lower gap region of the Josephson junction vicinity and
increase the effective excess quasiparticle density.

Figure 1.21(a) shows a Ramsey fringes measurement [103] at the Φext/Φ0 = −0.5 sweet
spot (black points). From a fit of an exponentially decaying cosine to the measured data
we extract a fluxonium qubit coherence time T2 = 28µs, which is comparable to coherence
times of Josephson junction array superinductor fluxoniums [16, 17, 105]. By inserting
a π-pulse in the middle of the Ramsey sequence, a so-called spin-echo measurement, we
partly filter out low frequency noise and observe an increase in coherence up to T E

2 = 46µs,
close to the maximum theoretically possible value T max

2 = 2T1. Panel (b) of Fig. 1.21
shows the dependence of T2 as a function of the externally applied flux. As can be seen,
for values slightly away from the first-order flux noise insensitive point of the fluxonium
spectrum the coherence time T2 rapidly decreases as the qubit frequency becomes more and
more susceptible to the externally applied flux. In between the mentioned half flux sweet
spots and the integer flux sweet spots the frequency of the fluxonium qubit far reaches its
maximum sensitivity to the externally applied flux ∂ f01/∂ Φext ∼ 24GHz/Φ0 (cf. Fig. 1.19).
Consequently, T2 is reduced to values on the order of tens of nanoseconds. For a more detailed
discussion of the coherence properties of the granular aluminum fluxonium see Ch. 4.
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Figure 1.21: Coherence of the fluxonium qubit at the Φext/Φ0 =−0.5 sweet spot. (a) By fitting an exponentially
damped cosine (black line) to the measurement data of a Ramsey fringes measurement, we extract a coherence
time T2 = 28µs. (b) T2 as a function of the external applied magnetic flux. Due to the significantly increasing
susceptibility to flux noise in the fluxonium, only 5µΦ0 away from the sweet spot, T2 is decreased by a factor ∼ 6.
In the same flux interval the fluxonium frequency merely changes by ∆ f01 = f01(Φext)− f01(0.5Φ0)≈ 250kHz.

Based on the results presented in this introductory section, we conclude that granular
aluminum is a suitable option to implement superinductors in superconducting quantum
circuits. The in-situ integrability with standard Al/AlOx/Al Josephson junction fabrication
and relatively straightforward deposition technique, should enable the design and realization
of increasingly complex quantum circuits. A main task to allow further advancement in
circuits using granular aluminum is the understanding and mitigation of the dominating loss
and decoherence mechanisms, which we will discuss further in Chapter 4.
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In the following chapter we will attempt to give a short overview of the research carried out
towards understanding the dome-shaped behavior of the critical temperature Tc of grAl as a
function of its normal state resistivity. In the nearly 60 years since the initial discovery of
the enhanced Tc in grAl, its normal state transport properties have also been the subject of
research, which we will not go into here. For a broader and more detailed discussion of the
multi-faceted research involving granular aluminum, we refer the reader to Ref. [106], and
recent publications [107–111].

2.1 Overview of experimental results

In the following section we discuss experimental results regarding the superconducting
properties of granular aluminum, which is still an active area of research. Fig. 2.1 shows
recent results of experiments investigating the critical temperature Tc and superconducting
gap ∆0 of granular aluminum as a function of its normal state resistivity [82]. In their
experiments, the authors harnessed the response of microwave kinetic inductance detectors
to extract the relevant energy scales governing superconductivity. Figure 2.1 serves as a
reference point for the following discussion, to connect resistivity, superconducting gap and
critical temperature.

More than 60 years before the results in Fig. 2.1 were obtained, Buckel and Hilsch [113] first
measured an enhanced critical temperature compared to the bulk critical temperature of 1.2 K
in aluminum thin films. Following the evaporation of pure Al on a quartz substrate at 4 K, they
observed a Tc = 2.59K in a 20 nm thick Al film. To measure the superconducting transition
temperature the authors perform a four probe measurement to monitor the resistivity of
10 mm×1 mm disordered aluminum strips as a function of temperature. Interestingly, after
thermal cycling their sample to room temperature the enhanced Tc vanished. In their study
Buckel and Hilsch attribute this to recrystallization of the aluminum film resulting in the
removal of lattice defects.

About ten years after the results by Buckel and Hilsch the interest in granular superconductors
and their enhanced Tc increased. In experiments by Abeles et al. in 1966 [114] the authors
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observed an increased Tc together with a decreased grain size in aluminum films deposited
in a slight oxygen atmosphere. They measured a maximum Tc = 2.3K in films deposited
on a substrate at room temperature by employing DC resistance measurements. Using a
substrate at 100 K they reduced the aluminum grain size even further and measured critical
temperatures up to ∼ 3K.

(a)

(b)

Figure 2.1: Superconducting gap ∆0, critical temperature Tc and ratio ∆0/kBTc as a function of the normal state
resistivity ρ for granular aluminum films deposited on a substrate at room temperature (see Ref. [82]). (a)
Superconducting gap ∆0 (green, left axis) and critical temperature (orange, right axis) as a function of ρ . With
larger resistivity both ∆0 and Tc increase. At ρ ≈ 2×102 µΩ cm the critical temperature reaches a maximum
and subsequently decreases again, while the highest values for ∆0 are observed at ρ ≈ 2×103 µΩ cm. (b) Ratio
between superconducting gap and critical temperature. For lower resistivities, where both ∆0 and Tc increase as a
function of ρ we observe ratios of ∆0/kBTc close to the BCS ratio of 1.764 [112]. At higher resistivities where
the critical temperature decreases, while the gap is still enhanced, we observe ratios significantly larger than the
standard BCS ratio.

In 1968, summarizing their previous results, Cohen and Abeles [115] presented experimental
data on the critical temperature, critical magnetic field, critical current, and energy gap
of granular aluminum films. Due to the addition of oxygen, aluminum films presumably
did not recrystallize, which stabilized the enhanced Tc in contrast to the earlier results by
Buckel and Hilsch [113]. Furthermore, Cohen and Abeles suggested that the oxygen likely
precipitates in the form of oxide at the grain boundaries. It was also then that they coined the
term granular superconductor for a material system of superconducting grains separated by
tunneling barriers, which was previously introduced by Parmenter [116]. A surprising result
was the sharp superconducting gap of granular aluminum measured via the conductance of
Al/AlOx/Pb and Al/AlOx/Sn tunnel junctions. Based on the assumption of an inhomogeneous
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granular structure of grAl Cohen and Abeles expected to find a distribution of ∆0, which was
not the case.

Deutscher et al. [83] provided further insight into the microstructure of granular aluminum
films and how grain size, normal state resistivity, and superconducting transition temperature
are related. By employing electron diffraction, they showed in 1973 that in all their investigated
samples, which covered resistivities from ρ = 3µΩ cm to 1×106 µΩ cm, the lattice spacing
was equal to that of bulk aluminum. This means that even in highly resistive grAl films the
grains consist of pure, crystalline aluminum.

A new experimental approach of using dark-field electron microscopy and measuring the
grain sizes of about 103 grains in every sample allowed the authors of Ref. [83] to obtain
grain size histograms. Based on these results they distinguished two classes of samples,
which separate at a resistivity ρ = 102 µΩ cm. For samples below this resistivity, increased
oxygen pressure during film deposition leads to decreasing grain size d. For films deposited
on substrates at room temperature d eventually saturates at∼ 3nm. Furthermore, with higher
resistivity the grain size distribution narrows and the tail of large grain sizes observed in low
resistivity films decreases. In this first resistivity regime the critical temperature measured
by DC transport experiments increases approximately proportional to d−1 indicating a size
effect as the underlying mechanism for the enhancement of Tc in granular aluminum.

In samples with resistivities ρ > 102 µΩ cm the grain size essentially remains constant
at d ∼ (3±1)nm, but insulating barriers between grains build up. In granular aluminum
films with resistivities larger than 5×102 µΩ cm, Tc decreases and the authors of Ref. [83]
observed increasing widths of the transition to the superconducting phase. For grAl films
with ρ ≥ 107 µΩ cm only incomplete transitions to the superconducting state were observed.

Many recent investigations of granular aluminum employ THz spectroscopy in addition
to DC transport measurements [84, 111, 117, 118]. These measurements are typically
performed in a frequency range of about 100 GHz to 700 GHz and allow to extract the
complex transmission coefficient of granular aluminum films. Fitting the Mattis-Bardeen
theory [119] to the measured complex conductivity yields values for the superconducting gap
∆0 and the superfluid stiffness J [84, 120]. However, similar to DC transport measurements,
THz spectroscopy only gives access to the properties of the bulk samples, and does not
permit to investigate the superconducting properties of individual grains.

Spectroscopic measurements on kinetic inductance detectors (KIDs) in a frequency range
up to 300 GHz with a resolution of 1 GHz [82] also give access to the superconducting
properties of grAl averaged over a KID, but the increased resolution in comparison to
previous experimental results allows to resolve features below the superconducting gap.
The signal measured in Ref. [82] by monitoring the phase and amplitude response of the
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fundamental mode of their KIDs is the combined effect of Cooper-pair breaking in the
grAl film, and the excitation of higher modes in the microwave resonators that are used as
KIDs. The breaking of Cooper-pairs decreases the internal quality factor of superconducting
microwave resonators (cf. Sec. 1.4) and lowers their resonant frequency via an increase in
the kinetic inductance proportional to the number of Cooper-pairs. Additionally, due to the
nonlinearity of the kinetic inductance in grAl (cf. Sec. 1.3.2) the excitation of higher modes
in KID resonators results in a frequency shift of the monitored lowest mode via the cross-Kerr
interaction. A combination of the previously described THz transmission spectroscopy on
grAl films and spectroscopy in KIDs fabricated from grAl might allow to further investigate
the nature of the observed sub gap modes in granular aluminum [82, 84, 117, 118].

To summarize the presented experimental results, the following is known about the
superconducting properties of granular aluminum:

• Up to a normal state resistivity ∼ 5×102 µΩ cm the size of the pure aluminum grains
d in the non-stoichiometric AlOx matrix decreases as a function of the resistivity ρ

[83]. It saturates at d = (3±1)nm for a deposition on substrates at room temperature,
while it goes down to d . 2nm for a deposition on substrates at T ≤ 100K [121]. In
films with ρ & 5×102 µΩ cm d of the pure aluminum grains does not change, but they
progressively decouple because of a build up of the insulating barriers between them.

• The superconducting energy gap ∆0 as measured by THz spectroscopy increases
up to a resistivity of ρ ∼ 103 µΩ cm, plateaus and decreases again for resistivities
ρ & 3×103 µΩ cm [82, 84], see Fig. 2.1(a).

• Granular aluminum films deposited on a substrate at T ≤ 100K show a dome shaped
Tc as a function of the resistivity. At ρ ∼ 3×102 µΩ cm Tc reaches its maximum of
∼ 3.15K and subsequently decreases [84, 107, 108, 111, 122].

• Granular aluminum films deposited on a substrate at room temperature also show a
dome shaped Tc with resistivity. However, the maximum Tc is ∼ 2.17K for a normal
state resistivity ρ ∼ 2×102 µΩ cm [82, 83].

• The superfluid stiffness J decreases approximately proportional to 1/ρ in granular
aluminum films regardless of the substrate temperature during film deposition [82, 84].

• The ratio ∆0/(kBTc) increases from the standard BCS value 1.764 for granular
aluminum films with resistivities ρ . 103 µΩ cm to a ratio of 2.1 to 2.2 for films with
higher resistivities [82, 84, 111], see Fig. 2.1(b).

• Granular aluminum films deposited on room temperature substrates undergo a
superconductor to insulator transition at resistivities ρ > 104 µΩ cm [82], whereas for
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grAl films deposited on a cold substrate the transition occurs at higher resistivities
ρ ∼ 105 µΩ cm [84, 111, 122].

2.2 Possible origins of enhanced critical temperature

In the following section we give an overview over theoretical proposals to explain the
enhanced critical temperature in granular aluminum. We will refrain from detailed discussions
of the underlying theoretical calculations and refer the expert reader to the correspondingly
cited literature for deeper theoretical insight.

As already pointed out in the previous section the size of the pure aluminum grains in
granular aluminum films decreases up to a resistivity ρ ∼ 5×102 µΩ cm. This change in
the microstructure is accompanied by an increase of the superconducting gap and critical
temperature measured across the macroscopic sized samples, see Fig. 2.1. Therefore, we
first focus our attention on finite size effects to explain the enhanced Tc.

For the following discussion it is useful to recall the BCS theory prediction for the critical
temperature of a superconducting material [112]

kBTc = 1.13 h̄ωD e−1/(N(0)V ). (2.1)

Here, ωD is the Debye frequency, N(0) the density of states (DOS) at the Fermi energy, and
V the electron-electron interaction matrix element. Following earlier results by Thomson
and Blatt [123], Parmenter [124] theoretically calculated that quantization effects due to the
small diameter of isolated grains could lead to an increased electron-electron interaction V
and consequently enhance the critical temperature. The characteristic length scale for this
effect is L = (λ 2

F ξ0)
1/3, with λF the Fermi wavelength and ξ0 the Pippard coherence length.

For a grain size equal to L = 6.2nm, a Tc twice as high as the bulk value should occur in
aluminum, which is in reasonable agreement with the experimental results.

Furthermore, the calculations by Parmenter also show that 2∆0/(kBTc) increases from the
BCS value of 3.5 [112] to 4 for a grain size d� L. However, for coupled grains the discrete
energy levels of individual grains should broaden to bands due to interaction between grains,
rendering the model potentially inapplicable for low resistivity granular aluminum films as
mentioned in Ref. [115]. This contradiction was resolved by Parmenter by suggesting an
effective grain volume d3

eff = d3/(1−0.5t), with t the barrier transmissivity. As long as both
d and deff are smaller than L, enhanced superconductivity for low resistivity films due to a
size-effect could persist [124].
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A second possible explanation for enhanced Tc in granular aluminum films builds on a
potential surface enhancement of superconductivity. Following a suggestion by Ginzburg
[125], near the surface of a superconductor-dielectric interface the electron-phonon interaction
might be increased by surface phonons or a variation of the Coulomb screening. Taking on this
idea and inspired by calculations of De Gennes about boundary effects in superconductors,
[126] grain boundaries were regarded as internal boundaries [83, 114, 127]. Therefore, the
effective electron-phonon interaction computes to an average between the bulk value and the
increased value at the interface, weighted according to their respective volume. For a width
of the interface region ds smaller than half the grain size, one finds a Tc increasing ∝ 1/d.
However, in measurements of the superconducting gap one should observe a gap associated
with the enhanced pairing in the interface region and one associated with the bulk volume,
which is contrary to the experimentally observed sharp superconducting gap.

Finally, a number of recent theoretical works predict an increase of Tc due to the so-called
shell effect, which leads to an increase of the electronic density of states N(0) in small
nanoclusters [128–131] [cf. Eq. (2.1)]. Similar to the states in atoms delocalized electrons in
metallic clusters form a set of states which are not equidistantly spaced [129]. If the highest
occupied shell in such a cluster is degenerate, this corresponds to a peak in the electronic
DOS and results in an enhanced Tc.

Which of the mentioned physical processes governs the increase of the critical temperature
in the nanometer sized aluminum grains of granular aluminum seems to be still under debate.
However, experimental results from THz spectroscopy suggest that the enhancement of
Tc in granular aluminum films is an effect of enhanced superconductivity in individual
aluminum grains [84] due to the fact that Tc and ∆0 both increase in low resistivity granular
aluminum films.

In a theoretical model, which resembles the microstructure of granular aluminum films,
Mayoh and García-García [132] theoretically calculated a dome-like behavior of the critical
temperature as a function of the inter-grain coupling, i.e. the normal state resistivity. In
their model, inspired by the experimental results of Deutscher et al. [83], they assume an
array of clean, superconducting nanograins in an insulating matrix. The grains couple via
the Josephson effect, and the grain sizes obey a Gaussian distribution with a mean ∼ 5nm,
and variance ∼ 1nm. As the grAl film resistivity increases, individual grains progressively
decouple, which reduces the smoothing of the increased electronic density of states due to
finite size effects. The size effect leads to different Tc and ∆0 in different grains because
of their size distribution. Enhancement of the critical temperature of the array now occurs
when a superconducting cluster of grains with individual critical temperatures larger than
the bulk material Tc forms [132]. In this sense the proposed mechanism is similar to the
percolation mechanism proposed by Abeles [133]. He suggested grains in strong electrical
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contact as carriers of the supercurrent, since transport via tunneling of Cooper-pairs should
be suppressed due to the Coulomb blockade. As long as the typical distance between such
strongly coupled links is smaller than the coherence length superconducting transport across
the sample should persist.

For further insight into the exact mechanism of the enhancement of Tc local measurements
of the superconducting properties of individual grains, and the extraction of the distribution
of superconducting gap and critical temperature across the different grains of a granular
aluminum film could complement the presently available experimental data. This additional
information could potentially help to refine the theoretical model and more understanding of
the enhanced critical temperature in granular superconductors might be gained.

2.3 Suppression of Tc in high resistivity granular aluminum

After discussing possible mechanisms for the increase of the critical temperature in granular
aluminum we will now turn our attention to the right side of the superconducting dome.
In the following section we give an overview about theoretical proposals explaining the
decrease of Tc as the normal state resistivity of granular aluminum films increases above
∼ 3×102 µΩ cm.

According to a number of theoretical works superconductivity in granular aluminum is
suppressed by either a quenching of superconductivity in individual grains or the suppression
of Josephson coupling between grains, which themselves still show superconductivity
[82, 84, 132, 134–136].

Following Refs. [134–136] the discussion is based on a network of grains of size d with
Josephson type coupling between grains. The free energy in the superconducting state Fs of
such a system is given by [135]

Fs = Fn−
1
2

N(0)∆2
0d3− h̄π∆0

4e2R
, (2.2)

with Fn the free energy in the normal state, N(0) the density of electronic states at the Fermi
energy, ∆0 the value of the gap at zero temperature, R = ρ/d the resistance of the Josephson
junction [134], and ρ the normal state resistivity. Large fluctuations of the superconducting
order parameter are expected for Fn−Fs ≈ kBTc [135]. Using Eq. (2.2) the condition for
large fluctuations in a grain coupled via the Josephson mechanism to other grains is

1
2

N(0)∆0 d3 +
h̄πd
4e2ρ

∼ 1. (2.3)
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Based on this Eq. two regimes should be distinguished. If the first term in Eq. (2.3)� 1, each
grain will remain superconducting regardless of the inter-grain coupling [135]. However, in
the opposite regime (1/2)N(0)∆0 d3� 1 the Josephson coupling between grains becomes
the relevant energy scale. If the coupling is strong, with the second term in Eq. (2.3)
� 1, the granular superconductor retains bulk superconductivity. For weak coupling, i.e.
(h̄πd)/(4e2ρ). 1, the fluctuations of the superconducting order parameter will suppress
superconductivity, and consequently Tc in higher resistivity granular aluminum films.

