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Abstract

Electrochemical energy storage is needed for many mobile technical sys-
tems, such as communication and electromobility. Lithium-ion batteries (LIBs)
have attracted intensive attention for electrochemical energy storage over the
past decades. The enormous utilization of LIBs combined with the limited
and unevenly distributed lithium source will drive up the price of lithium. In
contrast to lithium, sodium-ion batteries (NIBs), which are based on the wide
availability, abundance and low cost of sodium, become a potential promising
alternative to LIBs. In most storage materials, phase changes occur during reg-
ular operation and, thus, cannot be avoided. The respective phases of a storage
material possess different lattice constants giving rise to a strain mismatch of
up to a few hundred percent which, in turn, causes mechanical stresses and,
thus, leads to damage of the electrode particles. In view of this, it is the objec-
tive of this work to study phase changes and mechanical stresses in electrode
particles by means of phase-field simulations. Thermodynamical phase-field
models rely on continuous order parameters, thus, leading to diffuse interfaces
between adjacent phases with no need for the cumbersome tracking of the po-
sition of a sharp interface.

In this work, for non-linear Cahn-Hilliard type models describing diffusion,
a thermodynamical framework for the coupling with mechanics is presented.
For the mechanical part, besides small deformation theory two different finite
deformation elasticity formulations based on elastic Green strain and logarith-
mic elastic strain, respectively, are introduced and compared. First, a phase-
field model for the cathode material NaxFePO4 of NIBs is studied for the first
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Abstract

time to understand phase changes, mechanical deformation, and stress evolu-
tion in NaxFePO4 electrode particles. As a major novelty, the key parameters
in the phase-field model for NaxFePO4 are determined. In this way, our model
captures the important feature that distinguishes NaxFePO4 from LixFePO4.
Furthermore, we study the particle size and average concentration dependent
miscibility gap of the nanoscale insertion materials LixMn2O4, LixFePO4, and
NaxFePO4. Finally, we introduce the nonlocal species concentration theory
in terms of diffusion and phase changes from a nonlocal free energy density,
compare this theory to the Cahn-Hilliard theory, and show how the nonlocality
influences the results.
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Kurzfassung

Für viele mobile technische Systeme wie Kommunikation und Elektromo-
bilität werden elektrochemische Energiespeicher benötigt. Lithium-Ionen-
Batterien (LIBs) haben in den letzten Jahrzehnten intensive Aufmerksamkeit
für die elektrochemische Energiespeicherung auf sich gezogen. Die enorme
Nachfrage an LIBs in Kombination mit der begrenzten und ungleichmäßig
verteilten Verfügbarkeit von Lithium wird den Lithiumpreis in die Höhe treiben.
Im Gegensatz zu LIBs werden Natriumionenbatterien (NIBs), die auf der bre-
iten und reichlichen Verfügbarkeit sowie den niedrigen Kosten von Natrium
beruhen, zu einer vielversprechenden Alternative. In den meisten Speicher-
materialien treten Phasenänderungen während des regulären Betriebs auf und
können nicht vermieden werden. Die jeweiligen Phasen eines Speichermateri-
als besitzen unterschiedliche Gitterkonstanten, die zu einer Dehnungsfehleran-
passung von bis zu einigen hundert Prozent führen. Dadurch entstehen mecha-
nische Spannungen, die zu einer Schädigung der Elektrodenteilchen führt. Vor
diesem Hintergrund ist es das Ziel dieser Arbeit, Phasenänderungen und mech-
anische Spannungen in Elektrodenteilchen mittels Phasenfeldsimulationen zu
untersuchen. Thermodynamische Phasenfeldmodelle basieren auf kontinuier-
lichen Ordnungsparametern, was zu diffusen Grenzflächen zwischen benach-
barten Phasen führt, ohne dass die Position mit einer scharfen Grenzfläche
aufwändig verfolgt werden muss.

In dieser Arbeit wird für nichtlineare Cahn-Hilliard-Modelle, die die Dif-
fusion beschreiben, ein thermodynamisches Gerüst für die Kopplung mit der
Mechanik vorgestellt. Für den mechanischen Teil werden neben der Elastiz-
itätstheorie der kleinen Verzerrungen auch zwei verschiedene Formulierungen
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Kurzfassung

der Elastizität für große Verzerrungen, basierend auf dem Green’schen sowie
dem logarithmischen Verzerrungsmaß, verglichen. Zum ersten Mal wird ein
Phasenfeldmodell für das Kathodenmaterial NaxFePO4 von NIBs untersucht
um Phasenänderungen, mechanische Deformation und Spannungsentwicklung
in NaxFePO4 -Elektrodenteilchen zu verstehen. Als große Neuheit werden die
Schlüsselparameter im Phasenfeldmodell für NaxFePO4 bestimmt. Auf diese
Weise erfasst dieses Modell die wichtige Unterscheidung zwischen NaxFePO4

und LixFePO4. Darüber hinaus wird die Partikelgröße und die durchschnit-
tliche konzentrationsabhängige Mischungslücke der nanoskaligen Insertions-
materialien LixMn2O4, LixFePO4 und NaxFePO4 untersucht. Abschließend
wird die nichtlokale Spezieskonzentrationstheorie in Bezug auf Diffusion und
Phasenänderungen aus einer nichtlokalen freien Energiedichte eingeführt, mit
der Cahn-Hilliard-Theorie verglichen und gezeigt wie die Nichtlokalität die
Ergebnisse beeinflusst.
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1 Introduction

1.1 Generalities on battery systems

Energy conversion and storage have become a growing global concern over
the past decades due to urgent energy demand. The renewable energy sources,
e.g., solar radiation, wind, and waves, are becoming increasingly popular,
although they can be available in intermittent manner [1]. To mitigate this
adversity, the chemical energy may help. The chemical energy is the most
appropriate form of energy storage in terms of energy density, and batteries
provide stored chemical energy with the ability to deliver it as electrical energy
with high conversion efficiency and no gaseous exhaust [2].

Depending on the rechargeability, batteries are classified into two categories:
the primary and secondary batteries. Primary batteries evolve an irreversible
process, converting the chemical energy into electrical energy only once. On
the contrary, secondary batteries, also known as rechargeable batteries, are
possibly used several times for repeated discharges and charges. This is due
to the reversible electrochemical reactions in which the batteries can also be
operated in the opposite direction to charge them. Therefore the electrical en-
ergy is converted back to chemical energy during charging so that the batteries
may be discharged again. We will discuss the reversible process in Section 1.2.
However, it should be noticed that even for secondary batteries, capacity fade
of batteries occurs after the repeated charging and discharging cycles owing
to unavoidable irreversible processes like side reactions, bulk and interfacial
resistances of both electrodes and electrolyte, and inhomogenous electrode de-
formations due to the speices insertion and extraction [3]. Hence, increasing
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1 Introduction

the number of battery cycles is nowadays crucial in order to improve the life
time of batteries.

Lithium-ion batteries (LIBs) are widely used and common battery type. As
illustrated in Fig. 1.1, LIBs exhibit superb performances in terms of energy
density and design flexibility among the existing battery technologies. Indeed,
lithium is the lightest metallic element (0.53gcm−3) and has a very low redox
potential (E0

(Li+/Li) =−3.04V v.s. standard hydrogen electrode), which enables
batteries with high voltage and high energy density [1].

Figure 1.1: Comparison of various battery technologies in terms of volumetric and gravimetric
energy density [4]. Image reused with the permission of Springer Nature.

Since the commercial LIBs were first announced by Sony in 1991, LIBs
have contributed considerably to applications that require portability, such as
entertainment, computing and telecommunication equipment. Furthermore,
driven by the improved desire for green technologies, the use of batteries has
expanded from portable electronics to large scale applications, for example,
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1.2 Design and working principle of lithium-ion batteries

electric vehicles [5], which would reduce the pollution and secure energy inde-
pendence.

1.2 Design and working principle of
lithium-ion batteries

A battery is composed of several electrochemical cells, connected in series
and/or in parallel, to achieve the required voltage and capacity [6]. As depicted
in Fig. 1.2, a LIB cell consists of current collectors, anode, cathode, and sep-
arator between them. A separator that is commonly made of polymers, in an
ideal case, is an ionic conductor and electronic insulator. The ionic conduction
of the separator is provided by its pores which are filled with the liquid elec-
trolyte [7]. A current collector, made of copper or aluminum, contacts with the
electrode and conducts the electrons to the external circuit.

Figure 1.2: (Left) Schematic of a LIB cell, consisting of current collectors, cathode, anode, and
separator. (Right) Illustration of the lithium reduction at the surface of the active
particles. The lithium-ions are transported through the electrolyte, which fills the
pores in the separator and electrodes. Electronic conduction occurs in the conductive
network, made of carbon black and active particles [8].
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The electrodes are usually made of a composite of different materials, as
shown in Fig. 1.2. The reacting material is formed as small active particles.
These mono- or polycrystalline active particles effectively store the lithium-
ions [9, 10], and are embedded in the soft and porous binders. A binder, usu-
ally made of polyvinylidene difluoride (PVDF), allows to transfer electrolyte
through its pores and provides mechanical integrity [11]. To maintain a high
electronic conductivity of the electrode, the binder is enriched by so called
carbon black, which is a carbon additive of nanosize [7]. An electrically con-
ductive network is built by active particles and carbon additive through which
the active particles are connected to the current collector. Insertion materials
are usually chosen as the active material. The structure of this material does
not change during lithium insertion. As a result, this material acts as a host
to provide empty lattice sites that can be occupied by the lithium. For the
cathode materials, like lithium manganese oxide LixMn2O4 (LMO), lithium
cobalt oxide LixCoO2, lithium nickel oxide LixNiO2, and lithium iron phos-
phate LixFePO4 (LiFPO), all of them possess their own merits and demerits
[9, 10, 12–15]. It should be noticed that LiFPO does not belong to the cate-
gory of metal oxides. LiFPO has a lower electrochemical potential than the
metal oxides, but is thermally more stable [10]. Carbon-based anodes are still
very popular anode material in the market today. Alloy anodes such as sili-
con, aluminum, antimony, and tin are very promising candidates for the next
generation of LIBs due to their high theoretical energy density, safe operation
potentials, and relatively low cost [7, 16].

The fundamental working principle of a LIB cell is the discrepancy in the
electrochemical potential of lithium in two electrodes [17]. Lithium diffuses
from the electrode with a high electrochemical potential of lithium to the elec-
trode with a low electrochemical potential of lithium. When the battery is
discharged, the difference in the electrochemical potential of lithium of the
two electrodes drives lithium-ion to diffuse out of the anode, through the elec-
trolyte, and into the cathode. To keep the electrodes electrically neutral, elec-
trons flow through an external circuit from the anode to the cathode. Both the
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ionic and the electronic processes are reversed when the battery is charged by
an external power source.

1.3 Motivation and goals

The interplay between electrochemistry and mechanics in the battery system
has attracted growing scientific interest in the recent years. During charge or
discharge, the active material suffers from inhomogeneous volume change, and
as a consequence, stresses are induced in the active particles of the electrode.
The stresses may lead to fracture of electrode particles. For example, in LIB
systems a volume expansion of more than 300% of silicon particles has been
observed [18], which can cause particle fracture. Examples for the observation
of fracture in storage particles for different materials are shown in Fig. 1.3.
Such mechanical degradation leads to capacity loss of a battery over charge
and discharge cycles [3]. On the other hand, for thermodynamical reasons,
there is a contribution of the stresses to the driving force for diffusion in the
host material [19, 20].

Intercalation electrode materials commonly exhibit phase changes during
insertion of the intercalation species, such as crystalline silicon (Si) [21], tin,
antimony and their oxides [18, 22] for anodes, as well as cathode materials
LMO [23] and LiFPO [24–26]. Phase changes may induce large concentration
gradients at a mesoscopic scale and thus also large stress magnitudes. Even at
low C-rates, large stresses may also be induced in the phase-separating elec-
trode materials [27, 28]. For the modeling of phase changes, it is very common
to use the Cahn-Hilliard theory where the order parameter is a conserved quan-
tity in order to avoid the need for the cumbersome tracking of the position of a
sharp interface [29]. We will review the derivation of the Cahn-Hilliard theory
from different approaches in chapter 4.
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Figure 1.3: (a) SiSn thin film is cracked after the first few cycles of lithiation and delithiation
[30]. Image reused with the permission of Electrochemical Society, Inc. (b) A LiFPO
particle is cracked into parts after 60 cycles [31]. Image reused with the permission of
Elsevier.

LIBs have attracted intensive attention for electrochemical energy storage
over the past decades. The massive use of LIBs combined with the limited
and unevenly distributed lithium source will dramatically increase the prices
of lithium, and high cost remains a critical problem for the development of
LIBs [2]. In contrast to lithium, the wide availability, abundance and low cost
of sodium on earth make sodium-ion batteries (NIBs) suitable for large scale
energy storage devices in which high energy density becomes less critical [32].
For comparison, properties of lithium and sodium are summarized in Table
1.1. Recently, NIBs have been considered as a promising alternative to LIBs,
since sodium and lithium exhibit similar chemical properties so that sodium
chemistry could be applied to a similar battery system, and the fundamental
principles of the NIBs and LIBs are identical [32]. Just like LIBs, the electro-
chemical processes in the electrodes of NIBs are also coupled to mechanical
properties.
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Category Lithium Sodium Ref.
Crustal abun-
dance (ppm)

20 23,600 Ref. [33]

Distribution 70% South
America

Everywhere Ref. [34]

Cost ($/ton), car-
bonates

5000 150 Ref. [35]

Cation radius
(pm)

76 106 Ref. [35]

Atomic weight
(g/mol)

6.9 23 Ref. [35]

Coordination
preference

Octahedral and
tetrahedral

Octahedral and
prismatic

Ref. [35]

Table 1.1: Sodium versus Lithium characteristics.

Among all cathode materials for NIBs, phosphate based cathode materials
are among the best candidates, due to their thermal stability and higher voltage
[2]. Olivine NaxFePO4 (NaFPO) has the highest theoretical specific capacity
(154mAhg−1) compared to the other phosphate based materials (NaV PO4F ,
Na3V2(PO4)2F3 and Na2FePO4F etc.) [2], which makes it a promising cath-
ode material for NIBs. Similar to olivine LiFPO, olivine NaFPO also shows
phase changes during sodium insertion or extraction [32, 36–39].

As far as we know, no work has been published for the phase-field modeling
of the cathode materials of NIBs by now. In this work, a phase-field model for
NaFPO of NIBs will be studied for the first time. As a major novelty, the mate-
rial parameters for NaFPO, in particular, the key parameters in the phase-field
model, are determined. In this way, our model captures the important feature
that distinguishes NaFPO from LiFPO. Furthermore, the volume expansion of
FePO4 upon sodiation to NaFePO4 reaches about 17%, which is much larger
than that for LiFPO (about 6.8%) changing from FePO4 to LiFePO4 [37].
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Thus, it is also interesting to study whether or not the small deformation theory
(SDT) still has a sufficient capacity to represent the deformation of this mate-
rial.

On the other hand, the reduction of the electrode particle size down to the
nanoscale range can improve the power density [40, 41] and the rate capability
[42, 43]. It is found that the miscibility gap between the species-poor phase
and the species-rich phase shrinks as the particle size decreases, correspond-
ing to an increase in the mutual solid solubility, and, as a consequence, the
misfit strain is reduced [44–51]. The thermodynamics of phase segregation in
nanoscale particles is distinctly different from bulk materials, and the parti-
cle size dependent miscibility gap plays a nontrivial role in the performance
of such nanoscale insertion materials. The previous research works about the
particle size miscibility gap have been almost exclusively focused on LiFPO.
By now, the particle size and average concentration dependent miscibility gap
of the nanoscale insertion materials LMO and NaFPO are still unclear. The
question is still open how the mechanical stress affects the particle size and
average concentration dependent miscibility gap in intercalation electrode ma-
terials. In this work, we will investigate and compare the particle size and
average concentration dependent miscibility gap for the three cathode mate-
rials LMO, LiFPO, and NaPPO during insertion, using a coupled phase-field
model based on the Cahn-Hilliard theory and finite deformation elasticity. We
will physically explain the average concentration dependent miscibility gap,
and determine the critical particle size below which phase segregation is inhib-
ited for the three cathode materials. We will also study how the mechanical
stress affects the particle size and average concentration dependent miscibility
gap.

According to Cahn and Hilliard [29], the Cahn-Hilliard theory is derived by
truncating the Taylor series of the system free energy, ignoring fourth-order
and higher derivatives of the order parameter in the system free energy. There-
fore, the system free energy in the Cahn-Hilliard theory depends on the value
of the order parameter at a certain position and its immediate neighborhood.
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1.4 Overview

As a result, the Cahn-Hilliard theory can not be seen as arising from an exact
macroscopic description of microscopic models of interacting particles [52].
In addition, the Cahn-Hilliard equation involves a fourth-order spatial deriva-
tive of the order parameter, leading to computational difficulty. In this work,
we will introduce a phase-field theory in terms of diffusion and phase changes
from a nonlocal free energy density, which can be applied to electrode materi-
als. This theory is named nonlocal species concentration theory (NSC theory).
As a special feature, we discuss the nonlocal nature of NSC theory, i.e. in
which respect NSC theory accounts for effects in the whole problem domain.
Furthermore, the results from this theory and the Cahn-Hilliard theory are com-
pared.

1.4 Overview

The goal of this thesis is to understand phase changes, mechanical deforma-
tion, and stress evolution in NaFPO electrode particles of NIBs, and to study
the particle size and average concentration dependent miscibility gap for the
three cathode materials LMO, LiFPO, and NaPPO. Also, we introduce the NSC
theory from a nonlocal free energy density, and show how the nonlocality in-
fluences the results.

The work is organized as follows. A literature review about related concepts,
methods, and previous studies is given in chapter 2. In chapter 3, fundamentals
of continuum mechanics are briefly reviewed. In chapter 4, the derivation of the
Cahn-Hilliard theory from various approaches is summarized. Furthermore,
the NSC theory is introduced from a nonlocal free energy density. Finally, we
discuss the relationship between the CH theory and our theory. In chapter 5, the
coupled phase-field model of the Cahn-Hilliard theory and finite deformation
elasticity is derived. For the mechanical part, besides SDT two different finite
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deformation elasticity formulations based on elastic Green strain and logarith-
mic elastic strain, respectively, are introduced and compared. In chapter 6, a
phase-field model for the cathode material NaFPO of NIBs is studied for the
first time, and the relevant material parameters of NaFPO are determined. We
present and discuss phase changes and stresses in spherical NaFPO electrode
particles, and compare the cathode material NaFPO of NIBs to LiFPO of LIBs
in terms of phase changes and stresses. In chapter 7, we investigate the parti-
cle size and average concentration dependent miscibility gap of three cathode
materials LMO, LiFPO, and NaPPO. In chapter 8, we present the results for
spherical LMO electrode particles based on the NSC theory, discuss the inter-
face evolution and the nonlocal effect, and compare the results from the NSC
theory and the Cahn-Hilliard theory. We conclude our work in chapter 9.
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2.1 Phase-field method

The phase-field method is a powerful computational approach for model-
ing microstructure evolution in materials at the mesoscale without explicitly
tracking the positions of interfaces. It was initiated in 1894 by van der Waals
to model a liquid-gas system using a density function that varies continuously
at the liquid-gas interface [53]. Approximately sixty years ago, Ginzburg and
Landau [54] formulated a phase-field model for superconductivity using a com-
plex valued order parameter and its gradients, and later Cahn and Hilliard [29]
carried out a thermodynamic formulation considering the gradients in thermo-
dynamic properties in heterogeneous systems with diffuse interfaces.

Microstructures of physical systems are usually compositional and struc-
tural heterogeneous by nature, and can evolve with time. The driving force
for microstructural evolution is the possibility to reduce the free energy of the
system. The microstructural evolution is described by means of the field vari-
ables called order parameters that are continuous functions of time and spatial
coordinates. The field variables have different values in different phases to dis-
tinguish different microstructures. There are two types of field variables: con-
served and nonconserved. The former one has to satisfy the local conservation
condition [55, 56]. The temporal and spatial evolutions of the conserved and
nonconserved field variables are governed by the well-known Cahn-Hilliard
nonlinear diffusion equation as in the present case and the Allen-Cahn relax-
ation equation, respectively. Both equations can be physically derived from a
so-called local microforce balance of Gurtin [57]. The field variables can be
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an existing physical order parameters such as concentration [29], polarization
[58], and magnetization [59]. On the other hand, for the sole purpose of avoid-
ing tracking the interfaces and identifying different phases, dummy fields are
introduced as field variables. For example, in the cases of solidification [60]
or crack propagation [61], the phase-field that equals zero represents the liquid
phase or the unbroken phase while the phase-field with value of unity repre-
sents the solid phase or the crack phase.

Phase-field model is based on a diffuse-interface description. The interfaces
between phases are continuous across the interfacial regions, as shown in Fig.
2.1a, which is different from the sharp-interface model of the conventional
approach in Fig. 2.1b. As a result, an impressive advantage of the phase-field
method is that there is no need to follow explicitly the position of the interfaces
through mathematical equations during microstructural evolution.

Figure 2.1: (a) Diffuse interface: continuously between phases. (b) Sharp interface: discontinu-
ous at the interface [55]. Image reused with the permission of Elsevier.

The application of the phase-field method has been extensively developed
in the past decades, besides solidification [62, 63] and solid-state phase trans-
formations [56, 64], the phase-field method also has been employed in grain

12
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growth and coarsening [65–67], the spinodal decomposition of binary mix-
ture [29, 68], crack propagation [61, 69–74], electromigration [75, 76], vesicle
membranes in biological applications [77, 78], and multicomponent interdiffu-
sion [79].

2.2 Overview of phase-field modeling of
electrode materials

Although multi-physical models have extensively investigated in the past
decades, as shown in comprehensive overviews [80–84], it remains a big chal-
lenge to simulate the complicated microstructure of electrode materials. The
interactions among mechanical, electrochemical, electrical, and thermal fields
in the battery system induce complex non linear partial differential equations
for the unknown variables (i.e. displacement, concentration, electric potential,
and temperature). As a result, it needs more advanced numerical methods to
solve such complex multi-physical models. As shown in Figs. 2.2 and 2.3, dif-
ferent processes that occur in a battery during normal operation are described
by their corresponding mathematical models. In this work, we will focus on
diffusion, mechanical deformation, and phase segregation in active particles at
the mesoscale, corresponding to processes of number 3, 4, and 5 in Figs. 2.2
and 2.3, respectively. In what follows, the overview of the phase-field modeling
of electrode particles will be presented.
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Figure 2.2: Different processes that occur in a battery during normal operation [84]. Image
reused with the permission of Springer Nature.

Figure 2.3: Corresponding models for the processes that occur in a battery during normal opera-
tion [84]. Image reused with the permission of Springer Nature.
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2.2.1 Phase-field modeling of phase changes

By now, most of the research works about phase-field modeling of phase
changes have been focused on LiFPO of LIBs. In 2004, Han et al. [85] used
the classical Cahn-Hilliard phase-field model to describe phase segregation in
LiFPO electrode particles, and investigated to what extent non-Fickian behav-
ior can affect results from experimental techniques for measuring diffusion
coefficients, such as Galvanostatic Intermittent Titration Technique (GITT)
and Potentiostatic Intermittent Titration Technique (PITT). According to their
results, GITT and PITT, based on the Fick’s equation, are still capable of accu-
rately determining diffusion coefficients even if the solid is characterized by a
gradient energy term.

