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The determination of jVcbj from exclusive semileptonic B → D�lν decays is sensitive to the choice
of form factor parametrization. Larger jVcbj values are obtained by fitting the Boyd-Grinstein-Lebed (BGL)
versus the Caprini-Lellouch-Neubert (CLN) parametrization to recent Belle measurements. For the BGL
parametrization, published fits use different numbers of parameters. We propose a method based on nested
hypothesis tests to determine the optimal number of BGL parameters to fit the data, and find that six
parameters are optimal to fit the Belle tagged and unfolded measurement [1]. We further explore the
differences between fits that use different numbers of parameters. The fits which yield jVcbj values in better
agreement with determinations from inclusive semileptonic decays tend to exhibit tensions with heavy
quark symmetry expectations. These have to be resolved before the determinations of jVcbj from exclusive
and inclusive decays can be considered understood.
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I. INTRODUCTION

In 2017, the Belle Collaboration presented, for the first
time, unfolded measurements of the differential decay
distributions for B̄ → D�lν̄ decays [1], and another meas-
urement appeared more recently [2]. The unfolded meas-
urement [1] permitted outside groups to perform their
own fits to the data, using different parametrizations of
the B̄ → D�lν̄ form factors to extract jVcbj. The choice of
form factor parametrizations can have a sizable impact on
the extracted value of jVcbj. This is because heavy quark
symmetry gives the strongest constraints on the differential
rate at zero recoil (maximal dilepton invariant mass, q2)
[3–10], resulting in both continuum methods and lattice
QCD giving the most precise information on the normali-
zation of the rate at zero recoil. However, phase space
vanishes near maximal q2 as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2max − q2

p
, so the measured

q2 spectrum has to be fitted over some range to extract
jVcbj. This results in sensitivity to the functional form of the
fitted parametrization.
Fitting Belle’s unfolded measurement [1] to the BGL

parametrization [11,12] yielded higher values of jVcbj
[13,14] than fitting the CLN [15] parametrization to the

same dataset. (To our knowledge, during 1997–2017, all
BABAR and Belle measurements of jVcbj from B̄ → D�lν̄
used the CLN parametrization.) The BGL results are
in better agreement with jVcbj extracted from inclusive
B → Xclν̄ decays [16]:

jVcbjCLN ¼ ð38.2� 1.5Þ × 10−3; ½1�; ð1aÞ

jVcbjBGL332
¼ ð41.7þ2.0

−2.1Þ × 10−3; ½13�; ð1bÞ

jVcbjBGL222
¼ ð41.9þ2.0

−1.9Þ × 10−3; ½14�: ð1cÞ

Here the BGLijk notation highlights that these fits have
different numbers of parameters (the notation is defined
below in Sec. II), in particular eight and six parameters,
respectively. In Ref. [2], the Belle Collaboration published
an “untagged” measurement of B̄ → D�lν̄, without fully
reconstructing the second B meson in the collision using
hadronic decay modes. In that analysis, fits to the CLN and
a five-parameter version of the BGL parametrization were
performed [2], and the results are in agreement:

jVcbjCLN ¼ ð38.4� 0.9Þ × 10−3; ð2aÞ

jVcbjBGL122
¼ ð38.3� 1.0Þ × 10−3: ð2bÞ

The BGL method implements constraints on the shapes
of the B → D� form factors based on analyticity and
unitarity [17–19]. Three conveniently chosen linear
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combinations of form factors are expressed in terms of power
series in a small conformal parameter, 0 < z ≪ 1. As
indicated in Eqs. (1) and (2), there are varying choices
for the total number of coefficients, N, in the three power
series, ranging from N ¼ 5 [2] to N ¼ 6 [14,20] and N ¼ 8
[13,21,22]. The CLN [15] prescription uses similar analy-
ticity and unitarity constraints on the B → D form factor,
heavy quark effective theory (HQET) [7,8] relations between
the B → D and B → D� form factors, and QCD sum rule
calculations [23–25] of the order ΛQCD=mc;b subleading
Isgur-Wise functions [9,10]. It has four fit parameters. [This
version of the CLN parametrization, as used to extract jVcbj,
is not self consistent at OðΛQCD=mc;bÞ [26].]
The relation between the above fits is nontrivial, and has