Recent experimental results suggest that superconductivity in individual grains persists but
fluctuations of the phase of the superconducting order parameter become dominant [82, 84].
The measure for this collective phase-coherent state is the so-called superfluid stiffness J,
which is usually much larger than the superconducting gap ∆0. However, in superconducting
granular aluminum it has been shown that J is approximately proportional to 1/ρ [82,
84]. Therefore, in high resistivity samples J becomes the dominant energy scale and the
critical temperature is suppressed due to the loss of phase coherence at temperatures ∼ J
[120]. This experimental observation is also in accordance with theoretical results by Mayoh
and García-García [132], who theoretically obtain a dome shaped critical temperature as a
function of the Josephson barrier resistance. In analogy to Josephson junction physics one
could also think about the decrease of the critical temperature in terms of the RCSJ model
[67]. As the individual grains decouple more and more the Josephson energy decreases.
This results in a shallower trapping potential of the virtual phase particle. Consequently,
macroscopic quantum tunneling and thermal activation lead to a transition to the resistive
state at progressively lower temperatures.

In conclusion, experimental and theoretical investigations indicate that the dome shaped
critical temperature is governed by the competition between increased critical temperature in
individual grains due to finite size effects, and stronger phase fluctuations of the supercon-
ducting order parameter between grains, which eventually decrease the critical temperature
of macroscopic granular aluminum samples. Similar to the question of enhanced Tc, future
experiments allowing to resolve the superconducting gap in individual aluminum grains as
a function of the resistivity of the granular aluminum film would complement presently
available data. Combining these experimental findings might further the understanding of
the superconductor to insulator transition in grAl films.
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As already briefly stated in the introduction, we start by investigating the microwave
frequency properties of grAl in a straightforward scheme, namely a simple λ/2 resonator.
Employing this very common technique of embedding a material under investigation into a
resonant circuit allows to quantify the properties from a relatively easy microwave reflection
measurement.

In this chapter we describe the design and measurement results of microwave frequency
resonators fabricated using grAl thin films. Section 3.1 describes the 3D sample holder
geometry, the finite elements methods (FEM) simulation techniques, which were employed
to design the resonant frequencies and coupling quality factors of the investigated resonators,
and the different resonator geometries used. In Section 3.2 we present the measurement
results, followed by a section discussing possible loss mechanisms limiting the internal quality
factor of the resonators. Finally, Section 3.4 discusses the dynamics of quasiparticles in grAl.

3.1 Design

The simulation tools utilized for the design of microwave resonators fabricated from grAl
should naturally be adapted to the electro-magnetic (em) environment surrounding the
sample. Since in this thesis we use a 3D geometry sample holder [102], which provides
a comparably clean em environment, we start this section with a brief description of the
sample holder geometry. Following this discussion we present the approach used to simulate
materials with non-negligible kinetic inductance and finally discuss the realized designs.

3.1.1 Sample holder

The tremendous increase in coherence times of superconducting circuits over the last years
has been - in large part - attributed to the optimization of fabrication techniques and optimized
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geometries [2]. Improved cleaning and surface treatment processes have led to dielectric
loss tangents of interfaces (cf. Sec. 1.4.2), which today are in the range of tan(δ )∼ 10−3

[91–93]. To mitigate the effect of these dissipative circuit regions, a possible strategy is the
increase of the resonant mode volume. This is accompanied by a reduction of the electric
field strength, which in turn leads to a decreased participation ratio of the interface regions
and hence increases the internal quality factors of such circuits. Popular examples of this
technique are the 3D transmon [32, 137] or 3D cavity resonators for quantum information
with internal quality factors approaching 108 [138], while resonant cavities with similar
geometries to ones used for applications in accelerators even achieve internal quality factors
Qi ∼ 1010 [139].

readout drive

Copper
Teflon
Brass
Substrate

(a)

(b)

(c)

(d)

Figure 3.1: Image and schematic drawing of a 3D rectangular waveguide sample holder. (a) Photograph of a
waveguide sample holder with the capping lid removed. At the far end inside the waveguide the pin with barrel
is visible, which provides impedance matching between the waveguide and 50 Ω coaxial lines. The two brass
screws used for tuning the matching are visible on the bottom of the waveguide. A second input port is visible on
the top of the waveguide towards the front. Here, a second coax cable can be inserted without a matching barrel
to drive circuits at frequencies below the waveguide cutoff. (b, c) Schematic front (b) and side (c) views of the
sample holder with indication of the electric field distribution (green dashed line). Red arrows indicate possible
directions to adjust the dipole coupling to the waveguide’s TE10 mode (see main text). (d) FEM simulation results
schematically illustrating the electric field amplitude distribution of the TE10 mode (red, orange: large electric
field, blue, green: small electric field).

In the spirit of the previous paragraph, we follow the approach of A. Kou et al. [102] who
use a 3D rectangular wave guide, which is matched to the 50 Ω coax lines of the cryogenic
measurement setup. Therefore, it acts as an extension of the transmission line with a shorted
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end. Figure 3.1 shows a picture of a copper wave guide sample holder, a schematic drawing
of the geometry, and an illustration of the magnitude of the electric field. The wave guide
has a fundamental cutoff frequency ∼ 6GHz, while the second waveguide mode propagates
frequencies & 8GHz. This leaves a well behaved, single-mode frequency band between
6 GHz to 8 GHz, in line with commercially available microwave components. By optimizing,
via FEM simulations, the position and dimensions of the coupling ports and impedance
matching screws we achieve a return loss . −10dB in the band.

After mounting the sample, the waveguide is closed with a copper lid, which is sealed with an
indium wire (∼ 0.1mm in diameter). This lid shorts the waveguide at∼ λ/4 of 7GHz≈ 1cm
away from the sample position, which results in an electric field anti-node, and allows strong
coupling of an electric dipole to the waveguide’s propagating field. For measurements where
a weak coupling to the transmission line is of interest, the waveguide in principle offers
three geometric and one frequency based method to achieve almost arbitrarily high coupling
quality factors (see Fig. 3.1) Moving the sample with respect to the shorted end of the
waveguide, or moving the sample laterally, results in a smaller electric field interacting with
the sample’s dipole moment, which results in a smaller coupling. Furthermore, rotating the
electric dipole with respect to the electric field will decrease the interaction and will result
in a complete decoupling for a perpendicular orientation between dipole and electric field.
Lastly, designing the samples characteristic frequency below the waveguide cutoff frequency
is another approach to achieve coupling quality factors in the range of 106 (cf. Ref. [95]), due
to the evanescent propagation of microwaves with frequencies below the waveguide cutoff.

3.1.2 FEM simulation of designs employing kinetic inductance

Owing to our use of a rectangular waveguide as the sample holder we perform full 3D FEM
simulations in order to design resonators from grAl at a desired resonant frequency and
specific coupling quality factor. To achieve this, we use a full 3D model of the waveguide in
ANSYS HFSSTM, which also includes the impedance matching section, see Fig. 3.2. In the
following we will briefly outline the simulation approach used to simulate structures with
considerable kinetic inductance.

For a simulation of the sample, we either import a GDSII layout file and move the structures
onto the plane of the virtual substrate or model the parametrized geometry directly in HFSS.
We represent any metal thin film as zero-thickness sheets, since for our simulation purposes
the thickness does not play a role, and would only significantly increase the computational
cost of the simulations due to the differences in dimensions between the film thickness
(20 nm) and the waveguide (∼ 10mm).
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To obtain the resonant frequencies of a certain design implemented into the HFSS model, we
employ the program’s eigenmode solver. The key features of this solver are its capability to
return not only the frequencies of eigenmodes but also their corresponding quality factors. In
contrast to a driven modal solver only one simulation run is necessary. It does not however,
give access to the frequency dependence of the impedance of the modeled structure.

20 mm

Figure 3.2: Model for the full 3D simulation of the sample holder in ANSYS HFSS. The entire waveguide
including the impedance matching section consisting of the pin with matching barrel (far left), and the adjusting
screws (cylinders on the bottom) is simulated. Light blue indicates the dielectric of the 50 Ω coax line and is
terminated with a matched load. This approach allows to efficiently simulate the coupling between the waveguide
sample holder and the designed circuit, which is realized as sheets with corresponding boundary conditions on
the sapphire substrate (circuit not visible, sapphire substrate - green rectangle).

In order to include a kinetic inductance into the simulation of a wire, we use the surface
impedance boundary option of sheets, which allows to specify a value per square, i.e.
Zs = ω0Lkin with ω0 the expected resonant frequency and Lkin the designed value of the
kinetic inductance. The result of the eigenmode solver now serves as a first approximation
for a subsequent iterative process, where we adjust the frequency ω0 used to specify the
surface impedance until it matches the result of the eigenmode solver. Identifying the design’s
resonance among the solutions of the solver is also facilitated by this iterative process, since
it allows to pinpoint the modes depending on the kinetic inductance. Furthermore, the display
of surface currents or electric field simulations is a valuable tool in identifying the actual
resonant frequency of the design among all eigenmode solver results.

By simulating our entire rectangular waveguide sample holder including a part of the coaxial
line, which we terminate in a 50 Ω load in the simulation, we also gain access to the coupling
quality factor of the simulated design via the Q-factor result of the eigenmode solver.
Setting all materials besides the substrate as lossless perfect conductors, all dissipation
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occurs in the virtual load of the coaxial line. Under the assumption that the internal quality
factor in the simulation approaches infinity, since the simulated losses in the substrate are
negligible compared to the usually targeted coupling quality factors . 105, we observe
1/Qsim = 1/Qi +1/Qc ≈ 1/Qc. Therefore, the eigenmode solver gives direct access to the
coupling quality factor, provided the internal losses integrated into the simulation model are
negligible and the coax port is terminated in a matched 50 Ω load.

In fully planar designs it mostly suffices to simulate only the substrate with metal patterns and
the corresponding dielectrics above and below. Such a 2.5D simulation is computationally
often more efficient and time saving than a full 3D simulation. Therefore, preliminary
simulations during an exploratory stage of the design process could be carried out as 2.5D
simulations. One possible simulation software for such tasks is SONNETTM. It also allows
to straightforwardly implement a material with the desired kinetic inductance. However,
the program does not supply an eigenmode solver and only the S-parameters of software
defined ports are simulated. Using a fitting algorithm, the parameters of interest ( f0 and Qc)
are accessible from the full frequency spectrum. In case 2.5D simulations were employed for
samples to be measured in the rectangular waveguide sample holder geometry, we crosscheck
the preliminary design in a complete 3D simulation and refine there if necessary.

3.1.3 Rectangular strip resonators

The first geometry we design for the evaluation of grAl regarding its suitability to realize
superinductors is a planar resonator. For reasons outlined in Sec. 3.1.1 we employ a 3D
rectangular waveguide as our sample holder, which reduces the participation ratio of lossy
interface regions (cf. Sec. 1.4.2 and Refs. [90–93]). In order to allow direct coupling of the
resonator to the waveguide mode, we use a simple λ/2 design, which we align parallel to
the electric field of the TE10 mode of the sample holder. The chip does not have a backside
metalization, since this would reduce the resonators mode volume and introduce unwanted
scattering of the ~E-field in the waveguide. Consequently, the geometry chosen for this first
set of samples is a simple rectangle fabricated from a 20 nm thick grAl film. To avoid
confusion with standard microwave taxonomy, we call this geometry rectangular strip or
antenna geometry. The overall approach is similar to a standard microstrip setup, albeit the
missing ground plane on the backside of the substrate.

Based on previously presented results about the microwave properties of grAl resonators by
Rotzinger et al. [140], we target a sheet resistance R� ∼ 1kΩ, corresponding to an expected
kinetic inductance Lkin ≈ 0.8nH/�. We place three resonators on a 10 mm×15 mm c-plane
sapphire chip, mainly to cover a range of about two orders of magnitude in coupling quality
factors, and to be able to cross check results between the different resonators. To allow
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for reliable extraction of the internal quality factors of the resonators, we aim for coupling
quality factors Qc on the order of the internal quality factor Qi. Previous experiments in a
coplanar waveguide geometry (CPW) have shown internal quality factors of grAl resonators
Qi ∼ 104−105. Hence, for our experiment we design couplings Qc ∼ 103,∼ 104, and∼ 105.

Table 3.1: To maximize fabrication success in the presence of parameter fluctuation, we design resonators with
half and twice as large kinetic inductance. We obtain three sets of resonators, which are implemented on the
same chip and each fabricated twice within each run. In order to be able to fit a wide range of internal quality
factors reliably, we cover two orders of magnitude in Qc to have resonators with Qc ∼ Qi for internal quality
factors up to 106.

Qc Lkin (nH) Dimension (µm2)
103 0.4 10×1000
104 0.4 2.5×600
105 0.4 1.35×400
103 0.8 20×1000
104 0.8 5×600
105 0.8 2.7×400
103 1.6 40×1000
104 1.6 10×600
105 1.6 5.4×400

Using the FEM simulation method described in Sec. 3.1.2, we aim for resonant frequencies
of 6.0 GHz to 7.5 GHz. Table 3.1 shows the designed resonator dimensions for the targeted
kinetic inductance of 0.8 nH/�, and values 50% larger and smaller, to cover a potential spread
in obtained sheet resistances observed in earlier fabrication runs (cf. Sec. A.1). For device
fabrication, we use 2" sapphire wafers, which fit six chips with dimensions 10 mm×15 mm.
Based on this, we place each set consisting of three resonators designed for the same kinetic
inductance on one chip and fabricate every chip twice (cf. Table 3.1). See Figure 1.11 for
an optical image of a chip with a set of rectangular strip resonators designed for a kinetic
inductance Lkin = 0.8nH/�.

3.1.4 Microwave kinetic inductance detectors

Thanks to its large kinetic inductance, aside from applications for superconducting quantum
circuits, grAl is also of interest for microwave kinetic inductance detectors (MKID) [99]. In
these sensors an element with some kinetic inductance is shunted with a capacitor to form
an LC microwave resonator. However, the absorption of photons with frequency h̄ω ≥ 2∆0

leads to the breaking of Cooper pairs, which increases the kinetic inductance and hence
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leads to a shift in frequency for the resonant circuit. Because only the kinetic inductance
is susceptible to the change in Cooper pair density, a larger signal is achieved for circuits
with higher kinetic inductance fraction α = Lkin/(Lgeo +Lkin). The performance of MKIDs
fabricated from grAl thin films was investigated recently and is described by Valenti et al.,
see Ref. [141]. Nevertheless, measurements of MKID-type resonators in a well shielded setup
provide some useful insights into the properties of grAl regarding its use in superconducting
quantum circuits.

20 mm

100 μm
Al
grAl

Substrate

Figure 3.3: Image of MKID sample holder and false colored zoom-in showing one resonator in detail. The central
transmission line on the chip is connected to the cryogenic measurement setup via wirebonds and printed circuit
boards (PCBs) on both sides of the sample box. Four springs hold the chip in place and press it down to provide
thermal contact. The individual resonators (green) consist of an interdigitated capacitor and an inductor, which is
formed as a Hilbert fractal [142]. All resonators are fabricated from a grAl thin film using an e-beam lift-off
process (cf. Appendix 3). The ground plane and transmission line are patterned in a second optical lithography
lift-off step from a pure aluminum thin film (blue).

MKIDs measured in this thesis have been designed by the group of A. Monfardini at Institut
Néel in Grenoble, who successfully employ such geometries for radioastronomy applications
[100]. The fabrication of all MKID type samples was carried out at KIT with a two step
lithography process. In a first step we pattern the resonators from grAl thin films. In a second
step we add the pure aluminum ground plane and feedline of the chip. Figure 3.3 shows
the sample holder used to measure the MKID chips and a zoom-in, which shows a typical
MKID resonator. To adjust the resonant frequency, we vary the width of the inductor between
different chips depending on the design value for the kinetic inductance. For resonators
on the same chip the inductor width is constant, while we vary the capacitance of the
interdigitated finger capacitor. Each chip consists of 22 resonators capacitively coupled
in a hanger geometry to a common feedline, which is wirebonded to a PCB. SMA plugs
are soldered onto the PCB and allow to connect the sample to the cryogenic microwave
measurement setup.

59



3 High impedance granular aluminum resonators

3.1.5 Coplanar waveguide resonators

Coplanar waveguides and resonators are commonly used in superconducting quantum circuits
for readout purposes and to implement coupling between distant qubits. Owing to their
smaller mode volume than 3D approaches, the participation ratios of interfaces are higher
and the resulting dielectric loss has proven to be a limiting loss mechanism for coherence
[90–93]. As a cross check, we evaluate the internal quality factor in the single photon regime
of CPW grAl resonators as a function of their interface participation ratio. These resonators
have been fabricated by sputter deposition of 20 nm thick grAl films with sheet resistivity
R� ∼ 1kΩ and a subsequent chlorine based dry etching process (see Ref. [140] for details).
The resonators are λ/4 resonators and capacitively coupled to a transmission line, which
is probed in transmission. Table 3.2 provides an overview over the gap and center strip
dimensions of the CPW as well as the resonant frequency.

Table 3.2: Gap and centerstrip width, as well as resonant frequency of three CPW resonators fabricated by sputter
deposition of a 1 kΩ grAl film and subsequent dry etching. The resonators are designed with a length of λ/4, see
Ref. [140] for further details.

Label Gap (µm) Center strip (µm) fr (GHz) Qi (single photon regime)
CPW1 2 1.2 5.3 4×104

CPW2 4.8 8.0 7.3 2.4×105

CPW3 9.6 16.0 8.0 2.6×105

3.2 Measurement results

In this section we show measurement results of the different grAl thin film resonators
investigated over the course of this PhD thesis. These results serve as a basis for a subsequent
interpretation and discussion of the results, which is carried out in Sec. 3.3. The presentation
of the measured data is organized by their resonator geometry, with Sec. 3.2.1 giving an
overview of rectangular strip resonators measured in the 3D waveguide sample holder, while
Sec. 3.2.2 describes measurements of the MKID resonators in a fully planar design.

3.2.1 Rectangular strip resonators

All rectangular strip resonators are measured in a 3D waveguide sample holder geometry
(cf. Sec. 3.1.1) and designed according to the procedure outlined in Sec. 3.1.2. The well
controllable electro-magnetic environment, together with an increased mode volume, should
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reduce in principle the susceptibility to dielectric and radiative losses. Since a goal of this
thesis is to characterize granular aluminum for its suitability as a material of choice for
superconducting quantum circuits, we aim at a sample environment which allows high
internal quality factors in order to achieve high sensitivity to potential added or stronger loss
mechanisms intrinsic to grAl resonators.

