

On the Quality of Wall Time Estimates for Resource Allocation Prediction

Mehmet Soysal, Marco Berghoff, Dalibor Klucasek and Achim Streit

Steinbuch Centre for Computing (SCC) / Scientific Computing and Simulation (SCS)

Overview

Motivation

- Problem
- Metric
- Results
- Conclusion & take away

Motivation

The I/O Subsystem (parallel FS) is a bottleneck in HPC Systems

- Bandwidth, metadata or latency
- Data Staging in advance to compute node
- Which nodes are going to be allocated?
- Wall times are far away from optimal
- How good wall time predictions have to be?

Goal: Data staging in advance

- Based on the allocation prediction
- No modification on scheduling behaviour
- How reliable is the schedule?

Scenario 1: Backfill-Scheduling

Existing Schedule

Backfilling re-shuffles planned schedule

Scenario 2: Forward jump in schedule Node 1 Job 1 Node 2 Job 6 Job 4 Node 3 Job 2 Node 4 Node 5 Node 6 Job 3 Job 5 Node 7 Node 8

How to solve

- Many other cases cause reschedule
 - Node failure
 - Other nodes earlier free
 - High priority jobs
- Need accurate wall time estimates
 - Reduces need for back-filling
 - No jumping forward in schedule
 - Keep cluster utilization high \leftarrow
- Many approaches to predict wall time estimates Simple Rules, Machine Learning (ML), Automatic ML, Deep learning

Evaluation

- Not another wall time predictor
 - Impact of accurate wall time on node prediction
- Improve wall times artificially ("redefined" requested wall time)
 - No under-estimations
- Workloads from the parallel workload archiv
 - CTC, SDSC, KTH, ForHLR II*
- ALEA new feature developed
 - Node allocation tracking

Calculate for every job a new wall time estimate based on λ_x for given x

Requested / used walltime

User request more than they use

 ForHLR 3.5X requested wall time than used wall time SDSC 2.5X CTC 2.0X KTH 1.5X

Improved wall times estimates

CTC improved estimates

Metric

Categorized into valid node allocation prediction time (T_{NAP})

>10 minutes before job start the node allocation list is known

1 seconds – 10 minutes

0 seconds – 1 second

Instant started jobs

Results – CTC - FCFS

Results – CTC - FCFS

Results – CTC - Back-filling

Conclusion & Take Away

- With FCFS higher accuracy on node allocations
- Alea wall time predictor is quite good if user estimations are bad

But still: Even with perfect wall times there is a huge uncertainty

- Alea can now simulate node allocation prediction
- Modification to scheduling needed for advanced data staging
 - Reservations
 - Slurm ODFS Burst buffer plugin

Acknowledgement

- ADA-FS Project
- DFG priority programm SPPEXA "Software for exascale Computing"
- Steinbuch Centre for Computing
- Contact: Mehmet.Soysal@kit.edu

Questions?