not been studied systematically. The goal of this paper is
to explore their differences, and to devise a quantitative
method to identify the optimal number of parameters in the
BGL framework. Using a prescription based on a nested
hypothesis test, we find that at least six parameters are
required to describe the data from Ref. [1]. The N ¼ 5 and
6 fits we study in detail yield jVcbj values in better
agreement with determinations from inclusive semileptonic
decays, but they exhibit tensions with expectations from
heavy quark symmetry.

II. FORMALISM AND NOTATIONS

The vector and axial-vector B̄ → D� form factors are
defined as

hD�jc̄γμbjB̄i ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p
hVεμναβϵ�νv0αvβ;

hD�jc̄γμγ5bjB̄i ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p ½hA1
ðwþ 1Þϵ�μ

− hA2
ðϵ� · vÞvμ − hA3

ðϵ� · vÞv0μ�; ð3Þ

where v (v0) is the four-velocity of the B (D�). The form
factors hV;A1;2;3

depend on w ¼ v · v0 ¼ ðm2
B þm2

D� − q2Þ=
ð2mBmD� Þ. In the heavy quark limit, hA1

¼ hA3
¼ hV ¼ ξ

and hA2
¼ 0, where ξ is the Isgur-Wise function [3,4]. Each

of these form factors can be expanded in powers of
ΛQCD=mc;b and αs.
In the massless lepton limit (i.e., l ¼ e or μ), the

differential B → D�lν̄ rate is given by

dΓ
dw

¼ G2
FjVcbj2η2ewm5

B

48π3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
ðwþ 1Þ2r3ð1 − rÞ2

×

�
1þ 4w

wþ 1

1 − 2wrþ r2

ð1 − rÞ2
�
½F ðwÞ�2; ð4Þ

where r ¼ mD�=mB, and F ðwÞ can be written in terms of
hA1

ðwÞ and the two form factor ratios (see, e.g., Ref. [27]):

R1ðwÞ ¼
hV
hA1

; R2ðwÞ ¼
hA3

þ rhA2

hA1

: ð5Þ

All measurable information is then contained in the three
functions F ðwÞ and R1;2ðwÞ. Throughout this paper,
F ð1Þ ¼ 0.906 [28] and ηew ¼ 1.0066 [29] are used to
convert fit results for jVcbjF ð1Þηew to values of jVcbj. In the
heavy quark limit, R1;2ðwÞ ¼ 1þOðΛQCD=mc;b; αsÞ and
F ðwÞ ¼ ξðwÞ. Thus, R1;2ðwÞ − 1 parametrize deviations
from the heavy quark limit.
The BGL framework is defined by expanding three form

factors g, f, and F 1, which are linear combinations of
those defined in Eq. (3), in power series of the form
1=½PiðzÞϕiðzÞ� ×

P
ainzn, where i ¼ g, f, F 1 (see, e.g.,

Ref. [12], and note that F 1 ≠ F ). Here z ¼ zðwÞ is a
conformal parameter that maps the physical region
1 < w < 1.5 onto 0 < z < 0.056, and PiðzÞ and ϕiðzÞ
are known functions [14]. There are two notations in the
literature for the coefficients of these power series, which
map onto each other via

fan; bn; cng ½14� ⟷ fagn; afn; aF 1
n g ½13�: ð6Þ

In the remainder of this paper, we adopt the former
notation, so that an, bn, and cn are the coefficients of g,
f, and F 1, respectively. (The convention for the sign of g,
and thus the an, in Ref. [14] is opposite to that used in
Refs. [13,22].) Note that c0 is fixed by b0 [12,14], and the
fits are performed for the rescaled parameters

fãn; b̃n; c̃ng ¼ ηewjVcbjfan; bn; cng; ð7Þ

and jVcbj is determined by jb̃0j.
To study and distinguish expansions truncated at differ-

ent orders in z, we denote by BGLnanbnc a BGL fit with the
parameters

fa0;…;na−1; b0;…;nb−1; c1;…;ncg: ð8Þ

The total number of fit parameters is N ¼ na þ nb þ nc.
The BGL parametrization used in Refs. [14,20] is BGL222,
while that used in Refs. [13,22] is BGL332.