In the first two subsections we present results of two resonators fabricated from a 20 nm
thick 1.4 kΩ film, using a chlorine based dry etching process of the sputter deposited
grAl (see Ref. [140] for details of the sputtering process). The following sections detail
measurement results of three resonators fabricated in e-beam lift-off lithography on c-plane
sapphire substrates using grAl films deposited in a PlassysTM e-beam evaporation machine
(cf. Appendix 3 and Appendix A.1).

Resonator A1: R� = 1.4kΩ/�, t = 20nm

Sample A1 is one of four resonators fabricated on a 15 mm×15 mm c-plane sapphire chip,
on which a R� = 1.4kΩ grAl film with thickness t = 20nm was deposited by a sputtering
process [140]. Due to the fact that a single optical mask was designed for multiple film
resistivities, and a chip size of 10 mm×15 mm, instead of the targeted three resonators, the
used larger chip holds five.

Furthermore, during the measurement run on this chip only two resonators could be identified
and were thoroughly characterized. Therefore, the unambiguous assignment of resonator
geometry to measured data is not possible for this sample. Hence, we cannot extract the
kinetic inductance of the resonators by comparison with FEM simulations. However, the
resonant frequency of sample A1 f A1

0 = 7.2317GHz is in the targeted range, indicating that
the kinetic inductances should be within ∼ 50% of the expected value of Lkin ∼ 1.1nH/�.

Figure 3.4 shows the measured amplitude data as a function of the readout power applied with
the VNA. The quoted power is an estimate based on the total attenuation in the cryogenic
measurement setup (see Appendix C.1) and the power emitted by the VNA. As can be seen
by the center panel of the plot, the internal quality factor as a function of the average number
of photons circulating in the resonator decreases from a value on the order of 105 at high
photon numbers, to ∼ 6×104 in the single photon regime. The total and coupling quality
factors as a function of the average number of photons are given in the bottom left panel
of Fig. 3.4. In sample A1 the total quality factor is limited by the coupling quality factor
with its mean value Qc = 11×103 (orange points) and a scattering between points due to the
decreasing signal to noise ratio (SNR) at smaller average photon numbers.

Finally, the bottom right panel of Fig. 3.4 shows the resonant frequency as a function of n in
log-lin scale. The orange line is a linear fit to the resonant frequency from which we extract a
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self-Kerr coefficient K11 = 6Hz. Since we cannot perform direct photon number calibration
but rely on the estimated total attenuation, we consider n to be accurate within one order of
magnitude. Therefore, the accuracy of the self-Kerr coefficient is of the same order.

Figure 3.4: Measurement results of sample A1, fabricated from a grAl film with R� = 1.4kΩ and a thickness of
20 nm. The resonant frequency of the sample is 7.2317 GHz and the top panel shows as a color plot the raw
amplitude signal. In the center panel the internal quality factor Qi is plotted as a function of the average number
of photons circulating in the resonator n. In the single photon regime, we extract Qi ∼ 6×104. The total quality
factor is limited by the coupling quality factor, whose mean value Qc = 11×103 (see bottom left panel). From a
linear fit to the resonant frequency as a function of n we extract a self-Kerr coefficient K11 = 6Hz.

Figure 3.5 shows the raw data (blue points) and fits of the resonator reflection measurement
at a sample holder input port power P = −142dBm, corresponding to an average number of
circulating photons in the resonator n≈ 1. As can be seen, the fit matches the measured data
well, and the internal quality factor is about a factor of 6 higher than the coupling quality
factor, which allows a reliable extraction of Qi (cf. error bars in Fig. 3.4).
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3.2 Measurement results

Figure 3.5: Raw data (blue points) and circle fit (black line) of sample A1 in the single photon regime. The fit is
in good agreement with the measured data and we extract Qi = 7×104 at a coupling quality factor Qc = 12×103

at a readout power applied to the waveguide sample holder input port of P = −142dBm, which corresponds
to n≈ 1.

Resonator B1: R� = 1.4kΩ/�, t = 20nm

Sample B1 is the second identified and in detail measured resonator fabricated by optical
lithography and a chlorine based dry etching process (cf. Subsection 3.2.1). Due to the reasons
already outlined in the previous section, an unambiguous identification of the resonator
geometry is not possible for Sample B1 either.

Figure 3.7 shows again the measured amplitude data as a function of the readout power
incident on the matched sample holder port. At low readout powers, we measure a resonant
frequency f B1

0 = 7.6139GHz. In the single photon regime we extract an internal quality
factor Qi ∼ 2×104 (see center panel), which is comparable to the coupling quality factor
Qc = 22×103 (see bottom left panel). From the shift of the resonant frequency with increasing
number of average circulating photons n we extract a self-Kerr coefficient 15Hz.

Figure 3.6: Raw data (blue points) and circle fit (black line) of sample B1 in the single photon regime. The fit is
in good agreement with the measured data and we extract Qi = 2×104 at a coupling quality factor Qc = 21×103

at a readout power applied to the waveguide sample holder input port of P = −142dBm, which corresponds
to n≈ 1.

Figure 3.6 shows the raw data (blue points) for a readout power of −142 dBm, which
corresponds to approximately one photon on average circulating in the resonator. As
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expected for almost critical coupling Qi/Qc ≈ 1, we observe a deep dip in the amplitude
data, and a circle of the complex reflection coefficient S11 which passes the origin of the
real-imaginary plane.

Figure 3.7: Measurement results of sample B1, fabricated from a grAl film with R� = 1.4kΩ and a thickness of
20 nm. The resonant frequency of the sample is 7.6139 GHz and the top panel shows as a color plot of the raw
amplitude signal. In the center panel the internal quality factor Qi is plotted as a function of the average number
of photons circulating in the resonator n. In the single photon regime, we extract Qi ∼ 2×104. The mean value
of the coupling quality factor Qc = 22×103 (see bottom left panel). From a linear fit to the resonant frequency
as a function of n we extract a self-Kerr coefficient K11 = 15Hz.

Resonator A2: R� = 2.0kΩ/�, t = 20nm

Sample A2 is the weakest coupled resonator of the set of three resonators fabricated on
the same 10 mm×15 mm c-plane sapphire chip. These resonators are patterned using the
e-beam lift-off lithography process described in Appendix A.3). Due to the clear differences
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in coupling quality factors we can assign sample A2 to a resonator with dimensions
400 µm×5.4 µm. Assuming the fabricated resonator has exactly these dimensions, we
extract a kinetic inductance of Lkin = 2nH/� by comparing the measured resonant frequency
f A2
0 = 6.9945GHz with FEM simulations, where we sweep the kinetic inductance to match

the observed frequency.

Figure 3.8: Measurement results of sample A2, fabricated from a grAl film with R� = 2kΩ and a thickness of
20 nm. The resonant frequency of the sample is 6.9945 GHz and the top panel shows as a color plot the raw
amplitude signal. In the center panel the internal quality factor Qi is plotted as a function of the average number
of photons circulating in the resonator n. In the single photon regime, we extract Qi ∼ 2×105, and a mean value
of the coupling quality factor Qc = 61×103 (see bottom left panel). From a linear fit to the resonant frequency
as a function of n we extract a self-Kerr coefficient K11 = 61Hz.

As discussed in the introduction we attribute the discrepancy between the extracted kinetic
inductance and the one expected from Mattis-Bardeen formula to differences between the
designed and realized resonator geometry, film inhomogeneity across the 2” wafer, or a
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deviation from the standard Mattis-Bardeen formula, since at such high resistivities the ratio
∆0/(kBT c) differs from the standard BCS value of 1.764 and is ∼ 2.1 [82].

Figure 3.8 shows the raw amplitude data as a function of the VNA readout power reaching
the matched port of the 3D waveguide sample holder. The low amplitude points away from
the resonance dip result from frequency fluctuations due to quasiparticle producing events,
which increase the kinetic inductance temporarily (cf. Sec. 1.4.3 and 3.4). Since these
impacts distort the amplitude and phase spectrum of the resonator, measurements where a
quasiparticle burst occurred are not fitted. Despite the impacts we extract internal quality
factors between 8×105 and 1×105 in the high and single photon regime for undisturbed
measurements, respectively. The average coupling quality factor Qc = 6×104 (see bottom
left panel in Fig. 3.8) is on the order of the single photon Qi and limits the total quality factor.

Figure 3.9: Internal quality factor as a function of the average number of circulating photons at different
averaging times. Internal quality factors fitted from data with averaging times up to 100 times shorter (1000 Hz
IF BW) than the results presented in Fig. 3.8 show comparable values. Therefore, we conclude that the extracted
values are not increased due to an averaging out of the dip in amplitude signal by a jittering resonant frequency.

In principle, a jittering resonator frequency on time scales faster than a measurement would
lead to the averaging of multiple resonator signatures at slightly different frequencies. This
would result in a shallower dip for the amplitude signal and could potentially result in higher
fit values for the internal quality factor. As a control experiment, we perform measurements
with swept readout power at increasing measurement speed, i.e. shorter averaging, see
Fig. 3.9. In practice, we achieve this by increasing the intermediate frequency bandwidth
(IF BW) of the VNA. The initial measurements presented in Fig. 3.8 are performed using an
IF BW of 10 Hz. Measurements with IF BW of 100 Hz and 1000 Hz, which correspond to
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10 respectively 100 times shorter averaging time show similar internal quality factors as
observed for longer measurements, see Fig. 3.9. Therefore, we conclude that the extracted
internal quality factors are not a result of an effective averaging out of a deeper amplitude
dip due to a fluctuating resonant frequency.

A linear fit of the resonant frequency plotted as a function of n yields a self-Kerr coefficient
K11 = 61Hz. We consider this result accurate within a factor of ten due to the uncertainty
in the estimation of the photon number and because only a small frequency shift could be
observed, before the resonator shows bifurcation behavior. Figure 3.10 shows the good
agreement between the fitted model (black line) and the measured data (blue points) for a
power corresponding to n≈ 1.

Figure 3.10: Raw data (blue points) and circle fit (black line) of sample A2 in the single photon regime. The
fit is in good agreement with the measured data and we extract Qi = 2.2× 105 at a coupling quality factor
Qc = 60×103 at a readout power applied to the waveguide sample holder input port of P = −148dBm, which
corresponds to n≈ 1.

Resonator B2: R� = 2.0kΩ/�, t = 20nm

Sample B2 is the strongest coupled resonator of the set fabricated from a 2 kΩ grAl film
with thickness 20 nm. Again comparing the measured resonant frequency f B2

0 = 6.0324GHz
with FEM simulations of its designed dimensions 1000 µm×40 µm, we confirm the kinetic
inductance of Lkin = 2nH extracted from sample A2. Due to its larger line width and
shallower depth no impacts are visible in the power dependent measurement of the resonator’s
amplitude signal shown in Fig. 3.11. We observe internal quality factors on the order of 105

in the single photon regime, which only increase up to ∼ 2×105 at high powers. In sample
B2 the total quality factor is entirely limited by the coupling quality factor Qc ≈ 4×103,
as can be seen in the bottom left panel of Fig. 3.11. We observe a small frequency shift as
a function of increasing power on the order of 20 kHz, which is significantly smaller than
the resonator line width (cf. Fig. 3.12). In combination with the uncertainty of the average
number of circulating photons, K11 = 25Hz should be treated as an order of magnitude
estimate for the self-Kerr coefficient.
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Figure 3.11: Measurement results of sample B2, fabricated from a grAl film with R� = 2kΩ and a thickness of
20 nm. The resonant frequency of the sample is 6.0324 GHz and the top panel shows as a color plot the raw
amplitude signal. In the center panel the internal quality factor Qi is plotted as a function of the average number
of photons circulating in the resonator n. In the single photon regime, we extract Qi ∼ 1.5×105. The total quality
factor is limited by the coupling quality factor, whose mean value Qc = 4×103 (see bottom left panel). From a
linear fit to the resonant frequency as a function of n we extract a self-Kerr coefficient K11 = 25Hz.

Figure 3.12 shows the fit (black line) to the raw data (blue points) in the single photon
regime. As can be seen, a significant scatter of the amplitude data is visible. The phase
response however exhibits a clean signal and is well matched by the fitted model. From the
circle fit procedure we extract an internal quality factor Qi = 1.6×105 at a readout power of
−139 dBm, which corresponds to n≈ 1.
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Figure 3.12: Raw data (blue points) and circle fit (black line) of sample A1 in the single photon regime. The fit
is in reasonable agreement with the measured amplitude data and in good agreement with the measured phase
data. We extract Qi = 1.6× 105 at a coupling quality factor Qc = 4× 103 at a readout power applied to the
waveguide sample holder input port P = −139dBm, which corresponds to n≈ 1.

Resonator C2: R� = 2.0kΩ/�, t = 20nm

Sample C2 exhibits some interesting behavior at its resonant frequency f C2
0 = 6.3308GHz,

resulting from a 600 µm×10 µm rectangular strip resonator fabricated from the identical
grAl film also used to pattern resonators A2 and B2. As can be faintly seen in the plot of the
raw amplitude data in Figure 3.13 the signal changes from a peak at high readout powers
(center panels) to the expected dip at low readout powers (bottom panels).

The powers corresponding to the line cuts shown in the 2nd and 3rd row of Fig. 3.13 are
indicated by dashed lines in the amplitude plot with their respective colors. Using the standard
circle fit routine also employed for samples A2 and B2 at a power corresponding to n≈ 0.1
(orange), we extract a coupling quality factor Qc = 8×103 and an internal quality factor
Qi = 2.6×105. Assuming a constant coupling quality factor, which limits the loaded quality
factor Ql ≈ Qc, we estimate that the resonator shows a clearly visible peak in its amplitude
signal at n≈ 100, corresponding to a readout power of −123 dBm.

We attribute the observed behavior of the amplitude signal to impedance mismatches in our
cryogenic measurement setup or the interaction of the resonator with a spurious mode close
in frequency to the resonant frequency of sample C2.
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Figure 3.13: Measured data of resonator C2 with a resonant frequency of 6.3308 GHz. The amplitude response
changes from a peak at high powers (blue dashed line in color plot and center row of panels) to a dip at low
powers corresponding to n≈ 0.1 (orange dashed line and bottom row of panels). From a fit to the low power
data, we extract Qi = 2.6×105 and Qc = 8×103. Assuming a constant coupling, we estimate ∼ 100 photons on
average circulating in the resonator for the data indicated by the blue dashed line in the color plot of the raw
amplitude data (for clarity, the points are joined by straight line segments).

3.2.2 MKID geometry resonators

The following section provides an overview of the results obtained from measurements
of MKID type resonator samples. We group the results of all resonators measured on the
same chip and show the median internal quality factor as a function of the average number
of photons, while we also indicate the observed spread. Resonant frequencies, coupling
quality factors and self-Kerr coefficients are given in a table for each set of resonators. In
the following we present results of three chips, which were designed in the group of A.
Monfardini at Institut Néel in Grenoble (France) and fabricated at KIT (cf. Fig. 3.3). The
resonators are patterned by the previously mentioned e-beam lift-off lithography process of
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grAl film deposited in the PlassysTM e-beam evaporation system. A ground plane, enclosing
all resonators, and the CPW transmission line is fabricated from a 20 nm thick aluminum
film using optical lift-off lithography.

Sample M1: R� = 1.0kΩ/�, t = 20nm

Out of the 22 resonators patterned on chip M1, the raw data of 15 could be evaluated using
the fit routine developed in Ref. [88] for a notch type coupling geometry. The frequencies of
the resonators are distributed between 2.1284 GHz and 2.7356 GHz and are given in detail in
Table 3.3 together with the mean coupling quality factor of each resonator and the self-Kerr
coefficient extracted from a linear fit to the frequency as a function of the average number of
photons in the resonator. By comparing the measured resonant frequencies with 2.5D FEM
simulations, the kinetic inductance in these resonators is estimated to be Lkin = 0.6nH/�.

Figure 3.14 gives an overview over the extracted internal quality factors of the 15 resonators.
The black solid indicates the median Qi, while the blue shaded area indicates the spread
between highest and lowest measured Qi at the respective average number of circulating
photons. Due to their weak coupling and small line width, the SNR of the measurement
was only sufficient to reliably extract fitting parameters down to n≈ 60, where the median
yields an internal quality factor on the order of 4×105. Similarly to the measurements of
the rectangular strip resonators, we estimate n to be correct within an order of magnitude
and correspondingly the extracted self-Kerr coefficients on the order of K11 = 0.02Hz are
expected to be an order of magnitude result.

Table 3.3: Resonant frequencies, mean coupling quality factor and fitted self-Kerr coefficient of all resonators on
sample M1.

f0 (GHz) 2.1284 2.1868 2.2239 2.2883 2.3114 2.3374 2.4098 2.4519
Qc(×105) 2.0 1.8 1.7 1.9 1.7 1.8 1.6 1.6
K11 (Hz) 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.03

f0 (GHz) 2.4768 2.5018 2.5501 2.6002 2.6666 2.7215 2.7356
Qc(×105) 2.2 1.8 2.0 2.1 2.3 1.9 2.1
K11(Hz) 0.02 0.02 0.02 0.02 0.04 0.03 0.04
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Figure 3.14: Median Qi (black line) and range of extracted internal quality factors (blue shaded region) of 15
resonators on sample M1. At n≈ 60 we measure internal quality factors ranging from 1.5 to 6×105 at median
coupling quality factors Qc = 1.8×105.

Sample M2: R� = 1.0kΩ/�, t = 30nm

Sample M2 was fabricated using the same layout for the resonators and an identical fabrication
process to that of sample M1 presented in the previous section. In the measurement
20 resonators could be identified and fitted with frequencies between 2.1668 GHz and
2.9834 GHz. Table 3.4 lists the extracted resonant frequencies, mean coupling quality factors
and extracted self-Kerr coefficients for all resonators. Where no self-Kerr coefficient is listed
in the table, the frequency change of the resonator was not large enough over the measured
power range to provide a basis for the linear fit. From successful linear fits to the change of
the resonant frequency, we extract a self-Kerr coefficient on the order of 0.01 Hz. Since the
measured resonant frequencies are similar to those of sample M1, we also estimate a kinetic
inductance Lkin = 0.6nH/� for sample M2. Considering Lkin ∝ R� following Mattis-Bardeen
formula, this is also expected.

Figure 3.15 shows the median internal quality factor of all 20 resonators as a function of n
(black line). The shaded area indicates the range between the highest and lowest observed
internal quality factors in the entire set of resonators. Again, poor SNR only allows to extract
internal quality factors for average circulating photon numbers & 70. In this photon number
regime the median internal quality factor is on the order of 4×105, comparable to sample
M1 (cf. Sec. 3.2.2).
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Figure 3.15: Median Qi (black line) and range of extracted internal quality factors (blue shaded region) of 20
resonators on sample M2. At n≈ 70 we measure internal quality factors ranging from 1.5 to 6×105 at median
coupling quality factors Qc = 2.2×105.

