Robotics Education and Research at Scale:
A Remotely Accessible Robotics Development Platform

Wolfgang Wiedmeyer!, Michael Mende!, Dennis Hartmann®,

1

Rainer Bischoff?, Christoph Ledermann® and Torsten Kroger!

© 2019 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including
reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Abstract— This paper introduces the KUKA Robot Learning
Lab at KIT - a remotely accessible robotics testbed. The
motivation behind the laboratory is to make state-of-the-art
industrial lightweight robots more accessible for education and
research. Such expensive hardware is usually not available to
students or less privileged researchers to conduct experiments.
This paper describes the design and operation of the Robot
Learning Lab and discusses the challenges that one faces when
making experimental robot cells remotely accessible. Especially
safety and security must be ensured, while giving users as much
freedom as possible when developing programs to control the
robots. A fully automated and efficient processing pipeline for
experiments makes the lab suitable for a large amount of users
and allows a high usage rate of the robots.

I. INTRODUCTION

Despite continuously decreasing costs, robots are still
expensive hardware. This is especially true for state-of-the-
art industrial lightweight robots with force/torque sensing
capabilities in every joint. In order to be able to use the
robots for various applications, research facilities and uni-
versities set up general-purpose robot cells with additional
sensors. Maintaining these experimental robot cells requires
experience and time. Furthermore, software interfaces are
usually developed with a specific application in mind which
causes an additional overhead when repurposing the robot
cell for different types of experiments. Safety measures such
as workspace restrictions and collision detection algorithms
are often not sufficient which requires constant monitoring
of experiments to avoid damages to the hardware.

For these reasons, it is common that only select students
are able to use such robot cells within the scope of long-
term projects like theses. Most need to resort to simulation,
in the same way as researchers without sufficient funding.
However, current simulation frameworks do not sufficiently
reflect real-world behavior, especially when manipulating
objects or emulating sensors. A simulation-only approach

nstitute for Anthropomatics and Robotics, Karlsruhe Institute
of Technology, Germany, {wolfgang.wiedmeyer, michael.mende,
dennis.hartmann, christoph.ledermann, torsten} @kit.edu.

2KUKA Deutschland GmbH, Augsburg,
rainer.bischoff @kuka.com

Germany,

prevents researchers from validating their methods with real-
world experiments. From a student’s perspective, exploring
the foundations of robotics by being able to control a real
robot that interacts with the real world can be a big moti-
vational factor in education and allows to gain experience
with robotic hardware. The above issues are addressed by
the Robot Learning Lab.

Fig. 1.

The two robot cells of the Robot Learning Lab

The Robot Learning Lab, as shown in Figure is a
remote-access robotics testbed, explicitly designed to make
robotic manipulators more available for students and re-
searchers by providing access over the Internet to robotic
work cells. These cells are flexible, so they allow for various
different experimental setups, i.e. for educational purposes or
forefront research challenges. What sets the Robot Learning
Lab apart from other remotely accessible testbeds is its
focus on supporting the development of applications with
arbitrary complexity and without restrictions for research or
educational purposes, while maximizing scalability through
automation and minimal invasive safety/security measures.
Other testbeds lack flexibility or the ability to write code
in general-purpose programming languages to be considered
development platforms, or they are not able to handle a
large group of users and multiple robot work cells because
experiments are not performed fully automated and high
availability of the robots in the lab is not guaranteed. In this
paper, we discuss how the Robot Learning Lab is structured
and, in particular, how it constitutes a flexible, safe, secure
and scalable remote-access development platform.

II. RELATED WORK

In this section, we briefly give an overview of remote
access testbeds that have been successful in their respec-

tive domains and categorize them according to the robotic
hardware they employ: stationary robots and mobile robots.
The following survey does not include remotely accessible
robotics labs that only provide teleoperation or telepresence
capabilities as these are not suitable for software develop-
ment.