In 2008, Singh et al. [86] developed a general continuum theory for phase-
transformation dynamics in LiFPO electrode particles by coupling an anisotropic
Cahn-Hilliard phase-field model with surface reactions governing the flux of
ions across the electrode/electrolyte interface. The general model can induce
different transport and phase separation dynamics regimes. For the regime of
isotropic bulk-transport-limited phase transformation dynamics, bulk diffusion
in all directions is much slower than surface reactions, and the phase bound-
ary is fully contained within the material and moves along the direction of the
ionic flux. As shown in Fig. 2.4 a, the shrinking core structure forms. For
the regime of anisotropic bulk-transport-limited phase transformation dynam-
ics, as depicted in Fig. 2.4 b, diffusion in the x and z directions is negligible,
while diffusion in the more accessible y direction is much slower than surface
reactions. The phase boundary still shows a shrinking core in the bulk, but
ions are confined to 1D channels in the y direction. Thus, anisotropy alters
the shape of the phase interface rather than its basic diffusive dynamics. For
the new regime of anisotropic surface-reaction-limited dynamics, surface re-
actions are much slower than diffusion in the y direction but much faster than
diffusion in the x and z directions. As illustrated in Fig. 2.4 c, the phase
boundary extends from surface to surface along planes of fast ionic diffusion,
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rather than forming a classical shrinking core. It should be noticed that these
three reaction-diffusion arguments are oversimplified and only give a sense of
possible dynamical regimes in the general model.

Figure 2.4: Transport models obtained in different limits of the characteristic timescales for
bulk diffusion and surface reactions. Figures show xy cross sections of spherical and
plate-like single crystals during Li insertion, after phase nucleation has occurred.
Lithiated portions of the crystal are shaded, and points outside particles represent
flux of Li ions across the electrode/electrolyte interface (shown only for spherical
particles). The FePO4/LiFePO4 phase boundary is denoted by the dashed line, and
arrows indicate movement of the boundary as insertion proceeds. (a) Isotropic bulk
transport limited. (b) Anisotropic bulk transport limited. (c) Anisotropic surface
reaction limited [86]. Image reused with the permission of Elsevier.
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Subsequently, Bai et al. [87] developed a Cahn-Hilliard phase-field model of
reaction-limited intercalation in anisotropic LiFPO nanoparticles and predicted
that phase separation is suppressed above a critical current. As shown in Fig.
2.5, spinodal decomposition or nucleation leads to moving phase boundaries
for small currents. Above a critical current density, the spinodal decomposi-
tion is found to disappear, and the particles start to fill homogeneously, which
may explain the superior rate capability and long cycle life of nano-LiFPO
cathodes.

Figure 2.5: Voltage responses at different constant currents [87]. Image reused with the permis-
sion of American Chemical Society.

Recently, Santoki et al. [88] used the classical Cahn-Hilliard equation to
study the mesoscopic effect of the surface curvature of the cathodic particle
made of LMO. They found that, near the convex region of the particle surface,
more sites are available for the applied flux than for the sites that host lithium
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ions. As a result, the onset of phase segregation prefers to occur in high cur-
vature regions of the particle. Also, the elliptical particle with a higher aspect
ratio is subjected to the onset of the phase segregation, prior to the lower ones.

2.2.2 Phase-field modeling of diffusion and
mechanics

Here, a related overview of phase-field modeling of diffusion and mechan-
ics is given (see also Zhang and Kamlah [89]). A general phase-field theory
for the coupling of the Cahn-Hilliard equation and finite deformation elasticity
based on the local dissipation inequality and the so-called local microforce
balance has been presented by Gurtin [57]. In this theory, the external micro-
force itself remains a quantity free to choose, and by taking it equal to zero, the
classical Cahn-Hilliard equation is obtained. Walk et al. [28] have identified
the influence of the external microforce in the chemical potential for spherical
LMO particles. Cogswell and Bazant [50] investigated the effects of elastic
coherency strain on the thermodynamics, kinetics, and morphology of interca-
lation in LiFPO nanoparticles based on a reaction-limited phase-field model.
The key parameters in the phase-field model for LiFPO are determined. Their
model quantitatively captures the influence of misfit strain on solubility seen
in experiments. They concluded that the elastic coherency strain strongly sup-
presses phase separation during discharge, enhancing the rate capability and
extending the cycle life. Tang et al. [90] used a Cahn-Hilliard phase-field
model wih SDT to investigate phase separation and crystalline-to-amorphous
transformations in spherical isotropic LiFPO nanoparticles, and assessed the
conditions under which amorphous phase transitions may occur in LiFPO par-
ticles. Huttin and Kamlah [27] considered the coupling between the Cahn-
Hilliard equation and SDT for spherical particles of LMO, and demonstrated
that large stresses may also occur even at low C-rates.
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Anand [91] derived a theory for lithium insertion modeled by the Cahn-
Hilliard equation combined with finite deformation elasto-plasticity based on
the multiplicative decomposition of the deformation gradient, in which the ex-
ternal microforce is identified as related to the Mandel stress in the chemical
potential. To this end, the so-called macroforce and microforce balances are
evaluated by following the virtual-power approach of Germain [92] and Gurtin
[93]. Subsequently, Di Leo et al. [94] formulated a continuum model which
coupled the Cahn-Hilliard-type phase-field theory with finite deformation elas-
ticity based on logarithmic elastic strain. However, Anand’s model [91, 94]
ignored the fact that logarithmic elastic strain is dependent on the species con-
centration in the stress chemical potential, although logarithmic elastic strain is
also a constitutive variable. As a result, the extremely complicated and impor-
tant term induced by the concentration dependence of the logarithmic elastic
strain in the stress chemical potential is not accounted for. The concentration
dependence of the strain tensor in the chemical potential is also confirmed by
Gurtin [57]. Interestingly, the external microforce term related to the Mandel
stress in Anand’s model [91, 94] is just equivalent to the ignored term induced
by the concentration dependence of the logarithmic elastic strain, which also
is verified by Refs. [28] and [95]. Walk et al. [28] reported that for SDT the
identification of the external microforce in Anand’s model [91, 94] leads to a
doubling of the mechanical coupling term in the chemical potential. Zhao et al.
[95] derived a Cahn-Hilliard phase-field model coupled to mechanics based on
the Neo-Hookean elasticity without introduction of the external microforce in
the chemical potential, and showed that their model agrees with Anand’s model
[91, 94] which ignored the concentration dependence of the strain tensor in the
chemical potential. As remarked by Gurtin [57], no constitutive relation is
specified for the external force. Rather, specifying the external microforce by
invoking the so-called principle of virtual power may be considered an option.
However, in view of the above discussion we do not find it appropriate to adopt
this in our work.

19



2 Literature review

2.2.3 Studies of the miscibility gap in nanoscale
insertion materials

Here, a related overview of the studies of the miscibility gap in nanoscale
insertion materials is given (see also Zhang and Kamlah [96]). The miscibility
gap is the difference between the lower and upper bounds of the concentration
range of phase segregated states. The research works about the particle size
dependent miscibility gap have been almost exclusively focused on LiFPO of
LIBs. Meethong et al. [45] observed that the miscibility gap of LiFPO shrinks
as the particle size decreases, and they suggested an estimate of the critical par-
ticle size (15 nm) below which a complete solid solution is achievable at room
temperature for LiFPO. Wagemaker et al. [49] revealed that the miscibility gap
for LiFPO in small particles not only shrinks, but also strongly depends on the
average concentration, which is also called “state of charge” (SOC). In con-
trast to our common thermodynamic knowledge that the solubility limits are
independent of the average concentration, their combined neutron and X-ray
diffraction investigation reveals an decreasing miscibility gap that appears to be
strongly dependent on the average concentration below particle sizes of 35 nm.
However, they explained the average concentration dependent solubility limits
based on the so-called average solubility limit (i.e. the average compositions in
each phase). In our understanding, the average concentration dependent mis-
cibility gap should be related to the minimization of system free energy. What
is more, the influence of the elastic strain energy is ignored in their diffuse in-
terface model. The elastic strain energy can suppress phase segregation, and
cause larger solid-solution-composition-ranges [27, 50]. Cogswell and Bazant
[50] used a coupled phase-field model based on SDT to study the particle size
dependent solubility for LiFPO. They performed the phase-field simulations by
allowing a square particle at SOC= 0.5 to relax to equilibrium at zero current.
Not looking at other SOC values, the average concentration dependent misci-
bility gap is not accounted for. Welland et al. [51] developed a comprehensive
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phase-field model based on SDT accounting for facet dependent surface wet-
ting and investigated equilibrium states of LiFPO particles of different size and
average lithium concentration, and found that the miscibility gap vanishes for
particles of a radius around 5 nm, and that the solubility limits change with
overall particle lithiation in small particles. However, no flux is applied at the
surface of the particles in their work, rather a phase segregated concentration
profile or a fluctuation field was used as an initial condition for different sur-
face wetting cases. They have not yet addressed the dynamic loading, which
is related to the experimentally more relevant condition of a constant applied
flux. Zhao et al. [97] developed a phase-field model accounting for lithium
transport in particles, phase separation, and interface reactions across the parti-
cle network to study the influence of particle size variation on the performance
of LIBs with V2O5 nanowires. Their work reveals that both particle size and
size variation in electrodes should be small to avoid intra- and inter-particle
phase separation.

2.2.4 Nonlocality of phase-field models

Here, a related overview of nonlocality of phase-field models is given (see
also Zhang and Kamlah [98]). Starting with Walter [99], nonlocal models have
been studied in the papers [100–111]. In the above mentioned works [99–
107, 109–111], a basic form of the nonlocal energy is used to describe the
behavior of materials that exhibit a morphology of phase structures. Compared
to the second-order derivative of the order parameter in the system free energy
in the Cahn-Hilliard theory, the nonlocal energy form in the nonlocal model
has no derivative of the order parameter so that both, discontinuites and oscil-
lations, are allowed. The nonlocal energy is written in an integral form. To
be specific, it is related to a weighted integral average of the squared devia-
tion between the order parameter at the point of consideration and the order
parameter anywhere else in the problem domain. This will be introduced in
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Section 4.2.1. In this way, as the system free energy contains an additional
term representing an energy average over the entire problem domain, the con-
cept of nonlocality is introduced. The nonlocality is based on the consideration
of nonlocal (long-range) particle-particle interactions due to molecular forces
from the viewpoint of both classical and modern statistical mechanics [99].
Fosdick and Mason [112] derived a continuum stored energy that includes a
nonlocal consideration based on the work of Brandon [103].

Urbachs et al. [113] derived a nonlocal diffuse interface model for the mi-
crostructure evolution of tin-lead solder, in which a nonlocal mass fraction is
used in order to introduce the nonlocal effect. However, the integral equation
related to the normalized weight function in their work [113] does not satisfy
a natural weight function property [103, 112, 114]. We will discuss the nat-
ural weight function property in Section 4.2.1. As a result, the definition of
the nonlocal mass fraction seems to be not physically sound. Indeed, by their
expression of what they call the nonlocal mass fraction the nonlocal species
concentration, in our wording is not equal to the species concentration for ho-
mogenous states, if their theory satisfies the natural weight function property.
Also, the nonlocal mass fraction should be explained as a weighted average
value of the local mass fraction in the entire problem domain rather than, as
they say, over a finite zone in the vicinity of the interface. What is more,
the definition of the interface tension coefficient seems to be mathematically
inconsistent with the other definitions. Di Leo et al. [94] formulated the gra-
dient micromorphic concentration theory using the principle of virtual power,
in which besides conventional species concentration an additional micromor-
phic concentration is employed. However, this theory is not derived from the
nonlocal approach mentioned above, and the relationship between their theory
and the Cahn-Hilliard theory seems to not to be clear. Therefore, they just
pursued the goal how the solutions from their theory can approach the solu-
tions from the Cahn-Hilliard theory. In particular, they do not discuss aspects
of the nonlocal nature of their theory which can account for effects beyond an
infinitesimal neighborhood of the point of consideration.
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mechanics

3.1 Kinematics

For the description of deformation, a body B is considered in the Euclidean
space. A reference configuration is arbitrarily chosen at a fixed reference time.
Usually, an undeformed body is preferred to be the reference configuration,
and this also corresponds to the initial configuration at time t = t0. ~X denotes
an arbitrary material point of B in the reference configuration described by
Lagrangian or material coordinates, and~x is the spatial position of this material
point in the current configuration described by Euler or spatial coordinates. A
smooth one-to-one mapping from the material points ~X to the spatial point s~x
at time t describes the motion of B

~x =~χ(~X , t). (3.1)

The displacement field

~u =~x−~X (3.2)

represents the connection vector between the current and reference configura-
tions. The displacement gradient H is expressed by

H = Grad~u. (3.3)
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The differentiation of equation (3.1) leads to the deformation gradient

F = Grad~χ = H+ I, (3.4)

which is very crucial in nonlinear continuum mechanics. Here Grad is the
gradient operator calculated with respect to the reference configuration, and I is
the second order unit tensor. The deformation gradient F is a two-point tensor
involving points in two different configurations, and it is a primary measure of
deformation [115]. As showin in Fig. 3.1, the fundamental relation between
the material line element d~X and the spatial line element d~x

d~x = F d~X (3.5)

is determined by the deformation gradient.

Figure 3.1: Transformation of a material line element from the reference configuration to the
current configuration.

The determinant of the deformation gradient J gives the mapping from the
infinitesimal reference volume dVR to the current state dV

dV = JdVR = detF dVR. (3.6)
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By means of equation (3.6) the following relation is obtained

dV = d~A ·d~x = Jd~AR ·d~X , (3.7)

with d~A = dA ~n and d~AR = dAR ~nR denoting the infinitesimal surfaces in the
current and reference configurations, respectively. Here, ~n and ~nR are the cor-
responding the unit normal of the surfaces.

Using Equations (3.5) and (3.7) the mapping from the infinitesimal reference
area d~AR to the current area d~A can be obtained as

d~A = JF−>d~AR. (3.8)

3.2 Stress tensors

For infinitesimal surfaces,

df = p dA = P dAR (3.9)

holds for the infinitesimal force df, where the tractions p and P are defined in
the current and reference configurations, respectively, read as

p = T~n and P = TR ~nR. (3.10)

Here, TR is the second-order first Piola-Kirchhoff stress tensor, which char-
acterizes the force per unit undeformed area acting on surfaces in the current
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configuration, and T denotes the symmetric Cauchy or true stress tensor.
Combining Equations (3.9) and (3.10) yields

T d~A = TR d~AR. (3.11)

Using Equation (3.8), the relation between the two stress tensors can be rewrit-
ten as

TR = JTF−>. (3.12)

As shown in Equation (3.12), TR is not symmetric. Using a pullback operator
F−1, the symmetric second Piola-Kirchhoff stress tensor T̃e is introduced

T̃e = F−1TR = JF−1TF−>, (3.13)

and T̃e describes the force per unit undeformed area acting on surfaces in the
reference configuration.

In small deformation framework, the stretch is small, the rotation is close
to unity, and the difference between material and spatial are neglected, i.e the
displacement gradient H satisfies

|H| � 1, (3.14)

and | · | denotes the norm of a vector. The linear strain tensor is defined as the
symmetric part of the displacement gradient

ε =
1
2
(H+HT ). (3.15)
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3.3 Mechanical equilibrium

An arbitrary body B with the boundary ∂B is subjected to the body force
~b, and the traction vector is distributed over its surface. The body is in me-
chanical equilibrium when the resultant force is zero. The following equations
describe the equilibrium conditions in the spatial and material presentations,
respectively, ∫

∂B
T ·~n dA+

∫
B

~b dV = 0, (3.16)∫
∂BR

TR ·~nR dAR +
∫

BR

~b dVR = 0. (3.17)

Using the Gaussian integral theorem follows∫
B
(divT+~b) dV = 0, (3.18)∫

BR

(DivTR +~b) dVR = 0. (3.19)

Since the considered body is arbitrary, the above relations are always supposed
to hold. Hence, the specified local forms of the above mechanical equilibrium
conditions can be deduced

divT+~b = 0, (3.20)

DivTR +~b = 0. (3.21)
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4 Phase-field theory of phase
changes

4.1 Cahn-Hilliard theory

The Cahn-Hilliard theory can be physically derived from the thermodynam-
ics by two main approaches. One is based on a variational formulation, follow-
ing Cahn and Hilliard [29, 68]. The other is derived from the so-called local
microforce balance [57]. Both approaches will be reviewed in the following.

4.1.1 System free energy

To start with, the system free energy is described (see also Zhang and Kam-
lah [89]). We introduce as an order parameter, depending continuously on
space, the species concentration c, which is measured in mol per unit volume.
The free energy density consisting of two parts is given by

ψ(c̄,~∇c̄) = ψ
mwp(c̄)+ψ

gd(~∇c̄), (4.1)

where c̄ is the dimensionless concentration, which is normalized with respect
to the maximum species concentration cmax as c̄ = c/cmax, and ~∇ denotes the
Nabla operator. The homogeneous free energy density ψmwp is a multiwell
potential defining the respective phases. Based on the references [27, 85], the
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homogeneous free energy density exhibits a double-well structure. The exis-
tence of this zone of concavity indicates that homogeneous species concentra-
tion states do not always ensure the system free energy to be minimal. In the
concavity zone, the system becomes unstable towards phase segregation. The
Maxwell construction, which connects the neighborhoods of the two minima
by a common tangent, predicts that the system splits into a two phase system
and the chemical potentials of both the species-poor phase and species-rich
phase are equal. In this sense, the homogeneous free energy density is a mul-
tiwell potential where the wells define the respective phases. The second term
on the right hand side of Equation (4.1) represents the gradient energy leading
to a diffuse interface between two adjacent phases, which is given by

ψ
gd(~∇c̄) = kBTre f NAcmax(

1
2

λ |~∇c̄|
2
). (4.2)

Here kB is the Boltzmann constant, NA is the Avogadro constant, and Tre f is the
reference temperature. Furthermore, λ is the gradient energy coefficient with
units of length squared controlling the thickness of the diffuse interface.

The system free energy of an arbitrary body B of volume V is

Ψ(c̄) =
∫

B
(ψmwp(c̄)+ψ

gd(~∇c̄))dV. (4.3)

The dimensionless free energy density is introduced as ψ̄ =ψ/(kBTre f NAcmax),
and any parts of ψ may be normalized in the same way. According to Cahn and
Hilliard [29], the system free energy Ψ(c̄) can be interpreted physically such
that, to the first approximation, the free energy of a small volume of nonuni-
form solution can be expressed as the sum of two terms, one being the free
energy that this volume would have in a homogeneous solution and the other a
“gradient energy”.
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The homogeneous free energy density for a two phase material can be ex-
pressed as [27, 85]

ψ
mwp(c̄) = kBTre f NAcmax

(
α1c̄+

α2

2
c̄2 +

T
Tre f

(c̄ ln c̄+(1− c̄) ln(1− c̄))
)
.(4.4)

The first two terms on the right hand side of Equation (4.4) represent the inter-
action energy, where positive values of α1 characterize the energy of inserting
a species into the host material, and negative values of α2 indicate the inter-
action of neighboring species to be attractive. Concerning α1, it is hard to
relate a physical meaning to non-positive values of α1. On the other hand, it
has to be noted that α1 does not occur in the Cahn-Hilliard evolution equation
for concentration. According to Huttin [116], there is a critical temperature,
namely Tc = −1/4α2Tre f , above which the homogeneous free energy density
is of convex shape, representing an ideal solution. For temperatures T below
the critical temperature, the free energy density exhibits a zone of concavity
where the homogeneous concentration states are not stable states of the sys-
tem, and phase segregation becomes possible, as shown in Fig. 4.1. The zone
of concavity corresponds to the condition that the second order derivative of
the homogeneous free energy density with respect to the concentration is neg-
ative. This inequality is never fulfilled if α2 is not negative. Thus, for a system
of noninteracting species, i.e. α2 = 0, or for a system of species that repel each
other, i.e. α2 > 0, the homogeneous free energy density keeps a convex shape
for all T > 0. For an attractively interacting species system, i.e. α2 < 0, de-
pending on the temperature, the homogeneous free energy density may exhibit
a zone of concavity. Therefore, at T = Tre f , the attraction is strong enough
to initiate phase segregation for α2 < −4. The terms multiplied by absolute
temperature T represent the entropy of mixing, where c̄ ln c̄ represents the en-
tropy of mixing valid at low concentration, and (1− c̄) ln(1− c̄) describes the
non-dilute solution behavior and represents the entropy of mixing responsible
for the saturation effect [95, 117].
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Figure 4.1: Normalized homogeneous free energy density versus normalized concentration for
different values of absolute temperature T .

4.1.2 Derivation from a variational formulation

The standard derivation of Cahn-Hilliard theory starts from the system free
energy, as defined in Equation (4.3), and the variation δΨ with respect to the
order parameter c reads

δΨ =
∫

B
(

∂ψmwp

∂c
δc+

kBTre f NA

cmax
λ~∇c ·δ~∇c) dV

=
∫

B
(

∂ψmwp

∂c
−

kBTre f NA

cmax
λ∇

2c) δc dV +
∫

∂B

kBTre f NA

cmax
λ~∇c ·~n δc dA.

(4.5)
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4.1 Cahn-Hilliard theory

Here ∇2 is the Laplacian operator. Equation (4.5) yields the natural boundary
condition on the entire boundary ∂B

~∇c ·~n = 0. (4.6)

When the interface between phases meets the particle surface, Equation (4.6)
enforces that it is perpendicular to the surface [95]. Thus, the chemical poten-
tial is defined as the variational derivative of the total free energy with respect
to the species concentration

µ =
δΨ

δc
=

∂ψmwp

∂c
−

kBTre f NA

cmax
λ∇

2c, (4.7)

and it represents a thermodynamic driving force for diffusion and phase changes.
Thus, Equation (4.5) can be rewritten in this form

δΨ =
∫

B
(

∂ψmwp

∂c
−

kBTre f NA

cmax
λ∇

2c) δc dV

=
∫

B
µ δc dV. (4.8)

Based on the conservation of mass, the evolution of species transport is given
by

ċ =−div(~J) (4.9)

with the mass flux ~J related to the chemical potential µ through the Onsager
relation

~J =−M ·~∇µ, (4.10)
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4 Phase-field theory of phase changes

where the mobility tensor M is non-negative definite. we choose an isotropic
mobility according to

M(c) = M (c)I (4.11)

with the function

M (c) =
D0c(cmax− c)
kBTre f NAcmax

, (4.12)

which is symmetric in the range between zero and maximum concentration.
Here, D0 is the diffusion constant.

Combining Equations (4.7), (4.9), (4.10), and (4.11) yields the classical
Cahn-Hilliard equation

ċ = div
(

M(c)~∇
(

∂ψmwp

∂c
−

kBTre f NA

cmax
λ∇

2c
))

. (4.13)

4.1.3 Derivation from a microforce balance

According to Gurtin [57], although the above derivation of Cahn-Hilliard
equation is simple and physically sound, it should not be regarded as basic,
but rather as precursor of more complete theories. Indeed, such derivation
limits the manner in which rate terms enter the equations, and requires a-priori
specification of the constitutive equation (4.3). Here, we will review the work
of Gurtin [57] to show that how to derive the Cahn-Hilliard equation from a
microforce balance.