Table 3.4: Resonant frequencies, mean coupling quality factor and fitted self-Kerr coefficient of all resonators on
sample M2. For resonators where no K11 is shown, the frequency shift as a function of readout power did not
suffice to extract K11 from a linear fit.

f0 (GHz) 2.1668 2.2037 2.2037 2.2215 2.2379 2.3185 2.3231 2.3623
Qc(×105) 2.6 2.2 2.2 2.4 2.3 2.2 2.8 2.0
K11 (Hz) 0.01 - 0.06 - - 0.01 - -

f0 (GHz) 2.3826 2.4012 2.4604 2.5033 2.5099 2.5392 2.5674 2.6872
Qc(×105) 1.8 1.9 2.9 2.1 2.4 2.2 2.1 2.9
K11(Hz) - 0.01 0.01 - 0.01 0.01 - -

f0 (GHz) 2.7518 2.7836 2.7858 2.9834
Qc(×105) 2.4 2.1 1.9 1.8
K11(Hz) 0.01 0.01 0.01 0.01
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Sample M3: R� = 0.45kΩ, t = 20nm

In the measurements of the final sample of the MKID geometry M3, we could identify
and fit 16 resonators with frequencies between 2.7644 GHz and 3.7238 GHz. Table 3.5
gives resonant frequency, mean coupling quality factor and fitted self-Kerr coefficient of all
resonators. Similar to sample M2, for some resonators the self-Kerr could not be extracted
due to a too small frequency shift, which could not be resolved. For the samples where K11

could be measured, we extract values on the order of 0.1 Hz. A comparison with 2.5D FEM
simulations yields a kinetic inductance Lkin = 0.3nH/�.

Table 3.5: Resonant frequencies, mean coupling quality factor and fitted self-Kerr coefficient of all resonators on
sample M3. For resonators, where no K11 is shown the frequency shift as a function of readout power did not
suffice for the linear fit to extract K11.

f0 (GHz) 2.7644 2.8391 2.8675 2.9474 2.9740 3.0395 3.0917 3.1517
Qc(×105) 2.4 1.3 3.5 1.1 1.2 0.8 1.0 1.6
K11 (Hz) 0.07 0.04 0.05 - - 0.03 - 0.08

f0 (GHz) 3.1523 3.2706 3.4046 3.4287 3.5485 3.6305 3.6509 3.7238
Qc(×105) 1.2 1.3 1.7 1.5 2.9 4.3 1.9 3.5
K11(Hz) 0.06 0.04 0.09 0.07 0.09 0.10 - 0.25

Due to some stronger coupled resonators on sample M3, internal quality factors in the single
photon regime could be extracted. Figure 3.16 shows the median Qi as a function of the
average number of photons circulating in the resonator (black line). The blue shaded area
indicates the highest and lowest Qi for the corresponding photon number. In the single photon
regime, we extract a median Qi on the order of 4×105.
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Figure 3.16: Median Qi (black line) and range of extracted internal quality factors (blue shaded region) of 16
resonators on sample M3. In the single photon regime we measure internal quality factors ranging from 2 to
10×105 at median coupling quality factors Qc = 1.6×105.

3.3 Dielectric loss in grAl resonators

Following the encouraging results of the previous section, we investigate the limiting loss
mechanisms in the measured grAl resonator samples. Using these insights, we work towards
optimized design approaches for the grAl superinductor and try to develop mitigation
strategies for the identified loss mechanisms. A common source of loss in superconducting
circuits is dielectric, also referred to as capacitive, loss [143] whose mitigation by optimized
designs, materials, and fabrication techniques is largely responsible for increasing coherence
times in superconducting circuits [2]. Another usual suspect, especially at microwave
frequencies, when due to the kinetic inductance of the superconductor the Cooper-pair
condensate does not provide a perfect shunt, are quasiparticles. Both loss mechanisms have
been shown to saturate with increasing readout power [42, 104, 144, 145] and could therefore
be responsible for the observed increase of Qi as a function of n (cf. Sec. 3.2).

However, it is not straightforward to unambiguously determine which of the loss mechanisms
poses a limit to the observed coherence of a superconducting circuit. In this thesis we rely on
a participation ratio based approach to investigate dielectric loss, which is based on FEM
simulations of the sample geometry. The approach is outlined in Sec. 1.4.2 and further
detailed in Refs. [90, 91]. To find the surface participation ratio, we model the measured
resonator and its surrounding electro-magnetic environment as precisely as possible in a 3D
FEM high frequency software (ANSYS HFSSTM). The simulation does not only give access
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to the resonant frequency and quality factor of a mode of the modeled structure, but also
provides the electric field distribution. Since dielectric loss channels mostly couple to the
electric field, we numerically integrate the electric field distribution of the resonator in an
area covering the resonator and extending to areas with significant electric field strengths
in close vicinity to the resonator. Following the technique of Refs. [90, 91], we assume a
thickness of 3 nm for the interface layer in which we integrate the energy stored in the electric
field. Using this approach we extract the sum of metal-substrate, metal-air, and substrate-air
participation ratios, which we refer to as surface participation ratio in short (cf. Fig. 1.14).

After obtaining the participation ratios of the measured resonators we plot the extracted
internal quality factor in the single photon regime as a function of the surface participation
ratio following the approach of Wang et al. [91]. Figure 3.17 shows the extracted single
photon Qi as a function of the surface participation ratio of resonators A2, B2, C2, MKID
sample M3, resonators CPW1 to CPW3, and the data of one control experiment of pure
aluminum resonators in the same 3D waveguide sample holder used for resonators A2 to C2
(cf. Sec. 4.1.3).

Figure 3.17: Comparison between single photon Qi as a function of the surface participation ratio of different
resonator geometries. The data suggests that resonators A2-C2 (orange square, blue circle, and green triangle)
are not limited by dielectric interface loss, but by excess quasiparticles. In contrast, for resonators with surface
participation ratio & 10−3 and pure aluminum resonators (grey diamond), we observe a dielectric loss tangent
similar to previously reported values [91, 93]. For a detailed discussion see the main text.

Starting with the measurements on samples having the smallest surface participation ratio
(A2, B2, C2) we would expect to observe the highest internal quality factor if dielectric
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loss is the limiting loss mechanism. Based on an expected interface dielectric loss of
tan(δ ) = 2.6×10−3 [91], we estimate the limit of Qi imposed by dielectric loss ∼ 2×106

(cf. red dashed line). As can be seen in Fig. 3.17, we observe internal quality factors about 10
times smaller than estimated for resonators A2, B2, and C2 (cf. blue circle, orange triangle,
and green triangle). This could be due to a ten times higher loss tangent either associated
with our fabrication process or the grAl film, or the presence of an additional limiting loss
mechanism. In principle, dissipation in the normal conducting copper waveguide could
provide an additional loss channel, limiting the internal quality factor of resonators in this
sample holder geometry to ∼ 2×105. From a measurement of resonators fabricated from
pure aluminum (cf. Sec. 4.1.3) where we observe internal quality factors in the range of 106

(cf. grey diamond) in an identical copper waveguide sample holder we conclude that the
waveguide is not limiting Qi . 106.

Control experiments of resonators with increasing participation ratio fabricated from grAl
show similar internal quality factors for a ten times larger surface participation ratio (cf.
CPW2 - brown pentagon, and CPW3 - pink pentagon). Increasing the participation ratio in
CPW1 (violet pentagon) by ∼ 2 orders of magnitude compared to resonators A2, B2, and
C2, leads to a Qi about a factor of 5 lower. From the internal quality factors of resonators
CPW1-3 and their respective surface participation ratios we extract a dielectric interface
loss tangent tan(δ ) = 2.4×10−3 (cf. Fig. 3.17, red dashed line), which is in good agreement
with previously reported values for pure Aluminum in various geometries and different
laboratories [91, 93]. Therefore, we conclude that rectangular strip resonators A2-C2 are not
limited by a particularly lossy dielectric interface layer.

Based on the observed sudden drops of the resonant frequency in resonator A2 (cf. Fig. 3.8)
we suspect excess quasiparticles as the limiting loss mechanism in resonators A2-C2. A
further hint in this direction is provided by the single photon Qi of sample M3, which is
higher despite a surface participation ratio approximately a factor of 10 larger. Due to the pure
aluminum, lower superconducting gap ground plane enclosing the MKID type resonators,
we attribute the higher Qi to phonon trapping in the ground plane, which reduces the excess
quasiparticle density produced by phonons with energy larger than twice the superconducting
gap of grAl. In MKIDs the efficiency of reducing the quasiparticle creation by a lower gap
material for phonon trapping has recently been shown and could have potential applications
in superconducting quantum circuits [146, 147]. In the following section we investigate
quasiparticle dynamics in the rectangular strip grAl resonators A2-C2 and identify them as a
probable limiting loss mechanism.

77



3 High impedance granular aluminum resonators

3.4 Quasiparticle dynamics in grAl resonators

Two main reasons prompt the investigation of quasiparticle dynamics in granular aluminum
resonators. First, following the investigation of the internal quality factor as a function of the
surface participation ratio suggests that rectangular strip resonators in the 3D waveguide
sample holder are not limited by dielectric loss. An alternative loss channel limiting the
coherence of superconducting quantum circuits is excess quasiparticles, as seen in many
different groups [39, 42, 101, 104, 148]. Secondly, during power sweep measurements of
sample A2 sudden drops of the resonant frequency were observed, which are reminiscent
of high energy particle impacts in MKIDs [96]. In this chapter, we will describe the event
detection, the fitting procedure used to extract characteristic timescales of these events, the
statistics of their occurrence and finally a phenomenological model linking the observed
quasiparticle dynamics with the previously observed increase of Qi as a function of the
applied readout power.

Figure 3.18 shows a typical continuous measurement of the resonant frequency of resonators
A2 (top) and B2 (bottom), which reveals regular sudden drops of the phase signal,
corresponding to a shift of the resonant frequency to lower values (cf. Fig 3.20). We attribute
these signatures to high energy events, which directly or indirectly deposit sufficient energy
in the superconducting film of the resonators to break a large number of Cooper pairs. Since
the kinetic inductance is inversely proportional to the number of Cooper pairs, Lkin increases
and leads to a shift in resonant frequency. This process constitutes the detection principle of
MKIDs [99], which are today used for radio astronomy applications [100].

We perform measurements like the ones shown in Figure 3.18 on resonators A2-C2 at
various readout powers for a total time of 45 min each. From the measured raw phase data we
automatically identify traces with a quasiparticle producing impact event and subsequently
confirm all preliminary events manually. Table 3.6 shows the number of identified impacts
at the different readout powers for each resonator.

Before proceeding with further data analysis we attempt to elucidate the sources of the
observed events. To this end, we first histogram the durations between two successive events,
which is shown in Fig. 3.19(a). We find an exponential distribution for each of the three
resonators and fit the cumulated data of the three histograms. This yields a characteristic
rate of 1/20s for the impacts. The exponential decay indicates a Poisson process as the
source for the events. Therefore, the occurrence of the events should not be correlated. In
the MKID community, these events are attributed to impacts of high energy particles in the
substrate, where they produce ballistic phonons [96, 147] which subsequently distribute
across the entire chip and have sufficient energy to break Cooper pairs in the superconducting
resonators [96, 146].

78



3.4 Quasiparticle dynamics in grAl resonators

Figure 3.18: A quasi continuous monitoring of the resonant frequency of resonator A2 (top) and B2 (bottom)
reveals regular stochastic sudden drops of the phase signal. By monitoring consecutive time traces of the resonator
phase response, which are each ∼ 7s long, we record a timespan of about 45 min (for clarity only partially shown).
Due to its smaller line width, resonator A2 exhibits a larger sensitivity and smaller impacts are also visible.

Candidates for the source of the observed events are cosmic particles with high energies,
which penetrate all shielding layers in our experiment, particles from radioactive decay,
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3 High impedance granular aluminum resonators

possibly inside the sample holder, or infrared photons, which are also suspected as a source
of decoherence in superconducting qubits [149]. Figure 3.19(b) shows a histogram of the
frequency shift of the first point of an event normalized to the corresponding resonant
frequency of the resonator. For resonator A2 there is a clear peak observable, indicating that
the source of the quasiparticle bursts has a certain energy. The histograms for resonators B2
and C2 are less clear. To draw more concrete conclusions about the origins of impacts, the
histograms would need to be corrected for the different sensitivities of the three resonators to
quasiparticle bursts. For a more detailed investigation of the origin of the observed impacts
calibrating the response of grAl resonators to deposited energy using a known source would
be advantageous. The calibration could potentially help to identify the energy range of the
naturally observed impacts, and therefore narrow down the range of possible sources of
quasiparticle bursts.

(a) (b)

Figure 3.19: Histogram of the times between two successive impacts and histogram of normalized event
amplitude for all available data (cf. Tab. 3.6). (a) We find an exponential distribution of the intervals between
two quasiparticle events. This distribution suggests a poissonian process producing the observed quasiparticle
impacts. From the exponential fit to the cumulated histograms, we extract an average rate of 1/20s for the
impacts. (b) Histogram of event amplitude in frequency normalized to the corresponding resonant frequency.
For resonator A2, which is the most sensitive resonator due to the smallest line width we observe a peaked
distribution. Resonators B2 and C2 show broader distributions with no clearly distinguishable peak.

The individual quasiparticle events consist of a very steep drop of the resonant frequency,
which is much faster than resolvable with the vector network analyzer, followed by a relaxation
process over a timescale of seconds. Similar to what has been observed in superconducting
transmon qubits [43], we regard the relaxation process as a combination of two physical
processes each with a characteristic timescale. Initially, the relaxation is governed by the
recombination of quasiparticles into Cooper pairs with a characteristic timescale that is
presumably strongly correlated with the electron-phonon interaction in grAl. In this process
we believe the dynamics to be a function of the number of generated quasiparticles, their
initial distribution, and background quasiparticle density. Therefore, we conclude that the
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3.4 Quasiparticle dynamics in grAl resonators

first steep decay is non-uniform between the different observed impacts. After the primary
relaxation process dominated by recombination, during which the excess quasiparticle density
is considerably reduced, the dynamics is presumably governed by a trapping or diffusion
process whose characteristic timescale is proportional to the number of quasiparticles in
contrast to the recombination process, which is proportional to the square of the number
[43]. Therefore, we observe an exponential decay of the excess quasiparticle density back
towards the equilibrium value. From our measured data, we believe this exponential part of
the relaxation process to be universal for a given resonator at a given readout power.

Table 3.6: Number of individual events identified at the different readout powers during a total measurement time
of 45 min. First, we identify traces with a QP burst automatically, followed by a manual check of all identified
traces.

readout power number of identified events
(dBm) A2 B2 C2
-120 103 93 72
-125 84 87 56
-130 75 79 54
-135 58 79 63
-140 72 81 62
-145 54 89 56
-150 59 62 56
-155 47 23 30
-160 48 - -
-165 39 - -

Figure 3.21 illustrates the joint fitting procedure for the exponential relaxation of all events
of a dataset. First, we shift the individual events with respect to each other such that the
overlap of the exponential tails is maximized [see Fig. 3.21(a)]. After performing this for
all events, where the initial steep part of the relaxation process is removed from all but the
reference event, we average the remaining data to generate the mean exponential decay curve
[cf. Fig. 3.21(b)]. As can be seen in the panel the noise increases for longer times, as there
are fewer events available for the averaging and the deviation from the equilibrium value is
exponentially decreasing. Finally, we manually identify the exponential part of the averaged
relaxation curve [cf. black dashed lines Fig. 3.21(c)], which we use to fit an exponential
function and extract the characteristic relaxation time τss.
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fdetec

Δf

Figure 3.20: Line plot of a single time trace with an impact recorded in resonator B2 and schematic illustration
of the detection principle. The left panel illustrates the steep initial drop of the phase signal, indicating a drop in
resonant frequency, followed by a slow relaxation back to the equilibrium value over a timescale of ∼ 1s. This
relaxation time is orders of magnitude slower than observed in pure aluminum MKIDs [96]. The right panel
schematically shows the detection principle, which is similar to a standard circuit quantum electrodynamics
(cQED) [50] readout. A quasiparticle impact will shift the resonator from its equilibrium position (green curve)
to a lower frequency (red curve), which we observe as a drop in the phase signal at the detection frequency fdetec.
Inverting the frequency-phase spectrum allows to calculate the frequency shift ∆ f .
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Figure 3.21: Fit procedure of combined events to extract the exponential tail’s time constant. (a) After automatically
identifying and manually checking the events of a dataset in the phase signal, we convert the phase data to the
relative frequency shift of the resonator δ f/ f0. This relative frequency shift is proportional to the normalized
excess quasiparticle density δxQP ∝ 2δ f/ f0 [43]. For further processing, we shift the events such that we achieve
maximal overlap of the tails, which amounts to a rescaling of the amplitude of the exponential tail, not changing
the time constant. (b) From the dataset of all shifted traces, we find an average event (black line). (c) In a final
step, we identify the exponential part of the averaged relaxation trace (dashed black lines) and fit an exponential
decay to obtain the relaxation constant τss.
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3.4 Quasiparticle dynamics in grAl resonators

Figure 3.22 shows the time constant of the exponential decay τss as a function of the average
number of circulating photons and its correlation with the fitted internal quality factor
for resonators A2, B2, and C2. The left panel shows a decrease of the relaxation time
with an increasing number of photons for the smallest resonator A2 (orange squares) from
1 s to 7 s at low photon numbers to ∼ 0.6s at the highest readout power. The observed scatter
between the points could potentially be caused by a fluctuating background quasiparticle
density, as observed in superconducting fluxonium qubits [16, 101]. In resonators B2 and
C2 with 2, respectively 7 times larger width, we observe τss constant within ±50% across
the range of investigated powers. The orange line is a fit to a phenomenological model,
which links τss with the activation of localized quasiparticles by photons and is discussed in
more detail further below. Visible in the right panel of Fig. 3.22, Qi(n) and τss(n) appear
to be correlated for resonator A2 (orange squares), whereas no correlation is visible for
resonator B2 (blue circles).

Figure 3.22: Exponential relaxation constant τss as a function of the average number of photons in the resonator
and correlation between τss and Qi. For resonator A2, which has the smallest dimensions, we observe a decrease
of the relaxation time constant at higher circulating photon numbers. The wider resonators B2 and C2 show
within a factor of two a time, which is constant with readout power. In the right panel we show the correlation
between internal quality factor and τss. A slight correlation can be observed for resonator A2.