A. Stationary Robot Testbeds

A few remote robotics labs have been developed that use
a stationary mounted robotic manipulator, like the industrial
robots in the Robot Learning Lab. The Telerobot [1] and
RACT lab [2] each employ an industrial robot, while [3],
[4], [5], [6] use an educational robotic manipulator. [1], [3]
allow students to program the robot for pick-and-place tasks
with the help of a graphical user interface. [4] also supports
the upload of code files generated from a simulator. A visual
servoing task is additionally provided by [2]. [5] also gives
the ability to use robot-specific code-like instructions through
the web interface.

While these remote robotics labs were pioneering work
at their time, they lack the flexibility to conduct research
experiments. In contrast to the Robot Learning Lab, they
do not provide the ability to submit programs in a general-
purpose programming language and the feature set is almost
entirely limited to what is needed to teleoperate the robots in
the lab. In comparison, the Robot Learning Lab is designed to
host projects with arbitrary complexity, either for educational
or research purposes, and to serve as a development platform.
With the exception of [6], only basic safety needs are
addressed for the specific projects that were developed for the
labs. Safety is not treated in a general and holistic fashion and
the authors do not present safety concepts that are applicable
for different experimental setups.

B. Mobile Robot Testbeds

In recent years, the development of remote robotics labs
with stationary robots ceased and mobile robot testbeds
became popular, especially with multiple robots. The PR2
Remote Lab [7] gives access to a PR2 personal robot, the
RPN provides a NAO humanoid for remote access and the
Robotarium [8], SyRoTek [9] and Robotnacka [10] deploy
small wheeled robots. The PR2 Remote Lab [7] and the
Robotarium [8] have a research and development focus,
while the RPN [11], SyRoTek [9] and Robotnacka [10]
target online education. Out of these, only the Robotarium
has safety measures that prevent damages to the robots,
even from untrustworthy or malicious users. However, the
safety challenges for swarm robotics significantly differ from
the ones for industrial robots. In contrast to the above
described testbeds with stationary robots, all of the mobile
robot labs allow local execution of submitted user code, but
security risks of code compromising local machines are not
sufficiently or not at all addressed, especially in regard to
network security.

A few sensor networks testbeds exist that also provide
mobile robots, most notably the FIT IoT-LAB [12]. But their

research focuses on networking solutions in an IoT context
and does not target robotics.

For no remote access lab, neither with stationary robots
nor with mobile robots, the authors describe methods for
having a queue of submitted experiments and to perform
experiments fully automated for several users, especially
in parallel for multiple robot work cells, which would be
required to accommodate a large number of users. In fact,
none of the described labs has multiple work cells like the
Robot Learning Lab.

III. THE ROBOT LEARNING LAB

In this section, we present the design considerations that
guided the development of the Robot Learning Lab, and
elaborate on both the hardware and software architectures
of the Robot Learning Lab.

A. General Design Considerations

As a remotely accessible robotics development facility,
the Robot Learning Lab’s main purpose is to increase the
availability of state-of-the-art industrial robots for education
and research. Thus it has to implement a number of high-
level design requirements aimed at accessibility, scalability,
automation and safe and secure code execution.

« Provide enough flexibility to host research projects and
challenging robotics competitions, while also being able
to teach students the foundations of robotics with a low
barrier of entrance.

o Enable fully automated execution of code submissions
with an efficient job processing pipeline that can handle
a large amount of users and allows for parallel execution
of jobs in multiple robot work cells, and that requires
minimal maintenance and monitoring by a human op-
erator.

o Integrate safety and security measures to protect the
Robot Learning Lab from damage and misuse through
safe operation of the robots with collision checks and
user code isolation.

o Allow users to develop applications with the help of
a simulation that closely mirrors the setup in the lab,
and ensure that these applications can be run in the lab
without the need for additional changes.

o Enable interaction with and data retrieval from the
lab through a web API that can be integrated into a
multitude of services (e.g. online education providers,
university courses, competition websites) or client types
(e.g. web, mobile, command-line).

« Make it easy to design projects with their own experi-
mental setups in the robot cell and software interfaces.

