Felix Leif Keppmann

DECENTRALIZED
CONTROL AND
ADAPTATION IN
DISTRIBUTED
APPLICATIONS viaweb and semantic

Felix Leif Keppmann

Decentralized Control and Adaptation in Distributed
Applications via Web and Semantic Web Technologies

Decentralized Control and Adaptation
in Distributed Applications via Web
and Semantic Web Technologies

by
Felix Leif Keppmann

ST bisnin

Decentralized Control and Adaptation in Distributed
Applications via Web and Semantic Web Technologies

Zur Erlangung des akademischen Grades eines Doktor der Ingenieur-
wissenschaften (Dr.-Ing.) von der KIT-Fakultat fur Wirtschaftswissen-
schaften des Karlsruher Instituts fur Technologie (KIT) genehmigte
Dissertation

von M.Sc. Felix Leif Keppmann

Tag der mundlichen Prifung: 03. September 2018
Hauptreferent: Prof. Dr. Rudi Studer
Korreferent: Prof. Dr. Oscar Corcho

Impressum
ﬂ(l Scientific
Publishing
Karlsruher Institut fur Technologie (KIT)
KIT Scientific Publishing

StraBe am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark
of Karlsruhe Institute of Technology.
Reprint using the book cover is not allowed.

www.ksp.kit.edu

This document — excluding the cover, pictures and graphs — is licensed

under a Creative Commons Attribution-Share Alike 4.0 International License
(CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

The cover page is licensed under a Creative Commons
5o

Attribution-No Derivatives 4.0 International License (CC BY-ND 4.0):
https://creativecommons.org/licenses/by-nd/4.0/deed.en

Print on Demand 2020 - Gedruckt auf FSC-zertifiziertem Papier

ISBN 978-3-7315-0966-0
DOl 10.5445/KSP/1000097534

Acknowledgments

My work on this doctoral thesis has been supported by several people. They
provided me with research opportunities, motivated me, kept me focused, and
supported me both in my professional and private life.

I thank my doctorate supervisor, Prof. Dr. Rudi Studer, the second doctorate
supervisor, Prof. Dr. Andreas Harth, and the reviewer of my thesis, Prof. Dr.
Oscar Corcho. All three are respected researcher and well-known in the re-
search community. Rudi Studer provided me with the opportunity to work as a
research associate at the Institute of Applied Informatics and Formal Descrip-
tion Methods (AIFB) of the Karlsruher Institute of Technology (KIT). His
guidance, experience, and notable leadership style provided me with both the
freedom of researching my own topics and the opportunity to take over respon-
sibility in projects and management. Andreas Harth guided and challenged my
research in close collaboration, enabling me to benefit from his founded knowl-
edge in this research area. Oscar Corcho provided me with valuable feedback
on my thesis and was a integral member of the examining board.

I thank my wife, Dr. Maria Maleshkova, for her strong support in both my
professional and private life. In our professional life, we collaborated on dif-
ferent research topics and on hosting events for the research community. But
especially in my private life, Maria has been always supporting and motivating
me to stay focused and to complete my research. Without her support, my work
on this doctoral thesis would have not been finished with the same success.

I thank my parents, Vera and Dr. Hans Adolf Burbach, for their strong support
during all chapters of my life. They always encouraged me to keep on my
journey through bachelor, master, and doctoral studies.

Finally, I would like to thank all people that have been supporting me but have
not been mentioned here.

Abstract

Current developments in multiple domains are characterized by the increased
use of mobile devices, wearables, and sensors. In this context, the visions of
the IoT, the WoT, and the SWoT as well as related visions such as the 14.0
promise the interconnection and collaboration between billions of “things”.
Still, what we are currently witnessing is the proliferation of isolated islands of
custom solutions, which support a restricted set of protocols and devices, and
cannot be easily integrated or extended. In general, these visions mark a shift
towards more modularized and distributed application designs, in which appli-
cations are composed of several smaller, virtually or even physically separated,
components with distinct domain-specific capabilities that communicate via a
network to provide value-added functions.

The design of distributed applications, built on top of a diverse landscape of
components with a multitude of involved stakeholders, poses a number of chal-
lenges. These include overcoming the data and communication heterogeneity
of the involved components, dealing with requirements of multi-stakeholder
scenarios, where a priori we hardly know the needs and constraints of all
possible integration scenario, and enabling decentralized control in distributed
applications that are composed of several distinct developed components.

To this end, this thesis aims to benefit from the basic interoperability provided
by the Web stack and relies on semantic technologies for enabling data integra-
tion to provide an approach and an implementation for enabling decentralized
control in distributed applications composed of heterogeneous components. In
particular, we introduce the novel concept of Smart Components, which enable
adaptability at run-time through an adaptation layer, and give a reference archi-
tecture with a specific prototypical implementation. The presented solutions
are thoroughly evaluated in terms of function, performance, and scalability. For
the scalability tests, we design and implement a benchmark environment that
enables us to easily evaluate use cases with only a few or multiple components.

iii

Contents

Acknowledgments i
Abstract iiii
Figures iX
Tables Xi
Listings Xiii
Algorithms XV
Equations Xvii
1 Introduction 1
1.1 Challenges. o v i i it 2

1.2 Hypothesis 6

1.3 Research Questions 6

1.4 Methodology 8

1.5 Contributions 10

1.6 Outline, 12

1.7 Publications 12

2 Foundations., ... 15
2.1 The Web and Related Visions 15
2.1.1 World Wide Web (WWW) 16

2.1.2 Semantic Web(SW) 17

2.1.3 WebofData(WoD) 18

2.1.4 Internet of Things IoT) 19

2.1.5 Webof Things(Wol). 22

Contents

vi

2.1.6 Semantic Web of Things (SWoT).
2.1.7 Positioning of the Thesis
2.2 Paradigms, Architectures, and Technologies
2.2.1 Representational State Transfer (REST)
2.2.2 Semantic Web Technologies (SWT)
223 LinkedData(LD).
2.3 Concepts and Terminology
23.1 Component
232 Applicationo oo
2.3.3 Interaction
234 Meta-interaction
235 Processing
23.6 Lifecycle,

Component Adaptation and Decentralized
ApplicationControl
3.1 Introduction
3.1.1 Scenario
3.1.2 Challenges
313 RelatedWork,
3.14 Contributions
3.2 Approach for Smart Component-based Integration
3.2.1 Requirements
3.2.2 Smart Component-based Integration Architecture . .
3.23 Smart Component
3.3 Implementation of the Smart
Component Adaptation Framework
3.3.1 Smart Component Adaptation Layer
3.3.2 Smart Component Adaptation Ontology
3.3.3 NIREST Smart Component
34 Evaluation
34.1 Evaluation of Function
3.4.2 Evaluation of Performance
3.5 Summary ...

Interaction Optimization and Mapping
4.1 Introduction
4.1.1 Scenario

24
27
28
28
47
58
64
64
66
68
69
70
71

Contents

412 Challenges
4.13 Contributions 0oL
4.2 Approach for Frequency-based Interaction Optimization
4.2.1 Optimization Scenario
422 Requirements
4.2.3 Frequency-based Network Model
and Optimization Algorithm
4.3 Approach for Domain-specific Architecture Mapping
4.3.1 Mapping Scenario
432 Requirements
4.3.3 ROS Architecture Mapping
4.4 Implementation of the ROS-REST Proxy
4.5 Evaluation of Frequency-based Interaction Optimization
4.6 Summary e

5 Distributed Benchmark Generation and Provisioning

5.1 Introduction
S.I.1 Scenario
5.1.2 Challenges
513 RelatedWork
5.14 Contributions

5.2 Approach for Linked Data Benchmark Environments
5.2.1 Requirements
5.2.2 Linked Data Benchmark Environment

5.3 Implementation of the Distributed LUBM
5.3.1 Configuration Phase Implementations
5.3.2 Composition Phase Implementations
5.3.3 Deployment Phase Implementations

54 Evaluationo oo L
5.4.1 Evaluation of Centralized Linked Data Querying . .
5.4.2 Evaluation of Decentralized Linked Data Querying .

5.5 Summary

6 Conclusion
6.1 Contributions
6.2 Outlook e

Bibliography

145
149
149
150
151

152
160
162
164
166
173
175
179

vii

Figures

1.1

2.1
22
23
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15

3.1
32
33

34
3.5
3.6
3.7
3.8
39
3.10

Methodology 9
The Web and Related Visions 16
Linked Open Data Cloud 2007 19
Internet of Things Visions 20
Web of Things Integration 24
Semantic Web of Things Evolution 25
Relation of Visions and Thesis 27
REST —Constraints 29
Resource Description Framework (RDF) — Graph Example . . . 48
LDP - Resource and Container Hierarchy 61
LDP-LDP-DCExample 64
Concepts and Terminology — Component 65
Concepts and Terminology — Application 66
Concepts and Terminology — Interaction 68
Concepts and Terminology — Processing 71
Concepts and Terminology — Lifecycle 72
Scenario — Monitoring a Factory Floor 75
Problems — Requirements Unawareness 81
Problems — Centralized, Decentralized, and Hybrid

Control Patterns 84
Smart Component-based Integration Architecture 98
Smart Component — High-level Architecture 101
Smart Component — Architecture 103
Smart Component — Architecture: Separation of Concerns . . . 104
Smart Component — Architecture: Declarations of Adaptations . 106
Smart Component — Architecture: Separation of Lifecycles . . . 109
Smart Component — Lifecycles of Applications,

Components, and Smart Components 110

ix

Figures

3.11
3.12
3.13
3.14
3.15

4.1
4.2
43
4.4
4.5
4.6

4.7
4.8

5.1
5.2
53
54
5.5
5.6
5.7
5.8
5.9
5.10
5.11

5.12
5.13

Smart Component Adaptation Layer
Smart Component Adaptation Ontology
Domain-specific Smart Component.
Evaluation Scenario
Runtimes of Interpretations: Hypertext Transfer

Protocol (HTTP) Interaction Excluded/Included

Scenario Lo
Optimization Scenario
Smart Component-based Interaction Adaptation
Smart Component-based Interaction Adaptation
Mapping Scenario
Smart Component-based Meta-interaction Mapping

and Transformation
Optimization Scenario
Optimization Scenario Solution

Distributed Benchmarking — Scenario
Linked Data Benchmark Environment — Architecture
Linked Data Benchmark Environment —

Architecture: Configuration
Linked Data Benchmark Environment —

Architecture: Composition
Linked Data Benchmark Environment —

Architecture: Deployment L.
DLUBM - Structure and Interlinking
Centralized Linked Data Querying — Evaluation Scenarios
Centralized Linked Data Querying — Evaluation

Results for Runtimes
Centralized Linked Data Querying — Evaluation

Results for Average Successful Request Times
Centralized Linked Data Querying — Evaluation

Results for Average Failing Request Times
Decentralized Linked Data Querying — Evaluation Results
Decentralized Linked Data Querying — Evaluation Times
Decentralized Linked Data Querying — Evaluation Times

212

212

213
217
218
218

Tables

2.1
22
23
24

3.1
3.2
33
34
3.5
3.6
3.7

4.1

42
43
4.4

5.1
52
53

5.4
5.5

HTTP - Requests Methods
HTTP — Response Status Code Classes
XSD - Literal Space to Value Space Mapping Example
RDFES —Main Constructs

Processing Adaptation of the Tracker Smart Component
Interface Adaptation of the Tracker Smart Component
Request Adaptation of the Machine Smart Component
Run Adaptation of the Smart Components
Switch of the Smart Components to Runtime
Re-adaptation of the Tracker Smart Component
Re-adaptation of the Machine Smart Component

Decision Table of the Optimization Algorithm for

Interaction Patternso
Concept Mapping between HTTP, LDP,andROS
Interaction Mapping between HTTP/LDP and ROS
Comparison of Push-only, Pull-only, and Optimized Interaction .

DLUBM - Parameters
Centralized Linked Data Querying — Deployment Platform . . .
Centralized Linked Data Querying — Query Results

and Completenesso
Centralized Linked Data Querying — Derived Triples
Decentralized Linked Data Querying — Deployment Platform . .

40
43
49
50

126
127
128
130
131
132
134

158
167
169
179

201
208

211

213
215

Xi

Listings

2.1
22
2.3
24
2.5
2.6

3.1
32
33
34

4.1
42
43
4.4

5.1
52

URI - Syntax Components Examples 36
RDF — Graph Example in Turtle Serialization 51
SPARQL — RDF Graph Example 53
SPARQL —Query Example 54
SPARQL — JSON Query Result Example 56
LDP — LDP-BC Example in Turtle Serialization 63
Cyber-physical System Requirements 91
Semantic Web of Things Requirements 92
Derivation and Request Rule Example 107
Domain Resources of the Tracker Smart Component 125
Machine Topics/ServicesinROS 163
Machine Resourceso 170
Machine Aggregated Resources and Link Relations 171
Definition of the ROS Message “sensor_msgs/Cameralnfo” . . . 174
DLUBM - Function and Parameters 200

DLUBM - Composition 205

xiii

Algorithms

4.1

Optimization Algorithm for Interaction Patterns

XV

Equations

4.1
4.2
4.3
44
4.5
4.6
4.7

Network Model 154
Network Model —DataFlows 155
Network Model — In- and Out-Frequencies 155
Network Model — Interaction Patterns 156
Network Model Evaluation—DataFlows 176
Network Model Evaluation — Frequencies 177
Network Model Evaluation — Interaction Patterns 177

Xvii

1 Introduction

Recent technology developments are characterized by the increased use of
mobile devices, wearables, and sensors as well as the modularization and
distribution of formerly monolithic applications. In this context, the visions of
the Internet of Things (IoT) [66, 9], the Web of Things (WoT) [167, 72, 70, 68],
and the Semantic Web of Things (SWoT) [143, 128] as well as related visions
such as the Industry 4.0 (I4.0) [109, 86] promise the interconnection and
collaboration between billions of “things”. Furthermore, the Web [18, 25, 28],
the Semantic Web (SW) [30, 29, 146], and the Web of Data (WoD) [33, 32]
evolved from a Web of static interlinked documents for humans to a Web that
is enriched with a vast, continuously increasing amount of machine-readable,
semantically annotated, and interlinked data, which is openly available for
consumption and integration as part of applications, or is part of commercial
offers. In addition, the capabilities provided by the Web and Semantic Web
Technologies (SWT) [49] with respect to the integration of heterogeneous
communication approaches and data find their way from the classical client-
server based provisioning of information to the integration of components,
which have several different roles as part of distributed composite applications,
e.g., being both a server and a client.

In general, these visions mark a shift towards more modularized and distributed
solutions design, in which applications are composed of several small, virtually
or physically separated components with distinct domain-specific capabilities,
which communicate via networks to provide the value-added functions of these
applications. These distributed applications are built by either decomposing
formerly monolithic systems into smaller components or by being aligned from
scratch with the visions.

The applications, which are built in this distributed and highly modularized
manner, offer several advantages that are dependent on the requirements of the
actual specific application use cases. Some examples of these advantages are
listed in the following.

1 Introduction

* The complexity of individual components is reduced due to their inde-
pendent development and focus on specific domains.

» The distributed applications become more scalable, since workloads can
be addressed by adding or removing components.

* The value-added functions of distributed applications are backed-up by
redundancy to avoid business-critical failures and to provide robustness
against errors.

» The pervasiveness and geographical distribution of applications are in-
creased by integrating all kinds of “things” as components, e.g., mobile
devices and sensors.

» The stakeholders that operate distributed applications gain independence
and can avoid vendor lock-ins by depending on multiple suppliers.

1.1 Challenges

The design of distributed applications, built on a heterogeneous landscape of
components with a multitude of involved stakeholders, requires the address-
ing of several challenges. In integration scenarios, distributed applications
are composed out of a landscape of components with diverse characteris-
tics. These components may represent, e.g., sensors and apps, stationary and
mobile devices, low-cost embedded computers and high-end servers, or user
information and encyclopedia data. Furthermore, the distributed applications,
which are composed of these components, expose their own heterogeneous
properties. These are characterized by, e.g., single-location and multi-location
distribution, centralized and decentralized control, public or private availabil-
ity, or low-latency and high-payload data processing. Furthermore, multiple
stakeholders are involved in the development of the components, their provi-
sioning, and their integration into distributed applications. In the following, we
elaborate on some of these problem areas and their challenges.

Integration of Distributed Components The development of compos-
ite distributed applications, in the context of IoT, WoT, or SWoT, requires
that a heterogeneous landscape of components is able to collaborate.
During the integration of a plenitude of distinct components, which are

1.1 Challenges

developed by different stakeholders, we face Communication Hetero-
geneity in terms of the different interaction mechanisms and interfaces
used for communication. The communication between components is
required to establish data flows and, thereby, exchange messages that
embody the collaboration for providing the value-added functions of
the applications. Components must either passively expose interfaces or
actively execute interactions to communicate. Related to the aforemen-
tioned challenge, the Information Heterogeneity of the communicated
messages is another integration challenge. On the one hand, this het-
erogeneity appears in terms of different data formats and models, i.e.,
the way, in which data is encoded, and, on the other hand, in terms of
non-existing or diverging data semantics, i.e., the meaning of data across
a heterogeneous landscape of components.

Unspecific Development Needs There is an almost endless number of
possible integration scenarios for components within distributed appli-
cations. In such multi-stakeholder scenarios, in which components are
built by different manufacturers and developers, in which these com-
ponents are integrated and used by other stakeholders, and in which
we hardly know the requirements of all possible integration scenarios
during the design time of the components, we face the challenge of
Requirements Unawareness. Consequently, we can only provide default
interfaces and interactions and are not able to design the components
that provide the optimal solutions for all specific use cases. Even if we
would know all current and future integration scenarios, we also face
Development Inefficiency as a challenge. The design and development
of the same component in multiple adapted versions for every possible
use case do not only lead to very complex and inefficient development,
i.e., the development is time-consuming, but, in consequence, may also
be inefficient in terms of business requirements, i.e., the development is
not profitable.

Control of Distributed Applications The integration of several com-
ponents into a distributed application requires collaboration based on
the components’ individual functions in an application-specific man-
ner. This application-specific control logic includes, e.g., the required
interaction needed to establish data flows, the selection of data and its
formatting as the payload of interactions, or the decisions that overreach

1 Introduction

the function of individual components. The most basic control pattern
is based on a single component that controls the distributed application
in a centralized manner. However, integration scenarios for emerging
application use cases as well as the provisioning of some of the afore-
mentioned advantages, e.g., replication for performance or redundancy,
require the decentralized handling of the control logic. Enabling De-
centralized Control in distributed applications, which are composed of
several distinct and independently developed components, is challeng-
ing. The control logic that is specific to a distributed application needs
to be handled by the participating components themselves. In addition,
hybrid control patterns that include partially centralized and decentral-
ized control are valid integration patterns. Related to the aforementioned
challenge, we also face Control Deployment as a challenge. The control
logic must be deployed at the components after their development and
with respect to the specific requirements of the distributed application
use cases. Since the requirements of every possible future use case can-
not be known, we can, in general, not integrate this application logic
during the design of components.

Interaction in Distributed Applications Providing support for the in-
teraction between components within distributed applications is also
challenging. Components realize data flows between each other through
different interaction patterns, e.g., by pushing information, or by pulling
information. The use of different interaction patterns can lead to Interac-
tion Inefficiency. The selected interaction patterns may not be optimal in
every case, e.g., due to bandwidth limitations, or due to latency require-
ments. This is especially true if components are supplied by several inde-
pendent stakeholders and are not well attuned a priori. If, in addition, the
factors that influence the optimal selection of interaction patterns change
over time, we are challenged with Meta-interaction Patterns, which are
required for enabling the automatic optimization of interactions. These
meta-interactions enable components to communicate with respect to
the actual interaction patterns for realizing data flows within distributed
applications and to enable their adjustment.

Integration of Non-compliant Components The IoT, WoT, and SWoT
all promote cross-domain application use cases. Consequently, the archi-
tectures that support their integration must, to a certain extent, be domain

1.1 Challenges

independent. However, with respect to the requirements of individual do-
mains, established specialized architectures, i.e., domain-specific archi-
tectures, provide optimized solutions. In addition, the implementation
of a domain-independent integration architecture at every specialized
component may not be feasible. As a result, we are challenged with
typical integration problems on the architectural level. In particular, we
face Non-compliant Communication as a challenge, which is focused on
the realization of data flows between components that assume different
interactions. In addition, we face Non-compliant Representation as a
challenge, which relates to having different representations and seman-
tic meaning of the exchanged data, due to dealing with heterogeneous
architectures.

Data for Distributed Benchmarks Independently of the solutions pro-
vided for the aforementioned challenges, the comparison of different
versions of the same solution as well as the comparison of different so-
lutions for the same problem require a common benchmark evaluation
with respect to functional and performance characteristics. However, the
nature of distributed applications — a composition of components that
collaborate through interactions via connecting networks, is particularly
challenging for performance benchmarks. On the one hand, we face the
Data Generation as a challenge. Distributed benchmarks must provide
settings for generating and handling data not only for single components
but also for sets of components. On the other hand, we face the Dataset
Distribution as a challenge. Distributed benchmarks must support the
data distribution, the required data flows between components, as well
as the interaction mechanisms for data access and modification.

Provisioning of Distributed Benchmarks Providing benchmarks for
distributed architectures is challenging not only because of the afore-
mentioned data distribution but also because of the communication and
component distribution setup. In particular, benchmarks for distributed
applications need to be able to support the creating and handling of a
multitude of components, their connection through networks, as well as
the supply with appropriate computing resources. Hereby, we face De-
ployment Complexity as a challenge. The complexity related to deploying
distributed benchmarks goes beyond the sole generation of datasets for
the evaluation of individual components. In addition, we face Difficult

1 Introduction

Reproducibility as a challenge. The aforementioned generation and dis-
tribution of the benchmarks, as well as the handling of their deployment,
must be reproducible to enable the repetitive comparison of different
solutions with respect to distributed application settings with the same
characteristics.

1.2 Hypothesis

In this thesis, given the context of the work set in the introduction and fo-
cusing on the aforementioned challenges, we aim to investigate the following
hypothesis:

Hypothesis Web and Semantic Web concepts and technologies enable
at runtime 1) the adaptation of components for their integration into
distributed applications, 2) their control in centralized, decentralized,
or hybrid manner, and 3) the deployment of this control.

We believe that the combination and extension of established, stan-
dardized, and publicly available Web and Semantic Web concepts and
technologies can pave the way for coping with the challenges that ac-
company emerging IoT, WoT, and SWoT visions. In particular, we aim
to address the heterogeneous landscape of components and multiple in-
volved stakeholders, thus counteracting the emergence of isolated, pro-
prietary, non-standardized islands of components, which support only
the integration of applications fitting the specific ecosystem.

1.3 Research Questions

We define the scope of our work and approach the analysis of the hypothesis
by examining the following research questions:

Research Question 1 How can we design an architecture for dis-
tributed applications, based on Web and Semantic Web concepts and
technologies, that enables the adaptation of components at runtime,
supporting both their integration and the deployment of control logic?

1.3 Research Questions

By relying on Web and SW concepts and technologies, we aim to reuse
and extend existing solutions in order to address the challenges related to
Communication Heterogeneity and Information Heterogeneity. By fol-
lowing the approach of building on established technologies, we ensure
the interoperability and incorporation of already broadly applied stan-
dards and technologies, which have proven to provide means to cope
with the given challenges.

The focus on enabling adaptation for integration at runtime is especially
important for being able to address the challenges related to Require-
ments Unawareness and Development Inefficiency with respect to the
design of individual components. Thus we aim to support the adaptabil-
ity of individual components during their runtime in terms of adapting
their interfaces and interactions, and in terms of enabling the processing,
which is required to update the interfaces or to execute the interactions
with other components.

Being able to deploy control logic on behalf of the distributed appli-
cations at runtime, is crucial for addressing the challenges related to
Decentralized Control and Control Deployment with respect to the inte-
gration of multiple components in the compositions of distributed appli-
cations. We aim to provide support for distributing control logic, which
is specific to individual distributed applications and to the components
in their compositions.

Research Question 2 How can we enable the optimization of interac-
tions between components, which are based on our architecture, and
enable the integration of components, which are based on other special-
ized architectures?

Providing a method for optimizing the interactions between components
is an important part of tackling the challenges related to Interaction In-
efficiency and Meta-interaction Patterns. We aim to investigate suitable
means for optimizing the data flows between components within dis-
tributed applications, which are based on the architecture developed in
the context of the first research question. In addition, we aim to enable
the autonomous optimization of interactions of components during their
runtime.

1 Introduction

For supporting the integration of components from specialized archi-
tectures, we advocate an approach based on creating mappings between
the individual architectures and our architecture, thus addressing the
challenges related to Non-compliant Communication and Non-compliant
Representation. Similarly to the integration of individual components,
we aim to provide support for the integration of interfaces and interac-
tions, as well as the representation of information but, in contrast, on the
level of architectures.

Research Question 3 How can we support the evaluation of distributed
applications, based on our architecture, in terms of generating dis-
tributed benchmarks and in terms of providing these benchmarks as
distributed environments?

Benchmarks that are specifically designed for evaluating distributed ap-
plications need to focus on the challenges related to Data Generation
and Dataset Distribution. In particular, this means that it is insufficient
to support only the generation of datasets, which serve as the basis for the
evaluation of requests against the data that is provided by components.
Instead, the distribution of datasets, which emulates the distribution
of the data on several components within distributed applications, also
needs to be enabled.

By providing benchmarks as distributed environments, we focus on ad-
dressing the challenges related to Deployment Complexity and Difficult
Reproducibility. In addition to the dataset generation and distribution,
it is also necessary to provide means for the setup and deployment of
the actually distributed environments, which contain the generated and
distributed datasets. Furthermore, to enable true benchmarking, we also
need to ensure the reproducibility of the setup and the deployment of the
benchmark, and of the correspondingly produced evaluation results.

1.4 Methodology

We follow a hybrid and iterative methodology. In particular, we combine
methodologies, which are specific to one of the three main research areas that
we investigate (c.f., Figure 1.1). Furthermore, each of the developed contribu-

1.4 Methodology

tions has undergone a number of cycles of improvement and refinement, based
on requirements-compliance checks, evaluation of implemented prototypes
and use case tests.

Component Adaptation and Decentralized Application Control

Challenges Requirements | Architecture Implementation| Evaluation j E;

rteraction Optimization a

E% ; Challenges Requirements | Architecture| Implementation| Evaluation ;I /§J>

Distributed Benchmark Generation and Pro

@ Challenges Requirements | Architecture | Implementation| Evaluation j 5

Figure 1.1: Methodology

In Figure 1.1 we give an overview of the research methodology that we use to
approach the research questions. We define our research work within the scope
of three larger areas, each of which is aligned with one of the research questions.
The investigated research areas are interconnected and co-dependent — visual-
ized in Figure 1.1 via the two connecting arrows, but at the same time maintain
their interdependencies — visualized as enclosing arrows. The research areas
are tracked by following different approaches for each of the research ques-
tions, which, however, all include the same steps — the detailed description
of challenges, requirements, architecture, implementation, and evaluation. In
the research on Component Adaptation and Decentralized Application Con-
trol (c.f., Chapter 3), we focus on the first research question, in the research
on Interaction Optimization and Mapping (c.f., Chapter 4), we focus on the
second research question, and finally in the research on Distributed Bench-
mark Generation and Provisioning (c.f., Chapter 5), we focus on the third
research question. In some cases, the approaches are interconnected with the
other research areas. For example, the approach for component adaptation and

9

1 Introduction

decentralized control is reused in the evaluation of the approach for distributed
benchmark generation and provisioning, and the architecture of the approach
for interaction optimization and mapping partially depends on the architecture
of the first approach.

As already mentioned, due to the nature of the research field, we use an
iterative method. We back up our requirements and conceptional solutions
with implementations and evaluations and, subsequently, interactively refine
the approach by adjusting the requirements and the conceptual solution. In this
thesis, we present the refined state of our research.

1.5 Contributions

With respect to the three research questions, we make the following contribu-
tions.

Component Adaptation and Decentralized Application Control In

Chapter 3, we present our approach and contributions for the adaptation
of components and the decentralized control of distributed applications.
First, we elaborate in more detail on the challenges related to Com-
munication Heterogeneity, Information Heterogeneity, Requirements
Unawareness, Development Inefficiency, Control Deployment, and
Control Deployment. Subsequently, we analyze these challenges and
derive requirements for an integration architecture in general and, in
particular, for an architecture that supports component adaptation.
We present the first main contribution of this chapter — an integration
architecture that unifies heterogeneous communication and information,
based on established principles and technologies. Afterward, we
present the second main contribution — an architectural approach for
component design and implementation, which enables the adaptation
of interfaces, interaction, and processing as well as the deployment of
application-specific control logic at runtime. We provide a prototypical
implementation of our approach that supports the aforementioned
adaptability as a standalone component, as a wrapper, or by directly
integrating it with the domain-specific function of components. The
generic implementation is accompanied by the implementation of a
domain-specific component, which provides adaptability based on

10

1.5 Contributions

the integrated generic implementation. We evaluate our approach and
implementation with respect to the supported functionality and with
respect to the performance overhead of the implementation.

Interaction Optimization and Mapping In Chapter 4, we present our
approach and contributions on the optimization of interactions and the
mapping of interactions between specialized, domain-specific architec-
tures and our integration architecture. First, we elaborate in more detail
on the challenges related to Inferaction Inefficiency, Meta-interaction
Patterns, Non-compliant Communication, and Non-compliant Repre-
sentation. Subsequently, we analyze these challenges and derive require-
ments for our approaches on optimizing interactions and on mapping in-
teractions between architectures. We present the first main contribution
of this chapter — our network model and algorithm for frequency-based
optimization of pull- and push-based interaction between components.
The second main contribution of this chapter is the mapping of concepts
and interactions between a domain-specific architecture from the field of
robotics and our integration architecture. For the approach on interaction
mapping, we provide a proof-of-concept implementation, which demon-
strates the feasibility and applicability of the developed solution. Finally,
we evaluate our approach on frequency-based interaction optimization
by applying the algorithm to a given optimization scenario.

Distributed Benchmark Generation and Provisioning In Chapter 5,
we present our approach on generating distributed benchmarks as well as
their highly automated and reproducible deployment. First, we elaborate
in more detail on the challenges related to Data Generation, Dataset Dis-
tribution, Deployment Complexity, and Difficult Reproducibility. Subse-
quently, we analyze these challenges and derive requirements for the
architecture of a distributed benchmark environment. The architecture,
which is the main contribution of this chapter, is independent of specific
dataset generators, provides a pervasive declaration, utilizes container-
based visualization for automation, and supports reproducibility based
on a small set of parameters. As the implementation of our architecture,
we provide a domain-specific distributed benchmark that is deployable
on local computers, private clouds, or publicly available computing re-
sources. Finally, we evaluate our approach and implementation by uti-
lizing instances of our distributed benchmark environment to evaluate

11

1 Introduction

centralized as well as decentralized query evaluation scenarios. The latter
evaluation is realized by integrating the implementation of our approach
for component adaptation.

1.6 Outline

In Chapter 2, we introduce the foundations of our work, providing details
on relevant high-level visions, paradigms, architectures, and technologies, as
well as concepts and terminology. In Chapter 3, we present our approach for
component adaptation and decentralized control of distributed applications.
Afterward, in Chapter 4, we describe our approaches for optimizing the inter-
actions in distributed applications as well as for mapping interactions between
domain-specific architectures and our integration architecture. In Chapter 5,
we elaborate on our approach for the generation and provisioning of distributed
benchmarks. Finally, we summarize our work, highlight the thesis contribu-
tions, and point out prospective future work in Chapter 6.

1.7 Publications

The aforementioned contributions are backed up by a number of publications,
which serve as the basis for this thesis. The relevant publications are listed
below.

¢ Conferences

— Keppmann, F.L., Maleshkova, M., Harth, A.: Adaptable interfaces,
interactions, and processing for Linked Data Platform compo-
nents. In: Proceedings of the International Conference on Semantic
Systems (SEMANTICS) (2017) [103]

— Keppmann, F.L., Maleshkova, M., Harth, A.: DLUBM: A bench-
mark for distributed linked data knowledge base systems. In:
Proceedings of the On the Move to Meaningful Internet Systems
Conferences (OTM) (2017) [104]

12

1.7 Publications

— Keppmann, F.L., Maleshkova, M.: Smart components for enabling
intelligent Web of Things applications. In: Proceedings of the In-
ternational Conference on Intelligent Systems and Applications (IN-
TELLI) (2016) [99]

— Keppmann, F.L., Maleshkova, M., Harth, A.: Semantic technologies
for realising decentralised applications for the Web of Things.
In: Proceedings of the International Conference on Engineering of
Complex Computer Systems (ICECCS) (2016) [102]

— Harth, A., Kifer, T., Keppmann, F.L., Rubinstein, D., Schubotz,
R., Vogelgesang, C.: Industrielle VIT-Anwendungen auf Basis von
Web-Technologien. In: Proceedings of the VDE-Kongress - Internet
der Dinge (2016) [84]

* Workshops

— Bader, S., Wolf, A., Keppmann, F.L.: Evaluation environment for
Linked Data web services. In: Proceedings of the Workshop on
Services and Applications over Linked APIs and Data (SALAD) at
the International Conference on Semantic Systems (SEMANTICS)
(2017) [11]

— Keppmann, F.L., Maleshkova, M., Harth, A.: Building REST APIs
for the Robot Operating System - mapping concepts and interac-
tion. In: Proceedings of the Workshop on Services and Applications
over Linked APIs and Data (SALAD) at the European Semantic Web
Conference (ESWC) (2015) [100]

— Keppmann, F.L., Maleshkova, M., Harth, A.: Towards optimising the
data flow in distributed applications. In: Proceedings of the Work-
shop on Web APIs and RESTful Design Workshop (WS-REST) at the
International World Wide Web Conference (WWW) (2015) [101]

— Keppmann, F.L., Maleshkova, M.: Towards pervasive Web API-
based systems. In: Proceedings of the Research Workshop at the
Karlsruhe Service Summit (KSS) (2015) [98]

— Keppmann, F.L., Stadtmiiller, S.: Semantic RESTful APIs for dy-
namic data sources. In: Proceedings of the Workshop on Services and

13

1 Introduction

14

Applications over Linked APIs and Data (SALAD) at the European
Semantic Web Conference (ESWC) (2014) [105]

¢ Demos

— Keppmann, F.L., Kifer, T., Stadtmiiller, S., Schubotz, R., Harth, A.:

High performance Linked Data processing for Virtual Reality
environments. In: Proceedings of the International Semantic Web
Conference (ISWC) [Demo] (2014) [96]

— Keppmann, FL., Kifer, T., Stadtmiiller, S., Schubotz, R., Harth,

A.: Integrating highly dynamic RESTful Linked Data APIs in a
Virtual Reality environment. In: Proceedings of the International
Symposium on Mixed and Augmented Reality (ISMAR) [Demo]
(2014) [97]

* Book Chapters
— Antakli, A., Alvarado Moya, P., Briiderlin, B., Canzler, U., Dammertz,

H., Enderlein, V., Griininger, J., Harth, A., Hoffmann, H., Jundt, E.,
Keitler, P., Keppmann, F.L., Krzikalla, R., Lampe, S., Loffler, A.,
Meder, J., Otto, M., Pankratz, F., Pfiitzner, S., Roth, M., Sauerbier,
R., Schreiber, W., Stechow, R., Tiimler, J., Vogelgesang, C., Wasen-
miiller, O., Weinmann, A., Willneff, J., Wirsching, H.J., Zinnikus, 1.,
Ziirl, K.: Virtuelle Techniken und Semantic-Web. In: Web-basierte
Anwendungen Virtueller Techniken: Das ARVIDA-Projekt — Dienste-
basierte Software-Architektur und Anwendungsszenarien fiir die In-
dustrie (2017) [5]

Behr, J., Blach, R., Bockholt, U., Harth, A., Hoffmann, H., Huber, M.,
Kifer, T., Keppmann, F.L., Pankratz, F., Rubinstein, D., Schubotz, R.,
Vogelgesang, C., Voss, G., Westner, P., Ziirl, K.: ARVIDA-Referen-
zarchitektur. In: Web-basierte Anwendungen Virtueller Techniken:
Das ARVIDA-Projekt — Dienste-basierte Software-Architektur und
Anwendungsszenarien fiir die Industrie (2017) [16]

2 Foundations

In the following, we contextualize and back up our work with relevant foun-
dations. In Section 2.1, we present a selection of Web-related visions that ac-
company and drive current trends towards highly modularized and distributed
applications. These visions highlight the broader context of this work, intro-
duce certain requirements, paradigms, as well as technologies, and outline
some of the application fields for our contributions. In Section 2.2, we present
different architectural paradigms and introduce per paradigm a set of technolo-
gies that are commonly utilized for its realization. These paradigms and their
technologies comprise the conceptional and technological foundation of our
work and are each partially related to one or more visions. In Section 2.3, we
define a coherent set of concepts, which we refer to and incorporate in the
remainder of this work. These concepts introduce a consistent wording, foster
a common understanding, and detail our view on the elements of distributed
applications.

2.1 The Web and Related Visions

This thesis is embedded in a field of broad and long-term Web-related visions
that emerged over time from the appearance of the Internet, to the human-
readable and machine-readable Web, to more recent developments, including
the modularization and distribution of applications, driven by the increasing
miniaturization and computing power as well as availability of Internet con-
nectivity of almost every newly developed device.

In Figure 2.1, we give an overview of relevant, related visions that augment
this thesis in the research field, indicate their occurrence over time, and their
relation to each other. We talk about Web visions, in order to explicitly refer to
the underlying conceptualization and fundamental principles, rather than to the
direct technology implementations. The origin is the appearance of the Internet

15

2 Foundations

in the 1960s, which we date to the first work on packet switching in 1974 by
Cerf and Kahn [44], leading among others to the specification of the Internet
Protocol (IP) [129, 87]. In the following, we present in short the vision of the
Web, the SW, the WoD, the IoT, the WoT, the SWoT, name further related
visions, and elaborate on the relation between the visions and on the relation
to this thesis.

Internet
of Things
-

Semantic
Web of

Things
Internet /

Semantic
Web

Figure 2.1: The Web and Related Visions

2.1.1 World Wide Web (WWW)

The vision of the World Wide Web (WWW) [18, 25, 28], commonly called
the Web, as originally conceptualized is a Web of decentralized published
and interlinked documents that are primarily targeting the human user. Pro-

16

2.1 The Web and Related Visions

posed in 1989 by Berners-Lee [18] for the management of information about
technical systems and experiments at the European Organization for Nuclear
Research (CERN)), it subsequently evolved to an initiative for an organization-
independent global WWW [25]. The focus of this Web is a global repository of
documents with simple means for accessing, publishing, and interlinking these
documents [50], independent from specific computing platforms. Therefore,
the proposal and later-developed specifications introduce a global addressing
scheme with unique identifiers, i.e., Uniform Resource Identifiers (URIs) (c.f.,
Section 2.2.1.1), a common transport protocol, i.e., Hypertext Transfer Proto-
col (HTTP) (c.f., Section 2.2.1.2), the relation of documents with links, i.e.,
Link Relation (LR) (c.f., Section 2.2.1.3), the negotiation of formats, and a
platform-independent format for hypertext documents, i.e., Hypertext Markup
Language (HTML). During the standardization process of the involved tech-
nologies by the World Wide Web Consortium (W3C), the underlying architec-
tural principles, that paved the way for broad application and success of the
Web, synthesized to what is known as Representational State Transfer (REST)
(c.f., Section 2.2.1).

2.1.2 Semantic Web (SW)

The goal of the Semantic Web (SW) [30, 29, 146] vision is a machine-readable
Web. Introduced in 2001 by Berners-Lee et al. [30], the mission of the SW
is complementary to the Web for humans, which consists of human-readable
and interlinked documents. The SW focuses on machines that use and act on
the SW in order to realize machine-to-machine communication and, therefore,
must be provided with the explicit semantics of the data without the need for
human interpretation. In the end, they may serve as agents for human users that
delegate tasks to these machines as part of human-machine interaction [50].
Thereby, the SW is not meant to be a replacement of the Web but rather enhance
it.

“The Semantic Web is not a separate Web but an extension of the

current one, in which information is given well-defined meaning,

better enabling computers and people to work in cooperation.” [30]

In particular, the standard Web technologies for unique identification are used
to identify semantic concepts, and Web protocols for data transport are incor-

17

2 Foundations

porated for the access and manipulation of semantically enriched data. This
enrichment of data is achieved by annotating included entities and relations
with the help of ontologies [67] that in turn may be shared via means provided
by the Web and, thereby, contribute to shared, machine-readable knowledge
about the semantics of data exchanged between the involved parties [50]. In
addition to the core characteristics of the Web, the SW vision includes several
technologies, i.e., Semantic Web Technologies (c.f., Section 2.2.2), that are
in principle not bound to the Web. These include among others, for exam-
ple, graph-based representation of semantically annotated data, i.e., Resource
Description Framework (RDF) (c.f., Section 2.2.2.1), means for querying this
data, i.e., SPARQL Protocol and RDF Query Language (SPARQL) (c.f., Sec-
tion 2.2.2.2), or logic for inferencing and learning on top of this data, e.g.,
Notation3 (N3) (c.f., Section 2.2.2.3).

2.1.3 Web of Data (WoD)

The Web of Data (WoD) [33, 32], as a spin-off or a sub-vision, and sometimes
even used as a synonym for the Semantic Web, is focused on the publishing and
consuming of semantically enriched and interlinked data on the Web. While
the term Web of Data has been used before, the Linking Open Data community
project [31], initiated by the Semantic Web Education and Outreach (SWEO)
interest group of the W3C, started in 2007 a broader initiative for the promotion
of the WoD. In particular, the initiative promoted the term Linked Data (c.f.,
Section 2.2.3), the Linked Data (LD) principles [33] as an underlying paradigm,
and provided a set of interlinked datasets on the Web as a starting point for the
WoD.

InFigure 2.2, the Linked Open Data Cloud (LODC) from 2007 shows this initial
WoD consisting of nine interlinked datasets, which include the DBpedia [10,
34] as the central provider of concepts that are derived from structured data
available in the Wikipedia. This WoD grew since its initiation by magnitudes in
scale and number of datasets, as shown, e.g., by the LODC diagram from April
2018 [112] with 1184 datasets and 15993 connections, i.e., sets of connecting
links, between these datasets that qualified for the inclusion in the diagram due
to their size and degree of interlinking with other datasets.

18

2.1 The Web and Related Visions

Census
Data

Figure 2.2: Linked Open Data Cloud 2007 [31]

While in the beginning, the WoD started with read-only interlinked datasets,
several approaches [162, 157, 152, 163, 108] extended the LD principles by
combining these with the further elements of the REST architectural style,
i.e., establishing Read-Write Linked Data (RWLD). The LD principles as
well as the approaches for RWLD lead to the Linked Data Platform (LDP)
specification of the W3C (c.f., Section 2.2.3.1), that provides for the first time
the combination of both paradigms in a formalized manner. While there have
been discussions on whether the SW and WoD are complementary or contrary
visions with overlapping goals, we use in this thesis the SW as the broader and
long-term vision that includes all kinds of research fields related to semantics,
and the WoD as the pragmatic approach on realizing an actual Web of machine-
readable and interlinked semantic data that is a true extensions of the WWW.
In other words, we see the realization of the WoD as a major building block in
the realization of the more comprehensive SW.

2.1.4 Internet of Things (loT)

The Internet of Things (IoT) vision has gained increased popularity in the last
decade, among others, driven by the broader integration of Internet technolo-
gies such as the IP in all kinds of devices as well as the increasing modu-

19

2 Foundations

larization and miniaturization of these devices. As a term already being used
earlier [8], the idea of an “Internet-0" was proposed in 2004 by Gershenfeld
et al. [66] to the broader research community. However, while the underlying
paradigm remains untouched, i.e., interconnecting a tremendous amount of
heterogeneous virtual and physical things in a common network, the vision
itself is manifold [9]. The aforementioned vision represents only one varia-
tion of a diverse collection of alternative viewpoints on the IoT, driven by
different fields in industry and research. Atzori et al. [9] name three major
perspectives on the vision as well as on their main concepts and technologies,
both visualized in Figure 2.3. As it can be seen, these can sometimes differ
substantially.

“Things~

oriented visions

Everyday
objects

Wireless
Sensorsand
Actuators

Connectivity
for anything

Communicating
things

IPSO (IP for
Smart
Objects)

Semantic
Technologies

Reasoning
over data

Semantic execution
environments

Smart
Semantic
Middleware

“Internet’-oriented
visions

“Semantic*oriented
visions

Figure 2.3: Internet of Things Visions [9]

20

2.1 The Web and Related Visions

Things-oriented The IoT vision has been driven by and is originating
from the development and application of Radio-Frequency IDentifica-
tion (RFID) technologies. This technological direction primarily enables
the identification and traceability of objects and has strong support both
in business and industry. Thereby, the border between the physical, real
world and the virtual computing and networking merges and becomes
blurred. In addition to RFID, this perspective on IoT includes consid-
erably more technologies and concepts, going beyond the pure iden-
tification and traceability, e.g., Near Field Communications (NFC), or
Wireless Sensor and Actuator Network (WSAN), that are supposed to be
built upon more basic elements, leading to interconnected things, which
may also act actively on their own. In the end, the physical thing is the
focus of the Things-oriented perspective on the IoT vision.