Based on the results presented in Sec. 3.3, we concluded that grAl resonators A2, B2, and
C2, are not limited by dielectric interface loss. Since they show pronounced events that shift
the resonant frequency to lower values, a signature of an increase in the excess quasiparticle
density, we investigate this as a limiting loss mechanism. Furthermore, Fig. 3.22 suggests a
correlation between Qi(n) and τss(n) for resonator A2 (orange squares). Based on recent
theoretical results [150], and thanks to a close collaboration with Gianluigi Catelani from
FZ Jülich, we propose a phenomenological model linking quasiparticle dynamics in grAl
resonators with n, and with the observed increase in the internal quality factor [46] (cf.
Sec. 3.2). It has been previously reported that circulating power can accelerate QP diffusion,
for example in qubits [104] and small Josephson junctions [42]. Disorder in grAl films could
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lead to spatial variations of the superconducting order parameter, resulting in a small sub gap
tail of the density of states (DOS) where quasiparticles could localize [150]. Similar to the
approach of Rothwarf and Taylor [151] we propose a phenomenological model attempting
to mimic the observed quasiparticle dynamics. In the model we assume a localized xl and
mobile xm quasiparticle density governed by the following rate equations

ẋm =−Γmmx2
m−Γmlxmxl−Γlocxm +Γexxl +gm, (3.1)

ẋl =−Γllx2
l −Γmlxmxl +Γlocxm−Γexxl +gl . (3.2)

Here, Γmm, Γll , and Γml describe the recombination rate of two mobile, two localized, or a
mobile and a localized quasiparticle. Γloc and Γex are rates of quasiparticle localization in,
and excitation out of states in the sub gap DOS, and gm and gl represent the generation of
mobile and localized quasiparticles. In the model, the photon assisted excitation of localized
quasiparticles is expressed by setting Γex = Γ0 n, where Γ0 accounts for the interaction
strength. Simplifying the model (see Appendix B) yields an expression for the dependence
of τss on the average number of circulating photons in the resonator,

1
τss

= Γr +Γ0

[
n̄+

1
2γ

(√
1+4γ n̄−1

)]
. (3.3)

The exponential relaxation rate consist of a residual, constant rate Γr, and a part ∝ Γ0 n. In
the photon number dependent part γ = 2ΓlocΓ0/(gmΓml). In similar fashion we also obtain
an expression for the loss caused by localized quasiparticles, which is also photon number
dependent now,

1
Qi

=
1

Q0
+β

 1
1+ γ n̄

1+ 1
2 (
√

1+4γ n̄−1)

−1

 . (3.4)

At low numbers, the internal quality factor reaches a residual value Q0 independent of the
photon number n. In Eq. (3.4) β ∝ Γloc/Γml and also takes into account quasiparticle-photon
coupling strength and the DOS.

The solid orange line in Fig. 3.22 shows a fit of Eq. 3.3 to the data of resonator A2.
As can be seen, the model captures well the observed trend in τss(n), with fit parameters
Γr = 0.4s−1, Γ0 = 3× 10−3 s−1, and γ = 0.8. However, due to the large scatter in τss and
only a single resonator which shows a change in τss(n) a more quantitative analysis of the
phenomenological model needs further, more detailed experiments.
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3.4 Quasiparticle dynamics in grAl resonators

Figure 3.23: Internal quality factor as a function of n for resonators A2 and B2 fitted with a phenomenological
model attributing the increase of Qi to the activation of localized quasiparticles. The fit of the phenomenological
model captures the measured data well.

Figure 3.23 shows the internal quality factor Qi as a function of the applied readout power for
resonators A2 and B2. The dashed black lines are fits of Eq. (3.4) to the measured data, with
the fit parameters given in the correspondingly colored boxes in the plot. Both resonators
show comparable residual quality factors on the order of 1×105. The coefficients γ and β

differ approximately by a factor of 2 between resonators A2 and B2 (cf. correspondingly
colored boxes in Frig. 3.23). A possible explanation is the smaller cross section of resonator
A2, which could lead to a stronger quasiparticle-photon coupling, which influences the
coefficients γ and β . However, since τss of resonator B2 is flat across the measured range of
average circulating photon numbers, the observed increase of Qi could also be attributed
to the suppression of residual dielectric loss. In conclusion, for a more quantitative insight
into the dynamics of quasiparticles in rectangular strip grAl resonators further experiments
exploring a larger parameter space of geometries, possibly with an optimized measurement
setup for the time resolved recording of the resonant frequency are necessary.

As a final step we perform similar measurements as in Fig. 3.18 at a temperature of 200 mK.
Figure 3.24 shows exemplary events recorded in all three resonators. At these temperatures,
due to thermal excitation, the background quasiparticle density is increased, which leads to a
significant speedup for the relaxation time of the observed quasiparticle events. Compared
to measurements at the base temperature of our cryostat (25 mK), the relaxation process
is ∼ 2 orders of magnitude faster, and not resolvable well enough anymore to perform a
quantitative analysis similar to the data measured at base temperature. Nevertheless, these
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measurements further confirm quasiparticles as the source of the observed events and could
also provide a starting point for further, more detailed investigation of quasiparticle dynamics
in grAl resonators.

Figure 3.24: Impacts in rectangular strip resonators A2-C2 at 200 mK. Impacts similar to the ones observed at
T ≈ 20mK are also visible at higher temperatures. The relaxation time of the events is decreased by about two
orders of magnitude compared to the low temperature results.
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4 Granular aluminum fluxonium qubit

Building on the encouraging results of Chapter 3, which show the potential of granular
aluminum for the realization of superinductors in quantum circuits, in this chapter we
describe the design, fabrication, and measurement of a fluxonium qubit with a superinductor
fabricated from a grAl thin film. As already discussed, the susceptibility of the fluxonium to
different loss channels such as capacitive, inductive, or dissipation caused by quasiparticle
tunneling across the circuit’s small Josephson junction can be in-situ tuned by an external
magentic flux (cf. Sec. 1.2). This feature makes the fluxonium an ideal testbed for the
investigation of superinductors realized using grAl.

In the following chapter, we will discuss the design and fabrication of the grAl fluxonium,
present spectroscopic measurements and finally conclude with a discussion of the measured
coherence in the investigated samples.

4.1 Design and fabrication

Similarly to the rectangular strip resonator measurements, we also employ the 3D copper
waveguide sample holder for our experiments involving the grAl fluxonium. The relatively
straightforward design of the coupling between a resonator and the waveguide mode combined
with the well controllable electro-magnetic environment, motivate the choice of sample
holder geometry. For a discussion regarding the sample holder, which follows the approach
reported in Ref. [102], see Sec. 3.1.1. A general description of the simulation technique for
the coupling between the waveguide and a superconducting circuit can be found in Sec. 3.1.2.

In Sections 4.1.1 and 4.1.2 we describe the design process for the readout resonator and
fluxonium, and give the chosen circuit parameters for the inductively coupled fluxonium-
resonator system. Following that, we outline two fabrication approaches for the realization of
a fluxonium qubit with grAl superinductor in Section 4.1.3. Both of these approaches allow
the fabrication of the small Josephson junction and the superinductor in one lithography
step. The first process using two angled evaporations leads to a design completely realized
in grAl. In contrast, for the second technique we employ two angle evaporations of pure
aluminum to form the Josephson junction and readout resonator, followed by a zero angle
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deposition of the grAl superinductor. We pursued both fabrication approaches. However, the
latter first produced the working fluxonium samples which were measured during this thesis,
and we did not continue fabrication in parallel with the measurements.

In the last part of Section 4.1.3 we describe a cleaning process to remove native aluminum
oxide layers [95]. This cleaning process allows to coherently contact aluminum layers
realized in different lithography steps, which allows to connect arbitrarily shaped grAl
superinductors to Josephson junctions (cf. Ref. [152, 153]).

4.1.1 Readout resonator

Among the characteristics which make superconducting quantum circuits one of the most
promising systems for the realization of a quantum computer is the straightforward readout
technique of superconducting qubits via the dispersive readout scheme [49, 50]. Depending
on its state, the qubit induces a frequency shift in the resonator, which is dispersively coupled
to the qubit, meaning that the coupling strength between qubit and resonator g is much
smaller than the frequency difference between both systems, the so called detuning ∆.

How fast information can be gathered from a resonator is proportional to the inverse of
the resonators linewidth 1/κ , however, since resonator and qubit are coupled, the qubit is
connected to the environment through the resonator. Therefore, the so called Purcell effect
(or radiative loss) potentially limits the excited state lifetime of a qubit [154]. Furthermore,
as a rule of thumb the resonator linewidth κ should be comparable to the dispersive shift
of the resonator χ , to achieve high readout fidelity. Following these considerations, we
target a resonator linewidth ∼MHz, which at resonant frequencies in the 6 GHz to 8 GHz
range corresponds to total quality factors Ql ∼ 103. Ideally, the total quality factor should
be entirely limited by coupling to the measurement setup, such that we aim for a coupling
quality factor Ql ≈ Qc ∼ 103. This implies Qi� Qc at n≈ 1, which means that much less
photons are lost to intrinsic dissipation in the resonator compared to the number of photons
that is transmitted to the measurement apparatus.

Figure 4.1 shows the readout resonator and fluxonium design as well as an electrical circuit
diagram. Since the resonator couples via its dipole moment to the propagating TE10 mode
of the waveguide and closely resembles a dipole antenna, we also refer to the readout
resonator as the readout antenna or simply antenna. All inductive elements of the antenna
are implemented using grAl wires, which allows to tune the inductance by simply adjusting
the number of squares of a given inductor.

As a first constraint for the ensuing readout resonator geometry design, we chose the targeted
grAl film resistance. As a conservative choice, we aim at sheet resistances of 300 Ω/� and
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600 Ω/�, which ensures grAl film resistivities significantly below 104 µΩ cm, where the
material undergoes a superconductor-to-insulator transition (SIT) [82]. As discussed above
we target a coupling quality factor Qc ∼ 103 at a resonant frequency f0 ∼ 7GHz, which we
achieve using the simulation technique outlined in Sec. 3.1.2. The resulting antennae have
a total length of 1 mm and width of 10 µm, which is also comparable to the dimensions of
resonator B2 with Qc ≈ 4× 103 (cf. Sec. 3.2.1). Table 4.1 lists the design values of four
antennae to be patterned on the same chip, each with a nominally identical fluxonium qubit
coupled to it.
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Figure 4.1: Optical images and schematic circuit of the granular aluminum fluxonium. (a) Overview of the entire
circuit. The long wires are the readout resonator and provide the dipole moment for coupling to the waveguide.
Two pads on both ends of the resonator are used for room temperature resistance measurements. (b) A zoom in
[cf. yellow box in (a)] shows the fluxonium circuit. Granular aluminum wires (false colored in red) are used to
implement all inductive elements of the circuit. The small Josephson junction, which is shunted by the grAl
superinductor is fabricated with pure aluminum electrodes in a hybrid Niemeyer-Dolan-bridge free technique
[59–61]. (c) Electrical schematic of the fluxonium resonator circuit. The equivalent circuit allows to connect the
fluxonium circuit elements with the fabricated structures [cf. panel (b)].
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Table 4.1: Design values for the readout resonators of grAl fluxoniums in a 3D rectangular waveguide sample
holder.

L (nH) C (fF) resonant frequency (GHz)
21 22 7.405
23 22 7.075
25 22 6.786
27 22 6.530

4.1.2 Granular aluminum fluxonium

After converging on four sets of parameters for the readout resonators, the present section
briefly discusses the design of the fluxonium qubits. To implement the coupling between
qubit and resonator we use an inductive coupling scheme. This scheme has been successfully
used before [16, 101, 102], and allows to harness the control over the shared inductance
by adjusting the length of a grAl wire without the need of any further simulations to
precisely design a coupling capacitance. Aiming for a large readout signal, we target a
dispersive shift at the fluxonium half flux sweet spot comparable to the total linewidth of the
readout resonator κ . Harnessing the capabilities of a numerical tool [51], which efficiently
implements the Hamiltonian diagonalization approach presented in Ref. [30], we pick a
set of fluxonium parameters according to the mentioned requirement χ ∼ κ . Finally, we
converge on a fluxonium parameter set, that is similar to designs reported in the literature
[16, 101, 102], see Tab. 4.2.

Table 4.2: Design values for the inductively coupled grAl fluxonium readout resonator system.

Lr Lq Ls Cr CJ EJ/h
25 nH 375 nH 3 nH 22 fF 5 fF 11 GHz

A challenging task in the design of the fluxonium is to ensure a high enough frequency of the
self-resonant modes of the superinductor, which should be well above the qubit operating
frequency range of approximately ∼ 0.5GHz to 12GHz. Extensive numerical simulations
were carried out to fulfill this, and further constraints on the superinductor design, such as
the total inductance (cf. Tab. 4.2), and superinductor wire geometry [51]. As a result of this
simulation effort, a width for the superinductor wire of 120 nm was chosen, which allows
to accommodate the desired inductance using a R� = 300Ω/� grAl film, while limiting
the added capacitance due to the wire, which ensured that the first self resonant mode of
the superinductor is above ∼ 14GHz. The final fluxonium design for a targeted grAl sheet
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by a ∼ 150µm×24µm rectangular shaped superinductor loop, which is inductively coupled
to the readout resonator via a 3 µm long shared grAl wire (see Fig. 4.1). On the same wafer,
we also add a chip design for a R� = 600Ω/� grAl film, by simply using grAl wires with
half the length compared to the lower resistance design.

4.1.3 Superinductor implementation techniques

The following section outlines three approaches to connect a grAl superinductor to other
parts of a quantum circuit. Two of the techniques employ a single lithography step fabrication
process at the cost of some added design complexity. The third approach offers greater
flexibility in terms of the circuit’s geometry, but necessitates at least two lithography steps
and a connection between lithography steps, which preserves the circuits quantum coherence.
For connections to pure aluminum layers, the latter issue could be solved by an argon milling
process, which removes the insulating AlOx layer, that naturally forms on aluminum layers
if exposed to oxygen, and allows coherent contacts (see Ref. [95], cf. Refs. [155, 156]).

Two angle approach

PMMA
Copolymer
Substrate
1. Evap: grAl
2. Evap: grAl

Figure 4.2: Circuit fabrication using the bridge-free technique for the Josephson junction [61]. The left panel
shows the lithography mask for the small Josephson junction of the fluxonium whereas the right panel show
cuts at the positions of the orange dashed lines. White areas indicate sections were both resists are completely
removed. Light blue indicates an intact top layer resist, below which the bottom resist is removed to form the
asymmetric undercut [61]. In the first evaporation (green), we angle deposit grAl, which forms the bottom
Josephson junction electrode as well as its connecting wires, making up about half of the superinductor loop.
After an oxidation forms the insulating barrier of the Josephson junction, we deposit grAl under the opposite
angle (red), completing the Josephson junction and closing the superinductor.

The two angle approach relies on the fabrication of asymmetric undercuts to be able to build
the Josephson junction using the bridge free technique [61]. As demonstrated already by L.
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despite the disordered nature of the grAl electrodes. Fig. 4.2 schematically shows the junction
area lithography mask employing the bridge-free technique described in Ref. [61]. For the
design of the superinductor length and geometry one has to consider that wires parallel to
the evaporation direction are deposited twice and consequently have approximately half
the inductance. Furthermore, the superinductor loop is closed through a second junction,
which is either the top or bottom parallel wire and should be designed large enough such
that it does not add nonlinearity into the circuit. In case the readout antenna should not be
fabricated from grAl, a second lithography step is necessary, which also needs a coherent
contact between different lithographic layers (cf. Sec. 4.1.3).

Three angle approach

A benefit of the three angle process illustrated in Fig. 4.3 is the ability to implement the
readout antenna for our current design from pure aluminum without any connecting layers or
additional lithography steps. The first step is the fabrication of a conventional Al/AlOx/Al
Josephson junction by two shadow evaporations and an oxidation step in between. In this step
a Niemeyer-Dolan bridge as well as asymmetric undercuts are utilized. The superinductor
wires are ∼ 120nm wide and have no intentional undercut. Therefore, the angle deposited
aluminum lands on the resist sidewalls and is removed during lift-off. This prevents a
shunting of the grAl wires by the smaller impedance pure aluminum film. Structures such
as the readout resonator, which are much wider than the superinductor wires allow the
deposition of aluminum on the substrate, even though we employ a shallow angle of ±30◦

for the aluminum evaporation step. Additionally, grAl wires parallel to the evaporation
direction of the aluminum (two short sides of the superinductor loop) are shunted. In the
final fabrication step, we realize the grAl superinductor by a zero angle deposition.
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Figure 4.3: Three angle fluxonium fabrication. The dashed lines in the top view drawing indicate the location
of the vertical cuts shown on the bottom right. Using the illustrated process allows the in-situ integration of
Al/AlOx/Al Josephson junctions with a grAl superinductor in a single lithography step. First, we deposit two
pure aluminum layers from opposite angles (indicated in green and red), interrupted by a static oxidation step,
which forms the Josephson junction. In a third step, we deposit the grAl wires using a zero angle evaporation.
Since we design the superinductor wires ∼ 120nm wide, the aluminum layers land on the vertical resist walls
and get lifted off. Only wider structures, for example the readout resonator antenna (cf. Fig. 4.1), allow for the
deposition of pure aluminum, which shunts the grAl layer.

Argon ion milling for coherent superconducting contacts

The two step lithography approach in principle allows arbitrary geometries compared to the
three angle approach for the grAl superinductor, since it is realized by a zero angle deposition.
Josephson junctions can be added to the design as a first or second lithography step and
can be implemented by any fabrication process. A key technology needed for multi-layer
quantum circuits is a cleaning process of the native oxide on aluminum layers, which allows a
good galvanic contact and ensures quantum coherence. In the following we describe an argon
milling process, which provides both requirements at a level of Qi ∼ 106 [95, 155, 156].

We perform the argon ion milling step using a Kaufman ion source [158], which is directly
connected to the load lock of our Plassys MEB 550 S shadow evaporation machine. To
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remove the native aluminum oxide layer, we use 4 sccm of Ar gas, a beam voltage of 400 V,
and an accelerating voltage of 90 V at a beam current of 15 mA. First, we calibrate the
duration of the milling process by DC measurements. After 2 min of milling the contact
resistance is smaller than the sheet resistance of the pure aluminum film R�,Al ∼ 1.5Ω/�.
From these results we estimate a milling rate ∼ 1nm/min to 2nm/min of the native AlOx

layer by the argon milling process. Patterned features in the resist are widened by . 1µm,
together with a roughening of the edges (see. Fig. 4.4). After 3 min of milling the bottom
aluminum electrode is still continuous, indicating the robustness of the ion milling process
to slight variations of the milling rate. However, by completely removing aluminum layers
we estimate that the milling rate of pure aluminum is about a factor of ten bigger than that of
AlOx for the investigated cleaning process.