In the Cahn-Hilliard theory the kinematical process is related to the order
parameter c, and it is reasonable that there should be “microforces” whose
working (expenditure of power) accompanies changes in c. Given an arbitrary
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4.1 Cahn-Hilliard theory

control volume R (subregion of a body B), the system of forces is presumed to
be consistent with the microforce balance [57]∫

R
(π + γ) dV +

∫
∂R

~ξ ·~n dA = 0, (4.14)

where ξ is a vector stress, and π and γ represent, respectively, internal and
external forces distributed over the volume of a body B.

The above global law (4.14) should be satisfied for all time and all control
volumes R, and the local microforce balance is obtained

div ~ξ +π + γ = 0. (4.15)

The general Cahn-Hilliard equation can be derived based on balance of mass,
the local microforce balance, and a generalization of the dissipation inequality
accommodating diffusion. In order to be consistent with the balance of mass
(4.9), here we ignore the external mass supply. Actually, the external mass
supply term will be automatically dropped out in the following local dissipation
inequality even if it is taken into account.

According to the second law of thermodynamics, the rate at which the free
energy of R increases can not be more than the working on R plus the rate at
which free energy is carried into R by mass transport. The working is given by

w(R) =
∫

R
γ ċ dV +

∫
∂R
(~ξ ·~n)ċ dA, (4.16)

and the chemical potential through the contributions

−
∫

∂R
µ~J ·~n dA (4.17)
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4 Phase-field theory of phase changes

characterizes the rate at which free energy is carried into R by mass transport.
Therefore, the appropriate form of the second law of thermodynamics is the
dissipation inequality∫

R
ψ̇ dV ≤

∫
R

γ ċ dV +
∫

∂R
(~ξ ·~n)ċ dA−

∫
∂R

µ~J ·~n dA. (4.18)

The above dissipation inequality can be manipulated further∫
R

ψ̇ dV −
∫

R
γ ċ dV −

∫
∂R
(~ξ ·~n)ċ dA+

∫
∂R

µ~J ·~n dA

=
∫

R
ψ̇ dV −

∫
R

γ ċ dV −
∫

R
div (ċ~ξ ) dV +

∫
R

div (µ~J) dV

=
∫

R
ψ̇ dV −

∫
R

γ ċ dV −
∫

R
(ċ div ~ξ +~ξ ·~∇ċ) dV +

∫
R
(µ div ~J+ ~J ·~∇µ) dV

≤ 0. (4.19)

Using the local microforce balance (4.15) and the balance of mass (4.9), Equa-
tion (4.19) yields the local dissipation inequality

ψ̇−~ξ ·~∇ċ+ ~J ·~∇µ +(π−µ)ċ≤ 0. (4.20)

According to Gurtin [57], the constitutive equations are considered of the form

ψ = ψ̂(c,~∇c,µ,~∇µ), ~J = ~̂J(c,~∇c,µ,~∇µ),

~ξ = ~̂ξ (c,~∇c,µ,~∇µ), π = π̂(c,~∇c,µ,~∇µ). (4.21)

All the above constitutive equations should be consistent with the second law
of thermodynamics in the form of the local dissipation inequality (4.20) , which
leads to the following inequality

(
∂ψ̂

∂c
+ π̂−µ)ċ+(

∂ψ̂

∂~∇c
−~̂ξ ) ·~∇ċ+

∂ψ̂

∂ µ
µ̇ +

∂ψ̂

∂~∇µ
·~∇µ̇ + ~J ·~∇µ ≤ 0, (4.22)
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4.1 Cahn-Hilliard theory

holding for all fields c and µ . As a result, we can induce the following relations,
which are sufficient for the above inequality (4.22),

π̂(c,~∇c,µ) = µ− ∂ψ̂(c,~∇c)
∂c

,

~ξ = ~̂ξ (c,~∇c) =
∂ψ̂(c,~∇c)

∂~∇c
, (4.23)

where ψ and ~ξ are independent of µ and~∇µ , π̂ is independent of ~∇µ , and

~J ·~∇µ ≤ 0 (4.24)

for all fields, such that ~J has the form of Equation (4.10). Using Equations
(4.23) and (4.15) yields

µ =
∂ψ̂(c,~∇c)

∂c
−div(

∂ψ̂(c,~∇c)

∂~∇c
)− γ. (4.25)

It can be interestingly seen that Equation (4.25) with γ = 0 gives the chemical
potential obtained from the variation derivative of the total free energy with
respect to species concentration, as shown in Equation (4.7).

Substituting Equations (4.10) and(4.25) into the balance of mass (4.9) yields
the generalized Cahn-Hilliard equation

ċ = div

(
M(c)~∇

(
∂ψ̂(c,~∇c)

∂c
−div(

∂ψ̂(c,~∇c)

∂~∇c
)− γ

))
, (4.26)

and the standard Cahn-Hilliard equation is obtained if γ = 0.
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4 Phase-field theory of phase changes

4.2 Nonlocal species concentration theory

Here, a nonlocal species concentration theory for diffusion and phase changes
is introduced from a nonlocal free energy density (see also Zhang and Kam-
lah [98]). This theory can be interpreted as an extension of the Cahn-Hilliard
theory. In principle, nonlocal effects beyond an infinitesimal neighborhood are
taken into account. We first introduce a general formulation of a nonlocal free
energy density, and then derive the NSC theory from the nonlocal model.

4.2.1 Nonlocal free energy density

In the nonlocal model, nonlocal interactions are introduced by the weighted
spatial average of the local concentration. Based on [52, 103, 112], the free
energy density including truly nonlocal consideration reads as

ψ = ψ
mwp(c̄(~x))+ 1

2
A
∫

B
ω(~y;~x)

(
c̄(~x)− c̄(~y)

)2dV. (4.27)

Here, ψmwp is the homogeneous free energy density, which has been expressed
in Equation (4.4). The second term on the right hand side of Equation (4.27)
is the nonlocal free energy density. B (B ⊂ R3) is the entire problem domain
containing all material points with position vectors~x. In the integral,~y denotes
the spatial variable for the volume integration over the entire problem domain
B. Furthermore, A is a material coefficient for the nonlocal particle-particle
interaction penalty with units J/m3 [112] and ω(~y;~x) is a positive, symmetric
weight function that weights the relative energetic contribution of concentra-
tion fluctuations to the free energy density. The nonlocal free energy density in
Equation (4.27) vanishes for homogeneous states, i.e. when the concentration
at all positions is the same. Thus, the so-called nonlocality becomes active in,
say, a phase segregated state, i.e. when the concentration at any position ~y,
possibly far away from~x, is different from the concentration there.
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4.2 Nonlocal species concentration theory

The weight function ω(~y;~x): R3→ R+ is a monotonically decreasing func-
tion of the distance ρ between~x and~y. It assumes recognizably non-vanishing
values over a finite zone in the neighborhood of the material point~x, only, and
asymptotically approaches zero as the distance ρ grows to infinity. In this way,
the weight function attributes less weight as the distance ρ increases. This sat-
isfies the physical idea that the ability of a material point~y to influence the local
free energy at a material point ~x decreases as the distance ρ between the two
material points increases. Therefore, the weight function possesses a natural
weight function property [103, 112, 114]∫

R3
ω(~y;~x)dV = 1, (4.28)

where, again, ~y is the variable of spatial integration. According to Brandon
[103], the weight function ω(~y;~x) ensures that the operator

c̄ ∈ L4(B;R) 7→
∫

B
ω(~y;~x)c̄(~y)dV ∈ L4/3(B;R) (4.29)

is compact, where the space L4(B;R) is the set of functions c̄

c̄ : B→ R (4.30)

such that

‖ c̄ ‖L4(B;R):=
{∫

B
c̄4dV

}1/4

< ∞. (4.31)

A similar definition can be applied to the space L4/3(B;R). For example, the
type of the weight function can be chosen of the form [102, 103, 112, 114]

ω(~y;~x)∼ e−η |~y−~x|

|~y−~x|
, (4.32)
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4 Phase-field theory of phase changes

which satisfies the natural weight function property and compactness condition
when η > 0. The weight function (4.32) is only dependent on the distance
ρ = |~y−~x|.

Taking the variation of the free energy (4.27) with respect to c(~x) to obtain
the chemical potential then gives

µnon =
δΨ

δc(~x)
=

∂ψmwp

∂c(~x)
+

A
cmax

∫
B

ω(~y;~x)(c̄(~x)− c̄(~y))dV, (4.33)

where, similar as in Equation (4.3),

Ψ =
∫

B
ψ(~y)dV (4.34)

is the system free energy of the entire problem domain B.
We now define two parameters according to

¯̂c(~x) =
A

cmaxβ

∫
B

ω(~y;~x)c̄(~y)dV, (4.35)

β =
A

cmax

∫
B

ω(~y;~x)dV. (4.36)

Here ¯̂c = ĉ/cmax is the normalized nonlocal species concentration that is a
weighted average value of c̄ in the entire problem domain B. The term
A/(cmaxβ ) scales the normalized nonlocal species concentration ¯̂c such that
¯̂c is equal to the normalized species concentration c̄ for homogenous states.
The parameter β is a penalty energy coefficient with units J/mol, which is
related to the penalty energy density, which will be introduced later. It can be
normalized as β̄ = β/(kBTre f NA).
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4.2 Nonlocal species concentration theory

Using Equations (4.35) and (4.36), the chemical potential can be rewritten
to yield

µnon =
δΨ

δc(~x)
=

∂ψmwp

∂c(~x)
+ kBTre f NAβ̄ (c̄(~x)− ¯̂c(~x)). (4.37)

In analogy with Peerlings et al. [114], two different partial differential equa-
tions (PDEs) can be derived from the integral formulation (4.35), which will
be discussed now in detail.

4.2.2 Helmholtz equation governing nonlocal
specie concentration

The integral formulation (4.35) can be written in a differential form. First,
c̄(~y) is expanded into a Taylor series around~x

c̄(~y) = c̄(~x)+~∇c̄(~x) · (~y−~x)+ 1
2!
~∇~∇c̄(~x) : (~y−~x)(~y−~x)

+
1
3!
~∇~∇~∇c̄(~x)

...(~y−~x)(~y−~x)(~y−~x)

+
1
4!
~∇~∇~∇~∇c̄(~x) :: (~y−~x)(~y−~x)(~y−~x)(~y−~x)+ · · · . (4.38)
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4 Phase-field theory of phase changes

Again, ~∇ denotes the Nabla operator with respect to spatial position ~x. Sub-
stituting Equation (4.38) into the integral formulation of the nonlocal species
concentration (4.35), yields

¯̂c(~x) =
A

cmaxβ

∫
B

ω(~y;~x)c̄(~x)dV +
A

cmaxβ

∫
B

ω(~y;~x)~∇c̄(~x) · (~y−~x)dV

+
1
2!

A
cmaxβ

∫
B

ω(~y;~x)~∇~∇c̄(~x) : (~y−~x)(~y−~x)dV

+
1
3!

A
cmaxβ

∫
B

ω(~y;~x)~∇~∇~∇c̄(~x)
...(~y−~x)(~y−~x)(~y−~x)dV

+
1
4!

A
cmaxβ

∫
B

ω(~y;~x)~∇~∇~∇~∇c̄(~x) :: (~y−~x)(~y−~x)(~y−~x)(~y−~x)dV

+ · · · . (4.39)

If an isotropic and homogeneous weight function is considered, as the example
in Equation (4.32), which is only dependent on the distance ρ = |~y−~x|, i.e.
ω(~y;~x) = ω(|~y−~x|) = ω(ρ), odd derivatives vanish upon integration leaving

¯̂c(~x) = c̄(~x)+ l2
∇

2c̄(~x)+ l4
2∇

4c̄(~x)+ l6
3∇

6c̄(~x)+ · · · (4.40)

with

l2 =
1
2!

A
cmaxβ

∫
B

ρ
2
ω(ρ)dV, (4.41)

l4
2 =

1
4!

A
cmaxβ

∫
B

ρ
4
ω(ρ)dV, (4.42)

l6
3 =

1
6!

A
cmaxβ

∫
B

ρ
6
ω(ρ)dV, (4.43)

· · ·

Here the operators ~∇~∇~∇~∇ and ~∇~∇~∇~∇~∇~∇ are simplified to ∇4 and ∇6, and
so on. Since the series in Equation (4.40) is not truncated, its validity is not
limited to some infinitesimal neighborhood of position ~x, in principle. In this
sense, nonlocal species concentration ¯̂c is truly nonlocal.
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4.2 Nonlocal species concentration theory

Next, we apply the Laplacian operator to Equation (4.40) and multiply with
l2 to obtain

l2
∇

2 ¯̂c(~x) = l2
∇

2c̄(~x)+ l4
∇

4c̄(~x)+ l2l4
2∇

6c̄(~x)+ · · · . (4.44)

Subtracting Equation (4.44) from Equation (4.40) gives

¯̂c(~x)− l2
∇

2 ¯̂c(~x) = c̄(~x)+(l4
2 − l4)∇4c̄(~x)

+(l6
3 − l2l4

2)∇
6c̄(~x)+ · · · . (4.45)

For vanishing coefficients of the higher order derivatives of c̄, Equation (4.45)
reduces to the inhomogenous Helmholtz equation [114]

¯̂c− l2
∇

2 ¯̂c = c̄. (4.46)

In Appendix A.1, we discuss under which conditions the inhomogenous Helmholtz
equation (4.46) becomes the governing equation of nonlocal species concen-
tration ¯̂c. To this end, we first show that the Green’s function of Equation
(4.46) satisfies the natural weight function property (4.28). Since additionally
the Green’s function is isotropic and homogeneous, it is chosen as the weight
function for nonlocal species concentration ¯̂c. Second, we show that ¯̂c defined
in this way satisfies the inhomogenous Helmholtz equation (4.46), indeed.

According to Equation (4.41), the parameter l is of the dimension length,
and in view of its role in Equation (4.46), we call it characteristic interface
length scale. It is taken to be on the order of magnitude of the interface thick-
ness d between adjacent phases of the species concentration field c̄ [113], and
measures the volume in the neighborhood of the material point~x where species
concentration c̄ contributes significantly to the nonlocal species concentration.
For example, for a weight function of the type in Equation (4.32), by Equa-
tion (4.41) there is a relation between l and the parameter η . Therefore, the
characteristic interface length scale l is related to the scale of microstructure.

43



4 Phase-field theory of phase changes

Henceforth, we assume l to be a constant. The Helmholtz equation (4.46) is a
PDE to calculate the nonlocal species concentration. The Helmholtz equation
is an elliptic partial differential which represents a time-independent form of
the wave equation obtained by separation of variables. It arises, for example,
in the study of electromagnetic radiation, seismology, and acoustics.

In order to solve the Helmholtz equation (4.46), we need to introduce a
boundary condition. Here the natural boundary condition

~∇ ¯̂c ·~n = 0 (4.47)

is used with~n being the unit normal to ∂B.
For an interpretation of this boundary condition, integration of Equation (4.46)
over the domain B gives∫

B

¯̂cdV −
∫

B
l2

∇
2 ¯̂cdV =

∫
B

c̄dV. (4.48)

The second term of Equation (4.48) vanishes by the divergence theorem and
boundary condition (4.47), which gives∫

B
c̄dV =

∫
B

¯̂cdV. (4.49)

Thus, the natural boundary condition (4.47) preserves the global species con-
tent of the entire problem domain in the nonlocal averaging [114]. In other
words, at each time instant, the total content of nonlocal species concentration
¯̂c is equal to the content of the considered species in the problem domain B.

In summary of the above derivation, together with the boundary condition
(4.47), the partial differential equation (4.46) for ¯̂c is an alternative to the inte-
gral representation (4.35) when using the Green’s function as weight function.
Therefore, the NSC theory based on the Helmholtz equation (4.46) is a special
form of the nonlocal model, in which the weight function ω(~y;~x) is defined as
ω(~y;~x) = G(~y;~x). Indeed, the infinite series of higher-order derivatives of c̄ is
still implicitly present in the gradient term on the left-hand side of Equation
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4.2 Nonlocal species concentration theory

(4.46) [114]. As mentioned before, this indicates that spatial interactions in-
duced by the higher-order derivatives of c̄ represent effects at a finite distance
and so the NSC theory is truly nonlocal.

4.2.3 Decomposition of nonlocal free energy
density

The system free energy

Ψ = Ψ
mwp +Ψ

penalty +Ψ
variance

=
∫

B
ψ

mwp(c̄(~y))+ψ
penalty(c̄(~y), ¯̂c(~y)

)
+ψ

variance( ¯̂c(~y)
)
dV

(4.50)

of the NSC theory consists of three parts. For a derivation see Appendix A.2.
The first part of Equation (4.50) is the free energy that the entire problem do-
main would have in a homogenous solution. In the second part, ψ penalty

(
c̄(~x), ¯̂c(~x)

)
is the penalty energy density of the form

ψ
penalty(c̄(~x), ¯̂c(~x)

)
=

1
2

cmaxβ
(
c̄(~x)− ¯̂c(~x)

)2
. (4.51)

This part considers a system penalty energy induced by the the difference be-
tween normalized species concentration c̄(~x) and normalized nonlocal species
concentration ¯̂c(~x). A similar penalty term is also introduced in [94] and [118].
For the last part, we introduce a variance energy density of the form

ψ
variance( ¯̂c(~x)

)
=

1
2

cmaxβ

∫
B

ω(ρ)
(
c̄(~y)− ¯̂c(~x)

)2dV. (4.52)

The last part of Ψ accounts for a system variance energy which depends on the
weighted average value of the squared deviation of the local species concentra-
tion c̄(~y) from normalized nonlocal species concentration ¯̂c(~x). The variance
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4 Phase-field theory of phase changes

energy density is related to the concept of variance in the probability theory
and statistics. It should be noticed that the variance energy density makes no
contributuion to diffusion and phase changes due to the independence of the
variance energy density with respect to c̄(~x).

Compared to the free energy density (4.27) in the nonlocal model, the nonlo-
cal free energy density is split into two terms in the NSC theory, i.e. the penalty
energy density ψ penalty and the variance energy density ψvariance.

4.3 Comparison of two diffusion theories

For a better comparison between these two diffusion theories, we first de-
rive the Cahn-Hilliard theory from the nonlocal model. If the terms of order
four and higher of Equation (4.40) are neglected, Equation (4.40) yields an
approximation of Equation (4.35):

¯̂c = c̄+ l2
∇

2c̄. (4.53)

Using Equation (4.53), Equation (4.37) gives the chemical potential, as shown
in Equation (4.7), for the Cahn-Hilliard theory with the gradient energy coef-
ficient λ = β̄ l2, which is assumed to be a constant, henceforth. According to
Equation (4.53), the nonlocal species concentration in a material point depends
only on the species concentration and its second-order derivative. As a conse-
quence, the spatial interaction induced by only the second-order derivative of
species concentration c̄ is limited to the infinitesimal neighborhood of the con-
sidered material point. Thus, the Cahn-Hilliard theory is weakly nonlocal.

Compared to the NSC theory, the Cahn-Hilliard theory is a simplified ver-
sion of the NSC theory, since the NSC theory implicitly accounts for an infi-
nite series of higher-order derivatives of c̄ in Equation (4.46) while the Cahn-
Hilliard theory only contains the second-order derivative in Equation (4.53). In
addition, as will be shown in chapter 8, the interface thickness d is controlled
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by the two parameters β̄ and l in the NSC theory, while it depends solely on
parameter λ in the Cahn-Hilliard theory.

Now we compare the corresponding field equations from the two diffusion
theories. Combining Equations (4.9), (4.10), and (4.37) yields the diffusion
equation for the NSC theory as

ċ = div
(

M(c)~∇
(

∂ψmwp

∂c
+ kBTre f NAβ̄ (c̄− ¯̂c)

))
. (4.54)

Here, Equation (4.54) is a partial differential equation (PDE) which involves
second-order spatial derivatives in c, and the nonlocal species concentration is
calculated by solving the Helmholtz equation (4.46). Thus, the NSC theory
consists of two coupled second-order PDEs. On the other hand, the Cahn-
Hilliard equation (4.13) is a fourth-order PDE. Therefore, the Cahn-Hilliard
theory needs stronger continuity requirements on the species concentration
than the NSC theory. Instead of a fourth-order equation, the two second-order
PDEs of the NSC theory are computationally less demanding.
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5 Cahn-Hilliard theory with
mechanics

In the previous chapter 4 we introduced the Cahn-Hilliard theory without
mechanics. In this chapter, we will derive the coupled model of the Cahn-
Hilliard theory and mechanics. We first start with the coupled Cahn-Hilliard
theory with SDT. Then, the coupled Cahn-Hilliard theory with finite deforma-
tion elasticity is derived, including two finite deformation elasticity formula-
tions based on elastic Green strain and logarithmic elastic strain, respectively.
Besides, for the spherically symmetric boundary value problem, the mathemat-
ical formulations of the coupled Cahn-Hilliard theories are also derived.

5.1 The coupled Cahn-Hilliard theory with
small deformation theory

5.1.1 System free energy

According to Gurtin [57], in order to take the coupling between diffusion and
mechanics into account, the coupling energy or elastic strain energy should be
added into the system free energy

Ψ(c,gradc,εεε) =
∫

B
ψ(c,gradc,εεεe)dV

=
∫

B
(ψmwp(c)+ψ

gd(gradc)+ψ
cp(εεε,c))dV. (5.1)
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Here ψmwp and ψgd have been previously referred as the multiwell potential
and the gradient energy density, respectively. The coupling energy density ψcp

is assumed to be given by

ψ
cp =

1
2

εεε
e : C : εεε

e

= G(εεεe : εεε
e +

ν

1−2ν
(trεεε

e)2). (5.2)

Here C is the elasticity tensor

C = G
(
δikδ jl +δilδ jk

)
+

2Gν

1−2ν
δi jδkl , (5.3)

which is taken to be constant and isotropic. Accordingly, ν is the Poisson’s
ratio, and G is the shear modulus

G =
E

2(1+ν)
, (5.4)

where E is the Young’s modulus.
The elastic strain εεεe is given by

εεε
e = εεε− εεε

s, (5.5)

where

εεε
s =

1
3

Ω(c− c0)I (5.6)

is the stress-free strain induced by species insertion or extraction, and εεε is the
total strain tensor that has already introduced in Equation (3.15). Here, Ω is
the partial molar volume, and c0 is the initial species concentration.
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5.1 The coupled Cahn-Hilliard theory with small deformation theory

5.1.2 Linear elasticity

The Cauchy stress tensor can be derived from the free energy density [57],
which leads to the law of linear elasticity

T =
∂ψ(c,gradc,εεε)

∂εεε

=
∂ψcp(εεε,c)

∂εεε

= C : εεε
e. (5.7)

5.1.3 Field equations

The chemical potential considering the coupling between diffusion and me-
chanical deformation is a superposition of three terms

µ =
δΨ

δc
= µ

mwp +µ
gd +µ

cp (5.8)

with

µ
mwp =

∂ψmwp

∂c
−div

(
∂ψmwp

∂ gradc

)
︸ ︷︷ ︸

=0

= kBTre f NA

(
α1 +α2c̄+

T
Tre f

(ln c̄− ln(1− c̄))
)
, (5.9)

µ
gd =

∂ψgd

∂c︸ ︷︷ ︸
=0

−div
(

∂ψgd

∂ gradc

)

= −kBTre f NAλ div(grad c̄) , (5.10)

µ
cp =

∂ψcp

∂c
−div

(
∂ψcp

∂ gradc

)
︸ ︷︷ ︸

=0

= −ΩTH , (5.11)
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where TH = 1/3Tii is the hydrostatic stress.
Combining Equations (4.9), (4.10) and (5.8) yields the coupled Cahn-Hilliard

diffusion equation

ċ = div
(

M(c)~∇(µmwp +µ
gd +µ

cp)
)
, (5.12)

where M(c) has been defined in Equation (4.12).
It should be noticed that, replacing the term µgd shown in Equation (5.12)

by the term

µ
penalty =

δψ penalty

δc
= kBTre f NAβ̄ (c̄− ¯̂c), (5.13)

the coupled NSC diffusion equation with SDT can be obtained.
Finally, based on the balance of momentum, as shown in Equation (3.20),

the mechanical equilibrium condition is

divT =~0, (5.14)

where the body force is neglected.
Combined with the constitutive equations introduced above, the field equa-

tions can be taken as partial differential equations for concentration c and
displacement vector ~u, which need to be solved for given initial and boundary
conditions. This is a fourth-order nonlinear initial-boundary-value problem.