Internet-oriented The more broadly interpreted Things-oriented per-
spective leads to the Internet-oriented perspective on the IoT vision, in
which the IP plays a major role. For example, the aforementioned idea
of an “Internet-0” [66] promotes the extension of the principles, that are
the underlying success factor for the Internet, to each and every device.
In particular, packet switching, i.e., the data is split independently from
specific data types in packets that are individually routed from the data
source to the data sink, and end-to-end connections, i.e., connections are
initiated from data sources to data sinks without the need for managing
the details of networks involved in establishing the connection. These
principles are used in the “Internet-0” independently from the actual
modulation of the signals that are used to transmit the packages. In other
words, also very slow- and high-latency types of transmission may be
used, which do not necessarily have to be based on the current physical
mediums used for IP. Several other paradigms and technologies are part
of this perspective [2], that simplify the IP technology for application
also on the smallest devices, e.g., IPv6 over Low power Wireless Per-
sonal Area Network (6LoWPAN). In addition, the application of Web
paradigms and technologies, i.e., the WoT vision (c.f., Section 2.1.5), is
part of this broader perspective. In the end, the interconnection of vir-
tual and physical things based on IP is the focus of the Internet-oriented
perspective on the IoT.

21

2 Foundations

Semantic-oriented The potentially tremendously high amount of things
in the IoT leads to a Semantic-oriented perspective. In contrast to both
other perspectives, that focus on the things and their interconnection
respectively, the management and collaboration of the heterogeneous
landscape of things is taken into account. This involves, for example, the
interpretation of data communicated between things, the representation
of things, the discovery of things, or the search for things. Semantic tech-
nologies may provide means for coping with different challenges that
arise in these fields. In the end, the annotation and interpretation of data
provided and consumed by things is the focus of the Semantic-oriented
perspective on the IoT.

2.1.5 Web of Things (WoT)

The Web of Things (WdT) [167, 72, 70, 68] vision combines the IoT and
the Web visions by enabling improved interoperability of things through Web
technologies. As a term already used earlier [160, 133], the WoT vision, in
which the paradigms and technologies that lead to the success of the Web
play a key role, has been introduced to the broader research community by
Wilde [167] in 2007. The emerging vision has been driven from the very
beginning by use cases from related research areas, e.g., related to Sensors and
Actuator Networks (SAN) [159], Geographic Information System (GIS) [168],
Wireless Sensor Network (WSN) [69, 71], embedded web servers [54], and
search engines [122]. The WoT vision builds, as part of the “Internet-oriented”
perspective on the IoT (c.f., Section 2.1.4), on top of the basic interconnection
of things and focuses on the interaction at the level of applications.

“In the Web of Things (WoT'), we are considering smart things as
first-class citizens of the Web. We position the Web of Things as
a refinement of the Internet of Things by integrating smart things
not only into the Internet (the network), but into the Web (the
application layer).” [72]

The approaches of the “Thing-oriented” and classical “Internet-oriented” per-
spectives (c.f., Section 2.1.4) embed Information Technology (IT) in the phys-
ical world or augment physical objects with IT to establish connectivity by
providing network infrastructure. Unfortunately, applications built on top of

22

2.1 The Web and Related Visions

this network infrastructure form small islands of incompatible things that are
only connected within their islands of proprietary interfaces and software [72].
However, these applications commonly constitute some kind of information
system that conceptually contains resources and means for accessing resources.
These characteristics meet the assumptions and constraints of the already estab-
lished REST architectural style (c.f., Section 2.2.1). Therefore, the realization
of the IoT may profit from unique identifiers, uniform interfaces, and state-
less communication of representations, leading to a loosely-coupled WoT that
enables the composition of applications in the IoT.

“[...] we argue that the goals of pervasive and ubiquitous comput-
ing should be to provide loose coupling and that there should be
a low barrier-to-entry for interacting with resources that are made
accessible through the ‘Internet of Things’”. [167]

Thereby, the aforementioned “smart things”, i.e., all kinds digitalized devices
and objects that are able to communicate on a network and thus connect
the physical and virtual worlds, provide their internal state as resources. In
particular, they enable the identification of these resources by URIs (c.f., Sec-
tion 2.2.1.1), provide a uniform HTTP (c.f., Section 2.2.1.2) interface for them,
and permit the access and, optionally, the manipulation of their state by ex-
changing their representation, supported by content negotiation. In addition
to these core REST characteristics, the WoT vision introduces means for syn-
dication and callbacks. Syndication enables the support for interacting with
collections of resources. Callbacks enable things, which provide data, to ac-
tively push new data to things, which consume data, once these have registered
their information needs, i.e., the communication switches from pull-based to
push-based interaction.

Another concern of the WoT vision is the Web-enabling of devices, in partic-
ular, of constraint devices with low power or computing resources. Figure 2.4
shows two ways of integrating devices on the Web that are practicable. On the
one hand, devices may be directly integrated on the Web, thus provide their
own Web server that exposes resources at the network. On the other hand, for
example in the case of specialized protocols for certain use cases or existing
platform-depended protocols, the deployment of “smart gateways” [161] may
be feasible. These gateways act as intermediates in the REST architectural style,
i.e., as proxies or reverse proxies, and enable the mapping between specialized
protocols and the Web.

23

2 Foundations

“ Ny . Physical | web Cloud
Mashups
Link /
RESTful API
Browse Web Server
Event‘Qi
RESTful Syndicat.
PI
Lightweight
Web Server
(= ' Driver 1 Driver 2

T ZigBee
Smart Gateway /)3 j \

Figure 2.4: Web of Things Integration [72, 70]

2.1.6 Semantic Web of Things (SWoT)

The Semantic Web of Things (SWoT) [143, 128] vision combines elements
from the IoT vision and the SW vision to enable embedded semantically
annotated data on things, in particular, on constraint devices with low energy
or computing power. As a term already used before in the SW community [38],
the SWoT has been introduced in 2009 by Scioscia and Ruta [143] as part of an
approach for the compression of semantic annotations that retain the support
for querying.

“The goal of the Semantic Web of Things is to embed semantically
rich and easily accessible information into the physical world.
To this aim, Knowledge Representation tools and technologies
must be adapted to functional and non-functional requirements of
mobile computing applications.” [143]

In general, the SWoT outlines the next evolutionary step after the IoT and
the WoT, as visualized in Figure 2.5. While the IoT, in particular, in the
“Internet-oriented” viewpoint (c.f., Section 2.1.4), focuses on a common net-
work protocol and the WoT focuses on a common applications protocol, the

24

2.1 The Web and Related Visions

SWoT builds on top and focuses on the abstraction from devices and common
descriptions. With respect to the “classical” Internet, Web, and SW/WoD, the
evolution in the “* of Things” domain shows significant analogies. The IoT,
WoT, and SWoT represent similar steps in the evolution, but, in contrast, taking
into account the restrictions imposed by small, mobile devices with low energy
and computing power.

Global Interoperability

Semantic
Web of things

Common Description

Web of things
Device Abstraction

Internet
of things Common App. Protocol

~\ | CommonNwk. Protocol

A L

Connect things to | Connect things to | Share Things &

Internet the Web compose services

Figure 2.5: Semantic Web of Things Evolution [91, 92]

In contrast to the Web for humans, that evolved around human-readable doc-
uments, the “* of Things” domain has never been intended to be used by
humans directly, but through appropriate user interfaces and agents. Therefore,
machine-readable, shared, and semantically enriched information can be seen
as an obligatory evolutionary step to reach the underlying goal of connecting
all kinds of devices and to build applications as compositions on top, which
are independent of domains, manufacturers, or physical environments. In other
words, the evolution from the IoT, over the WoT, to the SWoT must pave
the way for evolving from vertically connected deployments that are specific
to devices, scenarios, and vendors, to applications that integrate horizontally,
thereby, integrating multiple capabilities from different domains towards a
larger ecosystem [91]. However, unfortunately, no single methodology and

25

2 Foundations

no fixed set of technologies and standards have been, at the time of writing,
standardized and converged to a common SWoT architecture.

“The SWoT is, on the one hand, the fusion of the trends of the IoT
for moving towards the web technologies with protocols such as
CoAP, REST architecture and the Web of Things concept, and,
on the other hand, the evolution of the web with the semantic web
technologies.” [91]

Different research projects have contributed to the research field, e.g., the
project UBIWARE [95], focused on a smart semantic middleware for the IoT,
the project Integrating the Physical with the Digital World of the Network
of the Future (SENSEI) [130], with the Sense2Web [14] platform focused on
publishing sensor data as LD in the WoD, the project SPITFIRE [128], focused
on abstractions for things, on fundamental services for search and annotation,
as well as on integrating sensors and things into the LODC, or the project
OpenloT [149], focused on IoT services with semantic interoperability in the
cloud.

In addition, several approaches emphasize the need for semantics in the IoT
for horizontal integration, with or without identifying the need for abstracting
from individual devices and the generalization at the application level, i.e., the
WoT. Rutaetal. [143, 135, 134, 136, 137] present an approach and architecture
for a SWoT framework based on an extension of the Internet Engineering Task
Force (IETF) Request for Comments (RFC) 7252 on the Constrained Appli-
cation Protocol (CoAP) [147] and of the IETF RFC 6690 on the Constrained
RESTful Environments (CoRE) [148] link format in combination with the
LD principles to enable resource discovery and semantic descriptions without
breaking backward compatibility of the protocol. Gyrard et al. [79, 74, 75, 80]
present an approach and architecture for a SWoT framework influenced by the
ontology engineering domain to support the complete workflow of building
SWoT applications. Java et al. [91, 92] evaluate the different methodologies,
technologies, and standards that can be subsumed under the SWoT vision. On
the one hand, these methodologies, technologies, and standards are introduced
in the area of cellular networks, i.e., broadly available long-range networks,
and connected capillary networks [138, 121], i.e., short-range, low-energy, and
low-cost networks. On the other hand, these methodologies, technologies, and
standards are introduced in the area of the Web and the SW.

26

2.1 The Web and Related Visions

Furthermore, several technologies have been proposed or developed with refer-
ence to the SWoT, e.g., the Semantic Smart Gateway Framework (SSGF) [107],
the Extended Global Sensor Network (XGSN) [39], the Machine-to-Machine
Measurement (M3) framework [77, 78], the Micro-Ontology Context-Aware
Protocol (MOCAP) [139], the Linked Open Vocabularies for Internet of Things
(LOV4IoT) [76], the Web of Things Semantic Search Engine (WOTS2E) [94],
or the Semantic Web of Things Suite (SWoTSuite) [124].

2.1.7 Positioning of the Thesis

The core research of this thesis is placed in the context of the overall vision of
the Web, at the intersection of the Semantic Web and WoD with the WoT and
SWoT.

Internet
of Things
=N

Semantic
Web of
Things

Internet

Semantic
Web

RDF

Figure 2.6: Relation of Visions and Thesis

27

2 Foundations

In Figure 2.6, we mark the on-topic relationship of this thesis with respect
to the relevant visions (orange area) and indicate the direction of exploration
(orange arrow). The thesis is grounded on the generic architectural style and
technologies of the Web (c.f., Section 2.2.1), takes advantage of different
technologies from the Semantic Web (c.f., Section 2.2.2), and is strongly
related to the WoD enabling principles (c.f., Section 2.2.3) as well as to the
WoT vision, while seeking, promoting, and pushing the synergies of these
visions and their realizing technologies in the same way as the SWoT vision.

Thus, the work presented in this thesis contributes directly to the state of the
art and the evolution of the WoT and SWoT.

2.2 Paradigms, Architectures, and Technologies

In the following, we present a selection of architectural paradigms that comprise
the conceptual foundation of our work. In addition, we introduce a set of
technologies that are commonly used to realize these paradigms, are broadly
available, and are supported by large communities. These paradigms and their
technologies comprise the technological foundation of our work.

2.2.1 Representational State Transfer (REST)

The Representational State Transfer (REST) introduced by Fielding [64] as
an architectural style describes the constraints of a Resource-Oriented Ar-
chitecture (ROA) [123] for large-scale network-based distributed hypermedia
applications. In general, REST is technology-agnostic but most prominently
realized with Web technologies. Starting in October 1994, the architectural
style has been iteratively developed over several years during the standardiza-
tion efforts on URI [21], HTTP [62], and HTML [56] in several RFCs for
different Internet Standards (STDs) by the IETF in cooperation with the — at
that time — newly founded W3C.

“The name ‘Representational State Transfer’ is intended to evoke
an image of how a well-designed Web application behaves: a
network of web pages (a virtual state-machine), where the user
progresses through the application by selecting links (state transi-

28

2.2 Paradigms, Architectures, and Technologies

tions), resulting in the next page (representing the next state of the
application) being transferred to the user and rendered for their
use.” [64, p. 109]

Therefore, REST has not been the subject of standardization efforts itself,
but guided the development of major Web standards and, in principle, can be
applied to other application areas as well. In its core, REST consists of a set of
constraints that have been derived from and optimized for the common case of
distributed hypermedia applications at web-scale and incorporates or is based
on several preexisting network-based architectural styles, e.g., client-server, or
layered system. Major Web standards, e.g., URI, or HTTP, are designed to
cover and to adhere to the REST constraints but may have further non-REST
use cases.

©—>© Client-Server

Stateless

Cache

Layered System

Figure 2.7: REST — Constraints

29

2 Foundations

On the one hand, the REST constraints limit the degrees of freedom for de-
signing elements within architectures. In particular, the means for exposing
function and for communication between components of architectures are re-
stricted in specific ways, still without limiting their function to any particular
domain. On the other hand, the REST constraints — by limiting the degrees
of freedom — ease the integration within architectures and foster scalability,
performance, and robustness for the common Web-scale case. Starting with
a large distributed hypermedia system as a black box, i.e., the WWW, the
constraints distinguish the involved components and their interactions. In the
following, we first present these guiding constraints (c.f., Figure 2.7) and af-
terward elaborate on major Web standards that are relevant in the context of
this work, i.e., on URI in Section 2.2.1.1, on HTTP in Section 2.2.1.2, and on
LR in Section 2.2.1.3.

Client-Server The client-server constraint — as the most basic con-
straint — is the distinction between components and, in the context of
communication between components, the distinction between clients
and servers [64]. The interaction between clients and servers follows a
request-response pattern, in which clients send requests to servers, and
the servers answer to these requests with responses. While a request
with its following response is a synchronous interaction, the transferred
message within the interaction may be streamed and processed on-the-
fly. On the one hand, the constraint enables separation of concerns, e.g.,
differentiating between components that act in distributed applications
as user interfaces for humans, or components that act as data storages.
On the other hand, and more importantly in the context of Web-scale, the
constraint enables the independent evolving of components and, thereby,
fosters scalability as well as support for multiple stakeholders. For ex-
ample, in the traditional human-oriented Web the Web browsers act as
clients that provide user interfaces and that are independently devel-
oped from each other and from the Web servers. The Web servers, in
contrast, provide as servers the content and business functionalities that
can be presented by any Web browser to the human users, and that are
independently developed from each other and from the Web browsers.

Stateless The stateless constraint imposes statelessness for any inter-
action between clients and servers. In particular, servers must not be
aware of the context of the individual requests of a client with respect

30

2.2 Paradigms, Architectures, and Technologies

to other requests of the same or other clients or manage any kind of ses-
sion on the server over a series of requests. The overall application state
is determined by the state of the participating components. As a con-
sequence, all information for processing messages that are transferred
via interactions must be included in the messages themselves. This self-
descriptiveness of messages is part of the uniform interface constraint
below. The advantages fostered by stateless interactions are 1) visibility,
due to self-descriptive messages that may be subject to inspection; 2)
reliability, since failing requests are not hampering other requests; and
3) scalability, as requests can be handled in parallel. The advantages are
accompanied by the disadvantages of: 1) decreased performance over
a series of interactions, since all information required for processing a
number of messages must be included in every single message; and 2)
reduced control of the client behavior, i.e., the correct interpretation of
data semantics must be ensured across all clients, because application
state is managed on the clients.

Cache The cache constraint prescribes that responses in the request-
response interaction between clients and servers must be either marked
as cacheable or non-cacheable [64]. This constraint is enabled by the
stateless constraint that implies self-descriptive messages. These mes-
sages can be cached either on the client-side, to intercept and answer
redundant requests to servers and, thereby, reduce the network usage,
or on the server-side to directly answer redundant requests by clients
and, thereby, reduce the processing to be spent on the generation of
responses. The advantages are increased efficiency, scalability, perfor-
mance — due to reduced processing on the servers, and reduced latency
on the network. However, as a disadvantage, caches and, in particular,
shared caches, i.e., caches that are shared between a number of different
clients, may potentially lead to inconsistencies, if cached responses are
not corresponding to the responses that would have been newly generated
by the servers.

Layered System The layered system constraint targets the complexity
and heterogeneity of scenarios with multiple stakeholders and divert-
ing domain functionality of components in Web-scale scenarios. By
restricting the depth of interactions executed by individual components
in a composition of interacting components to one, the constraint enables

31

2 Foundations

32

hierarchical layers of components, i.e., components may only directly
interact with other components but not via the same interaction with
subsequent components. These layers may consist each only of a sin-
gle component or encapsulate as black boxes several other components,
without changing the interaction mechanisms, i.e., layers are compo-
sitions of components that may take part in further compositions as
individual atomic components with a single interface. Layered systems
provide as an advantage an overall reduced complexity due to the inde-
pendence of layers, which can be individually developed and scaled. In
addition, layers can serve as means for security, i.e., security measures
and actions can be applied and enforced at the border of layers. The
constraint, however, introduces as disadvantages an increased overhead
and an increased latency, if requests are concentrated at the border of
layers and are not executed directly but indirectly through the borders to
subsequent hidden components. The impact of these disadvantages can
be reduced in certain cases by utilizing shared caches.

Code-on-Demand The code-on-demand constraint represents the only
optional constraint in the REST architectural style. The constraint en-
ables the extension of client functionality by code downloaded from
servers, e.g., by applets, or by scripts [64]. Due to the optionality of
the constraint, the advantages and disadvantages of this constraint only
apply to parts of distributed applications in an architecture that pro-
vides support for this constraint. In combination with the layered system
constraint, for example, parts of a distributed application may support
this constraint internally but — as a black box — hide the support in
the communication with further components. The advantages of this
constraint are simpler clients and improved system extensibility since
existing clients can be extended on-the-fly and not all functionality that
is potentially required must be implemented by the clients in advanced.
The disadvantage is reduced visibility.

Uniform Interface The uniform interface constraint represents the most
significant REST constraint and restricts the access to components to
interfaces that are uniform with respect to their provided interaction
mechanisms. In contrast to other network-based architecture styles, the
uniform interface constraint is the main unique characteristic of REST.
This constraint applies the software engineering principle of generality

2.2 Paradigms, Architectures, and Technologies

to the communication within distributed applications. Elements of ar-
chitectures provide interfaces that expose uniform means for interaction
across all components, independently from their domain functionality.
Thereby, the interface is decoupled by design from specific implementa-
tion details, enables the independent evolving of implementations, and
eases their substitution by alternative implementations. The advantages
of this constraint are a simplified overall system architecture and im-
proved visibility, due to the prescribed way of interaction enforced by
the uniform interfaces. The disadvantage is a potentially less efficient
communication caused by the fact that the uniform interface is not per-
mitting specializations for domain-specific use cases. The constraint can
be distinguished in four subordinate interface constraints concerning
resources, representations, self-description, and hypermedia.

Resource The notion of a resource interface constraint is the most
significant interface constraint and a key concept of the architec-
tural style. A resource may be any entity that can be referenced, e.g.,
a virtual concept, a person, or a measurement, and represents the
entity in general, i.e., its semantics, but not specific realizations of
the entity, i.e., not any specific values of properties of the entity at
a particular point in time. Resources may be non-existing and map
to no realization for an indefinite time, i.e., resource may not be re-
alized at all. A particular realization of a resource may change over
time, i.e., from once at creation and never again, to continuously, at
a high frequency. In contrast, the semantics of a resource must be
defined as statically over time, i.e., the values of the realizing entity
may change but the meaning of the values must not. For example,
in a distributed version control system, the commit identified by
the current master branch or a particular release tag can change
over time, while the resources, i.e., the master, or a release, stay
the same. The advantages of the resource interface constraint are
the generalization of concepts independent from their existence, a
particular type, or a specific implementation, as well as late bind-
ing of representations to the resource through content negotiation.
Thereby, the references to resource and their semantics stay stable
over time, while their representations may change [64].

33

2 Foundations

34

Resources are identified by resource identifiers. These identifiers
must be unique with respect to the resource they identify, but a re-
source may be identified by more than one resource identifier. For
example, the master branch and a release tag may identify the same
commit in a distributed version control system. The sets of all iden-
tifiable resources of components form their uniform interfaces, that
enable the access to and manipulation of their realizations. In Web-
scale multi-stakeholder scenarios, resource identifiers provide the
means for referencing between components, and, due to the nature
of these scenarios, without relying on centralized identifier man-
agement. Therefore, identifiers must change as little as possible,
i.e., stay unique and semantically static over time [64]. However,
due to no centralized resource identifier management, also failures
must be taken into account by design.

Representation The representation interface constraint restricts
the information exchange between components to the exchange of
messages that may contain resource representations. These repre-
sentations represent the state of resources, i.e., the current state
of resources if resources are accessed, or the intended state of
resources if resources are manipulated [64]. Representations are
accompanied by “representation metadata” that describes the char-
acteristics of the representations, e.g., the type of representation,
or the last modified time. Furthermore, responses from servers to
clients may contain additional “resource metadata” that is spe-
cific to the resource but independent from a particular representa-
tion, e.g., information about alternative representations. The data
format of representations is defined by media types that enable
the use of adequate data formats for different use cases or with
different performance characteristics, e.g., streamable, or on-the-
fly-processable. Independently from possibly contained represen-
tations, “control data” describes the intention of messages. This
includes, in requests, the method to be used for access to or manip-
ulation of resources as well as, in responses, means for success and
failure handling. In addition, cache control and other parametriza-
tion are part of the control data.

2.2 Paradigms, Architectures, and Technologies

Self-Description For the scalability of distributed multi-stakeholder
systems at Web-scale, the self-description interface constraint is
of importance.

“REST enables intermediate processing by constraining
messages to be self-descriptive: interaction is stateless
between requests, standard methods and media types are
used to indicate semantics and exchange information, and
responses explicitly indicate cacheability.” [64, pp. 98f]

This constraint implies that messages transferred between com-
ponents are self-descriptive, i.e., no context or related message is
required for its interpretation. Thereby, the constraint enables in-
dependent processing of messages at the receiving client or server
but, more important, at intermediate components along the route
during the request. The self-description interface constraint is a
premise of the cache constraint that enables caching of messages
at client or server-side.

Hypermedia The hypermedia interface constraint, in several
cases also called “Hypermedia as the Engine of Application
State (HATEOAS)”, considers multi-component hypermedia ap-
plications from the viewpoint of the uniform interfaces. The state
of clients can change only through actions that are dynamically
identified within hypermedia by the server, e.g., through links in
the text. As aresult, REST clients need little to no prior knowledge
about how to interact with servers. Beyond entrance resource iden-
tifiers for applications, all further interactions the clients may take
are discovered within resource representations returned from the
servers. The available resource representations and the relations
to other resources they may contain are predefined. Therefore, the
clients transition through application states by following hyperme-
dia links within representations or by manipulating the representa-
tions. In summary, in REST the client-server interaction is driven
by hypermedia.

The REST architectural style is, in general, technology-agnostic and can be
applied in different application areas. We base our work on the Web-based
realization of REST that is supported by public standards and broadly available

35

2 Foundations

technologies. In the following, we present the — for this work — most relevant
standards URI, HTTP, and LR.

2.2.1.1 Uniform Resource Identifier (URI)

The IETF RFC 3986 on Uniform Resource Identifier (URI) [21] provides a
generic syntax and semantics as means for the identification of abstract or
physical resources. In addition, the RFC provides means for absolute and rela-
tive identifier references, the reference resolution, as well as considerations and
implications for the use of URIs on the Web. URIs can be characterized by their
three naming elements: uniform, resources, and identifier. They provide a uni-
form way for describing identifiers and are, thereby, independent from specific
access mechanisms. They enable consistent interpretation of their common
elements through uniform semantics, allow for the definition of new identifier
types without interfering with existing ones, and enable the use of identifiers in
a broader context, in particular, if the schema-specific interpretation of identi-
fiers is not required. URIs identify resources, that are defined similarly to REST
(c.f., Section 2.2.1), without any particular limitations, i.e., every concept, vir-
tual, or physical thing that is worth to be identified in a given context can be
identified as a resource. URIs provide identification by embodying sufficient
information, clearly separating resources from each other in a given context,
but neither contain the identity of resources nor provide means for accessing
the resources.

foo ://example.com:8042/over/there ?7name=ferret#nose

_/ \ /\ !\ IoN__/
| | | | |
scheme authority path query fragment
| l__
/N \

urn:example:animal: ferret:nose

Listing 2.1: URI — Syntax Components Examples [21, p. 15]

The syntax of URIs consists of five main components: scheme, authority,
path, query, and fragment. Listing 2.1 shows two examples that use some
and all of these syntax components. The scheme and path are mandatory for

36

2.2 Paradigms, Architectures, and Technologies

every URI The scheme component relates URIs to separate, more specialized
URI specifications that are not part of RFC 3986, e.g., “http” and “https”
defined by the HTTP specification [62]. These scheme-specific specifications
may further restrict the URI syntax and semantics, but all adhere to the more
generic superset of rules in the URI specification [21]. The optional authority
component of URIs defines a namespace that is individually managed by the
identified authority and may consist of user information, host, and port. The
remaining parts of the URIs are delegated to their particular authorities for
further resolution. These remaining parts of URIs start with the path that
hierarchically identifies, in addition to query and fragment, the resource within
a given scheme and optionally a given authority. The query part adds non-
hierarchical data for the identification, i.e., the order of query elements is not
important. These are commonly in the form of key-value pairs. URIs optionally
end with a fragment that indirectly identifies a resource or sub-resource within
a collection of resources or an enclosing main resource located at the given
preceding URI. Besides the main syntax components, the URI specification
defines fixed characters for their separation, e.g., “?” at the beginning of the
query, “#” at the beginning of the fragment, and both for the termination of the
path.

The references to URIs may use the complete notation, including all manda-
tory and, if required, optional syntax components, but may alternatively use
relative notations for references within the same scheme and, if existing, the
same authority [21]. A reference is relative if the scheme prefix and the follow-
ing separator are missing. Four different reference types can be distinguished:
absolute references, relative references, same-document references, and suffix
references. Absolute references are complete URIs without the fragment com-
ponent and may serve as base URIs for relative references. Relative references
utilize the hierarchical structure of URIs and reference relative to the current
authority or a given base URI. Thereby, the reference may be a relative path
reference, i.e., based on the same hierarchical layer of the URI, or an abso-
lute path reference, i.e., based on the authority of the URI. Same-document
references are relative references within the same document that are identi-
fied by the preceding URI and use only the fragment as a reference. For the
sake of completeness, suffix references describe schema-less references that
require human interpretation or a clear application context for complementing
the missing parts, e.g., references to websites in human-to-human communica-

37

2 Foundations

tions that omit the schema part. Without interpretation, suffix references equal
relative references, may lead to misinterpretation, and thus should be avoided.

The resolution of relative references to references with complete URIs requires
base URISs that serve as the starting point for the application of the relative ref-
erences [21]. These base URIs are determined via the first matching of four
different but ordered ways: explicitly embedded in the content, from the en-
capsulating entity, from the retrieval URI, or an application-depended default
base URI. While the first three methods determine the base URI for resolu-
tion through the location or content of resources, the application-dependent
default base URI relies on the context of a particular application. Thereby,
the same relative references may be interpreted in different ways by different
applications, which may lead to misinterpretations.

The IETF RFC 3986 on Uniform Resource Identifier (URI) [21], published in
January 2005, is — at the time of writing — member of the “Standards Track”
category, in the “Internet Standard” state, and representing the STD 66. The
RFC is based on and derived from several preceding RFCs, in particular,
beginning with RFC 1630 on “Universal Resource Identifiers” [19], published
in 1994, RFC 1738 on Uniform Resource Locator (URL) [22], published in
1995, the draft standard RFC 2396 on URI [20], published in 1998, and RFC
2732 on Internet Protocol Version 6 (IPv6) addresses in URLs [43], published
in 1999. Further RFCs and Best Current Practices (BCPs) are related to RFC
3986 [21, p. 3].

2.2.1.2 Hypertext Transfer Protocol (HTTP)

The Hypertext Transfer Protocol (HTTP) specifies a generic general purpose
protocol for stateless request-response communication on the level of applica-
tions [62]. The protocol incorporates the REST architectural style (c.f., Sec-
tion 2.2.1) and represents a major building block of the WWW architecture [90].
To this end, HTTP defines a uniform interface on resources provided by servers
and specifies the semantics of request methods as well as messages, that in some
cases may contain representations of these resources as payload. HTTP relies,
besides the client and server concepts (including user agent and origin server),
on further REST concepts for intermediates in the communication, in particu-
lar, proxy, gateway, and tunnel, as well as on the concept of caches. In addition,

38

2.2 Paradigms, Architectures, and Technologies

the HTTP specification defines the syntax and semantics of two URI schemes
for the identification of resources, in particular, the “http” and the “https” URI
schemes.

Interactions that adheres to the HTTP specification are targeting the aforemen-
tioned resources. In this context, HTTP defines only the interface in a uniform
manner, but not the resources themselves. Resources may be of any nature,
similarly to the resource definitions of REST (c.f., Section 2.2.1) and URI (c.f.,
Section 2.2.1.1). Consequently, resources in HTTP are identified by URIs as
defined by RFC 3986 [21]. This identification of resources is separated from
the interaction mechanisms in the communication with servers. The abstraction
of domain-specific implementation states at request time are the representa-
tions of these resources, as defined by REST. These representations can be
transferred as the payload in the HTTP interaction to retrieve or modify the
state of resources. Thereby, multiple alternative representations can represent
the same resource, of which the representation that is most fitting the request
preferences is selected as the message payload.

As an alternative to representations, the HTTP messages may contain URIs as
payload and, thereby, refer to the locations of further relevant resources. With
respect to messages, the HTTP specification defines representation metadata in
the form of HTTP message header fields for describing the aforementioned al-
ternative representation, the selection of representations, the resource locations,
and the semantics of the representations, e.g., Content-Type, Content-Location,
or Content-Length.

Every HTTP request includes a request method as the primary definition of
the request semantics, i.e., the request method defines the intention of the
client for executing the request. These request methods define resource- and
domain-independent means to access and manipulate resources and, thereby,
implement the uniform interface restriction of REST (c.f., Section 2.2.1). In
addition, further request properties may specialize the requests, e.g., making
requests conditional. Table 2.1 presents an overview of the request methods
defined by the part of the HTTP specification that is focused on semantics and
content [63]. From the set of specified methods, the GET and HEAD methods
must be supported, while all other methods are optional. Additional methods
have been standardized and may be added to the HTTP method registry of the
Internet Assigned Numbers Authority (IANA) after a review by the IETF [63,
Section 8]. The HTTP request methods share a set of common properties,

39

2 Foundations

in particular, methods may be safe, idempotent, or cacheable, as shown in
Table 2.1 and as described in the following.

Method Description Properties
GET Transfer a current representation of the Safe
target resource. Idempotent
Cacheable
HEAD Same as GET, but only transfer the status Safe
line and header section. Idempotent
Cacheable
POST Perform resource-specific processing on the Cacheable
request payload.
PUT Replace all current representations of the Idempotent

target resource with the request payload.

DELETE Remove all current representations of the Idempotent
target resource.

CONNECT Establish a tunnel to the server identified by
the target resource.

OPTIONS Describe the communication options for the Safe

target resource. Idempotent
TRACE Perform a message loop-back test along the Safe
path to the target resource. Idempotent

Table 2.1: HTTP — Requests Methods [63, p. 20]

Safe Method Safe methods provide read-only semantics. In particular,
their execution leads to no state change on the origin server. However,
the origin servers may change states, e.g., increase access counters, or
log request details, but these are not requested by the client and are
not part of the request semantics. Safe methods are designed to ensure
that automatic retrieval processes and performance optimizations do not
cause issues on origin servers by accidentally changing their states.

Idempotent Method Idempotent methods provide semantics that re-
quire no state change in case of multiple requests, which execute the

40

2.2 Paradigms, Architectures, and Technologies

same idempotent method on the same resource. The origin server may,
in a similar manner as for safe methods, implement side effects, but
these are not part of the request semantics and must not be expected by
the client. Idempotent methods are designed to ensure that requests can
be automatically repeated in the case of failures in the interaction with
the origin server, without waiting for a response from the origin server,
and independently from a possible success or failure of the state change
itself.

Cacheable Method Responses to requests that execute cachable meth-
ods may be stored and reused to directly answer similar requests in the
future, within the boundaries of caching constraints, e.g., the Time to
Live (TTL) property of the response.

In addition to the method, requests may contain certain request header fields.
As mentioned above, these enable specializations of the request semantics,
e.g., conditional requests, by providing the context of requests. In particular,
the HTTP specification defines request header fields for the following groups.

Controls The request header includes the fields Cache-Control, Expect,
Host, Max-Forwards, Pragma, Range, and TE. These fields expand on
how requests should be handled by the server and are in detail defined by
the HTTP specification on syntax and routing [62], the HTTP specifica-
tion on range requests [57], and the HTTP specification on caching [59].

Conditionals The request header includes the fields If-Match, If-None-
Match, If-Modified-Since, If-Unmodified-Since, and If-Range for defin-
ing conditionals. These fields enable clients to specify preconditions for
the execution of the request method based on the state of the resource as
defined by the HTTP specification on conditional requests [61].

Content Negotiation The request header includes the fields Accept,
Accept-Charset, Accept-Encoding, and Accept-Language for realizing
content negotiation. These fields enable the client to inform the server
about its preferences with respect to the expected payload of the response.

Authentication Credentials The request header includes the fields Au-
thorization and Proxy-Authorization for communicating authentication
credentials. These fields support authentication of clients against servers

41

2 Foundations

through basic or digest authentication as defined by the HTTP specifica-
tion on authentication [60].

Request Context The request header includes the fields From, Referer,
User-Agent for setting the request context. These fields enable clients
to provide information about the context of a request, in particular, the
email address of a human user, the URI of a resource that referred to the
target resource, and the product identifier of the implementation that is
used to perform the request.

For example, the Expect control field informs the server about expected actions
that must be supported. The expect value 100-continue is the only value defined
directly by the HTTP specification on semantics and content [63]. This header
value indicates that the server should inform the client after validating the re-
quest header with an intermediate /00-continue response code (c.f., Table 2.1)
that the validation of the request header fields is not causing already a failure
of the request. In case of a failure, the server may instead inform the client with
an appropriate response code before the client starts to send a larger request
payload.

The counterparts of request methods are response status codes. This three-digit
code is classified in code classes, defined by the first digit of the code, that
each represents a particular group of response semantics. Table 2.2 presents
an overview of the response status codes classes defined by the HTTP spec-
ification on semantics and content [63]. Clients must understand the groups
but not necessary every status code, in particular, because the status codes
are extensible. Unknown status codes must be interpreted as the first code of
the class, i.e., the “X00” code. The phrase supplied as a reason for each code
(c.f., Table 2.2) may change, depending on the particular use case, from the
default to an application-specific and more appropriate phrase. Some status
codes are cacheable, e.g., 200 OK, 203 Non-Authoritative Information, and
204 No Content [63].

In addition to the response status code, responses from servers to clients may
contain, analog to requests, additional information in certain header fields.
These expand on the resource, the response, and included resource represen-
tations, e.g., by providing information about the cache characteristics of rep-
resentations. In particular, the HTTP specification defines the request header
fields for the following groups.

42

2.2 Paradigms, Architectures, and Technologies

Class Title Description Examples

1xx Informational The request was 100 Continue
received, continuing 101 Switching Protocols
process

2Xxx Successful The request was 200 OK
successfully received, 204 No Content
understood, and
accepted

3xx Redirection Further action needs 300 Multiple Choices
to be taken in order to 301 Moved Permanently
complete the request

4xx Client Error ~ The request contains 400 Bad Request
bad syntax or cannot 404 Not Found
be fulfilled

5xx Server Error The server failed to 500 Internal Server Error
fulfill an apparently 503 Service Unavailable

valid request

Table 2.2: HTTP — Response Status Code Classes [63, p. 46]

Control Data The response header fields Age, Cache-Control, Expires,
Date, Location, Retry-After, Vary, Warning. These fields expand on how
responses should be handled by the client in addition to the semantics
of the status codes. In particular, they may refer to related resources or
alternative resource representations and include information about the
caching characteristics of the resource representation, as defined by the
HTTP specification on caching [59].

Validator Header Fields The response header fields E7ag, and Last-
Modified. These fields are provided by the origin servers and identify
representations across time and serialization formats. Clients may utilize
their values in conditional requests, as defined by the HTTP specification
on conditional requests [61], to prevent modification based on outdated
information, e.g., to ensure that a resource has not been modified between
a response and a dependent follow-up request.

43

2 Foundations

Authentication Challenges The response header fields WWW-Authen-
ticate, and Proxy-Authenticate. These fields provide clients with chal-
lenges after successful authentication that must be used in follow-up
requests to the server, as defined by the HTTP specification on authen-
tication [60].

Response Context The response header fields Accept-Ranges, Allow,
and Server. These fields provide some additional information about the
requested resource that may be of use for follow-up requests.

Understanding the HTTP characteristics in detail is crucial for the work pre-
sented in this thesis. To rely on HTTP as a foundation and as the main way of
realizing communication guarantees not only interoperability but also scala-
bility and conformity to Web standards. Therefore, instead of defining a new
communication protocol or an extension of HTTP, we intentionally chose to
stick to the properties that HTTP offers.

In addition to the relevant areas of the HTTP specifications on message syntax
and routing [62] as well as semantics and content [63], that have been described
above, the HTTP specification includes RFCs for further advanced topics, in
particular, conditional requests [61], range requests [57], caching [59], and
authentication [60].

In addition to the Hypertext Transfer Protocol Version 1.1 (HTTP/1.1) specifi-
cation, that is broadly applied and supported, the Hypertext Transfer Protocol
Version 2 (HTTP/2) specification [17] has been standardized by the IETF in
2015 as RFC 7540. The development of HTTP/2 has been initiated, in partic-
ular, by several downsides of the connection handling and data transport as
defined by HTTP/1.1 [62, Section 6], that lead to inefficient use of computing
and network resources in current infrastructures and, thereby, have a negative
impact on the performance of applications depending on HTTP communica-
tion.

“In particular, HTTP/1.0 allowed only one request to be outstand-
ing at a time on a given TCP connection. HTTP/1.1 added request
pipelining, but this only partially addressed request concurrency
and still suffers from head-of-line blocking. Therefore, HTTP/1.0
and HTTP/1.1 clients that need to make many requests use mul-

44

2.2 Paradigms, Architectures, and Technologies

tiple connections to a server in order to achieve concurrency and
thereby reduce latency.” [17, p. 3]

Inefficient, verbose, and redundant use of header fields adds to the negative
impact on performance. The HTTP/2 specification focuses on more efficient
use of the underlying Transmission Control Protocol (TCP) connections and
encoding of header fields [126] as an alternative to the HTTP/1.1 connection
and transport mechanisms while providing the same semantics as defined by
the HTTP/1.1 specifications. Thereby, HTTP/2 provides, from an application
point of view, the same capabilities but with changed message syntax and
mapping to the transport protocols. [17]

The set of IETF RFCs 7230 to 7235 on HTTP/1.1 [62, 63, 61, 57, 59, 60],
published in June 2014, as well as the RFCs 7540 and 7541 on for HTTP/2 [17],
published in May 2015, are — at the time of writing — member of the “Standards
Track” category and in the “Proposed Standard” state. The RFCs are based on
and derived from two preceding RFCs, in particular, largely on RFC 1945 [117]
on Hypertext Transfer Protocol Version 1.0 (HTTP/1.0), published in May
1996, and on RFC 2068 [58], an obsolete version of the HTTP/1.1 specification,
published in June 1999.

2.2.1.3 Link Relation (LR)

Link Relation (LR) denotes the relation between resources, that is established
through Web links [119], i.e., the typed relation between two resources. Web
links are closely interlinked with the HTTP specification (c.f., Section 2.2.1.2),
i.e., the specification defines the serialization of links in HTTP headers, and
other specifications, e.g., Atom [120] or HTML [56].

“A link can be viewed as a statement of the form ‘link context
has a link relation type resource at link target, which has target
attributes’.” [119]

The link context and the link target must be Internationalized Resource Iden-
tifiers (IRIs). In many cases, however, URIs or IRIs mapped to URIs are used,
in particular, in the context of protocols like HTTP that provide no support
for IRIs. The specification imposes no restrictions on the cardinality of links
between resources and no means implied by the ordering of links, i.e., the

45

2 Foundations

specification enables the definition of many-to-many relations of the same or
different types between resources as a set of links in a resource representation.
The specification defines the following elements:

Link Context The link context must be an IRI. In the case of the HTTP
link header field, this is by default the URI of the associated representa-
tion.

Link Relation Type The link relation type defines the semantics of the
link. Two different kinds of relationship types exist. The “registered
relation types” provide well-defined relation types that are centrally
managed by the IANA. In cases, in which the registration of relation
types is not feasible or wanted, “extension relation types” serve as an
application-specific alternative. Every extension relation type is defined
by a URI that identifies the relation type, may provide the definition of
semantics, and should be in control of the application owner.

Link Target The link target must be an IRIL.

Target Attributes Target attributes are optional key-value pairs that de-
scribe the target of the link or the link itself. For example, the media type
of the target may be indicated by a target attribute. Except for the HTTP
link header field, the specification defines no specific target attributes
but leaves their definition to the specification of individual link relation
types or link serializations.

In addition, the Web linking specification defines the syntax of links in HTTP
header fields but delegates the definition of their syntax in resource represen-
tations to specifications that utilize the interlinking of resources. For example,
the Atom specification [120], the HTML specification [56], or the specifica-
tions of RDF [45] serialization formats include definitions for the serialization
of links.

The set of IETF RFCs 8288 on web linking [119], published in October 2017,
is — at the time of writing — a member of the “Standards Track” category and
in the “Proposed Standard” state. The RFCs is based on and derived from two
preceding RFCs, in particular, on RFC 4287 [120] on the Atom syndication
format, published in December 2005, and on RFC 5988 [118], an obsolete
version of the specification on Web linking, published in October 2010.

46

2.2 Paradigms, Architectures, and Technologies

2.2.2 Semantic Web Technologies (SWT)

In this section, we introduce the main principles and technologies of the SW,
which are of direct relevance for the research contributions of this thesis. In
particular, we rely on Semantic Web Technologies (SWT) [49] to enable the
explicit representation of knowledge in terms of the data exchanged between
the components in distributed architectures, in terms of expressing the roles
and functions of the components, and in terms of modeling the communication
patterns. As a result, previously heterogeneous data and components can be
mapped and combined based on common knowledge representation. In the
following, we outline the relevant SWT specifications, in particular, RDF (c.f.,
Section 2.2.2.1), SPARQL (c.f., Section 2.2.2.2), and N3 (c.f., Section 2.2.2.3).

2.2.2.1 Resource Description Framework (RDF)

The Resource Description Framework (RDF) [45] is a graph-based data model
that is described by an abstract syntax and is based on the concept of triples.
Every triple is formed by a subject, a predicate, and an object node, where
sets of triples form RDF graphs. In RDF graphs, three types of nodes are
distinguished — IRI [53], literal, and blank node [45, 141]. By convention, the
elements of RDF triples are ordered as listed follows:

¢ Subject (IRI or blank node),
¢ Predicate (IRI), and
* Object (IR, literal, or blank node).

Thereby, subjects and objects are nodes of the corresponding RDF graph and
predicates are the directed arcs, which, in addition, may be nodes in the same
RDF graph.

In Figure 2.8, for example, the node “BOB”, identified by the IRI http:
//example.org/bob#me is the subject of an RDF triple, with the directed arc
identified (in prefix form) by the IRI “foaf:topic_interest” as the predicate, and
the node “The Mona Lisa”, identified by the IRI http://www.wikidata.
org/entity/Q12418 as the object. Several other RDF triples are shown in
the figure, each making an RDF statement about the relation between two re-

47

http://example.org/bob#me
http://example.org/bob#me
http://www.wikidata.org/entity/Q12418
http://www.wikidata.org/entity/Q12418

2 Foundations

sources. RDF datasets support the collection of multiple RDF graphs. Thereby,
every dataset must include one default graph without a name and may include
zero or more named graphs. These named graphs are identified by unique graph
names, which may be IRIs or blank nodes. The RDF specification prescribes
no semantics for the relation between the identifier and the identified graphs,
i.e., the identification is a solely syntactical requirement. [45, 141]

Leonardo Da Vinci
Alice hitp/dbpecia.orgresource
http://exarr ice#me Ja_Vincl

foaf:topic_interest jcterms:tit
f—— “Mona Lisa”

The Mona Lisa

wikidata.org/entity/Q12418

La Joconde a Washington

hitp:/data.eur

Person 11990-07-04"Axsd:date 8618938F41
foaf:Person

Figure 2.8: RDF — Graph Example [141]

RDF terms subsume the different types of nodes and arcs. As listed above,
these can be represented by three different RDF terms, in particular, IRIs,
literals, or blank nodes. The specification for IRIs [53] defines a superset of
URI (c.f., Section 2.2.1.1) that is less restricting on the character set permitted
for the identifiers. While every URI is a valid IRI, not every IRI is a valid URI,
but may be mapped to the URI character set by predefined mappings [45, 53].
Literals denote particular values, e.g., number, boolean, date, or time values.
Their value is annotated by a datatype and in some cases by a language tag.
Blank nodes are local identifiers that depend on specific implementations as
well as concrete syntaxes and express relations between resources without

48

2.2 Paradigms, Architectures, and Technologies

explicitly stating their types. While there is no restriction to the design of blank
nodes, they must be distinguishable from IRIs and literals. Skolemization
may be used to convert blank nodes to IRIs, which should be in the form of
well-known URIs [81] and that can be reused beyond the scope of their local
implementation.

