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Abstract In this paper we present an unsupervised time series anomaly
detection algorithm, which is based on the discrete wavelet transform (DWT)
operating fully online. Given streaming data or time series, the algorithm
iteratively computes the (causal and decimating) discrete wavelet transform.
For individual frequency scales of the current DWT, the algorithm estimates
the parameters of a multivariate Gaussian distribution. These parameters are
adapted in an online fashion. Based on the multivariate Gaussian distributions,
unusual patterns can then be detected across frequency scales, which in certain
constellations indicate anomalous behavior. The algorithm is tested on a diverse
set of 425 time series. A comparison to several other state-of-the-art online
anomaly detectors shows that our algorithm can mostly produce results similar
to the best algorithm on each dataset. It produces the highest average F1-score
with one standard parameter setting. That is, it works more stable on high- and
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low-frequency-anomalies than all other algorithms. We believe that the wavelet
transform is an important ingredient to achieve this.

1 Introduction

Up till today, anomaly detection in general and especially for time series remains
a challenging task. A successful anomaly detector should fulfill the following
requirements to be useful in practice:

(i) detect anomalies in an unsupervised manner,
(ii) operate online and adaptively, and
(iii) work robustly on quite different time series data.

Requirement (i) arises from the fact that it is usually not possible to collect
enough anomalous data in a training phase and that it is cumbersome in practice
to even separate in training and operational phase. Instead, it is desirable to
have an algorithm observing and learning from the “normal” data stream and
detecting significant deviations as anomalies.

Requirement (ii) comes from the fact that time series data in practice need
not to be stationary and/or can be too big for batch processing. The most notable
advantage of online algorithms might be their adaptive capabilities, which allow
them to learn in non-stationary environments and to adapt to concept drifts or
concept changes. Most state-of-the-art anomaly detectors (see Section 2) will
usually fulfill (i) and (ii).

Requirement (iii) is less obvious, nevertheless of great practical relevance:
It is desirable to have one algorithm for diverse data: sometimes the data are
high-frequent (spiky, e.g. network traffic data), sometimes the data are medium-
or low-frequent (e.g. sensor signals). In our recent work (Thill et al, 2017) it
was found to our surprise that most state-of-the-art algorithms are either good
in one domain or the other. This stirred the work presented in this paper which
uses wavelet transforms to generate features in diverse frequency ranges.

The underlying research question is: Is it possible to propose one online
anomaly detection algorithm which works robustly on a diverse set of bench-
marks? One might also have several algorithms, but then the algorithm selection
task (selecting the right one for each diverse benchmark set) should be part
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of the whole online algorithm. This question is of practical relevance, since
algorithm selection based on characteristics of the time series is often highly
non-trivial and not possible for a practitioner in the field. In many cases, also no
or only little historic data is available which could support the selection of an
algorithm tailored to the problem.

In the following sections we extend our recent work (Thill et al, 2017)
and introduce an unsupervised anomaly detection algorithm based on the
discrete wavelet transform (DWT) which operates fully online and shows robust
performance on several benchmarks, using only one parameter setting.

2 Related Work

Although many anomaly detection techniques have been developed over the past
years, as for example surveyed in Chandola et al (2009) and Patcha and Park
(2007), not many approaches utilize wavelet transforms for detecting anomalies
in time series signals. From those techniques found in the literature, most are
designed for high-frequency anomaly detection (e.g. in network traffic data),
such as (Kim et al, 2004; Kwon et al, 2006) and (Lu and Ghorbani, 2009).
The early work of Alarcon-Aquino (2001, 2003) describes anomaly detection
based on non-decimating wavelet transforms. Kanarachos et al (2015) developed
an anomaly detection algorithm for time series, based on wavelets, neural
networks and Hilbert transforms. The algorithm was tested on a relatively
simple benchmark, including two synthetic time series.