5.1.4 Mathematical formulation of the spherically
symmetric boundary value problem

In this part, the phase segregation problem of species insertion into or extrac-
tion from a cathodic particle is mathematically formulated. In order to avoid
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5.1 The coupled Cahn-Hilliard theory with small deformation theory

costly three-dimensional simulations, here, a spherical particle of radius R0 un-
der spherically symmetric boundary conditions is considered, and the spherical
coordinate system (r,θ ,ϕ) is introduced. It is assumed that not only the particle
geometry, but also the unknown variables, such as the species concentration c

and the displacement vector ~u, as well as the boundary conditions holding at
the electrode particle surface are invariant under rotation with respect to both
the θ and ϕ coordinates [116]. As a result, the three-dimensional problem is
allowed to be replaced by an equivalent one-dimensional problem, as sketched
in Fig. 5.1. Due to the spherical symmetry, all fields are expressed as a function
of the time t and the radial coordinate 0≤ r ≤ R0:

c = c(r, t), (5.15)

~u = ur(r, t)~er. (5.16)

Figure 5.1: Spherical particle of the spherically symmetry: the three-dimensional problem re-
duces to a one-dimensional problem.

In numerical implementations, the scaling of the equations by material pa-
rameters may lead to larger numerical errors, especially when the prefactors
are very small or large. Therefore, the boundary value problem is implemented
in a normalized form. In this work, the relevant normalized parameters are
listed in Table 5.1.
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Parameters Normalization
Concentration c c̄ = c

cmax

Radius r r̄ = r
R0

Radial displacement ur ūr =
ur
R0

Time t t̄ = D0
R2

0
t

Partial molar volume Ω Ω̄ = Ωcmax

Flux Jr J̄r =
R0

D0cmax
Jr

Young’s modulus E Ē = E
kBTre f NAcmax

Free energy density ψ ψ̄ = ψ

kBTre f NAcmax

Chemical potential µ µ̄ = µ

kBTre f NA

Table 5.1: Normalized parameters.

For the spherically symmetric boundary value problem considered here, the
strain tensor is diagonal, i.e. entries only exist on the main diagonal. The radial
and tangential components of it are given by (referring to Equation (3.15))

εr =
∂ur

∂ r
, (5.17)

εt =
ur

r
. (5.18)

According to Equation (5.5), the elastic strain εεεe is expressed as

εεε
e = εεε− εεε

s

=


∂ur
∂ r −

Ω

3 (c− c0) 0 0

0 ur
r −

Ω

3 (c− c0) 0

0 0 ur
r −

Ω

3 (c− c0)


{~er ,~eϑ ,~eϕ}

.

(5.19)
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Furthermore, based on the law of linear elasticity (5.7), the components of the
stress tensor are given by

Tr = 2G
[

εr +
ν

1−2ν
(εr +2εt)

−1
3

(
1+

3ν

1−2ν

)
Ω(c− c0)

]
,

(5.20)

Tt = 2G
[

εt +
ν

1−2ν
(εr +2εt)

−1
3

(
1+

3ν

1−2ν

)
Ω(c− c0)

]
.

(5.21)

Based on Equation (5.14), the mechanical equilibrium condition of the spheri-
cally symmetry is formulated as

∂Tr

∂ r
+

2
r
(Tr−Tt) = 0. (5.22)

Now we derive the coupled diffusion equation of the spherically symmetric
boundary value problem. For the chemical potential, µmwp has been expressed
in Equation (5.9). According to Equations (5.10) and (5.11), µgd and µcp are
expressed as

µ
gd = −kBTre f NAλ div(grad c̄)

= −kBTre f NAλ (
∂ 2c̄
∂ r2 +

2
r

∂ c̄
∂ r

), (5.23)

µ
cp = −ΩTH

= G
[

2
3

Ω
2(c− c0)−

2
3

Ω
∂ur

∂ r
− 4

3
Ω

ur

r

− 2νΩ

1−2ν

(
−Ω(c− c0)+

∂ur

∂ r
+2

ur

r

)]
. (5.24)
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The gradient of the chemical potential is the driving force for diffusion, and the
components of it are obtained as:

grad µ
mwp =

kBTre f NA

c̄(1− c̄)
(1+α2c̄(1− c̄))

∂ c̄
∂ r

~er, (5.25)

grad µ
cd = −kBTre f NAλ

(
∂ 3c̄
∂ r3 +

2
r

∂ 2c̄
∂ r2 −

2
r2

∂ c̄
∂ r

)
~er, (5.26)

grad µ
cp = G

[
2
3

Ω
2 ∂c

∂ r
− 2

3
Ω

∂ 2ur

∂ r2 −
4
3

Ω

(
1
r

∂ur

∂ r
− ur

r2

)
− 2νΩ

1−2ν

(
−Ω

∂c
∂ r

+
∂ 2ur

∂ r2 +2
(

1
r

∂ur

∂ r
− ur

r2

))]
~er.

(5.27)

Substituting the above Equations (5.25)-(5.27) into Equation (5.12), we can
derive the final dimensionless coupled diffusion equation

0 = r̄2 ∂ c̄
∂ t̄

+
∂

∂ r̄

[
−r̄2(1+α2c̄(1− c̄))

∂ c̄
∂ r̄

+r̄2 λ

R2
0

c̄(1− c̄)
(

∂ 3c̄
∂ r̄3 +

2
r̄

∂ 2c̄
∂ r̄2 −

2
r̄2

∂ c̄
∂ r̄

)
−r̄2c̄(1− c̄)Ḡ

[
2
3

Ω̄
2 ∂̄c

∂ r̄
− 2

3
Ω̄

∂ 2ūr

∂ r̄2 −
4
3

Ω̄

(
1
r̄

∂ ūr

∂ r̄
− ūr

r̄2

)
− 2νΩ̄

1−2ν

(
−Ω̄

∂ c̄
∂ r̄

+
∂ 2ūr

∂ r̄2 +2
(

1
r̄

∂ ūr

∂ r̄
− ūr

r̄2

))]]
. (5.28)

We can find that the coupled Cahn-Hilliard diffusion equation involves fourth-
order spatial derivatives in the concentration and third-order spatial derivatives
in the radical displacement. Here, if the term related to shear modulus Ḡ is not
taken into account, the above coupled diffusion equation (5.28) will degenerate
to the pure Cahn-Hilliard diffusion equation.
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5.1 The coupled Cahn-Hilliard theory with small deformation theory

Figure 5.2: Boundary and symmetry conditions for the spherically symmetric boundary value
problem.

We now discuss the boundary and initial conditions for the spherically sym-
metric boundary value problem (see also Zhang and Kamlah [89]). The bound-
ary conditions are sketched in Fig. 5.2. At the surface, the particle is assumed
to be stress free,

T(R0, t) ·~n =~0, (5.29)

where ~n refers to the outgoing unit vector normal to the particle surface. We
choose a spatially independent mass flux at the surface as

~J(R0, t) ·~n =

 −
CcmaxR0
3600·3 for c(R0, t)≤ cmax

0 for c(R0, t) = cmax

. (5.30)

Here C is the C-rate, and C = n means that the amount of a species of a fully
charged particle would flow into the particle within 1/n hours. Once the maxi-
mum concentration cmax is reached at the surface, the mass flux will be stopped.

Here neglecting surface wetting [119], the natural boundary condition is ex-
pressed as

gradc ·~n =
∂c
∂ r

(R0, t) = 0. (5.31)
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In addition, at the particle center, the boundary conditions

ur(0, t) = 0, (5.32)

∂c
∂ r

(0, t) = 0, (5.33)

∂ 3c
∂ r3 (0, t) = 0 (5.34)

are to be satisfied. Here, Equation (5.32) guarantees the continuity of the parti-
cle at the center, and Equations (5.32)-(5.34) are needed to ensure the spherical
symmetry. What is more, these three boundary conditions ensure the physical
requirement that the flux at the particle center vanishes [116].

Finally, the initial conditions are given by

ur (r,0) = 0, (5.35)

c(r,0) = 0. (5.36)

5.2 The coupled Cahn-Hilliard theory with
finite deformation elasticity

5.2.1 Kinematics

The kinematics developed here is related to the basic fields shown in Table
5.2, some of which have been discussed in chapter 3.1 (see also Zhang and
Kamlah [89, 96]).
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5.2 The coupled Cahn-Hilliard theory with finite deformation elasticity

Descriptions Basic fields
Motion ~x =~χ(~X , t)
Displacement vector ~u =~x−~X
Deformation gradient F = Grad~χ
Volume ratio J = detF
Multiplicative decomposi-
tion of F

F = FeFs

Elastic deformation gradient Fe,Je = detFe

Concentration induced de-
formation gradient

Fs,Js = detFs

Elastic right stretch tensor Ue =
√

Fe>Fe

Elastic left stretch tensor Ve =
√

FeFe>

Polar decomposition of Fe Fe = ReUe = VeRe

Elastic Green strain tensor Ee = 1
2

(
Fe>Fe− I

)
Spectral decomposition of
Ue

Ue = ∑
3
α=1

λ e
α
~rα ⊗~rα

Spectral decomposition of
Ve

Ve = ∑
3
α=1

λ e
α (Re~rα)⊗ (Re~rα)

Logarithmic elastic strain
tensor

Ee
log = ∑

3
α=1

lnλ e
α~rα ⊗~rα

Spatial logarithmic elastic
strain tensor

Ee
log,H = ∑

3
α=1

lnλ e
α (Re~rα)⊗ (Re~rα)

Table 5.2: Basic fields in the kinematics.

Consider a motion ~x = ~χ(~X , t) of a homogeneous isotropic body B. The
kinematical basis for the coupling between finite deformation elasticity and
diffusion is the multiplicative decomposition [91]

F = FeFs, (5.37)
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as illustrated in Fig. 5.3. Here Fe is the elastic deformation gradient that is
a mapping from the intermediate configuration onto the current configuration,
and the concentration induced deformation gradient Fs caused by species in-
sertion or extraction is a mapping from the reference configuration onto the
intermediate configuration. Fs is assumed to be purely volumetric in the form

Fs = β
sI = 3

√
1+Ω(cR− c0)I, (5.38)

where cR is the species concentration, measured in mol per unit reference vol-
ume.

Using Equations (3.6) and (5.37) yields

J = JeJs, (5.39)

where Je = detFe and Js = detFs = 1+Ω(cR− c0).

Figure 5.3: Multiplicative decomposition of F [89].

60



5.2 The coupled Cahn-Hilliard theory with finite deformation elasticity

The right and left polar decompositions of Fe are expressed by

Fe = ReUe = VeRe, (5.40)

where Re is a rotation, and Ue and Ve are the symmetric, positive-definite
elastic right and left stretch tensors:

Ue =
√

Fe>Fe and Ve =
√

FeFe>. (5.41)

In addition, the right elastic Cauchy-Green tensor is

Ce = Ue2 = Fe>Fe. (5.42)

The elastic Green strain tensor is then defined as

Ee =
1
2
(Ce− I)

=
1
2

(
Fe>Fe− I

)
=

1
2

(
(1+Ω(cR− c0))

− 2
3 F>F− I

)
(5.43)

Next, the spectral representations of Ue and Ve are

Ue =
3

∑
α=1

λ
e
α
~rα ⊗~rα and Ve =

3

∑
α=1

λ
e
α (Re~rα)⊗ (Re~rα) , (5.44)

respectively where (~r1,~r2,~r3) and (λ e
1 ,λ

e
2 ,λ

e
3 ) are the orthonormal eigenvectors

and the positive eigenvalues of Ue respectively. According to Anand [91], the
logarithmic elastic strain tensor and the spatial logarithmic elastic strain tensor
can be obtained as

Ee
log = lnUe =

3

∑
α=1

lnλ
e
α~rα ⊗~rα , (5.45)

61



5 Cahn-Hilliard theory with mechanics

Ee
log,H = lnVe =

3

∑
α=1

lnλ
e
α (Re~rα)⊗ (Re~rα) . (5.46)

Using Equations (5.37), (5.38), (5.41), and (5.45), the above logarithmic elastic
strain tensor can be rewritten as

Ee
log = lnUe

= ln
√

Fe>Fe

= ln(
1

3
√

1+Ω(cR− c0)

√
F>F)

= ln
√

F>F− 1
3

ln(1+Ω(cR− c0))I. (5.47)

Thus, the logarithmic elastic strain tensor involves an eigenstrain accounting
for the strain developed by composition changes from the reference state.

5.2.2 System free energy

The system free energy of the coupled theory, in the reference volume, in-
cludes three parts [57, 91]

ΨR =
∫

BR

ψR dVR

=
∫

BR

(ψmwp
R

(cR)+ψ
gd
R
(GradcR)+ψ

cp
R
) dVR, (5.48)

where ψmwp
R

and ψgd
R

have been previously discussed as the multiwell potential
and the gradient energy density, respectively. Here, entities with subscript R

indicate these to be defined in the reference configuration. The additional term
ψcp

R
is the coupling energy density defining the coupling between diffusion and

mechanics. As shown in Fig. 5.3, the elastic Green strain tensor is defined in
the intermediate configuration. Thus, the coupling energy of the entire system
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in terms of elastic Green strain tensor in the intermediate configuration is given
by

Ψ
cp
I

=
∫

BI

1
2

Ee : C : EedVI . (5.49)

According to the multiplicative decomposition of F, we can obtain

dVI = detFs dVR = Js dVR. (5.50)

Using Equations (5.49) and (5.50) yields the coupling energy in terms of elastic
Green strain tensor in the reference configuration

Ψ
cp
R

=
∫

BR

1
2

Js Ee : C : EedVR. (5.51)

Therefore, the coupling energy density in terms of elastic Green strain tensor
in the reference configuration is given by

ψ
cp
R
(cR,Ee) =

1
2

Js Ee : C : Ee

= GJs
[

Ee : Ee +
ν

1−2ν
(trEe)2

]
, (5.52)

Similarly, the coupling energy density in terms of logarithmic elastic strain
tensor in the reference configuration is derived as

ψ
cp
R
(cR,Ee

log) =
1
2

Js Ee
log : C : Ee

log

= GJs
[

Ee
log : Ee

log +
ν

1−2ν

(
trEe

log
)2
]
. (5.53)
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5.2.3 Elasticity based on elastic Green strain

According to Gurtin [57], the thermodynamical potential relation for the first
Piola-Kirchhoff stress TR is derived from the local dissipation inequality as

TR =
∂ψR

∂F
. (5.54)

The second Piola-Kirchhoff stress T̃e related to intermediate configuration is
symmetric considering the symmetry of the Cauchy stress T:

T̃e = JeFe−1TFe−>. (5.55)

Using Equations (3.12), (5.54) and (5.55), we can obtain the relation

T̃e =
2
Js

∂ψR

∂Ce =
1
Js

∂ψR

∂Ee . (5.56)

Using Equations (5.48) and (5.52), Equation (5.56) then yields the isotropic
elasticity law based on elastic Green strain as

T̃e =
1
Js

∂ψmwp
R

∂Ee︸ ︷︷ ︸
=0

+
∂ψgd

R
(GradcR)

∂Ee︸ ︷︷ ︸
=0

+
∂ψcp

R
(cR,Ee)

∂Ee


=

1
Js

∂ψcp
R
(cR,Ee)

∂Ee

= 2GEe +2G
ν

1−2ν
(trEe)I

= 2GEe +

(
K− 2

3
G
)
(trEe)I, (5.57)

where the bulk modulus K is expressed by

K =
E

3(1−2ν)
. (5.58)
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5.2.4 Elasticity based on logarithmic elastic strain

In the following, we will introduce another isotropic elasticity law based
on logarithmic elastic strain (see also Zhang and Kamlah [89]). According
to Anand [91], the second Piola-Kirchhoff stress T̃e is derived from the free
energy density according to

T̃e =
2
Js

∂ψR

∂Ce . (5.59)

Here, Equation (5.59) agrees with Equation (5.56) which is derived from the
local dissipation inequality of Gurtin [57]. The Mandel stress related to the
intermediate configuration is defined by

Me = CeT̃e. (5.60)

Using Equations (5.42) and (5.45) yields

Ee
log = ln(Ce 1

2 ). (5.61)

Hence, using Equations (5.59) and (5.61), Equation (5.60) then gives

Me = Ce 2
Js

∂ψR

∂Ce =
1
Js

∂ψR

∂Ee
log

. (5.62)

65



5 Cahn-Hilliard theory with mechanics

Using Equations (5.48) and (5.53), Equation (5.62) then yields the isotropic
elasticity law based on logarithmic elastic strain as

Me =
1
Js

∂ψmwp
R

∂Ee
log︸ ︷︷ ︸

=0

+
∂ψ

gd
R (GradcR)

∂Ee
log︸ ︷︷ ︸

=0

+
∂ψcp

R
(cR,Ee

log)

∂Ee
log


=

1
Js

∂ψcp
R
(cR,Ee

log)

∂Ee
log

= 2GEe
log +

(
K− 2

3
G
)(

trEe
log
)

I. (5.63)

Furthermore, Equations (5.42), (5.55) and (5.60) yields the corresponding
Cauchy stress

T =
1
Je ReMeRe>. (5.64)

5.2.5 Field equations

The chemical potential considering the coupling between diffusion and me-
chanics is given by

µR(cR,F) =
δΨR

δcR
= µ

mwp
R

+µ
gd
R

+µ
cp
R
, (5.65)

where µmwp
R

and µgd
R

have been expressed in Equations (5.9) and (5.23), re-
spectively. It should be noticed that, c and r in Equations (5.9) and (5.23) are
replaced by cR and R, respectively, indicating these defined in the reference
configuration.
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For the coupling chemical potential µcp
R

, we consider two forms of it for the
two different finite deformation elasticities:

µ
cp
R
(cR,Ee) =

∂ψcp
R

∂cR
−Div

(
∂ψ

cp
R

∂ GradcR

)
︸ ︷︷ ︸

=0

=
∂ψcp

R

∂cR

=
∂ψcp

R

∂Js
∂Js

∂cR
+

∂ψcp
R

∂Ee :
∂Ee

∂cR

= Ω(
1
2

Ee : C : Ee)+ JsC : Ee :
∂Ee

∂cR

= Ω(
1
2

Ee : C : Ee)− 1
3Js Ω

∂ψcp
R

∂Ee Ce : I

= Ω(
1
2

Ee : C : Ee)− 1
3

Ω trMe, (5.66)

µ
cp
R
(cR,Ee

log) =
∂ψcp

R

∂cR
−Div

(
∂ψ

cp
R

∂ GradcR

)
︸ ︷︷ ︸

=0

=
∂ψcp

R

∂cR

=
∂ψcp

R

∂Js
∂Js

∂cR
+

∂ψcp
R

∂Ee
log

:
∂Ee

log

∂cR

= Ω(
1
2

Ee
log : C : Ee

log)+ JsC : Ee
log :

∂Ee
log

∂cR

= Ω(
1
2

Ee
log : C : Ee

log)−
1

3Js Ω
∂ψcp

R

∂Ee
log

: I

= Ω(
1
2

Ee
log : C : Ee

log)−
1
3

Ω trMe. (5.67)

Here, the term multiplied by ∂Ee

∂cR
or

∂Ee
log

∂cR
represents the concentration depen-

dence of the strain tensor in the chemical potential. As shown in the above
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derivation, this term is equivalent to the external microforce term related to the
Mandel stress in Anand’s model [91, 94].

Combining Equations (4.9), (4.10), and (5.65) yields the coupled Cahn-
Hilliard diffusion equation

ċR = Div
(

M(cR)Grad(µmwp
R

+µ
gd
R

+µ
cp
R
)
)
, (5.68)

where M(c) has been defined in Equation (4.12). Again, replacing the term
µgd

R
by the term µ penalty, the coupled NSC diffusion equation with finite defor-

mation elasticity can be obtained.
Finally, based on the balance of momentum, as shown in Equation (3.21),

the mechanical equilibrium condition is

divTR =~0, (5.69)

where the body force is neglected.

5.2.6 Mathematical formulations of the spherically
symmetric boundary value problem

The coupled diffusion equation with elastic Green strain

For the spherically symmetric boundary value problem, as mentioned in sec-
tion 5.1.4, only the radial component of displacement field is non-zero. As a
result, the displacement gradient H expressed by Equation (3.3) can be rewrit-
ten in a diagonal form, only containing two different components H11 and
H22 = H33

H = Grad~u(R, t) =


∂uR
∂R 0 0

0 uR
R 0

0 0 uR
R


{~eR,~eϑ ,~eϕ}

. (5.70)
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Again, entities with subscript R indicate those defined in the reference config-
uration. According to Equation (3.4), the deformation gradient F is expressed
as

F = H+ I =


∂uR
∂R +1 0 0

0 uR
R +1 0

0 0 uR
R +1


{~eR,~eϑ ,~eϕ}

. (5.71)

Combining Equations (5.37), (5.38), and (5.71) yields the elastic deformation
gradient

Fe =
1

β s F =
1

β s


∂uR
∂R +1 0 0

0 uR
R +1 0

0 0 uR
R +1


{~eR,~eϑ ,~eϕ}

, (5.72)

where β s = 3
√

1+Ω(cR− c0) (see Equation (5.38)). Accordingly, based on
Equations (5.43) and (5.72), the elastic Green strain tensor is expressed as

Ee =
1
2

(
Fe>Fe− I

)

=


1
2

(
(

∂uR
∂R +1)2

β s2 −1
)

0 0

0 1
2

(
(

uR
R +1)2

β s2 −1
)

0

0 0 1
2

(
(

uR
R +1)2

β s2 −1
)

{~eR,~eϑ ,~eϕ}

.