III. NESTED HYPOTHESIS TESTS: FIXING THE
OPTIMAL NUMBER OF COEFFICIENTS

Our aim is to construct a prescription to determine the
optimal number of parameters to fit a given dataset. This
can be achieved by use of a nested hypothesis test: a test
of an N-parameter fit hypothesis versus a fit using one
additional parameter (the alternative hypothesis).
Such a hypothesis test requires an appropriate statistical

measure or test statistic. A suitable choice is the difference
in χ2,

Δχ2 ¼ χ2N − χ2Nþ1: ð9Þ
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The fit with one additional parameter—the (N þ 1)-
parameter fit—has one fewer degree of freedom (d.o.f.)
(number of bins minus the number of parameters). In the
large number of d.o.f. limit,Δχ2 is distributed as a χ2 with a
single d.o.f. [30]. One may reject or accept the alternative
hypothesis by choosing a decision boundary. If, for
instance, we choose Δχ2 ¼ 1 as the decision boundary,
we would reject the (N þ 1)-parameter hypothesis in favor
of the N-parameter fit 68% of the time, if the N-parameter
hypothesis is true.
We seek a prescription to incrementally apply this nested

hypothesis test, starting from a suitably small initial number
of parameters (to avoid possible overfitting), until we reach
the simplest (smallest-N) fit containing the initial para-
meters, that is preferred over all hypotheses that nest it or
are nested by it. For a set of BGL fits, we thus propose
the following prescription starting from a suitable low-N
fit BGLnanbnc :

(i) Carry out fits with one parameter added (a “descend-
ant” fit) or, when permitted, removed (a “parent” fit);
i.e., for BGLðna�1Þnbnc, BGLnaðnb�1Þnc , BGLnanbðnc�1Þ.

(ii) For each descendant (parent) hypothesis, accept it
over BGLnanbnc if Δχ

2 is above (below) the decision
boundary value.

(iii) Repeat (i) and (ii) recursively, until a “stationary” fit
is reached, that is preferred over its parents and
descendants.

(iv) If there are multiple stationary fits, choose the one
with the smallest N, then the smallest χ2.

The optimal truncation order obtained this way depends
on the precision of the available experimental data. Our
prescription attempts to minimize the residual model
dependence (caused by this truncation) with respect to
the experimental uncertainty.
Figure 1 shows the fitted χ2 values for the set of 27

different BGLnanbnc fits with ni ¼ 1, 2, 3. A suitable choice
for a starting fit is BGL111 or one of the three possible fits
with N ¼ 4. Using the decision boundary of Δχ2 > 1, one
then obtains a single stationary solution, BGL222, shown in

bold. For example, one path to BGL222 is 111 → 211 →
221 → 222, while another is 121 → 131 → 231 → 232 →
222.
Also shown in Fig. 1 are the jVcbj values for all 27 fits.

These results are consistent with the statement made in
Ref. [13] that the extracted values of jVcbj remain stable
when one adds more fit parameters to the BGL332 fit. This
stability can be seen directly by comparing the preferred
BGL222 fit with its descendants. One may notice that the χ2

of the BGL333 fit is substantially smaller than those of its
parents. However, our procedure starting from N ¼ 3 or 4
fits always terminates before reaching so many parameters.
Plotting the fitted BGL333 distributions, one sees that its
small χ2 is due to fitting fluctuations in the data, and should
be seen as an overfit.
The unitarity constraints,