5 mm

10μm
10μm

12
95

 μ
m

2 μm

first layersecond layer

Figure 4.4: Resonator design for the test of argon ion milled overlap contacts. To decrease susceptibility to
dielectric loss we employ the 3D rectangular waveguide sample holder (cf. Sec. 3.1.1). The zoom in shows a false
colored optical image of a lumped element geometry resonator. The 12 mm long meandered inductor is identical
between the four resonators on every chip, whereas we sweep the length d of the capacitor to design the resonant
frequencies. False colored scanning electron image of the overlap contact area. As can be seen, the second metal
layer (red), which is deposited following the argon milling process, is widened and has roughened edges.

In order to test the coherence of overlap contacts we perform a set of experiments on pure
aluminum resonators in a 3D waveguide sample holder geometry. These resonators have two
overlap contacts in a position of large current and small electric field, which we clean using
the argon ion milling process. We compare the internal quality factors of resonators with
milled contacts with those of resonators with nominally identical geometry, but fabricated in
a single lithography step.

Figure 4.4 shows the resonator geometry, which consists of a l = 12mm long meandered
inductor with a width w = 10µm. Each set of samples consists of four resonators distributed
in a frequency band of 300 MHz around ∼ 4.6GHz. We achieve these different frequencies
by varying the length d of the capacitor from 850 µm to 1000 µm in 50 µm steps. To decouple
the resonators from the microwave environment, we intentionally design their resonant
frequencies below the 3D waveguide sample holder cutoff frequency (cf. Sec. 3.1.1).
Employing this strategy, we achieve coupling quality factors Qc ∼ 106.
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To incorporation overlap contacts into the resonator we interrupt the meandered inductor
in the middle and close the wire in a subsequent lithography step with in-situ argon ion
milling immediately before metal deposition (cf. read meander and blue colored patch in
Fig. 4.4). We characterize four fabrication variations, which are given in Table 4.3 in order
to investigate different effects of the argon milling process. The first aluminum layer has a
thickness of 30 nm, while the second has a thickness of 50 nm.

Figure 4.5 shows the measured resonant frequencies and internal quality factors of the four
fabrication variations described in Tab. 4.3. Since the ion milling process increases the width
of wires, which are deposited after the cleaning step, the resonant frequencies of sample
A and C are lower compared to samples B and D. Through a wider wire the number of
squares of the inductor l/w is reduced in samples B and D, which decreases the kinetic
inductance and leads to higher frequencies. A widening of the strips ∼ 1µm could explain
the observed frequency shift on the order of 40 MHz, and is consistent with the widening
found in SEM images.

Table 4.3: Fabrication sequence of experiments investigating the coherence of argon ion milled overlap contacts.

Sample Fabrication step 1 Fabrication step 2
A complete resonator -
B - complete resonator
C resonator, inductor interrupted inductor closing bridge
D inductor closing bridge resonator, inductor interrupted

Since the kinetic inductance fraction in our pure aluminum resonators is on the order of 10 %
to 15 %, we estimate that the change in kinetic inductance due to the different thicknesses of
the aluminum layers should be on the order of 5 MHz.

The frequency difference between resonators fabricated in the same lithography step with and
without overlap contacts is about 10 MHz (A and C) and 20 MHz (B and D). From the fact
that resonant frequencies of samples with overlap contacts are higher than those of resonators
without contacts we conclude a negligible kinetic inductance from the overlap contacts.

Based on the previous discussion, we would expect higher resonant frequencies of sample
B compared to sample D since a larger part of the meander widens due to the milling in
resonator D. Possible explanations for the observed higher frequencies of sample D could be
fluctuations of the width of wires on the sample due to ion beam inhomogeneities or caused
by non-uniform UV-exposure during the optical lithography process.

Figure 4.5 shows the mean internal quality factors of the resonators of each sample (solid
line) and indicates the spread between the highest and lowest Qi by the shaded area. The two
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single layer samples (A, B), and the sample, where the argon ion milling process is only
applied to the area of the connecting patch (C) show internal quality factors Qi > 106 in the
single photon regime. Sample D, where we apply the argon ion cleaning process also to the
area of large electric field, shows a significantly lower internal quality factor on the order of
7×105. In this sample the milling might have caused a degradation of the substrate resulting
in an increased dielectric loss similar to what has been reported in Ref. [156].

A

B

C

D

A

B

C

D

Figure 4.5: Internal quality factors as a function of the average number of circulating photons and resonant
frequencies of the four samples. Samples which are fabricated in a single lithography step (A, B) as well as
sample C, where only the overlap areas of the bottom layer are exposed to the argon ion milling process show
internal quality factors larger than 106 in the single photon regime. Resonator D, where the substrate below the
capacitor is exposed to the milling process, shows a lower internal quality factor. Resonators on sample C show
higher resonant frequencies compared to sample A, indicating that the overlap junctions do not add significant
kinetic inductance. The resonant frequencies of sample D show higher resonant frequencies compared to B,
opposite to what is expected. We attribute this to fabrication inhomogeneities (for a more detailed discussion see
the main text).
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The mean internal quality factor of the samples with a bridge (B, D) allows to extract
an upper bound on the residual resistance of the contacts by estimating the geometric
inductance of a 1.6 cm long and 10 µm wide wire, L ≈ 33nH and taking into account the
kinetic inductance fraction α ∼ 10%. Using the definition of the quality factor of a lossy
inductor [37], we calculate a resistance R = ωL/Qi = 0.62mΩ for resonators with two
overlap contacts, which have a mean internal quality factor Qi = 1.5× 106 at a resonant
frequency of 4.5 GHz. Taking into account the area of the overlap contacts we extract a
residual resistivity limit for an overlap contact cleaned by an argon ion milling process of
R = (0.62mΩ/2)100µm2 = 31mΩ µm2. We believe the presented argon ion milling process
allows the fabrication of increasingly complex quantum circuit designs while maintaining a
coherence on the level of Qi ∼ 106.

4.2 Spectroscopy

In the following section we present results of standard two-tone spectroscopy measurement
on two nominally identical grAl fluxonium qubits. Both samples are fabricated on the same
chip with fluxonium qubits coupled to two readout resonators at different frequencies. For
the fabrication we employed the three angle process as described in Sec. 4.1.3.

4.2.1 Sample 1

First, we find the readout resonator frequency at fr = 7.278GHz, about 200 MHz lower
than the designed value (cf. Tab. 4.1), which can be explained by a ∼ 5% smaller kinetic
inductance for a kinetic inductance fraction α ∼ 1. From a fit to the measured spectrum of
the resonator we extract a total quality factor Ql = 1.9×103, which is limited by a coupling
quality factor Qc = 2.3×103, as designed. Furthermore, from the fit we extract an internal
quality factor Qi = 11×103 for the readout resonator.

Figure 4.6 shows the result of a standard two-tone spectroscopy measurement. By monitoring
the readout resonator response while sweeping a second continuous wave microwave tone in
frequency we find the fluxonium qubit transition. Since the dispersive shift increases close
to the resonator qubit anticrossing (cf. Fig. 1.9), we start spectroscopy close to this external
magnetic flux point. A sweep of the bias current through the coil placed around the 3D
rectangular waveguide sample holder while monitoring the resonant frequency of the readout
resonator quickly reveals the bias currents at which resonance between the fluxonium and
resonator occurs. This measurement is also already an indication for a functional fluxonium
qubit. From measurements close to the anticrossing (see bottom right panel Fig. 4.6), we
extrapolate the fluxonium qubit frequency at Φext/Φ0 = 0 and Φext/Φ0 = 0.5, which we
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subsequently measure to be 12.538 GHz, and 594 MHz, see bottom center and bottom left
panel in Fig. 4.6 respectively. Using these measured points we perform a first preliminary fit
of the fluxonium Hamiltonian to narrow down the search interval for the qubit frequency
at the remaining external magnetic flux points. We measure in a frequency band ±50MHz
around the expected qubit frequency for external magnetic fluxes from ∼−0.5Φ0 to 0.5Φ0

to minimize measurement time, while at the same time obtaining a fine resolution of the
fluxonium spectrum.

Figure 4.6: Spectrum of grAl fluxonium sample 1. The frequency of the first transition can be tuned from
595 MHz to 12.5 GHz as a function of the externally applied magnetic flux. From a numerical fit (solid line) to
the measured data (blue points) we extract the qubit parameters, which are given in the plot. The bottom left
color plot provides more details on one of the so called half-flux sweet spots, where the fluxonium frequency
reaches a minimum and is to first order flux noise insensitive. The central bottom plot shows the zero flux sweet
spot where the transition frequency reaches its maximum. Spectroscopy between the sweet spots over a wider
frequency range does not show large anti-crossings which would be indicative of coupling to spurious modes or
two-level systems [143].

Finally, we perform a numerical fit (black line) of the uncoupled fluxonium Hamiltonian
to all measured points (blue cirlces), see Fig. 4.6. From this numerical fit we extract the
fluxonium qubit parameters L = 226nH, C = 5.2 fF, and EJ/h = 12.4GHz. The fitted values
for the Josephson energy and fluxonium qubit capacitance are in good agreement with the
designed values (cf. Tab. 4.2). However, the fitted value of Lq +Ls = 226nH is ∼ 40%
smaller than designed, which is a significantly larger discrepancy compared to the inductance
of the readout resonator. We attribute this difference to a variation in the geometry of the
superinductor, possibly a larger width of the wire than designed. Further investigation of this
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difference would necessitate scanning electron microscopy images of the measured sample
to obtain detailed information about the precise superinductor wire geometry.

In the entire fluxonium qubit spectrum, presented in Fig. 4.6 we did not observe any anti-
crossings with spurious modes which would indicate strong coupling. However, aside from
the half-flux and zero-flux sweet spot, and the qubit frequency interval 6.3 GHz to 6.8 GHz
(see bottom panels Fig. 4.6), the resolution of the external magnetic flux was chosen such
that it corresponds to a qubit frequency change of ∼ 140MHz between two data points.
Therefore, we can draw only limited conclusions from this observation.

The dispersive shift of the readout resonator was on the order of a few tens of kHz, about a
factor of 5 to 10 smaller than designed. Consequently, the measurement signal is only on
the order of ∼ 50 to 100 mrad, corresponding to an angle ∼ 5◦ between the ground and
excited state points in the real-imaginary plane. This small separation mandates significant
averaging of the readout resonator signal. Due to the small dispersive shift of the readout
resonator, we were not able to identify any higher level transitions of the fluxonium qubit.
However, from the good agreement between the measured lowest transition frequency and
the numerical fit of the fluxonium Hamiltonian we conclude that the grAl superinductor
indeed behaves as a linear, and lumped element inductor.

Figure 4.7 shows the spectrum of grAl fluxonium sample 1 following thermal cycling to room
temperature twice and a total storage time in ambient atmosphere of six weeks between the
cooldowns. By two-tone spectroscopy we measure the lowest fluxonium transition frequency
at both sweet spots and close to the anti-crossing between resonator and qubit (blue points).
A numerical fit to the measured data shows fluxonium circuit parameters in good agreement
with the initially measured values. Therefore, we conclude negligible aging of the grAl
superinductor and the Josephson junction (cf. Appendix A.2 for the employed process to
remove resist residue, which could has been identified as a possible origin of aging [159]).

Figure 4.7: Spectrum of grAl fluxonium sample 1 after twice thermal cycling. Fitting the measured qubit
transition frequencies (blue points) reveals no significant change in the fluxonium circuit parameters, which are
given in the plot. From these results we conclude negligible aging of the grAl superinductor even if the sample is
thermally cycled and stored in ambient atmosphere for a total time of six weeks.
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4.2.2 Sample 2

The readout resonator of grAl fluxonium sample 2 has a resonant frequency fr = 7.053GHz,
and a total quality factor Ql = 1.4× 103, similar to the values observed in the readout
resonator of grAl fluxonium sample 1. We perform two-tone spectroscopy at the two extreme
points of the fluxonium spectrum, and close to the resonator qubit anti-crossing, where the
dispersive shift is on the order of 50 mrad. Blue points in Fig. 4.8 show the measured data
and the black solid line is a numerical fit of the fluxonium Hamiltonian to the measured
data. From the fit we extract the fluxonium parameters Ls +Lq = 221nH, C = 5.8 fF, and
EJ/h = 13.2GHz. The fitted parameters are comparable to those of grAl fluxonium sample 1,
which is an identical fluxonium by design. At Φext/Φ0 = 0 (0.5) we measure a maximum
(minimum) fluxonium qubit transition frequency of 13.093 GHz (406 MHz).

Due to the larger EJ in sample 2, the dispersive shift is even smaller than in sample 1 and on
the order of a few kHz. Therefore, only a small number of measurement points are available
and we are not able to measure the transition frequency to higher excited states. However,
from the good agreement between numerical fit and measured data we again conclude that
the grAl superinductor acts as modeled in the electrical schematic of the fluxonium circuit.
Similar to sample 1, the inductance of the superinductor is about 40% smaller than expected,
which could be due to a systematic difference between the designed and realized grAl wire
geometry. To further investigate the origin of this difference scanning electron microscope
images could provide further information about the wire dimensions.

Figure 4.8: Spectroscopy of grAl fluxonium sample 2. Similarly to sample 1, the transition frequency can be
tuned over ∼ 12GHz as a function of the external magnetic flux. The solid line is a numerical fit of the fluxonium
Hamiltonian to the measured data (blue points). All fit parameters are given in the plot and are comparable to
those of sample 1, which is by design an identical sample.
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4.3 Coherence

In the following section we show the results of the coherence time measurements of grAl
fluxonium samples 1 and 2. Due to the small dispersive shift of both samples, measurements
were only possible at the two sweet spots. To conclude the section, we discuss possible
limiting loss mechanisms for both samples based on the evaluation of T1 relaxation channels
as discussed in Sec. 1.2.3. We performed extensive measurements on sample 1, while sample
2 mostly serves as a control experiment and gives an indication about the reproducibility of
the measured coherence times in sample 1.

4.3.1 Sample 1

Figure 4.9: Energy relaxation time of fluxonium sample 1 at the half flux sweet spot. Exactly at half flux, we
obtain T1 = 23µs for a single exponential decay. Measuring T1 slightly detuned from the sweet spot does not
show significantly lower energy relaxation times, indicating that T1 is not limited by quasiparticle tunneling
across the small Josephson junction. A repeated measurement over 17 h shows a mean T1 = 23µs with a standard
deviation of ±4µs.

As the usual fluxonium qubit operation point is at an external flux of Φext/Φ0 = 0.5 we
start the discussion of the grAl fluxonium coherence for this so called half-flux sweet spot.
Figure 4.9 shows a T1 measurement exactly at the half flux sweet spot averaged for ∼ 17h.
We calibrate the raw data of the T1 relaxation measurement using the results of a Rabi
oscillations experiment. This unambiguously determines the signal levels for the equilibrium
qubit population and its inversion. Calibrating the raw T1 data in this way, we observe a single
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exponential decay (blue points). The fit (black line) to the measured data yields T1 = 23µs.
The top right panel of Fig. 4.9 shows T1 as a function of the external magnetic flux in a
narrow interval. We extract energy relaxation times in the range of 22 µs to 28 µs. In this
plot, error bars indicate the statistical uncertainty of the fit parameters. In the bottom right
panel we show the histogram of ∼ 6000 individual measurements, whose average is shown
in the left panel. The shorter averaged T1 are distributed around the mean of 23 µs with a
standard deviation of ±4µs.

Figure 4.10: Coherence time T2 of fluxonium sample 1 at the half flux sweet spot. From the fit of an exponentially
damped cosine (solid line) to the measured data, we extract T2 = 28µs at Φext/Φ0 = 0.5. Due to the increasing
susceptibility to flux noise we observe a decrease in T2 by roughly a factor of 6 only 5mΦ0 away from the sweet
spot, which corresponds to a change in frequency of 250 kHz.

Figure 4.10 shows the coherence time T2 measured by Ramsey fringes. The left panel shows a
measurement at Φext/Φ0 = 0.5, where we drive the fluxonium qubit 110 kHz detuned from its
transition frequency 594.37 MHz. By fitting an exponentially decaying cosine (black line) to
the measured data (blue points) we extract a coherence time T2 = 28µs. This coherence time
is comparable to that of fluxonium qubits realized with Josephson junction superinductors
[16, 17] or a NbTiN superinductor [26]. Since the fluxonium qubit spectrum is only exactly
at the half-flux sweet spot first order flux noise insensitive, slightly moving away in flux
already significantly decreases T2. The right panel in Fig. 4.10 shows the decrease of T2

by a factor ∼ 6 only 5 mΦ0 away from the Φext/Φ0 = 0.5 sweet spot (blue points), which
corresponds to a change in qubit frequency of 250 kHz (red circles). The error bars indicate
the statistical uncertainty of the fitted value. From the strong flux dependence, we conclude
that T2 is limited by flux noise. Further away from the sweet spot, T2 decreases to values
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on the order of 50 ns. The flux noise amplitude might be proportional to the length of the
superinductor [160] and could be increased in our design compared to a Josephson junction
fluxonium [161] due to the ∼ 3 times longer loop. Furthermore, fluctuations of the kinetic
inductance caused by two-level systems in disordered superconductors as recently proposed
[162] could limit T2 in our measurements.

Figure 4.11: Energy relaxation time T1 as a function of the external magnetic field close to the zero flux sweet
spot. We observe a clear double exponential decay indicating a T1 limited by quasiparticle tunneling across
the Josephson junction [16, 104]. The quasiparticle relaxation time Tq = 3µs, while the residual decay time
Tr = 12µs, which is observed in p = 65% of the measurements. Panels on the right side show the three fitting
parameters as a function of the externally applied magnetic flux.

Figure 4.11 shows T1 measured at Φext/Φ0 = 0. As for the measurements at the half-flux
sweet spot, we record the data for T1, T2, and Rabi oscillations simultaneously by interleaving
their respective measurement sequences. Using this approach, we are able to calibrate the
data for the T1 and T2 measurements to full qubit population inversion. Employing the
results of the Rabi oscillation measurement for the qubit state calibration, we observe a
double exponential decay for the energy relaxation. This double exponential is a signature of
T1 limited by excess quasiparticles tunneling across the Josephson junction and has been
reported previously [16, 43, 104]. We fit the double exponential decay with

P(t) = pe−
(

1
Tq +

1
Tr

)
t
+(1− p)e−

t
Tr . (4.1)
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Using the formula we fit a relaxation process, which is limited by an additional relaxation
mechanism with probability p. This loss channel, presumably due to the presence of excess
quasiparticles in the Josephson junction vicinity, has a characteristic time constant Tq. In the
remaining measurements, corresponding to a probability 1− p we observe a residual energy
relaxation time Tr.

We fit Eq. 4.1 to the measured data at Φext/Φ0 = 0 (see left panel of Fig. 4.11) and observe
good agreement for fit parameters Tq = 3µs, Tr = 12µs, and p = 0.35. The right panel of
Fig. 4.11 shows the three fit parameters as a function of the external magnetic flux. The error
bars indicate the statistical uncertainty of the fit. We do not observe a dependence of the
characteristic relaxation times or probability p on Φext.