(5.73)
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Substituting Equation (5.73) into Equation (5.52), the coupling energy density
in terms of elastic Green strain tensor is given by

ψ
cp
R
(cR,Ee) = GJs

[
Ee : Ee +

ν

1−2ν
(trEe)2

]

= G(1+(cR− c0)Ω)

1
4


(

1+ ∂uR
∂R

)2

(1+(cR− c0)Ω)
2
3
−1


2

+
1
2

( (
1+ uR

R

)2

(1+(cR− c0)Ω)
2
3
−1

)2

+
ν

1−2ν

1
2


(

1+ ∂uR
∂R

)2

(1+(cR− c0)Ω)
2
3
−1


+

(
1+ uR

R

)2

(1+(cR− c0)Ω)
2
3
−1

)2
 . (5.74)

Using Equation (5.55), the relationship between the second Piola-Kirchhoff
stress tensor T̃e and the Cauchy stress tensor T can be rewritten as

T =
1
Je FeT̃eFe>. (5.75)

Combining Equations (3.12), (5.57), and (5.75), the first Piola-Kirchhoff stress
tensor is given by

TR =
J
Je FeT̃eFe>F−>

= β
sFT̃e

= 2Gβ
sF
(

Ee +

(
K− 2

3
G
)
(trEe)I

)
. (5.76)
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5.2 The coupled Cahn-Hilliard theory with finite deformation elasticity

As shown in Equation (5.76), we see the major diagonal entries of TR are
nonzero, and TR22 = TR33 due to the spherical symmetry. The components of it
are therefore given by

TR11 = G(1+(cR− c0)Ω)
1
3

(
∂uR

∂R
+1
)

·


(

∂uR
∂R +1

)2

(1+(cR− c0)Ω)
2
3
−1

+
ν

1−2ν


(

∂uR
∂R +1

)2

(1+(cR− c0)Ω)
2
3
+

(
2 uR

R +1
)2

(1+(cR− c0)Ω)
2
3
−3


 ,
(5.77)

TR22 = G(1+(cR− c0)Ω)
1
3

(uR

R
+1
)

·


(

∂uR
∂R +1

)2

(1+(cR− c0)Ω)
2
3
−1

+
ν

1−2ν


(

∂uR
∂R +1

)2

(1+(cR− c0)Ω)
2
3
+

(
2 uR

R +1
)2

(1+(cR− c0)Ω)
2
3
−3


 .
(5.78)

Furthermore, due to spherical symmetry, the mechanical equilibrium (5.69) is
expressed as

∂TR11

∂R
+

2
R
(TR11 −TR22) = 0. (5.79)
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Now we derive the coupled diffusion equation of the spherically symmetric
boundary value problem. First, the coupled chemical potential µcp

R
(cR,Ee), as

shown in Equation (5.66), is expressed as

µ
cp
R
(cR,Ee) = GΩ

1
4

−1+

(
1+ ∂uR

∂R

)2

(1+(cR− c0)Ω)
2
3


2

+
1
2

(
−1+

(
1+ uR

R

)2

(1+(cR− c0)Ω)
2
3

)2

+
ν

1−2ν

−1+
1
2

−1+

(
1+ ∂uR

∂R

)2

(1+(cR− c0)Ω)
2
3


+

(
1+ uR

R

)2

(1+(cR− c0)Ω)
2
3

)]

+G(1+(cR− c0)Ω)

 −Ω

(
1+ ∂uR

∂R

)2

3(1+(cR− c0)Ω)
5
3

·

−1+

(
1+ ∂uR

∂R

)2

(1+(cR− c0)Ω)
2
3


−

2Ω
(
1+ uR

R

)2

3(1+(cR− c0)Ω)
5
3

(
−1+

(
1+ uR

R

)2

(1+(cR− c0)Ω)
2
3

)
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+
2ν

1−2ν

 −Ω

(
1+ ∂uR

∂R

)2

3(1+(cR− c0)Ω)
5
3
−

2Ω
(
1+ uR

R

)2

3(1+(cR− c0)Ω)
5
3


·

−1+
1
2

−1+

(
1+ ∂uR

∂R

)2

(1+(cR− c0)Ω)
2
3


+

(
1+ uR

R

)2

(1+(cR− c0)Ω)
2
3

)]
.

(5.80)

Substituting Equations (5.9), (5.23), and (5.80) into Equation (5.68), we can
derive the dimensionless coupled diffusion equation

0 = R̄2 ∂ c̄R

∂ t̄
+

∂

∂ R̄

[
∂

∂ R̄

(
−R̄2M(cR)(µ

mwp
R

+µ
gd
R

+µ
cp
R
(cR,Ee))

)]
.

(5.81)

For the detailed derivation of the final dimensionless coupled diffusion equa-
tion, please see Appendix A.3.1.

The boundary and initial conditions for the spherically symmetric boundary
value problem are the same as those of the previous Cahn-Hilliard diffusion
with SDT, as sketched in Fig. 5.4. Again, entities with subscript R in Fig. 5.4
indicate those defined in the reference configuration.
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5 Cahn-Hilliard theory with mechanics

Figure 5.4: Boundary and symmetry conditions for the spherically symmetric boundary value
problem in the reference configuration [89].

The coupled diffusion equation with logarithmic elastic strain

According to Equations (5.41) and (5.72), the right stretch tensor is ex-
pressed as

Ue =
√

Fe>Fe

=
1

β s F

= (1+(cR− c0)Ω)−
1
3


∂uR
∂R +1 0 0

0 uR
R +1 0

0 0 uR
R +1


{~eR,~eϑ ,~eϕ}

.

(5.82)

Therefore, combining the polar decomposition Fe =ReUe and the above Equa-
tion (5.82) yields the rotation tensor

Re = I. (5.83)
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Furthermore, the spectral decomposition of Ue can be obtained as

Ue =
3

∑
α=1

λ
e
α
~rα ⊗~rα

= λ
e
1
~eR ⊗~eR +λ

e
2
(I−~eR ⊗~eR), (5.84)

where

λ
e
1

= (1+(cR− c0)Ω)−
1
3 (

∂uR

∂R
+1), (5.85)

λ
e
2

= (1+(cR− c0)Ω)−
1
3 (

uR

R
+1). (5.86)

Thus, the logarithmic elastic strain tensor is expressed as

Ee
log = lnUe

=
3

∑
α=1

lnλ
e
α~rα ⊗~rα

=


ln( 1

β s (
∂uR
∂R +1)) 0 0

0 ln( 1
β s (

uR
R +1)) 0

0 0 ln( 1
β s (

uR
R +1))


{~eR,~eϑ ,~eϕ}

.

(5.87)

Here, the spatial logarithmic elastic strain tensor Ee
log,H is equal to the logarith-

mic elastic strain tensor Ee
log due to Re = I. Substituting Equation (5.87) into
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Equation (5.53), the coupling energy density in terms of logarithmic elastic
strain tensor is given by

ψ
cp
R
(cR,Ee

log) = GJs
[

Ee
log : Ee

log +
ν

1−2ν

(
trEe

log
)2
]

= G(1+(cR− c0)Ω)

(ln

(
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1
3
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(
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(
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(
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(
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∂R +1

(1+(cR− c0)Ω)
1
3

)

+2ln

(
uR
R +1

(1+(cR− c0)Ω)
1
3

))2
 . (5.88)

Combining Equations (3.12), (5.64), (5.63) and (5.83), the first Piola-Kirchhoff
stress tensor is given by

TR =
J
Je MeF−>

= Js
(

2GEe
log +

(
K− 2

3
G
)(

trEe
log
)

I
)

F−>. (5.89)

The components of TR are therefore given by

TR11 = (1+(cR− c0)Ω)

(
∂uR

∂R
+1
)−1

[
2G ln

(
∂uR
∂R +1

(1+(cR− c0)Ω)
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+
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3
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)(

ln

(
∂uR
∂R +1
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1
3

)
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1
3

))]
, (5.90)
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TR22 = (1+(cR− c0)Ω)
(uR

R
+1
)−1

[
2G ln

(
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Now we derive the coupled diffusion equation of the spherically symmetric
boundary value problem. First, the coupled chemical potential µcp

R
(cR,Ee

log),
as shown in Equation (5.67), is expressed as

µ
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(5.92)

Substituting Equations (5.9), (5.23) and (5.92) into Equation (5.68), we can
derive the dimensionless coupled diffusion equation

0 = R̄2 ∂ c̄R

∂ t̄
+

∂

∂ R̄

[
∂

∂ R̄

(
−R̄2M(cR)

(
µ

mwp
R

+µ
gd
R

+µ
cp
R
(cR,Ee

log)
))]

.

(5.93)

For the detailed derivation of the final dimensionless coupled diffusion equa-
tion, please see Appendix A.3.2.
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6 Phase-field modeling of
sodium-ion battery particles

In chapter 4, we introduced the phase field theory related to species insertion
into or extraction from a cathodic particle where phase segregation possibly
occurs during discharging or charging. In order to take the mechanical defor-
mation into account, different elastic strain energy functionals were motivated
from different mechanical theories in chapter 5. In this chapter, a phase-field
model for NaFPO is studied for the first time (see also Zhang and Kamlah [89]).
We implemented the model in COMSOL Multiphysicsr for a spherically sym-
metric problem of sodium insertion into or extraction from a cathodic particle
made NaFPO. We first describe the determination of the material parameters
for NaFPO. The model captures the important feature of phase segregation into
a sodium-poor phase FePO4 and a sodium-rich phase Na2/3FePO4. For this
material, there is a visible difference for the concentration and stress between
SDT and the finite deformation theories. Furthermore, we compare the two
cathode materials NaFPO and LiFPO of lithium-ion batteries to each other in
terms of phase changes and stresses, and show that, for the same stage of aver-
age concentration, although the miscibility gap of NaFPO is smaller than that
of LiFPO, the stresses in the cathode material NaFPO are higher in the phase
segregated state. As a result, the suppression of phase segregation by the elastic
strain energy is more easily achieved in NaFPO compared to LiFPO.
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6.1 Material parameters of NaxFePO4

We consider a typical active nanoparticle of size R0 = 150 nm for the particle
radius. According to Nakayama et al. [120], the diffusion coefficient of Na-
ions in NaFPO is an order of magnitude lower than that of Li-ions in LiFPO,
which also can be confirmed by comparison to Zhu et al.[36]. The diffusion
coefficient of LiFPO is 1×10−14 m2/s [119, 121], therefore, we use the value
D0 = 1× 10−15 m2/s as the diffusion coefficient of NaFPO. In the following,
we will specify the values of the other parameters for NaFPO including cmax,
α1, α2, λ̄ , Ω, and E0.

6.1.1 Determination of cmax

The maximum concentration cmax with units of mol/m3 means the maxi-
mum content of a certain species the host material can accept, which can be
expressed by [116]

cmax =
1

V0NA
, (6.1)

where V0 is the volume occupied by one species atom. This can be obtained by

V0 =
Vcell

n
, (6.2)

with n being the number of atoms of the species that the host material can
accept in a unit cell of volume Vcell .

According to Ref. [122], the structures of olivine LiFPO and olivine NaFPO
are the same. Based on the crystal structure of LiFPO as shown in Ref. [123]
and the lattice parameters in Table 6.1, we can calculate the maximum lithium
concentration of LiFPO by Equation (6.1), which gives 2.29× 104 mol/m3,
matching the value used by Zeng and Bazant [119], and Delacourt and Safari
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[124]. Therefore, in the same way, the maximum sodium concentration of
NaFPO can be obtained as cmax = 2.1× 104 mol/m3, which is smaller than
that of LiFPO due to the larger unit cell volume Vcell for NaFPO.

LiFPO NaFPO
Crystal structure Olivine Olivine

a (
o
A) 10.332 [125] 10.4063 [122]

b (
o
A) 6.010 [125] 6.2187 [122]

c (
o
A) 4.692 [125] 4.9469 [122]

Vcell (
o
A

3
) 291.4 [125] 320.13 [122]

n 4 4

Table 6.1: Lattice parameters of LiFPO and NaFPO.

6.1.2 Determination of α1 and α2

According to Lu et al. [37], at room temperature, the phase diagram of
olivine NaFPO consists of two regions. For 0< x< 2/3, phase segregation into
a sodium-poor phase FePO4 and a sodium-rich phase Na2/3FePO4 is found to
be favorable, which means that this is a two-phase region. (Following common
praxis, we replace in chemical formulas dimensionless concentration c̄ by x.)
Based on the unit cell parameters and volume as functions of x in NaFPO as
shown in Ref. [37], two different values for the unit cell parameters and vol-
ume, respectively, can be identified when x increases to around 0.08, which is
the manifestation of the occurrence of the phase segregation. Therefore, we can
obtain the normalized sodium concentration for the initiation of phase segre-
gation, which is around 0.08. In contrast to LiFPO, where transformation from
FePO4 into LiFePO4 occurs directly, the system of NaFPO goes through an
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intermediate state at Na2/3FePO4. For 2/3 < x < 1 there is the solid-solution
phase NaxFePO4 which is a single-phase region.

With regard to the homogeneous free energy density in the two-phase region
of NaFPO, we assume

ψ
mwp(c̄) = kBTre f NAcmax

(
α1c̄+

α2

2
c̄2

+
T

Tre f

(
c̄ ln c̄+

(
2
3
− c̄
)

ln
(

2
3
− c̄
)))

.

(6.3)

This is the classical homogeneous free energy density function for a two phase
material [27, 85], which we have formulated such that it is limited to the range
0 < x < 2/3. Consequently, we fit the homogeneous free energy density (6.3)
to the above experimental data [37] with respect to the parameters α1 and α2,
as shown in Fig. 6.1. The best fit was achieved with α1 = 5 and α2 = −15 at
room temperature.
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6.1 Material parameters of NaxFePO4

Figure 6.1: Fit of the normalized homogeneous free energy density in the two-phase region to
the experimental data from Ref. [37] [89].

Fig. 6.1 shows the fitting result with the normalized homogeneous free en-
ergy density in the two-phase region ψ̄mwp plotted versus normalized concen-
tration c̄. It can be seen that ψ̄mwp exhibits a doublewell structure, such that two
different relative minima A and B occur, characterizing two phases of differ-
ent solubility limits cα and cβ respectively, of the sodium concentration. The
two minima A and B correspond to the two phases FePO4 and Na2/3FePO4,
respectively. The two zones AC and BD are the “nucleation zones”, and phase
segregation occurs upon sufficient disturbance of the system’s equilibrium. In
the inner zone of concavity between the two points of inflection C and D,
which is denoted the “spinodal decomposition zone”, homogeneous sodium
concentration states are unstable and phase segregation is initiated in any case.
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6 Phase-field modeling of sodium-ion battery particles

The Maxwell construction represents the volume fractions of a phase segre-
gated system. The inflection points correspond to the second order derivative
of ψ̄mwp with respect to c̄, as shown in Fig. 6.2, and the inflection point C
matches the experimental data from Ref. [37].

Figure 6.2: Second order derivative of ψ̄mwp with respect to c̄ [89].

6.1.3 Determination of λ

The so-called reference value λ0 for λ can be estimated as [116]

λ0 =
−α2

(
1

NAcmax

) 2
3

3
, (6.4)

84



6.1 Material parameters of NaxFePO4

and the relation between λ0 and λ is

λ = αλ0, (6.5)

where α is constant.
Using Equation (6.4), we obtain λ0 = 9.1×10−19 m2 for NaFPO. In absence

of any further information, we pick α = 20 as the value for NaFPO which is
the one digit number in the order of magnitude of the values for LiFPO and
LMO, see Table 6.2. Therefore, we get λ = 1.8× 10−17 m2 for NaFPO. The
values of λ for three cathode materials are shown in Table 6.2, as well.

λ0 α λ

LMO 3×10−19 (m2) 23 7×10−18 (m2) [116]
LiFPO 5.2×10−19 (m2) 17 8.8×10−18 (m2) [50]
NaFPO 9.1×10−19 (m2) 20 1.8×10−17 (m2)

Table 6.2: Gradient energy coefficients of three cathode materials.

6.1.4 Determination of Ω

The partial molar volume Ω plays a role analogous to a thermal expansion
coefficient, meaning we can calculate Ω by the relation εεεs = 1/3Ω(c− c0)I.
Thus, based on Table 6.3, the partial molar volume of LiFPO is obtained as

Ω =
0.022×3
(1−0)cmax

= 2.9×10−6 m3/mol, (6.6)
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which matches the value used by Song et al. [117]. Therefore, in the same
way, the partial molar volume of NaFPO can be calculated as

Ω =
0.041×3( 2
3 −0

)
cmax

= 8.8×10−6 m3/mol. (6.7)

This value of Ω is larger than that of LiFPO, which is consistent with the fact
that sodium has a larger cation radius than lithium as shown in Table 1.1. It
should be noticed that we do not consider the possibility of a concentration
dependence of Ω.

LixFePO4 NaxFePO4

x 0 < x < 1 0 < x < 2/3
volume expansion 6.8% [37] 12.8% [37]
strain 0.022 0.041

Table 6.3: Volume change of LiFPO and NaFPO.

6.1.5 Determination of E0

Young’s modulus of the host material FePO4 is 125 GPa, Young’s modulus
of LiFePO4 is 123.9 GPa, and Young’s modulus of the cathode material LiFPO
is 124.5 GPa, which is the average of the values for FePO4 and LiFePO4 [126].
Based on the above data, due to the larger ionic radius of the Na-ion compared
to that of a Li-ion, we regard the two digit estimate 120 GPa as Young’s mod-
ulus of NaFPO. The material parameters for the two cathode materials LiFPO
and NaFPO are summarized in Table 6.4.
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Parameter LiFPO NaFPO
α1 4.5 [50] 5
α2 -9 [50] -15
λ 8.8×10−18 (m2) 1.8×10−17 (m2)

D0 1×10−14 (m2/s) 1×10−15 (m2/s)
cmax 2.29×104 (mol/m3) 2.1×104 (mol/m3)

Ω 2.9×10−6 (m3/mol) 8.8×10−6 (m3/mol)
E0 124.5 (GPa) 120 (GPa)
ν 0.25 [126] 0.25 [126]

Table 6.4: The material parameters for the cathode materials LiFPO and NaFPO.

6.2 Numerical implementation

The resulting set of equations has been implemented in COMSOL Multiphysicsr

for solution by the finite element method. For the numerical methods, since
the Cahn-Hilliard equation is a fourth order partial differential equation for
the species concentration field, the standard finite element method with C0-
continuous Lagrange basis functions is not sufficient for discretization. There
are several methods to overcome these numerical difficulties. For a straight-
forward treatment of the high-order operator, Zhao et al. [97] employed the
isogeometric analysis, which allows for the employment of a wide range of
smooth, higher-order basis functions, providing global C1-continuity. An al-
ternative approach is the use of split-methods or mixed-methods to reduce the
fourth order equation into two second-order equations. For example, Miehe et
al. [127] considered the chemical potential as an additional degree of freedom
to derive the mixed form for C0-continuous basis functions. Huttin and Kamlah
[27] introduced the second derivative of the species concentration as unknown
function to split the Cahn-Hilliard equation into two second-order equations,
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avoiding the problem with the computation of the logarithmic entropic terms
in the homogeneous free energy density as shown in Equation (4.4). In ad-
dition, nonlocal species concentration [128] or micromorphic species concen-
tration [94] is introduced as an extra degree of freedom to obtain an efficient
implementation with C0-continuous Lagrange basis functions. In our imple-
mentations, we use the second derivatives of the species concentration as an
additional degree of freedom.

6.3 Cahn-Hilliard model without
mechanics

We consider the quasistatic insertion and extraction of sodium for a particle
of NaFPO at C = 0.001, see the boundary condition (5.30). With this C-rate,
we study the behavior for dynamic, i.e. continuous insertion very close to a se-
quence of equilibrium states. In this way, the system is allowed to move along
a path of relaxed quasiequilibrium states. In our simulations, we exclusively
focus on the two-phase region of NaFPO (0 < x < 2/3). The average concen-
tration cavg, also called “state of charge” (SOC) is defined as cavg =

∫
B c̄dV/V .
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6.3 Cahn-Hilliard model without mechanics

Figure 6.3: Normalized average system free energy Ψ̄avg and normalized homogeneous free
energy density ψ̄mwp as function of cavg and c̄, respectively [89].

In Fig. 6.3, the markers represent values of the normalized average system
free energy

Ψ̄avg =
1
V

∫
B
(ψ̄mwp + ψ̄

gd(grad c̄))dV (6.8)

during insertion and extraction, respectively, as function of cavg. For demon-
stration purposes, the plot of the normalized homogeneous free energy density
vs. dimensionless concentration is entered, as well. Markers on the normal-
ized homogeneous free energy density curve correspond to homogeneous states
whereas markers nearby the path of the Maxwell construction correspond to
phase segregated states, as they are illustrated in Figs. 6.4 and 6.5.
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Figure 6.4: Normalized sodium concentration c̄ versus normalized radial coordinate r/R0 for
different time instants during sodium insertion [89].

Fig. 6.4 shows the normalized sodium concentration along the radial coor-
dinate at different time instants during sodium insertion. We find that at the
beginning of sodium insertion the concentration is homogeneous and the cor-
responding concentration is 0. Once cavg gets close to 0.08, which corresponds
to the inflection point C in Fig. 6.1, phase segregation is initiated. Two dif-
ferent phases can be recognized in the particle, namely the sodium-poor phase
FePO4 in the center corresponding to the first minimum A and the sodium-rich
phase Na2/3FePO4 at the outside corresponding to the second minimum B. A
smooth but very narrow interface with concentration changing rapidly but con-
tinuously separates them. When cavg grows up to 2/3, the intermediate phase
Na2/3FePO4 occupies all of the particle.
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6.3 Cahn-Hilliard model without mechanics

Next, we consider the sodium extraction case shown in Fig. 6.5. At the
beginning the system is in a homogeneous state and the corresponding con-
centration is 2/3. Once cavg is reduced to around 0.6, which corresponds to
the inflection point D in Fig. 6.1, phase segregation is initiated during sodium
extraction. In contrast to the insertion case, the sodium-poor phase FePO4 is
at the outside while the sodium-rich phase Na2/3FePO4 is in the center. At
the end of sodium extraction, the sodium-rich phase Na2/3FePO4 vanishes. It
should be noticed that although to the particle surface a mass flux is applied,
the concentration on the particle surface nearly stays at a constant value. This
is due to the fact that because of the extremely low C-rate of C = 0.001 for
quasistatic insertion and extraction of sodium, the system moves along a path
of relaxed quasiequilibrium states.

Figure 6.5: Normalized sodium concentration c̄ versus normalized radial coordinate r/R0 for
different time instants during sodium extraction [89].
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6.4 Cahn-Hilliard model with mechanics

Concerning mechanics, we first study the coupling between the Cahn-Hilliard
theory and SDT, and then compare the different small and finite deformation
theories. In order to study the coupling effect through the coupling energy on
sodium diffusion and stress in the particle, we introduce a normalized Young’s
modulus as

Ē =
E
E0

, (6.9)

where E0 is the value of Young’s modulus shown in Table 6.4. In the figures, c,
cR denote concentration of small and finite deformation elasticity, respectively,
and TH = 1/3Tii is the hydrostatic stress in terms of the Cauchy stress.

6.4.1 Cahn-Hilliard model with small deformation
theory

Figs. 6.6 and 6.7 show normalized sodium concentration and hydrostatic
stress along the radial coordinate at a stage of average concentration of cavg =

0.5 during sodium insertion based on SDT for different Ē. We find that the
difference in concentration between the two phases is reduced as Ē increases,
which means that the solid solution limits of FePO4 and NaxFePO4 are grad-
ually extended into the range of phase segregated states. In other words the
coupling effect reduces the miscibility gap. Correspondingly, the hydrostatic
stress magnitudes increase as Ē increases. The hydrostatic stress is constant
and tensile in the low concentration phase, and it drops rapidly across the inter-
face to become compressive and constant in the high concentration phase. This
change of sign is a result of mechanical equilibrium between the inner core and
the outer shell of the particle. Note that on the other side for Ē = 1, the system
is homogeneous and stress-free. Even though the average concentration value
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lies in the spinodal decomposition zone of ψ̄mwp, phase segregation does not
occur.

Figure 6.6: Normalized sodium concentration c̄ versus normalized radial coordinate r/R0 at
cavg = 0.5 based on SDT for different Ē during sodium insertion [89].