B. Hardware Setup

The lab consists of two robot work cells with the exact
same hardware setup, as shown in Figure [I] Each is equipped
with a Kuka LBR iiwa 7 R800 lightweight robot. The
iiwa is a redundant industrial manipulator with seven joints
and force/torque sensing capabilities in every joint [13].
A SCHUNK EGL 90-CN gripper [14] is attached to the

Submission

Server/API

Client Container

E Y 1

E Proxy 5 Project-Specific Interface . :

:Ns Container * Y — Client Master .

s N Mastesyne
Job Processing ! i]
| g: : |

H v | |

- 4 -) - |
Simulation 5 \\Jf/ | Movelt! Online Collision-free 1

L P . 3 Motion Planning :

X { |

$ ' Master Sync |

N { 1) i |
p |

FRI [€— »| ROS HW Interface Host Master ||

f |

1 |

Real Lab

Control PC

Fig. 2. Overview of the job processing pipeline and the user code execution. The left figure shows the job processing pipeline that includes the web API
and the workers for simulation and the real robots. The right figure illustrates how user code is executed by the worker in an isolated environment with

on-line checks for collision-free execution on the robot.

robot’s end-effector. The robot is mounted to a table with
a stainless steel plate. The steel plate’s surface measures
120x160 cm and it has a grid with threaded holes in an
equidistant spacing of 100mm to allow for the reliable
attachment of different experimental setups. By using an
adapter plate and dowel pins, the robot can be mounted in
different locations on the table according to the grid and thus
exact positioning is guaranteed. With a weight of 500 kg, the
steel plate minimizes vibrations of the robot base and ensures
that the robot can execute highly dynamic trajectories with
high precision.

A Roboception rc_visard 160 stereo camera [15] is
mounted to an aluminum profile at the side of the table. It
allows for visual monitoring of the work cell and the point
cloud data from the camera can be used in experiments. At
the top of the profile, a network camera is attached that is
used to record or livestream experiments. Besides mounting
directly to the steel plate, further hardware extensions to the
setup can easily be added by mounting to the support profiles
of the table.

C. Software Infrastructure and Design

The software components managing the operation of the
Robot Learning Lab can be broadly grouped into three
categories: applications for the processing of submissions
and user interaction with the lab, components related to
safety and security, and components that facilitate application
development and project design.

1) Submission Processing and Interaction with the Lab:
The Robot Learning Lab is able to fully automatically
process a submission. By making a new submission through
the web interface, a user triggers the scheduling of a single
execution of his submitted code. In the following, such a
submission is called a “job”. Each job is tracked in the
system by a unique job ID. Jobs need to be submitted for a
specific “project” and the submitted code, that corresponds

to a job, should provide solutions to the tasks that are defined
within a project. A task could be to implement an inverse
kinematics solution for the robot or to detect the poses of
objects that should be grasped by the robot. A project is
defined by a certain experimental setup in a robot work cell
and by its own software user interfaces that are supplied by
a project software package. The system is aware for which
projects the robot work cells are currently configured and
processes the jobs accordingly. The jobs are processed by
“workers” which will be further detailed in the following
(see Figure |Z| for an overview).

Outside communication with the Robot Learning Lab
is possible through a RESTful web APIL. Due to its non-
blocking network I/O features, the server can handle a large
amount of open connections and allows large numbers of
users to submit experiments and retrieve data in parallel. It
is possible to get the current status of a job and data for
the job after it has finished. Jobs are queried by their ID
which is provided to the user when the job is successfully
submitted. For finished jobs, log files, a video recording of
the job and optionally further data collected during the job
run is provided.

The status of the job is reflected by several status codes
like “downloading code”, “building”, “finished”. When a job
is submitted and waiting for execution, the position in the
queue is returned. If the job is currently running in the lab,
a link to the live video feed of the network camera in the
respective robot work cell, where the job is executed, is
returned. A new submission can be made by providing an
archive of the codd']

A job is first executed in simulation. The simulation
environment is the same one that is provided to users (see
Section [[lI-C.3). The main purpose of the simulation run is

IThe full documentation of the web API is available at https://
rll-apidoc.ipr.kit.edu/. The documentation website is interactive
and requests can directly be tested on the webpage.

https://rll-apidoc.ipr.kit.edu/
https://rll-apidoc.ipr.kit.edu/

to check if the user code can be executed by the pipeline.
Section gives an overview of the environment in
which the user code is executed. The simulation check
provides users with early feedback if they did any mistakes
that could prevent their code from running in the lab, and
it ensures that usage time of the robots is not wasted by
erroneous user code.