In addition to the IRIs mentioned above, Figure 2.8 shows, for example, the
literal ““1990-07-04" with the datatype “xsd:date” that maps the date string, i.e.,
one of the lexical forms permitted by the specification, to the corresponding
date, i.e., the value space. The literal “Mona Lisa” in Figure 2.8 is, for example,
a syntax-specific simple literal, i.e., specific for the datatype “xsd:string” [45,
141].

Datatypes enable the typing of RDF literals that denote particular values, e.g.,
number, boolean, date, or time values. The RDF specification reuses most
built-in datatypes of the XML Schema Definition (XSD) [127], prefixed by
http://www.w3.0rg/2001/XMLSchema# and excludes a small set of these
datatypes, that are specific for the Extensible Markup Language (XML), e.g.,
“xsd:QName”. The datatypes “rdf:HTML” and “rdf:XMLLiteral” have been
added, at the time of writing, non-normative, for the inclusion of HTML and
XML as literals in RDF. However, any other non-XSD datatype definition may
serve as a datatype in RDF, if the definition adheres to the same abstraction.
Literals consist besides the lexical form, i.e., written form, of a datatype IRI,
and, in case of the datatype “langString”, of an additional language tag. The
datatype IRI, as well as the language tag, enable the mapping of the literal form
to the value space of the literal.

Literal Space Value Space

<“true”, xsd:boolean> true
<“false”, xsd:boolean> false
<“1”, xsd:boolean> true

<“0”, xsd:boolean> false

Table 2.3: XSD — Literal Space to Value Space Mapping Example [45]

49

http://www.w3.org/2001/XMLSchema#

2 Foundations

Table 2.3 shows, for example, the mapping for boolean values defined by the
XSD datatype “xsd:boolean”. While the value space consist of two values,
i.e., “true” and “false”, the literal space permits four different lexical forms,
i.e., “true” and “false” as well as “1” and “0”. The rows show the complete
lexical-to-value-mapping for this datatype.

Construct Syntactic Form Description
Class (a class) C rdf:type rdfs:Class C (aresource) is an
RDF class
Property (a class) P rdf:type rdf:Property P (a resource) is an
RDF property
type (a property) I rdf:type C I (a resource) is an
instance of C (a class)
subClassOf C1 rdfs:subClassOf C2 Cl (aclass)is a
(a property) subclass of C2
(a class)
subPropertyOf P1 rdfs:subPropertyOf P2~ P1 (a property) is a
(a property) sub-property of P2
(a property)
domain P rdfs:domain C domain of P
(a property) (a property) is C
(a class)
range (a property) P rdfs:range C range of P
(a property) is C
(a class)

Table 2.4: RDFS — Main Constructs [141]

Vocabularies facilitate the modeling of semantics that are used in the anno-
tation of data with RDF. While RDF enables the identification of resources,
the inclusion of literal data, and the relation of resources, the semantic mean-
ing of resources, and their relations are identified by IRIs without making
further restrictions or assumptions. These restrictions and assumptions, i.e.,
the semantic modeling, can be provided by conventions, by human-readable
descriptions, or formalized by vocabularies that are themselves modeled in

50

2.2 Paradigms, Architectures, and Technologies

RDF. The Resource Description Framework Schema (RDFS) [37] and the
more comprehensive OWL Web Ontology Language (OWL) [164] support the
definition of these vocabularies as RDF graphs.

Table 2.4 shows the main constructs provided by RDFS. In particular, RDFS
supports the specification of classes and their properties as well as hierarchi-
cal structuring of classes and properties with “rdfs:Class”, “rdfs:Property”,
“rdfs:subClassOf”, and “rdfs:subPropertyOf”. Properties may have a domain,
specified by “rdfs:domain”, as well as a range, specified by “rdfs:range”.
Thereby, RDFS enables the restrictions of predicates to their use with subjects
and objects of only specific types, i.e., enables the description of class-property
assignments and class-class relations. Finally, RDFS defines the typing of re-
sources via “rdf:type”, i.e., the assignment of classes to resource instances.
Different vocabularies may be related to each other by standard RDF mecha-
nisms, e.g., by utilizing “owl:sameAs” [125]. Thereby, RDF facilitates not only
the relation of information on the data level but also on the vocabulary level.

BASE <http://example.org/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
PREFIX schema: <http://schema.org/>

PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX wd: <http://www.wikidata.org/entity/>

<bob#me>
a foaf:Person ;
foaf:knows <alice#me> ;
schema:birthDate "1990—07—-04"A"xsd:date ;
foaf:topic_interest wd:Q12418 .

wd:Q12418
dcterms:title "Mona Lisa" ;
dcterms:creator <http://dbpedia.org/resource/Leonardo_da_Vinci> .

<http://data.europeana.eu/item/04802/243
FA8618938F4117025F17A8B813C5FOAA4D619>
dcterms:subject wd:Q12418 .

Listing 2.2: RDF — Graph Example in Turtle Serialization [141]

51

2 Foundations

Different formats provide means for serializing RDF graphs and datasets, i.e.,
representations the logical data model in documents. Thereby, the same RDF
graph or dataset can be represented by different documents while being equal
on the logical level. A selection of popular RDF serialization formats that
have been standardized by the W3C are the XML-based RDF/XML [65], the
“Turtle family” of N-Triples [41], N-Quads [40], Turtle [131], and TriG [42],
the JavaScript Object Notation (JSON)-based JavaScript Object Notation for
Linked Data (JSON-LD) [155], and RDFa [1, 154, 111, 153] as embeddable
variant for human-readable websites. All formats support RDF graphs, while
only N-Quads, TriG, and JSON-LD support datasets, i.e., multiple RDF graphs
in one document. [141]

Listing 2.2 shows, for example, the Turtle serialization of the RDF graph in
Figure 2.8. The Turtle format provides a relatively human-readable syntax
while being relatively easy processable by machines, i.e., support parsing.

2.2.2.2 SPARQL Protocol and RDF Query Language (SPARQL)

The SPARQL Protocol and RDF Query Language (SPARQL) [6] comprises
a set of specifications for querying and manipulating information modeled
in RDF. To this end, SPARQL provides a query language, that is extended
by query federation capabilities, and defines a set of serialization formats for
non-RDF query results. In addition, SPARQL specifies entailment regimes as
extensions for handling several standard entailment relations, e.g., provided
by native RDF, RDFS, or OWL, to support inferencing in the evaluation of
the query. Finally, SPARQL provides an update language for the modification
of RDF-modeled information, accompanied by a protocol for interaction with
SPARQL query interpreters, and defines a simpler protocol for HTTP-based
access and manipulation of graph stores.

In the following, we use the RDF graph example shown in Turtle serialization
in Listing 2.3 to show some capabilities of the SPARQL query language in
a query example in Listing 2.4 as well as the corresponding query result
in Listing 2.5. The RDF graph example includes sub-graphs with information
about four people with the names “Alice”, “Bob”, “Charlie”, and “Snoopy”, that
are annotated with appropriate ontologies. For every person, the information
about people that are known to this person is included as triples, e.g., “Bob”

52

2.2 Paradigms, Architectures, and Technologies

knows “Alice” (“<bob#me> foaf:name "Bob" ; foaf:knows <alice#me> .”). In
addition, the information about “Alice” includes a type as well as an email
address. The query in Listing 2.4 extracts the information about the name of
every person in the RDF graph and about the people known to this person. The
result is grouped per person as a set of name and count of friends, i.e., the count
of known people. This result is shown in Listing 2.5 in JSON serialization.

BASE <http://example.org/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf—schema#>

<alice#me> a foaf:Person ;
foaf:name "Alice" ;
foaf:mbox <mailto:alice @example.org> .
foaf:knows <bob#me> ;
foaf:knows <charlie#me> ;
foaf:knows <snoopy> .

<bob#me> foaf:name "Bob" ; foaf:knows <alice#me> .
<charlie#me> foaf:name "Charlie" ; foaf:knows <alice#me> .

<snoopy> foaf:name "Snoopy" @en .

Listing 2.3: SPARQL — RDF Graph Example [6]

The SPARQL query language specification [82] defines the syntax and se-
mantics for querying RDF. SPARQL queries are based, in their core, on triple
patterns that are similar to RDF triples (c.f., Section 2.2.2.1) of the form
subject-predicate-object, but may contain variables at each position. A set of
triple patterns comprises as basic graph pattern the most simple form of graph
patterns in the SPARQL query language. These graph patterns are matched
against the query target, i.e., an RDF graph, and generate a solution for each
match of the graph pattern that includes bindings for all variables that are not
optional. Matching in SPARQL includes IRIs as well as literals, in particu-
lar, with taking their specific datatypes or language tags into account and, for
convenience, with short forms for numeric and boolean datatypes. Blank node
labels are included in the solutions, but, similarly to RDF (c.f., Section 2.2.2.1),
only for local identification of resources to provide means for their differenti-

33

2 Foundations

ation. The set of matched solutions comprise a solution sequence, i.e., zero,
one, or multiple solutions, as the base of further query restrictions.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name (COUNT(?friend) AS ?count)
WHERE {

?person foaf:name 7name .

Iperson foaf:knows ?friend .
} GROUP BY ?person ?name

Listing 2.4: SPARQL Query Example [6]

The syntax of the SPARQL query language includes, besides SPARQL-specific
elements, for the production of “TriplesBlock™ [82, Section 19.8] a syntax that
is, besides some minor differences [131, Section 4] aligned with the syn-
tax of the RDF serialization format Turtle (c.f., Section 2.2.2.1). Thereby,
the SPARQL syntax for RDF terms, in particular, for absolute and relative
IRIs, prefixed names, literals, and black nodes, as well as the syntax for
triple patterns, including predicate lists, object lists, collections, and “a” for
“rdf:type”, is almost similar to the Turtle syntax. In addition, the SPARQL
query language specification includes a syntax for query variables in the triple
patterns syntax, i.e., in the form of variable names prefixed by “?” or “$”.
The SPARQL query in Listing 2.4, for example, includes a prefix (“PREFIX
foaf: <http://xmlns.com/foaf/0.1/>") as well as two triple patterns (“?person
foaf:name ?name . 7person foaf:knows ?friend .”) with variables (‘“?person”,
“Iname”, and “?friend”) in the WHERE clause.

Different graph patterns provide the matching capabilities and means for spec-
ifying the expected result of queries. These graph patterns are defined in the
WHERE clause of a query, which, by default, consists of a single empty group
graph pattern that includes one or multiple additional patterns. The SPARQL
query in Listing 2.4 contains, for example, the default group graph pattern,
marked by curly braces, that includes a single basic graph pattern, and that
again consists of the aforementioned two triple pattern, i.e., the nested graph
pattern “{ ?person foaf:name ?name . ?person foaf:knows ?friend . }”. The
simplest forms of graph patterns are the basic graph pattern, in which all triple
patterns must be matched, and the group graph pattern, which includes a set of

54

2.2 Paradigms, Architectures, and Technologies

other patterns that all must be matched. In addition, the optional graph pattern
enables the definition of solution parts that may be included, if they can be
matched, but do not have to be included and the alternative graph pattern en-
ables the merge of multiple patterns for the same solution match [82]. Finally,
also named graphs may be targeted by patterns.

The SPARQL query language specification defines four different forms of
queries that are evaluated against the graph pattern solutions and provide each
a different kind of result, in particular:

SELECT The SPARQL SELECT query returns variables and their bind-
ings as a projection from all graph pattern solutions to the set of selected
variables. This query form supports expressions based on already ex-
isting solutions that bind the expression result to a new variable, e.g.,
“(COUNT(?friend) AS ?count)” in the SELECT query example in List-
ing 2.4.

CONSTRUCT The SPARQL CONSTRUCT query returns a single RDF
graph based on a given graph template. The graph template may con-
sist of both explicit triples and triples patterns variables that include
variables. Solutions include all explicit triples as well as required triple
patterns with bound variables and are merged in a single RDF graph that
is returned as the result. In addition, these queries support through the
GRAPH keyword the extraction of complete or partial named graphs.
In case of equal template and (basic) graph pattern, the specification
defines a short form with omitted WHERE part.

ASK The SPARQL ASK query returns as the result a boolean value that
indicates, in the case of “true”, that at least one solution for a graph was
found, and, in the case of “false”, that no solution was found.

DESCRIBE The SPARQL DESCRIBE query returns as the result a
single RDF graph that describes resources which have been identified by
an IRI or indirectly in the query solutions by a variable. In contrast to all
other query forms, the particular extent of the description is determined
by the query interpreter and may contain information about the identified
resources themselves but also about related resources that are important
in the context.

55

2 Foundations

While the results of CONSTRUCT and DESCRIBE queries are valid RDF
graphs, that may be serialized in one of the serialization formats for RDF (c.f.,
Section 2.2.2.1), SELECT and ASK queries return information serialized in
one of the specific SPARQL query result formats [82].

{
"head": { "vars": ["name" , "count"] },
"results": {
"bindings": [{
"name": { "type": "literal" , "value": "Alice" },
"count": { "datatype": "http://www.w3.0rg/2001/XMLSchemat#integer" , "type
": "typed—literal" , "value": "3" }
oA
"name": { "type": "literal" , "value": "Bob" } ,
"count": { "datatype": "http://www.w3.0rg/2001/XMLSchema#integer" , "type
": "typed—literal" , "value": "1" }
b A
"name": { "type": "literal" , "value": "Charlie" } ,
"count": { "datatype": "http://www.w3.0rg/2001/XMLSchemat#integer" , "type
": "typed—literal" , "value": "1" }
31
}
}

Listing 2.5: SPARQL JSON Query Result Example [6]

A set of SPARQL query result formats provide syntaxes for the serializa-
tion of non-RDF query results, that are based on broadly established existing
specifications. The specification includes, in particular, the SPARQL query
results XML format [15], the SPARQL query results JSON format [145], the
SPARQL query results CSV format [144], and the SPARQL query results TSV
format [144]. Listing 2.5 shows, for example, the result of the SPARQL query
in Listing 2.4 evaluated against the RDF graph in Listing 2.3 serialized in the
SPARQL query results JSON format. In particular, a set with the name and the
count of friends is encoded per person in the result and typed with datatypes if
required. In addition, the data fields for bound variables (“name” and “count’)
are listed in the beginning. For example, the person with the name “Alice”,
typed as literal by default with XSD string, has a count of “3” friends, typed
with the XSD integer datatype.

56

2.2 Paradigms, Architectures, and Technologies

We apply the basic principles of SPARQL and the approach of defining patterns
to identify information needs in our work. Instead of relying on a specific
interface description language, or on providing annotations for the data inputs
and outputs of the components, we define the capabilities for data exchange of
the components in a distributed architecture by using graph patterns.

2.2.2.3 Notation3 (N3)

Notation3 (N3) [26] is an RDF serialization, which is non-XML but is rather
designed to be readable by humans. N3 provides a more compact syntax for
RDF than, e.g., Extensible Markup Language for RDF (RDF/XML), and uses
the language media type “text/n3”. Similarly to Turtle, N3 allows statements
that contain full IRIs, e.g., <http://dbpedia.org/resource/Leonardo_
da_Vinci>, as well as a simple form for string literals, e.g., “Mona Lisa”.
More specifically, Turtle is the subset of N3 that is restricted to RDF. The
fundamentals of N3 are described in N3Logic: A logical framework for the
WWW [27], which is a formalization of the logic underlying N3.

In contrast to other RDF serializations, N3 targets to support both data and
logic descriptions via the same syntax, which is concise and readable.

“The aims of the language are to optimize expression of data and
logic in the same language, to allow RDF to be expressed, to allow
rules to be integrated smoothly with RDF, to allow quoting so that
statements about statements can be made, and to be as readable,
natural, and symmetrical as possible.” [26]

This objective is achieved by a number of options that allow for abbreviations,
by omitting repetitions, and by the overall simplicity of the grammar. Some of
the key features include:

» Use of prefixes for URI abbreviation (using “@prefix”);

* Use of “” for repetition of another object for the same subject and
predicate;

» Use of “;” for repetition of another predicate for the same subject;

» Enabling the quoting of N3 graphs within N3 graphs using “{” and “}”;

57

http://dbpedia.org/resource/Leonardo_da_Vinci
http://dbpedia.org/resource/Leonardo_da_Vinci

2 Foundations

» Use of variables and quantification to allow rules to be expressed.

In terms of grammar and syntax, N3 uses a simple context-free grammar
and provides support for syntax elements also introduced by Turtle, e.g., URI
prefixes, base URIs, blank nodes, predicate lists, object lists, or collections. It
also introduces a number of shorthands for commonly used predicates. Some
examples include:

e “a” for “<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>"
o “=” for “<http://www.w3.0rg/2002/07/owl#sameAs>"
o “=>" for “<http://www.w3.0rg/2000/10/swap/log#implies>"

e “<=" for “<http://www.w3.0rg/2000/10/swap/log#implies>" as inverse
Of 4‘=>77

Benefiting from the aforementioned characteristics, we use N3 as serialization
through this thesis for expressing RDF in combination with rules. When it
comes to the sole annotation of information, we favor Turtle as the RDF-only
subset of N3 but also support other serialization formats.

2.2.3 Linked Data (LD)

Linked Data (LD) [23, 33] as a paradigm paves the way for the evolution
from the Web for humans, i.e., the document-focused WWW, towards the
WoD for machines, which may subsequently act again on behalf of humans
(c.f., Section 2.1). Thus, the WoD focuses on the pragmatic realization of
an actual Web that contains interlinked and semantically enriched data. The
vision of the SW, in contrast, is broader and more comprehensive than the
WoD and includes a wider range of application use cases and technologies
(c.f., Section 2.2.2). In this context, LD applies concepts of the Web for human
users, e.g., the interlinked hypertext, to data [23], in particular, to structured
data. It is targeted towards machines, i.e., is machine-readable, and, therefore,
requires explicit semantics of relations, i.e., the type of relations, instead of
implicit semantics, i.e., links in HTML, that require human interpretation [33].

LD is built on the architecture introduced by REST (c.f., Section 2.2.1) and
the technologies introduced during the evolution of the WWW, in particular,

58

2.2 Paradigms, Architectures, and Technologies

URI (c.f., Section 2.2.1.1), and HTTP (c.f., Section 2.2.1.2). In addition, LD
is built on SWT (c.f., Section 2.2.2), in particular, on machine-readable RDF
(c.f., Section 2.2.2.1), to support extensible semantics for the heterogeneous
landscape of domains, in which LD is published. The introduced links are
restricted in LD to HTTP URIs that are potentially resolvable via HTTP and
link resources as defined by REST. In comparison to the REST paradigm,
the LD paradigm provides in addition to self-descriptive HTTP messages also
self-descriptive data with a graph-based data model, shared vocabularies, and
separation of data from presentation and formatting. Application Programming
Interfaces (APIs) that are based on HTTP and adhere to the LD paradigm
profit from both worlds by providing a uniform interface, if HTTP is used as
the application protocol, and a standardized generic and semantically powerful
data model. Similarly to the Web, the WoD contains no authoritative instance,
and every stakeholder can participate through publication and consumption of
LD.

“The result, which we will refer to as the Web of Data, may more
accurately be described as a web of things in the world, described
by data on the Web.” [33, p. 2]

The idea of LD has been introduced in 2006 by Berners-Lee in an informal
W3C design issue [23] and is synthesized to the four LD principles [23, 33]:

1. “Use URIs as names for things”
2. “Use HTTP URIs so that people can look up those names”

3. “When someone looks up a URI, provide useful information, using the
standards (RDF, SPARQL)”

4. “Include links to other URIs, so that they can discover more things”

These principles are rules that can be broken without harm but with losing
the opportunity of future data reuse [23]. The first principle introduces the use
of URIs, which is common in the SW community, e.g., fostered by the use of
RDF. The second principle introduces the advantage of HTTP as existing and
established Web technology with the Domain Name System (DNS) for handling
the delegation of authorities. The third principle introduces the publishing
of not only ontologies but also of the datasets that are annotated by these
ontologies as well as providing access to these datasets through HTTP. The

59

2 Foundations

fourth principle introduces, similarly to the hypertext in the Web for humans,
the interlinking of datasets with other related and relevant datasets, to enable
link following.

By following these principles, LD enables graph-based information storage,
with the triple as the atomic unit, i.e., subject, predicate, object, where the
subject and object must be an HTTP URI or a literal and an HTTP URI, and
the predicate must be a URI. There are two options for defining identifiers — by
using local identifiers, i.e., URI fragments, and by using global identifiers, i.e.,
full HTTP URIs. The dereferencing of full HTTP URIs, including fragments, is
done by retrieving the message that contains the representation (and probably
further identifiers) and accessing the information about the referenced resource.
As aresult, a browsable LD graph [23, 33] enables link following by:

1. “Returning all statements where the node is a subject or object; and”
2. “Describing all blank nodes attached to the node by one arc”
In this way, by employing link following, complete LD graphs can be traversed.

The approach on RWLD is an extension of the initial LD vision, i.e., a read-
only graph of interlinked resources, and builds on the idea of combining the
architectural paradigms of LD [33] and REST [64]. This combination has been
used in several approaches, e.g., Linked Data Fragments (LDF) [162], Linked
APIs (LAPIS) [157], Linked Data Services (LIDS) [152], RESTdesc [163],
or Linked Open Services (LOS) [108]. As already mentioned, standardization
efforts for the integrated use of LD and REST led to the LDP [150] W3C
recommendation. Furthermore, LD in combination with REST is used for the
foundation of a number of solutions for exposing access to data or creating
query interfaces based on SPARQL queries. For instance, grlc [114], evolving
on top of tools such as BASIL [46], provides a small server for automatically
converting SPARQL queries into LD APIs. In the following, we present the
LDP as, at the time of writing, the only standardization of the combined use of
REST and LD.

2.2.3.1 Linked Data Platform (LDP)

The Linked Data Platform (LDP) [150] W3C specification defines the coherent
use of Web technologies and SWT to enable RWLD [24]. In particular, the

60

2.2 Paradigms, Architectures, and Technologies

LDP specifies the combined use of HTTP and RDF as well as in some cases the
related use of SPARQL. The LDP incorporates and extends the LD paradigm
(c.f., Section 2.2.3) for accessing and manipulating resources, in particular,
the use of HTTP URIs as resource identifiers (1st LD principle), the use of
HTTP as application protocol to create, read, update, and delete resources
(2nd LD principle extended by manipulation of resources), as well as RDF as
semantically powerful data model (3rd LD principle) with means for interlink-
ing resources (4th LD principle). In addition, the LDP specification defines
different types of containers as specialized resources for the management of
resources collections, including the HTTP interaction required for accessing
and manipulating these collections. The LDP specification intentionally fo-
cuses on the definition of resources and resource collections, as well as on the
definition of interactions with these. Thereby, the LDP may serve as the base
for developing more advanced extensions. For example, an extension of the
LDP specification introduces paging support [151] that enables the handling
of large resources and resource collections.

The Linked Data Platform Resource (LDPR) is the most basic concept defined
by the LDP specification. This concept defines characteristics that are common
to all other LDP concepts. In particular, all LDPRs are HTTP resources that
are identified by URIs and are accessible as well as modifiable by utilizing the
HTTP application protocol.

LDP b
Resource
\
TR

/ LDP N\ /\\VLDF’ \
Q\Jon-RDF Source RDF Source)

J

(LDP
Container

\

Bl K '\‘}‘

,X/

LDP N R T‘[DP N
\ Basic (Direct (Indirect)

Figure 2.9: LDP — Resource and Container Hierarchy [150]

61

2 Foundations

Figure 2.9 shows two resources types that are subordinate to this generic LDPR
— the Linked Data Platform RDF Source (LDP-RS) and the Linked Data Plat-
form Non-RDF Source (LDP-NR). LDP-RSs must adhere to RDF, and LDP
servers must provide and accept their state representation in one or more
of the available RDF serialization formats, e.g., Turtle, or RDF/XML [150].
LDP-NRs represent all other kinds of resources that are not modeled in accor-
dance with RDF but are of other types, e.g., binary data like images or music,
structured data like XML documents, or markup data like HTML. In some
cases, LDP-RSs may be associated with LDP-NRs to provide metadata, e.g.,
the metadata about artist, album, and title of an LDP-NR containing a music
song.

The LDPR defines several common characteristics of resources, e.g., manda-
tory support for HTTP/1.1, or equivalence of request URI and base URI
for relative URI resolution. In addition, the LDP makes extensive use of
HTTP request and response header fields, e.g., the mandatory E7ag header
in responses, or the publishing of constraints that enable or disable clients
to perform certain manipulation of LDPRs. Constraints are encoded as URI
references in the HTTP Link response header by using the link relation type
http://www.w3.org/ns/ldp#constrainedBy. Furthermore, every type of
resource must be communicated to clients by using the HTTP Link response
header field, e.g., by using http://www.w3.org/ns/ldp#Resource in com-
bination with a link relation of type type for LDPRs. With respect to interaction
and introduced by the HTTP specification, servers must support the HTTP GET
as well as the HTTP HEAD request methods for LDPRs, including a set of
request headers. In addition, servers must support the HTTP OPTIONS request
method for LDPRs and provide sufficient information about specific, in partic-
ular, optional, LDP capabilities. In conformance with the HTTP specification,
all other HTTP request methods are optional, but are, in some cases, further
detailed by the LDP specification, if servers provide support for them. For
subordinate LDP-RSs, the LDP specification defines Turtle as the default RDF
serialization format.

With the Linked Data Platform Container (LDPC) the LDP specification de-
fines the semantics and interaction options for the most basic concept of a
collection of resources. Collections, as a generic concept, support several use
cases, in which membership relations between superordinate and subordinate
resources exist. Figure 2.9 shows three different types of containers that are in-

62

http://www.w3.org/ns/ldp#constrainedBy
http://www.w3.org/ns/ldp#Resource

2.2 Paradigms, Architectures, and Technologies

troduced by the LDP specification for supporting different groups of use cases
and that are subordinate to the generic LDPR — the Linked Data Platform Basic
Container (LDP-BC), the Linked Data Platform Direct Container (LDP-DC),
and the Linked Data Platform Indirect Container (LDP-IC).

HTTP/1.1 200 OK

Content—Type: text/turtle

Date: Thu, 12 Jun 2014 18:26:59 GMT

ETag: "8caab0784220148bfe98b738d5bb6d13"

Accept—Post: text/turtle, application/ld+json

Allow: POST,GET,OPTIONS,HEAD,PUT

Link: <http://www.w3.org/ns/ldp#BasicContainer> ; rel="type" ,
<http://www.w3.org/ns/ldp#Resource> ; rel="type"

Transfer—Encoding: chunked

@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix 1dp: <http://www.w3.org/ns/ldp#> .

<http://example.org/c1/> a ldp:BasicContainer ;
dcterms:title "A very simple container" ;
Idp:contains <rl> , <r2>, <r3> .

Listing 2.6: LDP — LDP-BC Example in Turtle Serialization [150]

Listing 2.6 shows a simple example of an LDP-BC in response to an HTTP
GET request. The representation contains information about the container, i.e.,
“dcterms:title "A very simple container"”’, as well as about the contained mem-
bers, i.e., “Idp:contains <rl>, <r2>, <r3>". In addition, several HTTP response
header fields provide metadata about the resource, e.g., the link relations that
provide information about the container types LDP-BC and LDPR, i.e., “Link:
[..]".

The LDP defines two types of relationships between superordinate resources,
i.e., collections, and subordinated resources, i.e., resources contained in col-
lections: containment and membership. Containment defines the relation of
a container to the resources that are managed by the container. Therefore,
containment triples define the content of LDPCs, i.e., still existing members
that have been created in interaction with LDPCs. The form of containment
is fixed to the triple pattern with the LDPC URI as subject, followed by the

63

2 Foundations

predicate “ldp:contains”, and the URI of the member resource as object. In
contrast, membership defines the actual superordinate-subordinate relation-
ship, with respect to the current domain. Membership triples enable the use of
domain-specific vocabularies for defining membership relations between the
LDPC and the subordinate resources or between a domain-specific superordi-
nate resource and the subordinate resources. In the simplest case, the LDP-BC,
this relation equals the containment relation, and no domain-specific member-
ship triples are used. In the case of LDP-DC and LDP-IC, this relationship
is managed separately with a set of membership triples. For example, Fig-
ure 2.10 shows a direct container that contains (“ldp:contain”) photo resources
in superordinate-subordinate relation (“foaf:depiction”) to a person resource.

Person Photos Photo
Resource Container Resource
—|dp:contains+
o ~foaf.depiction e

LY, L,

~foaf.depiction

—|dp:contains+

Figure 2.10: LDP — LDP-DC Example [115]

2.3 Concepts and Terminology

With respect to our viewpoint on distributed applications, we define different
core concepts that provide a certain level of abstraction for generalization but
at the same time keep important characteristics with respect to the challenges
of integration.

2.3.1 Component

With the term component, we denote the atomic building blocks of integration
that provide a function to the network. In Figure 2.11, we mark components
with C and provide an enlarged visualization on the right that details the

64

2.3 Concepts and Terminology

inner elements of components. A component encapsulates certain domain-
specific function (c.f., Section 2.3.1.1) as a black box and provides access to
this function through different interaction mechanisms (c.f., Section 2.3.3), in
particular interfaces (c.f., Section 2.3.3.1), requests (c.f., Section 2.3.3.2), and
optional responses (c.f., Section 2.3.3.3). We denote in the detailed component
in Figure 2.11 the domain-specific function with F, the interface with a square,
an incoming request of another component with an inbound dashed arrow, and
an outgoing request to the interface of another component with an outbound
dashed arrow. In this case, we do not show the other component that executes
requests to or receives requests from the detailed component. By enabling data
flows (c.f., Section 2.3.2.1) through these interaction mechanisms, we enable
the integration of components into distributed applications (c.f., Section 2.3.2).
In the following, we use a simple running example with two components, the
first representing a heating system and the seconds representing a temperature
Sensor.

© 0 ©

©

Figure 2.11: Concepts and Terminology — Component

2.3.1.1 Function

With the term function, we denote domain-specific functions and data that we
keep as black boxes. In Figure 2.11, we mark the function of the enlarged
component with F. Functions provide information or require information to
work, or both. Thereby, we abstract away from specialized domain-specific
issues and focus on general integration challenges. For example, the component
that represents the heating system may have access to information about the
current temperature or the target temperature of the system, and to the function

65

2 Foundations

of switching the heating system on and off or of heating up and cooling down
the heating system, by setting a target temperature. Overall, this component
encapsulates the domain-specific heating function as a black box that enables
certain provisioning and consumption of information.

2.3.2 Application

With the term application, we denote distributed applications that are a com-
position of components, combine the distinct function of these participating
components, and, thereby, provide a value-added function that exceeds the
function of the individual components. In Figure 2.12, we mark the distributed
application with A. This distributed application includes a selection of the
components in its composition, that we showed in Figure 2.11. To provide the
value-added function, the components in the composition of distributed appli-
cations must collaborate and, therefore, the components establish data flows
(c.f., Section 2.3.2.1) between each other to exchange information required for
this collaboration. These data flows are established through interaction mech-
anisms (c.f., Section 2.3.3). However, in order to run a distributed application,
at least one component per distributed application is needed to process ac-
tively (c.f., Section 2.3.5) and execute requests, while other components may
passively react. In addition, we indicate in Figure 2.12 with person icons that
different stakeholders may be responsible for the components and the applica-
tion. Different stakeholders may design, develop, and provide the components
and integrate these components into distributed applications. These stakehold-
ers do not have to be of the same organization but may be independent of each
other.

Figure 2.12: Concepts and Terminology — Application

66

2.3 Concepts and Terminology

2.3.2.1 Data Flow

With the term data flow, we denote the aforementioned flow of data between
different components in the compositions of distributed applications. In Fig-
ure 2.12, we mark data flows with solid arrows between the components. These
components establish data flows with the help of interaction mechanisms (c.f.,
Section 2.3.3). Thereby, the direction of interaction is, in general, independent
from the data flow, i.e., the required information may be transferred as payload
in requests (push interaction) or responses (pull interaction). In addition, the
cardinality of data flows between components is not restricted and may be
one-to-one, one-to-many, or many-to-many. In the case of bidirectional data
flows, these data flows are realized as two separated data flows or one data flow
that contains information as payload in the requests and responses. However,
the data flows of distributed applications are, in general, specific to particu-
lar integration scenarios, depending on the set of components, and on their
required collaboration.

2.3.2.2 Application Logic

With the term application logic, we denote the coordination and collaboration
of components in the compositions of distributed applications. For example,
this includes the data flows to be established, the data transformations that
are required, the decisions to be made about the execution of requests, or the
active and passive triggering of processing. In summary, the application logic
comprises the means, which are required on top of the domain-specific function
of components, to realize their collaboration and, thereby, to provide the value-
added function of the distributed application. For example, the temperature
sensor provides measurements in Celsius, and the heating system requires
measurements in Fahrenheit to be able to adjust the heating. In addition, the
temperature sensor can provide the measurements at an interface, and the
heating system can request this information, or the other way round. In our case,
the way in which the transformation between Celsius and Fahrenheit is realized,
the way in which the transfer of this temperature information is realized, and the
decision in what way the heating must be adjusted, are denoted as application
logic that is specific to the integration scenario of these two components.

67

2 Foundations

However, for example, complex data transformations or calculations may be
encapsulated as the domain-specific function of separate components.

2.3.3 Interaction

With the term interaction, we denote the mechanisms mentioned above to es-
tablish data flows between components and, thereby, enable their collaboration
in the composition of distributed applications. In Figure 2.13, we mark the
requests between components with dashed arrows, the interfaces with squares,
and the established data flows with solid arrows. The interaction between two
components requires that one of these components provides an interface (c.f.,
Section 2.3.3.1) and that the other component executes a request (c.f., Sec-
tion 2.3.3.2) on this interface. Optionally, the component that provides the
interface may respond with a response (c.f., Section 2.3.3.3). Thereby, we can
establish the same data flow with a pull or a push interaction. In the case of a
pull, the responses include the payload (c.f., Section 2.3.3.4) representing the
data flow and, in the case of a push, the requests include the payload.

@—»@ Dataflow
M Pull Interaction

Push Interaction

Figure 2.13: Concepts and Terminology — Interaction

2.3.3.1 Interface

With the term interface, we denote the means that components provide to ex-
pose relevant parts of their states to the network, to receive requests of other
components with respect to this state, and to respond to these requests. In addi-

68

2.3 Concepts and Terminology

tion, components may react to state changes through requests to their interfaces.
In Figure 2.13, we mark the interfaces with squares on the components.

2.3.3.2 Request

With the term request, we denote the means that components provide to use
the interfaces of other components and to receive responses. In addition, com-
ponents may react to the responses of their requests at the interfaces of other
components. In Figure 2.13, we mark the requests between components with
dashed arrows.

2.3.3.3 Response

With the term response, we denote the response of a component to the request
of another component at its interface. In Figure 2.13, we mark the responses
implicitly with dashed arrows, i.e., the response has the opposite direction of
the request.

2.3.3.4 Payload

With the term payload, we denote the data that is contained in a request or a
response. In Figure 2.13, we mark the payload implicitly with the solid arrows
for data flows, i.e., the flow of data in a specific direction requires a payload
in the request or response that realizes the data flow. Thereby, the payload is
optional and may be contained only in the request, in the response, or in both,
depending on the requirements of the integration scenario.

2.3.4 Meta-interaction

With the term meta-interaction, we denote the interaction in the deployment
phase of the lifecycle (c.f., Section 2.3.6) of a distributed application, that
prepares the interaction during the runtime phase of the distributed application.
Thereby, we distinguish between publish-subscribe (c.f., Section 2.3.4.1) and
collect-subscribe (c.f., Section 2.3.4.2) meta-interaction.

69

2 Foundations

2.3.4.1 Publish-subscribe Meta-interaction

With the term publish-subscribe meta-interaction, we denote meta-interaction,
in which components provide interfaces that enable other components to reg-
ister their interfaces for receiving certain data as the payload of request to these
interfaces, i.e., push interaction, in later phases. For example, the temperature
sensor component may provide a publish-subscribe interface that enables other
components, e.g., the heater system component, to register their interfaces. In
later phases, the temperature sensor component will transfer, e.g., temperature
measurements, as the payload of requests at the registered interface of the
heater system component.

2.3.4.2 Collect-subscribe Meta-interaction

With the term collect-subscribe meta-interaction, we denote meta-interaction,
in which components provide interfaces that enable other components to reg-
ister their interfaces for the collection of payload through requests at these
interfaces, i.e., pull interaction, in later phases. For example, the heater system
component provides a collect-subscribe interface that enables other compo-
nents, e.g., the temperature sensor component, to register their interfaces. In
later phases, the heater system component requests temperature measurements
at the registered interface of the temperature sensor, that transfers the temper-
ature measurement as payload in the response.

2.3.5 Processing

With the term processing, we denote the active or passive processing of com-
ponents with respect to the provisioning of updated state representation at their
interfaces and the execution of requests to other components. In Figure 2.14,
we mark the active processing with a clock symbol and the passive processing
with a letter symbol. In addition, we provide a scenario-derived example of
active and passive processing in Section 3.1.2.1.

70

2.3 Concepts and Terminology

@ Active Processing

Passive Processing

Figure 2.14: Concepts and Terminology — Processing

2.3.5.1 Active Processing

With the term active processing, we denote the processing that is triggered
by events that are external to the applications, i.e., not introduced by other
components of the application. For example, the processing of the temperature
sensor component may be triggered at a fixed frequency that is determined by
a clock, by measurements of a sensor that is part of the component, when the
difference between measures exceeds a given threshold, or the processing may
be executed by the manual intervention of a human user.

2.3.5.2 Passive Processing

With the term passive processing, we denote the processing that is triggered
by events that are internal to the application, i.e., introduced by other compo-
nents of the application. For example, the temperature sensor component may
measure the temperature with its included sensor, once a request of the heater
system component is executed at the interface.

2.3.6 Lifecycle

With the term lifecycle, we denote the separate but interwoven lifecycles of
components and distributed applications. In Figure 2.15, we provide a simple
visualization of the phases, in which we separate the lifecycle. In addition,
we provide in Section 3.2.3.2 a comparison of lifecycles with respect to our
architecture for designing adaptable components.

71

2 Foundations

Q—b{ Design H Deployment H Runtime m

Figure 2.15: Concepts and Terminology — Lifecycle

2.3.6.1 Component Lifecycle

With the term component lifecycle, we denote the lifecycle of components,
which are independently designed, deployed, and ran. During runtime, they
participate in distributed applications as described in the sections above.

2.3.6.2 Application Lifecycle

With the term application lifecycle, we denote the lifecycle of applications,
which are, similarly to components, designed, deployed, and ran. In this case,
design denotes the selection and composition of components, deployment
denotes the composition-specific adaptation of components, i.e., the adaptation
of interfaces, interactions, and processing, and runtime denotes the established
data flows between participating components, i.e., provisioning of the value-
added function through the collaboration of the components.

72

3 Component Adaptation and
Decentralized Application Control

In this chapter, we detail our work on providing a solution for the adaptation of
components and the decentralized control of distributed applications. We focus
on three main areas: 1) addressing the challenges of having one application
based on a set of heterogeneous components, different devices, and multifold
data; 2) dealing with the coordination of components as part of providing
the function of an overall application, without having a central management
authority; and 3) providing a solution for adapting and updating a running
application, without having to redeploy or re-instantiate the application, i.e.,
adaptation at runtime.

In the following, we first introduce the context of our work on realizing de-
centralized control and present a motivation scenario. Next we describe the
specific challenges that we aim to address and provide a detailed problem
analysis. We derive design requirements for our architectural solution and pro-
vide an architecture for distributed applications with decentralized control.
Based on the application use case, we demonstrate the practical applicability
of our approach by giving the details on an exemplary implementation. Fi-
nally, we conclude by presenting an evaluation of the functional capabilities of
our approach, including the conformance to our design requirements, and the
performance aspects of our implementation.

The content of this chapter is partially based on the publications by Keppmann
et al. [103, 102, 99, 105].

3.1 Introduction

Driven by current technology developments, we are witnessing the increasing
popularity and adoption of the IoT [66, 9], the WoT [167, 72, 70, 68], and the

73

3 Component Adaptation and Decentralized Application Control

SWoT [143, 128] (c.f., Section 2.1), as well as of related visions such as the
14.0[109, 86]. At the same time, the evolution of the Web [18, 25, 28] continues
with technology developments that are driven by the SW [30, 29, 146] and the
WoD [33, 32]. These trends are, on the one hand, accompanied by an increas-
ingly heterogeneous landscape of small, embedded, and highly modularized
devices and applications, by multitudes of manufactures and developers, and
the pervasion of network-accessible “things” within all areas of life. On the
other hand, they are also characterized by an increasing publication of all kinds
of machine-readable data on the Web that can be seamlessly consumed through
Web technologies and subsequently reused and combined in applications.

The aforementioned technology developments are tightly associated with the
growing complexity of handling the integration of heterogeneous components
as part of distributed applications, which fulfill certain needs by providing
value-added function based on the combination of the involved components.
Thereby, these applications may be composed of components that are available
on the local network or that are accessed remotely. In addition, these compo-
nents may be specific to the application use case or provide generic function
for several independent application use cases. We notice these technological
integration challenges not only at the data and protocol level, but also at the
application level. Furthermore, multiple stakeholders may be involved in the
development, provisioning, and integration of components, adding another
layer of complexity to the technological challenges.

Coping with such diverse multi-stakeholder data integration scenarios is a
known challenge, which is already addressed by several approaches that are
tackling the related problems. For example, the LODC [112] is one solution for
multi-stakeholder data integration that enables publishing and consuming of
semantically annotated data by following the LD principles [23, 33]. Thereby,
adhering to the underlying LD principles enables integration at semantic level,
data model level, as well as protocol level (c.f., Section 2.2.3). In this context,
the LDP recommendation [150] of the W3C combines the LD principles
with the REST paradigm [64] and specifies RWLD resources and containers
(c.f., Section 2.2.3.1). By enabling RWLD, the LDP may serve as integration
technology for applications in a heterogeneous landscape of components.

However, establishing a consensus on the level of protocol, data model, and se-
mantics is not enough. The actual design and granularity of interfaces, interac-
tion, and semantic annotations as well as the deployment of application-specific

74

3.1 Introduction

dataflows and logic with respect to the requirements of specific integration
scenarios introduces several new problems. In particular, these problems are
aggravated as more stakeholders get involved in the development, provision-
ing, and integration of components to distributed applications. By extending
and interweaving the RWLD integration architecture with further SWT, e.g.,
SPARQL, or N3, we approach these challenges and propose an architectural
solution for several related problems without breaking the compatibility with
the established consensus on the level of protocol, data model, and semantics.

3.1.1 Scenario

We motivate the problems that we address with a specific use case scenario,
which we use as a running example throughout the chapter. Current technology
developments influence not only our day-to-day activities but also businesses
and the way products and services are developed and produced. In this context,
we look at a typical situation in the manufacturing floors of factories, in which
the safety of humans is an ongoing effort.

Figure 3.1: Scenario — Monitoring a Factory Floor

In particular, the unintentional intrusion of humans into the operational areas
of machines or robots increases the risk of injury. One way to tackle this
problem is the tracking of human bodies and movements and the matching of
the coordinates of their body parts against floor layouts with included safety
areas, to automatically trigger warning alarms or emergency stops of machines
and robots.

75

3 Component Adaptation and Decentralized Application Control

Figure 3.1 shows a simple overview of the monitoring setup in our scenario,
which involves the following infrastructure and components, i.e., devices, ser-
vices, and resources.

Tracker (C1) The tracking (C1) component consists of depth video cam-
eras with integrated body tracking algorithms, that provide body track-
ing to identify the joints and the skeleton structure of people who are
in range as well as their coordinates with respect to the location of the
depth camera.

Machine (C2, C3) The setup comprises production machines, alarms,
mobile devices, and sensors that provide data about their current state
and support appropriate reactions, e.g., emergency stops, or alarms. In
our scenario, we explicitly model two machines as components (C2, C3).

Layout (C4) The layout (C4) component is a virtual resource that pro-
vides data about the layout of the factory floor, including the position
of the tracker, the different machines, and their safety zones. This data
is rather static but may be updated if machines are newly installed or
moved to different locations.

Screen (C5) The screen (C5) component provides information about
the current state of the monitored factory floor and visualizes the floor
plan, machines, safety zones, and alarms in an integrated manner.

Network The network itself is not a component but represents the under-
lying infrastructure that connects all components and enables interaction
between these components in a generic and domain-independent manner.

The monitoring application in our scenario, visualized in Figure 3.1, is im-
plemented as a distributed application. With respect to the function of every
single component, the application provides the value-added function of saving
humans from injuries by utilizing warnings or emergency shutdowns. To reach
this goal, the involved components, i.e., tracking, machines, robots, alarms,
or mobile devices, need to exchange data to provide information about the
current safety state of humans on the factory floor and, if required, to react on
this safety state, e.g., execute an emergency stop if a human joint is within a
safety zone. Furthermore, determining when human joints intrude into safety
zones is realized by matching the joint coordinates, calculated by the tracking
algorithms, against the layout of the factory floor with the included safety zone

76

3.1 Introduction

coordinates. Both, the matching of coordinates as well as informing devices
about required actions are controlling elements, i.e., application logic, that
is part of the distributed application but not, in the first place, of a single
component.

The specific challenges that we want to highlight with our distributed applica-
tion scenario are threefold.

1. Different types of devices, with diverse interfaces, that produce and con-
sume a variety of data with different semantics, formats, and structure,
must be integrated. These components are not necessarily manufactured,
provided, or integrated by the same but by different stakeholders.

2. While the components must be coordinated as part of providing the
value-added function of the overall application, we want to avoid a
centralized coordinating component, but advocate a distributed solution.

3. The positions of the machines or the safety areas may change over time.
However, having to redesign and redeploy all components of the appli-
cation every time the setup changes is time-consuming and inefficient.