Figure 6.7: Hydrostatic stress TH versus normalized radial coordinate r/R0 at cavg = 0.5 based
on SDT for different Ē during sodium insertion [89].
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As illustrated in Fig. 6.8, for a high value of normalized Young’s modulus,
the cost of the system coupling energy Ψ̄cp at a phase segregated state would
be too high so that as a result of the competition between the different contri-
butions to the system free energy the system stays in the homogeneous state
in order to minimize the total system free energy. Therefore, the presence of
a coupling energy in the total system free energy can lead to suppression of
phase segregation. For the detailed discussion of the influence of mechanics
on the miscibility gap, see chapter 7.

Figure 6.8: Normalized system coupling energy Ψ̄cp versus average concentration cavg based on
SDT for different Ē during sodium insertion. Here Ψ̄cp =

∫
B ψ̄cpdV [89].
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6.4.2 Comparison of different mechanics theories

Figs. 6.9 and 6.10 show the comparison of normalized sodium concentration
and hydrostatic stress at a stage of average concentration of cavg = 0.5 during
sodium insertion for different mechanics theories with a value of Ē = 0.3: SDT,
elasticity based on elastic Green strain, and elasticity based on logarithmic
elastic strain. According to the experimental work of Xiang et al. [39], driven
by the coupling energy, the sodium-rich phase decreases its sodium content to
about Na0.6FePO4, while the sodium-poor phase increases its sodium content
to about Na0.08FePO4. These experimental results [39] are shown as dashed
horizontal lines in Fig. 6.9. It can be recognized that there is a visible dif-
ference for the sodium concentration plots of SDT and the finite deformation
elasticity formulations, with the difference between the two phases being less
pronounced for SDT, while the sodium concentration plots of two finite defor-
mation theories are almost the same. Compared to the experimental result [39],
we can find that the sodium concentration in the high concentration phase ob-
tained from two finite deformation theories matches the experimental value for
Na0.6FePO4 but there is a clear deviation from the result by SDT. On the other
hand, the sodium concentration in the low concentration phase obtained from
all three mechanics theories is always slightly below the experimental value
for Na0.08FePO4. In Fig. 6.10, the hydrostatic stress plots are clearly different
for SDT on the one side and the two finite deformation theories on the other.
There are higher stresses in the two phases for SDT. This is attributed to the
fact that SDT does not account for the volume swelling of the particle during
sodium insertion. Comparing the two finite deformation theories to each other,
it is found that there is a negligible difference in stress between them.
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Figure 6.9: Normalized sodium concentration versus normalized radial coordinate at cavg = 0.5
with Ē = 0.3 during sodium insertion for different mechanics theories. The normal-
ized radial coordinates r/R0 and R/R0 represent SDT and finite deformation theory,
respectively. The dashed horizontal lines represent the experimental results from Ref.
[39] [89].

Figure 6.10: Hydrostatic stress versus normalized radial coordinate at cavg = 0.5 with Ē = 0.3
during sodium insertion for different mechanics theories [89].
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As mentioned before, the contribution of the coupling energy to the total
system free energy can lead to suppression of phase segregation. Here, we
discuss the critical value of normalized Young’s modulus Ēc of NaFPO above
which phase segregation can not arise in the particle. Fig. 6.11 shows the nor-
malized sodium concentration along the radial coordinate for various values of
Ē during sodium insertion based on different mechanics theories. For SDT, it
can be seen that phase segregation can arise at a stage of average concentration
of cavg = 0.33 when Ē = 0.385 but sodium concentration is homogeneous over
the particle when Ē = 0.386, so Ēc is 0.385 for SDT. In the same way, we find
Ēc = 0.409 for the two finite deformation elasticity formulations, which is a
little larger than that for SDT.

Figure 6.11: Normalized sodium concentration versus normalized radial coordinate for various Ē
during sodium insertion based on different mechanics theories [89].
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6.5 Comparison with the cathode material
LixFePO4

We now compare the two cathode materials NaFPO and LiFPO in terms
of phase changes and hydrostatic stress. Figs. 6.12 and 6.13 show normalized
concentration and hydrostatic stress along the radial coordinate for various par-
ticle radii R0 for the two cathode materials during insertion based on different
finite deformation theories. Here, we consider two stages of average concentra-
tion, one is cavg = (cα + cβ )/2 which is the center of the combined nucleation
and spinodal zone, the other is cavg = 0.5. It should be noticed that (cα +cβ )/2
of LiFPO is just equal to 0.5, and which of NaFPO is 0.333. In Fig. 6.12, we
recognize that there is an obviously reduced miscibility gap for a NaFPO parti-
cle compared to a LiFPO particle. This is consistent with the experimental fact
that NaFPO has a two-phase region in the range 0 < x < 2/3 while phase seg-
regation for LiFPO occurs in the range 0 < x < 1 [37]. For cavg = (cα +cβ )/2,
the two cathode materials show almost the same position of the center of the
interface region, which is located close to the particle surface due to the spher-
ical symmetry. Additionally, for cavg = 0.5, the interface location in a NaFPO
particle is more close to the particle center, and, furthermore, the concentration
in the two phases is the same for different particle radii.
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Figure 6.12: Normalized concentration c̄R versus normalized radial coordinate R/R0 with Ē =

0.3 for various R0 during insertion for two cathode materials based on different
finite deformation elasticity formulations. Two stages of average concentration are
considered: cavg = (cα + cβ )/2 and cavg = 0.5, where (cα + cβ )/2 of LiFPO is just
equal to 0.5, and which of NaFPO is 0.333.
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Figure 6.13: Hydrostatic stress TH versus normalized radial coordinate R/R0 with Ē = 0.3 for
various R0 during insertion for two cathode materials based on different finite defor-
mation elasticity formulations. Two stages of average concentration are considered:
cavg = (cα + cβ )/2 and cavg = 0.5, where (cα + cβ )/2 of LiFPO is just equal to 0.5,
and which of NaFPO is 0.333.
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As shown in Fig. 6.13, for cavg = (cα + cβ )/2, both the tensile stresses in
the inner core and the compressive stress magnitudes in the outer shell of a
NaFPO particle are larger than those in a LiFPO particle. When cavg increases
from 0.333 to 0.5, the tensile stresses in the inner core of a NaFPO particle
become larger, while the compressive stress magnitudes in the outer shell of a
NaFPO particle decrease, which is even smaller that those in a LiFPO particle.
Indeed, the particle shell made of high-concentration phase becomes thicker
when cavg shifts from 0.333 to 0.5 (please see Fig. 6.12), so the particle core
made of low-concentration phase is in mechanical equilibrium with a thicker
shell made of high-concentration phase. As a result, both the tensile stresses
in the inner core and the compressive stresses in the outer shell of a NaFPO
particle increase. Therefore, for the same stage of average concentration, al-
though the miscibility gap of NaFPO is much smaller than that of LiFPO, the
stresses in a NaFPO particle are larger compared to those in a LiFPO particle.
This is due to a larger expansion during phase changes for NaFPO as shown in
Fig. 6.14 describing the plots of volume ratio J at the particle surface. Here,
it should be mentioned again that our simulations only consider the two-phase
region of NaFPO (0 < x < 2/3). We can find that the volume expansion from
FePO4 to Na2/3FePO4 is quite large, namely about 12.8%, which is nearly 2
times that for LiFPO changing from FePO4 to LiFePO4. This is consistent
with the reports [37–39]. Correspondingly, as shown in Fig. 6.15, the maxi-
mum hydrostatic stress magnitude in a NaFPO particle during phase changes
is always larger than that in a LiFPO particle. The larger stresses in a NaFPO
particle may explain the existence of a wide range of solid solution NaxFePO4

(2/3 < x < 1) to avoid even higher stresses in the NaFPO particle. Casas-
Cabanas et al. [38] conclude that the larger stresses in a NaFPO particle can be
the explanation for the existence of an intermediate phase. Indeed, the forma-
tion of an intermediate phase acts as a buffer between FePO4 and NaFePO4

providing elasticity to the structure. On the other hand, the critical value of
normalized Young’s modulus Ēc of LiFPO for surpression of phase segrega-
tion is equal to 1 (please see Fig. 7.5 in chapter 7), which is larger than that of
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6 Phase-field modeling of sodium-ion battery particles

NaFPO, as shown before. Therefore, it is easier for NaFPO to reach a massive
coupling energy to suppress phase segregation compared to LiFPO due to the
larger volume change of a NaFPO particle.

As can be seen in Fig. 6.15, the LiFPO particle surface expands more seri-
ously around cavg = 0.15. This is due to phase segregation being already initi-
ated for LiFPO but not yet for NaFPO which is still in the homogeneous state.
As a result, the maximum hydrostatic stress magnitude in a LiFPO particle is
far greater than that in a NaFPO particle at this insertion state. At cavg = 2/3,
the maximum hydrostatic stress magnitude in a NaFPO particle is close to zero
while the LiFPO particle still displays high stresses. This is attributed to the in-
termediate phase Na2/3FePO4 occupying then the whole particle while LiFPO
is still in a phase segregated state.
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Figure 6.14: Volume ratio J at the particle surface versus cavg with Ē = 0.3 for various R0 during
insertion for two cathode materials based on different finite deformation elasticity
formulations [89].

Figure 6.15: Maximum hydrostatic stress magnitude |TH,max| versus cavg with Ē = 0.3 for vari-
ous R0 during insertion for two cathode materials based on different finite deforma-
tion elasticity formulations [89].
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7 Particle size and average
concentration dependent
miscibility gap

In the previous chapter 6, we just focus on the bulk particle size of the cath-
ode material. As mentioned before, the thermodynamics of phase segregation
in nanoscale particles is distinctly different from bulk materials, and the parti-
cle size miscibility gap plays a nontrivial role in the performance of nanoscale
insertion materials. In contrast to our common thermodynamic knowledge,
the miscibility gap in nanoscale insertion material also depends on the average
concentration. In this chapter, the particle size and average concentration de-
pendent miscibility gap of the nanoscale insertion materials LMO, LiFPO, and
NaPPO are investigated during insertion, using a coupled phase-field model
based on the Cahn-Hilliard theory and finite deformation elasticity (see also
Zhang and Kamlah [96]). For the mechanical part, two finite deformation elas-
ticity formulations, based on elastic Green strain and logarithmic elastic strain,
respectively, have been compared in the previous chapter 6. We found that, al-
though the results from the two formulations of Hooke’s law with the geometric
nonlinearity of finite strain are almost the same, according to our experience,
elasticity based on logarithmic elastic strain is numerically more efficient than
elasticity based on elastic Green strain. The stress strain relation for LiFPO
is also described by elasticity based on logarithmic elastic strain in the work
by Di Leo et al. [94]. Therefore, a logarithmic elastic strain law is employed
in this chapter. We implemented the model in COMSOL Multiphysicsr for
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a spherically symmetric problem of species insertion into cathodic particles
which are respectively made of LMO, LiFPO, and NaPPO. We first compare
three bulk cathode materials in terms of phase changes and stresses, and then
investigate their particle size and average concentration dependent miscibility
gap.

7.1 Material parameters

In order to study the particle size and average concentration dependent mis-
cibility gap in different nanoinsertion cathode materials, the three cathode ma-
terials LMO, LiFPO, and NaFPO are chosen in the simulations. The mate-
rial parameters for these three cathode materials are summarized in Table 7.1,
where the material parameters of NaFPO have been determined in chapter 6.
We vary the nanoparticle radius to study the influence of particle size on the
miscibility gap.
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7.1 Material parameters

Parameter LMO LiFPO NaFPO
α1 2.5 [116] 4.5 [50] 5
α2 -5.2 [116] -9 [50] -15
λ 7×10−18(m2) [116] 8.8 × 10−18 (m2)

[50]
1.8×10−17 (m2)

D0 7.08 × 10−15(m2/s)
[129]

1 × 10−14 (m2/s)
[121]

1×10−15 (m2/s)

cmax 2.29 × 104(mol/m3)
[130]

2.29× 104 (mol/m3)
[124]

2.1 × 104

(mol/m3)

Ω 3.497 × 10−6

(m3/mol) [130]
2.9×10−6 (m3/mol)
[117]

8.8 × 10−6

(m3/mol)
E0 93 (GPa) [131] 124.5 (GPa) [126] 120 (GPa)
ν 0.3 [131] 0.25 [126] 0.25 [126]

Table 7.1: The material parameters for three cathode materials.

Depending on the temperature, LMO possibly exhibits phase segregation in
the range of values 0 < x < 1 where the crystalline host structure remains cubic
spinel [132–134]. Some theoretical calculations of LMO have been carried out
based on an assumption that Li-ordering phase exists at x = 0.5 around room
temperature [23, 135, 136], but this does not agree with the experimental lit-
erature that suggest no Li-ordering phase [137]. At x = 1, LMO undergoes a
phase transition where the crystalline material becomes tetragonal due to the
Jahn-Teller distorsion regarding the manganese ions [138]. For LMO, we fo-
cus on the phase segregation that happens at room temperature in the range of
values 0 < x < 1, neglecting the effect of lithium ordering. The cubic to tetrag-
onal transition at x = 1 is also not taken into account since the state of charge
is rarely driven up to x = 1 unless delivering a large current density [139].

At room temperature, the miscibility gap of bulk LiFPO encompasses nearly
the entire lithium composition range of the material [50] compared to a rela-
tively small miscibility gap of bulk LMO bounded by solid solutions states
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between Li0.12Mn2O4 and Li0.88Mn2O4 [116]. However, bulk NaFPO shows
the smallest miscibility gap bounded by solid solutions states between FePO4

and Na2/3FePO4 [37] among these three cathode materials.
The three cathode materials show different volume changes during species

insertion. For LMO, the volume expansion of Mn2O4 upon lithiation to
LiMn2O4 reaches about 7.3% [140]. According to Lu et al. [37], the vol-
ume expansion of FePO4 upon sodiation to NaFePO4 is quite large, namely
about 17%, and even the volume expansion from FePO4 to Na2/3FePO4 is
still quite large (about 12.8%), which is nearly 2 times that for LiFPO (about
6.8%) changing from FePO4 to LiFePO4. The previous chapter 6 reveals that
the difference for the concentration and stress plots between SDT and finite
deformation elasticity can not be neglected for NaFPO. Therefore, finite defor-
mation elasticity is selected in order to represent all the three cathode materials
by the same deformation theory.

7.2 Comparison of the three bulk cathode
materials

We will consider quasistatic insertion of species into nanoparticles for three
cathode materials at C = 0.001. Again, Ψ̄avg =

∫
BR

ψ̄RdVR/VR is the normal-
ized average system free energy, see also Equation (5.48). We compare three
bulk cathode materials in terms of phase changes and stresses, and a typical
active particle radius of R0 = 200 nm is considered.

Fig. 7.1 shows the values of the normalized average system free energy for
the three cathode materials during insertion by the markers, including the pure
diffusion case without mechanical deformation and the mechanically coupled
diffusion case, as function of cavg. For demonstration purposes, the plots of the
normalized homogeneous free energy density versus the normalized concentra-
tion are also entered as line plots. The species-poor phase and the species-rich
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phase are characterized by the solubility limits cα and cβ , respectively, of con-
centration. Here, the solubility limits are the lower and upper bounds of the
concentration range of phase segregated states. For example, in Fig. 7.1, the
solubility limits can be identified where the normalized average system free
energy states do not coincide with the plot of the homogenous multiwell po-
tential. The difference in the value of ψ̄mwp at a stage of average concentration
of cavg = (cα + cβ )/2, and the value of ψ̄mwp at either of the solubility lim-
its cα or cβ represents the maximum energy barrier ∆ψ̄mwp

max . As mentioned
in section 6.1.2, the two ranges between the respective point of tangency de-
fined by the Maxwell construction and the corresponding inflection point are
the “nucleation zones”, and the inner zone of concavity between the two points
of inflection is called the “spinodal decomposition zone”. Again, markers on
the normalized homogeneous free energy density curve correspond to homo-
geneous states whereas markers nearby the path of the Maxwell construction
correspond to phase segregated states. In particular, at a stage of average con-
centration of cavg = 0.5, all three cathode materials show phase segregated
state, as illustrated in Fig. 7.2 (a).
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Figure 7.1: Normalized average system free energy Ψ̄avg and normalized homogeneous free
energy density ψ̄mwp as function of cavg and c̄, respectively, for the three cathode
materials and a radius of R0 = 200 nm. The dashed straight lines represent Maxwell
construction, and Ē = 0.3 is considered in the mechanically coupled diffusion case
[96].

We first focus on the pure diffusion case. In Fig. 7.1, we find that phase
segregation is initiated for NaFPO once cavg approaches the inflection point
at cavg = 0.08, which is earlier compared to LiFPO (cavg = 0.13) and LMO
(cavg = 0.26). Also, it can be seen that LiFPO has the largest “spinodal de-
composition zone” among the three cathode materials. In Fig. 7.2 (a), we
also find that the miscibility gap, when neglecting mechanics, is the smallest
for NaFPO, which is about 2/3 of that of LiFPO. However, if the contribution
from the coupling energy is considered (Ē = 0.3), the miscibility gap of LMO
is significantly reduced. We can see that in this case the related normalized
average system free energy shown in Fig. 7.1 coincides with the respective
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normalized homogeneous free energy density even in most of the “spinodal
decomposition zone”. Hardly visible, phase segregation, i.e. a minor deviation
from ψ̄mwp takes place in the neighborhood of cavg ≈ 0.5, only. The result-
ing miscibility gap is even smaller than that of NaFPO, even if mechanics is
accounted for the latter material. The physical explanation for this behavior
of LMO is that the cost of the elastic strain energy at a phase segregated state
would be too high so that as a result of the competition between the different
contributions to the system free energy the system stays in the homogeneous
state in order to minimize the total system free energy. The effect of mechan-
ics, i.e. the system coupling free energy, is the weakest for LiFPO. Indeed, as
shown in Fig. 7.1 (a), in contrast to the other two materials, when considering
mechanics, the markers of LiFPO are still close to the path of the Maxwell
construction, and the miscibility gap of LiFPO is just slightly reduced in Fig.
7.2 (a). As a result of the larger miscibility gap, which by the partial molar
volume translates into a larger strain mismatch, the tensile stresses in the inner
core of a LiFPO particle are larger compared to those in a LMO particle, and
the compressive stress magnitudes in the outer shell of a LiFPO particle are
also larger than those in a LMO particle, as shown in Fig. 7.2 (b). On the other
hand, as mentioned in section 6.5, although the miscibility gap of NaFPO is
smaller than that of LiFPO, both the tensile stresses in the inner core and the
compressive stresses in the outer shell of a NaFPO particle are larger than those
in a LiFPO particle at cavg = 0.5. This again is due to a larger expansion, i.e.
partial molar volume, during phase segregation for NaFPO.
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Figure 7.2: (a) Normalized concentration versus normalized radial coordinate at cavg = 0.5 dur-
ing insertion for three cathode materials of R0 = 200 nm. The solid lines represent the
pure diffusion case and the dashed lines represent the mechanically coupled diffusion
case of Ē = 0.3. (b) Hydrostatic stress TH versus normalized radial coordinate R/R0

at cavg = 0.5 during insertion for three cathode materials (R0 = 200 nm and Ē = 0.3)
[96].

7.3 Particle size dependent miscibility gap

In order to investigate the impact of the particle size on the miscibility gap
for the three cathode materials, we first exclude the effect of the mechanics.
The solubility limits of the material are determined by taking the minimum and
maximum concentrations for which phase segregated states occur [50].

Fig. 7.3 shows the solubility limits as a function of particle radius at a stage
of average concentration of cavg = (cα + cβ )/2 for three cathode materials.
The motivation for focusing on this specific value of average concentration is
based on observations in our simulation results, that the miscibility gap shrinks
symmetrically about the center of the combined nucleation and spinodal zone.
Consequently, we assume that phase segregation is suppressed completely,
when it is suppressed for cavg = (cα + cβ )/2. Here, cα and cβ are the size
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independent solubility limits found for sufficiently large particles.
We find that a reduction of the particle radius leads to a shrinking of the

miscibility gap. In particular, for each material a specific critical particle ra-
dius is found below which phase segregation is inhibited. The critical radius
of LMO (Rc = 10.9 nm) is larger than those of 6 nm for LiFPO and 6.4 nm for
NaFPO, respectively. The above predicted critical particle sizes match the fact
that phase segregation would be suppressed when the particle size becomes
comparable to the interface thickness. According to Cahn and Hilliard [29],
the interface thickness d is proportional to the square root of the gradient coef-
ficient λ and the inverse of the maximum energy barrier , i.e d ∝ (λ/∆ψ̄mwp

max )
1
2 .

Therefore, LMO has the largest critical particle size among the three cathode
materials due to a very tiny ∆ψ̄mwp

max shown in Fig. 7.1. It should be mentioned
that our value of Rc = 6 nm for LiFPO is a little bit smaller than the estimate
value Rc = 7.5 nm from Meethong et al. [45], but it is close to the critical
radius (around 5 nm) obtained from a 3D comprehensive phase-field model ac-
counting for facet dependent surface wetting [51]. On the other hand, different
materials show different particle size dependent miscibility gap behavior. For
LMO a reduced miscibility gap is found below a particle radius of 55.5 nm.
The particle size dependent miscibility gap becomes more and more obvious
as the particle size decreases, and strongly varying solubility limits are found
below a particle radius of 35 nm. Compared to LMO, the threshold values
of the particle radius for the size independent miscibility gap are smaller for
LiFPO and NaFPO, which are 20.5 nm and 17.5 nm, respectively. Therefore,
LMO has the broadest particle size range for varying solubility limits.

113



7 Particle size and average concentration dependent miscibility gap

Figure 7.3: Solubility limits as a function of particle radius at cavg = (cα +cβ )/2 during insertion
for three cathode materials [96].

With the help of Fig. 7.4, we take LiFPO as an example to explain the
shrinking of the miscibility gap upon particle size reduction. As the particle
size reduces, the interface region, the thickness of which is determined by the
material constant λ , covers a larger fraction of the material. Furthermore, due
to the spherical symmetry, the position of the center of the interface region for
cavg = (cα + cβ )/2 ≈ 0.5 is located close to the particle surface for all values
of radius. Consequently, below a radius of 20.5 nm the concentration value
at the surface progressively is reduced from an initial value of cβ . As a result
the miscibility gap shrinks at the same average concentration to accommodate
in a particle of reduced size the concentration gradient, the slope of which is
basically given as a material constant. Due to the normalization of the radial
coordinate in the form r/R0 in Fig. 7.4, this effect translates into an apparent
decrease of the concentration gradient, resulting in the same decrease of the
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surface concentration. Once the particles reduces to be below the critical parti-
cle size, the cost of the gradient energy Ψ̄gd at a phase segregated state would
be too high so that the system would stay in a homogeneous state in order to
minimize the total system free energy due to the competition between the dif-
ferent contributions to the system free energy, namely multiwell potential and
gradient energy.

Figure 7.4: Normalized concentration c̄ versus normalized radial coordinate r/R0 at cavg ≈ 0.5
during insertion for different particle sizes of LiFPO [96].