Simulation runs are controlled by sim workers and code
executions for the robot work cells in the lab are handled
by real workers (see Figure [2). The expressions “sim” and
“real” are generally used to differentiate between simulation
and the real robot work cells in the lab. The workers are re-
sponsible for code download, building the user code and code
execution. They also retrieve and save the job data, including
job metadata like job result codes (e.g. “build failed”, “sim
success”, “launching project failed”), and trigger a reset of
the robot work cell back to the start state after a job run.
The server and workers communicate through a database
that stores the job metadata. The workers are configured to
process jobs for a specific project. They search the database
for jobs, that were submitted for this specific project, and
select the oldest submission as the next job to be executed.

The Robot Learning Lab leverages the ROS robotics
middleware. Every worker instance is isolated in its own
ROS namespace, together with the user code execution
environment. This way, several sim workers for parallel
simulation checks and multiple real workers for an arbitrary
number of robot work cells can run at the same time and
process jobs in parallel.

The worker and the server as part of the job processing
pipeline are hardware-agnostic and can be used with any
robotic hardware. Alongside this paper, we are publishing
their source code as free and open-source software in the
hope, that it will allow others to build their own remotely
accessible robotics testbed]

2) Safety and Security: The system is able to detect
failures that cannot automatically be corrected by itself.
Such “internal errors” are registered during job execution
when methods fail that should always succeed or when
the system detects an unexpected or unknown state of the
environment (simulation or real) from which it cannot get
back to a desired state. Internal errors are also reported if
the environment reset failed after job execution. Although
the system and project design should minimize the likelihood
of internal errors, users might still be able to trigger them.
If a worker detects an internal error, it immediately stops its
job execution environment including the user code, notifies
the operator and terminates itself so that no further jobs
are executed in the environment. This allows an operator to
inspect the error and ensures that the system does not operate
in an undesired state which can lead to hardware damage.

For collision-free execution of robot trajectories, the mo-
tion planning framework Movelt! [16] is used. Movelt! is
able to construct a collision model for the robot cell from

2The pipeline’s source code can be found at https://github.com/
KITrobotics/rll_stack.

the environment description that is defined for every projecﬂ
We expanded Movelt! to make it possible to parameterize
cartesian trajectories with a fixed cartesian speed. To reduce
jerk of point-to-point trajectories, we use the TOTG algo-
rithm introduced in [17].

The iiwa robot provides the Fast Robot Interface (FRI)
which allows for real-time control of the robot via a network
interface. We implemented a ROS hardware interface for
position control using the FRI API in order to use FRI
together with Movelt! (see Figure [2).

For security reasons, the user code is compiled and run
inside a Docker container without root privileges. Docker
containers are more lightweight than virtual machines be-
cause they directly run on the host system’s kernel. It is
possible to restrict system resources for containers, like the
number of CPU cores, RAM and disk space. For every
project, an image with all the needed software packages
and configurations can be created and the worker sets up
a proxy and client container based on the images and
additional configuration options. The client container runs
the downloaded user code and the proxy container provides
the project-specific interface for the user code and runs the
separate ROS master for the client. The worker places the
downloaded user code in the client container and extracts log
files from both the proxy and client container.

The main purpose of the proxy container is to prevent
the user code from accessing the host network and the lab
network. If users were able to call arbitrary ROS network
resources or even send commands directly to the robot, they
could bypass all safety measures and cause serious damage
to the robot work cells. For every job, the worker starts a new
client container and attaches it to the same Docker network
as the one the proxy container uses. The client container only
has access to the proxy container, while the proxy container
is also able to connect to the lab network. The project-
specific interface inside the proxy container offers all the
ROS network resources the user needs for the project (see
Section [[II-C.3).

The separate ROS master inside the proxy container allows
the user code to look up the IP address and ports of interface
nodes and to register its own services, topics, actions and
parameters. The interface in the proxy container uses the
ROS master from the host, so that ROS nodes running on
the host are able to connect to it. The worker needs to
synchronize the registrations that the interface makes at the
host master to the client master so that the user code is
able to see them.The registrations at the client master by
the client code are synchronized selectively by the worker to
the host master, so that the interface can communicate with
client implemented code (see Figure [2). The worker reads
the registrations that need to be synchronized from project-
specific configuration files.