Therefore, a flexible solution is required, where the tracking service and de-
vices can be developed during their design time and additional adaptations
to specific requirements of the integration scenario can be integrated later,
i.e., during deployment, or runtime. In the following, we use this scenario to
support the detailed problem analysis, to motivate design requirements for our
architecture, to exemplify the proposed architecture, to provide an exemplary
implementation, and to derive an evaluation scenario.

3.1.2 Challenges

Some important aspects of dealing with integration in the context of distributed
applications still remain unaddressed, especially in the context of existing ap-
proaches that focus on the integration of components from a data-centric point
of view. Still, the challenges on the level of protocols, interactions, data formats,
data models, and semantics are pressing problems that need to be addressed
(c.f., Communication Heterogeneity in Section 3.1.2.1; Information Hetero-
geneity in Section 3.1.2.2). Furthermore, we face challenges with respect to

77

3 Component Adaptation and Decentralized Application Control

the requirements of integration scenarios, in which multiple stakeholders are
independently involved in the development, provisioning, and integration of
distinct components (c.f., Requirements Unawareness in Section 3.1.2.3; De-
velopment Inefficiency in Section 3.1.2.4). In addition, we witness challenges
that result from creating and controlling composite applications from a set
of components that have different functions but that collaborate to provide
the value-added function of the application, by transferring data between each
other through interactions over a network (c.f., Decentralized Control in Sec-
tion 3.1.2.5; Control Deployment in Section 3.1.2.6). In the following, we
discuss these challenges in more detail.

3.1.2.1 Communication Heterogeneity

During the integration of a number of distinct components, that are developed,
provided, and integrated by different stakeholders, we face Communication
Heterogeneity in terms of different interaction, meta-interaction, and process-
ing patterns used for communication (c.f., Figure 2.12). The communication
between components is required to establish data flows and, thereby, exchange
messages that embody the information required for providing the overall func-
tionality of the composite application. The technical details and conventions
of interactions, meta-interactions, and processing may be subject to the speci-
fication of protocols.

In the first place, data flows between components can be established through
complimentary interaction patterns (c.f., Section 2.3.3). On the one hand,
components may provide interfaces to expose their function on the network,
thereby enabling other components to issue requests against these interfaces,
and, by exchanging data in these request, to use the function of the components.
On the other hand, components themselves may issue requests to the interfaces
of other components to use their function by transferring data to or from these
components. Thereby, both interaction patterns are capable of transferring data
from components to other components, i.e., pushing data, or to transfer data
from other components to the components, i.e., pulling data. For example,
the machine components (C2, C3) in our scenario provide interfaces that are
used by the tracker component (C1) to issue requests that trigger emergency
shutdown, if security breaches appear. In contrast, the layout component (C4)
provides an interface that enables the tracker component (C1) and the screen

78

3.1 Introduction

component (C5) to pull information about the layout of the factory floor on
demand.

In addition, components may provide capabilities at their interfaces to enable
in advance the registration of intented data flows by other components through
meta-interaction (c.f., Section 2.3.4). On the one hand, components may sub-
scribe themselves for receiving certain data that is published at the other
component, i.e., publish-subscribe meta-interaction. On the other hand, com-
ponents may subscribe themselves for the collection of data through requests by
the other component that is provided at their interfaces, i.e., collect-subscribe
meta-interaction. For example, the tracker component (C1) provides an inter-
face that enables other components, e.g., mobile devices, to register themselves
for security breaches at all or at a selection of machines, in order to be able to
take respective actions, e.g., informing the human users via alarms.

Furthermore, requests that transfer data to or from other components and
the provisioning of data at interfaces can be initiated by different processing
patterns (c.f., Section 2.3.5). On the one hand, components may be actively
processing and have the data available at their interface or transfer it through re-
quests to other components. On the other hand, components may be passively
processing and provide data on demand. For example, the tracker compo-
nent (C1), that is actively processing, records the factory floor at the fixed
frequency of the depth video camera. After every interval, the component pro-
cesses the data, i.e., calculates the coordinates of joints for the body tracking
and provides this information at an interface or transfers the data to other com-
ponents through requests. In contrast, in a different application scenario, the
tracker component (C1) could be passively processing and records the factory
floor only if other components request the body tracking information at the
interface, then processes the data, and responds with the information. Option-
ally the component may cache this information for subsequent request for a
predefined TTL. The same processing patterns can be applied for requests of
components to other components. In the end, per distributed application, at
least one component must provide active processing to directly or indirectly
trigger the processing of all other components that provide passive processing.

Integrating several components with diverting requirements on interaction,
meta-interaction, and processing patterns into one distributed application is
a challenge, in particular, if different stakeholders design these means for
communication a priori and not aligned with each other.

79

3 Component Adaptation and Decentralized Application Control

3.1.2.2 Information Heterogeneity

The Information Heterogeneity of data that components communicate through
interactions between each other is another integration issue. On the one hand,
this heterogeneity appears regarding different data formats and data models,
i.e., the way, in which information is conceptually structured and represented
as data structures. On the other hand, this heterogeneity appears regarding the
non-existing or diverging semantics of the data, i.e., the meaning of data across
a heterogeneous landscape of components.

Components may use different formats to encode the information that is trans-
ferred via interactions to or from interfaces. With respect to the REST architec-
tural style (c.f., Section 2.2.1), this encoded information is the representation of
the resources, i.e., of the underlying entities that are described by this informa-
tion. Components having to support different and diverging data formats, that
must be integrated into one application, increases the integration effort even
more. For example, the tracker component (C1) may provide information about
security breaches serialized in JSON-LD, while the machine components (C2,
C3) partially support only XML as serialization data format.

Besides different data formats for representing the same information, the con-
ceptual structure of the information may adhere to the same or different data
models. In the first place, different data formats for the same data model allow
conversion between these data formats and, thereby, utilization of the optimal
format depending on the use case. However, if the data models for representing
information diverge between components, the integration is, in general, more
challenging. For example, the RDF data model enables the description of in-
formation about entities and their relations in a graph-based manner without
enforcing a particular data format (e.g., RDF/XML, Turtle, or JSON-LD).

Furthermore, even if components provide overlapping support for a set of data
formats and the data, that is transferred between components, adheres to the
same data model, the semantics of the data may remain unclear, i.e., the same
data is interpreted in different ways by different components. For example, the
screen component (C5) in our scenario receives coordinates about the layout of
the factory floor from the layout component (C4) in centimeters. At the same
time, the screen component (C5) receives coordinates of human joints from
the tracker component (C1) in millimeters. This different interpretation of the

80

3.1 Introduction

coordinates must be considered by the screen component in order to be able to
display a correct overview of the current safety situation.

Integrating several components with diverting data formats, data models, and
data semantics into one distributed application is a challenge, in particular and
similar to the heterogeneity of communication, if different stakeholders design
these the representation of information a priori and not aligned with each other.

3.1.2.3 Requirements Unawareness

In integration scenarios, in which components are built by several manufactur-
ers or developers and in which these components are provided and integrated by
others, the manufacturers of components hardly know the requirements of all
possible integration scenarios at design time and, thereby, face Requirements
Unawareness. Therefore, they can only provide default interaction mechanisms
but are unable to adapt components to provide the optimal solutions for specific
use cases.

Figure 3.2: Problems — Requirements Unawareness

In Figure 3.2, we abstractly visualize three different applications composed
from the same set of components but with different data flows, which are
specific to the respective integration scenarios. The integrating stakeholders,
indicated by the person icons, are aware of the requirements of their integra-
tion scenarios but use already existing components that different stakehold-
ers may provide. These stakeholders manufactured their components before
the integrating stakeholders knew their specific requirements. In addition, the
problems Communication Heterogeneity and Information Heterogeneity ap-

81

3 Component Adaptation and Decentralized Application Control

ply. Two drivers of this problem are the increasing modularization and the
multi-stakeholder situations.

In contrast to monolithic software architectures, current technology develop-
ments that accompany visions such as the IoT, WoT, and WoD, propagate
small, modular components and, subsequently, foster the composition of ap-
plications with value-added function. On the one hand, this modularization
leads to the specialization of components that tend to be smaller and focused
on a specific function. On the other hand, this modularization leads to gener-
alization, i.e., while being more specialized, the function itself becomes more
generic in terms of the potential use in multiple application cases. To foresee
the requirements of all these application cases and, subsequently, to provide
the optimal communication mechanisms (c.f., Section 3.1.2.1) as well as the
optimal information (c.f., Section 3.1.2.2), is no-longer feasible at design time
of the component. For example, the tracker component (C1) in our scenario
is specialized on the function of body tracking in the area that is covered by
the depth camera. This function, in contrast, is not specific to our applica-
tion scenario, but is generalized enough to provide a potential use in several
application cases, e.g., in areas like art, games, sport, and several others.

The problem is aggravated the more stakeholders are involved in the devel-
opment, provisioning, and integration of the components that are included in
the composition of applications. In such multi-stakeholder integration scenar-
ios, reaching an agreement on a common set of communication mechanisms
and representation of information is challenging. The more heterogeneous and
non-overlapping this set is, the more customized solutions must be developed
during the process of integration. In contrast, multiple components developed
by one stakeholder tend to be more compatible in terms of integration-relevant
technologies.

3.1.2.4 Development Inefficiency

Even if the requirements of all integration scenarios would be known be-
forehand, we face a Development Inefficiency issue. This problem finds its
expression in the dimensions complexity of components and development as
well as unprofitability of development.

82

3.1 Introduction

While the components get more modularized and, thereby, more specialized
with generic use for more application cases, the adaptation of their commu-
nication capabilities and information representation may lead again to more
complexity. In other words, implementing all requirements in one component
or several variants of a component, each with the requirements of a different
integration scenarios, leads to complex architectures or complex developments
respectively.

As a result, this development of complex components or several variants of
components may also be inefficient in terms of time and, subsequently, in terms
of business requirements. In other words, the time-consuming implementation
of all potential requirements may be, more often than not, unprofitable.

3.1.2.5 Decentralized Control

With respect to the individual components, which collaboratively form a dis-
tributed application, and, therefore, must provide appropriate means for com-
munication and representation of information, the distributed applications it-
self requires controlling logic that coordinates the functions of the participating
components. In our scenario, this controlling application logic is, for example,
the matching of body tracking coordinates with the coordinates of the safety
areas, deriving the decisions about security breaches, and, subsequently, trig-
gering the execution of emergency stops. This controlling logic is not part of
the original function of individual components. In particular, enabling this con-
trolling logic as Decentralized Control, that is distributed on several distinct
and independently developed components, is challenging. Depending on the
integration scenarios, centralized control, decentralized control, and mixed,
i.e., hybrid control, are valid integration patterns.

The default pattern for the integration of a composition of components into
an application is a custom component, which controls the application in a
centralized manner, by pulling data from source components and pushing it to
sink components, with optional calculation and decision making in between.
We visualize this situation with the application on the left in Figure 3.3. In this
scenario, the integrating stakeholder developed the component in the middle
with the sole function of coordinating the collaboration of the three other
preexisting components. In the scenario in the middle, these components take

83

3 Component Adaptation and Decentralized Application Control

over the use case-specific application logic of coordinating the collaboration in
addition to their domain-specific function. The application in the scenario on
the right combines both integration patterns. The custom component as well
as the preexisting components handle parts of the use case-specific application
logic and establish the data flows. For example, we do not include a custom
controller component in our scenario but require that all controlling application
logic, such as matching of coordinates, or sending appropriate requests, in the
case of security breaches, is performed by the participating components on
behalf of the overall application.

8 Ia

Figure 3.3: Problems — Centralized, Decentralized, and Hybrid Control Patterns

The challenging control pattern is the decentralized control one. While cen-
tralized control is a valid integration pattern, integration scenarios may require
partial or complete decentralized control, i.e., the controlling logic that is
specific to the distributed application must be handled by the participating
components themselves. We visualize this scenario with the application in the
middle in Figure 3.3. The reasons for such a solution are manifold and include,
e.g., omission of custom controlling components, separation of concerns, pre-
vention of performance bottlenecks, satisfaction of latency requirements, or
enabling redundancy of functions. For example, the tracker component (C1)
in our scenario, that provides body tracking of humans, should react with
requests to the machine components (C2, C3), if certain coordinates are not
within the safety areas, after matching the body tracking with the coordinates
of the safety areas, provided by the layout component (C4). The first machine
component (C2) should react to a valid request with an emergency stop and, in
addition, propagate the emergency stop to the second machine component (C3),
that is, for example, within the same production line.

84

3.1 Introduction

Consequently, hybrid integration scenarios are also valid and challenging, in
which custom controller components partially handle the application logic,
while other parts of the application logic are handled by the other components.
We visualize this scenario with the application on the right in Figure 3.3.

3.1.2.6 Control Deployment

Closely related to the controlling application logic, we need to be capable to
actually instruct the participating components to adapt their behavior according
to this logic and, thereby, face a Control Deployment problem. In particular,
if multiple stakeholder are involved and we face Requirements Unawareness
and Development Inefficiency, the instruction of components to enable Decen-
tralized Control is required after their design and development, i.e., during the
integration in specific integration scenarios.

If both the component lifecycles and the application lifecycle (c.f., Sec-
tion 2.3.6) are within the control of the integrating stakeholder, the controlling
application logic can be integrated in the components by adaptation through
redesign. However, in multi-stakeholder situations, these lifecycles take place
at different points in time, i.e., components are designed and provided before
the design and deployment of the application starts. For example, the tracker
component (C1) in our scenario has been designed with its domain function,
i.e., body tracking, and is provided as a component before the integration
scenario is even known. No controlling application logic, e.g., requesting the
layout, or matching the coordinates, has been implemented in the component
in advance. In a similar fashion, this applies to all other components in our
scenario.

In these cases, we face the problem of instructing individual components
during their deployment or runtime with the controlling application logic. The
challenge here is that there are no means to represent this application logic in a
domain-independent manner. Furthermore, components provide no means for
deploying and interpreting this application logic. In addition, the representation
and deployment of application logic is related to Communication Heterogeneity
and Information Heterogeneity, i.e., may add another layer of complexity to
these problems. The representation of controlling application logic adds to the
heterogeneity of information and the deployment of application logic adds to

85

3 Component Adaptation and Decentralized Application Control

the heterogeneity of communication, if this deployment is executed through
interactions at runtime.

3.1.3 Related Work

Semantic approaches have already been developed and applied in the context
of adaptation for distributed solutions for both data and applications. In this
context, related work can be split into three main areas: 1) distributed Read-
Write Linked Data (RWLD), 2) creating composite applications based on Web
of Things (WaT) technologies, and 3) applications based on the Semantic Web
of Things (SWoT).

Read-Write Linked Data builds on the idea of combining the architectural
paradigms of Linked Data [33] and REST [64]. This combination has been
used in several approaches, e.g., LDF [162], LAPIS [157], LIDS [152], REST-
desc [163], or LOS [108]. As already mentioned, standardization efforts for
the integrated use of Linked Data and REST led to the LDP [150] W3C recom-
mendation. Furthermore, Linked Data in combination with REST is used for
the foundation of a number of solutions for exposing access to data or creating
query interfaces based on SPARQL queries. For instance, gric [114], evolving
on top of tools such as BASIL [46], provides a small server for automatically
converting SPARQL queries into Linked Data APIs.

The IoT [9] paradigm is about connecting every device, application, object, i.e.,
thing, to the network, in particular the Internet and thus to ensure connectivity.
The Web of Things (WoT) [70] in order to provide integration of devices,
applications, objects, i.e., “things”, not only on the network layer, i.e., the
internet, but also on the application layer, i.e., the web. This can be achieved by
making things part of the web by providing their capabilities as REST services,
based on URIs for identification and HTTP as application protocol for transport
and interaction. Integrating these technologies has been, for example, addressed
for embedded devices in [54].

The extension of IoT to WoT is primarily focused on the interoperability be-
tween things on the application layer. In order to foster horizontal integration
and interoperability the Semantic Web of Things (SWoT) [91] focuses a com-
mon understanding of multiple capabilities and resources towards a larger
ecosystem by introducing Semantic Web technologies to the IoT. Challenges

86

3.1 Introduction

related to SWoT have been, for example, addressed by the SPITFIRE [128]
project, or the MOCAP [139], both in the area of sensors. We build upon
several synergies introduced by a common resource-oriented viewpoint of the
LD and REST paradigms. These paradigms also play a key role in WoTl and
in particular SWoT to cope with heterogeneous data models and interaction
mechanisms. However, integrating decentralized components into applications
without central control, even with a clear interaction model and semantically
powerful data model, requires to distribute the controlling intelligence, at least
to some extent, to the components. Our approach aims to enable the adaptation
of components to specific application scenarios at runtime, while still being
compatible with other approaches based on read-write LD REST resources.

3.1.4 Contributions

With respect to the challenges presented in Section 3.1.2 and advancing the
current state of the art, we make the following contributions:

* In Section 3.2.1, we conduct a Requirements Analysis with respect to
the identified challenges and derive high-level requirements for SWoT
applications in general as well as detailed requirements for components
that must be supported as part of our approach.

e We present in Section 3.2.2 our Smart Component-based Integration
Architecture that enables the composition of distributed applications
from components, by utilizing a subset of these components that follow
our approach for making adaptations.

An essential element of the integration is the Smart Component (SC)
concept and architecture, which we present in Section 3.2.3 — first, by
presenting the high-level architecture, and, second, by elaborating on the
architectural details that enable us to fulfill the requirements.

* The SC approach is implemented in a domain-independent manner by
the Smart Component Adaptation Layer (SCAL), which we describe in
Section 3.3.1 and where we give an overview of the elements participat-
ing in the software architecture.

87

3 Component Adaptation and Decentralized Application Control

* We describe the Smart Component Adaptation Ontology (SCAO) as part
of the implementation in Section 3.3.2, which enables us to describe the
adaptations of SCs.

 In Section 3.3.3, we describe the NIREST Smart Component as an exem-
plary domain-specific SC for body tracking, which supports our approach
for adaptations at runtime.

* We evaluate our approach and its implementation by conducting an
Evaluation of Function in Section 3.4.1, in which we show the SC-
based integration of two application compositions by adapting and re-
adapting SCs to provide the required interaction and processing. By
evaluating these adaptations step-by-step, we emphasize the fulfillment
of the requirements and, thereby, the solution provided with respect to
the challenges.

* In addition to the evaluation of function, we present the results of the
Evaluation of Performance by measuring the overhead of our implemen-
tation on top of the domain-specific function.

3.2 Approach for Smart
Component-based Integration

With increasing modularization, various integration burdens become more
visible. This can be observed, for example, during the integration of smart
home sensors, classical web services, household appliances, and mobile de-
vices into a single home automation application, or, during the integration of
industrial machines with monitoring and alarm systems, as described in our
integration scenario in Section 3.1.1. This situation is aggravated in multi-
stakeholder situations, in which components originate from different domains
and manufactures. In these cases, we are challenged with the creation of a com-
mon integration architecture, that enables the collaboration of all components,
including mappings for compatibility between data models and protocols.

We described a selection of problems, that are relevant in the context of this
approach, in Section 3.1.2. The first two integration challenges, which we se-
lected, are: 1) the different interaction and processing mechanisms, which we

88

3.2 Approach for Smart Component-based Integration

described as Communication Heterogeneity (c.f., Section 3.1.2.1), and 2) the
incompatible data models, data formats, as well as missing or ambiguous data
semantics that hamper the integration, which we described as Information Het-
erogeneity (c.f., Section 3.1.2.2). In particular, in multi-stakeholder situations
the creation of a common integration architecture requires broadly accepted
paradigms and standardized technologies. Aligned with the visions (c.f., Sec-
tion 2.1) on the IoT, WoT, and SWoT as well as on the Web, SW, and WoD, we,
therefore, build as preliminaries on established architectural paradigms and
principles for addressing the aforementioned two problem areas. In particular,
we build on the REST and LD paradigms, with their related technologies and
specifications. In addition, we incorporate technologies from the SWT in our
approach.

As the first foundational part of our approach, we build on the REST [64] to
overcome Communication Heterogeneity. The REST paradigm introduces a set
of architectural constraints that restrict the degrees of freedom for interfaces as
well as the interaction with these interfaces and, thereby, ease the integration.
We described the REST paradigm in detail in Section 2.2.1. In a nutshell, the
support for REST can be described by the Richardson maturity model [165] in
four subsequent levels:

0. No support, request are tunneled through HTTP.
1. Resources are distinguished and identified by URIs.
2. HTTP verbs enable resource access and manipulation.

3. Embedded hypermedia controls relate interface parts.

While REST is architecture-agnostic in general, we use the variant that is built
on Web technologies such as URIs and HTTP as implied by the Richardson
maturity model.

As the second foundational part of our approach, we build on the LD [23, 33]
principles to overcome Information Heterogeneity. We described LD in detail
in Section 2.2.3. LD provides means for capturing and accessing information
and its semantics by combining the REST paradigms in its Web-based vari-
ant with SWT technologies. Thereby, LD does not limit the heterogeneity of
information in terms of domains.

89

3 Component Adaptation and Decentralized Application Control

Several technologies accompany the REST and LD paradigms, in particular,
LDP, LR, HTTP, URI, and RDF. The LDP (c.f., Section 2.2.3.1) incorpo-
rates these technologies and their specifications in one single specification that
defines the basics of RWLD with respect to the REST and LD paradigms.
Therefore, the LDP specification is our choice as a foundation for addressing
Communication Heterogeneity and Information Heterogeneity. However, com-
ponents that adhere to the LD paradigm subsequently adhere, in general, to our
integration architecture (c.f., Section 3.4). Therefore, these should expose rel-
evant parts of their state as resources identified by URIs (c.f., Section 2.2.1.1),
that are accessible through HTTP (c.f., Section 2.2.1.2) as application pro-
tocol, provide representations that adhere to the RDF (c.f., Section 2.2.2.1)
data model, and use Link Relations (c.f., Section 2.2.1.3) in their resource
representations to connect to relevant resources.

We are aware, that the enforcement of the one, common integration architecture
on every component may not always be the best solution and probably in
specific cases can even negatively affect the overall function. For instance,
certain protocols and data formats might suit local conditions considerably
better than the integration architecture, e.g., in the case of wireless transmission
protocols with low energy and computing power consumption. In these cases,
dedicated components may be required as proxies or gateways between domain-
specific architectures and the common integration architecture. The appearance
of proxies and gateways, i.e., reverse proxies, is already foreseen by the REST
architectural style (c.f., Section 2.2.1). In addition, we present an approach on
the mapping of domain-specific architectures and our integration architecture
in Chapter 4.

3.2.1 Requirements

Requirements Engineering (RE) [89] aims to determine, model, and specify
the required and desired properties of software systems. However, what we are
currently witnessing in the context of developing WoI and SWoT systems is
the diversity of domain-specific and use case-specific systems, that are not so
much concerned with thorough requirements analysis but are rather focused
on quickly providing the function that is needed. We argue that the reasons for
this are twofold. First, RE is only now starting to develop the means to support
WoT and SWoT system development, beginning with first steps, for example, in

90

3.2 Approach for Smart Component-based Integration

the representation of context. Second, traditional RE builds on the assumption
that the knowledge, which is used to formulate the requirements exists a priori
and can be captured and specified. However, for WoT systems this assumption
quite frequently does not hold.

CPS-RQ1 Compositionality

Defining components and composing them

CPS—-RQ2 Distributed Sensing, Computation and Control

No centralised sensing, computation or control

CPS—-RQ3 Physical Interfaces and Integration

Realising contact with the physical world

CPS—-RQ4 Human Interfaces and Integration

Need to interface the CPS with human influence and perception
CPS—RQ5 Information

From Data to Knowledge: capturing raw—data—to—trusted—knowledge dependency
CPS—-RQ6 Privacy, Trust, Security

Privacy, trust and security requirements for systems based on the physical layer
CPS—RQ7 Modelling and Analysis — Heterogeneity, Scales, Views
Dealing with heterogeneity in terms of creating scales and views over data
CPS—RQ8 Software

Traditional programming languages and structures are not really suitable
CPS—-RQ9 Robustness, Adaptation, Reconfiguration

Dealing with dynamic environments

CPS—-RQ10 Societal Impact

Need for social acceptance of the new systems

CPS—-RQ11 Verification, Testing and Certification

Approaches for ensuring correctness

Listing 3.1: Cyber-physical System Requirements [116]

The IoT, the WoT and, subsequently, the SWoT share many characteristics with
Wireless Sensor and Actuator Networks and Cyber-physical Systems (CPSs),
which involve the connection of real world objects into networked informa-
tion systems including the Web [48]. Therefore, we approach the requirements
analysis by exploring how the requirements for CPSs propagate to also define
the WoT systems. In particular, the top requirements for building CPSs [116],
i.e., Cyber-physical System Requirements (CPS-RQs), are summarized in List-
ing 3.1.

91

3 Component Adaptation and Decentralized Application Control

WoT and SWoT frameworks for CPS systems can be developed to augment the
IoT and thus deal with issues such as information-centric protocols, determin-
istic Quality of Service (QoS), context-awareness, etc. In this way, some of the
requirements listed above can already be addressed. Still, quite a few of the
listed points remain relevant on the WoT and SWoT level or translate to new
ones. In the following we have used the CPS-RQs and the motivation scenario
in order to define requirements for realizing WoT and, in consequence, SWoT
applications, i.e., Semantic Web of Things Requirements (SWoI-RQs). These
requirements are summarized in Listing 3.2.

SWoT-RQ1 Provide Device Abstraction in Terms of Components

Overcoming devices heterogeneity by defining a converging abstraction over devices
in terms of components (CPS—RQ1)

SWoT—-RQ2 Support Uniform Interfaces and Integration

Defining compatible uniform interfaces for devices, which support the creation of
composite applications (CPS—RQ3)

SWoT-RQ3 Knowledge Representation

Overcoming data heterogeneity via semantic representation (CPS—RQ5, CPS—-RQ7)

SWoT-RQ4 Support Distributed Computation and Control

No centralised computation or control, application logic is distributed among
participating components, without having a centralised controller (CPS—-RQ2)

SWoT-RQ5 Enable Robustness, Adaptation, Reconfiguration

Supporting adaptability and reconfiguration not only at design time but also at
deployment and runtime (CPS—RQ9)

SWoT-RQ6 Provide Human Interfaces and Interaction

Need to interface with human influence (CPS—RQ4)

SWoT—-RQ?7 Ensure Privacy, Trust, Security

Privacy, trust and security specific for WoT systems (CPS—RQ6)

SWoT—-RQ8 Provide Adequate Software

Programming languages and structures suitable for WoT (CPS—RQ8)

SWoT-RQ9 Consider Societal Impact

Need for social acceptance of the new systems (CPS—RQ10)

SWoT-RQ10 Support Verification, Testing and Certification:

Approaches for ensuring correctness (CPS—RQ11)

Listing 3.2: Semantic Web of Things Requirements

In our work, we focus on the first five requirements SWoT-RQ1 to SWoT-RQ5.
These selection of SWoI-RQs relates to our challenges in Section 3.1.2. In

92

3.2 Approach for Smart Component-based Integration

the following, we derive detailed requirements for our approach with respect
to these challenges and, thereby, for the selected SWoI-RQs. We use existing
Web and SW paradigms and technologies to address these requirements.

3.2.1.1 Compliance with Integration Paradigms

Our first requirement, with respect to the challenges related to the problems of
Communication Heterogeneity (c.f., Section 3.1.2.1) and Information Hetero-
geneity (c.f., Section 3.1.2.2) is the Compliance with Integration Paradigms.
In Section 3.2, we introduced broadly accepted paradigms and technologies,
on which we rely on as foundation to address basic integration challenges. In
particular, we build on the REST and LD paradigms and their related tech-
nologies. Consequently, we require that our approach must incorporate both
paradigms, while extending the related technology to address the more ad-
vanced problem areas. On the one hand, we thereby foster the acceptance and
lower the technological barriers of our approach. On the other hand, we en-
sure the compatibility with existing components that already adhere to these
paradigms. We denote this requirement with R1.1 for later reference.

Implementing the LDP recommendation In particular, we require that inter-
faces and interactions of components following our approach implement the
W3C LDP recommendation (c.f., Section 2.2.3.1), that specifies for the first
time the integrated use of both paradigms LD and REST. The specification
handles provisioning of resources adhering to RDF, of non-RDF resources, and
of container resources, a sub-concept of RDF resources for resource collec-
tions. The LDP specifies also how clients must interact with these resources. In
particular, the REST paradigm enforces HTTP as a true application protocol by
enabling resource-oriented interfaces for applications that support the seman-
tics of HTTP methods and status codes. As a consequence of the LD principles,
we require the use of RDF as the primary data model for the semantic anno-
tation of data that is provided by or sent to interfaces. However, we do not
prohibit the use of specialized data models and formats, described and linked
from RDF resources, since theses are supported by the LDP recommendation
in the form of non-RDF resources.

Example The layout component (C4) in our scenario (c.f., Section 3.1.1) is
part of the composition and adheres to the integration paradigms, but is not

93

3 Component Adaptation and Decentralized Application Control

implemented by following our approach, i.e., the component provides read-
only access through HTTP to resources that provide representations modeled
in RDF. In contrast, the tracker component (C1) is implemented by following
our approach and, therefore, must provide interfaces and requests that adhere
to the LDP specification.

3.2.1.2 Adaptability of Interaction and Processing

Our second requirement, with respect to the challenges related to the prob-
lems Communication Heterogeneity (c.f., Section 3.1.2.1) and Information
Heterogeneity (c.f., Section 3.1.2.2) in combination with the problem Decen-
tralized Control (c.f., Section 3.1.2.5), is the Adaptability of Interaction and
Processing. While we require compliance with the integration paradigms, we
are challenged by the support for application logic in a decentralized manner,
i.e., components take over the application logic in collaboration. With respect
to other components in the composition of an application, this application
logic is expressed by the interaction of a component, i.e., provided interfaces
and executed requests, and the processing of a component, i.e., actively or
passively executing requests or updating interfaces. In addition, certain cal-
culations, transformations, or decision processes are part of this application
logic. Consequently, we require that our approach enables the adaptability of
interaction and processing.

Adaptation of the interfaces First, we must enable the adaptation of the in-
terfaces that components provide as part of the composition of an application.
This includes, on the one hand, the number, structure, and identifiers of re-
sources, i.e., the granularity of the interface. On the other hand, this includes
the relevant data to be provided per resource and the semantic annotations of
the data. In addition, this also includes the handling of incoming data with
respect to the domain-specific function of the components.

Adaptation of the requests Second, we must enable the adaptation of the
requests that components execute and, thereby, establish data flows with in-
terfaces of other components in the composition. In the case of push commu-
nication, this includes the selection of relevant data as payload of requests,
the semantic annotations of the data, the identifiers of remote interfaces, and
the methods to be used for requests at these interfaces. In the case of pull

94

3.2 Approach for Smart Component-based Integration

communication, this includes the identifiers of remote interfaces, the methods
to be used for requests, and the handling of incoming data with respect to the
function of components.

Processing of the data Third, we must be able to influence how components
are processing the data, in accordance with their interfaces and requests. This
includes the definition of triggers for active processing based on time or external
events, and the definition of triggers for passive processing based on events
caused by other components. We do not require, but also do not prohibit, the
processing within the function of components to be adjustable in the same way.
Thus, the processing of data for interface updates or execution of interactions
may be coupled to or decoupled from the processing pattern of the function.

Example We modeled the tracker component (C1) in our scenario (c.f., Sec-
tion 3.1.1) as an actively processing component that must be adapted to tie
the requests to other components and the update of interfaces to the record-
ing frequency of the depth camera, i.e., to the processing of the function. As
a consequence, the component can be adapted to tie requests for emergency
stops to machine components (C2, C3) with this frequency, i.e., the tracker
component (C1) informs the machine components (C2, C3) as soon as pos-
sible through push communication. In addition, the tracker component (C1)
should be adapted to provide information about tracked bodies and emergency
stops at the interface. The provisioning of this information must be adapted
to fit the requirements of the screen component (C5) that is not implemented
by following our approach but is instead actively processing and capable of
pulling the information from the respective resources of the tracker compo-
nent (C1). Furthermore, the first machine component (C2), that is designed
by following our approach, is passively processing, and should be adapted to
inform its domain-specific function and the second machine (C3) as soon as
requests for emergency stops occur.

3.2.1.3 Separation of Design, Adaptation, and Runtime

Our third requirement, with respect to the challenges related to Requirements
Unawareness (c.f., Section 3.1.2.3) and Development Inefficiency (c.f., Sec-
tion 3.1.2.4) in combination with the problem of Control Deployment (c.f.,
Section 3.1.2.6), is the Separation of Design, Adaptation, and Runtime. While

95

3 Component Adaptation and Decentralized Application Control

we require the adaptability of interaction and processing, we are challenged
by the support for this adaptability in multi-stakeholder situations, in which
the design, provisioning, and integration are not completely in hands of the
integrating stakeholder, who is aware of all requirements of the integration sce-
nario, but rather in hands of different stakeholders. Consequently, we require
that our approach enables the adaptability of interaction and processing in late
stages, e.g., during the deployment or the runtime of components. Thereby, we
require that our approach enables the design of components, which is decoupled
from the adaptations that are deployed later in time.

Realizing domain-specific function during design time First, we require
that the domain-specific function of components can be developed and imple-
mented during design time. In particular, integration requirements should not
force the design to be tailored and restricted to individual scenarios but be fo-
cused on the domain-specific function with broader applicability. Since every
single requirement for the integration with other components is, in general, not
known at design time, the architecture should provide the means necessary for
enabling adaptations to these after development.

Declaring adaptations during deployment and runtime Second, we require
that adaptations can be declared during deployment or, as advanced require-
ment, be declared during the runtime of components. In the latter case, means
for adaptation should adhere to the same integration paradigms that we have
chosen as preliminaries. The adaptations must be separated from the design to
support the adaptation of components during the integration with other com-
ponents in specific integration scenarios, which might be unknown at design
time. Thereby, no modifications of the implementation of the domain-specific
function should be required to support multi-stakeholder scenarios, in which
the implementation of a component is not within the reach of the integrating
stakeholder.

Separating processing from adaptation Third, we require that processing,
passive or active, is separated from the actual adaptations. Adaptations may
contain information about processing details but should not initiate process-
ing via their deployment. Thereby, we enable a priori planning, creation, and
deployment of adaptations and explicit transition to the participation of compo-
nents in distributed applications, i.e., the runtime of the distributed applications.
In addition, separate sets of adaptations for participation in different distributed
applications may be supported, for which the adaptation can be individually

96

3.2 Approach for Smart Component-based Integration

deployed and the processing can be individually started or stopped. Hereby, we
introduce separation of concerns with respect to the integration requirements
of different applications.

Example All components in our integration scenario (c.f., Section 3.1.1) are
designed independently from each other. In other words, the components have
been developed before the integration scenario was known. While other compo-
nents are not designed by following our approach but adhere to the integration
paradigms, the tracker component (C1) and the first machine component (C2)
support the adaptation of their interaction and processing at runtime. In our
first integration step, we deploy all components at the factory floor, connect
them to the network, and start the components, i.e., the components are at run-
time. In our second integration step, we deploy the application logic (described
in examples above) partially to the tracker component (C1), e.g., calculating
security breaches and executing requests to the machine components (C2, C3),
and to the first machine component (C2), e.g., informing the second machine
component (C3) in case of issues.

3.2.2 Smart Component-based Integration Architecture

The fulfillment of the IoT vision and, in particular, the WoT vision requires
the extension of the current Web with support that enables real-world objects,
i.e., things, to seamlessly become part of the Web. In this context, we are
challenged to take the next logical step beyond having only data semantics or
only interconnected things in order to achieve a Web where real world objects
can be seamlessly integrated. To achieve this evolution, we need to be able to
harvest the combined value of several smaller things, by composing them into
larger and distributed applications, which provide value-added function.

In Figure 3.4, we exemplify our integration architecture on the basis of our
integration scenario (c.f., Section 3.1.1). This integration architecture includes,
in general, components and, in detail, components that adhere to the integration
paradigms (C3, C4, C5) as well as adaptable components that follow our
Smart Component (SC) approach (C1, C2). In Section 3.2.3, we introduce
the SC architecture in more detail. With the architecture of SCs, our goal is
not to impose the one architecture for adaptable components. Instead we aim
to provide a set of constraints and principles backed up by specific building

97

3 Component Adaptation and Decentralized Application Control

blocks, that address the requirements, which we described in Section 3.2.1,
and that are aligned with our integration architecture, that we describe in the
following.

Machine (C2)

4 Smart Component Component
Tracker (C1) Screen (C5)
™\ (-

n o &

sS||s|[E| [|ES

£ 3 g) £ 2

O o [] o S &

agl e ll& = &
) L Component
U Layout (C4)

|
N Adaptation ! n
| Q
Resources [£
:__ 3 Function
! @
e | =
Smart Component I N J
|
|
|
|
|
|

Component
Machine (C3)

Figure 3.4: Smart Component-based Integration Architecture

Our approach for enabling distributed applications is based on introducing
an abstraction for the convergence of all participating devices, data sources,
algorithms, implemented capabilities, etc., in terms of components that provide
resources and are accessible via uniform interfaces. These components can
be composed into applications. In general, the components provide the same
interaction capabilities, independently whether they following our SC approach
or not. In particular, they provide interfaces and execute requests in the same
way, i.e., they adhere to the same integration paradigms. Thereby, we enable
the integration of several components by utilizing only a subset of SCs.

98

3.2 Approach for Smart Component-based Integration

For example, in Figure 3.4, we utilize the tracker and machine SCs (C1, C2) and
three other components (C3, C4, C5), that adhere to the integration paradigms,
but are not following our approach. However, both SCs enable us to integrate
all components into one application in this specific integration scenario. To
provide support for a decentralized solution, without centralized computation
or control, we introduce an interpretation layer between the domain-specific
function of SCs, and the APIs, which they expose to the network. This layer
enables, on the one hand, the adaptability of their interfaces and requests to the
requirements of the specific integration scenarios and, on the other hand, the
deployment of application logic, that is formalized as rules. The application
logic can range from simple calculations to custom behavior or decisions,
which can be reconfigured at both design time and runtime. We elaborate on the
details of the SC architecture in Section 3.2.3. As aresult, our component-based
approach enables a flexible way to compose larger distributed applications.

3.2.2.1 Component

We introduce the abstraction of a Component (c.f., Section 2.3.1), which encap-
sulates certain domain-specific function. By integrating these domain-specific
functions, we can compose distributed applications to achieve added-value.
These domain-specific functions can range from pure data sets, e.g., the layout
component (C4) of the factory floor with safety zones, to devices that dynam-
ically produce data, e.g., the tracker component (C1), to systems that react to
state changes, e.g., the machine components (C2, C3), which stop if their safety
zones are violated.

The only common capability that we introduce for all types of components is
their adherence to the integration paradigms that we introduced as foundations
of our approach in Section 3.2. In particular, they must adhere to the REST
and LD paradigms. Thereby, in the context of the IoT, WoT, and SWoT vi-
sions, the classical client and server roles are becoming inapplicable. We can
build components that provide an API, with which other components interact,
or we can build components, which interact with the APIs of other compo-
nents, or we can build components, which include both. For example, a mobile
device can have a client role by displaying information, e.g., a map or the
current temperature, and at the same time act as a server, e.g., by providing
the current geolocation, all in one scenario. Therefore, we do not distinguish

99

3 Component Adaptation and Decentralized Application Control

between clients and servers, but whether components provide interfaces, exe-
cute requests, or show both capabilities. For example, in Figure 3.4, the layout
component (C4) provides an interface, the screen component (C5) executes re-
quests to the tracker component (C1), and the tracker component (C1) executes
requests and provides an interface.

In addition, we differentiate between actively processing components, which
independently update the resources at their interfaces or execute requests to
other components, and passively processing components, which require pre-
ceding requests from other components of the same application before they can
update the resources at their interfaces or execute requests (c.f., Section 2.3.5).
For example, the screen component (C5) must be actively processing, as the
component is not providing an interface but only executing requests. This
execution of requests may be triggered by time, the frequency of the screen
hardware, or by external events, but is not triggered through requests from
other components. In contrast, the tracker component (C1) may update the
resources at its interface actively with every new image of the included depth
camera, i.e., independently from other components, or only on demand, e.g.,
if requested by the screen component (C5).

3.2.3 Smart Component

We introduce the notion of a Smart Component (SC), when a component is
following our architectural approach for building adaptable components. In
Figure 3.5, we give an overview of the high-level architecture of SCs. The use
of “smart” as a way to characterize certain features is currently very common
and a bit overused. However, it captures very well the properties of SCs that we
want to highlight, namely the encapsulation of autonomous application logic
and the adaptability of interfaces, requests, and processing.

We take advantage of the resource-oriented viewpoint within the REST ar-
chitectural paradigm. Resources expose relevant parts of the state of SCs to
the network, identified by URIs and accessible as well as modifiable through
HTTP. Remote components may interact with the resources of SCs, to react to
the local states of the SCs or to transition the SCs into new states. The HTTP
communication with resources is stateless and the resources may be grouped as
sub-resources of container resources. Thereby, container resources conceptu-

100

3.2 Approach for Smart Component-based Integration

ally contain a set of sub-resources and follow a defined behavior for accessing
and modifying this set, as, for example, specified by the LDP specification.

We do not make the assumption that all components of applications need to
be SCs or that all devices must offer REST interfaces directly. For certain use
cases, it makes more sense to take custom implementations, including highly
specialized protocols, as they are, and to encapsulate them to expose their
resources through a RWLD API. In this way we enable the overall integration,
while the interactions behind the encapsulating interface remain invisible.

/ Smart Component \W
N\ e
» b 7
g 9]
SES| |8 || E g9
o = et © = =
E =} o — e |
[e] fe bo c o
adl| | 2|8 ER
x| | 4a -
~ T
¥ Adaptation
Resources

Figure 3.5: Smart Component — High-level Architecture

3.2.3.1 High-level Architecture of Smart Components

The high-level architecture of SCs includes a set of Resources, which provide
state representations adhering to the RDF model and can be available only
internally or be exposed as part of the interface. Therefore, we distinguish
between Domain Resources, Runtime Resources, and Adaptation Resources.

Domain Resource (DR) DRs encapsulate domain-specific data and
function that is custom to SCs and represent parts of their states. By
accessing or modifying DRs, we can get the states of SCs or can cause
the systems to react by changing their states through resource modifica-
tions. However, these resources are only accessible internally and are,

101

3 Component Adaptation and Decentralized Application Control

following our black box approach, not identifiable or accessible in a way
that is prescribed by our integration architecture.

Runtime Resource (RR) RRs are part of the public API of SCs and
are exposed to the network. RRs adhere to both architectural paradigms,
LD and REST, i.e., they are identified by URIs, accessible by HTTP
with interaction restricted to HTTP verbs, and, by default, represented
according to RDF. We declare these resources as graph patterns that
define which part of the DRs should be exposed over the public interface.
With respect to the LDP specification, RRs may also provide non-RDF
representations that are linked by associated RDF RRs. As part of the
public API, the RRs can be accessed or modified by other components.

Adaptation Resource (AR) ARs are part of the public API of SCs and
are exposed to the network. ARs provide the means for adaptation of
the SCs. By interacting with these resources, we are able to access and
modify both the definition of RRs as well as the rules defining the
decentralized application logic of the SCs.

Every SC encapsulates an Interpreter that provides the capabilities to 1) access
and manipulate the state of DRs, 2) access and manipulate the state of resources
of other components, 3) evaluate graph patterns of RRs, and 4) interpret de-
centralized application logic written in a declarative rule language. In other
words, the purpose of the interpreter is to negotiate between the private API of
a component, represented by DRs, the public API of a component, represented
by RRs, and the interaction with resources provided by other components.

We specify the decentralized application logic within a component as a set of
rules that we refer to as Program. The declarative rule language, in which these
programs are defined, provides adequate means to express RDF graph trans-
formations, inferencing, and interactions with resources of other components.
Optionally, the language may support, in coordination with the interpreter, fur-
ther capabilities to ease the declaration of programs, e.g., built-in mathematical
functions for calculations, which exceed pure rule-based logic.

We call the actual interpretation of a program and evaluation of triple patterns
by the interpreter a Run. During a run, the interpreter maintains an internal RDF
graph with all states of known resources. This RDF graph is enriched 1) by
the states of DRs, 2) by requested states of RRs, and 3) by inferred knowledge.

102

3.2 Approach for Smart Component-based Integration

The integration of the interpreter and the DRs, i.e., the encapsulated domain-
specific data and function, is seen as part of the black box within the component.

3.2.3.2 Detailed Architecture of Smart Components

In the following, we introduce the detailed architecture of our SC approach in
Figure 3.6 that enables SCs with adaptable interfaces, interactions, and pro-
cessing, provides sufficient technical soundness, and satisfies our requirements.

Function Interpreter Interface

Run LDPC

Graph |« Triples l¢«+—{LDP-RS Je-HTTP—
[1

Program

| s]

|| Derivat.
Rules [LDP-NR HTTP—
Results I| 1 Request HTTP—>
Rules

[[1
-»[Queries J«——{ LDP-NR_Ja-HTTP—
[[] \

‘>| Results |a—{—{LDPR _la-HTTP

|Co|nfig!. J« |LDP-R‘S le-HTTP
|1 —

Figure 3.6: Smart Component — Architecture

Separation of Concerns In the architecture diagram in Figure 3.7, we dis-
tinguish between function, interpreter, and interface as the three major layers
of the SC architecture. These layers provide Separation of Concerns with re-
spect to the domain-specific function of SCs and the interface of SCs, which
these provide to other components. The negotiation between these layers, e.g.,
calculations, decisions, adaptations of resources provided at the interface, or
adaptations of requests, that SCs execute as part of the different compositions
of applications, is taken over by the interpreter layer.