P∞
n¼0 janj2 ≤ 1 andP∞

n¼0ðjbnj2 þ jcnj2Þ ≤ 1, can be imposed on the fits.
The stationary fit in our approach, BGL222, is far from
saturating these bounds [14]. While the form factors must
obey the unitarity constraints, statistical fluctuations in their
binned measurements may cause the central values to
appear to violate unitarity1 (at a modest confidence level).
This can occur because such fits may yield large coef-
ficients for higher-order terms to accommodate “wiggles”
in the data. In this paper, we do not impose unitarity as a
constraint; fits whose central values violate unitarity (at a
modest confidence level) may suggest an overfit. This is the
case for the BGL333 fit, providing another reason to limit
the number of fit coefficients, as proposed in our method.

IV. COMPARING N = 5 FITS WITH BGL222

To explore the differences between the various five-
parameter fits and the BGL222 fit, we perform such fits to
Belle’s unfolded data [1]. (The untagged Belle measure-
ment [2] is not unfolded, and cannot be analyzed at this
point outside the Belle framework. With limited statistics,

FIG. 1. The χ2 (upper entry) and jVcbj × 103 (lower entry) values for the BGLnanbnc fits used for the nested hypothesis test. The
number of free parameters in a given fit is N ¼ na þ nb þ nc and the bold entry is the selected BGL222 hypothesis
fa0; a1; b0; b1; c1; c2g. Cells corresponding to N ¼ 5, 6, 7, 8 are highlighted blue, green, orange, and red, respectively.

1We thank Paolo Gambino for raising this question.
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the differences between the fits we perform on the unfolded
data contain fluctuations, which are different from those of
the folded measurement.) There are six possible fits with
five parameters, as shown in Fig. 1. Here we focus on
comparing BGL122, BGL212, and BGL221, which set a1, b1,

or c2, respectively, to zero. (We do not study further the
BGL311, BGL131, and BGL113 fits, as each removes two
and adds one parameter to the BGL222 fit.)
The results of the BGL222 fit and the three five-parameter

fits for the physical observables jVcbj, R1;2ð1Þ, and R0
1;2ð1Þ

are shown in Table I. (Our BGL222 fit results vary slightly
from those in Ref. [20], due to using mB ¼ 5.280 GeV
versus 5.279 GeV.) The best-fit parameters [rescaled as
in Eq. (7)] and correlations for these four fits are shown
in Fig. 2.
The results for the BGL222 fit in Fig. 2 suggest that, if

one wants to reduce the number of fit parameters from six
to five, the BGL122 fit might be the least optimal choice, as
the significance of a nonzero value for ja1j is greater than
for jb1j, which is turn greater than for jc2j. This is in line
with the observation that, compared to the BGL222 fit, the
value of χ2 increases the most for BGL122, followed by

TABLE I. Summary of the BGL222, BGL122, BGL212, and
BGL221 fits to the tagged and unfolded Belle measurement [1].

BGL222 BGL122 BGL212 BGL221

χ2=n:d:f: 27.7=34 32.7=35 31.3=35 29.1=35
jVcbj×103 41.7�1.8 39.5�1.7 38.7�1.1 40.7�1.6
R1ð1Þ 0.45�0.31 1.30�0.09 0.86�0.37 0.48�0.34
R0
1ð1Þ 4.23�1.28 0.26�0.27 2.34�1.60 4.02�1.44

R2ð1Þ 1.00�0.19 1.03�0.20 1.05�0.20 0.82�0.10
R0
2ð1Þ −0.53�0.43 −0.29�0.51 −0.25�0.52 −0.02�0.05

FIG. 2. Fit coefficients and correlation matrices for the six-parameter BGL222 fit and 3 five-parameter BGL fits to the tagged and
unfolded Belle measurement [1].
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BGL212, and then BGL221. This suggests that among the
five-parameter fits, setting c2 ¼ 0 (the BGL221 fit) may
instead be the preferred option—though inferior, according
to our method, to the BGL222 fit for the Belle tagged and
unfolded dataset [1].
The top row in Fig. 3 shows F ðwÞ normalized to the

lattice QCD value of F ð1Þ, as jVcbjF ðwÞ=F ð1Þ for six fits.
The left-side plots show three previously published fits:
the BGL222 and CLN fit results, based on the 2017 Belle
tagged measurement, and the “BLPR” result of Ref. [26],
which performed a HQET-based fit to both B → D�lν̄ and
B → Dlν̄ data to determine the subleading OðΛQCD=mc;bÞ
Isgur-Wise functions, using also lattice QCD information.