In this work wewill compare the results of our proposed online anomaly detec-
tionmethod to the state-of-the-art algorithmsNuPic (George andHawkins, 2009)
and ADVec (Vallis et al, 2014), which both are open-source available. As bench-
mark datawe use theNumentaAnomalyBenchmark (Lavin and S.Ahmad, 2015)
and Yahoo’s Webscope S5 benchmark (Laptev and Amizadeh, 2015).
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3 Methods

In this section we describe an online version of an algorithm based on Discrete
Wavelet Transforms with Maximum Likelihood Estimation for Anomaly
Detection in time series, in short DWT-MLEAD, where pseudocode is shown
in Algorithm 1 on page 5.

3.1 Discrete Wavelet Transforms

Wavelet transforms (Meyer and Salinger, 1995) are used to construct a frequency
representation for a signal by finding a representation of the signal in terms of a
wavelet function (a so calledmother wavelet, e.g. a Haar wavelet), which is scaled
(stretched and shrinked) in order to capture different frequency information
and shifted along the time axis. Wavelet transforms allow to retrieve a time
series signal representation which is accurate in both the time and frequency
domain. In this sense wavelet transforms are an interesting alternative to classical
approaches such as (short-time) Fourier transforms, where one can either achieve
a high resolution in the time domain or frequency domain, but not in both
at the same time. For sampled time series data, often the so called discrete
wavelet transform (DWT) is applied, which has linear time complexity. Usually
a decimating DWT is performed, in which the filtered series are downsampled.
The DWT decomposes the original time series into so called approximation and
detail coefficients which are arranged in different levels. Due to the decimating
(downsampling) property of the DWT one can represent both coefficient sets in
two binary tree structures.

In thisworkwe apply a decimatingDWT to the time series usingHaarwavelets.
Other wavelets are also applicable, but require some additional considerations.
Since lower levels of the DWT usually do not contain patterns which are
useful for anomaly detection, only the L highest levels (L is a parameter of the
algorithm) are considered, where ` = L−1 describes the lowest considered level
and ` = 0 addresses the highest possible level, which is the original time series
and which only contains the detail coefficients. The DWT-MLEAD algorithm
utilizes both the detail coefficients dn,` and approximation coefficients cn,` .

For the online implementation of the algorithm, a strictly causal computation
scheme is adhered to, for example, two data points in the original time series have
to be collected first before the next coefficient in level ` = 1 can be computed.
Similarly, 2` data points from the original time series are necessary to compute
the next coefficient in level `.
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Algorithm 1 An online version of DWT-MLEAD, an anomaly detection
algorithm using the Discrete Wavelet Transform
1: Define parameters:
2: L: maximum number of levels considered in the DWT
3: b, o: for the computation of the sliding window sizes w`
4: λ: forgetting factor for the estimation of the Gaussian distributions
5: ε : quantile of χ2-distribution
6: B: threshold for global event counter that triggers an anomaly

7: Initialize:
8: Set window sizes for each level: w` = max{1, bbo−`c}
9: Global event counter: E0 = 0
10: Discount factor: γ = wL−1

wL+1
11: Allow to trigger anomaly with: A = true
12: Initialize all P(c,`)

0 and P(d,`)
0 with the tuple (W0, µ̂0,M

−1
0 ,M0), where:

13: W0 ∈ R, µ̂0 ∈ R
w` and, M−1

0 ,M0 ∈ R
w`×w`

14: W0 = 0, µ̂0 = 0, M−1
0 = M0 = I

15: function DWTMLEAD
(
i, yi

)
. where y = (y1, y2, . . .) is a streaming time series

16: Determine `′ = min (L − 1,max {`∗ ∈ N0 | i mod 2`∗ = 0})
17: for all ` ∈ {0, . . . , `′} do
18: n = i/2`