The custom master synchronization implementation for
the worker was chosen over existing multi-master solutions

3The robot cell is modeled with the Unified Robot Description Format
(URDF), see http://wiki.ros.org/urdf /XML

https://github.com/KITrobotics/rll_stack
https://github.com/KITrobotics/rll_stack
http://wiki.ros.org/urdf/XML

because they target discovery and synchronization of ROS
systems on unreliable networks and lack the flexibility to
synchronize selected registrations on an on-demand basis.
Multiple ROS security extensions have been proposed [18],
[19], [20] and ROS 2.0 includes similar security features
[21]. However, the aim of these security enhancements is to
allow for fine-grained access control and transport encryption
which would require a significant configuration overhead for
every project, and users would not be able to add their own
ROS network resources. The user code isolation in its own
Docker container and via a proxy container separates the
user code from the ROS system of the lab and still allows
to relay any ROS host resource to the client container. Even
if the user code manages to crash the interface or the client
master in the proxy container, the safety of the system is still
ensured.

Fig. 3.

The simulation and the real robot cell side-by-side

3) Application Development and Project Design: Users
can write their own applications for a specific project that
is hosted in the Robot Learning Lab. Besides letting users
participate in projects, we also want to make it straightfor-
ward for interested parties to design their own projects for
the Robot Learning Lab. A project design can have its own
experimental setup in a robot work cell and custom user-
facing interfaces can be implemented.

Applications can be written in C/C++, Python and Baslﬂ
The complete ROS package set is available to users and
further libraries can be added to the Docker container images
if needed. Gazebd| is used for the simulator and an exact
model of the robot work cell can be used for development
(see Figure E[) Thanks to Gazebo’s ROS integration, it is
possible to replace the hardware interface for the real robot
(see Section [II-C.2)) with a control layer for the simulation.
This way, identical user-facing interfaces for controlling the
simulated and the real robot can be provided.

Besides a video, users can retrieve the build log, the log
file that their code generated during execution and the part

4Support for further programming languages can be added as long as
a ROS client library for this language exists. Available client libraries are
listed at http://wiki.ros.org/Client%20Libraries
Shttp://gazebosim.org/

of the log file from the interface that corresponds to their
job run, both for the simulation and the real run. These files
usually suffice for debugging and evaluation. Furthermore,
data can be recorded during job execution and provided as
ROS bag ﬁlesﬁ to users.

The software structure of every project needs to consist
of two parts: user-facing interface nodes and the user code.
While users can run both on the same PC they use for
development, the interface nodes are meant to be running
in the proxy container and the user code should run in the
client container in the Robot Learning Lab (see Section |I1I-
[C2). The user code is developed by the users of the Robot
Learning Lab and it accesses ROS resources provided by
the interface nodes. The interface nodes can implement new
functionality or they directly relay other resources like sensor
data.

For every project, it is expected that the user-facing
interface has routines to start and stop a job and to reset the
environment to a start state. The environment reset should
not only move the robot back to its home position, but the
robot also needs to place all objects that can be manipulated
back to their initial pose. It should also offer some way
to control the robot. To ease the development of interfaces
and facilitate the project designs for the Robot Learning
Lab, we are publishing a SDK that contains the simulation
environment and a library for interface developmenﬂ The
library abstracts Movelt! functionality and directly works
with the simulation environment. For controlling the real
robot, a slightly modified library with driver abstractions
and improved trajectory generation but with the same API is
used, so that no changes are required to the project-specific
interface code. The library included in the SDK defines a
set of services that allow users to send target poses in joint
space or cartesian space. For target poses in cartesian space,
linear or point-to-point trajectories can be used. A service
for picking up or placing a grasp object is available as well.

IV. USAGE

With three examples, this section highlights the main
usage features of the Robot Learning Lab: safe and secure
remote access for application development and automated
continuous operation.