Figure 4.12 shows the coherence time T2 in the vicinity of Φext/Φ0 = 0. At the first order flux
noise insensitive point (see left panel) we extract T2 = 4µs from the fit of an exponentially
decaying cosine (black line) to the measured data (blue points). Similarly to the half-flux
sweet spot, away from Φext/Φ0 = 0, T2 decreases, while the qubit frequency only changes
by 600 kHz relative to its maximum value of 12.538 GHz.

The significantly shorter coherence time T2 = 4µs compared to 28 µs at Φext/Φ0 = 0.5 could
be due to the presence of excess quasiparticles, which cause qubit decoherence as explained
in Refs. [34, 48].

Figure 4.12: Coherence time T2 of sample 1 at the zero flux sweet spot. We observe a maximum T2 = 4µs
exactly at zero flux and decreasing values away from the sweet spot, similarly to measurements at the half flux
sweet spot, which is indicative of coherence limited by flux noise. The reduced T2 at the sweet spot could be due
to an increased excess quasiparticle density [48].
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In Figure 4.13 we investigate capacitive, inductive, quasiparticle, and radiative loss as limiting
loss mechanism for the energy relaxation time of grAl fluxonium sample 1. As already
discussed and based on previously reported results [16, 43, 104], we attribute the shorter
relaxation time Tq = 3µs at Φext/Φ0 = 0 to quasiparticle tunneling across the Josephson
junction, which we refer to as quasiparticle loss (red line). To explain the observed Tq a
normalized excess quasiparticle density xQP = 1.5×10−5 is necessary. The density is about
one order of magnitude larger than previously observed in pure aluminum superconducting
circuits and could be due to an effective quasiparticle trapping in the Al/AlOx/Al Josephson
junction area, which is surrounded by grAl wires with ∼ 30% higher superconducting gap.
The residual Tr = 12µs at Φext/Φ0 = 0.5 could be limited by dielectric loss in the fluxonium
circuit, capping the dielectric quality factor at Qcap = 2.2×105. This loss could either occur
due to the capacitor formed by the electrodes of the Josephson junction or due to other circuit
areas which provide shunting capacitance.

Figure 4.13: Loss channels as a function of the external magnetic flux. Following the methodology presented
in Refs. [16, 29], we estimate the limiting loss mechanisms in grAl fluxonium sample 1 (cf. Tab. 1.2).
We trace the limit due to capacitive loss (orange) assuming that the residual relaxation time Tr = 12µs at
Φext/Φ0 = 0.0 is dominated by capacitive loss. From this assumption we extract a quality factor of the capacitors
Qcap = 2.2×105. Due to the double exponential decay at Φext/Φ0 = 0.0, we conclude that Tq = 3µs is limited
by excess quasiparticles tunneling across the small Josephson junction (red). Using the numerically calculated
matrix elements (cf. Fig. 1.6), we estimate a normalized excess quasiparticle density xQP = 1.5×10−5 at the
Josephson junction. At Φext/Φ0 = 0.5, where dissipation due to quasiparticle tunneling is suppressed, we assume
that an excess quasiparticle density xQP = 4.5× 10−7 in the superinductor limits T1 = 23µs (green). From a
numerical simulation of the admittance towards the waveguide sample holder seen from the Josephson junction
(cf. Sec. 1.2.3), we conclude that energy relaxation by emission into the electro-magnetic environment does not
limit T1 at the measured external magnetic field values (purple).

Finally, based on its functional dependence we believe inductive loss limits the fluxonium T1

at Φext/Φ0 = 0.5 (green line). By inductive loss we refer to losses due to excess quasiparticles
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in the superinductor to distinguish them from losses which occur due to quasiparticle
tunneling across the Josephson junction. An excess quasiparticle density xQP = 4.5×10−7

in the superinductor, corresponding to an inductive quality factor Qind = 1/xQP = 2.2×106,
could explain the measured T1. This value is significantly higher compared to that in a
Josephson junction superinductor [16], but also lower than observed in grAl strip resonators
(cf. Sec. 3.4) and could be due to the slow relaxation time of quasiparticles in grAl [46].
The numerical simulation of the admittance seen from the Josephson junction into the 3D
rectangular waveguide sample holder using finite elements methods permits to exclude
radiative or Purcell loss [38] as a limiting loss mechanism for the measured energy relaxation
times at the two fluxonium sweet spots (purple line). For a more detailed understanding of the
limiting loss mechanisms in the grAl fluxonium more measurements of T1, covering a much
larger range of external magnetic fluxes are necessary, similar to the analysis performed in
Ref. [16]. Due to the much smaller than designed dispersive shift of grAl fluxonium sample
1, a dedicated sample with larger readout signal would be needed.

4.3.2 Sample 2

Figure 4.14: Coherence of grAl fluxonium sample 2 at Φext/Φ0 = 0.5. At the sweet spot we measure a single
exponential energy decay T1 = 13µs. As expected, T1 does not show a dependence on the external magnetic
flux. We attribute the observed fluctuations to varying T1 in time, as recently also observed in transmon qubits
[5–7]. In the right panel, we show T2 as a function of the external magnetic field. At the sweet spot, we extract
T2 = 13µs from a Ramsey fringes measurement. Due to significantly increasing susceptibility to flux noise, we
observe a rapidly decreasing T2 away from the first order flux noise insensitive point at Φext/Φ0 = 0.5.

In this section we briefly present the measured coherence times of grAl fluxonium sample
2 at Φext/Φ0 = 0.5 and Φext/Φ0 = 0. Figure 4.14 shows T1 and T2 at the half-flux sweet
spot. By interleaving the pulse sequences of T1, T2, and Rabi oscillation measurements,
we simultaneously obtain the coherence times and are able to use the Rabi oscillation
data to calibrate the qubit population inversion. At the half flux sweet spot, we observe a
single exponential decay with T1 = 13µs (see left panel in Fig. 4.14). The measured T1 is
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independent of the external magnetic flux in the narrow interval shown in the central panel of
Fig. 4.14 and we observe energy relaxation times between 10 µs and 20 µs. As already seen
for sample 1 T2 is strongly dependent on the external magnetic flux, due to the susceptibility
to flux noise. At the first order flux noise insensitive point Φext/Φ0 = 0.5 T2 reaches its
maximum of 13µs, comparable to the maximum T2 measured in sample 1.

Figure 4.15: Coherence of grAl fluxonium sample 2 at Φext/Φ0 = 0.0. Similar to grAl fluxonium sample 1,
we observe a double exponential decay for the energy relaxation time T1 at the zero flux sweet spot, which is
indicative of energy relaxation limited by the presence of excess quasiparticles at the Josephson junction. The top
right panel shows T2 as a function of the external magnetic flux, with the maximum value T2 = 2.5µs at the first
order flux noise insensitive point Φext/Φ0 = 0.0. The bottom panels show Tq, Tr , and p as a function of the
external magnetic flux.

Employing the same measurement approach as before, we quantify the coherence of grAl
fluxonium sample 2 at the Φext/Φ0 = 0 sweet spot. Again, we observe a double exponential
decay for T1, which we fit using Eq. (4.1), as shown in the top left panel of Fig. 4.15. The fitted
values Tq = 2µs, Tr = 15µs, and p = 0.44 are comparable to the parameters extracted from
the energy relaxation measurements of sample 1. Similarly, T2 is also strongly flux dependent
and reaches a maximum T2 = 2.5µs, which decreases due to the increasing susceptibility to
flux noise away from the sweet spot. The three lower panels of Fig. 4.15 show Tq, Tr, and p
(left to right) as a function of the external magnetic flux.
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Figure 4.16: Loss channels as a function of the external magnetic flux. Following the methodology presented
in Refs. [16, 29], we estimate the limiting loss mechanisms in grAl fluxonium sample 2 (cf. Tab. 1.2).
We trace the limit due to capacitive loss (orange) assuming that the residual relaxation time Tr = 15µs at
Φext/Φ0 = 0.0 is dominated by capacitive loss. From this assumption we extract a quality factor of the capacitors
Qcap = 2.2×105. Due to the double exponential decay at Φext/Φ0 = 0.0, we conclude that Tq = 2µs is limited
by excess quasiparticles tunneling across the small Josephson junction (red). Using the numerically calculated
matrix elements (cf. Fig. 1.6), we estimate a normalized excess quasiparticle density xQP = 3.2×10−5 at the
Josephson junction. At Φext/Φ0 = 0.5, where dissipation due to quasiparticle tunneling is suppressed, we assume
that an excess quasiparticle density xQP = 6.4× 10−7 in the superinductor limits T1 = 13µs (green). From a
numerical simulation of the admittance towards the waveguide sample holder seen from the Josephson junction
(cf. Sec. 1.2.3), we conclude that energy relaxation by emission into the electro magnetic environment does not
limit T1 at the measured external magnetic field values (purple).

Figure 4.16 provides an evaluation of the limiting loss mechanisms of the relaxation time
of grAl fluxonium sample 2 based on the times measured at the two sweet spots. Due to
the double exponential decay at Φext/Φ0, we again attribute Tq to the tunneling of excess
quasiparticles across the Josephson junction, which leads to a normalized excess quasiparticle
density xQP = 3.2×10−5 (red line). Owing to the potential trapping of excess quasiparticles
in the lower gap Al electrodes of the Al/AlOx/Al Josephson junction the normalized excess
quasiparticle density is about ten times higher compared to superconducting qubits fabricated
from pure aluminum. The calculated xQP is about a factor of two higher than previously
reported for sample 1. The residual relaxation time Tr could be limited by dielectric loss in
capacitive parts of the circuit, with a quality factor Qcap = 2.2×105 (orange line). At the
Φext/Φ0 = 0.5 sweet spot T1 = 13µs is likely limited by dissipation due to quasiparticles in
the grAl superinductor (green line). The estimated normalized excess quasiparticle density
in the superinductor is xQP = 6.4×10−7 and comparable to the density extracted for grAl
fluxonium sample 1, which could be significantly increased compared to Josephson junction
array superinductors [16] because of the slow relaxation time of quasiparticles in grAl thin
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films [46]. In agreement with sample 1 the observed energy relaxation times are not limited
by radiative decay of the qubit into the electro magnetic environment provided by the 3D
rectangular waveguide sample holder, as indicated by the purple line.
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In this thesis we have shown that granular aluminum is a promising material for super-
conducting quantum circuits with high characteristic impedance. Using various standard
deposition techniques for pure aluminum in a slight oxygen atmosphere allows to fabricate
granular aluminum films with normal state resistivities from 1 µΩ cm to 104 µΩ cm. By
tuning the resistivity of grAl films through the control of the oxygen partial pressure, the
amenable kinetic inductance of grAl wires can be as high as nH/�. Thanks to that, and its
straightforward deposition technique, which is fully compatible with the current standard
Josephson junction fabrication by shadow evaporation, grAl wires reduce the complexity
in design and fabrication required to realize superinductors. As we have shown, a grAl
superinductor can also be in-situ integrated with a Al/AlOx/Al Josephson junction in a single
lithography step. Based on these fabrication and design features superinductors might become
a standard circuit element like capacitor, inductor, or Josephson junction in superconducting
quantum information devices in the future.

In a first step we investigated grAl microwave resonators and extracted their internal quality
factors to evaluate the dominating loss mechanisms at microwave frequencies in granular
aluminum. Employing different geometries like standard coplanar waveguide resonators,
lumped element kinetic inductance detectors, and rectangular strip resonators in a 3D
waveguide sample holder, we tuned the energy participation ratio of the different interface
regions and thereby the susceptibility of the resonators to dielectric loss. Our results show
that grAl resonators with surface participation ratios & 10−3 are limited by dielectric loss in
interface regions, with a loss tangent comparable to values reported in the literature for pure
aluminum. In rectangular strip resonators in a 3D sample holder with further reduced surface
participation ratio and internal quality factors on the order of 105, we attribute the limiting
loss mechanism to excess quasiparticles. From a comparison with finite element methods
simulations we extract a kinetic inductance of up-to 2nH/� in these resonators, resulting in
a kinetic inductance fraction α = Lkinetic/Ltotal ≈ 1, and consequently a participation ratio of
unity for inductive loss. Based on these results we estimate a normalized excess quasiparticle
density xQP = 5×10−6, which is in good agreement with previously reported normalized
excess quasiparticle densities in pure aluminum quantum circuits. In grAl resonators with
high kinetic inductance we observe stochastic quasiparticle bursts at an average rate of
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1/20s. Following such an event we observe a quasiparticle relaxation time on the order of
seconds for resonators at a base temperature T ∼ 25mK, which is orders of magnitude longer
than observed in kinetic inductance detectors fabricated from pure aluminum. The signatures
of the observed bursts are reminiscent of high energy particle impacts in microwave kinetic
inductance detectors. Despite these remarkably long quasiparticle relaxation times, the
internal quality factors in grAl microwave resonators are comparable to superinductors
realized using Josephson junction arrays.

To further investigate granular aluminum films as an option for the realization of superinductors
in superconducting quantum circuits, we built a fluxonium qubit, i.e. a small Josephson
junction shunted by a large superinductor. By adjusting the external magnetic flux threading
the superinductor loop one can not only adjust the fluxonium qubit transition frequency but
also its sensitivity to dissipation induced by dielectric loss, by excess quasiparticles either
in the superinductor or at the small Josephson junction, or by radiative loss into strongly
coupled electromagnetic modes. In two grAl fluxonium devices we measure coherence times
T1 up to 23 µs and T2 up to 28 µs, which are comparable to other current superconducting
qubit implementations. As mentioned in the beginning of this Chapter, we believe that these
results establish granular aluminum as a viable and versatile material for superconducting
quantum circuits, which could allow the realization of increasingly complex superconducting
quantum information processing devices.

Furthermore, our results indicate future directions of research to optimize superconducting
circuits employing granular aluminum or other high kinetic inductance materials. As
mentioned earlier, a normalized excess quasiparticle density on the order of 10−6 potentially
limits the coherence of superconducting quantum circuits. In order to mitigate the influence
of quasiparticles, possible approaches are quasiparticle or phonon traps to prevent them
from reaching superconducting circuits, or the elucidation and subsequent reduction of
quasiparticle producing events. Focusing on the sources of the quasiparticle bursts and
systematically investigating their rate depending on shielding against infrared radiation,
ambient radioactivity, or other particles capable of depositing energy� 2∆0 could identify
optimized strategies to decrease the normalized excess quasiparticle density. This would not
only have implications for circuits employing high kinetic inductances, but also for integrated,
multi-qubit superconducting quantum information devices. Based on the measured rate of
quasiparticle bursts and the footprint of the resonators used to observe them, it is possible that
these impacts happen in the substrate of the chip. Although there are already results in kinetic
inductance detectors supporting this hypothesis, it would be interesting to perform such
experiments in the hermetically shielded cryogenic setups used for superconducting qubits.
If quasiparticle burst are indeed a result of high energy particle impacts in the substrate,
qubit errors induced by hot non-equilibrium quasiparticles could be correlated in qubits
fabricated on the same chip, which poses a challenge to current error correction protocols.

112



5 Conclusion & Outlook

Possible mitigation strategies for the described impacts could be phonon traps of a lower gap
material to prevent phonons with energy > 2∆0 from reaching the qubits. Here, the enhanced
superconducting gap of granular aluminum provides a possible test bed in combination with
pure aluminum phonon traps to investigate the effectiveness of phonon traps depending on
their location, difference in ∆0 and other parameters. Finally granular aluminum could also
be of interest for sensitive kinetic inductance detectors due to its high kinetic inductance
and particularly slow quasiparticle relaxation times. These slow relaxation times are an
interesting field of research themselves and future experiments employing resonators with
different grAl film resistivities might prove useful in the understanding of the underlying
physical process.

In conclusion granular aluminum is a versatile material for further developments of super-
conducting quantum information processing devices and sensitive detectors. Additionally, it
might enable experiments to elucidate the sources of the observed large normalized excess
quasiparticle density, or find possible mitigation strategies. Both aspects could become
important factors for research towards quantum information processing, with granular
aluminum potentially providing a basis for future quantum hardware developments.
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A Fabrication techniques

A.1 Granular aluminum deposition

To deposit grAl films we use a dedicated pure aluminum crucible in a commercial, controlled-
angle e-beam evaporation machine (Plassys MEB 550S

TM
), which we also use to fabricate

shadow-angle evaporation Josephson junctions. The machine has two chambers, one that
is used for oxidation and doubles as load-lock, and a second UHV chamber for metal
evaporation. Pure aluminum is evaporated at a rate of 0.3 nm/s while we control the oxygen
partial pressure in the oxidation chamber using a mass flow controller (MFC). Due to the
continuous pumping on the chamber we obtain a dynamic oxygen pressure in the 10−5 mbar
range, while in the evaporation chamber it is in the 10−6 mbar range. As shown in Fig. A.1, the
grAl resistivity changes exponentially with the oxygen partial pressure (cf. Ref. [140]). The
high sensitivity of the film resistivity to evaporation rate and oxygen partial pressure results
in film resistivities reproducible within a factor of two from one evaporation to the next.

Granular aluminum deposition process flow

1. Pump the loadlock for 3 h down to a pressure in the range of 5×10−7 mbar,

2. Resist residue cleaning for 2 min (cf. Sec. A.2),

3. Titanium evaporation with closed sample shutter (0.2 nm/s for 2 min),

4. Regulate aluminum evaporation rate to 0.3 nm/s,

5. Regulate oxygen mass flow depending on the targeted resistivity (cf. Fig. A.1),

6. Open shutter,

7. Wait for desired grAl film thickness, close shutter, stop oxygen flow, ramp down
aluminum evaporation rate,
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8. Target rinsing (evaporate 20 nm of pure aluminum at 1 nm/s with the shutter closed
and no oxygen).

Figure A.1: Measured granular aluminum sheet resistance as a function of oxygen mass flow (blue circles). The
functional dependence between sheet resistance R� and oxygen mass flow during evaporation at 0.3 nm/s is well
approximated by an exponential function R�(x) = 0.001kΩ× exp

[
4.133x sccm−1] (black line). We attribute the

observed fluctuations of R� to variations of the evaporation rate smaller than the precision of the rate control,
which is on the order of ±0.03 nm/s.

Larger evaporation rates require a higher oxygen partial pressure to achieve the same film
resistivities, which relaxes constraints on the resolution of the MFC to target a specific film
resistivity. Furthermore, for optimal fabrication process reliability an in-situ measurement of
the sheet resistance during film deposition would be a very valuable tool. Combined with
control of the oxygen partial pressure during deposition this would allow a specific film
resistance and thickness. An ability to stop film deposition at a targeted sheet resistance
would also greatly facilitate device fabrication but compared to the previously mentioned
approach would result in varying film thickness for the same sheet resistance and hence
variations of the granular aluminum resistivity.