19: Compute DWT coefficients cn,` and dn,` . if not already present

20: x (c)
n =

(
cn−w`+1,` . . . cn,`

)ᵀ
. sliding window

21: x (d)
n =

(
dn−w`+1,` . . . dn,`

)ᵀ
. sliding window

22: P(c,`)
n = update

(
P(c,`)
n−1 , x (c)

n , λ
)

23: P(d,`)
n = update

(
P(d,`)
n−1 , x (d)

n , λ
)

24: e` = predict
(
P(c,`)
n+1 , x (c)

n , ε
)
+ predict

(
P(d,`)
n+1 , x (d)

n , ε
)

25: Ei = γEi−1 +
∑`′

j=0 e j . Adjust global event counter

26: ai =
{
true if A ∧ Ei ≥ B
false otherwise . Flag anomaly at time step i, if threshold

is exceeded
27: if ai then A = false

28: if Ei <
2
3 B then

29: A = true . Allow new anomaly, if event-counter value falls below threshold

30: return ai
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3.2 Sliding Windows

Sliding windows are often used in practice to model local temporal relationships
within time series. Our algorithm employs a sliding window for each level of
the DWT tree. The length w` of the window is level-dependent and is computed
as w` = max{1, bbo−`c} where b, o ∈ R are two parameters of the algorithm. As
soon as a new coefficient in level ` is available (cn,` or dn,`), the corresponding
window is slid one further and the new window embedding is collected and
passed to a model, which estimates the likelihood of observing such a vector (as
described in the following sections). Unlikely vectors would indicate unusual
behavior on the corresponding DWT level. The sliding windows at lower levels
are moved with a slower rate than those on higher levels, since new coefficients
are only generated after every 2` time steps in the original time series. As
indicated before, this is necessary, to ensure causality of the system. Anomaly
detection starts after an initial transient phase, when the sliding windows can be
completely filled.

3.3 Online Estimation of Gaussian Distributions

In order to distinguish between normal and unusual patterns in the individual
levels of the DWT, our algorithm estimates a multivariate Gaussian distribution
for each considered level. This is done separately for the approximation and detail
coefficients (cn,` and dn,`). The dimension of the Gaussian distribution depends
on the length of the sliding window used in each level of the DWT. EachGaussian
distribution is parameterized by a mean vector µ̂ ∈ Rw` and a covariance matrix
Σ̂ ∈ Rw`×w` which can be found by using maximum likelihood estimation
(MLE; Thill et al, 2017). Since the DWT-MLEAD algorithm operates in an
online fashion, the parameter estimations also have to be updated incrementally
for each new data point. For this purpose we use an exponentially decaying
weighted estimator with a forgetting factor λ ∈ (0, 1]. The forgetting factor
controls at which rate past observations fade out over time. A value of λ close
to 1 results in an algorithm with a very long memory, whereas small values
(usually not smaller than 0.9) can significantly limit the memory of the estimator.
By allowing the estimator to gradually forget historic information, the algorithm
can adapt to new concepts in the data stream. Furthermore, with λ < 1 we can
prevent (under most conditions) a numeric overflow of the required accumulator
(the sum of squares of differences from the current mean). However, forgetting
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can also lead to a higher variance in the parameter estimates. The pseudo-code of
the estimator can be found in Algorithm 2. Note that it is not actually necessary
to compute the covariance matrix, since only its matrix inverse is required in
later steps. Therefore, we directly estimate the inverse of the sum of squares
of differences from the current mean M−1

n . Since the inverse M−1
n has to be

re-computed for every new data point, which can be computationally expensive
for larger dimensions, we use the Sherman-Morrison formula (Sherman and
Morrison, 1950) to incrementally update M−1

n . The inverse of the covariance
matrix is given by Σ̂−1

n = WnM
−1
n .