A. Udacity Intersect Conference

The Robot Learning Lab was presented at the Udacity
Intersect conference in Mountain View, California, USA.
Visitors were able to choose between two pre-programmed
projects on a website and trigger remote execution of the
selected project in the Robot Learning Lab. The website
used the Robot Learning Lab API (see Section [II-C.I)) as
backend and provided conference participants with status
information of their submitted job, a video live stream of the
job and the log file of the project code. Project submissions

Shttp://wiki.ros.org/Bags
"The Robot Learning Lab SDK is available at https://github.
com/KITrobotics/rll_sdk

http://wiki.ros.org/Client%20Libraries
http://gazebosim.org/
http://wiki.ros.org/Bags
https://github.com/KITrobotics/rll_sdk
https://github.com/KITrobotics/rll_sdk

KUKA Udacity Robot Learning Lab at KIT

KUKA Udacity Robot Learning Lab at KIT

roject job successfully submitted

(source code)

Your project: | Gitrepo URL

Job ID: 5b99166909b90e246¢f0f68b

Submit Status: downloading code

Adar

KUKA [LD

SUMHARY

PARAMETERS
* Jrosdistro: kinetic
* Jrosversion: 1.12.14
NODES
/itwa_2/
tower_hanol (tower_of hanoi/tower_hanoi.py)

iwa_2:113110 on
-1]): started with pid (303)[en

0, 'pos': 2} ('disks's 6, 'pos': 3}
‘pos'i 3} {'disks': 0, 'pos’
6, 'pos': 2} ('disks': 6, 'pos': 3}
6, 'pos’: 3} ('disks': 6, 'pos: 2}
as 3 disks

Job finished

thos's 1} ('
[INFO] [1536762679.936750): star
[INFO] [1536762688.055782]
[INFO] [1536762688.056483]
[INFO] [1536762694,534680]
2} '
[INFO] [1536762694.5351
[INFO] [1536762702.797"
[INFO] [1536762762.798230]: des!
[INFO] [1536762767.667386]:
{'disks's 1, 'pos': 3} {10
{'disks's 1, 'pos': 3} {'0:
[INFO] [1536762767.665726]

[INFO] [1536762722.376583]
[INFO] [1536762725.703900]
FINFO1 11536762725, 7046301

Fig. 4. Webpage for the Udacity Intersect conference. Participants of the
conference were able to select one out of two demo projects and view status
information, a video livestream and the user log file of their job.

were distributed among the two robot work cells by the job
processing pipeline.

One of the two project options lets the robot execute
a waving movement to greet visitors through the webcam
video feed. The other one makes the robot play the Tower of
Hanoi game with three diskﬁ Both projects use the default
robot move interface from the Robot Learning Lab SDK
(see Section [[II-C.3). This initial use case of the lab proved
that the job processing pipeline works robustly and the jobs
are successfully distributed among the robots. However, the
usage rate was low and both robot work cells had the same
experimental setup.

B. Path Planning Challenge

A competition for students of the Udacity Robotics Soft-
ware Engineer Nanodegree program was carried out. Within
this competition, students should implement a program to
navigate a grasped object through a maze to a goal pose as
fast as possible. Through a custom user interface, students
were able to command 2D poses of the robot’s end-effector
and they could check if a linear path between two end-
effector poses is collision-free. Navigation around corners
in the maze is not possible without rotating the end-effector,
which required students to solve a 3D path planning prob-
lem. Students were free to implement any path planning
algorithm, but most students chose an A*- or a RRT-based
solution.

The path planning project was designed using the Robot

8The source code for both projects is available at the fol-
lowing links: https://gitlab.ipr.kit.edu/rll/tower_of_|
hanoi, https://gitlab.ipr.kit.edu/rll/greetings

Learning Lab SDKE| and the Robot Learning Lab API was
integrated into the Udacity online student workspace. Over
the course of one month, students were able to submit their
code and retrieve data of their jobﬂ For different start
and goal poses, leaderboards in the online workspace ranked
submissions according to the time the planning algorithms
needed to transport the grasp object from start to goal.