103

3 Component Adaptation and Decentralized Application Control

104

Function Interpreter ‘

Interface
LDPC

|| \
| —

Figure 3.7: Smart Component — Architecture: Separation of Concerns

Function With the function layer, we denote all local domain-specific
function of the SCs. Thereby, SCs may provide relatively simple, e.g., in
the case of temperature sensors, or advanced function, e.g., in the case
of data storage. In addition, SCs may integrate other domain-specific
interaction and processing mechanisms, but, with respect to our chosen
integration architecture, we show only the relevant details. The only
requirement, which the domain-specific function must adhere to, is the
lifting and lowering of data — provisioning of relevant information in
RDF to the interpreter layer, in case of lifting and, in case of lowering,
the provisioning of queries declared in SPARQL and the processing of
their results.

Interpreter With the interpreter layer, we denote an evaluation engine
that supports the evaluation of N3 [26] rule programs and SPARQL
queries. During every evaluation run, the interpreter maintains an in-
ternal RDF graph that is enriched with information provided by the
domain-specific function, by resources exposed at the interface, and by
calculations of the rule programs. The rules contained in the N3 rule

3.2 Approach for Smart Component-based Integration

programs are iteratively evaluated against this internal RDF graph until
a fix point is reached, i.e., until an enrichment of the graph leads to no
additional execution of rules. Finally, the SPARQL queries are evalu-
ated against the state of the RDF graph at this fix point and their results
are propagated to the local domain-specific function or are exposed as
resources to the interface.

Interface With the interface layer, we denote an API that is compliant
with the LDP specification and is exposed by SCs to the network. At
the root, i.e., the entry URI of the interface, an LDPC, e.g., an LDP-BC,
forms the base container for the creation, manipulation, and deletion of
resources via HTTP interactions over the network. Thereby, we enable,
on the one hand, the creation and manipulation of triples and the access
to query results. On the other hand, we enable adaptation of the SCs
by creating and manipulating programs, queries, and configurations.
These are each represented by LDPRs, depending on their data model as
LDP-RS, e.g., in the case of triples and configurations, or as LDP-NR,
e.g., in the case of N3 rule programs and SPARQL queries. These
resources are members of the base container or optional subordinated
containers. With respect to the provisioning of resources in general, our
architecture does not prohibit but also does not require to have additional
LDPRs, which provide direct access to domain-specific functions, i.e.,
additional static interfaces.

As defined in our SC-based integration architecture, components adhering to
this architecture provide interfaces to the network that adhere, by default, to the
LD and REST paradigms, and, if they follow our approach, are compliant with
the LDP recommendation. Thereby, we satisfy the requirement Compliance
with Integration Paradigms (c.f., Section 3.2.1.1). Since we have chosen the
Linked Data and REST, incorporated by the LDP recommendation, as common
integration paradigms and architecture, we, thereby, provide a solution for chal-
lenges of the problems Communication Heterogeneity (c.f., Section 3.1.2.1)
and Information Heterogeneity (c.f., Section 3.1.2.2).

Declaration of Adaptations In our architecture diagram in Figure 3.8, we
utilize triples and queries for integrating the domain-specific function and the
interpreter of SCs. Thereby, we enable, on the one hand, internal data flows of
information from the function to the interpreter. In addition, we enable internal
data flows of information, which is provided as a result of the interpretation

105

3 Component Adaptation and Decentralized Application Control

of queries, from the interpreter to the function. On the other hand, we utilize
programs, queries, and configurations for the adaptation of the interpreter
and the integration with other components. These adaptations are exposed as
resources at the LDP interface, i.e., the ARs (c.f., Section 3.2.3), and enable
the application-specific adaptation of SCs through the network and based on
the function, but independently in terms of time.

Run
Graph |« Triples |——{pP-Rs Je-HTTP—
I
Program
| e
- Derivat.
e] o | R
(Queries Jo i «
[Rules HTTP—>
|
»| Queries | [LDP-NR]a-HTTP
|
‘>| Results | [oPR Je-HTTP

Config. |——[LDP-RS |a-HTTP—

Figure 3.8: Smart Component — Architecture: Declarations of Adaptations

Triples To prevent confusion with the internal RDF graph, which is
maintained by the interpreter for every evaluation of programs and
queries, we denote all further RDF graphs as triples (c.f., Section 2.2.2.1).
Relevant information about the current state of SCs is provided as triples
by the domain-specific function. Furthermore, additional information
adhering to the RDF data model can be created as LDP-RS at the LDP
interface by using RDF serialization formats.

Queries With SPARQL queries (c.f., Section 2.2.2.2), we provide the
means for selecting subsets of information stored in the internal RDF
graph of the interpreter at the end of every evaluation, i.e., at the fix

106

3.2 Approach for Smart Component-based Integration

points. On the one hand, we enable the selection of information, which is
relevant for the functioning of the component. Developers predefine these
queries during the design of SCs, provide these to the interpreter, and,
thereby, encode relevant information needs that influence the internal
state of their SCs at runtime. On the other hand, we enable the creation of
queries as LDP-NR at the LDP interface, i.e., as ARs (c.f., Section 3.2.3).
In this case, the query results are exposed as LDPR, more precisely as
LDP-NR for table-based content types of results or as LDP-RS for RDF
results.

@prefix rdf: <http://www.w3.0rg/1999/02/22—rdf—syntax—ns#> .
@prefix http: <http://www.w3.0rg/2011/http#> .

@prefix http—m: <http://www.w3.0rg/2011/http—methods#> .
@prefix ex: <http://example.local/vocab#> .

Derivation rule
{ ex:foo ex:bar ?object . } => { ex:foooo ex:barrr ?object . } .

Request rule

{

ex:foooo ex:barrr 7object .

b=>

[] http:mthd
http—m:PUT ;
http:requestURI <http://example.local/resource> ;
http:body {

}.

<> ex:foobar ?object .

Listing 3.3: Derivation and Request Rule Example

Programs By supporting the interpretation of N3 rule programs (c.f.,
Section 2.2.2.3), created as LDP-NR at the LDP interface, i.e., as ARs
(c.f., Section 3.2.3), we add important adaptation capabilities. First, as a
superset of RDF, N3 programs may contain static triples, e.g., configu-
ration settings, which are added during each evaluation of the interpreter
to the internal RDF graph. Second, with the help of derivation rules we
enable the enrichment of the internal RDF graph. Thereby, we support,

107

3 Component Adaptation and Decentralized Application Control

for example, transformation of annotations, reasoning, or complete en-
tailment rule sets, e.g., for the RDFS or for the OWL-LD subset of the
OWL. Third, with request rules, we treat rules differently from other
rules, if their heads contain information about HTTP requests. This
information about HTTP requests is annotated with the W3C HTTP
Vocabulary [106]. Instead of enriching the internal RDF graph, the in-
terpreter executes the described HTTP requests on the network and adds
the payloads of their responses to the internal RDF graph. Thereby, we
enable the declaration of HTTP requests as part of N3 rule programs. In
Listing 3.3, we show simple examples for a derivation as well as a request
rule. Optionally, we support built-in functions in N3 rule programs to
ease certain tasks, e.g., the calculation of mathematical formulas without
using external services.

Configuration With run configurations (in Figure 3.6 annotated with
“Config.”) we relate the aforementioned concepts in one LDP-RS, i.e.,
as ARs (c.f., Section 3.2.3). Every run configuration declares interpreter
settings, programs and queries to be evaluated, resources for query re-
sults, and triggers. With the concept of triggers, we provide the means for
specifying when the interpreter should evaluate programs and queries.
We distinguish between active triggers, e.g., frequency, or delay, and
passive triggers, e.g., on resource requested, on resource expired, or on
resource changed. Aligned with our implementation of an adaptation
layer (c.f., Section 3.3.1), we develop an adaptation ontology (c.f., Sec-
tion 3.3.2) for the specification of these run configurations. In short,
all aforementioned concepts can be annotated to declare run instances
in RDF. Run configurations adhere to the RDF data model and can be
created as LDP-RS at the LDP interface of the component with the
aforementioned content types.

With the here described adaptation capabilities, we satisfy the requirement
Adaptability of Interaction and Processing (c.f., Section 3.2.1.2). As we en-
able the adaptation of interfaces with queries, the adaptation of requests with
request rules, and the adaptation of processing patterns with triggers, we,
thereby, provide a solution for the challenges of the problems Communica-
tion Heterogeneity (c.f., Section 3.1.2.1) and Information Heterogeneity (c.f.,
Section 3.1.2.2) in combination with the problem Decentralized Control (c.f.,
Section 3.1.2.5).

108

3.2 Approach for Smart Component-based Integration

Function Interpreter Interface
Run LDPC
Graph [« | Triples [-+—{top-Rs_ |- HTTP
Program
|

N || Derivat.
Rules I——{LDP-NR]« HTTP

|| Request HTTP
Rules

»[Queries | [top-nR]« HTTP

Il |
Results | {LDPR | HTTP

ﬂﬁl—}—% LDP-RS |« HTTP

|1 ——
I:‘ Design I:‘ Adaptation ‘:’ Runtime

Results

Figure 3.9: Smart Component — Architecture: Separation of Lifecycles

Separation of Lifecycles In the architecture diagram in Figure 3.9, we mark
the elements of the SC architecture in different colors that indicate their as-
signment to corresponding distinct steps in the lifecycle of SCs. In particular,
blue elements of the architecture are assigned to the design phase, red elements
are assigned to the adaptation phase, and green elements are assigned to the
runtime phase. By explicitly considering these distinct phases in our archi-
tecture, we enable the separation of the lifecycle of SCs from the lifecycle of
applications, in whose compositions the SCs participate, i.e., the design and
deployment of SCs is decoupled from the design, deployment, and runtime of
a distributed application (c.f., Section 2.3).

In a simplified manner, we visualize both lifecycles in Figure 3.10. Thereby,
vertically connected phases are, in general, time-wise aligned. In particular, the
deployment phase of an application aligns with the adaptation of SCs, which is
realized by deploying triples, programs, and queries as resources at their LDP
interfaces, i.e., as ARs (c.f., Section 3.2.3). Subsequently, when the runs of the
SCs are started, i.e., the interpretation of programs and queries, the SCs enter

109

3 Component Adaptation and Decentralized Application Control

their runtime phase and also the related distributed application transits to the
runtime phase.

Component

O—v Design ——> Deployment > Runtime 4>©

T T T

I I I

Application ! ! !
Q—> Design — Deployment — Runtime 4>©

T T

I I

Smart C ! !
Q—b{ Design }—v Deployment — Adaptation > Runtime 4>©

Figure 3.10: Smart Component — Lifecycles of Applications, Components, and Smart Components

110

Design We mark the elements, which are designed and implemented
by the original developer of a SC, in blue. These are, in particular, the
domain-specific function of the SC, the integration of the interpreter
with the domain-specific function, which is realized by providing RDF
and SPARQL queries to the interpreter, and the access to the adapta-
tion capabilities of the interpreter by providing an LDP interface. In
Figure 3.10, this phase is the first phase in the lifecycle of SCs.

Adaptation We mark the elements of the adaptation phase in red. These
are deployed by integrating stakeholders with respect to distributed appli-
cations, based on the requirements of their specific integration scenarios.
On the one hand, for the adaptation through their LDP interfaces, the
SCs must be deployed and running to provide these interfaces. In this
state, the SCs themselves are started, but not yet part of any composition
of a distributed application. Once the interpreter runs are started, the SCs
are, passively or actively, part of the runtime of the respective distributed
applications.

For greater usability, adaptations may be stored in a persistent manner,
i.e., adaptations survive the stops and restarts of the components. This

3.2 Approach for Smart Component-based Integration

will, on the other hand, enable the deployment of adaptations as part
of the deployment of SCs, i.e., adaptations are added a priori to the
SCs and are already available when the SCs are started. However, our
architecture does not specify or prohibit the persistence of adaptations.
In Figure 3.10, this phase is the third phase of the lifecycle of SCs. The
SCs can be adapted during or after their deployment, i.e., the second
phase in Figure 3.10, thus while the SCs are already running but only
provide the LDP interface for deploying ARs (c.f., Section 3.2.3).

Runtime We mark the elements of the runtime phase, which are avail-
able during the interpreter runs, in green. The runtime is the phase when
components participate in distributed applications via requests to other
components, which are declared as request rules during adaptation, or
by providing interfaces to other components, declared as queries dur-
ing adaptation. However, we did not specify the transition from these
adaptations to the actual interpreter runs, i.e., participation in distributed
applications. In order to be compliant with the LDP recommendation,
we enable transitions from declared run configurations to run instances
by executing the HTTP POST method on the resources of run config-
urations at the LDP interface. In particular, the LDP recommendation
states for LDPRs with respect to support for the HTTP POST method:

“Per [RFC7231], this HTTP method is optional and this spec-
ification does not require LDP servers to support it. When a
LDP server supports this method, this specification imposes
no new requirements for LDPRs.” [150]

As stated by the LDP recommendation, HTTP POST is explicitly not
restricted for LDPRs, and, thereby, not for LDP-NRs and LDP-RSs,
but only for LDPCs and its variants. For LDPCs, the recommendation
specifies manipulation of resource collections through HTTP POST. An
interpreter run is instantiated based on a run configuration, if the HTTP
POST method was executed at an LDP-RS, the LDP-RS contains a run
configuration, and the contained run configuration is valid. An interpreter
run is terminated, if the LDP-RS representing the run instance is deleted
by executing the HTTP DELETE method. The location of this resource,
i.e., its identifier, is part of the run configuration. For increased usability,
the run state of the interpreters may be part of optional persistence and,

111

3 Component Adaptation and Decentralized Application Control

thereby, enable recovery of states, e.g., automatic restarts of runs after
stops and restarts of components.

With support for and distinction of the aforementioned three phases, starting
with the design of components, moving on to the adaptation of components,
and up to the runtime of components, we satisfy the requirement Separation of
Design, Adaptation, and Runtime (c.f., Section 3.2.1.3). Since every step can
be individually handled with respect to time, though still building upon each
other, we also provide a solution for the challenges Requirements Unawareness
(c.f., Section 3.1.2.3) and Development Inefficiency (c.f., Section 3.1.2.4) in
combination with the problem Control Deployment (c.f., Section 3.1.2.6).

3.3 Implementation of the Smart
Component Adaptation Framework

In the following, we provide an overview of relevant implementations with
respect to our SC approach. In particular, we present in Section 3.3.1 the im-
plementation of an adaptation layer, which provides a complete prototypical
realization of our approach. In Section 3.3.2, we present an ontology to de-
scribe adaptations. In particular, the run configurations are annotated with this
ontology and, thereby, declare the relationship between different programs,
queries, and further resources. Finally, we present in Section 3.3.3 the integra-
tion of the adaptation layer with domain-specific functions. In particular, we
present the implementation of a SC that provides body tracking capabilities as
a domain-specific function and, thereby, serves as the basis for our functional
evaluation in Section 3.4.1, aligned to our initial integration scenario.

3.3.1 Smart Component Adaptation Layer

With the Smart Component Adaptation Layer (SCAL)', we provide a proto-
typical implementation of our approach. SCAL is, on the one hand, a file
system-based LDP server and, on the other hand, supports adaptation by inte-

1 https://rslv.link/ZSvE

112

https://rslv.link/ZSvE

3.3 Implementation of the Smart Component Adaptation Framework

grating an interpreter for N3 rule programs and SPARQL queries that provides
RWLD capabilities. In particular, the interpreter enables rule-triggered HTTP
requests and querying of RDF payload in HTTP responses; thereby, it supports
link following as well as decision making based on retrieved information.

SCAL
Interpreter (Linked Data-Fu) HTTP——»
A I I
mgt get set del pro
| v v \
Run Manager Resource Manage‘r Web
Interface
I-re i (LDP)
Instance g Processing pro HTTP POST_
Manager [¢pro——{ Manager
oath gety S <get [—HTTP GET
Evaluation torage leset HTTP PUT
Manager Manager
[edel HTTP DELETE—
mgt
Storage
File System

Figure 3.11: Smart Component Adaptation Layer

In Figure 3.11, we give an overview of the internal software architecture of
this adaptation layer. The software architecture of SCAL consists, on the one
hand, of the LDP server, which includes the LDP-compliant web interface,
the resource manager that manages resources provided by the interface, and
the storage that is utilized by the resource manager for persistence. On the
other hand, the software architecture of SCAL consists of the Linked Data-
Fu (LD-Fu) server, which extends the LDP server and includes the LD-Fu
interpreter, the run manager that manages the interpreter in collaboration with
the resource manager, and listeners registered at the LDP server for specific
requests at the web interface.

113

3 Component Adaptation and Decentralized Application Control

3.3.1.1 Linked Data Platform Server

Our implementation of the SCAL is in its core based on an LDP server. The
implementation supports different storage backends, the creation and modifica-
tion of different LDPRs, and the nesting of LDPCs. Internally, the resources are
managed independently from the LDP interface by a resources manager that,
in addition, supports programmatic integration with other software libraries.
A processing manager handles the registration of event listeners and, thereby,
provides capabilities that are required by the run manager of the interpreter,
e.g., the processing of HTTP POST requests by listeners, or the registration of
on-request triggers. A storage manager provides persistent storage of resource
representations and abstracts from the actual storage medium, e.g., the file
system or a database.

Web Interface With the web interface, we provide an LDP-BC at the
base of the exposed LDP interface of the adaptation layer. This LDP
interface supports the creation and modification of LDP-RS, LDP-NR,
and LDP-BC as well as nesting of containers. The web interface is de-
signed in a light-weight manner and manages only the correct handling
of HTTP requests and responses, including HTTP headers and response
codes. Further handling of the payload, that is part of requests, or the
provisioning of payload for answering requests is delegated to the re-
source manager, which we describe below. Furthermore, the decision
about the support for specific HTTP methods with respect to requested
resources is delegated.

Data Models and Formats Driven by the clear distinction between the
RDF data model and RDF serialization formats, e.g., RDF/XML, Turtle,
or JSON-LD, we support an extensible set of different data models and
formats. On the one hand, this includes the parsing of different data
formats to an appropriate object representation. Thereby, we parse data
formats of the same data model to the same object representation. On the
other hand, we support the serialization of information, which adheres
to a specific data model, into one of its related data formats. We support,
for example, different RDF serialization formats for reading and writing
of resources at the LDP interface, or different table-based formats such
as Comma Separated Values (CSV), or Tab Separated Values (TSV) for
the serialization of SPARQL query results.

114

3.3 Implementation of the Smart Component Adaptation Framework

Data Model and Format Converters In addition to the support for
parsing and serialization of data models and formats, we support on-
the-fly conversion between different data models and formats. On the
one hand, we support the, in most cases, lossless on-the-fly conversion
between data formats of the same data model. On the other hand, the
same technique can be utilized to convert between different data models
and their respective data formats. However, this conversion may not
be lossless. Thereby, we enable, for example, read and write access to
LDP-RS, independently of the RDF serialization format of the stored
representations, i.e., the same resource can be read and written with
different RDF serialization formats.

Resource Manager At the core of the LDP server, we provide the re-
source manager, which serves as an abstraction for the handling of re-
sources, i.e., the LDP interface as well as further integrated elements of
the software architecture may interact with the stored resources. Hereby,
these elements may create or manipulate resources that are accessible
through the LDP interface at the network. For example, we utilize this ab-
straction to let the run manager of the interpreter get required resources,
e.g., run configurations, programs, or queries, and, subsequently, setup
a run of the interpreter.

Storage Manager As part of the resource manager, we provide the
storage manager, which serves as an abstraction for the persistence of
resources and thereby, enables separations of concerns. In particular,
the resource manager must not be aware of any storage medium or
access mechanisms. The access to or manipulation of persistently stored
resources is delegated by the resource manager to the storage manager.
By default, we support persistence based on a file system, i.e., LDP-BC
form a directory structure and LDP-RS as well as LDP-NR are the files
in this directory structure. However, several other storage media may be
implemented, e.g., persistent storage based on databases.

Processing Manager As part of the resource manager, we provide, with
the help of the processing manager, support for the explicit handling of
data processing requests, e.g., handling HTTP POST requests at the
LDP interface. Furthermore, the processing handler may redirect any
other request targeted at the resource manager. In both cases, elements
of the software architecture register listeners at the process manager,

115

3 Component Adaptation and Decentralized Application Control

that provide a set of constraints to narrow the type of requests that are
of interest, e.g., by specifying the HTTP method, or data model of the
payload. For example, the run manager registers listeners for specific
resource paths, if the run configuration includes on-request triggers for
processing. Thereby, we enable passive processing.

3.3.1.2 Linked Data-Fu Server

On top of the LDP server, our SCAL implementation integrates an interpreter
for N3 and SPARQL evaluation as well as HTTP request execution. The in-
terpreter is managed by a separate run manager, which handles the setup of
runs, the triggering of evaluation steps, and the integration with the resource
manager.

Interpreter As interpreter, we build on Linked Data-Fu (LD-Fu)? [156,
158], an interpreter for N3 rule programs with SPARQL query capabil-
ities. LD-Fu supports our requirements with respect to the evaluation
of N3 rule programs and SPARQL queries, provides means for execut-
ing request rules, and supports mathematical operations with built-in
functions.

Run Manager While the LD-Fu interpreter handles the program and
query evaluation as well as HTTP requests, a run manager internally
handles the interpreter runs and, partially, the triggering of evaluation
steps. Therefore, the run manager registers listeners at the process man-
ager for the handling of incoming HTTP POST requests on resources
that contain run configurations. On HTTP POST requests, the run man-
ager validates the run configuration and, if the configuration is valid,
setups, starts, and stops interpreter runs as well as triggers evaluation
steps during runs, with time-based or event-based triggers.

Web Interface Our SCAL implementation exposes a web interface to
the network and is capable to execute HTTP request at the interfaces
of other components. Thereby, the interface is the LDP interface of
the LDP server, enhanced with SC capabilities. For adaptations that are

2 https://rslv.link/ZSvS

116

https://rslv.link/ZSvS

3.3 Implementation of the Smart Component Adaptation Framework

deployed at the LDP interface and declare interactions, i.e., N3 programs
that include request rules, the LD-Fu interpreter handles the requests to
interfaces of other components.

3.3.1.3 Integration

We support different means for the integration of SCAL with the domain-
specific function of components. In detail, we support running SCAL stan-
dalone, i.e., integrating solely through HTTP requests, integration with the
domain-specific function through the storage subsystem, or, as the most effi-
cient option, programmatic integration as a software library. In the latter case,
we support the direct programmatic registration of RDF sources and SPARQL
queries by the domain functionality.

Standalone The SCAL implementation does not dependent on any
domain-specific function. Therefore, SCAL may run in standalone mode
and provide the LDP interface and adaptation capabilities. A standalone
deployment supports cases, in which the SCAL implementation is used
as centralized, coordinating component. In these cases, RDF data is only
provided by other components and is retrieved and manipulated through
HTTP requests.

Wrapper For the integration with existing domain-specific functions,
SCAL can be integrated as a wrapper on top of existing LD or RWLD
interfaces. In this case, SCAL runs alongside the component and redi-
rects HTTP between the native interface of the component and other
components, adapted to the requirements of the specific integration sce-
nario. However, this form of integration may not perform as well as the
direct programmatic integration as a library.

Library As the most interleaved and, in general, best performing in-
tegration, we support the integration of the SCAL implementation as
a software library. In this case, the component must lift the domain-
specific function to the RDF data model and provide relevant data to
the adaptation layer. In addition, the component may provide SPARQL
queries and integrate the processing and lowering of query results.

117

3 Component Adaptation and Decentralized Application Control

3.3.2 Smart Component Adaptation Ontology

In our SCAL implementation of the SC approach in Section 3.3.1, the run
manager is responsible for handling HTTP POST requests, containing run
configurations, to the LDP interfaces of resources. The run manager relies
on the validity and semantics of the run configurations to setup in a correct
manner the interpreter, triggers, and other related components, needed during
the runtime of the SC. Therefore, we develop the Smart Component Adaptation
Ontology (SCAO)? for the description of run configurations and tie the validity
of run configurations to the ontology. This ontology describes, on the one hand,
run configurations and, on the other hand, adheres to our integration paradigms
by enabling the description of runs in RDF, i.e., run configurations are LDP-RSs
at the LDPs interfaces of SCs that, optionally, link further LDP-NRs, e.g., N3
programs, or SPARQL queries. In Figure 3.12, we show and group relevant
concepts of the SC approach, their relations, and indicate their data models
or formats, but without showing all properties in detail. The RDF subset of
concepts and relations is described by SCAO, while N3 and SPARQL resources
are linked from run configurations that are annotated with SCAO.

In the following, we describe in short the different groups of concepts and
relations, which are described by SCAO or linked in documents annotated
with SCAO. These are in most cases, derived from the SC architecture that we
described in Section 3.2.3.2.

Run The run group of concepts and relations contains the core elements
of the SC approach in RDF, including, runs, programs, queries, triggers,
and resources, which are described by SCAO. Thereby, a run defines
the uppermost element in a run configuration and may link to an arbi-
trary number of programs and queries. Neither of both is required, but
at least one program or one query is included in non-trivial run config-
urations. In addition, at least one and up to several triggers are linked
by a run, and these define the processing of the SC, i.e., the points in
time, at which interpreters execute distinct steps of runs that evaluate
programs and queries. Programs and queries in a run configuration link
their declarations. In particular, programs link resources that contain N3
rule programs and queries link resources that contain SPARQL queries.

3 https://rslv.link/ZSvE

118

https://rslv.link/ZSvf

3.3 Implementation of the Smart Component Adaptation Framework

Triggers in a run configuration may directly include their declaration
described in RDF with SCAO. In addition to their declaration, specified
queries link one or several resource descriptions, that specify the loca-
tion and means for access, which are the sinks for query results. In the
same way, the run itself links to locations that should be updated with
a description of its state during an actual running interpretation of the
run. The descriptions of resources in a run configuration may directly
include their declaration described in RDF with SCAO.

Program (N3) Query (SPARQL)
Derivation Request .
‘ Rule ‘ ‘ Rule }\ ‘ ConstructQuery //{ DescribeQuery ‘
~ = T /
N _- : //
‘ Rule #A 1 Triple ‘ | // _ SelectQuery
/-
@
Program N~
D =~
‘ Declaration | & QueryDeclaration ‘{ AskQuery |
declaration)
Run (RDF) |dedaration sinkl Resource (RDF)
‘ Program Query ‘ ‘ HttpResource /4 FileResource ‘
/
T 4
| 7
’
! /
sink | 7 SshResource
Al
-
st
Resource
i declarati
‘ Trigger \‘ Resource }' eclara \onE‘ Declaration ‘ ‘ ‘
Trigger (RDF) declaration
DomainSpecific Trigger Resource
Trigger \ Declaration ,| RequestedTrigger
\ /
N /\/\I\ ,
Frequency ResourceModified
- ActiveT, P T -
‘ Trigger }» % ctiveTrigger ‘ ‘ assive ngger/%él ~{ Trigger

/
/

Z
-

\
\

‘ DelayTrigger

’

Declaration
ChangedTrigger

)

ResourceExpired
Trigger

Figure 3.12: Smart Component Adaptation Ontology

119

3 Component Adaptation and Decentralized Application Control

120

Program The program group of concepts and relations contains the ele-
ments of program declarations in N3, including, triples, deduction rules,
and request rules. These programs are specified by the W3C [26] (c.f,,
Section 2.2.2.3) and, with respect to the interpretation of vocabularies
that describe HTTP requests and mathematical operations, by the work
on LD-Fu [156, 158]. As a superset of N-Triples and Turtle, N3 pro-
gram declarations may contain an arbitrary number of RDF triples. In
addition, programs may contain an arbitrary number of derivation and
request rules. In the latter case, the request rules specify the sink of their
request that, implicitly, equals our specification of resources in SCAO.

Query The query group of concepts and relations contains the declara-
tion of queries in SPARQL, which are referenced by the query concept
in a run group. These queries are specified by the W3C [6] (c.f., Sec-
tion 2.2.2.2). The query declaration may have one of the supported types,
i.e., construct, describe, select, or ask query. However, only in the cases
of construct and describe queries, the result is guaranteed to adhere to
the RDF data model.

Trigger The trigger group of concepts and relations contains the decla-
ration of triggers in RDF, which are described by SCAO and are refer-
enced by the trigger concept in the run group. We distinguish between
active and passive triggers that lead to the active and passive processing
of SCAL with respect to other components of a distributed applica-
tion. In the set of active triggers, the domain-specific trigger enables the
domain-specific function, if properly integrated with SCAL, to trigger
the processing. In addition, the time-based frequency and delay triggers
setup active processing by keeping a defined time between the starts of
subsequent steps of a run for a frequency, and between the last stop and
next start of steps of a run for a delay. In the set of passive triggers, we
feature different event-based triggers that are related to the interaction
with or the state of resources. However, the set of supported triggers
is neither complete nor completely implemented by the prototypical
implementation of SCAL and thus is extensible in the future.

Resource The resource group of concepts and relations contains the
declaration of resources in RDF, which are described by SCAO and are
referenced by different concepts in the run group. In the prototypical
implementation of SCAL, we support the definition of resources at the

3.3 Implementation of the Smart Component Adaptation Framework

local LDP interface as the sink for query results or the state of the
executed run. In our adaptation ontology, we generalize the concept of
resources beyond local resources, which are accessible through HTTP.
While this is still the default, the resources may not be part of the
local interface and require additional description of HTTP methods. In
addition, other protocols may be supported to describe more advanced
integration capabilities of the SCAL implementation. However, the set
of supported resources is neither complete nor completely implemented
by the prototypical implementation of SCAL and thus is extensible in
the future.

With the prototypical SCAL implementation in combination with SCAO as
ontology to describe runs, trigger declarations, and resource declarations, with
N3 to describe the declaration of programs, and with SPARQL to describe the
declaration of queries, we provide a set of technologies that implements the
SC approach.

3.3.3 NIREST Smart Component

In the following, we present the implementation of Natural Interaction via
REST (NIREST)*, a SC implementation that encapsulates body tracking capa-
bilities as a domain-specific function. In Figure 3.13 we show the integrated
visualization of Point of Interests (POIs) data and a representation of a tracked
body, which has been deployed and integrated as a demonstration use case.
The image on the right is a visualization of the depth video image that the
depth video camera provides. The recognized shape of a person is highlighted
in green by the body tracking algorithms. In addition, the tracked skeleton
is visualized with lines, spanned between the coordinates of the tracked joint
points. In the image on the left, the NIREST SC has been integrated with a sec-
ond component that provides a use case in a Virtual Reality (VR). In particular,
the body tracking information is utilized to visualize the skeleton of tracked
people on a virtual map that contains POIs. In this way people can walk around
and explore the map. In addition, different gestures are recognized and trigger
certain behavior, e.g., to reset the map, or to display additional information

4 https://rslv.link/ZSv6

121

https://rslv.link/ZSv6

3 Component Adaptation and Decentralized Application Control

about the visited POIs, which is requested on demand and subsequently visual-
ized. In this demonstration use case, the SC capabilities enable this integration
scenario, by adapting the interaction between the components, and by adapting
the application logic for matching coordinates. In the functional evaluation in
Section 3.4.1, we provide a detailed example and different types of adaptations,
based on NIREST and aligned with our scenario.

= <
ECN g A

Figure 3.13: Domain-specific Smart Component

The implementation of NIREST combines different technologies to provide
access to sensor details, recognized persons, and skeleton coordinates, which
are extracted on-the-fly from a depth video sensor. With respect to hardware,
NIREST requires a depth video camera connected to the system that provides
the NIREST software. We utilize specialized frameworks as a hardware ab-
straction layer between the sensor hardware and the middleware libraries or
applications, which enable the unified access to the sensor hardware, e.g., to
color video, depth video, sensor metadata, or device events. Building on top, we
integrate a middleware that accesses the depth video provided by the hardware
abstraction layer and implements different tracking algorithms. Thereby, we
gain access to the tracking algorithms that support the recognition of objects
in front of the sensors. In addition, the algorithms provide the coordinates of

122

3.4 Evaluation

the derived skeleton joints as well as basic support for gestures. Finally, the
acquired information is annotated, lifted to the RDF data model, and provided
to the interpreter.

In order to enable SC capabilities on top of the body tracking capabilities
of NIREST, we integrate SCAL as adaption layer with the body tracking
as the domain-specific function. Thereby, SCAL handles all interaction of
NIREST with respect to other components on the network. The information
about tracked bodies, e.g., coordinates of joints, center of masses, or confi-
dence values for coordinates, that have been lifted to RDF, are provided to the
interpreter of SCAL. In addition, we couple the processing of SCAL to the
frequency of the depth video camera as an additional domain-specific trigger
for active processing. After deployment, the NIREST SC is running, tracks
persons in range of the depth camera, and provides an LDP interface to the net-
work, that enables the deployment of adaptations and, thereby, the integration
with other components.

3.4 Evaluation

We provide a thorough evaluation of our approach and implementation based
on our evaluation scenario in Figure 3.14, which is a simplified version our mo-
tivation scenario in Figure 3.1 and, subsequently, in Figure 3.4. In this scenario,
we consider the tracker SC (C1), the first machine SC (C2), and the second
machine component (C3). On the left side we visualize the distributed appli-
cation, which we compose first, where the first machine SC (C2) informs itself
trough pull interaction and reacts to distance alarms provided by the tracker
SC (C1). On the right side, in a second step, we re-adapt the application by
switching from pull to push communication and by moving decisions partially
to the first machine SC (C2), which, in addition, informs the second machine
component (C3) through push interaction.

We evaluate the functional capabilities of our approach in Section 3.4.1, includ-
ing the conformance to our design requirements, and the performance aspects
of our implementation in Section 3.4.2. In particular, we show the adaptability
of SCs with respect to: 1) their processing by declaring application logic; 2)
their interfaces by declaring information to be exposed as runtime resources;
3) their requests by declaring a pull-based data flow; and 4) their interpreter

123

3 Component Adaptation and Decentralized Application Control

runs by declaring the composition. Subsequently, we show the separation of
the adaptation and runtime phases, and the re-adaptation of SCs. In addition,
we evaluate the conformity of our SC architecture with respect to the design
requirements in Section 3.2.1. Finally, we provide performance measurements
with respect to the overhead of the adaptation layer and reference a large-
scale evaluation scenario related to our distributed benchmarking environment
(presented in Chapter 5), which is implemented by utilizing our SC approach.

e
Smart Component Smart Component
Tracker (C1) Tracker (C1)

Smart Component
Machine (C2)

|

|

|

i
Smart Component :
Machine (C2) |
|

|

|

1

Figure 3.14: Evaluation Scenario

Component
Machine (C3)

Component
Machine (C3)

3.4.1 Evaluation of Function

We assume that the components are already deployed and started, but neither
provide the data nor the communication that is required by our evaluation sce-
nario, i.e., the components are not aware of any application logic, interfaces, or
requests, that are specific to our evaluation scenario. The tracker and the first
machine SCs provide their adaptation interfaces as entry points for adaptation
at “https://c1.local/” (C1) and “http://c2.]local/” (C2). In addition, the second
machine component (C3), which is a regular component that supports the in-
tegration paradigms, provides a RWLD interface at “http://c3.1ocal/”’. The SCs

124

3.4 Evaluation

provide at their entry point an LDPC, in particular, an LDP-BC. Thereby, SCs
enable the creation of sub-resources and sub-containers, that may contain AR
and RR (c.f., Section 3.2.3.1). Every resource that contains triples, programs,
or queries, and that is created as sub-resource of these containers, can be
included by a run configuration in the evaluation during interpreter runs.

In the following section, we provide tables that include all HTTP requests
needed to deploy an AR at the interfaces, in order to deploy the required
adaptation. We specify for each command the identifier, i.e., the target URI,
the method, i.e., HTTP verb, the content type, and, optionally, the payload,
that is sent to the target URI as part of the request. These commands may be
executed by any HTTP-conform client.

3.4.1.1 Domain Resources

@prefix rdf: <http://www.w3.0rg/1999/02/22—rdf—syntax—ns#> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .
@prefix nirest: <https://vocab.local/nirest#> .

</skeleton/0>
nirest:skeleton [
nirest:jointPoint [
nirest:coordinate [
nirest:x "459.8463""Mxsd:float ;
nirest:y "404.0497"Mxsd:float ;
nirest:z "2037.2391""Mxsd:float ;
a nirest:Coordinate | ;
a nirest:RightHandJointPoint] ;
#...

Listing 3.4: Domain Resources of the Tracker Smart Component (C1)

In Listing 3.4, we show a snippet of the RDF, which the domain-specific
function of the tracker SC (C1) provides as DR to the adaptation layer. The
integrated tracking algorithms recognize people in the depth video images,
who are in range of the depth video camera. Once recognized, the algorithms
calculate the coordinates of the center of mass, of the different joint points, and,
in addition, also determine the confidence values for each of these coordinates.

125

3 Component Adaptation and Decentralized Application Control

In the listing, we show in Turtle serialization the coordinates of the right hand
joint in the tracked skeleton of a person. The right hand joint is only one
out of several supported joints, the remainder of which we omit in our listing
due to space constraints. The skeleton is identified by an internal URI that is
not exposed to the network. This information of the skeleton, joined with the
information of all other tracked skeletons, is provided as DR to the adaptation
layer. Subsequently, this information is included in the internal knowledge
graph that is maintained during every interpreter run of the tracker SC. In the
following, due to space constraints, we omit prefixes in listings and tables,
which contain RDF or SPARQL.

3.4.1.2 Processing Adaptation

| Identifier Method | Content Type
Payload

01 | https://cl.local/program- PUT text/n3
distance

{ ?point nirest:coordinate ?coordinate .
?coordinate nirest:x 7x ; nirest:y ?y ; nirest:z 7z .
(7x "2") math:exponentiation ?x_ex .
(7y "2") math:exponentiation ?y_ex .
(7z "2") math:exponentiation 7z_ex .

(7x_ex ?y_ex 7z_ex) math:sum ?sum .
?7sum math:sqrt ?square_root .
?square_root math:lessThan "1000.0" .

}=>{

?7point scenario:distance ?square_root .
7point scenario:alarm "true" . } .

Table 3.1: Processing Adaptation of the Tracker Smart Component (C1)

In order to adapt the application logic of the tracker SC (C1) to our evaluation
scenario, we interact with the LDPC of the SC and create a sub-resource with
arule program, identified by “https://cl.local/program-distance”, as
shown in Command #01 in Table 3.1. The N3 rule program, included in the

126

https://c1.local/program-distance

3.4 Evaluation

payload, contains a single rule, which calculates the Euclidean distance from
the sensor to each coordinate that has been included from the DR into the
internal RDF knowledge graph of the interpreter. Therefore, in the body of the
rule, the coordinates of every joint are matched with their three dimensions
and their values are bound to variables, independently from the type of joint.
Next, we use built-in mathematical functions interpreted by the LD-Fu engine,
which calculate the results and bind them to additional variables. Once the
condition that the distance is less than 1000 millimeters is true, the internal
RDF graph is enriched with a triple, adding the distance as well as a custom
alarm triple to the sub-graph of the respective point. As a consequence to this
rule, we mark all joint points that are within the given distance of the tracker
SC (C1) with a custom alarm during every evaluation of the interpreter. In the
following, we are now able to use this information in further rules and queries.

3.4.1.3 Interface Adaptation

| Identifier Method | Content Type
Payload

02 | https://cl.local/query- PUT application/sparql-query
alarm

CONSTRUCT {
7point scenario:stop "true" .
} WHERE {
7point scenario:alarm "true" . }

Table 3.2: Interface Adaptation of the Tracker Smart Component (C1)

With respect to the first step of our evaluation scenario, we need to estab-
lish communication between the SCs. In particular, the first machine SC (C2)
should request information about emergency stops, which the tracker SC (C1)
provides. Therefore, we adapt the tracker SC (C1) to provide RR for pas-
sive provisioning of information about alarms. The RR is based on a AR,
in particular, a SPARQL query, which is created as a sub-resource of the
LDP-BC by Command #02 in Table 3.2 and is identified by the URI “http:

127

http://c1.local/query-alarm

3 Component Adaptation and Decentralized Application Control

//cl.local/query-alarm”. The SPARQL CONSTRUCT query, that we in-
clude as payload, constructs a custom stop triple if the internal RDF graph has
been enriched by the N3 rule program, i.e., the N3 rule program in Table 3.1
has marked sub-graphs of joints with an alarm triple.

During every evaluation of the interpreter, the SPARQL CONSTRUCT query
is evaluated. The RR, where we provide the query result for external HTTP
requests, is declared by the run configuration described in Section 3.4.1.5. Once
the interpreter run is started, the result is provided for any valid content type

of a supported RDF serialization format, which is determined by the accept
header of the HTTP GET request at the RR.

3.4.1.4 Request Adaptation

In addition to the interface of the tracker SC (C1), which we adapted in Sec-
tion 3.4.1.3, we also need to establish the data flow to the first machine SC (C2).
Therefore, we adapt the application logic of the first machine SC (C2) by adding
a request rule deployed within a N3 rule program, which requests the infor-
mation from the RR at the interface of the tracker SC (C1) that provides the
information about emergency stops.

| Identifier Method | Content Type
Payload
03 | https://c2.]ocal/program- PUT text/n3
request
{ [] http:mthd httpm:GET ;
http:requestURI <http://c1.local/result—alarm> . } .

Table 3.3: Request Adaptation of the Machine Smart Component (C2)

The Command #03 in Table 3.3 includes this program as payload, which is
identified by the URI “https://c2.local/program-request”. The single
rule included in the program is a head-only rule, i.e., no condition in the
rule body has to be met and the head is executed during every evaluation
of the program. We use specific ontologies to annotate the HTTP requests, in

128

http://c1.local/query-alarm
https://c2.local/program-request

3.4 Evaluation

particular, marked by the prefixes “http” and “httpm”. HTTP requests described
in this way, are interpreted by the LD-Fu engine as HTTP commands and are
executed as HTTP requests, instead of adding the rule head to the internal RDF
graph. However, if the answers to requests include valid RDF, the payload is
added to the internal RDF graph of the current interpreter run and may be
subject to further rules.

In our case, we instruct the interpreter of the first machine SC (C2) to issue a
HTTP GET request to the content of the RR of the tracker SC (C1), identified
by the URI “https://cl.local/result-alarm”, during every run and add
it to the internal RDF graph. Thereby, the data flow between the tracker SC (C1)
and the first machine SC (C2) is established in a pull-based manner, as required
by the first version of the evaluation scenario.

We do not explicitly show how information about an emergency stop is in-
ternally handled by the first machine SC (C2). This may be, for example,
analogously solved by a query added during design time and registered by the
domain-specific function at the interpreter, that causes the machine to react
appropriately if the information about an emergency stop is available.

3.4.1.5 Run Adaptation

With the adaptations of application logic, of interfaces, and of requests in Sec-
tions 3.4.1.2,3.4.1.3, and 3.4.1.4, we declared different adaptations of the SCs,
but did not declare their interplay with respect to the distributed application
in our evaluation scenario. We declare this interplay with run configurations,
that define which adaptations of the SCs should be evaluated by interpreters
and which triggers lead to these evaluations. Hereby, a run represents the run
of an interpreter that may include triples of different resources, and evaluate a
set of programs and queries in one or several evaluation steps, that are again
triggered by the domain-specific function, time, or events caused by other
components. By supporting function-based, time-based as well as event-based
evaluation steps, we enable both the active and passive processing for SCs.
With the distinction of separately configured interpreter runs, we support the
separately evaluated sets of triples, programs, and queries. Thereby, we enable
the participation of SCs in multiple compositions of independently distributed
applications at the same time.

129

https://c1.local/result-alarm

3 Component Adaptation and Decentralized Application Control

| Identifier Method | Content Type
Payload

04 | https://cl.local/run PUT text/turtle
<>asc:Run;

sc:state <run—state> ;
sc:program [a sc:Program ;
sc:declaration <program—distance>] ;
sc:query [a sc:Query ;
sc:declaration <query—alarm> ;
sc:sink <result—alarm>] ;
sc:trigger a sc:Trigger, sc:DomainSpecificTrigger .

05 | https://c2.Jocal/run PUT text/turtle

<>asc:Run;
sc:state <run-—state> ;
sc:program [a sc:Program ;
sc:declaration <program—request> | ;
sc:trigger [a sc:Trigger, sc:DelayTrigger ;
sc:delay "100"] .

Table 3.4: Run Adaptation of the Smart Components (C1, C2)

The Commands #04 and #05 in Table 3.4 show these run adaptations for the
tracker SC (C1) and for the first machine SC (C2). Both commands create re-
sources that contain run configurations, identified by http://cl.local/run
for the tracker SC (C1) and by http://c2.local/run for the first machine
SC (C2). The processing of the tracker SC (C1) is actively triggered by the
domain-specific function, i.e., is bound to the frequency of the depth cam-
era. Therefore, we declare no additional triggers but only the inclusion of
the program <program-distance>, that calculates the distance of joints as
well as the query <query-alarm>, with the query results to be provided at
<result-alarm>. The processing of the first machine SC (C2) is declared to
be triggered with a fixed frequency of 100 milliseconds. For the evaluation,
during every interpreter step, the program <program-request> is declared
and it executes the requests to retrieve information from the query result re-
sources at the tracker SC (C1). In both programs, the URIs of resources are
relative to the base URI of the SCs.