Algorithm 2 Update of estimation for Algorithm 1

1: function update
(
Pn−1, xn, λ

)
. xn ∈ R

w` , where w` is the size of the
window at scale `

2: (Wn−1, µ̂n−1,M
−1
n−1,Mn−1) = Pn−1 . MatrixMn−1 is optional

(debugging purposes)
3: Wn = λWn−1 + 1
4: ∆n = xn − µ̂n−1

5: µ̂n = µ̂n−1 +
1

Wn
∆n

6: Mn = λMn−1 + ∆n (xn − µ̂n)ᵀ . Optional, since only inverse M−1
n is

required later

7: M−1
n =

1
λM

−1
n−1 −

1
λ M

−1
n−1∆n (xn−µ̂n )ᵀM−1

n−1
λ+(xn−µ̂n )ᵀM−1

n−1∆n
. Inverse using the Sherman-
Morrison Formula

8: return (Wn, µ̂n,M
−1
n ,Mn) . Return updated parameters

3.4 Detecting Events in the DWT Tree and Anomaly Detection

Since DWT-MLEAD estimates a multivariate Gaussian distribution for every
set of DWT-coefficients on the levels ` ∈ [0, 1, . . . , L], it is possible to examine
each newly observed value cn,` and dn,` in the context of its current sliding
window in order to detect unusual patterns. For each new data point the current
window embed vector is determined and the squared Mahalanobis distance
mxn to the center of the Gaussian is computed for this vector. Subsequently,
this distance is compared to a threshold mε . Since a Gaussian random variable
has a squared Mahalanobis distance to its mean, which is Chi-squared (χ2)
distributed with w` degrees of freedom, we set mε by simply computing the
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(1 − ε )-quantile of the χ2-distribution (function predict in Algorithm 3). If
the Mahalanobis distance mxn exceeds the threshold mε , the current instance
cn,` or dn,` is flagged as unusual and an event e is passed down the DWT tree,
as illustrated in Figure 1. Events arriving at the leaf nodes are summed up
in a global, exponentially decaying event counter Ei (Algorithm 1 on page 5,
line 25). If the activity in a subtree of the DWT exceeds a certain limit, hence, if
many events are produced in a short time, Ei will increase fast. As soon as Ei is
larger than a specified threshold B, an anomaly will be fired and the instance i
in the time series will be flagged. In order to avoid many detections in a short
time, a new anomaly cannot be fired again until Ei has faded away and falls
below threshold 2

3 B.

Algorithm 3 Predict function for Algorithm 1

function predict
(
Pn, xn, ε

)
. xn ∈ R

w` , where w` is the size of the win-
dow at scale `

(Wn, µ̂n,M
−1
n ,Mn) = Pn

mxn = Wn (xn − µ̂n)ᵀM−1
n (xn − µ̂n) .Mahalanobis distance of xn to µ̂n

mε = χ2
1−ε (w` ) . Threshold: upper ε-quantile of

χ2-distribution

en =
{

1 if mxn > mε

0 otherwise . Binary event flag

return en . Unusual data points will cause an event in the DWT-tree

e

e

2

e

e

1

e

e

1

` = 0

` = 1

` = 2

` = 3

2

Figure 1: Detecting anomalies with leaf counters. All coefficients (except on the leafs) are always
computed bottom-up, based on two child nodes (connected with one dashed and one solid edge).
Along the vertical axis are the DWT levels `, along the horizontal axis are the time indices n of
the coefficients of the DWT. E.g., the leftmost event e comes from either an unusual cn,2 or dn,2.
Each event is passed down the tree only along the solid edges (causal computation) and increases the
right-most leaf counter (blue rectangle) connected with the e node.
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In order to detect extreme outlier events, a simple heuristic is used: The algorithm
flags a point as anomalous, if it exceeds the current minimum or maximum by
more than 20% of the min-max range.