C. Long-term Operation

To demonstrate the ability to continuously operate the
Robot Learning Lab for many users, we operated the lab for
274 minuteﬂ Throughout the experiment, we ran scripts
that submitted a selection of solutions for the path planning
challenge (see Section [[V-B) and the Tower of Hanoi and
Greetings projects (see Section [[V-A) to the Robot Learning
Lab under different usernames. The Tower of Hanoi and
Greetings projects were executed in one robot cell, while
the different path planning project solutions were run at the
same time in the other robot cell with the maze set up. The
scripts made more submission than the lab could process
right away, so submissions needed to be queued up. This
way, the experiment simulated a high usage rate of the lab
with different work cell configurations.

V. CONCLUSION AND FUTURE WORK

In this paper, we have detailed the development of a
remotely accessible robotics development platform for edu-
cation and research — the KUKA Robot Learning Lab at KIT.
Beyond introducing the hardware and software components
required to enable remote access to experimental industrial
robot work cells, the Robot Learning Lab addresses the four
key concerns of flexibility, safety, security and scalability.
Unlike other remotely accessible testbeds, the Robot Learn-
ing Lab has an automated job processing pipeline with the
capability to run experiments in parallel for a large group
of users. Arbitrarily complex project implementations can
be submitted in general-purpose programming languages,
while safe and secure execution in the lab is ensured so
that the hardware cannot be damaged and the lab system
cannot be compromised by malicious users. To demonstrate
the flexibility and reliability of this testbed, we have shown
two use case examples with external users and conducted a
long-term operation experiment.

This paper presents the initial launch of the Robot Learn-
ing Lab. We are planning to continue the operation of the
lab and to host further projects for students and researchers.
Special attention will be devoted to the move interface for
controlling the robots in the lab as it lacks the ability to
generate highly dynamic motions with real-time constraints
and within short control cycles. Force/torque control capa-
bilities are missing as well. The lab will be moved to a new

9The source code of the path planning project can be retrieved at https :
//github.com/KITrobotics/rll_path_planning_project

WA video showing a selection of six job executions, that were submitted
by six different participants, can be found at https://rll.ipr.kit.
edu/videos/path_planning.mp4

''A time-lapse video of the experiment can be viewed at https://
rll.ipr.kit.edu/videos/timelapse.mp4l

https://gitlab.ipr.kit.edu/rll/tower_of_hanoi
https://gitlab.ipr.kit.edu/rll/tower_of_hanoi
https://gitlab.ipr.kit.edu/rll/greetings
https://github.com/KITrobotics/rll_path_planning_project
https://github.com/KITrobotics/rll_path_planning_project
https://rll.ipr.kit.edu/videos/path_planning.mp4
https://rll.ipr.kit.edu/videos/path_planning.mp4
https://rll.ipr.kit.edu/videos/timelapse.mp4
https://rll.ipr.kit.edu/videos/timelapse.mp4

lab space that was specifically designed for it and it will be
extended with more robot work cells.

ACKNOWLEDGEMENTS

Special thanks go to Kuka AG, Roboception GmbH and
Schunk GmbH & Co. KG for providing the hardware for
the Robot Learning Lab. We also would like to thank Karim
Chamaa, Dana Sheahen, Michael Conway and Anthony
Navarro from Udacity, Inc. for their support and help with
the Intersect conference presentation and the student path
planning challenge.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]
[16]

[17]

[18]

REFERENCES

J. Trevelyan, “Lessons learned from 10 years experience with remote
laboratories,” in International Conference on Engineering Education
and Research, 2004.

M. Casini, F. Chinello, D. Prattichizzo, and A. Vicino, “RACT: a
remote lab for robotics experiments,” IFAC Proceedings Volumes,
vol. 41, no. 2, pp. 8153 — 8158, 2008, 17th IFAC World Congress.
A. Balestrino, A. Caiti, and E. Crisostomi, “From remote experiments
to web-based learning objects: An advanced telelaboratory for robotics
and control systems,” IEEE Transactions on Industrial Electronics,
vol. 56, no. 12, pp. 4817-4825, Dec 2009.

O. Goldstain, I. Ben-Gal, and Y. Bukchin, “Remote learning for
the manipulation and control of robotic cells,” European Journal of
Engineering Education, vol. 32, no. 4, pp. 481-494, 2007.