130

http://c1.local/run
http://c2.local/run
<program-distance>
<query-alarm>
<result-alarm>
<program-request>

3.4 Evaluation

3.4.1.6 Runtime Switch

In Section 3.2.3.2, we described the separation of the different lifecycles in our
architecture. In addition to the separation of the design time and the adaptation
time of SCs, also the time of adaptation is separated from the runtime of SCs,
with respect to the compositions of distributed applications, in which they
participate. In particular, the switch from adaptations of SCs to their active or
passive participation in distributed applications is supported by HTTP POST
requests on resources that contain their run configuration, which is compliant
with the overall LDP conformity of the interface.

| Identifier Method | Content Type
Payload

06 | https://cl.local/run POST

07 | https://c2.local/run POST

Table 3.5: Switch of the Smart Components (C1, C2) to Runtime

In Section 3.4.1.5, we described the run configurations of the tracker SC (C1)
and of the first machine SC (C2), which declare the interplay of different
adaptations as well as processing triggers, i.e., the declarative configuration of
the adaptation layer. In Table 3.5, we show the Commands #06 and #07 that
instruct both SCs to evaluate their run configurations and, if these are valid,
to start with the declared interpretation of programs and queries. Thereby,
both SCs switch to active processing — the tracker SC (C1) triggered by the
domain-specific function, i.e., the depth camera, and the first machine SC (C2)
triggered by time.

3.4.1.7 Re-adaptation

To show the flexibility of our approach, we re-adapt the distributed application
at runtime to new requirements. Instead of pulling information about emer-
gency stops from the tracker SC (C1), the first machine SC (C2) should get
informed as soon as a distance alarm is recognized. Furthermore, the first ma-

131

3 Component Adaptation and Decentralized Application Control

chine SC (C2) should decide by itself to inform a subcomponent — the second
machine SC (C2), if the distance is less than half of the original threshold. We
show the commands used for the adaptation in Tables 3.6 and 3.7.

| Identifier Method | Content Type

Payload

08 | https://cl.local/program- PUT text/n3
request

{ ?point scenario:alarm "true" ; scenario:distance ?distance .
}=>{
[] http:mthd http—m:PUT ;
http:requestURI <http://c2.local/alarm> ;
http:body {
<> scenario:alarm "true" ;
scenario:threshold "1000.0" ;
scenario:distance ?distance . } . } .

09 | https://cl.local/run PUT text/turtle

<>asc:Run;
sc.state <run—state> ;
sc:program
[a sc:Program ; sc:declaration <program—distance>],
[a sc:Program ; sc:declaration <program—request> | ;
sc:trigger a sc:Trigger, sc:DomainSpecificTrigger .

10 | https://cl.local/query- DELETE
alarm

11 | https://cl.local/run-state DELETE

12 | https://cl.Jocal/run POST

Table 3.6: Re-adaptation of the Tracker Smart Component (C1)

First, we re-adapt the tracker SC (C1) as shown in Command #08 to #12 in
Table 3.6. Therefore, we deploy in Command #08 a separate program with
a single interaction rule, that is identified by the URI https://cl.local/

132

https://c1.local/program-request

3.4 Evaluation

program-request. With this request rule, we replace the pull-based interac-
tion of the first machine SC (C2) by a push-based interaction of the tracker
SC (C1). The body of the rule is valid if a distance alarm is available in the in-
ternal RDF graph, which is calculated by the derivation rule in Section 3.4.1.2.
In this case, the head of the rule is evaluated, which instructs the interpreter
to execute a HTTP PUT request to the interface of the first machine SC (C2).
In the payload, we include, in addition to the alarm, the current distance of
the related joint as well as the threshold information, which has been used to
calculate the alarm. The HTTP PUT request causes the interpreter of the first
machine SC (C2), due to an on-request trigger, to add the given RDF payload
to the internal RDF graph and include it in the next evaluation step of all
programs and queries. Optionally, we can delete the obsolete query resource,
which we created for the first version of our evaluation scenario, as shown in
Command #10. Finally, in Command #11 and #12, we stop the current run of
the tracker SC (C1) and start it based on the new run configuration.

Second, we re-adapt the first machine SC (C2) as shown in Command #13
to #16 in Table 3.7. Therefore, we update in Command #13 the program at
the URI https://c2.local/program-request, which contained the pull
request to the tracker SC (C1) in the first version of our evaluation scenario. The
new program contains again a request rule, but this time with a constraining
body that is valid if information about an alarm, the related threshold, and the
related distance is available. In addition, the threshold is divided by two and the
distance must be less than this new threshold to validate the body. Therefore,
we reuse the distance that has been configured for the tracker SC (C1), has
been transferred alongside the distance alarms to the first machine SC (C2),
and, in consequence, is available in the internal RDF graph of the first machine
SC (C2). In the head of the rule, we declare a HTTP PUT request to the static
interface of the second machine component (C3) at https://c3.local/
static that is compliant with our integration paradigms. Once the condition
is true, the rule head is evaluated by the interpreter, which then executes the
HTTP request and informs the second machine component (C3). Finally, in
Command #15 and #16, we stop the current run of the first machine SC (C2)
and start it, based on the new run configuration.

In comparison to the first version of our evaluation scenario, in the second
version we switched from pull-based to push-based communication, split the
decision logic, and distributed this logic to two SCs.

133

https://c1.local/program-request
https://c2.local/program-request
https://c3.local/static
https://c3.local/static

3 Component Adaptation and Decentralized Application Control

| Identifier Method | Content Type
Payload

13 | https://c2.local/program- PUT text/n3
request

{ 7point scenario:alarm "true" ;
scenario:threshold ?threshold ;
scenario:distance ?distance .

(?threshold "2") math:quotient ?quotient .
?distance math:lessThan ?quotient .
}=>{
[]1 http:mthd http—m:PUT ;
http:requestURI <https://c3.local/static> ;
http:body {
<> scenario:stop "true" . } . }.

14 | https://c2.local/run PUT text/turtle

<>asc:Run;
sc:state <run—state> ;
sc:program [a sc:Program ;
sc:declaration <program—request>] ;

sc:uri <alarm> ; sc:method "PUT"] .

sc:trigger [a sc:Trigger, sc:ResourceRequestedTrigger ;

15 | https://c2.local/run-state DELETE

16 | https://c2.Jocal/run POST

Table 3.7: Re-adaptation of the Machine Smart Component (C2)

3.4.1.8 Requirements Conformity

Our approach and implementation are based on components, which are an
abstraction that we introduce to overcome device heterogeneity (SWoI-RQ1).
Furthermore, we support uniform interfaces and integration by relying on
the REST and LD paradigms (SWoI-RQ2). Similarly, we use semantic rep-
resentations for the interfaces and data exchange in order to overcome data
heterogeneity (SWoT-RQ3). The approach of having distributed logic, within

134

3.4 Evaluation

each component, supports distributed computation and control (SWoT-RQ4).
Finally, we enable the key features of robustness, adaptation, and reconfigura-
tion by providing interfaces and internal logic that can be reconfigured both
at design and runtime (SWoI-RQ5). In addition, we also provide prototypical
software implementation in order to evaluate the feasibility of our approach,
e.g., SCAL as implementation of the SC approach based on the LD-Fu inter-
preter and declarative rule language (SWoT-RQS).

3.4.2 Evaluation of Performance

In this section we describe the results of the performance evaluation tests.
In particular, we show that the overhead, required for the implementation of
our approach, does not result in significant processing delays. Thus the use of
SCs does not hinder the implementation of distributed applications in terms of
effecting the performance negatively.

3.4.2.1 Interpreter Overhead

We focus on measuring the processing overhead caused by the interpreter in-
stance and program runs. In Figure 3.15 we visualize the measurements for
the interpreter runtimes for our scenario example. We performed the exper-
iments on an, at the time of measurements, average computer, in particular,
an Intel Core i7-3520M CPU 2.90GHz 16GB RAM. During interpreter runs
with 100 consecutive steps, i.e., consecutive evaluations by the interpreter,
with 100ms delay between the steps, we measured the duration of running an
instance without programs or declared resources (ins), and sequentially added
the calculation program (ins/cal), the declared resource (ins/cal/res), and the
interaction program (ins/cal/res/int). The diagram on the left shows the mea-
sured durations, without the actual execution of the HTTP interaction. In the
diagram on the right, we include the HTTP interaction to a host on the same ma-
chine (ins/cal/res/int (http)). Despite some outliers, the duration for an instance
without programs or declared resources (ins) is about 0.4ms (median: 0.42ms),
and the duration for an instance with programs and resources is about 0.9ms
(median: 0.86ms, 0.83ms, and 0.89ms). Finally the measured duration with
executed local HTTP interaction is about 6.6ms (median: 6.63ms). Therefore,
the overall overhead of using smart components results in minimal delays.

135

3 Component Adaptation and Decentralized Application Control

millisecond

millisecond

ANMON AN MO N ANM

wl—A—AM ANVCAAA AN interpretation count

ins/cal/res ns/cal/res/int

—ins ins/cal ins/cal/res ins/cal/res/int = ins/cal/res/int (http)

Figure 3.15: Runtimes of Interpretations: HTTP Interaction Excluded/Included

3.4.2.2 Distributed Benchmark

In addition to the overhead of the interpreter, which is focused on a single
SC, we utilized our approach and prototypical SCAL implementation for the
setup of larger experiments in Chapter 5. The results of these experiments are
presented during the evaluation of distributed benchmarking in Section 5.4.2.
In particular, we use the Distributed LUBM (DLUBM), our distributed bench-
mark environment for LD query engines, in combination with our SCAL im-
plementation to deploy DLUBM setups based on SCs. Thereby, we enable the
deployment of query evaluation in a centralized as well as two decentralized
ways and, based on the setup, compare the query evaluation performance in
these settings.

3.5 Summary

Technology trends lead to an increase in the complexity of handling the inte-
gration of heterogeneous components as part of distributed applications. We
witness these integration difficulties not only at data and protocol level, but also
at application level. Therefore, supporting integration in multi-stakeholder sce-
narios requires new architectural approaches for adapting components, while
building on existing technologies and thus ensuring broader acceptance. We fo-
cus on two main aspects: overcoming not only data but also device and interface

136

3.5 Summary

heterogeneity, and enabling adaptable and scalable decentralized applications.
To this end, we use semantics to capture the domain-specific capabilities and
rules to enable the embedding of controlling logic within the interfaces of
components for supporting decentralized solutions. We introduce the concept
of a SC that provides an abstraction level, which supports the unified handling
of devices, data sources, functions, etc., all participating in integrated dis-
tributed applications. We support the reconfiguration of the controlling logic
at runtime to provide options for customizing and adapting the applications.
Furthermore, we show how our approach can be applied by introducing a ref-
erence architecture that we back up by a specific framework implementation.
We believe that providing support for interoperability but also offering simple
mechanisms for adapting the interfaces and controlling logic of components
are key for contributing towards the evolution of the Web.

137

4 Interaction Optimization
and Mapping

In this chapter, we present our work on the optimization of data flows and
on mapping interactions between architectures in distributed applications. We
use our contributions on decentralized control in Chapter 3 as a foundation for
developing the here presented solutions. In particular, we focus on three main
areas: 1) we elaborate on the challenges that arise from non-optimal interaction
patterns between components that are characterized by different frequencies for
providing and consuming data; 2) we explore the architecture of an established
and broadly available distributed system — Robot Operating System (ROS),
and focus on the challenges that arise from including non-compliant system
components into our integration architecture; and 3) we provide solutions
for both of these areas supported by the SC approach as well as exemplary
implementations.

In the following, we first introduce the context of our work on interaction op-
timization and mapping, and present a motivation scenario. Next, we describe
the specific challenges that we aim to address and provide a detailed problem
analysis. For both problem areas, we derive requirements for our solutions.
Based on these requirements, we provide: 1) a frequency-based algorithm
for optimizing pull and push interaction patterns, and 2) a mapping of con-
cepts and interactions between ROS and our integration architecture. Based
on our application scenario, we demonstrate the practical applicability of our
approach by presenting an exemplary implementation. Finally, we conclude
with a short evaluation and show the applicability of the algorithm on our
application scenario.

The content of this chapter is partially based on the publications by Keppmann
et al. [103, 101, 100].

139

4 Interaction Optimization and Mapping

4.1 Introduction

Recent years are marked by the widespread use and adoption of mobile de-
vices and smart sensors, as well as by the increasing modularization and
distribution of formerly monolithic systems. These technology developments
accompany visions such as the IoT [66, 9], the WoT [167, 72, 70, 68], and
the SWoT [143, 128], as well as related visions such as the 14.0 [109, 86]. At
the same time, new application use cases based on Web technologies emerge,
which no longer involve mainly central servers and various clients but, in-
stead, include several heterogeneous devices. Thereby, these developments
influence the evolution of the Web [18, 25, 28], the SW [30, 29, 146], and
the WoD [33, 32]. While the devices become smaller and smarter, they re-
veal at the same time new and changed characteristics and trade-offs, e.g., in
terms of energy consumption, computing power, network connection, band-
width availability, or dynamic and static data provisioning. For example, the
modularization and distribution of applications based on Web and SW tech-
nologies in the area of video sensors, tracking, augmented reality, and virtual
reality is only one of the recent developments in industry and research [16].
The integration of local and remote, mobile and stationary devices into one
distributed application has become achievable and at the same time raises new
challenges.

In particular, the characteristics of new mobile and sensor-based application
areas, but also the modularization of formerly monolithic systems through Web
and SW technologies, differ from traditional Web scenarios, since they rely to
a greater extent on the communication and the data integration between several
components in a network. These applications are more complex in terms of dis-
tribution, modularization, and integration. In addition, the classical server and
client roles become obsolete. For instance, it is common that the components,
which are part of compositions in distributed applications play multiple roles.
For example, components may have the role of data source, data sink, controller,
processor, or multiple of the aforementioned roles. In addition, components are
complemented by diverse characteristics. For example, components may repre-
sent standalone and embedded devices, energy-efficient low-cost single-board
computers and high performance servers, or mobile and network attached de-
vices. Distributed applications are composed out of these components in order
to provide value-added function, while individual components may be part

140

4.1 Introduction

of multiple distributed applications. In addition to establishing the data flows
and data integration within a composition of components, also the efficient
realization of the required interactions between components is challenging.

Furthermore, the visions of a pervasive IoT, WoT, and SWoT require the inte-
gration of heterogeneous software and hardware. Whenever it comes to making
architectural decisions, there is a trade off between the general applicability
of the architecture for increased independence of specific domains and the de-
velopment of specialized architectures that may be more efficient for domain-
specific use cases. In this context, we advocate an approach that supports the
development of specialized solutions by enabling their subsequent integration
in a broader context that is facilitated by rather domain-independent integra-
tion architectures. However, this integration of architectures is challenging,
particular to domain-specific architectures, and may bring trade-offs in terms
of efficiency and function.

In Chapter 3, we based the composition of components into distributed appli-
cations, their means for interaction, their representation of information, and
subsequently our SC approach on an integration architecture based on the
REST [64] and LD [23, 33] paradigms. The REST paradigm unifies the view
on components and restricts their interaction mechanisms to a fixed set of com-
mon methods. As a consequences of restricting the interaction of components,
the paradigm eases their integration. The LD paradigm introduces SWT for
cross-domain semantic interoperability and enables, in combination with the
REST paradigm as RWLD, the integration of components into distributed ap-
plications in a heterogeneous software landscape. The increasing popularity of
these paradigms and broad availability of their utilized technologies led to the
development of the LDP [150] specification. In the following, these paradigms
and their technologies represent the common integration architecture that we
utilize to illustrate the identified challenges as well as our approaches and
solutions.

Based on our integration architecture and with respect to the efficient realization
of the interaction within compositions of components, we focus on the problems
that result from having different interaction patterns for establishing the data
flows. The current shift away from the classical server and client roles has
implications on this interaction between components. The traditional Web
architecture assumes a request/response model, where clients establish the
connection to servers. However, currently more and more integration scenarios

141

4 Interaction Optimization and Mapping

assume multiple roles per component. This leads to situations, in which the
role for establishing the communication is no longer mainly assigned to clients.
In particular, we can select between different interaction patterns, e.g., pull and
push interaction patterns, to establish the same data flows between components.
While both push and pull interactions can enable the data flow between two
components, one may be less efficient in terms of optimal data transmission,
latency times, or bandwidth use.

With respect to investigating the integration of domain-specific architectures
with our integration architecture, we focus on the problems that arise from
the integration of the domain-specific ROS [132] architecture. In the field of
robotics, the ROS architecture is a key player for the efficient integration of
modularized robotic systems. While specialized robotic components would
require custom implementations and solutions for their efficient integration,
ROS enables an overall unified communication and handling of the systems in
this domain. The result is an isolated group of interconnected domain-specific
components that can communicate in a unified way, since they conform to
the ROS architecture. However, these robotic systems are increasingly used in
a broader context, for instance for developing flight and cockpit simulators,
that benefit from the use of specialized hardware and software components. In
these cases, the advantages of a domain-independent integration architecture
may outweigh the advantages of a domain-specific architecture. While the
implementation of the integration architecture at every specialized component
is an option, a more generic approach can be realized by creating mappings
between both architectures via proxy components that provide the capability
of participating in applications of both worlds and enable cross-architecture
data flows. However, the mapping of the architectural elements as well as
of the exchanged information is effort and time-consuming. Thus pervasive
integration scenarios, as promoted by the IoT, WoT, and SWoT, can benefit
from specialized architectures (e.g., ROS) for specific use cases in combination
with Web-scale architectures (e.g., adhering to the REST and LD paradigms),
which are capable of overcoming the heterogeneity.

4.1.1 Scenario

We exemplify the challenges with a sample scenario, which we derive from
our scenario on monitoring factory floors in Section 3.1.1. Here, we change

142

4.1 Introduction

some of the components and focus on specific, more relevant characteristics.
In Figure 4.1, we provide an overview of the monitoring application, which
includes the components in its composition and the data flows between these
components. In contrast to the initial scenario, enabling the value-added func-
tion of the application is not the primary aim. Instead, we focus on supporting
the data flows as well as the rates, at which components can consume and
produce data.

SR SR
Component Component
Camera (C1) Screen (C4)

30 [:] D 300
JL —

Component Component
Tracker (C2) App (C5)
10 4
s) K
J—2— .
Component m
Machine (C3) Map (C6)

U T DE
T

2 0S 0

°

Figure 4.1: Scenario

In Figure 4.1, we indicate these rates by annotating the in- and out-frequencies
of every component. In particular, the number at the top represents the in-
frequency and the number at the bottom represents the out-frequency. Thereby,
the in-frequencies stand for the rates, at which components are able to consume
information from other components to execute their domain-specific functions.
The out-frequencies stand for the rates, at which components provide updated

143

4 Interaction Optimization and Mapping

information, based on their domain-specific functions, to other components. In
order to simplify the scenario, all components actively process based on time,
i.e., they provide stable in- and out-frequencies. In addition to the data flows
and frequencies, the machine component (C3) represents a distributed ROS
application that we indicate by zooming in on its domain-specific function,
which is in turn, again a distributed ROS application.

In the following, we describe the components of the composition, including
their domain-specific functions and the frequencies, at which they can provide
or consume information.

144

Camera (C1) The camera component (C1) is a depth video camera that
provides thirty times per second new color and depth images, i.e., at a
frequency of 30 hertz (Hz). At the same time, the depth video camera
processes tracking information and follows the position of tracked people
in the room. To follow a person, the camera reacts every 100 milliseconds
(ms), i.e., at a frequency of 10 Hz, to new position coordinates by
adjusting the angle of its electric motor.

Tracker (C2) The tracker component (C2) is a low-cost single-board
computer that is connected to the network, and provides body tracking
and position coordinates of recognized people. It is can analyze ten times
per second the depth video images provided by the camera component,
i.e., at a frequency of 10 Hz. Furthermore, the applied algorithm pro-
cesses these images and provides every 200 ms, i.e., at a frequency of
5 Hz, tracking information about recognized people.

Machine (C3) The machine component (C3) represents a factory ma-
chine and provides two times per second, i.e., at a frequency of 2 Hz,
the current state of the machine, including, e.g., its current operating
state, the power consumption of an engine, or the speed of a conveyor.
In addition, the machine component supports three times per seconds
the emergency stop of its moving parts, i.e., at a rate of 3 Hz. In contrast
to the black-box approach towards describing the domain-specific func-
tions of the other components, we provide details on the function of the
machine component. The different parts of the machine are managed by
utilizing the ROS architecture. In particular, the different parts appear
as ROS nodes that are connected through a network and collaborate via
different elements that are provided by the ROS architecture.

4.1 Introduction

Screen (C4) The screen component (C4) visualizes to human users the
color images of the camera component as well as the state of the machine
component and updates this visualization thirty times per second, i.e., at
arate of 30 Hz. The screen component provides no information to other
components.

App (C5) The app component (C5) is a mobile app on a smartphone or
a tablet that shows the color video provided by the camera component
as well as the state of the machine component and updates four times
per second, i.e., at a frequency of 4 Hz, as a trade-off between energy
consumption and update rate. In addition, the app alarms human users
whenever the tracker component recognizes that there is a breach of the
security zone of the machine component. No information is provided by
the app component to other components.

Map (C6) The map component (C6) is a Web-based map that provides
an overview of the factory floor to human users, including the state of
the machine component and the current video provided by the camera
component. Due to a low user-driven access rate, the overview updates
once every second, i.e., at a rate of 1 Hz. No information is provided by
the map component to other components.

4.1.2 Challenges

The allocation of multiple roles to components in distributed applications as
well as the inclusion of domain-specific, specialized architectures pose new
challenges on the realization of data flows between components as well as
across architectural borders. With respect to the realization of data flows
between components, we face challenges that relate to the selection and
implementation of interaction patterns (c.f., Interaction Inefficiency in Sec-
tion 4.1.2.1; Meta-interaction Patterns in Section 4.1.2.2). Furthermore, in the
context of realizing the data flows between a common integration architecture
and domain-specific, specialized architectures, we face typical data integration
challenges but on the level of architectures (c.f., Non-compliant Communica-
tion in Section 4.1.2.3; Non-compliant Representation in Section 4.1.2.4). In
the following, we discuss these challenges in more detail.

145

4 Interaction Optimization and Mapping

4.1.2.1 Interaction Inefficiency

With respect to the realization of data flows between components, we are chal-
lenged with the problem of Interaction Inefficiency. The components partici-
pating in the composition of distributed applications collaborate by exchanging
information between each other and, thereby, provide the value-added function
of the application. To realize these data flows based on our integration architec-
ture, the components interact by executing requests and receiving responses.
However, this interaction is not guaranteed to be efficient in every case. Several
factors may hamper the optimal interaction, e.g., bandwidth limitations, in-
sufficient computing power, unstable network connectivity, or bad design that
leads to denial of service situation. One basic factor that we focus on, is the
interaction pattern that components use to realize their data flows. Thereby,
we differentiate between the pull interaction pattern and the push interaction
pattern. Both interaction patterns are capable of enabling the same data flows.
In the case of a pull, the information is requested by the sink components
from the source components, which send the information as the payload of the
responses. In the case of a push, the information is sent as the payload of the
requests from the source components to the sink components, which confirm
the receipt via responses. In some cases, the combination of both patterns in
one request-response pair may be beneficial. In addition, the selection of in-
teraction patterns is again influenced by different factors. For example, some
of these factors include: latency requirements, payload size, bandwidth limita-
tions, or the frequencies, at which components can consume or provide data. In
the following, we focus on the data consumption/provisioning frequencies. For
example, the camera component (C1) can consume information about tracked
people at a rate of 10 Hz and provides depth and color video images at a rate
of 30 Hz. In summary, choosing the right interaction pattern during the design
and, in particular, in dynamic situations — at runtime, is challenging.

4.1.2.2 Meta-interaction Patterns

Related to the aforementioned problem of Interaction Inefficiency and, espe-
cially, in the context of dynamically changing situations, we are facing the
problem of Meta-interaction Patterns. In application use cases, in which the
situation of components and data flows, as well as the factors that influence the

146

4.1 Introduction

selection of interaction patterns are rather static, we can optimize the interac-
tion with respect to these factors during the design of applications. However,
in non-static application use cases, we are challenged with the optimization
of interactions at runtime. On the one hand, if the final data flows are not
completely determined a priori but at runtime, e.g., if components are added
and removed on-the-fly, the optimal interaction patterns must be determined
at runtime. On the other hand, even if all data flows are predetermined and the
initial selection of interaction patterns is optimal for the initial situation, the
factors that influence the choice of interaction patterns may change over time
and subsequently lead to non-optimal interaction. In this case, the choice of
interaction patterns must be re-evaluated at runtime to adjust the non-optimal
interaction patterns. For example, the app component (C5) in our scenario in
Section 4.1.1 could appear multiple times, as part of a larger variant of the
scenario. The app components track people, who enter the monitored area, and
expose their individually configured update rates for the visualization. In this
case, the optimization of the data flows from the camera component (C1), the
tracker component (C2), and the machine component (C3) must be realized
during the runtime of the distributed application.

Therefore, we are challenged to provide support of appropriate meta-interaction
patterns that enable components to influence not only their actively executed
requests but also the behavior of other components with respect to their in-
teraction. Our integration architecture, which is based on the REST and LD
paradigms and, subsequently, on the LDP implementation, does not include
explicit and standardized concepts that provide support for meta-interaction.
As a consequence, the handling of meta-interaction remains a challenge and
needs to be addressed separately.

4.1.2.3 Non-compliant Communication

With respect to realizing data flows that cross the border between domain-
specific, specialized architectures and our common integration architecture, we
are challenged to address the Non-compliant Communication of information.
In particular, we face problems that are similar to the communication integra-
tion challenges in a heterogeneous landscape of components (Section 3.1.2.1),
which were one of the reasons for introducing a common integration architec-
ture. However, here we focus on the integration of two different architectures

147

4 Interaction Optimization and Mapping

within one distributed application. Therefore, the implementation of a com-
mon integration architecture on the level of all individual components is out
of scope. Instead, we are confronted with the different interaction mechanisms
of both architectures as well as with the deployment of proxy components that
map these mechanisms and, thereby, enable the communication of compo-
nents between both architectures. For example, the machine component (C3)
encapsulates in its domain-specific function a distributed ROS application that
manages the collaboration of the different machine parts. The ROS nodes in
this application communicate through different interaction mechanisms that
the ROS architecture provides, e.g., ROS topics, or ROS services. These in-
teraction means are not compliant with our common integration architecture,
i.e., with the REST-based interaction and transport based on HTTP. Further
communication mismatches may occur in the utilized transport protocol, the
supported interaction patterns, or the methods for access and manipulation.
The mapping of interaction mechanisms and enabling of data flows across the
borders of architectures are challenging tasks that needs to be addressed.

4.1.2.4 Non-compliant Representation

Similarly to the challenge of Non-compliant Communication, we are also chal-
lenged with the problem of Non-compliant Representation of information. In
particular, we face problems related to the information integration in a hetero-
geneous landscape of components. We are confronted with different ways of
modeling data and, if at all, of including the semantic meaning of data, which
the components bring together. For example, the ROS nodes in the ROS appli-
cation of the machine component (C3), exchange information that adheres to a
relatively simple set of data types and ROS messages, composed of these data
types. The ROS messages are not compliant with our common integration ar-
chitecture — with the RDF data model and with representation in one of the RDF
serialization formats. In the context of integrating two different architectures
into one distributed application, the mapping of information representations in
the data flows that cross the borders of architectures is challenging.

148

4.2 Approach for Frequency-based Interaction Optimization

4.1.3 Contributions

With respect to the challenges presented in Section 4.1.2 and advancing the
current state of the art, we make the following contributions:

4.2

In Section 4.2.2 and Section 4.3.2, we conduct two Requirements Anal-
yses with respect to the identified challenges for both the optimization
of interactions with respect to frequencies and the interaction mapping
between domain-specific architectures and our integration architecture.

We present our Frequency-based Network Model and Optimization Al-
gorithm for the optimization of pull and push interaction patters between
components of distributed applications in Section 4.2.3.

With the ROS Architecture Mapping, we present in Section 4.3.3 map-
ping between the domain-specific ROS architecture and our integration
architecture based on the REST and LD paradigms.

In Section 4.4, we describe the ROS-REST Proxy (ROEST) as our imple-
mentation of the mapping between the domain-specific ROS architecture
and our integration architecture.

Finally, we conduct an Evaluation of Frequency-based Interaction Opti-
mization by applying the network model and optimization algorithm to
our scenario in Section 4.5

Approach for Frequency-based
Interaction Optimization

Our approach for realizing a frequency-based interaction optimization is guided
by a set of requirements derived from the problem areas introduced in Sec-
tion 4.1.2. With these requirements, we restrict the space of factors, which
may influence the realization of data flows between components of distributed
applications, to a small set that provides sufficient characteristics to show our
approach and at the same time ease the understanding of our view on distributed
applications. In the following, we first briefly introduce the optimization sce-
nario as a subset of our overall scenario.

149

4 Interaction Optimization and Mapping

4.2.1 Optimization Scenario

SR VS
Component Component
Camera (C1) Screen (C4)

o L) N

30 0

NI

i S —

Component Component
Tracker (C2) App (C5)

s K
5 0
J— .

Y

Component Component

Machine (C3) Map (C6)
3 1
. O K

N

Figure 4.2: Optimization Scenario

The distributed application in our scenario is built out of a number of compo-
nents that are connected to the same network and represent different devices
and systems. In Figure 4.2, we show the relevant part of our scenario that in-
cludes all components, their in- and out-frequencies, as well as the data flows
that they establish for their collaboration to provide the value-added function
of the distributed application. In particular, the components on the left side
represent a depth video camera, a tracker service at a low-cost computer, and
a factory machine. On the right side, the components represent — a screen,
a mobile app, and a map at a website, all of which visualize information for
human users in different ways. Each component provides information for or
consumes information from other components with different frequencies. In
Figure 4.2, we annotate the components with the frequencies, with which they
can consume data for their functions (number at the top) and the frequencies,
with which components provide data based on their functions (number at the
bottom). For the sake of simplicity, we use only processing components with
stable time-based processing and limit the number of frequencies to one pair

150

4.2 Approach for Frequency-based Interaction Optimization

per component. However, our approach could also handle multiple pairs of fre-
quencies per component — by treating these in distinct manner, and non-stable
frequencies — by continuously reapplying our approach to the new situations.

4.2.2 Requirements

Based on the challenges that we introduced in Section 4.1.2, we derive a set of
requirements for enabling interaction optimization.

4.2.2.1 Optimization of Interaction Patterns

Our first requirement, with respect to the challenges related to Interaction
Inefficiency (c.f., Section 4.1.2.1), is the Optimization of Interaction Patterns.
There are several factors that influence the efficiency of data flows between
components, however, we focus in this approach on the pull and push interaction
patterns. In addition, there are also several factors that influence the selection
of these interaction patterns, and we focus on the frequencies, with which
components can consume data from and provide data to other components.
Therefore, we require that these frequencies are considered for the optimization
of interaction patterns.

4.2.2.2 Provisioning of Metadata

Our second requirement, with respect to the challenges related to Interaction
Inefficiency and Meta-interaction Patterns (c.f., Section 4.1.2.1 and 4.1.2.2)
is the Provisioning of Metadata. As we pointed out, the optimization, e.g.,
of the interaction patterns between components in a distributed application,
requires optimization-specific metadata, e.g., the in- and out-frequencies of
components, that provides measures, which are required to perform these
optimizations. While the optimization of a static integration scenario may
be based on the specifications of components, we require the provisioning
of metadata during runtime and the provisioning in adherence to the common
integration architecture to enable optimization during runtime in scenarios with
changing conditions. In addition, the provisioning of metadata should adhere
to the integration architecture, i.e., respect the REST and LD paradigms.

151

4 Interaction Optimization and Mapping

4.2.2.3 Self-adaptation of Components

Our third requirement, with respect to the challenges related to Meta-interaction
Patterns (c.f., Section 4.1.2.2) is the Self-adaptation of Components. In integra-
tion scenarios with changing conditions, in which the factors that influence the
optimization change over time, e.g., changing in- and out-frequencies, we must
re-adapt the initial configuration of pull and push interaction patterns to adjust
existing non-optimal interactions. However, to be able to support this in an
efficient way, these adjustments must be done by the components themselves.
The SC approach provides the means for deploying interfaces, interactions,
controlling logic, and processing triggers onto components at runtime and in
adherence with the integration architecture. Thereby, the approach enables us
to establish application-specific data flows between these components. How-
ever, the SC approach and architecture provide no optimizations with respect
to the overall communication between components in domain-specific appli-
cations. Therefore, we are able to optimize communication a priori during the
design of the applications but, by default, not during runtime after deploy-
ment. Therefore, we require the self-adaptation of components during runtime
— the optimization of communication with respect to certain criteria through
the adaptation of interfaces and interactions. The adaptation is done by the
components themselves and is dependent on the available metadata, aiming to
dynamically optimize the existing interaction patterns and, thereby, react on
changing situations. In addition, this adaptation should adhere to the integration
architecture, i.e., respect the REST and LD paradigms.

4.2.3 Frequency-based Network Model
and Optimization Algorithm

In our approach, we treat a distributed application as a set of components.
The components in this set take over specific functions, provide the means
to access and modify their state and, thereby, provide access to this function
or react to modified states. These components are integrated and collaborate
through communicating over a network to provide the value-added function of
the distributed application. This integration is established by transferring the
states of components between the involved components — a component may
require the state of another component, or other components may require the

152

4.2 Approach for Frequency-based Interaction Optimization

state of the component, or both at the same time. Which state transfers are
required to provide a value-added function is heavily dependent on the specific
distributed application.

During runtime, components repeatedly execute their function, access the state
of other required components, and modify the state of dependent components.
In accordance with the particular function, the rate, at which the state of com-
ponents is modified may differ from the rate, at which the state of components
is accessed, e.g., a component aggregates frequently pushed sensor information
that is, subsequently, rarely requested by further components. We take this into
consideration by distinguishing an in-frequency, at which components require
the state of other components, and an out-frequency, at which components,
triggered by their function, modify the state of other components. In addition,
components may not require any states or they may not modify any states. In
this case, the in- or out-frequency is zero.

The integration presumes that the representations of required states are trans-
ferred via the network between the collaborating components. We consider the
push and the pull interaction patterns that can be performed by components
to realize these transfers. Thereby, components may either pull state repre-
sentations from remote components, or get these state representations pushed
from other components. Analogously, representations of modified states can
be pushed by the component to other components, or be pulled by these com-
ponents.

The in- and out-frequencies of components, in combination with the differ-
ent interaction patterns, raise the question — “When should state changes be
transferred between components via pull interaction and when via push inter-
action?”. In a pull interaction, outdated data may be pulled, while in a push
interaction data may be pushed, which cannot be processed until the next push
to the remote system. Given these characteristics, we provide a basic algorithm
to improve the interaction between components by calculating the optimal in-
teraction pattern for each data flow, based on the in- and out-frequencies of the
involved components. By deploying the interaction according to the results of
this algorithm, we prevent components from transferring state representation
with information that will be discarded or was not changed, and thus minimize
the overall data flow in terms of transferred state representations. The consider-
ation of further parameters, e.g., the trade-off between bandwidth and latency,

153

4 Interaction Optimization and Mapping

or processing and bandwidth limitation, is not discussed in this approach but
can be incorporated.

We emphasize that our approach aligns well with our integration architecture,
in particular, with the resource-oriented viewpoint of the REST paradigm. In
the context of REST, components are integrated into distributed applications
in a resource-oriented manner. For the transfer of state representations, these
components expose REST APIs to the network. Depending on the particular
use case, components represent such REST APIs as a collection of resources
or as a single resource. A REST API enables remote components to pull state
representations from or push state representations to a component. Thus, there
might be components in the network, which do not provide a REST API but
only pull or push states.

In the following, we introduce our model for describing the data flow in dis-
tributed applications, including the dynamics in terms of the in- and out-
frequencies of components, and an algorithm for optimizing the interaction
patterns.

4.2.3.1 Frequency-based Network Model

Model In Equation 4.1, we show our model for describing composite appli-
cations in terms of a network of components. The network model includes
information about the number n of involved components, the existence of data
flows F between these components, the in-frequencies I and out-frequencies O
of components, and the interaction patterns P that these components use to
establish the data flows.

{F} x{I} x{0} x{P}

F € {true, false}"™"

1,0 € {R=}"

P € {push, pull, both, none }"*"
neN

Equation 4.1: Network Model

154

4.2 Approach for Frequency-based Interaction Optimization

false fio -+ fij
fZ,l false --- f2,j
fia fia .-+ false

fij € {true,false}; i,jeN

Equation 4.2: Network Model — Data Flows

Data Flow In Equation 4.2, we model the data flow between the components,
participating in an application, as matrix. Each entry in the matrix represents
the data flow between component i and component j, i.e., in the case of true,
the data flow between component i and j exists and, in the case of false,
no data flow exists. The size of the matrix is the number of components 7 in
the network. By default, data flows from components to themselves are not
permitted, i.e., the diagonal of the matrix is set to false.

I 01

%) 02
I = 0=

ii OJ'

ioj €R*Y; ijeN
Equation 4.3: Network Model — In- and Out-Frequencies

Frequencies In Equation 4.3, we model the in- and out-frequencies of com-
ponents as vectors. The pair i, and o,, in the vectors I and O are indexed by the
consecutive number of components n and represent the pairs of in- and out-
frequencies of the components. The frequencies are measured in hertz (Hz),
i.e., they are defined as events or cycles per second (s).

Interaction Patterns In Equation 4.4, we model the interaction patterns be-
tween components in the form of a matrix. Each entry in the matrix represents
the interaction pattern that component i should execute with regard to com-
ponent j, i.e., if component i should pull, push, pull and push (both), or

155

4 Interaction Optimization and Mapping

execute no (none) interaction pattern with regard to component j. The size of
the matrix is defined by the number of components n in the composition. By
default, components cannot execute an interaction pattern on themselves, i.e.,
the diagonal of the matrix is set to none. The interaction patterns for specific
scenarios are calculated by the basic algorithm that we present in the following.

none pi2 -+ Pl
p2,1 none -+ Dpo;
Pin pbi2 - none

pi.j € {push,pull,both,none}; i,jeN

Equation 4.4: Network Model — Interaction Patterns

4.2.3.2 Frequency-based Optimization Algorithm

In Algorithm 4.1, we show in pseudo code the basic optimization algorithm for
determining the optimal interaction patterns for all components participating in
a composite application. In particular, the algorithm determines if a component
should pull data from another component, push data to another component,
or execute both pull and push patterns to send data in both directions. The
algorithm requires as input the number of components » in the network, all
in-frequencies / of components, all out-frequencies O of components, and the
matrix F with the data flows between components. The constants NONE,
PULL, PUSH, and BOTH are placeholders for the corresponding interaction
patterns. The algorithm returns as output the matrix of interaction patterns P
that includes the interaction patterns for each component in relation to each of
the other components. In Table 4.1, we list all decisions of the algorithm with
their conditions and the derived interaction patterns. For readability, NONE-
entries are not shown.

156

4.2 Approach for Frequency-based Interaction Optimization

Require: n, I, O, F, NONE, PULL, PUSH, BOTH
Ensure: P
function INTERACTION_PATTERNS(D, I, O, F)
for c1 < O,n do
for ¢c2 «— 0,n do
if Fc1][c2] A O[cl] < I[c2] A F[c2][c1] A O[c2] > I[c1] then
P[c1][c2] « BOTH
else if F[c1][c2] A O][cl] < I[c2] then
Plcl][c2] « PUSH
else if F[c2][c1] A I[c2] > O]c1] then
Plcl][c2] « PULL
else
Plc1][c2] <« NONE
end if
end for
end for
return P
end function

Algorithm 4.1: Optimization Algorithm for Interaction Patterns

4.2.3.3 Smart Component-based Interaction Adaptation

The network model and the optimization algorithm enable us to evaluate a
composition of components with respect to the given in- and out-frequencies.
Thereby, we can determine the optimal interaction patterns with respect to
the minimal transfer of state representation needed to establish the required
data flows. We can use the network model and algorithm a priori for the
design of distributed applications or at runtime — for the subsequent adjustment
of interaction patterns. Therefore, in situations, in which the in- and out-
frequencies dynamically change over time, we utilize the SC approach to
deploy the algorithm to the SCs participating in the composition and evaluate
the selection of interaction patterns during every interpreter run. Thereby, we do
not prescribe the way, in which metadata about the frequency of components is
collected, but only require that it is provided, in the case of SCs, by the domain-
specific function to the interpreter, and, in case of regular components, exposed
as a resource at the network. Alternatively, the frequencies may be calculated
by the interpreter, given an appropriate rule program.

157

4 Interaction Optimization and Mapping

Flow Condition Pattern C1 Pattern C2
Cl—>C2 0O(Cl)<I(C2) PUSH

Cl—-C2 0O(Cl)>I(C2) PULL
Cl<C2 0(C2)<I(C]) PUSH
Cl<C2 0(C2)>I(C1) PULL

CleC2 OCH)<I(C2)A0(C2) < I(C1) PUSH PUSH
CleC2 O(C)>I(C2) AO(C2) > I(C1) PULL PULL
CleC2 O(Cl) <I(C2)A0(C2) > I(C1) BOTH

CleC2 O(C) < I(C2)A0(C2) < I(C1) BOTH

Table 4.1: Decision Table of the Optimization Algorithm for Interaction Patterns

(" smart Component | 0(s€1)<l(sc2)

Figure 4.3: Smart Component-based Interaction Adaptation

Smart Component\

In Figure 4.3, we give an abstract overview of the initial situation and in
Figure 4.4 we show the adaptation from push to pull interaction between two
SCs, based on the network model and our algorithm. The exemplary data flow
leads from SC1 to SC2 and includes the out-frequency O(SC1) of SC1 as well
as the domain-specific payload P. SC1 exposes at its interface the payload P
as a resource to SC2 or transfers the payload P via requests to SC2, depending
on the state of a secondary resource. The request rule that is responsible for the
push of P is conditional to the state of this resource. SC2 contains the algorithm
as a rule program that evaluates the interaction pattern between SC1 and SC2

158

4.2 Approach for Frequency-based Interaction Optimization

with respect to the out-frequency O(SC1) of SC1 and the in-frequency 1(SC2)
of SC2. The push interaction in step 7,,—; holds as long as O(SC1) < I(SC2)
holds.

T (“smart Component | 0(S€1)>1(5€2) [Smart Component\

/Smart Component

Tosk

Figure 4.4: Smart Component-based Interaction Adaptation

In Figure 4.4, we show as an example the switch from push to pull interaction.
In step Ty, the situation changes to O(SC1) > I(SC?2), i.e., the in-frequency of
SC2 is now less then the out-frequency of SCI. In this case, SC2 establishes a
data flow to SC1 that is represented by a single push interaction that changes the
state of the secondary resource to false. Subsequently in step 7,,+x, SC1 reacts
by stopping to push and instead SC2 starts to pull the required information
O(SC1) + P from the interface of SC1, and does that as long as O(SC1) >
I(SC2) holds. The switch back to push interaction is handled in a similar way.

While the network model and algorithm are relatively simple, we show with
this example the capabilities of the SC approach for enabling the adjustment
of interfaces, interactions, and processing of components at runtime to incor-
porate the required behavior. The algorithm, the required resources, and the
decisions to pull or push, can be deployed by adapting the SCs. Thereby, we

159

4 Interaction Optimization and Mapping

establish the meta-interaction between the components that influences the way,
in which the actual data flows are realized, i.e., determining the selection of the
interaction patterns. In this particular case, we use a custom meta-interaction
that cannot be classified as publish-subscribe or collect-subscribe (c.f., Sec-
tion 2.3.4). However, realizing these classical meta-interaction patterns with
our SC approach is also possible.

4.3 Approach for Domain-specific
Architecture Mapping

Our approach for mapping domain-specific architectures to our integration
architecture is guided by a set of requirements introduced in Section 4.3.2,
that we derived from the challenges. With the help of these requirements, we
focus on the main integration hurdles that need to be overcome when providing
mappings to the integration architecture and its implementation. While these
requirements hold for the integration of any domain-specific architecture, we
focus, in particular, on the integration of the ROS architecture. In the following,
we first introduce ROS and then briefly describe the mapping scenario as a
subset of our overall scenario.

The Robot Operating System (ROS) [132] provides in the field of robotic and
machine components means for the unified communication and for the effi-
cient integration within modularized, distributed robotic systems. We give an
overview of the important concepts, interaction mechanisms, data models, and
data formats of the ROS architecture. In particular, the architecture provides
a coherent way for identification and message transmission in distributed ap-
plications. These distributed applications are composed of ROS Nodes, which
communicate with each other via ROS Messages by using ROS Topics and ROS
Services, or by utilizing ROS Parameters. In the following, we describe these
architectural elements in more detail.

The ROS architecture introduces the following concepts.

ROS Name ROS names enable the identification of components in a
distributed ROS system via a central hierarchical naming scheme. The
naming is based on a slash-separated identifier for each resource in the
ROS application, e.g., “/ns/node”. Names start with an alpha character,

160

4.3 Approach for Domain-specific Architecture Mapping

including forward slash and tilde, followed by alphanumeric characters,
including forward slashes and underscores. The global namespace is
identified by a forward slash and subsequent slashes separate different
namespaces within an identifier. Resources may access other resources
in or above their own namespace but only create resources in their own
namespace.

ROS Node ROS nodes are the basic building blocks of the architecture
and perform the computation in a ROS application. A ROS system may
consist of several interconnected nodes, each handling the computation
of a relatively narrow function, e.g., location tracking, or laser sensor
operation. A node is uniquely identified by a name and all nodes in
an application communicate via topics, services, or a parameter server.
Each node has a node type, encapsulates its function, and provides a
minimal API, which is exposed to the rest of the nodes. On file system
level, within the package, the type of a node defines the name of the
executable to be executed when the node is accessed.

ROS Master The ROS master provides a centralized name system and
registration facility for nodes, for their published topics, and for their
published services in the ROS system. It enables nodes to discover and
locate other nodes, and tracks all subscribers and publishers of topics
and services. The communication of messages between nodes over topics
is, similarly to services, delegated to the nodes and not handled by the
master. The function of the master is accessible through an API based
on Extensible Markup Language Remote Procedure Call (XML-RPC).

The ROS architecture introduces the following data elements.