4 Experimental Setup

4.1 The Benchmarks

In order to evaluate the performance of the DWT-MLEAD algorithm and
compare the results to other algorithms, we use a very diverse benchmark
consisting of 425 time series in total. The benchmark is composed from the
Yahoo Webscope S5 data (Laptev and Amizadeh, 2015) and the Numenta
Anomaly Benchmark (NAB) (Lavin and S. Ahmad, 2015), which are both
publicly available. The Webscope S5 benchmark (with overall 572,966 data
points) is split again into the 4 datasets A1, A2, A3 and A4 containing 67, 100,
100 and 100 time series. While the A1 data consists of real data, mostly from
computational services, A2 to A4 contain synthetic time series with increasing
complexity. On average, each time series has approximately 1,500 instances.

The NAB data contains 58 time series (with in total 365,558 data points),
with the majority (47 time series) coming from real world applications such as
server monitoring, network utilization, sensor readings from industry and social
media statistics. The longest time series contains 22,695 and the series contain
approximately 6,300 instances on average. The ground truth anomaly labels are
available for all considered time series, however, it is important to note that they
are not passed to the anomaly detection algorithms at any time and only used to
assess the algorithm’s performance afterwards. Examples for each dataset are
shown in Figure 2.

4.2 Algorithm Evaluation

In order to compare the performance of the different algorithms on the described
benchmarks, suitable performance metrics are required. Similarly to binary
classification tasks, every instance in the time series can be classified either as
normal or as anomalous. A correctly identified anomaly will be counted as a
true positive (TP), whereas a point incorrectly flagged as anomalous will be
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considered as a false positive (FP) and a missed anomaly as a false negative (FN).
The number of data points in a time series which is correctly predicted as normal
(true negatives or TN) is usually not meaningful and will therefore not be used
for evaluation purposes. Furthermore, since most anomalies in time series are not
point-anomalies but span over longer time-intervals, a time frame of appropriate
length, the so called anomaly window, is used to describe each anomaly.
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Figure 2: Example time series taken from the Yahoo Webscope S5 data and the Numenta Anomaly
Benchmark (NAB). In each graph the real anomalies are indicated by the light-red shaded areas. Three
algorithms are tested on this data and the individual detections are shown with different symbols. The
color of the symbol indicates if the detections were correct (green) or false (red).
Top two rows: One example each from the A1–A4 data. The dashed vertical lines in the A4 data
indicate concept changes which should also be detected by the anomaly detectors.
Bottom: Example time series taken from the NAB data. The graph shows the temperature sensor data
of an internal component of a large industrial machine over its last few months of operation. The
second anomaly (mid of December) is a planned shutdown of the machine. The catastrophic failure
occurs end of February when the recordings end.
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Consequently, several detections within an anomaly windowwill only be counted
as one TP and a missed anomaly window will only be counted as one FN. From
the aforementioned quantities, the well known metrics precision, recall and
F1-score are derived, whereby the latter is the harmonic mean of precision and
recall. The average metrics in column Avg of Table 1 are the metrics’ mean over
the five datasets A1–A4 and NAB.

4.3 Algorithmic Setup

In this paper, we compare DWT-MLEAD to two other online anomaly detection
algorithms. For each algorithm one standard parameter setting is chosen which
is then used for all experiments across all datasets. Only an anomaly threshold
parameter is varied for each algorithm and dataset in order to balance precision
and recall in a way that the F1-score is maximized.

DWT-MLEAD
As described in Section 3, in total 6 parameters have to be selected by the
user. In order to find an appropriate setting, we did not systematically tune
the parameters. Instead, we generated 60 design points using latin hypercube
sampling (LHS) and evaluated the algorithm on all time series for these points.
The setting B = 2.20, b = 2.27, o = 6, L = 5, λ = 0.972 achieved the
highest average F1-score and will be used throughout the rest of this paper.
The parameter ε is used as anomaly threshold and is adjusted in the range
ε ∈ [10−6, 10−1]. Additionally, to exclude the possibility of overtuning on the
data sets, we made the following experiment: We separated the set of all time
series in a training and a test set (each containing 50% of the time series) and
tuned the parameters of DWT-MLEAD only on the training data. Then the
F1-score was established only on the test set. The results will be given below
under the name TRAIN-TEST-SEP.