We now investigate to which extent mechanics affects the particle size de-
pendent miscibility gap for the example of based LiFPO with Ē = 1 for cavg =

(cα + cβ )/2 ≈ 0.5. In Fig. 7.5, we can find that the threshold value of the
particle radius for the size independent miscibility gap expands to 43 nm in
the mechanically coupled diffusion case, and the critical particle radius below
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which phase segregation is inhibited increases to 9 nm. Since the strain mis-
match between regions of different phase state induces the additional elastic
coupling energy which scales with the width of the miscibility gap through
the partial molar volume, minimization of the total energy leads to a reduction
of the miscibility gap when mechanics is accounted for. The finding of a re-
duced miscibility gap in the presence of mechanics is also consistent with the
distribution of hydrostatic stress in Fig. 7.6 (a). There, the gradient of hydro-
static stress induces a mechanical contribution to the driving force for diffusion
which points to the particle center, i.e. from the high concentration phase to-
wards the low concentration phase. As a result, the hydrostatic stress assists
species transport towards the particle center and the concentration fields con-
sidering the mechanics are more diffuse than that of the pure diffusion case, as
shown in Fig. 7.6 (b). Fig. 7.6 (b) confirms that for the same particle radius
not only the miscibility gap gets smaller, but also the width of the interface is
widened when accounting for mechanics. This means that a comparably larger
interface size needs to be accommodated inside the particle. This leads to a
larger threshold value of the particle radius for the size independent miscibility
gap and it leads to a larger particle size below which no phase segregation is
obtained at all. On the other hand, for the small particle size the difference in
concentration distribution between the pure and mechanically coupled diffu-
sion cases increases as the particle size decreases.
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7.3 Particle size dependent miscibility gap

Figure 7.5: Solubility limits as a function of particle radius at cavg ≈ 0.5 during insertion for the
pure and mechanically coupled diffusion cases of LiFPO. Ē = 1 is considered in the
mechanically coupled diffusion case [96].

Figure 7.6: (a) Hydrostatic stress TH versus normalized radial coordinate R/R0 at cavg ≈ 0.5
during insertion for different particle sizes of LiFPO with Ē = 1. (b) Normalized
concentration versus normalized radial coordinate at cavg ≈ 0.5 during insertion for
different particle sizes of LiFPO, where the solid lines represent the mechanically
coupled diffusion case of Ē = 1 and the dashed lines represent the pure diffusion case
[96].
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7 Particle size and average concentration dependent miscibility gap

7.4 Evolution of the miscibility gap during
insertion

As discussed above the size dependence of the miscibility gap has been in-
vestigated so far at a stage of average concentration of cavg = (cα +cβ )/2. This
value is of particular importance for the critical particle radius below which
phase segregation is inhibited. We now investigate how for a fixed particle size
the miscibility gap evolves during the process of insertion. Again, we first ex-
clude the effect of mechanics.

Figs. 7.7 - 7.9 show that for the smaller particle sizes the solubility limits
significantly depend on the average concentration for all three cathode materi-
als. As the particle size decreases, an extended solid solution range is observed
even in the metastable nucleation and the unstable spinodal regions of average
concentration. In general, the miscibility gap expands as the average concen-
tration increases. For larger particles, the system eventually enters a constant
miscibility gap state. Interestingly, for R0 = 12.5 nm the miscibility gap of
LMO in the whole range of phase segregated states is even smaller than that of
NaFPO, while for larger particle sizes it is the other way around. This means
that the suppression of phase segregation by reducing the particle size is more
easily achieved in LMO. This is also consistent with the fact that, among the
three materials, LMO has the largest critical radius below which phase segre-
gation is inhibited. On the other hand, once the particle radius reaches about
125 nm, LMO reveals a miscibility gap which is constant in the whole range
of phase segregated states, i.e. a miscibility gap indepentdent of average con-
centration. Compared to LMO, the threshold values of the particle radius for
the miscibility gap to be independent of average concentration are smaller for
LiFPO and NaFPO, namely 73 nm and 75 nm, respectively.
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7.4 Evolution of the miscibility gap during insertion

Figure 7.7: (a) Solubility limits as a function of average concentration cavg during insertion
for different particle sizes of LMO. The red and black curves represent cα and cβ ,
respectively. (b) Normalized concentration c̄ versus normalized radial coordinate
r/R0 for different time instants during insertion for three different particle sizes of
LMO [96].
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7 Particle size and average concentration dependent miscibility gap

Figure 7.8: (a) Solubility limits as a function of average concentration cavg during insertion
for different particle sizes of LiFPO. The red and black curves represent cα and cβ ,
respectively. (b) Normalized concentration c̄ versus normalized radial coordinate
r/R0 for different time instants during insertion for three different particle sizes of
LiFPO [96].
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7.4 Evolution of the miscibility gap during insertion

Figure 7.9: (a) Solubility limits as a function of average concentration cavg during insertion for
different particle sizes of NaFPO. The red and black curves represent cα and cβ ,
respectively. (b) Normalized concentration c̄ versus normalized radial coordinate
r/R0 for different time instants during insertion for three different particle sizes of
NaFPO [96].
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7 Particle size and average concentration dependent miscibility gap

The evolution of the miscibility gap with average concentration for the
smaller particle sizes can be explained by the minimization of system free
energy for the example of LiFPO, as shown in Fig. 7.10. For R0 = 100 nm, the
system reaches the maximum miscibility gap immediately once phase segre-
gation is initiated (cavg = 0.13 for R0 = 100 nm), such that the system exhibits
a miscibility gap, which is independent of average concentration. For smaller
particle sizes, for example, R0 = 12.5 nm, the system shows a dynamically
increasing miscibility gap behavior until cavg = 0.49. What is the reason be-
hind that? First, the interface volume is the largest at the beginning of phase
segregation due to the shrinking core dynamics, leading to a high cost of aver-

age gradient energy (Ψ̄gd
avg =

∫
B 1/2 λ/R2

0 |
~̄
∇c̄|

2
dV/V ). Second, there exists

a relatively large average gradient energy for smaller particle sizes, which is
mainly controlled by the ratio λ/R2

0. Therefore, if the maximum miscibility
gap immediately occurs once phase segregation is initiated for smaller particle
sizes, the cost of the total system free energy would be even higher than the
normalized chemical potential. In order to minimize the system free energy,
the system shows a dynamically increasing miscibility gap behavior for the
smaller particle sizes before the system reaches the maximum miscibility gap.
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7.4 Evolution of the miscibility gap during insertion

Figure 7.10: Normalized average system free energy Ψ̄avg and normalized homogeneous free
energy density ψ̄mwp as function of cavg and c̄, respectively, for different particle
sizes of LiFPO during insertion.

Now we investigate how mechanics influences the average concentration de-
pendent miscibility gap based on LiFPO. As expected, the miscibility gap of
the mechanically coupled diffusion case shrinks due to the suppressing effect
of the coupling energy, as shown in Fig. 7.11. When accounting for mechan-
ics, the initiation of phase segregation is postponed and the miscibility gap only
exists for a smaller range of the average concentration. For the smaller parti-
cle radius, for example, R0 = 12.5 nm, the miscibility gap of the mechanically
coupled diffusion case always expands in almost the whole range of phase seg-
regated states, while the miscibility gap of the pure diffusion case becomes
constant once cavg approaches 0.49. On the other hand, the threshold value
for the miscibility gap to be completely independent of average concentration
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7 Particle size and average concentration dependent miscibility gap

expands to 100 nm in the mechanically coupled diffusion case compared to 73
nmof the pure diffusion case shown in Fig. 7.8 a.

Figure 7.11: Solubility limits as a function of average concentration cavg during insertion for
different particle sizes of LiFPO. The solid lines represent the mechanically coupled
diffusion case of Ē = 1 and the dashed lines represent the pure diffusion case [96].
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8 Nonlocal species
concentration model

In chapter 4, a phase-field theory named NSC theory in terms of diffusion
and phase changes has been derived. This theory incorporates two second-
order partial differential equations involving second-order spatial derivatives
of species concentration and an additional variable called nonlocal species
concentration. In this chapter, we implemented the NSC theory in COMSOL
Multiphysicsr for a spherically symmetric boundary value problem of lithium
insertion into a LMO cathode material particle of a LIB, and present the re-
sults for spherical LMO electrode particles based on the NSC theory (see also
Zhang and Kamlah [98]). We first introduce the spherically symmetric bound-
ary value problem for this theory. Then, the material parameters controlling
the interface are determined for LMO and the interface evolution is studied.
Comparison to the Cahn-Hilliard theory shows that nonlocal species concen-
tration theory is superior when simulating problems where the dimensions of
the microstructure such as phase boundaries are of the same order of magni-
tude as the problem size. This is typically the case in nanosized particles of
phase separating electrode materials. For example, the nonlocality of nonlocal
species concentration theory turns out to make the interface of the local con-
centration field thinner than in Cahn-Hilliard theory. Finally, the influence of
interface related parameters, including the penalty energy coefficient β and the
characteristic interface length scale l, is investigated.
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8 Nonlocal species concentration model

8.1 Spherically symmetric boundary value
problem

We consider a spherical particle of radius R0 under spherically symmetric
boundary conditions. Here, spherical coordinates are introduced and all fields
are expressed as a function of time t and the radial coordinate 0≤ r≤ R0 in the
form

c = c(r, t), (8.1)

ĉ = ĉ(r, t). (8.2)

Figure 8.1: Boundary and symmetry conditions for the spherically symmetric boundary value
problem of the NSC theory.

For the spherically symmetric boundary value problem, based on Equation
(4.54), the dimensionless diffusion equation for the NSC theory can be ob-
tained as

0 = r̄2 ∂ c̄
∂ t̄

+
∂

∂ r̄

[
−r̄2(1+α2c̄(1− c̄))

∂ c̄
∂ r̄
− β̄ r̄2c̄(1− c̄)(

∂ c̄
∂ r̄
− ∂ ¯̂c

∂ r̄
)

]
,

(8.3)

126



8.1 Spherically symmetric boundary value problem

where the nonlocal species concentration is calculated by solving the dimen-
sionless Helmholtz equation

λ

R2
0

∂

∂ r̄
(r̄2 ∂ ¯̂c

∂ r̄
)+ r̄2

β̄ (c̄− ¯̂c) = 0. (8.4)

The boundary conditions for the NSC theory are sketched in Fig. 8.1. At the
surface, except for the natural boundary condition (4.47), a spatially indepen-
dent mass flux is chosen, which has been introduced in Equation (5.30).

In addition, at the particle center, the boundary conditions

∂c
∂ r

(0, t) = 0, (8.5)

∂ ĉ
∂ r

(0, t) = 0 (8.6)

are imposed. Here, Equations (8.5) and (8.6) are needed to ensure the spherical
symmetry. What is more, these two boundary conditions ensure the physical
requirement that the flux at the particle center vanishes (see Appendix A.4).

Finally, the initial conditions are given by

c(r,0) = 0, (8.7)

ĉ(r,0) = 0. (8.8)

The cathode material LMO is chosen for the simulations. We consider a
typical value of R0 = 1µm for the particle radius. The material parameters
for the cathode material LMO have been summarized in Table 7.1, and the
parameters β̄ and l will be discussed in the following section.
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8 Nonlocal species concentration model

8.2 Interface evolution

Here, we will consider quasistatic insertion of lithium into a particle of LMO
at C = 0.001. First, we consider six different cases of β̄ and l with the same
value of the product λ = β̄ l2 = 7×10−18 m2. Figs. 8.2 and 8.3 show the nor-
malized lithium concentration c̄ and the normalized nonlocal concentration ¯̂c
along the radial coordinate at a state of average concentration of cavg = 0.5 for
different cases of β̄ and l. In Fig. 8.2 , we find that the lithium concentration
plots of different cases are almost the same except for the first case (β̄ = 0.001
and l = 83.7 nm) which shows a homogeneous state. All other cases exhibit
an extremely small difference in the interface situated between the two phases
as shown in the inset. Also, Fig. 8.3 shows almost the same nonlocal con-
centration plots for the different cases. As illustrated in Fig. 8.4, for the last
case (β̄ = 1000 and l = 0.084 nm), the lithium concentration is the same as the
nonlocal concentration, both of which are also identical to the lithium concen-
tration from the Cahn-Hilliard model. According to Eq. (5.46), for the limit
case l −→ 0 the nonlocal concentration is equal to the lithium concentration c̄,
meaning that the Cahn-Hilliard model is obtained and the full nonlocal effect
is reduced to a weak one. Therefore, β̄ = 1000 in our simulations is enough to
approach the results from the Cahn-Hilliard theory. This is also confirmed by
Di Leo et al. [94].
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8.2 Interface evolution

Figure 8.2: Normalized lithium concentration c̄ versus normalized radial coordinate r/R0 at
cavg = 0.5 during insertion for different cases of β̄ and l [98].

Figure 8.3: Normalized nonlocal concentration ¯̂c versus normalized radial coordinate r/R0 at
cavg = 0.5 during insertion for different cases of β̄ and l [98].
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8 Nonlocal species concentration model

Figure 8.4: Comparison of the concentration plots at cavg = 0.5 during insertion from the NSC
theory and the Cahn-Hilliard theory, where β̄ = 1000, l = 0.084 nm, and λ = 7×
10−18 m2. [98]

Now we focus on the interface evolution shown in the insets of Figs. 8.2 and
8.3. As l increases, the interface of the lithium concentration field becomes
steeper, but the nonlocal concentration field gets more diffuse, which means
that the spatial interaction volume which contributes to the nonlocal effect is
larger. The reason is that due to the fixed product λ , the increase of the spatial
interaction volume is compensated by a shrinking of the interface which is
governed by the characteristic interface length scale l [113]. Therefore, the
nonlocality makes the interface of the local concentration field c̄ steeper. In
addition, we should notice that the first case (β̄ = 0.001 and l = 83.7 nm)
shows no phase segregation, which is explained by Fig. 8.5. Here, zero system
penalty energy corresponds to a homogeneous system. For the fixed product
λ , as l increases, the penalty energy increases. When l reaches 83.7 nm, the
cost of the penalty energy Ψ̄penalty at a phase segregated state would be too
high so that as a result of the competition between the different contributions
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8.2 Interface evolution

to the total system energy the system stays in the homogenous state in order to
minimize the total system free energy. Therefore, the penalty energy vanishes
in this case, and it can be seen that the contribution of the penalty energy to the
total system free energy can lead to suppression of phase segregation.

Figure 8.5: Normalized penalty energy Ψ̄penalty versus average concentration cavg during inser-
tion for different cases of β̄ and l [98].

Next, we discuss the evolution of the interface thickness d of the lithium
concentration field, the interface thickness dnon of the nonlocal concentration
field, and the characteristic interface length scale l with increasing β̄ during
insertion, as shown in Fig. 8.6. Here, d or dnon is defined as the distance over
which the concentration deviates 0.05 from the two binodal concentrations of
the lithium concentration field or the nonlocal concentration field [113, 141].
We find that d increases with increasing β̄ , while both dnon and l decrease. As
β̄ increases, d is more close to dnon, and they are the same when β̄ reaches
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8 Nonlocal species concentration model

1000 as shown in the inset, when approaching the solution from the Cahn-
Hilliard theory as discussed before. However, the difference |d− l| reduces
as β̄ decreases. When β̄ is 1.5, l and d are equal to 2.16 nm and 5.66 nm,
respectively, and thus l is on the order of magnitude of d. Therefore, in view of
the interpretation of l as the characteristic interface length scale, we can regard
the two values 1.5 and 2.16 nm as reasonable rough estimates of β̄ and l for
the cathode material LMO, respectively, when fixing λ = 7×10−18 m2, which
leads to a lower interface thickness of 5.66 nm in the NSC theory compared to
the interface thickness of 8 nm in the Cahn-Hilliard theory.

Figure 8.6: Evolution of the interface thickness d of the lithium concentration field, the interface
thickness dnon of the nonlocal concentration field, and the characteristic interface
length scale l at cavg = 0.5 according to the NSC theory with λ = 7× 10−18 m2

during insertion [98].
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8.3 Comparison with Cahn-Hilliard model

As the truly nonlocal NSC theory is an extension of the Cahn-Hilliard theory,
we will now compare the results from the two theories. First, we consider the
electrode particle as being microsized, say, R0 = 1 µm. Then, as illustrated
in Fig. 8.7, the lithium concentration plots obtained from the two theories
are almost the same. This means that, for a microsized electrode particle, the
nonlocal effect is very weak, and the Cahn-Hilliard theory yields the almost
same results as the NSC theory. Therefore, the Cahn-Hilliard theory is well
capable of describing the motion of the sharp interface between the two phases
for a microsized electrode particle. However, when the electrode particle radius
is considered as being nanosized, say, R0 = 100 nm, we find in Fig. 8.8 that the
lithium concentration at the interface between the two phases obtained from the
Cahn-Hilliard theory is different from that of the NSC theory. The interface of
the lithium concentration field c̄ considering the truly nonlocal effect is steeper
than that from the Cahn-Hilliard theory, and the nonlocal concentration field
¯̂c is the most diffuse among the three concentration plots. Indeed, the ratio
of the characteristic interface length scale to the particle radius l/R0 in the
nanoparticle is larger than that in the microparticle, and, as a result, the larger
ratio of the spatial interaction volume to the particle volume contributes to a
stronger nonlocal effect.
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8 Nonlocal species concentration model

Figure 8.7: Comparison of the concentration plots at cavg = 0.5 during insertion from the NSC
theory and the Cahn-Hilliard theory, where R0 = 1 µm, β̄ = 1.5, l = 2.16 nm, and
λ = 7×10−18 m2 [98].

Figure 8.8: Comparison of the concentration plots at cavg = 0.5 during insertion from the NSC
theory and the Cahn-Hilliard theory, where R0 = 100 nm, β̄ = 1.5, l = 2.16 nm, and
λ = 7×10−18 m2 [98].
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Next, we consider a microparticle with a large microstructure scale. To this
end, we choose λ = 7× 10−15 m2, to vary for the sake of comparison the
interface thickness in both, NSC and Cahn-Hilliard theory. For fixed β̄ = 1.5,
we obtain l = 68.31 nm. Fig. 8.9 shows the results from the two theories. It
is found that the lithium concentration from the Cahn-Hilliard theory is clearly
different from that of the NSC theory. The lithium concentration field from the
Cahn-Hilliard theory is more diffuse than that from the NSC theory, and the
interface of the nonlocal concentration field is very thick, which means that the
spatial interaction volume is very large. This can be explained by the increase
of the characteristic interface length scale l enlarging the spatial interaction
volume. As a result, the nonlocal effect is very strong.

Figure 8.9: Comparison of the concentration plots at cavg = 0.5 during insertion from the NSC
theory and the Cahn-Hilliard theory, where R0 = 1 µm, β̄ = 1.5, l = 68.31 nm, and
λ = 7×10−15 m2 [98].
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8 Nonlocal species concentration model

8.4 Influence of the penalty energy
coefficient β

As the interface thickness d is determined by the two parameters β̄ and l

in the NSC theory, we will study their influence. First, we vary the value of
β̄ but fix l (l = 2.16 nm). Figs. 8.10 and 8.11 show the effect of β̄ on the
normalized lithium concentration c̄ and the normalized nonlocal concentration
¯̂c at a state of average concentration of cavg = 0.5. We find that both, d and dnon,
increase as β̄ increases, but a homogeneous state is obtained for the last case
(β̄ = 15000). This can be explained with the help of Figs. 8.12 and 8.13. Fig.
8.12 shows that with increasing values of β̄ , the interface thicknesses d and
dnon of c̄ and ¯̂c, respectively, tend towards each other asymptotically. This in
turn leads to the plots of c̄ and ¯̂c to coincide more and more and, by the way, to
approaching the solution of the Cahn-Hilliard theory. The results show that the
term

(
c̄− ¯̂c

)2 dominates the trend of increasing β̄ in the penalty energy density
(4.51). As a result, the system penalty energy in Fig. 8.13 is gradually reduced
with increasing value of β̄ . Finally, when β̄ reaches 15000, the system penalty
energy vanishes, and a homogeneous state occurs. As discussed before, the
asymptotic coincidence of the NSC theory with the Cahn-Hilliard theory for
large values of β̄ means a likewise asymptotic reduction to weak nonlocality.
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8.4 Influence of the penalty energy coefficient β

Figure 8.10: Normalized lithium concentration c̄ versus normalized radial coordinate r/R0 at
cavg = 0.5 during insertion for different β̄ , where l = 2.16 nm [98].

Figure 8.11: Normalized nonlocal concentration ¯̂c versus normalized radial coordinate r/R0 at
cavg = 0.5 during insertion for different β̄ , where l = 2.16 nm [98].
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Figure 8.12: Evolution of the interface thickness d of the lithium concentration field, the inter-
face thickness dnon of the nonlocal concentration field and the characteristic inter-
face length scale l at cavg = 0.5 during insertion, where l = 2.16 nm [98].

Figure 8.13: Normalized penalty energy Ψ̄penalty versus average concentration cavg during inser-
tion for different β̄ , where l = 2.16 nm [98].
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8.5 Influence of the characteristic interface
length scale l

Next, we vary the value of l but fix β̄ = 1.5. Figs. 8.14 and 8.15 show the
effect of l on the normalized lithium concentration c̄ and the normalized non-
local concentration ¯̂c at a state of average concentration of cavg = 0.5. As it has
to be expected, increasing the characteristic interface length scale l broadens d

and dnon, and increases the difference between c̄ and ¯̂c, which indicates that the
nonlocal effect is enhanced. This is consistent with the increase of the maxima
of the system penalty energy in Fig. 8.16 as l increases. Interestingly, compar-
ing the case (β̄ = 1.5, λ = 7×10−14 m2) in Fig. 8.14 to the case (l = 2.16 nm,
λ = 7×10−14 m2) in Fig. 8.10, we find that it is a phase segregated state for the
former case but a homogeneous state for the latter case, although the product
λ is the same. Indeed, β̄ in the latter case is far more than 1000, which means
that the result from the Cahn-Hilliard theory is approached. On the other hand,
the former case represents a result reasonably accounting for a truly nonlocal
effect due to the fact that the characteristic interface length scale l is on the
order of magnitude of the interface thickness d. Therefore we conclude that,
the Cahn-Hilliard theory is not capable of describing the interface evolution of
a microstructure possessing a length scale comparable to the total system size.
Now, we focus on the evolution of d and dnon with increasing l for fixed β̄ , as
shown in Fig. 8.17. It is found that the difference |d−dnon| initially increases
as l increases. Beyond l = 68.3 nm, the difference |d−dnon| gets smaller. Fi-
nally, for the case of l = 683 nm and λ = 7×10−13 m2, which is not shown in
the figures, there is a homogeneous state and, as a consequence both d and dnon

vanish with the trivial consequence |d−dnon|= 0. The reason for this change
of the trend of |d−dnon| lies in the competition of the different terms contribut-
ing to the system free energy. As the system penalty energy is about to get too
large (see Fig. 8.16), a homogenous solution yields the minimum system free
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energy. In other words, too large a penalty energy suppresses phase segrega-
tion. In addition, d is always on the order of magnitude of l in the different
cases. Therefore, the value 1.5 can be confirmed again as a reasonable rough
estimate of β̄ for the NSC theory.
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Figure 8.14: Normalized lithium concentration c̄ versus normalized radial coordinate r/R0 at
cavg = 0.5 during insertion for different l, where β̄ = 1.5 [98].

Figure 8.15: Normalized nonlocal concentration ¯̂c versus normalized radial coordinate r/R0 at
cavg = 0.5 during insertion for different l, where β̄ = 1.5 [98].
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Figure 8.16: Normalized penalty energy Ψ̄penalty versus average concentration cavg during inser-
tion for different l, where β̄ = 1.5 [98].