The right-side plots in Fig. 3 show the BGL122, BGL212,
and BGL221 fits, based on the 2017 Belle tagged meas-
urement [1]. The shaded bands indicate the uncertainties.

FIG. 3. The form factor F ðwÞ (top), R1ðwÞ (middle), and R2ðwÞ (bottom) for the six fits described in the text.

TABLE II. Fit coefficients used to construct the ensembles of
toy experiments. The third-order terms fã2; b̃2; c̃3g are taken
either as 1 or 10 times the second-order terms fã1; b̃1; c̃2g in the
BGL222 fit shown in Fig. 2.

Parameter 1× scenario 10× scenario

ã2 × 102 2.6954 26.954
b̃2 × 102 −0.2040 −2.040
c̃2 × 102 0.5350 5.350
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The BGL222 and BGL221 fits have the largest differential
rates near zero recoil (w ¼ 1), corresponding to the largest
extracted values of jVcbj.
The value of jVcbj extracted from the BGL122 fit to the

2017 Belle unfolded measurement [1] is more than 1σ
smaller than in the six-parameter BGL222 fit to the same
data. This raises several questions: Would a BGL222 fit to
the 2018 Belle measurement [2] find a larger value of jVcbj
than that in Eq. (2b), closer to its inclusive determination?
The consistency of the fitted BGL122 coefficients from the
2017 and 2018 Belle measurements is only at about the 2σ
level for ã0.
Also shown in Fig. 3 are the fit results for the form factor

ratios R1;2ðwÞ. The BGL222 fit to the tagged Belle meas-
urement [1] indicated a substantial deviation from heavy
quark symmetry, in particular for the R1 form factor ratio
[20]. The central values, for fixed quark mass parameters, at
order OðΛQCD=mc;b; αsÞ, are [20]

R1ð1Þ ¼ 1.34 − 0.12ηð1Þ þ � � � ;
R0
1ð1Þ ¼ −0.15þ 0.06ηð1Þ − 0.12η0ð1Þ þ � � � ; ð10Þ

where ηðwÞ is a ratio of a subleading and the leading
Isgur-Wise function. With ηð1Þ and η0ð1Þ of order unity,
R1ð1Þ cannot be much below 1, and jR0

1ð1Þj cannot be
large, without a breakdown of heavy quark symmetry.
Preliminary lattice QCD calculations [31,32] also do not
indicateOð1Þ violations of heavy quark symmetry. Figure 3
shows that the BGL122 fit exhibits better agreement with

heavy quark symmetry expectations for R1ðwÞ. However,
this likely arises because R1ðwÞ ∝ ðwþ 1Þg=f, so setting
a1 ¼ 0 constrains the shape of the numerator. By contrast,
the BGL212, BGL221, and BGL222 fits prefer a1 ≠ 0, and
yield R1ðwÞ in some tension with heavy quark symmetry
and lattice QCD.

V. TOY STUDIES

To validate the prescription outlined above, and to
demonstrate that it yields an unbiased value of jVcbj, we
carried out a toy MC study using ensembles of pseudodata
sets. These were generated using the BGL333 parametri-
zation, i.e., with nine coefficients. The six lower-order
coefficients fã0;1; b̃0;1; c̃1;2g were chosen to be identical to
the BGL222 fit results of Fig. 2. The third-order terms
fã2; b̃2; c̃3g were chosen according to two different
scenarios: Either 1 or 10 times the size of the
fã1; b̃1; c̃2g coefficients in the BGL222 fit, as shown in
Table II. We call these the “1×” and “10×” scenarios,
respectively. Ensembles were constructed as follows:
First, predictions for the 40 bins of the tagged measure-
ment [1] were produced. Ensembles of pseudodata sets
were then generated using the full experimental covari-
ance, assuming Gaussian errors, and then each pseudodata
set was fit according to the nested hypothesis test
prescription.
The frequency with which particular BGLijk parametri-

zations are selected are shown in Table III, for both the

TABLE III. The frequency of the selected hypotheses for ensembles created with the two scenarios for the higher-order terms, as
estimated with an ensemble size of 250 pseudodata sets.