NuPic
Numenta’s online anomaly detection algorithm (George and Hawkins, 2009)
has a large set of parameters. The parameters can be tuned using a built-
in swarming (Ahmad, 2017) algorithm. However, we found that swarm-
ing does not improve the results significantly compared to a standard con-
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figuration, as used in (Lavin and S. Ahmad, 2015). Similarly to DWT-
MLEAD, an anomaly threshold can be varied in the interval [0, 1] to control
the sensitivity of the algorithm.

ADVec
This algorithm was developed by Twitter (Vallis et al, 2014) and is based on
the generalized ESD (generalized extreme studentized deviate) test, combined
with robust statistical approaches and piecewise approximation. Mainly, three
parameters are required, which we tuned to achieve the highest average F1-
score. The first parameter is the period-length which is set to 40. The second
parameter, maxanoms = 0.003, specifies the maximum number of anomalies
that the algorithm will detect as a percentage of the data. The last parameter
α describes the level of statistical significance with which to accept or reject
anomalies. We use this parameter as anomaly threshold for ADVec and adjust it
in the range α ∈ [10−6, 3 · 10−1].

5 Results

The main results of our experiments are summarized in Table 1. DWT-MLEAD
achieves on all datasets the highest F1-score. NuPic has a slightly better precision
on A1, but on A2, A3 and A4 the difference in all three metrics is large in favor
of DWT-MLEAD. One reason, among others, for the weak performance of
NuPic and ADVec could be that the time series in both datasets contain many
anomalies, occurring in part at the very beginning of each time series. Hence,
the algorithms have to be up-and-running much faster and have to be able to
detect anomalies in short time intervals. Furthermore, the A4 time series contain
many concept changes, where amplitudes, seasonalities and noise abruptly
change. In order to handle such concept changes, a strong online adaptability
is required. For the NAB data, the difference in F1-score between NuPic and
DWT-MLEAD is not that apparent, although there is a slight advantage for
our algorithm. Overall, we can observe in column Avg that DWT-MLEAD
achieves the highest average values for all three metrics. The results in Table 1
are for tuning on all data. The additional experiment TRAIN-TEST-SEP (see
Section 4.3) revealed very similar F1-scores (less than 1% deviation in the Avg
score). This observation confirms that DWT-MLEAD operates well on new data
and is not overtuned to its parameters.
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Since Table 1 only captures the results for one specific setting of the algorithms
anomaly thresholds, we also measured precision and recall for a wide range
of thresholds and plotted them against each other, as shown in Figure 3. The
overall picture mostly corresponds to the results shown in Table 1. Only for the
NAB data we can observe that for recall values in the range [0.5, 0.75] NuPic
achieves a higher precision and outperforms DWT-MLEAD. Finally, a look on
Table 1 shows that the NAB dataset is a tough benchmark: All tested algorithms
are far from being perfect on that dataset, having F1 < 0.55, i.e. there is still
room for improvement.

Table 1: Results for various algorithms on the datasets A1–A4 and NAB. Shown are the metrics
precision (how many percent of the detected events are true anomalies), recall (how many percent of
the true anomalies are detected) and F1. All algorithms have their threshold for each dataset chosen
such that F1 is maximized. Each algorithm uses otherwise one standard parameter set on all data sets.
The values in square brackets show the F1-score on the test data of the experiment TRAIN-TEST-SEP.