C. A. Jara, F. A. Candelas, S. T. Puente, and F. Torres, “Hands-on
experiences of undergraduate students in automatics and robotics using
a virtual and remote laboratory,” Computers & Education, vol. 57,
no. 4, pp. 2451 — 2461, 2011.

R. §afarié, M. Trunti¢, D. Hercog, and G. Pacnik, “Control and
robotics remote laboratory for engineering education,” International
Journal of Online Engineering (iJOE), vol. 1, no. 1, 2005.

B. Pitzer, S. Osentoski, G. Jay, C. Crick, and O. C. Jenkins, “PR2
Remote Lab: An environment for remote development and experi-
mentation,” in 2012 IEEE International Conference on Robotics and
Automation, May 2012, pp. 3200-3205.

D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and
M. Egerstedt, “The Robotarium: A remotely accessible swarm robotics
research testbed,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA), May 2017, pp. 1699-1706.

M. Kulich, J. Chudoba, K. Kosnar, T. Krajnik, J. Faigl, and L. Preucil,
“SyRoTek—distance teaching of mobile robotics,” IEEE Transactions
on Education, vol. 56, no. 1, pp. 18-23, Feb 2013.

P. Petrovi and R. Balogh, “Deployment of remotely-accessible robotics
laboratory,” International Journal of Online Engineering (iJOE),
vol. 8, no. S2, pp. 31-35, 2012.

G. A. Casaii, E. Cervera, A. A. Moughlbay, J. Alemany, and P. Mar-
tinet, “ROS-based online robot programming for remote education and
training,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), May 2015, pp. 6101-6106.

C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel,
R. Pissard-Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele, and
T. Watteyne, “FIT IoT-LAB: A large scale open experimental IoT
testbed,” in 2015 IEEE 2nd World Forum on Internet of Things (WF-
1oT), Dec 2015, pp. 459-464.

KUKA LBR iiwa. [Online]. Available: https://www.kuka.com/en-de/
products/robot-systems/industrial-robots/lbr-i1wa

SCHUNK EGL. [Online]. Available: https://schunk.com/de_en/
gripping-systems/series/egl/

Roboception rc_visard. [Online]. Available: https://roboception.com/
en/rc_visard-en/

I. A. Sucan and S. Chitta. Movelt! [Online]. Available: https://www.
kuka.com/en-de/products/robot-systems/industrial-robots/Ibr-1iwa

T. Kunz and M. Stilman, “Time-optimal trajectory generation for path
following with bounded acceleration and velocity,” Robotics: Science
and Systems VIII, 2012.

R. White, H. I. Christensen, and M. Quigley, “SROS: securing ROS
over the wire, in the graph, and through the kernel,” CoRR, 2016.

[19]

[20]

[21]

B. Dieber, S. Kacianka, S. Rass, and P. Schartner, “Application-level
security for ROS-based applications,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct 2016, pp.
4477-4482.

B. Dieber, B. Breiling, S. Taurer, S. Kacianka, S. Rass, and P. Schart-
ner, “Security for the Robot Operating System,” Robotics and Au-
tonomous Systems, vol. 98, pp. 192 — 203, 2017.

V. DiLuoffo, W. R. Michalson, and B. Sunar, “Robot Operating System
2: The need for a holistic security approach to robotic architectures,”
International Journal of Advanced Robotic Systems, vol. 15, no. 3,
2018.

https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
https://schunk.com/de_en/gripping-systems/series/egl/
https://schunk.com/de_en/gripping-systems/series/egl/
https://roboception.com/en/rc_visard-en/
https://roboception.com/en/rc_visard-en/
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa

	Introduction
	Related Work
	Stationary Robot Testbeds
	Mobile Robot Testbeds

	The Robot Learning Lab
	General Design Considerations
	Hardware Setup
	Software Infrastructure and Design
	Submission Processing and Interaction with the Lab
	Safety and Security
	Application Development and Project Design

	Usage
	Udacity Intersect Conference
	Path Planning Challenge
	Long-term Operation

	Conclusion and Future Work
	References