BGL122 BGL212 BGL221 BGL222 BGL223 BGL232 BGL322 BGL233 BGL323 BGL332 BGL333

1× scenario 6% 0% 37% 27% 6% 6% 11% 0% 2% 4% 0.4%
10× scenario 0% 0% 8% 38% 14% 8% 16% 3% 4% 8% 1%
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FIG. 4. The pull constructed from a large ensemble of pseudoexperiments using third-order terms of the 1× scenario (left plot) and
10× scenario (right plot) described in the text. The pull of the fits selected by the nested hypothesis prescription (black) show no bias or
undercoverage of uncertainties. Also shown in red is the pull from a BGL122 fit, showing a large bias on the value of jVcbj. Mean (μ) and
standard deviation (σ) from normal distributions fitted to the ensembles are also provided.
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1× and 10× scenarios. For each selected fit hypothesis, the
recovered value, jVcbjrec, and the associated uncertainty, σ,
may then be used to construct a pull, i.e., the normalized
difference ðjVcbjrec − jVcbjtrueÞ=σ, where jVcbjtrue is the
“true” value used to construct the ensembles. If a fit or
a procedure is unbiased, the corresponding pull distribution
should follow a standard normal distribution (mean of zero,
standard deviation of unity). In Fig. 4, the pull distributions
for both the 1× and 10× scenarios are shown and compared
to that of the BGL122 parametrization. One sees that the
nested hypothesis test proposed in this paper selects fit
hypotheses that provide unbiased values for jVcbj in both
scenarios. However, the BGL122 fit shows significant
biases. In the ensemble tests, the BGL122 fits have mean
χ2 values of 41.0 and 56.6, respectively (with 35 d.o.f.).
For the 1× scenario, this produces an acceptable fit
probability on average. Nonetheless, the recovered value
of jVcbj is biased by about 1.3σ.

VI. CONCLUSIONS

We studied the differences of the determinations of jVcbj
from exclusive semileptonic B → D�lν decays, depending
on the truncation order of the BGL parametrization of the
form factors used to fit the measured differential decay
distributions. Since the 2018 untagged Belle measurement
[2] used a five-parameter BGL fit, Refs. [14,20] used a six-
parameter fit, and Refs. [13,22] used an eight-parameter
one, we explored differences between the five-, six-, seven-,
and eight-parameter fits.
We proposed using nested hypothesis tests to determine

the optimal number of fit parameters. For the 2017
Belle analysis [1], six parameters are preferred. Including

additional fit parameters only improves χ2 marginally.
Comparing the result of the BGL122 fit used in the 2018
untagged Belle analysis [2] to the corresponding fit to the
2017 tagged Belle measurement [1], up to 2σ differences
occur, including in the values of jVcbj. This indicates
that more precise measurements are needed to resolve
tensions between various jVcbj determinations, and that the
truncation order of the BGL expansion of the form factors
has to be chosen with care, based on data.
We look forward to more precise experimental measure-

ments, more complete fit studies inside the experimental
analysis frameworks, as well as better understanding of the
composition of the inclusive semileptonic rate as a sum of
exclusive channels [33,34]. Improved lattice QCD results,
including finalizing the form factor calculations in the
full w range [31,32], are also expected to be forthcoming.
These should all contribute to a better understanding of the
determinations of jVcbj from exclusive and inclusive semi-
leptonic decays, which is important for CKM fits, new
physics sensitivity, ϵK , and rare decays.
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