Precision, Recall
F1-Score

Algorithm A1 A2 A3 A4 NAB Avg

DWT-MLEAD
0.60, 0.65 1, 0.98 0.96, 0.97 0.92, 0.75 0.66, 0.45 0.8, 0.76
0.62 [0.66] 0.99 [0.99] 0.97 [0.97] 0.83 [0.83] 0.54 [0.52] 0.79 [0.80]

NuPic
0.62, 0.45 0.59, 0.42 0.39, 0.20 0.41, 0.11 0.40, 0.66 0.32, 0.37

0.52 0.49 0.27 0.18 0.5 0.39

ADVec
0.51, 0.56 0.66, 0.6 0.54, 0.20 0.29, 0.15 0.11, 0.72 0.32, 0.45

0.54 0.63 0.29 0.2 0.2 0.37
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Figure 3: Multiobjective plot for Yahoo’s Webscope S5 benchmark and the Numenta Anomaly
benchmark. The graph for the A2 data is not shown here since the results are very similar to the A3
data.

6 Discussion

Although algorithm DWT-MLEAD could produce good results on the in-
vestigated benchmarks, it still has several limitations which leave room for
improvement:

(1) For our experiments we only used the relatively simple Haar wavelet.
This leads to the limitation that anomalies manifesting themselves in
complex frequency patterns might be difficult to detect. Wavelets with
stronger localization in the frequency domain (e.g. Gabor wavelets or
ensembles of such wavelets) might allow to detect frequency changes
more reliably.

(2) Due to the strictly causal design of the algorithm, events occurring in the
DWT-tree might be asymmetrically distributed along the leaf counters
(Figure 1). More events will tend to arrive at the leaf nodes on the right
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side of each sub-tree, which might lead to undesired effects. We note in
passing that we performed runs with an algorithmic variant where we
treated each leaf symmetrical: We wait until an L-subtree is complete,
then we collect all events (along the dashed lines in Figure 1 as well)
and process them. The price to pay is a certain delay for some leafs
and a deviation from the strict online scheme. The results in terms of
precision-recall-metrics are a bit better for NAB and a bit worse for A4.
Overall, the difference is only marginal.

(3) One might object that the Gaussian distribution may not be the best
choice to model the data. Other (perhaps multimodal) distributions might
be more effective. To test this, we made some runs with Gaussian mixture
models (GMM) which are capable to model more complex distributions.
So far, however, these runs resulted in only marginal improvements. This
supports that Gaussian distributions are well usable in our case.

The NAB dataset is a challenging benchmark, as it includes mostly real world
data from many different applications. The time series contain anomalies in
high and low frequencies in a large variety of forms. Many anomalies are also
very hard to detect for the human eye without suitable domain knowledge. It is
worth mentioning that DWT-MLEAD proved to perform robustly on all time
series, without ever showing numerical instabilities from the matrix updates
(function update in Algorithm 2).

7 Conclusion & Future Work

In this paper we introduced the relatively simple but effective DWT-MLEAD
algorithm for online anomaly detection in time series. We found that especially
the discrete wavelet transform (DWT) can be an important tool to generate
meaningful features across many different frequency scales. Empirical results
on a large dataset with 425 time series containing both long-term and short-term
anomalies show that DWT-MLEAD is more robust than other state-of-the-art
anomaly detectors: Using only one fixed parameter setting, DWT-MLEAD
achieved an average F1 twice as large as for the other two algorithms (Table 1).
Furthermore, the online adaptability of the DWT-MLEAD algorithm appears
to be beneficial in the presence of concept drifts and/or changes, as the results
on the A4 data of Yahoo’s Webscope S5 benchmark suggest. Our anomaly
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detection algorithm does not require labeled training data, it infers from the
unlabeled data of each time series what is normal and what is anomalous.

As future work we are planning to improve several aspects of our algorithm:
Currently, only simple Haar wavelets are used for the algorithm; experiments
with other wavelets or ensembles of wavelets might lead to a significantly in-
creased performance. Another interesting direction of work could be – although
we could achieve good results with simple multivariate Gaussian distributions –
to investigate other unsupervised learning approaches in order to learn more ac-
curate models of the underlying distribution of the time series data. Furthermore,
we are planning to further reduce the sensitivity of DWT-MLEAD towards its
parameters, for example with automatic parameter tuning methods.
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