ROS Message ROS messages are simple data structures of typed fields,
which are exchanged during the communication between nodes in a ROS
resource graph. A message is typed by a message type, which defines the
structure of the contained data. ROS packages may define these message
types in simple text files, based on a set of built-in field types. Each
message includes the version of the message type, which is based on
the Message-Digest Algorithm 5 (MDS5) hash of the underlying message
type file. Only nodes with the same version of a supported message type,
i.e., the same MDS5 hash, are allowed to communicate messages of this
particular message type.

161

4 Interaction Optimization and Mapping

ROS Bag ROS bags are a collections of serialized messages for per-
sistent storage and later reuse, e.g., playback of messages. The original
representation used by the ROS transport layer is utilized by bags as data
format, which leads to efficient processing or replaying of messages.

Finally, the ROS architecture introduces the following means for interaction.

ROS Topic ROS topics provide an anonymous publish-subscribe meta-
interaction mechanism for establishing interaction in a ROS system and
enable unidirectional distribution of messages from a specific node to a
number of interested nodes. A topic is identified by a name and is strongly
typed for one kind of messages, i.e., the type of a topic is the same as
the type of the messages to be distributed by the topic. Nodes receive
messages of this message type only if they have subscribed beforehand
to the topic.

ROS Service ROS services provide a request-response mechanism for
the interaction in a ROS system. A service is identified by a name and
supports a message pair, i.e., a request message and a response message.
Similarly to topics, each service is strongly typed, based on a MD5 hash
of the service file, which includes, in contrast to topics, the types of both
messages. The interaction with a service is synchronous, i.e., a node
sends a request message to a service and waits for the response message.

ROS Parameter The ROS server provides at runtime the parameter
server as a shared dictionary of parameters for nodes in the resource
graph. The server is not designed for high performance use cases but for
rather static and low volume data, e.g., configurations. The identification
of parameters follows the ROS name scheme. Single or tree-based access
to the shared parameter storage is granted trough an API based on
XML-RPC.

4.3.1 Mapping Scenario

In the following, we introduce in short our mapping scenario that is part of the
overall scenario in Section 4.1.1. The distributed application in our scenario
contains in its composition the machine component (C3), which includes as
a domain-specific function the management of the actual machine, which is

162

4.3 Approach for Domain-specific Architecture Mapping

based on the ROS architecture. In Figure 4.5, we show the relevant parts of our
scenario that include the component as well as a zoom-in on the details of the
domain-specific function, i.e., the system based on ROS. However, we do not
detail on every single element of this system.

Component
Machine (C3)

Figure 4.5: Mapping Scenario

In Listing 4.1, we provide a simple example of a ROS system, which we use to
illustrate the elements of the ROS architecture. We also use this as a running
example for describing our mapping approach. In particular, we modeled some
details of the machine in an abstract manner as a set of ROS topics and ROS
services that are provided by one or multiple ROS nodes.

Topics
/machine/engine/speed > 0 - 1000

Services
/machine/ start
/machine/stop

/machine/set_power < on | off
/machine/get_power > on | off
/machine/engine/set_speed < 0 - 1000
/machine/engine/set_direction < 0 — 1
/machine/engine/ get_direction > 0 — 1

Listing 4.1: Machine Topics/Services in ROS

163

4 Interaction Optimization and Mapping

Each line represents a ROS topic or a ROS service identified by a ROS name
with input or output values, which are indicated by a left angle bracket for
input and right angle bracket for output. The start/stop as well as the set/get
power ROS services start and stop the engine. Via the set speed ROS service a
new speed may be set and the get/set direction services are responsible for the
direction, in terms of forward or backward movement. The ROS topic informs
subscribed ROS nodes about changes in the speed of the engine.

4.3.2 Requirements

Based on the challenges that we introduced in Section 4.1.2, we derive a set
of requirements for enabling interaction mapping. While we keep the mapping
scenario in Section 4.3.1 simple, the scenario includes the most important
means for communication in ROS that we intend to map to the integration
architecture. Therefore, we derive in the following a set of requirements that
an architecture and, subsequently, an implementation must fulfill for providing
an effective mapping between the architectures.

4.3.2.1 Compliance with the Integration Architecture

Our first requirement, with respect to the challenges related to Non-compliant
Communication and Non-compliant Representation (c.f., Section 4.1.2.3 and
4.1.2.4) is the Compliance with the Integration Architecture. While the mapping
is challenging, we specify with this most basic requirement the adherence of the
solution to the common integration architecture. The components that act as
proxies to ROS may utilize arbitrary means for communication at the domain-
specific side, but must adhere to the REST and LD paradigms at the side
of the integration architecture. Therefore, the resource-oriented viewpoint on
applications is determinative, URIs identify resources, HTTP is the transport
and application protocol, RDF is utilized for the modeling of information, and
RDF data formats such as Turtle, or RDF/XML serialize the representations
exposed by resources.

164

4.3 Approach for Domain-specific Architecture Mapping

4.3.2.2 Mapping of Interaction and Meta-interaction

Our second requirement, with respect to the challenges related to Non-
compliant Communication(c.f., Section 4.1.2.3) is the Mapping of Interac-
tion and Meta-interaction. Compared to the integration architecture, the ROS
architecture imposes an alternative view on distributed applications, e.g., by
permitting function-like calls, includes architectural elements without coun-
terparts, e.g., a centralized authority for meta-interaction, and uses different
transport protocols. However, the basic setup of having different components
that collaborate in compositions of distributed applications, is very similar.
With respect to interaction, the ROS architecture provides with the help of
topics, services, and parameters, three different means for realizing the data
flow between ROS nodes and the ROS master. To be able to establish the
data flow between ROS nodes and components that adhere to the integration
architecture, we therefore require the mapping of these architectural elements,
as well as the interaction mechanisms, to HTTP and related technologies,
while respecting the REST paradigm. In addition, the ROS architecture in-
cludes built-in mechanisms for meta-interaction, e.g., ROS topics, that must
be handled appropriately.

4.3.2.3 Lifting and Lowering of Data

Our third requirement, with respect to the challenges related to Non-compliant
Representation (c.f., Section 4.1.2.4) is the Lifting and Lowering of Data. Com-
pared to the integration architecture, the ROS architecture relies on a relatively
simple system of data types and ROS messages that include values of different
data types. While not in the direct focus, we require the appropriate mapping
of information that is serialized in ROS messages and that is communicated
between ROS nodes, to the RDF data model. Thereby, the data can re-used
as LD and may be subject to further processing, e.g., for data transformation,
derivation, or subsequent requests in the case of SCs.

165

4 Interaction Optimization and Mapping

4.3.3 ROS Architecture Mapping

Our approach on integrating the ROS architecture with our integration ar-
chitecture is based on two phases. First, the integration has to be realized
on a conceptual and interaction level. With REST, we introduce a resource-
oriented viewpoint on distributed applications. The basic concepts associated
with REST and the corresponding implications on the interactions within the
distributed application must be aligned with the particular ROS architecture.
Second, the integration has to be realized on the semantic level, based on the
meaning of the processed data, thus facilitating the unified handling of het-
erogeneous data formats and data sources. By introducing RDF as a way for
formally specifying data models and LD for publishing and interlinking data,
we provide the foundation for the integration of data, having different formats
and coming from different sources. In the following, we provide a mapping
between our integration architecture and the ROS architecture. In particular,
we 1) map the concepts between both architectures, 2) map the interaction
mechanisms utilized in the communication, and 3) indicate how the REST
architectural style enables modeling of structural information and hypermedia,
which is implicitly expressed in ROS.

4.3.3.1 Concept Mapping

In our integration architecture, we build on the REST and LD paradigms.
The REST paradigm proposes the use of common Web technologies, e.g.,
URI, HTTP, and LR. The LD paradigm adds SWT, in particular, RDF, and,
subsequently, the LDP specification to the set of technologies. In Table 4.2,
we provide a mapping between the concepts of HTTP, i.e., REST, extended to
LDP, i.e., RWLD, and the concepts of the ROS architecture.

For an architecture based on HTTP, we are able to identify the basic concepts,
i.e., component, application, and resource. Any host capable of providing re-
sources via HTTP at a DNS name or an IP address may serve as a component.
A set of components, which collaborate through interaction via a network,
composes a distributed application, which provides a value-added function. At
the interfaces of components, HTTP resources expose relevant parts of their
states to the network. In addition, we consider specific concepts for identifica-
tion and transport. In particular, HTTP specifies also the underlying protocol

166

4.3 Approach for Domain-specific Architecture Mapping

for the transport of messages and for the interaction between components, as
described in Section 4.3.3.2. Based on HTTP, we use URIs to uniquely iden-
tify resources. We are not obliged to adhere to a prescribed data model and
representation format, since neither HTTP nor the REST paradigm specify a
particular model. Any data format is permitted for serializing a representation
of a state, although some specific data formats are frequently used, e.g., JSON,
or XML. For supporting the differentiation of representation formats we can
use mime types.

Concept HTTP Concept LDP Concept ROS Concept
Component Host Host Node
Application Composition of Composition of Composition of
Hosts Hosts Nodes
Resource HTTP Resource LDPR Service,
Parameter, Topic
Subscriber
Represent. XML, JSON, ... Turtle, JISON-LD, Message, XML
Data - RDF Message Format,
Model XML-RPC
Schema
Identifier URI URI Name
Transport HTTP HTTP TCPROS,
UDPROS
Interaction HTTP Verbs HTTP Verbs Methods provided

by Topic, Service,
and Parameter

Table 4.2: Concept Mapping between HTTP, LDP, and ROS

Switching from an architecture adhering to the REST paradigm to an architec-
ture that adheres to the LD paradigms, we introduce the respective concepts
from the LDP specification that enables RWLD. As shown in Table 4.2, we
use the more constrained definition of a LDPR and, subsequently, the derived
LDP-RS, LDP-NR, and variants of LDPC. In addition, we close the gap of

167

4 Interaction Optimization and Mapping

having a consistent data model by introducing RDF as a common, default
data model. Several data formats exist for the serialization of representations
adhering to the RDF model, e.g., Turtle, ISON-LD, RDF/XML, or N-Triples.
However, we consider with LDP-NRs also other data models and formats,
which are described in and linked from RDF representations.

Similarly to HTTP, we are able to identify the basic concepts in the ROS ar-
chitecture. A distributed application based on ROS is a network of ROS nodes,
which interact in order to provide a value-added function. The state of a ROS
node is exposed by services, parameters, or indirectly by the subscribers of
a topic. Therefore, different types of resources exist in the ROS architecture.
In contrast to HTTP, ROS provides data models and formats for representa-
tion. The message format provides a simple model for messages exchanged
via topics and services, serialized on the transport level in a ROS-specific
data format. Representations of parameters adhere to the XML-RPC schema
and are serialized as XML. The ROS architecture provides a global naming
scheme for services, topics, and parameters, i.e., ROS names are unique iden-
tifiers for resources. With TCPROS and UDPROS the architecture provides
two implementations of the abstract ROS transport protocol for the transfer
of messages between nodes. Negotiation procedures transparently handle the
optimal choice of the protocol implementation, based on the preferences of the
involved nodes, and enable the extension with further protocols.

With the concept of resources, which expose a relevant view of the state of
components to the network, and unique identifiers to identify these resources
we allow a mapping, which is categorized as level one in Richardson’s maturity
model [165] for REST services.

4.3.3.2 Interaction Mapping

Derived from the resource-oriented view of the REST paradigm, our integration
architecture has a fixed set of methods, which enable transport and interaction.
In the simplest case, we can use some or all Create, Read, Update, and Delete
(CRUD) operations on resources. In the case of HTTP, the HTTP verbs POST,
GET, PUT, and DELETE map to these CRUD operations and in relation
to resources, as shown in Table 4.3. In more detailed defined by the LDP
specification (c.f., Section 2.2.3.1), we differentiate between regular resources

168

4.3 Approach for Domain-specific Architecture Mapping

(LDPR, LDP-RS, and LDP-NR) and container resources (LDPC, LDP-BC,
LDP-DC, and LDP-IC) for collections of resources, which provide a different
behavior for some of these methods. In particular, resources are created or
updated by executing HTTP PUT requests at a given URI, read by a HTTP
GET request, and deleted by HTTP DELETE requests. In addition, we can
create a new resource via a HTTP POST request to the URI of a container
resource, that is subsequently provided at a server-determined URI and added
to the collection represented by the container resource. We introduce the HTTP
PATCH verb to complete the update methods. In contrast to HTTP PUT, the
HTTP PATCH verb enables partial updates of resources.

Architecture Res. Type Create Read Update Delete
HTTP/LDP HTTPRes./ POST/ GET PUT/ DELETE
LDPR PUT PATCH

ROS Service - get* set* -
ROS Topic Sub. - - publish -
ROS Parameter setParam getParam setParam deletePar.

Table 4.3: Interaction Mapping between HTTP/LDP and ROS

We are able to identify different interaction mechanism in the ROS architecture,
depending on the type of resource, i.e., specific interaction mechanisms exist
for topics, services, and parameters. Depending on the type of resource, we
partially map the mechanisms to the generic CRUD operations, as shown in
Table 4.3. The subscribers of ROS topics provide, on a conceptional level, only
one regular resource, which can be updated by topic publishers as a single, and
thus distinct, CRUD operation. The creation and deletion of these resources
provided by subscribers is not supported, i.e., the subscribers provide only
one predefined resource for updates by publishers. In addition, these resources
provide no read support for other elements of the ROS architecture, but nodes
may expose their state, in turn, as topics or services. In contrast to topics, ROS
services provide no support for distinct CRUD operations. In particular, the
creation and deletion of services is not possible at runtime, i.e., services are a
predefined, regular resources. Furthermore, services define a set of input and
output ROS messages as RPC with custom processing between input and output

169

4 Interaction Optimization and Mapping

message. While the creation and deletion of a service resource is not possible,
in many cases the read and update operation are emulated by introducing getter
and setter services (c.f., Listing 4.1). Finally, the ROS parameter is the only
resource type in the ROS architecture that supports all CRUD operations in
a distinct manner. The master node provides central access to all parameters
and all interaction mechanisms for these parameters. In fact, the interaction
with parameters is handled by XML-RPC but in a resource-oriented manner.
A parameter may be created or updated by the “setParam” method, read by the
“getParam” method, and deleted by the “deleteParam”.

/machine/power : on | off
/machine/engine/speed : 0 — 1000
/machine/engine/direction : 0 — 1

Listing 4.2: Machine Resources

In Listing 4.2, we show how the abstract machine, which we modeled in ROS
in Listing 4.1, is mapped to a HTTP/LDP CRUD interface. For readability,
we do not use full URIs in the listing but only their path parts for identifi-
cation. By utilizing the convention of prefixing the ROS names of getter and
setter services, we automatically map the ROS services “/machine/{set,get}_-
power” and “/machine/engine/{set,get}_direction” to HTTP resources. The
ROS topic “/machine/engine/speed” is combined with the ROS service “/ma-
chine/engine/set_speed” to a read-write resource. We can establish manual
custom mappings for the start and stop services, which do not adhere to the
convention and require neither input nor provide output, e.g., by mapping the
combination of both services to HTTP POST requests at the parent resource.

With the mapping of a constraint set of interaction mechanisms, we enable a
mapping, which is categorized as level two in Richardson’s maturity model for
REST services. We point out that the ROS architecture does not provide means
for creating and deleting topics and services at runtime. Only ROS parame-
ters, which we did not include our running example, are mapped completely
as CRUD resources to HTTP. ROS topics are mapped to read-only HTTP
resources, which only allow the HTTP GET method. ROS services allow au-
tomatic mapping to read-write HTTP resources by utilizing the convention of
prefixing the ROS names of getter and setter services. In the case of other ROS
services, custom mappings are required.

170

4.3 Approach for Domain-specific Architecture Mapping

4.3.3.3 Resource Aggregation and Hypermedia Mapping

In our integration architecture, the REST paradigm is, in general, not limiting
the granularity of resources, i.e., the granularity is a design decision, since
there are no restrictions in terms of URI structure or representation formats. In
this context, only the specification of the LDPCs adds some restrictions to the
representation. In contrast, the ROS architecture only permits representations
that are composed of basic data types, which leads to relatively fine-grained
resources. As a consequence, a resource, which is modeled in REST as one
HTTP resource, may be split over several fine-grained topics or services in ROS.
In most cases, the ROS names of these topics and services contain structural
information about resources. In addition, the REST architectural style proposes
as a tenet the use of hypermedia to drive the state of applications, i.e., links
connect resources, explicitly state the type of relation, and, thereby, relate states
of the application.

/machine

linkrel : start —> /machine
linkrel : stop —> /machine
linkrel : engine —> /machine/engine
power : on | off

/machine/engine

linkrel : machine —-> /machine
speed : 0 - 1000
direction 0 -1

Listing 4.3: Machine Aggregated Resources and Link Relations

In Listing 4.3, we extend the CRUD interface of the abstract machine in
Listing 4.2 to overcome these shortcomings. For readability, we do not use
full URIs in the listing but only their path parts for identification. First, we
aggregate fine-grained ROS resources as higher-level HTTP resources, i.e.,
as the resources “/machine” and “/machine/engine”. For automation, we use
the semantic information from the structure of ROS names, that now becomes
obsolete. Second, we expose the application state, which is implicitly present
in our ROS example, explicit by utilizing hypermedia, i.e., by linking the
resources with typed links. These links, which drive the application state, are

171

4 Interaction Optimization and Mapping

noted in Listing 4.3 as “linkrel” and point to the relative path of the target
resource. The link “start” appears in the representation of a machine as long as
the machine is not started. The link “engine” appears as long as the machine
is started. The link “stop” appears as long as the machine is started and the
speed of the engine is zero. An engine resource exists as long as the machine
is started and its representation contains a link back to the machine. A client,
capable of interpreting the link types, is directly able to use the machine system
in the correct way by accessing a single URI as the starting point, which in this
case the URI of the machine resource.

The ROS architecture does not provide means for creating complex resources
and for relating these resources. By aggregating fine-granular ROS resources
into higher-level HTTP resources and by adding hypermedia, we enhance the
mapping and expose a ROS system as proposed by the REST architectural
style, i.e., the service now adheres to level three of the Richardson’s maturity
model. However, the mapping of the application semantics is currently still a
manual task.

4.3.3.4 Smart Component-based Meta-interaction
Mapping and Transformation

The integration architecture based on the REST and LD paradigms provides
no means for specifying meta-interaction patterns such as publish-subscribe or
collect-subscribe. In contrast, the ROS architecture provides with ROS topics
built-in means for publish-subscribe meta-interaction. As presented before, we
map these topics to regular resources that expose the newest pushed value of
the topic at the network. However, by utilizing the SC approach, we enable the
appropriate mapping of this meta-interaction. In Figure 4.6, we indicate this
through the mapped ROS application as domain-specific function of the SC. In
this case, the SC is actively processing, triggered by time or by received ROS
messages. The SC enables us to map the meta-interaction by utilizing request
rules in combination with lists of subscribers, e.g., by utilizing LDPCs, and
to forward messages that are pushed by ROS topics in the ROS application to
subscribed components in our integration architecture. In addition, we enable
the transformation of information through rule programs. For example, generic
vocabularies for the annotation of mapped ROS messages can be transformed
to vocabularies that are appropriate for the specific application use case.

172

4.4 Implementation of the ROS-REST Proxy

/Smart Component

Figure 4.6: Smart Component-based Meta-interaction Mapping and Transformation

4.4 Implementation of the ROS-REST Proxy

In the following, we provide a short introduction to the ROS-REST Proxy
(ROEST)!, which is our proof-of-concept implementation of the mapping
between the domain-specific ROS architecture and our integration architecture
based on the REST and LD paradigms. In Listing 4.4, we show the definition
of the ROS message “sensor_msgs/Cameralnfo”?, which we use as a running
example throughout this sections.

As the most basic architectural element, we mapped the 14 datatypes that are
supported by the ROS architecture, e.g., bool, int64, or time. The message
definition in Listing 4.4 includes several fields of different data types, e.g.,
“uint32 height”, or “uint32 width”. The fixed set of data types in ROS allows
us to provide a generic mapping for these data types. Therefore, ROEST maps
these fields to literals in RDF that are annotated with the appropriate types of
the built-in XSD datatypes, which are re-used by RDF. In addition to simple
data types, ROS supports fixed-length and variable-length arrays as well as
separate arrays for bytes and booleans. The message definition in Listing 4.4
includes different array fields, e.g., “float64[] D”, or “float64[9] K”. To keep the
order of values within the arrays, ROEST maps these arrays to RDF lists [37].

I https://rslv.link/ZSv7
2 https://rslv.link/ZSvm

173

https://rslv.link/ZSv7
https://rslv.link/ZSvm

4 Interaction Optimization and Mapping

std_msgs/Header header
uint32 seq
time stamp
string frame_id
uint32 height
uint32 width
string distortion_model
float64 [] D
float64 [9] K
float64 [9] R
float64[12] P
uint32 binning_x
uint32 binning_y
sensor_msgs/RegionOflnterest roi
uint32 x_offset
uint32 y_offset
uint32 height
uint32 width
bool do_rectify

Listing 4.4: Definition of the ROS Message “sensor_msgs/Cameralnfo”

As the second element of the ROS architecture, we map the instances of ROS
messages that are transferred by reusing the simplicity of their structured defi-
nitions. This mapping of ROS messages consist of two parts. On the one hand,
the information that is published by ROS topics or used as input and output of
ROS services is serialized according to the definition of ROS messages. The
definitions of ROS messages consist of fields that are identified by a name and
are typed by a datatype. In contrast to ROS names, the names of fields in mes-
sages are not globally unique and, subsequently, their semantics are specific
to the message definition. Therefore, the ROEST implementation maps these
field names to predicates that link the message instances and the related literal
values to URISs that are unique per combination of message definition and field
name. Thereby, we ensure the unique identification of the type of linked liter-
als, and enable the subsequent integration of semantics across several message
definitions. In other words, the property of two mapped message instances
is identified by the same URI if their message definition is the same and by
different URIs if their message definition is different, even if the semantics
are the same. On the other hand, message definitions can contain fields that

174

4.5 Evaluation of Frequency-based Interaction Optimization

are typed with other message definitions. This case is shown in our example
in Listing 4.4 for the field “header” of the message type “std_msgs/Header”
and for the field “roi” of the message type “sensor_msgs/RegionOflInterest”. In
the listing, we recursively show the definitions of these subordinate messages.
ROEST reuses this recursive relation between message definitions and subordi-
nate message definitions for linking superordinate instances of ROS messages
with their superordinate instance. Thereby, ROEST maps one coherent RDF
graph per transferred instance of a superordinate ROS message that includes
all subordinate instances.

We can map the ROS topics, services, and parameters of a distributed ROS
application partially or completely to the single interface of the ROEST im-
plementation, which participates as a single ROS node in ROS applications
and as a single component in compositions based on our integration architec-
ture. In our proof-of-concept ROEST implementation, we limit this mapping
of interaction mechanisms to ROS topics. ROS topics are identified by unique
ROS names that are slash-separated strings. We reuse the ROS names as path
parts in the URIs for resources that represent the mapped topics. In the proof-
of-concept implementation, we provide no aggregation of fine-granular ROS
topics, but represent every ROS topics with a single resource in the REST in-
terface. Therefore, we cache the RDF representation of pushed ROS message
instances for subsequent HTTP requests, i.e., we switch from push interaction
in ROS to pull interaction in our integration architecture.

4.5 Evaluation of Frequency-based
Interaction Optimization

In the following, we evaluate our approach for frequency-based data flow
optimization, which we presented in Section 4.2, by calculating the optimal
interaction patterns for our initially presented optimization scenario in Sec-
tion 4.2.1 (c.f., Figure 4.7). First, we create our network model, which we
presented in Section 4.2.3.1, based on the composition of components and
data flows between the components. Subsequently, we apply our optimization
algorithm, which we presented in Section 4.2.3.2, to determine the optimal
interaction patters for every pair of components in the application.

175

4 Interaction Optimization and Mapping

SR
Component

Camera (C1)
ol
30

Component

Tracker (C2)
s
5

Component

Machine (C3)

3
2

]

~—

R
Component
Screen (C4)

Bk
0
~—

Component
App (C5)

s

~——

Component
Map (C6)

s

~——

Figure 4.7: Optimization Scenario

1 2 3 4 5 6
true true true true
true true true
true true true

|
O’\UI-PUJI\JHz

Equation 4.5: Network Model Evaluation — Data Flows

In Equation 4.5, we apply the modeling of the network of data flows to our
scenario s. For readability, we list only true entries in the table that indicate
a data flow between two components. The instance of the matrix depends on
the integration of components in the distributed application. Therefore, every
arrow in Figure 4.7 leads to a true entry in the matrix. In Equation 4.6, we
apply the modeling of frequencies to our scenario s. The instances of the vectors
depend on the properties of the components. In particular, every pair of in- and
out-frequencies in Figure 4.7 is represented by a pair of entries in the vectors.

176

4.5 Evaluation of Frequency-based Interaction Optimization

In Equation 4.7, we apply the optimization algorithm to the network model of
our scenario s and calculate the matrix with optimal interaction patterns Py.
The algorithm is executed with the number of components participating in
our composition n = 6, the vector of in-frequencies I, the vector of out-
frequencies Oy, and the matrix of data flows Fj. The constants PULL, PUSH,
BOTH, and NONE are set to pull, push, both, and none. For readability, we
omit none-entries in the matrix.

N Hz N Hz
1 10 1 {30
2 |10 2 5
I, :3 3 0, :3 2
4 130 4 0
5 4 5 0
6 6 0

N 1 2 3 4 5 6
1 push
2 | both
3 pull push push
Py = 4
5 | pull pull
6 |\ pull pull

Equation 4.7: Network Model Evaluation — Interaction Patterns

In Figure 4.8, we visualize the solution for our optimization scenario that
we calculated by applying the optimization algorithm. With dashed arrows
between components, we imply, in contrast to the data flows in Figure 4.7,
the direction of interaction and label these interactions with the corresponding
interaction patterns. By deploying the interaction between components, the

177

4 Interaction Optimization and Mapping

data flows are established and the amount of redundantly pulled or discarded
pushed data is minimized. For example, the data flow from component C2
to component C5 is realized by a pull of the data from component C2 by
component C5. Component C5 pulls data with an in-frequency of 4 Hz and
will not receive redundant data, since the data at component C2 changes with
an out-frequency of 5 Hz. During a push of data from component C2 to
component C5 one out of five messages would be discarded by component C5.

Component
Screen (C4)

Component
Camera (C1)

a

\ \

. \ \\
cm stlput
Tracker (C2) \
!

10 /
5 Yo

Component
I
1
/ N
N
\

App (C5)

—[====

s
AN e

>

Component il

Machine (C3)
3 ‘ I
2

Figure 4.8: Optimization Scenario Solution

In Table 4.4, we list the aggregated estimate figures for the comparison of the
optimized interaction patterns of our scenario solution to a push-only and a pull-
only interaction for the same scenario. We included the accumulated overall
frequencies for data flows in the composition of components, the accumulated
redundantly pulled state representations, and the accumulated discarded pushed
state representations. By adapting the derived optimized interaction patterns,

178

4.6 Summary

our solution provides the lowest overall frequency and no state representations
are transferred, which are redundant or discarded. In comparison, the push-only
interaction causes the highest overall frequency and the most discarded state
representations. The pull-only interaction provides, in this specific optimization
scenario, an overall frequency, which is in between the two previous cases, and
thus some state representations with redundant data are pulled. The frequency
serves also as an indicator for bandwidth consumption between the different
approaches. Nevertheless, the size of state representations has to be taken into
account in order to be able to make statements about the technical bandwidth
usage.

Frequency Redundant Discarded

Solution 62 0 0
Push-only 141 0 79
Pull-only 97 35 0

Table 4.4: Comparison of Push-only, Pull-only, and Optimized Interaction

4.6 Summary

Recent years are marked by the widespread use and adoption of mobile devices
and smart sensors as well as by the increasing modularization and distribution
of formerly monolithic systems that accompany visions like the IoT, the WoT,
and the SWoT. In parallel, new application use cases based on Web technolo-
gies emerge, which no longer involve mainly central servers and various clients
but include several heterogeneous devices, that influence the evolution of the
Web, the SW, and the WoD. While the devices become smaller and smarter,
they reveal at the same time new and changed characteristics and trade-offs.
On the one hand, the classical server and client roles become obsolete and it
is common that the components participating in distributed applications own
multiple roles, and, in addition, are complemented by diverse characteristics.
Hereby, the efficient realization of data flows via interactions between the
components becomes challenging. On the other hand, deciding on the trade-

179

4 Interaction Optimization and Mapping

off between generic architectures, which provide increased independence of
specific domains, and specialized architectures, that may be more efficient for
domain-specific use cases, is challenging. In this context, we provide an ap-
proach for optimizing the interaction patterns that are used by components and
provide an approach for mapping the architectural elements of the domain-
specific ROS architecture to our integration architecture based on REST and
LD. For both approaches, we point out the advantages of combining them with
the SC approach. Furthermore, we provide a proof-of-concept implementation
of our architecture mapping to and from ROS, and evaluate our network model
and algorithm for optimizing interactions. While several different factors in-
fluence the efficiency of data flows and several domain-specific architectures
exist, we see our approaches as specific contributions that directly provide
solutions to the general challenges that arise with current developments that
accompany IoT, the WoT, and the SWoT as well as the Web, the SW, and the
WoD.

180

5 Distributed Benchmark
Generation and Provisioning

In this chapter, we detail our work on generating and providing distributed
benchmarks for LD. We focus on three main areas: 1) addressing the challenges
of the LD setting with respect to benchmarks; 2) exploring the details and
complexity of a domain-independent architecture for LD benchmarks; and
3) providing a solution for a domain-specific, scalable, and distributed LD
benchmark.

In the following, we first introduce the context of our work on generating and
providing distributed benchmarks and present a motivation scenario. Next we
describe the specific challenges that we aim to address and provide a detailed
problem analysis. We derive design requirements and provide an architecture
for distributed environments that provide LD benchmarks. Based on our ar-
chitecture, we present a specific distributed LD benchmark for our motivating
scenario and detail on the implementation of the benchmark with respect to the
different elements of our architecture. Finally, we conclude by presenting the
performance evaluation of centralized and decentralized LD querying based
on benchmarked environments that our implementation provides in different
scales.

The content of this chapter is partially based on the publications by Keppmann
etal. [104, 103].

5.1 Introduction

The development of LD has witnessed a rapid evolution and growth during the
past years. Driven by the growing availability of data sources, solutions are
constantly being newly developed or improved in order to support data exchange

181

5 Distributed Benchmark Generation and Provisioning

both in Web and enterprise settings. Thereby, LD is used in manifold integration
scenarios — from the LODC [112], in which LD is used to expose datasets in
semantically enriched and highly interlinked manner for public use, to the
integration of devices that operate at high frequencies in the area of tracking,
AR, and VR [142]. In such use cases, RWLD is utilized in specialized enterprise
scenarios to overcome the heterogeneity in the interaction, representation, and
semantics of information that is exchanged between devices from a multitude
of independent manufacturers.

However, currently the choice whether to use LD in larger distributed applica-
tion scenarios is, from a performance point of view, more an educated guess
than a fact-based decision. Therefore, the provisioning of benchmarking tools
and evaluation reports, which allow developers to assess the fitness of exist-
ing solutions, is key for pushing the development of better approaches and
solutions, which are based on LD or, subsequently, RWLD. For instance, we
evaluate the implementation of our SC approach, that we presented in Chap-
ter 3, in a functional manner and the performance of the implementation at a
single SC. To measure the performance of such approaches at different scales
and to be able to evaluate different alternative solutions, we require benchmarks
that are capable of providing truly distributed LD settings in a reproducible
way. However, the support for the reproducible creation of distributed datasets
as well as their setup and provisioning is challenging.

The LD setting (c.f., Section 2.2.3) is, on the one hand, characterized by
datasets that consist of multiple distinct graphs and that are modeled in the
RDF. Each graph is addressed by a different URI and is accessible via HTTP.
The documents returned by hosts during requests at these HTTP URIs con-
tain representations of these graphs in one of the RDF serialization formats,
e.g., N-Triples, Turtle, or RDF/XML. Graphs may contain references to other
graphs at different URIs. On the other hand, this LD setting exposes advanced
requirements to clients beyond the capability of evaluating or querying RDF
graphs. In particular, clients in the LD setting must be capable of handling
remote documents. While, for example, RDF query engines enable the answer-
ing of queries against locally available graphs, LD query engines must retrieve
graphs by requesting documents that contain graph representations via HTTP.
Furthermore, these query engines must support resolving of links within re-
ceived RDF graphs [85, 83]. In other words, query engines must support link
following in the overall dataset of interlinked graphs during query answering.

182

5.1 Introduction

In addition, in the RWLD setting, clients must be capable of combining the
requirements of the LD paradigm with the more advanced implications of the
REST paradigm in terms of interaction mechanisms.

However, current benchmarks [73, 35, 140, 36, 55, 93] in the area of SWT are
focused on the generation of RDF graphs for local and mostly SPARQL-based
evaluation, even if name-wise related to LD [55, 93]. While the generation
of graphs is also important in the LD setting, the characteristics of typical
LD integration settings go beyond the sole data generation. In particular, the
generation of separated but interlinked graphs as well as their distribution at
different hosts in a network, are substantial elements of the LD setting. Existing
non-distributed benchmarks do not emulate these characteristics.

5.1.1 Scenario

In this work, we are not focused on the creation of specific benchmarking
scenarios in terms of data generation, but on the interlinking and distribu-
tion of generated data as well as the deployment and reproducibility. There-
fore, we base our scenario, the implementation of our architecture in Sec-
tion 5.3, and the evaluation in Section 5.4 on an existing, simple, but established
non-distributed RDF benchmark. In particular, the Lehigh University Bench-
mark (LUBM) [73]. However, the architecture of our approach, presented in
Section 5.2.2 is, in general, independent of the specific data generators, which
are exchangeable as long as they adhere to a limited set of requirements.

The LUBM scenario is derived from a university setting and includes informa-
tion about universities, their departments, as well as the details of departments.
Represented is the staff of the department, in particular, full professors, asso-
ciate professors, assistant professors, and lecturers. In addition, undergraduate
students and graduate students, courses and graduate courses, as well as pub-
lications are also represented. For each entity, a set of related properties is
provided. In addition to the assignment of these entities to the department, sev-
eral links connect the entities, e.g., authors of publications, courses taken by
students, or courses give by teachers. In some cases, these links connect entities
of a department to other departments. In particular, the degrees of graduate
students, professors, and members of the staff are linked to other universities
of the overall dataset. For evaluation, the LUBM benchmark provides a set of

183

5 Distributed Benchmark Generation and Provisioning

14 SPARQL queries of different complexity, that take into account the infor-
mation of a single department, the departments of a university, or information
of several universities.

G: Global
U: University P &

D: Department _ S~

N

™~
>
~
D

Figure 5.1: Distributed Benchmarking — Scenario

The LUBM benchmark is focused on the evaluation of SPARQL queries with
respect to different complexity, but not on a LD setting. However, the bench-
marking scenario can be intuitively mapped to a distributed setting, in which
universities, departments, and probably even smaller groups of entities are
provided by virtually or physically distributed hosts. In our distributed bench-
marking scenario, visualized in Figure 5.1, we consider for the dataset separated
graphs for universities, departments, which are interlinked with other univer-
sities, as well as a global graph, that links existing universities of the dataset.
This setting enables different scaling.

» The size of the dataset can be scaled similarly to the original LUBM
scenario. The more universities with related departments are generated,
the bigger the dataset is and the more computing-intensive SPARQL
queries become, depending on their complexity.

* The provisioning of documents that contain RDF graphs can be scaled.
In the most distributed LD setting, the documents for each of these RDF
graphs are provided by separate hosts. In the most non-distributed LD
setting, the documents of all RDF graphs are provided by the same host.

These are scaling factors that an implementation aligned to this scenario must
support. With this simply structured and well-known scenario, we intend to set

184

5.1 Introduction

the focus of our approach, architecture, and implementation for a distributed
benchmark environment.

5.1.2 Challenges

The characteristics of distributed LD settings pose challenges to the design of
adequate LD benchmarks. With respect to the generation and the distribution
of datasets that form the benchmarking scenario, and to the provisioning of
distinct but interlinked graphs as well as separated hosts, we face challenges
that go beyond the features of current benchmarks (c.f., Data Generation in
Section 5.1.2.1; Dataset Distribution in Section 5.1.2.2). Furthermore, the dis-
tributed nature of the LD setting imposes challenges on the actual deployment
of benchmark datasets in a distributed manner. In addition, we face challenges
with the reproducible generation, distribution, and deployment of datasets to
enable comparability (c.f., Deployment Complexity in Section 5.1.2.3; Dit-
ficult Reproducibility in Section 5.1.2.4). In the following, we discuss these
challenges in more detail.

5.1.2.1 Data Generation

With respect to the provisioning of the datasets in a LD setting, we are chal-
lenged with the problem of Data Generation. Existing benchmarks [73, 35,
140, 36, 55, 93] for RDF, including [55, 93] lack certain capabilities to cover
major aspects of LD settings. In particular, benchmark data generators must be
capable of generating datasets that consist of distinct but interlinked graphs. In
addition to the artificial generation of data, benchmarks can also collect data
a priori from real sources. The provided graphs must represent a subset of the
overall generated information of the dataset and, in addition, must not prevent
virtual and physical separation. Therefore, the graphs, which are provided at
different URIs, must contain valid links to other graphs in the dataset. On the
one hand, these links connect entities contained in the separated graphs, and,
on the other hand, must be resolvable to retrieve the documents that contain
the representation of the related graph in a LD fashion. For example, in our
benchmarking scenario in Section 5.1.1, we may provide the dataset of different
universities and their departments at different URIs that are probably hosted
at different locations. However, the degree relations of people in departments

185

5 Distributed Benchmark Generation and Provisioning

to other universities must be represented by links that include the correct and
resolvable URIs of those universities. In this case, we face a challenging mix-
ture between data generation or data collection and the actual provisioning of
data during the benchmark, that influences the actual configuration of URIs.

5.1.2.2 Dataset Distribution

Closely aligned with the correct interlinking of distinct graphs in a dataset,
as described by the problem Data Generation, we are challenged with the
problem of Dataset Distribution to provide truly distributed RDF datasets.
Two characteristics of the LD setting, which distinguish the setting from pure
RDF and SPARQL benchmarking, are the distribution of datasets in a network
and accessibility of documents that contain RDF graphs through HTTP. In
contrast, existing benchmarks for RDF focus on single evaluation engines and
provide no support for distribution, as common for LD settings. Thereby, the
distribution can be: not existing, i.e., local at a single system; in a local network;
or at the intra- or internet. For example, in the one extreme LD is utilized to
participate in the LODC [112] and in the contrary extreme LD is used in local
applications or applications that use the local area network. From a technical
point of view, these scenarios differ on the level of networks and computing
resources, but not on the application layer.

5.1.2.3 Deployment Complexity

As a consequence of the problem Data Generation in combination with the
problem of Dataset Distribution, we face a challenging problem of Deployment
Complexity, in particular, in evaluation scenarios with large datasets that are
highly fragmented and distributed. Due to the distributed nature of LD, we face
complex deployments for the simulation of LD settings. While the deployment
of all documents of a dataset at a single host is a valid benchmark scenario,
we argue that the simulation of the LD setting includes besides distinct and
interlinked graphs also the provisioning of these graphs by individual hosts
that each implement the complete required Web stack and that are connected
through a network. In addition, the time required for the setup of benchmarks,
i.e., the data generation and provisioning, in particular, in larger benchmark
scenarios, is significantly reduced if the utilized computing power is organized

186

5.1 Introduction

in a distributed manner. The deployment in such distributed manner includes
several challenges, for example, the setup of multiple hosts, the distribution to
and interlinking of graphs at these hosts, and the resolvability of links between
graphs, which are provided by these hosts in certain network environments.

5.1.2.4 Difficult Reproducibility

The challenges above amplify the problem of Difficult Reproducibility. The
reproducibility is a general requirement for benchmarks, as the goals of bench-
marks are the performance measurement of a single or multiple solutions and
the comparison of the same solution in different versions. Therefore, bench-
marks must ensure that the problems presented to the solutions provide the
same characteristics, in particular, being independent of time and locations
of the benchmark executions. In contrast to RDF and SPARQL benchmarks,
benchmarks for LD settings must provide reproducibility not only of the pure
RDF generation but, with respect to the reliable generation of RDF graphs with
the same characteristics, their correct separation and interlinking in the overall
dataset, the resolvability of links with respect to the actual deployment, and the
distributed deployment that provides the same characteristics. The setup of the
same benchmark with the same parameters in different locations or at different
times must result in comparable LD settings that share the same characteristics.

5.1.3 Related Work

With the growing proliferation of graph-based data, in general, and LD, in par-
ticular, benchmarking has become a prominent topic in the SW and database
communities. Many benchmarks and data generators already exist, includ-
ing LUBM [73], Berlin SPARQL Benchmark (BSBM) [35], SPARQL Per-
formance Benchmark (SP2Bench) [140], gMark [12], Generating Random
RDF (Grr) [36], or Waterloo SPARQL Diversity Test Suite (WatDiv) [3]. Fur-
thermore, benchmarks have been developed in the field of RDF stream proces-
sors [47], including SRBench [169] and LSBench [110]. Still, the main focus
of these benchmarks is on covering the main features of RDF and SPARQL,
on query optimization, and not specifically on exploring the LD setting.

187

5 Distributed Benchmark Generation and Provisioning

In general, the desirable characteristics of benchmarks [88], e.g., repeat-
able, fair, verifiable, and economical, are not always taken into considera-
tion. Moreover, sometimes the specifics and requirements in RDF and graph
data management are neglected, as pointed out in a series of benchmark
surveys [51, 52, 166]. In this context, the Linked Data Benchmark Coun-
cil (LDBC) [4] aims to establish benchmarks and benchmarking practices for
evaluating graph data management systems. It proposes a “choke-point”-driven
design of graph database benchmarks, which combines user input with input
from expert systems architects.

We are also witnessing the development of benchmarks that cover specific
domains. For instance, related to social network benchmarking, the LDBC de-
veloped the Social Network Benchmark (SNB) [55], which introduces a syn-
thetic social network graph with three workloads: SNB-Interactive, SNB-BI,
and SNB-Algorithms. Similarly, Facebook features LinkBench [7], a bench-
mark targeting the workload of Online Transaction Processing (OLTP) on the
Facebook graph. LinkBench focuses only on transactions and uses a synthetic
graph generator, which is unfortunately capable of reproducing very little of
the structure or value correlations found in real networks. Finally, the BG
benchmark [13] proposes to evaluate simple social networking actions under
different Service Level Agreements (SLAs). Naturally, domain-specific bench-
marks put emphasis on particular characteristics such as network structure and
node correlations.

In summary, while there are a number of benchmarks supporting SPARQL
features, including query optimization, and while there are also some bench-
marks with focus on certain domains, what is still missing is a benchmark
that targets specifically LD and not RDF in general. This is especially true for
providing options for having virtually or physically distributed datasets, having
valid links between graphs in these datasets, and, at the same time, being able
to manage the deployment complexity of such a distributed setting.

5.1.4 Contributions

With respect to the challenges presented in Section 5.1.2 and advancing the
current state of the art, we make the following contributions:

188

5.2 Approach for Linked Data Benchmark Environments

* In Section 5.2.1, we conduct a Requirements Analysis with respect to the
identified challenges and derive high-level requirements for distributed
LD benchmarking.

* We present the Linked Data Benchmark Environment (LDBE) in Sec-
tion 5.2.2, including an architecture designed to cope with the require-
ments.

* We introduce the Distributed LUBM (DLUBM) as a specific implemen-
tation of our architecture in Section 5.3, including 1) a LD generator,
2) the integration with container-based virtualization and distribution
technologies, 3) supporting tools for automatic composition and deploy-
ment, and 4) the reproducibility by through simple parametrization.

e In Section 5.4.1, we show the Evaluation of Centralized Linked Data
Querying by utilizing DLUBM instances of different scales. These exper-
iments have been conducted for comparability on computing resources
of broadly available platform providers, in particular, in the Elastic Com-
pute Cloud (EC2) provided by Amazon Web Services (AWS).

¢ In Section 5.4.2, we show the Evaluation of Decentralized Linked Data
Querying at different scale by utilizing DLUBM instances integrated
with SCAL. Similar to the other evaluation, these experiments have
been conducted for comparability on computing resources of broadly
available platform providers.

5.2 Approach for Linked Data
Benchmark Environments

Our approach for realizing a truly distributed Linked Data Benchmark Environ-
ment (LDBE) is guided by a set of requirements derived from the problem areas
introduced in Section 5.1.2. With these requirements, we ensure the broad ap-
plicability of our architecture and abstract away from specific implementation
characteristics. Thereby, the approach itself is independent from domains and
technologies but exposes explicit requirements for dataset generation, virtual-
ization, and distribution technologies. Our DLUBM benchmark environment,

189

5 Distributed Benchmark Generation and Provisioning

described in Section 5.3, is one specific implementation. In the following, we
present the guiding requirements and our benchmark architecture.

5.2.1 Requirements

Based on the presented challenges, we derive four groups of main requirements
for an LDBE, each group covering one of the challenges.

5.2.1.1 Deployment-aligned Data Generation

Our first requirement, with respect to the challenges related to Data Generation
is the Deployment-aligned Data Generation. Our goal is the creation of a
truly distributed LDBE. Therefore, one requirement for our approach is the
generation of RDF graphs that are distinct but interlinked and are suited to
settings that adhere to the well-known LD [23, 33] principles. These LD
principles indirectly impose requirements on the generation of graphs that can
be used in a distributed environment. First, the data generator must support
the generation of completely separate RDF graphs, e.g., split into different
files. Depending on the deployment process of the distributed benchmark
environment, the generation of subsets of the set of all graphs in the dataset
is an advantage. Thereby, the distributed generation is improved by generating
only the graphs that are relevant for provisioning at the hosts. Second, the data
generator must support the correct interlinking of these graphs, with respect
to the actual deployment of the distributed environment, i.e., the HTTP URIs
within generated graphs must point to the correct related graphs, including
their correct hostnames. Third, if SPARQL queries are dynamically generated
along with the datasets, the generator must support the correct use of HTTP
URISs in these queries with respect to the actual deployment of graphs in the
distributed benchmark environment.