Figure 8.17: Evolution of the interface thickness d of the lithium concentration field, the inter-
face thickness dnon of the nonlocal concentration field and the interfacial characteris-
tic interface length scale l at cavg = 0.5 during insertion, where β̄ = 1.5 [98].
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9 Conclusion

The occurence of phase segregation within electrode particles, which is con-
sidered as a resource of large mechanical stresses, can be a possible origin for
the battery capacity fade. Thus, it is the objective of this work to study phase
changes and mechanical stresses in electrode particles by means of phase-
field simulations. This work was first dedicated to the understanding of phase
changes, mechanical deformation, and stress evolution in NaFPO electrode
particles of NIBs. Furthermore, the particle size and average concentration
dependent miscibility gap for the three cathode materials LMO, LiFPO, and
NaPPO were studied. Finally, a NSC theory, which is an extension of the
Cahn-Hilliard theory, was introduced.

We formulated a non-linear Cahn-Hilliard type model with mechanics. For
the mechanical part, besides SDT two different finite deformation elasticity
formulations were introduced and compared. This work has addressed the
theoretical formulation, numerical implementation, and application of the me-
chanically coupled phase-field theory.

To start with, a phase-field model for the cathode material NaFPO of NIBs
was studied for the first time, using a phase-field theory coupling the Cahn-
Hilliard equation to finite deformation elasticity. As a major novelty, the ma-
terial parameters for NaFPO were determined. For example, α1, α2, and λ ,
all of which are the key parameters in the phase-field model, were determined.
The determination of these key parameters provides a significant input for the
future phase-field work for NaFPO. We implemented the fourth-order nonlin-
ear initial-boundary-value problem of the model in COMSOL Multiphysicsr

to solve by the finite element method the spherically symmetric problem of
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sodium insertion into or extraction from a NaFPO particle of NIBs. Our model
captures the important feature that distinguishes NaFPO from LiFPO, i.e,
phase segregation into a sodium-poor phase FePO4 and a sodium-rich phase
Na2/3FePO4. The difference for the concentration and stress plots between
SDT and the finite deformation theories can not be neglected for NaFPO. In
particular, the stresses in the two phases are higher for SDT. The above differ-
ence suggests that the finite deformation elasticity is preferred for the cathode
material NaFPO. This is different from that SDT has a sufficient capacity to
represent the deformation of LiFPO. Although the results from the two finite
deformation theories are almost the same, according to our experience, elas-
ticity based on logarithmic elastic strain is numerically more efficient than
elasticity based on elastic Green strain. On the other hand, we found that,
for the same stage of average concentration, the miscibility gap of NaFPO is
smaller than that of LiFPO, but the stresses in a NaFPO particle during phase
segregation are larger, which may explain the existence of a wide range of
solid solution NaxFePO4 for 2/3 < x < 1 to avoid even higher stresses in the
NaFPO particle. In addition, the suppression of phase segregation by the elas-
tic strain energy is more pronounced in NaFPO compared to LiFPO. Here, we
just focus on phase changes in the two-phase region of NaFPO (0 < x < 2/3),
ignoring the single-phase region (2/3 < x < 1). As an outlook, the current
model may be extended into the whole region (0 < x < 1). As both the partial
molar volume and Young’s modulus are regarded as constants here, another
major subject of future study is the effect of the concentration dependence of
these two quantities for NaFPO.

For the second aim of this work, by means of a phase-field theory cou-
pling the Cahn-Hilliard equation to finite deformation elasticity, we studied the
dependence of the miscibility gap on particle size and average concentration
for the three cathode materials LMO, LiFPO, and NaFPO. We found that, a
reduced miscibility gap in the center of the spinodal region of average concen-
tration is found for radii below 55.5 nm, 20.5 nm, and 17.5 nm for the three
cathode materials LMO, LiFPO, and NaFPO, respectively. The miscibility gap
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shrinks to accommodate in particles of reduced size the gradient of concen-
tration in the interface between phases. The critical radius below which phase
segregation is inhibited for LMO is Rc = 10.9 nm, which is larger than the
critical radii of 6 nm for LiFPO and 6.4 nm for NaFPO. Concerning the evo-
lution of the miscibility gap during the insertion process, it was found that for
smaller particles it increases as average concentration increases. However, the
miscibility gap is constant during the whole process of insertion for radii above
125 nm, 73 nm, and 75 nm for the three cathode materials LMO, LiFPO, and
NaFPO, respectively. The average concentration dependent miscibility gap is
physically explained by the minimization of system free energy. On the other
hand, when mechanics is accounted for, minimization of the total energy leads
to a reduction of the miscibility gap and a widened interface region. Among
the three investigated cathode materials, mechanics has the strongest influence
on LMO on the miscibility gap, while the tensile stresses in this material are
the smallest. The elastic strain energy leads to a larger threshold value of the
particle radius for the size independent miscibility gap, and a larger critical
particle size below which phase segregation is completely inhibited. Our work
suggests that one way to improve the mechanical stability of cathode mate-
rials is that the miscibility gap is suppressed by choosing sufficiently small
particle sizes according to the respective material. For the future challenge
to design nanoscale insertion materials, LMO possesses the largest particle
size for expanding the solid solution range in which particle stresses are elim-
inated among the three investigated cathode materials. Here, neither surface
tension nor surface wetting [50, 51, 142] is taken into account. According to
Stein et al. [142], surface tension plays an increasingly unnegligible role in the
electro-chemo-mechanical behavior of electrode nanoparticles as the particle
size decreases. Investigating the effect of surface tension on the miscibility
gap in phase separating insertion materials can be subject of future work. In
order to avoid computationally expensive three-dimensional simulations, the
cathodic particles are assumed to be of spherical symmetry under spherically
symmetric boundary conditions. However, the particle shape has an important
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influence on the phase segregation and the stress state [88, 97, 116]. According
to Zhao et al. [97], the core-shell phase segregation may not occur due to the
geometric anisotropy in plate- and needle-like particles, and the stress magni-
tudes in the particles of the above two types can be different compared to those
in particles of spherical symmetry. Investigating the effect of the particle shape
may also be subject of future work.

Finally, a NSC theory was introduced from a general formulation of a non-
local free energy density by using the Green’s function as weight function to
describe diffusion and phase changes in a material showing phase segregation.
This theory was shown to be a generalization of the classical Cahn-Hilliard
theory. In contrast to the Cahn-Hilliard theory which is weakly nonlocal, the
NSC theory is truly nonlocal and is based not only on the species concentra-
tion c but also on the nonlocal species concentration ĉ. The NSC theory is
governed by two coupled second-order PDEs which are amenable to being
solved with a standard finite element implementation and, thus, is computa-
tionally less demanding than the fourth-order Cahn-Hilliard equation. In the
NSC theory, the nonlocal free energy density is split into two parts, which are
the penalty energy density ψ penalty and the variance energy density ψvariance.
The interface thickness d is controlled by two independent parameters, namely
the penalty energy coefficient β̄ and the characteristic interface length scale l.
We implemented the NSC theory in COMSOL Multiphysicsr to solve by the
finite element method the spherically symmetric problem of lithium insertion
into a LMO particle of a lithium ion battery. It was found that β̄ = 1.5 and
l = 2.16 nm can be regarded as reasonable rough estimates for the cathode ma-
terial LMO. The nonlocality makes the interface of the local concentration field
steeper, when compared to the Cahn-Hilliard theory. Also, the NSC theory is
more accurate than the Cahn-Hilliard theory for a nanoparticle of an electrode
material or, more general, a comparable scale of the microstructure in relation
to the system size. A high system penalty energy can lead to suppression of
phase segregation. On the other hand, both interface thicknesses d and dnon
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increase as β̄ or l increase. Furthermore, increasing β̄ weakens the nonlocal
effect while increasing l enhances the nonlocality.
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A Appendix

A.1 Helmholtz equation (4.46) as governing
partial differential equation for
nonlocal species concentration

The Green’s function is the solution of the Helmholtz equation (4.46) with
the source term replaced by the Dirac function δ (~x−~y), i.e., the solution of

G(~x;~y)− l2
∇

2G(~x;~y) = δ (~x−~y), (A.1.1)

for the boundary condition (4.47).
Integrating Equation (A.1.1) over the problem domain B with respect to

spatial position~y, one obtains∫
B

G(~x;~y)dV =
∫

B
δ (~x−~y)dV + l2

∫
B

∇
2G(~x;~y)dV

= 1+ l2
∫

∂B

~∇G(~x;~y) ·~ndA

= 1, (A.1.2)

where the term related to l2 vanishes by the divergence theorem and the bound-
ary condition (4.47). Consequently, if the Greens’s function G(~x;~y) is contin-
ued by zero values outside the problem domain B, it satisfies the natural weight
function property (4.28), and, thus it is an admissible choice of the weight
function, i.e. ω(~y;~x) = G(~y;~x). Notice that G(~y;~x) = G(~x;~y) since Green’s
functions are symmetric for linear problems with constant coefficients [114].
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Thus, we introduce the nonlocal species concentration according to Equation
(4.35) as

¯̂c(~x) =
A

cmaxβ

∫
B

c̄(~y)G(~y;~x)dV. (A.1.3)

In view of the choice of G as the weight function, the definition (4.36) together
with Equation (A.1.2) yields

β =
A

cmax

∫
B

G(~y;~x)dV =
A

cmax
, (A.1.4)

such that Equation (A.1.3) simplifies to

¯̂c(~x) =
∫

B
c̄(~y)G(~y;~x)dV. (A.1.5)

By the definition of the Dirac function

c̄(~x) =
∫

B
δ (~x−~y)c̄(~y)dV (A.1.6)

holds. Now, substituting Equation (A.1.1) into Equation (A.1.6) gives

c̄(~x) =
∫

B
c̄(~y)G(~x;~y)dV −

∫
B

l2c̄(~y)∇2G(~x;~y)dV

=
∫

B
c̄(~y)G(~y;~x)dV − l2

∇
2
∫

B
c̄(~y)G(~y;~x)dV

= ¯̂c(~x)− l2
∇

2 ¯̂c(~x). (A.1.7)

Therefore, the inhomogenous Helmholtz equation (4.46) is the governing
equation for nonlocal species concentration when ¯̂c is defined according to the
integral representation (4.35) with the Green’s function as the weight function.
As an additional implication, as also shown in [114], the coefficients related to
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A.2 Derivation of the system free energy in the nonlocal species concentration theory

derivatives of fourth-order and higher of c̄ in Equation (4.45) need to vanish,
such that equation (4.45) simplifies to the Helmholtz equation (4.46).

A.2 Derivation of the system free energy in
the nonlocal species concentration
theory

The free energy density (4.27) in the nonlocal model is reformulated as

ψ(~x) = ψ
mwp(c̄(~x))+ 1

2
A
∫

B
ω(ρ)

(
c̄(~x)− ¯̂c(~x)

)2dV

+
1
2

A
∫

B
ω(ρ)

(
c̄(~x)− c̄(~y)

)2−ω(ρ)
(
c̄(~x)− ¯̂c(~x)

)2dV.

(A.2.1)

Note that ~y is the variable of spatial integration. Using Equation (4.36), the
second term on the right hand side of Equation (A.2.1) gives

1
2

A
∫

B
ω(ρ)

(
c̄(~x)− ¯̂c(~x)

)2dV =
1
2

cmaxβ
(
c̄(~x)− ¯̂c(~x)

)2

= ψ
penalty(c̄(~x), ¯̂c(~x)). (A.2.2)

Using Equations (4.35) and (A.1.2), the third term on the right hand side of
Equation (A.2.1) then yields

1
2

A
∫

B
ω(ρ)

(
c̄(~x)− c̄(~y)

)2−ω(ρ)
(
c̄(~x)− ¯̂c(~x)

)2dV

= (A− cmaxβ )c̄(~x) ¯̂c(~x)− 1
2

A ¯̂c(~x)2 +
1
2

A
∫

B
ω(ρ)c̄(~y)2dV. (A.2.3)
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The first term on the right hand side of Equation (A.2.3) vanishes by Equation
(A.1.4), and Equation (A.2.3) then can be manipulated further:

−1
2

A ¯̂c(~x)2 +
1
2

A
∫

B
ω(ρ)c̄(~y)2dV

=
1
2

A
(∫

B
ω(ρ)c̄(~y)2dV − ¯̂c(~x)2)

=
1
2

A
(∫

B
ω(ρ)c̄(~y)2dV + ¯̂c(~x)2−2 ¯̂c(~x)2)

=
1
2

A
(∫

B
ω(ρ)c̄(~y)2dV + ¯̂c(~x)2−2 ¯̂c(~x)

∫
B

ω(ρ)c̄(~y)dV
)

=
1
2

cmaxβ

∫
B

ω(ρ)
(
c̄(~y)− ¯̂c(~x)

)2dV

= ψ
variance( ¯̂c(~x)). (A.2.4)

As shown in appendix A.1, the Green’s function G(~y;~x) of the Helmholtz
equation (4.46) satisfies the natural weight function property (4.28). Thus, it
is chosen as the weight function of the NSC theory. As a result, we obtain the
system free energy (4.50) in which the nonlocal free energy density is com-
posed of two terms, namely the penalty energy density ψ penalty and variance
energy ψvariance.
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value problem

A.3 Derivation of the final coupled
diffusion equation of the spherically
symmetric boundary value problem

A.3.1 The coupled Cahn-Hilliard equation with
elastic Green strain

Since Grad µcp
R
(cR,Ee) is extremely complicated and long, it makes sense to

use the following substitutions:

s = Ω(cR− c0), (A.3.1)

q =
∂uR

∂R
, (A.3.2)

w =
uR

R
, (A.3.3)

n =
ν

1−2ν
, (A.3.4)

X = (1+ s)−
8
3 , (A.3.5)

Y = (1+ s)−
5
3 , (A.3.6)

Z = (1+ s)−
2
3 , (A.3.7)

Q = (1+q)2 , (A.3.8)

W = (1+w)2 . (A.3.9)

According to Table 5.1, all the above introduced parameters (A.3.1 - A.3.9) are
dimensionless.

For the gradient of the chemical potential, Grad µmwp
R

and Grad µgd
R

have
been expressed in Equations (5.25) and (5.26), respectively. Again, here c and
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r in Equations (5.25) and (5.26) should be respectively replaced by cR and R.
Using Equation (5.80), Grad µcp

R
is expressed as

Grad µ
cp
R
(cR,Ee) = GΩ

[
1
2
(ZQ−1)(−2

3
∂ s
∂R

QY +2(1+q)Z
∂q
∂R

)

+(−2
3

YW
∂ s
∂R

+2Z(
q
R
− w

R
)(1+w))(WZ−1))

+2n(−1+
1
2
(−1+QZ)+WZ)

·(−1
3

QY
∂ s
∂R

+Z(1+q)
∂q
∂R
− 2

3
WY

∂ s
∂R

+2Z(1+w)(
q
R
− w

R
))
]
~eR

+GΩ(1+ s)
[

5
9
(ZQ−1)QX

∂ s
∂R

−1
3

QY (−2
3

Y
∂ s
∂R

Q+2Z(1+q)
∂q
∂R

)

−2
3
(ZQ−1)(1+q)

∂q
∂R

Y +
10
9

XW
∂ s
∂R

(WZ−1)

−4
3
(WZ−1)Y (1+w)(

q
R
− w

R
)− 2

3
WY (−2

3
YW

∂ s
∂R

+2(w+1)Z(
q
R
− w

R
))

+2n(
5
9

QX
∂ s
∂R
− 2

3
(1+q)

∂q
∂R

Y +
10
9

W
∂ s
∂R

X

−4
3
(1+w)Y (

q
R
− w

R
))(−1+

1
2
(−1+QZ)+WZ)

+2n(−1
3

QY − 2
3

WY )

·(−1
3

QY
∂ s
∂R

+(1+q)
∂q
∂R

Z

−2
3

∂ s
∂R

YW +2(w+1)(
q
R
− w

R
)Z)
]
~eR

+G
∂ s
∂R

[
−Ω

3
(ZQ−1)QY − 2Ω

3
(WZ−1)WY

+2n(−Ω

3
QY − 2Ω

3
WY )

(−1+
1
2
(−1+QZ)+WZ)

]
~eR. (A.3.10)174
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Substituting Equations (5.25), (5.26), and (A.3.10) into Equation (5.68), we
can derive the final dimensionless coupled diffusion equation

0 = R̄2 ∂ c̄R

∂ t̄
+

∂

∂ R̄

[
−R̄2(1+α2c̄R(1− c̄R))

∂ c̄R

∂ R̄
+ R̄2 λ

R2
0

c̄R(1− c̄R)

·
(

∂ 3c̄R

∂ R̄3 +
2
R̄

∂ 2c̄R

∂ R̄2 −
2

R̄2
∂ c̄R

∂ R̄

)
− R̄2c̄R(1− c̄R)

·
[

ḠΩ̄

[
1
2
(ZQ−1)(−2

3
∂ s
∂ R̄

QY +2(1+q)Z
∂q
∂ R̄

)+(−2
3

YW
∂ s
∂ R̄

+2Z(
q
R̄
− w

R̄
)(1+w))(WZ−1)+2n(−1+

1
2
(−1+QZ)+WZ)

·(−1
3

QY
∂ s
∂ R̄

+Z(1+q)
∂q
∂ R̄
− 2

3
WY

∂ s
∂ R̄

+2Z(1+w)(
q
R̄
− w

R̄
))

]
+ḠΩ̄(1+ s)

[
5
9
(ZQ−1)QX

∂ s
∂ R̄
− 1

3
QY (−2

3
Y

∂ s
∂ R̄

Q+2Z(1+q)
∂q
∂ R̄

)

−2
3
(ZQ−1)(1+q)

∂q
∂ R̄

Y +
10
9

XW
∂ s
∂ R̄

(WZ−1)

−4
3
(WZ−1)Y (1+w)(

q
R̄
− w

R̄
)− 2

3
WY (−2

3
YW

∂ s
∂ R̄

+2(w+1)Z(
q
R̄
− w

R̄
))

+2n(
5
9

QX
∂ s
∂ R̄
− 2

3
(1+q)

∂q
∂ R̄

Y +
10
9

W
∂ s
∂ R̄

X

−4
3
(1+w)Y (

q
R̄
− w

R̄
))(−1+

1
2
(−1+QZ)+WZ)+2n(−1

3
QY − 2

3
WY )

·(−1
3

QY
∂ s
∂ R̄

+(1+q)
∂q
∂ R̄

Z− 2
3

∂ s
∂ R̄

YW +2(w+1)(
q
R̄
− w

R̄
)Z)
]

+Ḡ
∂ s
∂ R̄

[
− Ω̄

3
(ZQ−1)QY − 2Ω̄

3
(WZ−1)WY

+2n(− Ω̄

3
QY − 2Ω̄

3
WY )(−1+

1
2
(−1+QZ)+WZ)

]]]
. (A.3.11)
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A.3.2 The coupled Cahn-Hilliard equation with
logarithmic elastic strain

Since Grad µcp
R
(cR,Ee

log) is extremely complicated and long as well, it makes
sense to use the following substitutions:

X∗ = (1+ s)−
7
3 , (A.3.12)

Y ∗ = (1+ s)−
4
3 , (A.3.13)

Z∗ = (1+ s)−
1
3 . (A.3.14)

176



A.3 Derivation of the final coupled diffusion equation of the spherically symmetric boundary
value problem

According to Table 5.1, all the above introduced parameters (A.3.12 - A.3.14)
are dimensionless.

Using Equation (5.92), Grad µcp
R
(cR,Ee

log) is expressed as

Grad µ
cp
R
(cR,Ee

log) = GΩ

[
2lnλ e

1

λ e
1

(
(−1

3
∂ s
∂R

Y ∗(1+q)+Z∗
∂q
∂R

)
+

4lnλ e
2

λ e
2

(
(−1

3
∂ s
∂R

Y ∗(1+w)+Z∗(
q
R
− w

R
)

)
+2n

(
lnλ

e
1
+2lnλ

e
2

)( 1
λ e

1

(− 1
3λ e

1

∂ s
∂R

Y ∗(1+q)+Z∗
∂q
∂R

)
+

2
λ e

2

(
(−1

3
∂ s
∂R

Y ∗(1+q)+Z∗(
q
R
− w

R
)

)]
~eR

+G(1+ s)

[
−2Ω

3

(
1

λ e
1

2 (1+q)Y ∗
(
−1

3
∂ s
∂R

Y ∗(1+q)

+Z∗
∂q
∂R

)
−

lnλ e
1

λ e
1

2 (1+q)Y ∗
(
−1

3
∂ s
∂R

Y ∗(1+q)+Z∗
∂q
∂R

)
+

lnλ e
1

λ e
1

Y ∗
∂q
∂R
−

4lnλ e
1

3λ e
1

(1+q)X∗
∂q
∂R

)
−4Ω

3

(
1

λ e
2

2 (1+w)Y ∗
(
−1

3
∂ s
∂R

Y ∗(1+w)+Z∗(
q
R
− w

R
)

)
−

lnλ e
2

λ e
2

2 (1+w)Y ∗
(
−1

3
∂ s
∂R

Y ∗(1+w)+Z∗(
q
R
− w

R
)

)
+

lnλ e
2

λ e
2

(
q
R
− w

R
)Y ∗−

4lnλ e
2

3λ e
2

(1+w)X∗
∂ s
∂R

)
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+2n
(

1
λ e

1

(
−1

3
∂ s
∂R

Y ∗(1+q)+Z∗
∂q
∂R

)
+

2
λ e

2

(
−1

3
∂ s
∂R

Y ∗(1+q)+Z∗(
q
R
− w

R
)

))
·
(
− Ω

3λ e
1

(1+q)Y ∗− 2Ω

3λ e
2

(1+w)Y ∗
)

+2n
(
lnλ

e
1
+2lnλ

e
2

)( Ω

3λ e
1

2 (1+q)Y ∗

·
(
−1

3
∂ s
∂R

Y ∗(1+q)+Z∗
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(A.3.15)
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A.3 Derivation of the final coupled diffusion equation of the spherically symmetric boundary
value problem

Substituting Equations (5.25), (5.26), and (A.3.15) into Equation (5.68), we
can derive the final dimensionless coupled diffusion equation
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+Ḡ

∂ s
∂ R̄

[
−2Ω̄

3
lnλ e

1

λ e
1

Y ∗(1+q)− 4Ω̄

3
lnλ e

2

λ e
2

(1+w)Y ∗

2nΩ̄
(
lnλ

e
1
+2lnλ

e
2

)
·
(
−1

3
1

λ e
1

Y ∗(1+q)− 2
3

1
λ e

2

Y ∗(1+w)
)]]]

. (A.3.16)

A.4 Lithium flux at the particle center for
the spherically symmetric boundary
value problem of the nonlocal species
concentration theory

Here, we will demonstrate that the two boundary conditions (8.5) and (8.6)
ensure that the flux at the particle center vanishes. This is a physical require-
ment in order to guarantee the conservation of lithium matter within the parti-
cle.
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A.4 Lithium flux at the particle center for the spherically symmetric boundary value problem of
the nonlocal species concentration theory

Using Equations (4.4), (4.37), and (4.10), we can obtain the normalized
lithium flux in the one-dimensional particle model as

~̄J =−
(
1+α2c̄(1− c̄)

)∂ c̄
∂ r̄
− β̄ c̄(1− c̄)(

∂ c̄
∂ r̄
− ∂ ¯̂c

∂ r̄
), (A.4.1)

where r̄ = r/R0. Then, according to Equations (8.5) and (8.6), the normalized
lithium flux at the particle center is

~̄J(0, t) = 0. (A.4.2)

Therefore, the two boundary conditions (8.5) and (8.6) ensure the physical
requirement that the lithium flux at the particle center vanishes.
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