A.2 Resist residue cleaning

Previous results have shown that the increase of the tunnel barrier resistance of Josephson
junctions fabricated by double-angle shadow evaporation techniques [59, 60] can be stopped
at the price of a jump in resistance up to a factor of ∼4 by annealing the sample after
fabrication [163]. Alternatively, this so-called aging, which happens during storage in ambient
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atmosphere, can be avoided by thoroughly removing any resist residue on the substrate in
the Josephson junction area prior to deposition of the first electrode [159].

Figure A.2: Junction aging for resist residue cleaning times of 1 and 2 min. Applying the resist residue cleaning
process for 2 min reduces the aging during sample storage in ambient atmosphere at room temperature to ∼ 10%.
Error bars indicate two standard deviations around the mean of the two dataset, each consisting of approximately
10 individual measurements. Solid lines are a guide to the eye. For completely stable junction parameters the
effectiveness of the cleaning step would have to be increased, either by extending the duration or by applying a
plasma cleaning process with larger oxygen ratio similar to the one presented in Ref. [159].

For this purpose, we developed a cleaning process utilizing the Kaufman ion source of
our controlled-angle evaporation tool, allowing in-situ substrate cleaning immediately
before Josephson junction fabrication. The parameters of this process are as follows: 120 V
acceleration voltage, 10 mA, 10 sccm O2, 5 sccm Ar. This process results in an etch rate
of ∼0.35nm/s for the top layer resist MicroChem

TM
A4 PMMA of our bilayer. Figure A.2

shows the results of two control experiments with different resist residue cleaning times.
The process with previously mentioned parameters reduces aging to ∼ 10% compared to
junction aging of up to 300% for Josephson junctions without any cleaning. For all samples
fabricated and measured during the course of this thesis the resist residue cleaning process
was employed.

A.3 Electron-beam lithography lift-off

For a fast sample fabrication with only a small number of repetitions, we use an electron-beam
lithography lift-off process, which employs a bilayer resist stack. Figure A.3 schematically
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illustrates the fabrication process. The bottom resist is a copolymer MMA (MicroChem
TM

EL-13), which we apply onto the used substrate using a spin coater. The resist is distributed
over the entire substrate by spinning for 100 s at a speed of 2000 RPM. Afterwards, we
perform a baking step of 5 min on a hot plate at 200 ◦C. This process results in a resist
thickness ∼ 1µm for the undercut layer. For the top resist we use a PMMA based resist
(MicroChem

TM
A4), spun on top of the bottom layer at a rotation speed of 2000 RPM and

using a spinning time of 5 min, which results in a resist thickness∼ 300nm. We use the same
baking step of 5 min on a hot plate heated to 200 ◦C to harden the top resist. Finally, to avoid
charging effects during the e-beam exposure step when using an insulating substrate, we
sputter a gold layer with a thickness on the order of a few nm. This layer provides screening
and avoids beam deflection by a charged resist or substrate.

For the patterning of our samples we use a 50 keV e-beam lithography system. Due to the
moderate acceleration voltage, the electrons are scattered substantially in the bilayer resist
stack, which leads to a significant beam broadening [164]. Additionally, backscattering of
electrons in the substrate can occur. Since the bottom layer resist exhibits a sensitivity to
e-beam exposure, which is roughly three times higher than the top layer, the two previously
described processes result in a significant undercut ∼ 500nm below the designed pattern in
the top layer (cf. Fig. A.3). This process is later on deliberately used to pattern resist masks
with asymmetric undercut [61] by adding areas of low e-beam exposure dose to allow the
angled deposition of metal thin films (cf. Sec. 4.1.3).

After the sample was exposed to the e-beam write, the first step towards development is
removing the gold layer using a Lugol solution, which is a mixture of potassium iodide and
iodine with a ratio of KI:I = 2 : 1, solved in H2O. Following the gold removal, we perform
development of the exposed bilayer resist stack for 90 s in a 3 : 1 mixture of IPE:H2O, which
is cooled down to 6 ◦C. This development technique increases the contrast of the PMMA and
copolymer resists used in our fabrication process [165, 166].

The final step of the fabrication process after metal deposition is lift-off, performed in
N-Methyl-2-pyrrolidone (NMP) or N-Ethyl-2-pyrrolidone (NEP) heated to 90 ◦C for ∼ 1h,
followed by a short, low power sonication step, and finished by consecutive rinsing steps in
acetone, ethanol, and finally H2O.
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PMMA A4

Copolymer EL-13

Au

Substrate

e- e-(a) (b)

(c) (d)

(e)

Figure A.3: Schematic process of e-beam lift-off lithography. (a) To allow the fabrication of controlled undercuts
we employ a bilayer resist stack. A gold layer on top prevents charging on insulating substrates, which would
deflect the electron writer and distort the pattern. (b) Exposure with an e-beam writer transfers the designed
pattern into the bilayer resist stack. Depending on the acceleration voltage of the writer scattering of electrons is
more or less severe and results in an unwanted undercut. (c) The exposed resist is developed for 90 s using a 3 : 1
mixture of IPA:H2O, which is cooled down to 6 ◦C (d) Metal deposition on the developed resist stack transfers
the design pattern into the superconducting thin film. (e) After lift-off in N-Methyl-2-pyrrolidone (NMP) or
N-Ethyl-2-pyrrolidone (NEP) heated to 90 ◦C, all resist is removed. The pristine substrate with the designed
pattern remains.

119



Appendix

B Phenomenological model of quasiparticle activation

For completeness, in the following we present the derivation of the phenomenological model
describing the quasiparticle (QP) dynamics in granular aluminum, as already give in the
supplementary of Ref. [46].

In the presence of disorder, there are spatial variations of the superconducting order parameter.
As discussed in Ref. [150], QPs can be localized at these spatial variations, which induce a
small subgap tail in the electronic density of states. Here, we develop a phenomenological
model similar to that introduced by Rothwarf and Taylor [151] that accounts for recombination
of QPs, their generation, and transitions between localized and free (mobile) QPs.

With xm and xl we indicate the normalized density of mobile and localized QPs (xm then
corresponds to xqp). We model the time evolution of these normalized densities by the
following set of coupled, non-linear differential equations:

ẋm = −Γmmx2
m−Γmlxmxl−Γlocxm +Γexxl +gm, (1)

ẋl = −Γllx2
l −Γmlxmxl +Γlocxm−Γexxl +gl . (2)

In both equations, the first two terms on the right hand side account for recombination
between QPs of the same kind, with rates Γmm or Γll , and between different types of QPs,
with rate Γml . The terms proportional to the rate Γloc describe the localization of mobile QPs,
the rate Γex the opposite excitation process. Finally, gm and gl are the generation rates of
mobile and localized QPs. Note that assuming a constant density of localized QPs, with the
identifications

Γmlxl +Γloc→ s , Γexxl +gm→ g , Γmm→ r , (3)

Eq. (1) reduces to the phenomenological equation used for example in Ref. [43].

Since at long times after a QP burst, the deviations from the steady-state are small, we
linearize the above equations by separating the small, time-dependent deviation from the
steady state density:

xm(t) = x̄m +δxm(t) , xl(t) = x̄l +δxl(t). (4)

Keeping terms up to the first order we find

0 = −Γmmx̄2
m−Γml x̄mx̄l−Γlocx̄m +Γexx̄l +gm, (5)

0 = −Γll x̄2
l −Γml x̄mx̄l +Γlocx̄m−Γexx̄l +gl , (6)
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and

δ ẋm = −2Γmmx̄mδxm−Γml x̄mδxl−Γml x̄lδxm−Γlocδxm +Γexδxl , (7)

δ ẋl = −2Γll x̄lδxl−Γml x̄mδxl−Γml x̄lδxm +Γlocδxm−Γexδxl . (8)

The general model in Eqs. (1)-(2) can be simplified by considering the microscopic origin of
the various rates. At low temperatures and small QP density, recombination and scattering
rates are determined by electron-phonon interaction. For a zero-temperature phonon bath,
the generation rates due to phonons would be exactly zero, but QPs can be also generated by
photons or other elementary particles (e.g., protons [150]) of sufficient energy; assuming this
energy to be large compared to the gap, we can set gl = 0. Localization and recombination take
place by phonon emission; based on Ref. [167], at low temperatures, we expect Γloc > Γmm,
and since xm� 1, we neglect the term proportional to Γmm (in fact, this approximation is
applicable under the much less stringent condition Γmmxm� Γloc). Later on, we will consider
excitation due to photons in the resonator by setting

Γex = Γ0n̄, (9)

while neglecting photon emission by QPs in comparison to phonon emission. This
approximation should be valid so long as Γ0n̄� Γloc.

B.1 Steady-state

Using the previously described simplifications, Eqs. (5)-(6) become

0 = −Γml x̄mx̄l−Γlocx̄m +Γexx̄l +gm, (10)

0 = −Γll x̄2
l −Γml x̄mx̄l +Γlocx̄m−Γexx̄l . (11)

Solving the last equation for x̄l in terms of x̄m, we find

x̄l =

√
(Γml x̄m +Γex)

2 +4ΓllΓlocx̄m− (Γml x̄m +Γex)

2Γll
. (12)

With the further assumption
ΓllΓloc� Γ

2
ml x̄m, (13)

we have
x̄l '

Γlocx̄m

Γml x̄m +Γex
. (14)
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Substituting this expression into Eq. (10), we get

x̄m '
gm

2Γloc

1
2

(
1+

√
1+8

ΓlocΓex

gmΓml

)
=

gm

2Γloc

[
1+

1
2

(√
1+4γ n̄−1

)]
, γ = 2

ΓlocΓ0

gmΓml
.

(15)
Then we can rewrite Eq. (14) as

x̄l =
Γloc

Γml

1
1+ γ n̄

1+ 1
2 (
√

1+4γ n̄−1)

. (16)

B.2 Decay rate

From Eqs. (7)-(8), we obtain a fast λ+ and a slow one λ−:

λ± =
1
2

[
a+b±

√
(a−b)2 +4c

]
, (17)

with

a= 2Γll x̄l +Γml x̄m+Γex , b= 2Γmmx̄m+Γml x̄l +Γloc , c= (Γloc−Γml x̄l) (Γex−Γml x̄m) .

(18)

A limiting regime is when |c| � (a−b)2, in which case the two decay rates are approximately
given by a and b. As we discuss in the next section, we expect in practice a < b, so a is the
slow mode. Then under the assumption in Eq. (13), which leads to Eq. (14), we can neglect
the first term in the definition of a with respect to the second term and we get

λ− ' a' Γml x̄m +Γex ' Γ0

{
1
γ

[
1+

1
2

(√
1+4γ n̄−1

)]
+ n̄
}
. (19)

B.3 Comparing to experiments

The inverse quality factor can be generically written as the sum of the inverse of the quality
factor at zero average photons Q0 (due to both QPs present in the absence of photons and
other loss mechanisms, such as dielectric losses) plus a photon number dependent part due to
the change in the number of QPs. In principle, both localized and mobile QPs can contribute
to the losses in a way proportional to their normalized density times coupling strength times
final density of states. Since the change in quality factor is less than one order of magnitude,
we expect the change in normalized density to be small, and to compare localized and mobile
QPs we can use their zero-photon values. We also expect Γml < Γmm, since the spatial overlap
between localized and mobile QPs cannot be larger than that between mobile QPs. Then, the
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simplifying assumption Γmmx̄m� Γloc implies x̄l > x̄m. The final density of states is likely
larger for localized QPs than for mobile QPs, for example if the former go from below the
gap to just above the gap, while the latter always end at a higher energy above the gap, where
the density of states is smaller. Therefore, if the coupling strengths to photons are similar,
the localized QPs give a larger contribution to the losses (i.e., inverse quality factor), and
using Eq. (16) we can write

1
Qi

=
1

Q0
+β

 1
1+ γ n̄

1+ 1
2 (
√

1+4γ n̄−1)

−1

 , (20)

where β is proportional to Γloc/Γml but also accounts for coupling strength and final density
of states. Note that the formula cannot be extrapolated to very large n̄ for two reasons:
according to Eq. (15), the density of mobile QPs increases with n̄; therefore their contribution
to the quality factor can become relevant, and also neglecting the recombination between
mobile QPs with respect to their localization will not hold anymore.

For the inverse of the decay time, we can proceed in a similar way and sum a photon-dependent
part [from Eq. (19)] to a residual decay rate Γr, which includes both the zero-photon decay
process which is part of the model, as well as other mechanisms not explicitly accounted for:

1
τss

= Γr +Γ0

[
n̄+

1
2γ

(√
1+4γ n̄−1

)]
. (21)

Note that, since we have included the zero-photon contribution of Eq. (19) into Γr, we should
always have Γr ≥ Γ0/γ .

Finally, we check for consistency of assumptions: let us use γ ∼ 1 and Γ0 ∼ 10−2 s−1 (cf.
Fig. 3.22). From Ref. [43] we have x̄m ∼ 10−6, gm ∼ 10−4 s−1 and Γmm ∼ 107 s−1. Using these
values in Eq. (15) (with n̄ = 0) we estimate Γloc ∼ 102 s−1, and using the definition of γ in the
same equation we also estimate Γml ∼ 104 s−1. Therefore, we find that indeed Γml < Γmm,
and also Γmmx̄m� Γloc. Even for n̄ ∼ 102 we have Γ0n̄� Γloc. With these estimates, the
assumption in Eq. (13) becomes Γll � 1s−1, but to our knowledge there are no experimental
data on this rate. Keeping this assumption, we can also estimate the quantities in Eq. (18):
a∼ Γ0 (1/γ + n̄). 1 s−1 (for n̄. 102), b > Γloc ∼ 102 s−1, and |c|. Γ0Γlocn̄. 102 s−2 (for
n̄. 102). These estimates verify the assumptions a < b and (a−b)2� |c|.
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C Experimental setup

C.1 Cryogenic microwave wiring

The use of superconducting materials and operating frequencies in the GHz regime mandate
a temperature of the experimental setup T ß∆0/kB, with the superconducting energy gap ∆0 to
suppress residual quasiparticle population of the superconductors. Furthermore T < h f/kB,
with cicruit frequency f and Planck’s constant h. For frequencies on the order of 5 GHz
it follows T < 240mK. Therefore, the measurements in this thesis were performed in
commercial dilution cryostats with base temperatures TMXC ≈ 20mK. The main workhorse
during the course of this thesis was an Oxford Instruments Kelvinox 100 commercial
3He/4He dilution cryostat. Since our lab is called the Black Forest Quantum lab, naturally
we baptized the cryostat with the name of a tricky, and very smart bird: Magpie. Figure C.1
shows the inset of our cryostat.

Figure C.2 shows the initial wiring of Magpie. As can be seen in the schematics, the fridge
provides two fully independent measurement lines allowing to perform two experiments
simultaneously. Input signals on both lines are attenuated at different temperature stages of
the cryostat to minimize Johnson-Nyquist noise and suppress residual photon population of
the measured samples. Multiple commercial and home-made microwave filters ensure an
attenuation . −20dB compared to pass band frequencies below the filter cutoff frequency of
8.2 GHz. After successful development and fabrication of parametric ultra-low noise dimer
Josephson junction array amplifiers (DJJAA) [153], we adjusted the wiring of the cryostat to
allow the operation of a DJJAA on one of the two measurement lines (see Fig. C.3). After
interacting with the sample the signals pass an isolator used to shield the measured device
from noise emitted back from the commercial low noise high electron mobility transistor
amplifier (HEMT), which then subsequently amplifies signals by 43 dB.
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Figure C.1: Temperature stages and mounting setup in the Magpie fridge. The inset is enclosed in a stainless
steel vacuum chamber (not shown), which is immersed in a liquid 4He bath. Inside the vacuum chamber the
dilution stages are mounted on three copper plates. All parts of the inset colder than the intermediate stage at
around 600 mK are enclosed by a copper shield to decrease heat transport by radiation from the 4He shield.
Finally, samples are enclosed in successive µ-metal, superconducting, and copper shields to provide magnetic
and residual radiation shielding.
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Figure C.2: Initial microwave wiring of the cryostat. Lines I and II are used to feed the readout microwave tone
to the samples and are heavily attenuated and filtered by commercial (8 GHz and 12 GHz) low-pass and home
made infrared (IR) filters. Lines III and IV provide a separate path for microwave tones used to manipulate the
quantum state of the measured samples. Both output lines (V and VIII) are equipped with isolators to provide
at least 20 dB of attenuation for signals traveling back from the commercial high electron mobility transistor
amplifiers (HEMT).
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Figure C.3: Adjusted microwave wiring of the cryostat to enable the use of a parametric dimer Josephson
junction array amplifier (DJJAA) [153]. Lines I and II are used to feed the readout microwave tone to the samples
and are heavily attenuated and filtered by commercial (8 GHz and 12 GHz) low-pass and home made infrared
(IR) filters. Lines III and IV provide a separate path for microwave tones used to manipulate the quantum state of
the measured samples, while Line VII has a lower attenuation and is used to apply the pump tone for the near
quantum limited DJJAA. Both output lines (V and VIII) are equipped with isolators to provide at least 20 dB of
attenuation for signals traveling back from the commercial high electron mobility transistor amplifiers (HEMT).
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C.2 Timedomain setup
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Figure C.4: Image and schamtic of the time domain setup built during the course of the thesis. We employ
an interferometric setup to be insensitive of phase fluctuations occurring before the common reference plane,
which is defined by the two splitters. One half of the signal travels through the cryogenic measurement setup and
interacts with the sample, while the reference part of the signal only passes room temperature components. Signal
and reference pulse are digitized by a 1.25 Gs/s analog digital converter (ADC). The reference pulse is used
to digitally demodulate the signal pulse into its two quadratures, which constitute the readout signal. Multiple
isolators in the room temperature setup suppress unintentional interference between both signal arms. Single
sideband (SSB) microwave mixers are used for convenience and to suppress noise compared to double sideband
mixers (DSB).
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Superconducting circuits with characteristic impedance larger than the resist- 
ance quantum RQ = h/(4e²) have begun to attract interest as a possible ap-
proach for the realization of quantum information processing devices. A basic 
building block of such high impedance circuits is the superinductor, which 
features an inductance on the order of 10² nH, and characteristic impedance  
Z > RQ. Here, we investigate superconducting granular aluminum (grAl) as a 
promising material to implement superinductors. We show that grAl strips can 
reach kinetic inductances up to nH/ , while their microwave frequency losses are 
as low as state of the art superinductor implementations. We identify excess 
quasiparticles as a limiting loss mechanism in superconducting circuits employ-
ing grAl, and find quasiparticle relaxation times on the order of seconds. By 
fabricating a fluxonium quantum bit with a grAl superinductor, we demon-
strate that grAl is a viable material for superconducting quantum circuits.
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