5.2.1.2 Network Layer Distribution

Our second requirement, with respect to the challenges related to Dataset
Distribution is the Network Layer Distribution. For a distributed LDBE, an
implication of the problem and, in addition, imposed by the second and fourth

190

5.2 Approach for Linked Data Benchmark Environments

LD principles, is the interlinking and lookup in distributed datasets, i.e., HTTP
URIs in graphs of the datasets can be looked up to discover related graphs.
While this can be achieved with a single host through distribution on the
application layer (i.e., graphs identified and looked up by different HTTP
URIs hosted at one server) simulating a realistic setting in the context of
scenarios in the WoD, the IoT, the WoT, or the SWOT, can only be achieved
if these graphs are distributed to different hosts at least at the network level.
In addition, the provisioning of larger benchmark datasets at a single host
may lead to performance bottlenecks, depending on the type and amount
of expected requests. Therefore, the requirement guiding our approach is the
distribution of interlinked RDF graphs at the network layer of the Open Systems
Interconnection (OSI) model, in particular, by using different IP addresses or
DNS records. Graphs must be provided by distinct hosts and be resolvable via
HTTP. With respect to established cloud and emerging container-solutions, we
neither require nor prohibit physically separate hosts.

5.2.1.3 Deployment Automation

Our third requirement, with respect to the challenges related to Deployment
Complexity is the Deployment Automation. Hereby, we focus on the com-
plexity, which accompanies the deployment of distributed applications. This
includes, for example, the setup and networking of multiple hosts, the distribu-
tion to and interlinking of graphs at these hosts, and the resolvability of links
in certain network environments. In addition, benchmark environments are not
setup for long-term provisioning, but for experiments with different parame-
terizations and computing resources. Furthermore, benchmark environments
must be flexible to be deployable at an appropriate scale. In smaller cases, the
environment is deployed on limited development resources and, in larger cases,
on computing resources of large-scale testing facilities. Our third main require-
ment for a distributed LDBE is, therefore, the automation of the deployments,
thus reducing the complexity to a sufficient degree that renders the benchmark
environments usable and enables temporary experimental settings on different
scales. To enable the seamless scaling of the benchmark environment in terms
of performance, the automation should be agnostic to the provided computing
resources and enable the automatic deployment on single and multiple as well
as virtually or physically separated systems.

191

5 Distributed Benchmark Generation and Provisioning

5.2.1.4 Pervasive Declaration

Our fourth requirement, with respect to the challenges of Difficult Repro-
ducibility is the Pervasive Declaration. Comparing different solution alterna-
tives for the same problem area is one of the key goals of benchmarks. The
same set of configuration parameters leads to the same set of resources, which
are used to evaluate and compare different solutions for the same problem.
The declaration of the same set of parameters must lead to generating the
same datasets, distribution, and interlinking. In addition, the computing re-
sources available for the hosts may be covered for greater comparability. The
interweaving of LD generation and the actual distributed deployment, under
different conditions, is especially challenging for reproducibility. Thus, for our
approach, we distinguish between different types of parameters. On the one
hand, we introduce parameters that influence the scale and granularity of the
distributed LDBE. These may be global (e.g., the number of graphs and the
size of overall datasets for scaling) or local, i.e., host-specific (e.g., the type of
data to be generated in case of different granularities within the overall dataset).
On the other hand, we introduce parameters that influence the interlinking of
graphs. These are deployment-specific and enable the adjustment of generated
data to the environment, in which the distributed benchmark is deployed (e.g.,
URI templates to generate correct links, according to the IP or DNS schema
of the environment).

5.2.2 Linked Data Benchmark Environment

The architecture of our distributed LDBE is designed to fulfill the requirements.
While the scope of reproducibility in RDF and SPARQL benchmarks is limited
to the generation of equal graphs and queries, it is extended to the generation
of distributed environments with equal characteristics in the case of LD.

¢ For the requirement of Deployment-aligned Data Generation, we build
on LD-capable data generators or on established RDF benchmarks, that
are extended to generate graphs for LD, e.g., as we present in our imple-
mentation in Section 5.3. In general, data generators are exchangeable
in our approach, as long as they support the parametrized generation of
datasets that contain distinct but interlinked RDF graphs, including the
adjustment of links to the actual deployment.

192

5.2 Approach for Linked Data Benchmark Environments

Lifecycle Artifacts . Technologies

evaluate - -

Deployed

Container
Management (CM)

R
LD |
1
3

N
los i er 1 22
| [l
1
T
. < deploy ooeeiee I
S
Container Image (C1) Container Definition (CD)
__.T 1, Wb

los | er | ———u4
| [

———

Container Configuration (CC)

X
compose

Configured
configure:
Configuration

Figure 5.2: Linked Data Benchmark Environment — Architecture

Ser o
Arguments : H erv Gen.

* For the requirements Network Layer Distribution and Deployment Au-
tomation, we build on container-based virtualization technologies that,
independently from the specific deployment platforms, enable the defi-
nition of hosts, networks, and other deployment-specific tasks.

e For the requirement of Pervasive Declaration, we build on the
parametrization of the data generator, on the declarative configuration
of containers, based on container definitions for the declarative setup of
the included systems and software, and on the declarative composition
of configured containers. Taking into account the computing resources
that are provided for the deployment of a composition, we are able to
achieve the reproducible creation of the overall distributed LDBE.

In our architecture in Figure 5.2, we distinguish between the lifecycle, the
artifacts, and the technologies of the LDBE.

* We denote the lifecycle, similarly to a state machine, as a set of states
and transitions that a benchmark environment passes through, starting
with initialization and ending with termination.

193

5 Distributed Benchmark Generation and Provisioning

* We show the artifacts that users or the LDBE tooling create for each
state of the lifecycle.

* We introduce the technologies that accompany each state. Besides the
technologies required for the LDBE, the transitions between states should
be supported by technology to enable the increased deployment automa-
tion.

We also distinguish between the configuration phase, the composition phase,
and the deployment phase, that group sets artifacts and technologies with a
state of the lifecycle. With every phase, the set of required technologies is
extended and, thereby, the details of the implementations are narrowed and
further refined down. In addition, the evaluation phase represents the running
and usable LDBE.

5.2.2.1 Configuration Phase

compose

Configured
configure
N cotevn | L] o
os er

Figure 5.3: Linked Data Benchmark Environment — Architecture: Configuration

Lifecycle Asshown in Figure 5.3, the configure transition leads from the initial
state to the Configured state. In this state, the implementation of the architec-
ture is independent from any specific virtualization technology or computing
resources.

Technologies The technologies that accompany this state are technologies
that are indirectly configured through the given parametrization of the LDBE,
e.g., the operating system, servers, or the LD generator. In a later phase of
the lifecycle, these technologies are set up in a declarative way via container
definitions and are pre-assembled as container images. The images provide
configuration parameters for the configuration during the initialization of con-
tainers, which are based on these images. By predetermining the setup of

194

5.2 Approach for Linked Data Benchmark Environments

software in the containers in a declarative manner, we reduce the amount of
variables in the overall system to only the parametrization of the LDBE.

Artifacts The artifacts generated or determined during the configure tran-
sition are limited to simple configuration files or program arguments. These
configurations contain the essence of parameters that are required to define
the characteristics of the distributed LDBE, which is then derived from these
parameters in the following transitions.

5.2.2.2 Composition Phase

t t

deploy

Container Definition (CD)

Container Image (CI)

M)

RN Pt
C rooyisen !l gen
- . . . 1os | er | ———u
Container Configuration (CC) | Ie——a
compose ? - f

Figure 5.4: Linked Data Benchmark Environment — Architecture: Composition

Lifecycle As shown in Figure 5.4, the compose transition leads from the
Configured state to the Composed state. In this state, the implementation of
the architecture becomes specific to one virtualization technology but is still
independent from computing resources.

Technologies The technologies accompanying this state are container-based
virtualization technologies. First, these technologies enable us to define the de-
tailed setup of systems in the form of container definitions, which include the
setup of operating systems, applications, processes, and optional parametriza-
tion. From this container definitions, we can build container images that provide
a pre-built setup of the complete system defined by the container definition.
These images are utilized during the deployment to initialize an arbitrary num-
ber of similar containers that differ only in the parameters that have been
specified in the container definition. Second, these technologies enable us to
define the detailed setup of distributed applications in the form of compo-
sitions, including the container configurations for containers that should be
part of the application, including their parameters, and the network connec-
tions between containers as well as to external networks. An implementation

195

5 Distributed Benchmark Generation and Provisioning

of the architecture must provide container definitions for the LD generation
and provisioning. In addition, the compose transition should be supported by
composition generators to expand the configuration of the LDBE.

Artifacts During the compose transition, we expand the benchmark-specific
parameters of the configuration and create as artifacts the detailed composition,
that is specific to the virtualization technology and includes the configuration
of containers based on the provided container definitions. By utilizing the con-
tainer definitions, in combination with the composition generator, we reduce the
set of parameters in the overall benchmark environment to the aforementioned
set of configuration parameters of the LDBE. These parametrize the compo-
sition generator and, thereby, the container configurations and, indirectly, the
data generators as well. During this transition, we determine, for example, the
correct amount of containers and the size of the generated datasets to fit scaling
parameters, or the container-specific parameters to generate correct graphs and
to generate correct links to other graphs, based on the host configurations in
the composition.

5.2.2.3 Deployment Phase

Container
Management (CM)

==
= Toery} 1 12
r | ||Gen.J

1 os |1 oer |22
| Le

———

Figure 5.5: Linked Data Benchmark Environment — Architecture: Deployment

Lifecycle As shown in Figure 5.5, the deploy transition leads from the Com-
posed to the Deployed state. In this state, the implementation of the architecture
is specific to one virtualization technology and to the chosen computing re-
sources.

Technologies The technologies accompanying this state are the container
management of the container-based virtualization technology and the comput-
ing resources provided to this management. An important characteristic of these
virtualization technologies is the platform-agnostic handling of standalone con-

196

5.3 Implementation of the Distributed LUBM

tainers and compositions of containers, i.e., these virtualization technologies
support the deployment on local computers, private clouds, or on Platform as
a Service (PaaS) solutions. Our strategy behind decoupling the composition
and the deployment platform is as follows: the broader the availability of the
computing resources used for the benchmarking is, the more comparable the
benchmarking results will be, e.g., by utilizing larger public or commercially
available platforms. While custom local computing power or private clouds
may be sufficient for development and test purposes, comparative benchmark-
ing should be executed on detailed specified hardware settings and, ideally,
run on broadly available computing resources. In this way, the benchmarking
results become not only more comparable but also more reproducible.

Artifacts The artifacts generated during the deploy transition are the container
instances that are set up according to the composition. These run on the chosen
deployment platform, are connected by a network, provide correctly interlinked
graphs, and expose the interlinked LD to clients. At this state, the LDBE is
ready for use.

5.2.2.4 Evaluation Phase

Having reached the Deployed state, we indicate that the benchmark envi-
ronment is in use via the evaluate transition. Experiments can repeatedly be
performed to conduct evaluations by utilizing the deployed LDBE. After the
completion of the experiments, the benchmark environment can be stopped
(as indicated by the ferminate transition to the final state). Furthermore, any
reserved computing resources may be released.

5.3 Implementation of the Distributed LUBM

With the Distributed LUBM (DLUBM), we provide one domain-specific im-
plementation of the architecture that we introduced in Section 5.2 and that
realizes a distributed and interlinked LDBE. The implementation of the data
generator component is derived from the well-known LUBM [73] benchmark

197

5 Distributed Benchmark Generation and Provisioning

and is an extension of the LUBM artificial data generator by Vesse! and, orig-
inally, by Guo et al. [73]. We support the same scaling and semantically same
data but provide new contributions by adding new features that enable the gen-
eration of LD. In particular, we enable the generation of datasets of different
size and granularity, as well as the correct interlinking of contained graphs
with respect to the actual deployment.

Furthermore, we support virtualization based on the Docker? [113] ecosystem
by providing DLUBM container definitions, i.e., Dockerfiles, container images,
i.e., Docker Images, and the generation of compositions that enable the deploy-
ment of distributed multi-container DLUBM instances on standalone Docker
engines or computing clusters managed by Docker Swarm on all supported
platforms. In addition, the aforementioned container-based virtualization may
be used with related container management systems like Kubernetes®. Our
DLUBM implementation is configurable by a small set of parameters, is de-
ployable with a high degree of automation on local computers, private clouds,
or PaaS computing resources, and creates a domain-specific, reproducible, and
truly distributed LDBE.

We developed different software components*, which, integrated with exist-
ing technology, implement our architecture. In the following, we give in Sec-
tion 5.3.1 an overview about the structure as well as the parameters of DLUBM
and elaborate on the LD generator. In Section 5.3.2, we present the container
definition and image and describe the generator for container compositions and
queries. We briefly describe in Section 5.3.3 related container management so-
lutions and computing resources for the DLUBM deployment.

5.3.1 Configuration Phase Implementations

To support the configuration phase of our architecture (c.f., Section 5.2.2.1),
we describe in the following an overview of the structure as well as parameters
of the DLUBM and provide the implementation of the DLUBM LD generator.

I https://rslv.link/ZSvh
2 https://rslv.link/ZSvY
3 https://rslv.link/ZSvH
4 https://rslv.link/ZSv0

198

https://rslv.link/ZSvh
https://rslv.link/ZSvY
https://rslv.link/ZSvH
https://rslv.link/ZSvO

5.3 Implementation of the Distributed LUBM

5.3.1.1 Structure

G: Global Granularity:
U: University G global
D: Department u u

DDD DDD

Granularlty:
department

Granularity:
university

Figure 5.6: DLUBM - Structure and Interlinking

As shown in Figure 5.6, we provide parametrized support for different gran-
ularity levels that denote the structural level of detail, at which graphs about
entities are provided by separate components of the DLUBM.

¢ In the most detailed department granularity, shown at the right bottom,
the granularity level leads to separate components that provide the graphs
of one or more departments as well as components for the graphs of one
or more universities, and one component that provides a global graph.
The global graph contains links to all universities, the university graphs
contain links to all departments of the corresponding university, and
the department graphs contain information about all other entities that
partially contain again links to other universities.

* At the granularity level university (shown on the left side), the compo-
nents at department level are not provided, but the graphs representing
departments are provided at the university components, in addition to
the graphs about universities.

¢ At the granularity level global (shown on top), all graphs are provided
at a single components, i.e., no distribution of the dataset over several
components is provided.

199

5 Distributed Benchmark Generation and Provisioning

In addition to the granularity, the number of universities and departments per
component is parametrized. Thereby, we support the scaling of DLUBM in
terms of provided LD, i.e., the size of information, independently from the
scaling in terms of distribution, i.e., the amount of components. For example,
we may provide at the granularity level department, components at university
level, that provide graphs with information about several universities, as well
as components at the department level, which provide graphs with information
about several departments. In this case, the correct interlinking of graphs is
still guaranteed.

5.3.1.2 Parametrization

dlubm_instance = DLUBM(
int seed,
int granularity ,
int university_offset,
int university_amount,
int university_limit ,
int department_limit)

Listing 5.1: DLUBM - Function and Parameters

As indicated in Listing 5.1, we can describe the characteristics of a DLUBM
instance as a function that is parametrized by a small set of global param-
eters. These parameters must be provided to the composition generator that
derives the composition of containers for the DLUBM instance during the
compose transition, including the local parameters for each container defini-
tion. Table 5.1 gives an overview of all important parameters that our DLUBM
benchmark environment provides as global parameters for configuration or
which are derived from these global parameters for supporting the automated
configuration in later phases of the lifecycle.

The composition generator adds a container configuration for a fixed ontology
URI to the composition, to prevent the dependency from external resources.
Depending on the global parameter for the granularity level, the generator adds
at the global level a single container configuration for the global component,
or at the university level a container configuration for the global component

200

5.3 Implementation of the Distributed LUBM

Parameter Scope Description

Seed global Seed of the data generator

Granularity global Structural level with distinct
components

University Offset global Offset of the first university to
generate

University Amount global Amount of universities to generate

University Limit global Limit of universities per component

Department Limit global Limit of departments per
component

Host Depth local Structural level of the component

Host University Offset local Offset of the first university to
generated

Host University Amount local Amount of universities to generate

Host Department Offset local Offset of the first department to
generated

Host Department Amount local Amount of departments to generate

Ontology deploy URI for links to the ontology

University Template deploy URI template for links to
universities

Department Template deploy URI template for links to
departments

Table 5.1: DLUBM - Parameters

and multiple container configurations for the university components, or at the
department level container configurations for components at all three levels.
Every container is parametrized by the local parameters to generate and provide
the correct graphs as part of the overall dataset. The last type of parameters
is relevant for deployment, but not for the characteristics of the DLUBM
instance. In particular, only the ontology URI and the templates for URIs
to universities and departments must be provided in the container definition.

201

5 Distributed Benchmark Generation and Provisioning

During the initialization of a container, the LD generator replaces template
variables, e.g., path parameters for university and department indexes, and,
thereby, generates resolvable links. The creation of these templates is taken
over by the composition generator.

5.3.1.3 Linked Data Generator

We provide the DLUBM data generator> for generating distinct but interlinked
graphs. Our extension includes several new features that enable the generation
of graphs, which are suitable for a LD setting. In addition, the generator still
supports the generation of the original LUBM dataset.

In particular, we extend the data generator to generate only a subset of the
LUBM graphs. This feature is required to enable the distributed generation
of datasets, thereby, reducing the resource usage of the individual compo-
nents, and enabling faster overall LD generation at the distributed computing
resources. Individual components, that are equipped with the data generator,
may only provide a single graph or subset of graphs of the overall dataset.
With this feature, we prevent the costly generation of the overall dataset at
every component, in terms of required computing power and disk space, and
the subsequent selection of the subset of graphs. For example, components
that provide graphs with information about single departments are using this
feature to generate only the single required graph.

Furthermore, we extend the data generator to generate graphs only at a spe-
cific granularity level. By adding this feature, we make the generator aware
of the granularity levels that we require in order to enable different distribu-
tion scenarios (c.f., Section 5.3.1.1). In combination with the aforementioned
generation of only a subset of graphs, we enable components to generate only
the required graphs at a certain granularity level. For example, at the granular-
ity level university, the data generators of components, which provide graphs
with information about universities, generates, in addition, the graphs with
information about related departments.

5 https://rslv.link/ZSvC

202

https://rslv.link/ZSvC

5.3 Implementation of the Distributed LUBM

Finally, we add the generation of correct links to other graphs in the dataset by
utilizing URI templates. This feature is required to ensure the resolvability of
links with respect to the actual environment, in which the components are de-
ployed. As the LUBM utilizes artificial indexes for all kinds of entities, we sup-
port the substitution of related template parameters by these indexes. Thereby,
we enable the customization of URIs in the generated graphs and the adjust-
ment to the network environment, i.e., the adjustment to deployment-specific
DNS records, hostnames, or paths, that are required to ensure resolvability.

5.3.2 Composition Phase Implementations

To support the composition phase of our architecture (c.f., Section 5.2.2.2),
we provide in the following a container definition, a container image, and the
implementation of a generator for container compositions and queries.

5.3.2.1 Container Definition and Image

We provide a container definition for the specification of the internal setup of
components. In addition, we provide a container image that contains a pre-built
setup, based on the container definition, that is used as the base for containers
during their deployment. At the time of writing, the container definition and
container image are specific to a virtualization technology. For DLUBM, we
utilize the Docker ecosystem and provide as container definition a Dockerfile
and as container image a pre-build Docker Image®. The Dockerfile defines
in a declarative way the setup of an operating system, the setup of the LD
generator, and the setup of a web server that provides documents that contain
the representation of the generated graphs. In addition, the parametrization
of the container (c.f., Section 5.3.1.2) as well as the handling of the supplied
parameter for the correct control of the LD generator are specified. With the
Docker Image a pre-built version of the defined system exists, ready to be
used for a parametrized instantiation of containers in the Docker ecosystem,
e.g., by utilizing the support for deploying compositions of containers (c.f.,
Section 5.3.2.2).

6 https://rslv.link/ZSqZ

203

https://rslv.link/ZSqZ

5 Distributed Benchmark Generation and Provisioning

5.3.2.2 Composition and Query Generator

In addition to the container definition and the container image, the composition
of containers and the included container configurations are also part of the
composition phase. Similarly to the container definition and container image,
the composition of containers is, at the time of this writing, specific to a
virtualization technology. For DLUBM, we stay in the Docker ecosystem and
utilize compose files’ for the Docker Compose and Docker Swarm tooling.
In contrast to the container definition and container image, the composition is
not declared a priori, but derived from the individual parametrization of the
LDBE, which is in our case the DLUBM. Therefore, we provide a generator for
Docker Compose files, which is capable to expand DLUBM configurations to
compositions of containers that specify the complete derived DLUBM instance
in a declarative manner.

In Listing 5.2, we show an excerpt of a DLUBM composition file for Docker
Compose, which contains as an example the container configuration of one
DLUBM container instance that is part of a larger composition. The definition
includes deployment-specific parameters, e.g., the redirection rules for a reverse
proxy, as well as the previously presented DLUBM-specific deployment, local,
and global parameters. Subsequently, the composition file can be utilized in
the deployment phase of our architecture (c.f., Section 5.2.2.2) to instruct the
container management, e.g., Docker, or Docker Swarm (c.f., Section 5.3.3.1),
with the initialization of the containers and related infrastructure.

In addition to the generation of compositions, we support the generation of
LUBM SPARQL queries that are aligned with the generated compositions.
These SPARQL queries provide, in general, the same semantics as the queries
provided by the original LUBM, but are tailored to the actual DLUBM instance
in terms of URIs. These queries must be adjusted to the deployment, since the
URIs in generated graphs are deployment-specific. However, the DLUBM
LDBE does not limit the type of queries.

7 https://rslv.link/ZSqv

204

https://rslv.link/ZSqv

5.3 Implementation of the Distributed LUBM

[.
do

]

_u0_dl1_ull_uo0O_ua5_gd_sO0:

deploy:

labels: [traefik.docker.network=reverse_proxy,
traefik . port=80, ’traefik.frontend.rule=Host:d0.
u0.dlubm.local]
placement:

constraints: [node.role == worker]

environment: [’ DLUBM_ONTOLOGY=http ://o.dlubm.local/univ
—bench.owl’, DLUBM_SEED=0, DLUBM_GRANULARITY=
DEPARTMENT, DLUBM_UNIVERSITY_AMOUNT=5,
DLUBM_UNIVERSITY_OFFSET=0, DLUBM_UNIVERSITY_LIMIT
=1, DLUBM_UNIVERSITY_TEMPLATE=http ://u{
UNIVERSITY_INDEX } . dlubm . local /u#’,
DLUBM_DEPARTMENT_LIMIT=1, °’
DLUBM_DEPARTMENT TEMPLATE=http ://d{DEPARTMENT_INDEX
}.u{UNIVERSITY_INDEX } . dlubm. local /d#’,
DLUBM_HOST_DEPTH=DEPARTMENT,
DLUBM_HOST_UNIVERSITY_AMOUNT=1,
DLUBM_HOST_UNIVERSITY_OFFSET=0,
DLUBM_HOST_DEPARTMENT_AMOUNT=1,
DLUBM_HOST_DEPARTMENT _OFFSET=0]

image: dlubm:latest

networks: [proxy]

[...]
Listing 5.2: DLUBM — Composition
5.3.3 Deployment Phase Implementations
To support the deployment phase of our architecture (c.f., Section 5.2.2.3),

we introduce in the following the utilized container management solution and
briefly describe the relation between the solution and computing resources.

5.3.3.1 Container Management
The Docker ecosystem provides several components that ease the management
and deployment of large-scale container environments, which we shortly intro-

duce in the following and refer to their documentation for further details. We

205

5 Distributed Benchmark Generation and Provisioning

use Docker Compose® for the deployment of compositions to local Docker in-
stances. For the deployment of compositions to multiple Docker instances via a
cluster managed by Docker Swarm®, we use Docker Stacks'?. In the latter case,
the distribution and lifecycle of containers on multiple computing resources
is dynamically managed. We use Traefik!!, a reverse proxy with support for
local Docker instances as well as Docker Swarm environments. Hereby, the
assignment of DNS records to containers and the corresponding routing of
requests to these records is part of the composition and thus is automatically
managed. In addition, alternative solution like Kubernetes'? may be used for
container management.

5.3.3.2 Computing Resources

By utilizing the means for container management mentioned above, we ab-
stract away from the actual computing resources. The automatic container
management enables us to deploy DLUBM instances on a local computer, a
private cloud, or PaaS, e.g., AWS EC2. Hereby, we do not restrict the com-
puting resources in any way but leave their selection and provisioning to the
DLUBM users. Comparative experiments, however, should not only use the
same parametrization of the DLUBM but also provide the same or comparable
computing resources to the container management.

5.4 Evaluation
In the following, we evaluate our LDBE approach and the DLUBM implemen-
tation in two different evaluations:

* We evaluate the centralized querying of the DLUBM LDBE by a LD
query engine in Section 5.4.1. In this evaluation, the DLUBM LDBE

8 https://rslv.link/ZSqq
9 https://rslv.link/ZSqgD
10https://rslv.link/ZSqN
11 https://rslv.link/ZSq3
12 https://rslv.link/ZSvH

206

https://rslv.link/ZSqq
https://rslv.link/ZSqD
https://rslv.link/ZSqN
https://rslv.link/ZSq3
https://rslv.link/ZSvH

5.4 Evaluation

provides different LD scenarios in a decentralized manner. The LD
query engine retrieves graph representations through HTTP, follows, if
required, links to further LD resources, derives certain information, and
evaluates the given SPARQL queries.

* We evaluate the decentralized controlled LD querying, enabled by SCAL
in Section 5.4.2. In this evaluation, the components provided by the
DLUBM LDBE integrate SCAL and, thereby, adhere to our SC approach.
Subsequently, the retrieving of LD, the evaluation of SPARQL queries,
and the aggregation of results are deployed in different scenarios by
adapting the SCs.

5.4.1 Evaluation of Centralized Linked Data Querying

We evaluate our approach by utilizing our LDBE architecture and the DLUBM
implementation in order to measure the performance of a LD query engine,
which retrieves LD and evaluates SPARQL queries in a centralized manner.
In the following, we first introduce the LD query engine, then describe the
experimental setup, and finally discuss the results.

5.4.1.1 Linked Data Query Engine

For our experiments, we evaluate LD-Fu [156, 158] — a combination of
SPARQL query evaluation engine and interpreter of N3 rule programs. LD-Fu
is accompanied by the corresponding semantics for the interpretation of rules
and supports separate handling of specific ontologies, e.g., the HTTP vocab-
ulary'? for execution of HTTP requests, or the Math ontology for providing
built-in mathematical functions. During interpreter runs LD-Fu maintains an
internal RDF graph that is enriched by RDF triples, which are given as part of
rule programs, are derived by the interpretation of rules, or are requested via
HTTP. The internal RDF graph can be queried via SPARQL. Thereby, LD-Fu
enables requests to resources, link following, as well as querying of requested,
aggregated, and derived data.

13 https://rslv.link/ZSqo

207

https://rslv.link/ZSqo

5 Distributed Benchmark Generation and Provisioning

5.4.1.2 Experiments

We provide a documentation'* of our experiments, including guidelines,
highly-automated deployment, experiment runs, and results.

Type Operating System Description Amount
m4.xlarge Ubuntu 16.04 Experiments 1
m4.xlarge RancherOS 1.0.1 Docker Swarm Master 1
t2.small RancherOS 1.0.1 Docker Swarm Worker 18

Table 5.2: Centralized Linked Data Querying — Deployment Platform

Deployment Platform We conducted our experiments on computing resources
provided by AWS!S EC2'®. In Table 5.2, we give an overview of the 20 AWS
EC2 instances of our setup. By limiting the number of EC2 instances to 20,
we enable the usage of our documented experiments without requesting, at the
time of writing, a limit increase for running more instances on AWS EC2.

In this setup, we reserved one EC2 instance for experiments and joined all other
EC2 instances into a Docker Swarm instance for managing the compositions
of containers. The instance for experiments is provisioned with the operat-
ing system Ubuntu'” and all Docker Swarm instances use the Docker-centric
operating system RancherOS'®. The master instance of the Docker Swarm co-
ordinates the provisioning of containers at all worker instances. At the master
instance, a container including the Traefik'® reverse proxy handles the map-
ping of incoming requests at a dynamically allocated DNS entry to containers
managed by the Docker Swarm (c.f., Section 5.3.3.1). Thereby, the assign-
ment of containers to hostnames can be declared in the composition. For the
experiments, we restrict DLUBM containers to run only at worker instances.

14 https://rslv.link/ZSqn
15 https://rslv.link/ZSq8
16 https://rslv.link/ZSqA
7 https://rslv.link/ZSq)
18 https://rslv.link/ZSqa
19 https://rslv.link/ZSq3

208

https://rslv.link/ZSqn
https://rslv.link/ZSq8
https://rslv.link/ZSqA
https://rslv.link/ZSqJ
https://rslv.link/ZSqa
https://rslv.link/ZSq3

5.4 Evaluation

e

HEER

v|o|o|o

Figure 5.7: Centralized Linked Data Querying — Evaluation Scenarios

Linked Data Environment For comparability with the original LUBM bench-
mark results, we use two instances of our DLUBM environment with similar
characteristics. In Figure 5.7, we visualized both setups. Both instances are
configured at the department granularity for the generation of multiple com-
ponents, i.e., one component per university/department. On the left side, the
configuration DLUBM(0, DEPARTMENT, 0, 1, 1, 1) leads to 18 components.

* One component provides the LUBM ontology, which is linked by all
other components.

* One component provides the global graph, which provides a link to a
single university.

* One component provides the graph with information about the university.

* 15 components provide graphs with information about departments of
the university.

The number of departments per university is determined by the algorithm of
the original LUBM generator and is a pseudo-random number between 15 and
20. On the right side, the configuration DLUBM(0, DEPARTMENT, 0, 5, 1, 1)
leads to 100 components that are structured as the first configuration, including
93 components that provide graphs with department information. Thereby, we
maintain comparability of the query results with the results of the work on
the original LUBM [73], which have been based, among others, on querying
graphs that include information about one and five universities.

Queries For our measurements, we use the original 14 SPARQL queries of
the LUBM benchmark, which are adjusted by our composition generator with

209

5 Distributed Benchmark Generation and Provisioning

the correct URIs for our DLUBM environment. In addition, we added the
“DISTINCT” modifier to eliminate duplicate results.

Rules The LD-Fu interpreter is capable of evaluating N3 rules but without
advanced built-in derivation capabilities for RDFS or OWL. Therefore, as part
of separate experiments, we added entailment rule sets with RDFS and OWL-
LD entailment rules. In addition, in order to emphasize the modular approach
of LD-Fu, in an extra run we add two custom rules to the OWL-LD rule set,
which derive most of the still missing results for the LUBM queries.

5.4.1.3 Measurements

In the following, we present the results of the query evaluation, and also provide
the different time and derivation metrics, measured during the evaluation of
LUBM queries on both DLUBM configurations with LD-Fu.

Results We measured the evaluation of DLUBM queries without entailment
rule sets, with every entailment rule set separately, and with the combinations
of entailment rule sets. Due to space constrains, we show in Table 5.3 only the
query results for the first DLUBM configuration DLUBM(0, DEPARTMENT,
0, 1, 1, 1) without entailment rule sets, with the RDFS entailment rule set,
with the OWL-LD entailment rule set, and with the OWL-LD entailment
rule set extended by two custom rules (Custom). Query 1, 3, and 14, contain
simple selections and can be handled without entailment rules. For all other
queries, we see an improvement with the RDFS entailment rule set, and even
further improvement for query 11 with the OWL-LD entailment rule set, which
supersedes the RDFS result. Finally, our two custom rules, which handle the
derivation related to students and heads of departments, complement the OWL-
LD entailment rule set in most cases (except for Q13).

Times During the experiments, we measured the different times for both
configurations per query. We visualize for the first DLUBM configuration with
18 components — the overall runtime for query evaluation on the left side in
Figure 5.8, the average request time for successful requests on the left side in
Figure 5.9, and the average request time for failing requests on the left side

20 https://rslv.link/ZSqW

210

https://rslv.link/ZSqW

5.4 Evaluation

in Figure 5.10. On the right side in each figure, we provide a visualization
of the same measurements for the second DLUBM configuration with 100
components. Failing requests appear due to a hard-coded limitation within the
original LUBM data generator, which generates links to universities with an
index between 0 and 1000. These universities must not necessary exist, in
particular, not for low number of university, as in our evaluation. Therefore,
the diagrams in Figure 5.10 represent the average request times over several
failing requests. The diagrams show in essence two noticeable details.

Q A None RDFS OWL-LD Custom

1 4 4 100% 4 100% 4 100% 4 100%
2 0 0 100% 0 100% 0 100% 0 100%
3 6 6 100% 6 100% 6 100% 6 100%
4 34 0 0% 34 100% 34 100% 34 100%
5 719 0 0% 719 100% 719 100% 719 100%
6 7790 0 0% 5916 76% 5916 76% 7790 100%
7 67 0 0% 59 88% 59 88% 67 100%
8 7790 0 0% 5916 76% 5916 76% 7790 100%
9 208 0 0% 103 50% 103 50% 208 100%
10 4 0 0% 0 0% 0 0% 4 100%
11 224 0 0% 0 0% 224 100% 224 100%
12 15 0 0% 0 0% 0 0% 15 100%
13 1 0 0% 0 0% 0 0% 0 0%
14 5916 5916 100% 5916 100% 5916 100% 5916 100%

Table 5.3: Centralized Linked Data Querying — Query Results and Completeness

First, the performance of the LD query engine is not only dependent on the
performance of the engine itself, but has also to cope with a potential unpre-

211

5 Distributed Benchmark Generation and Provisioning

dictable network environment, which is out of its control. This is visible in
the diagrams with average request times for failing requests for both DLUBM
configurations. HTTP requests are, as far as possible, executed by the LD-Fu
engine in parallel and are, therefore, considerably faster than in serial execu-
tion. However, if some requests are significantly delayed, e.g., indicated by the
increased average request times, for example, during evaluation of query 1, 13,
and 14 (Figure 5.10 — left), the engine has to wait for these requests to fail or to
return a response. The delay caused by these requests is reflected in the overall
runtime for the respective queries (Figure 5.8 — left).

ms

ms

50000 50000
45000 45000
40000 40000
35000 35000
30000 30000
25000 E 25000
20000 20000
15000 15000
10000 10000
g rerr v o et P
o alalal al IKINLJRIRINIRI ;
1234567 8 91011121314 123456 7 8 91011121314
Query Query
HNo Rule Set mRDFS ®No Rule Set mRDFS
OWL-LD B OWL-LD+Custom OWL-LD B OWL-LD+Custom

Figure 5.8: Centralized Linked Data Querying — Evaluation Results for Runtimes

12000 12000

10000 10000

8000 8000
6000 g 6000
4000 4000
2000 2000
il ittt J] | J J J i J J ! “2] 14

123 456 7 8 91011121314 123456 7 8 910111213 1.
Query Query
W No Rule Set mRDFS ENo Rule Set mRDFS
OWL-LD M OWL-LD+Custom OWL-LD M OWL-LD+Custom

Figure 5.9: Centralized Linked Data Querying — Evaluation Results for Average Successful Re-

212

quest Times

5.4 Evaluation

Second, given the runtime measurements in Figure 5.8 — right, which show the
query evaluation of the DLUBM configuration with 100 hosts, we can clearly
see the impact of entailment rules. With the RDFS entailment rules, the runtime
is already significantly higher, however, it increases even more for the OWL-LD
entailment rules. Unclear, however, is the correlation with the average times
for successful requests in the diagram on the right in Figure 5.9. Either the
connection handling is slowed down by the processing power consumed for
the evaluation of entailment rules, or the processing of the returned payload is
slowed down for the same reason.

1000 1000
900 900

ms
ms

=3

800 800
700 700
600 600
500 500
400 400
300 300
200 200
ULl =l sl

123 456 7 8 91011121314 123456738

01112 13 14
Query Query
HNo Rule Set mRDFS HNo Rule Set mRDFS
OWL-LD B OWL-LD+Custom OWL-LD B OWL-LD+Custom

Figure 5.10: Centralized Linked Data Querying — Evaluation Results for Average Failing Request
Times

Triples In Table 5.4 we show the triples that have been derived by the interpreter
— in the different DLUBM configurations and with the different entailment rule
sets.

Scenario None RDFS OWL-LD Custom
DLUBM(0, DEP., 0,1, 1, 1) 0 115860 182949 184939
DLUBM(0, DEP., 0, 5,1, 1) 0 700552 1115161 1127154

Table 5.4: Centralized Linked Data Querying — Derived Triples

213

5 Distributed Benchmark Generation and Provisioning

5.4.2 Evaluation of Decentralized Linked Data Querying

Here we evaluate our approach by utilizing the Smart Component Adaptation
Layer (SCAL) (c.f., Section 3.3.1) in order to integrate multiple components
in a LD benchmarking scenario. In particular, we use the Distributed LUBM
LDBE integrated with SCAL for Smart Component (SC) capabilities, deploy
query evaluation in a centralized as well as two decentralized ways, and com-
pare the query performance in these settings. In the following, we first introduce
Distributed LUBM with decentralized control, then describe our experiments,
and finally discuss the results.

5.4.2.1 Distributed LUBM with Smart Components

The DLUBM with decentralized control is realized through the integration of
both SCAL and DLUBM implementations. In this case, we take advantage
of the file system storage that is supported for persistence by SCAL and the
generation of the correct subset of documents per component by DLUBM,
which contain representations of RDF graphs in one of the RDF serialization
formats supported by SCAL. These documents are provided by SCAL as
LDP-RS of the LDP interface to the network. In addition, the LDP interface
of SCAL provides all other SC capabilities, e.g., the deployment of AR like
programs, queries, and runs, as well as the execution of interpreter runs. In
this case, the provided DLUBM RDF graphs represent the domain-specific
function of the SCs and can be used during evaluation steps of interpreter
runs, or, in addition, be directly requested by other components. Thereby, we
enable general access to the interlinked DLUBM datasets, while at the same
time, provide adaptation capabilities directly at the DLUBM SCs. Analogously
to DLUBM, we support the automation of the deployment for the integrated
DLUBM SCAL LDBE through container-based virtualization. We provide
container definitions in the form of Dockerfiles?! as well as a Docker Image?®?
that merges DLUBM and SCAL by replacing the default web server with our
SCAL implementation.

2l https://rslv.link/ZSqB
2 https://rslv.link/ZSqe

214

https://rslv.link/ZSqB
https://rslv.link/ZSqe

5.4 Evaluation

5.4.2.2 Experiments

We provide a documentation?® of our experiments, including guidelines,
highly-automated deployment, experiment runs, and results.

Type Operating System Description Amount
m3.arge Ubuntu 17.04 Experiments 1
m3.Jarge RancherOS 1.0.2 Docker Swarm Master 1
m3.Jarge RancherOS 1.0.2 Docker Swarm Worker 50

Table 5.5: Decentralized Linked Data Querying — Deployment Platform

Deployment Platform Similarly to the evaluation of the centralized LD query-
ing, we conducted our experiments on computing resources provided by AWS?*
EC2%. In Table 5.5, we give an overview of the 52 AWS EC2 instances of
our setup. Analogously to the aforementioned evaluation, we reserved in this
setup one EC2 instance for experiments and joined all other EC2 instances into
a Docker Swarm instance for managing the compositions of containers. The
instance for experiments runs on the Ubuntu?® operating system and all Docker
Swarm instances use the Docker-centric operating system RancherOS?’. The
master instance of the Docker Swarm coordinates the provisioning of contain-
ers at all worker instances. At the master instance, a container, including the
Traefik?® reverse proxy, handles the mapping of incoming requests at a dy-
namically allocated DNS entry to containers managed by the Docker Swarm.
Thereby, the assignment of containers to hostnames can be declared in the
composition. For the experiments, we restrict the DLUBM containers to run
only at worker instances.

2 https://rslv.1link/ZSq5
% https://rslv.link/ZSq8
25 https://rslv.link/ZSqA
2 https://rslv.link/ZSq)
2Thttps://rslv.link/ZSqa
28 https://rslv.link/ZSq3

215

https://rslv.link/ZSq5
https://rslv.link/ZSq8
https://rslv.link/ZSqA
https://rslv.link/ZSqJ
https://rslv.link/ZSqa
https://rslv.link/ZSq3

5 Distributed Benchmark Generation and Provisioning

Linked Data Environment For our experiments, we used the second DLUBM
configuration DLUBM(0, DEPARTMENT, 0, 5, 1, 1) of the centralized LD
query evaluation, which leads to 100 components. In detail, this configuration
initializes all data generators with a seed of 0, the DEPARTMENT granularity
leads to the generation of components on all three levels, the university offset
lets the data generation start with the first university, the university amount
limits the generation to five universities, i.e., the scale of the environment,
and the university limit and department limit lead to provisioning of a single
university or department graph per component. This DLUBM configuration
equals the configuration visualized on the right side in Figure 5.7.

Queries Similarly to the evaluation of the centralized LD querying, we used for
our measurements the original 14 SPARQL queries of the LUBM benchmark,
adjusted by our composition generator with the correct URIs for our DLUBM
environment. In addition, we added the “DISTINCT” modifier to eliminate
duplicate results.

Rules In contrast to the evaluation of the centralized LD querying, we added
only the RDFS entailment rules during the adaptations of the SCs to the
LD-Fu interpreter. In addition, we added, depending on the adaptation for
the evaluation scenarios, different request rules that enable the interpreter to
request the required LD resources.

5.4.2.3 Measurements

In the following, we illustrate the results of the evaluation in terms of different
time and query result metrics. We measured LUBM queries in both centralized
and decentralized evaluation scenarios, with the integrated implementation of
DLUBM and SCAL.

Adaptations We used our experimental setup to evaluate three different query
evaluation settings. On the one hand, the queries are evaluated centralized at
the global level and, on the other hand, decentralized, both at the university
level and at the department level. In particular, we omit in our experiments
the evaluation of queries by an external LD query engine but let the SCs take
over this evaluation. For every query: 1) the components must get all relevant
graphs that are required for the evaluation; 2) derive additional information with
entailment rule sets, in this case the RDFS entailment rule set; 3) evaluate the

216

5.4 Evaluation

query; 4) and provide a resource with the results that can be pulled by clients.
The query evaluation is triggered on-request in order to allow measurement
of the overall evaluation with respect to time. The adaptations are deployed
at the LDP interfaces of components after the DLUBM SCAL environment is
started. Due to space constrains, we do not list all adaptations of components
in detail.

100000
10000
. lwo = Global
% m Universities
= Departments
T P
ki
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Query

Figure 5.11: Decentralized Linked Data Querying — Evaluation Results

Results In Figures 5.11, 5.12, and 5.13, we provide an overview of the results
of our measurements. We measured, with respect to all three evaluation settings
(i.e., global, university, and department): 1) the overall evaluation time; 2) the
average amount of triples added by request rules to the internal RDF graph
of the interpreters; and 3) the number of results retrieved by a client. Starting
with the number of results retrieved by clients — Figure 5.11, we see equal
numbers of query results for all scenarios. This is a desired behavior, since
in all scenarios the results must be the same, independently whether we have
a global evaluating interpreter or merged results of the interpreters of several
components. However, we need to note that the LUBM queries allow separate
evaluation. The discussion of completeness is out of the scope of this work (c.f.,
Section 5.4.1), but due to the RDFS entailment rules, that are used by all SCs,
we see results for all queries, except for the more sophisticated queries 10-13.

Times The overall evaluation time, however, differs significantly between the
scenarios. The results, visualized in the diagram in Figure 5.12, confirm the
expectation that splitting evaluation to multiple SCs of equal computing power
leads to faster overall evaluation time. While the evaluation at the global com-

217

5 Distributed Benchmark Generation and Provisioning

ponent takes in average 30.29 seconds, we see significantly faster evaluation
with 6.78 seconds at university level, and 3.19 seconds if queries are evaluated
at department level.

40000
35000

30000

25000
m Global
20000 ® Universities
Departments
15000
10000
5000
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Query

ms

Figure 5.12: Decentralized Linked Data Querying — Evaluation Times

800000

700000

600000 W Results
m Base (Global)
500000 Derived (Global)
= Base (Univ.)
400000 B Derived (Univ.)
Base (Dep.)
300000 m Derived (Dep.)
200000
- -
0 —

Figure 5.13: Decentralized Linked Data Querying — Evaluation Times

Triples

Triples The slower evaluation at a single global component is not caused by the
requests that transfer all university and department data to the component, but
is rather caused by deriving new triples with the RDFS entailment rules. This
is visualized in the diagram in Figure 5.13, where the number of result triples
and the average amount of requested (base) as well as the average amount of

218

5.5 Summary

derived triples are compared. The more distributed the evaluation is, the fewer
derived triples must be computed per SC.

Summarizing our experiments, we have shown that our approach and im-
plementation enables different LD benchmarking scenarios, supported by the
SCAL implementation for the adaptation of components. Furthermore, we have
shown that our approach is scalable by deploying these integration scenarios
as multi-component and heavily distributed applications to the computing re-
sources of a PaaS provider. Finally, our performance analysis provides some
insights about the implementation characteristics and shows some trade-offs
between applications that are centralized and thus easier to manage, and those
that are distributed but also more complex to deploy.

5.5 Summary

High-quality benchmarks and their evaluation results are essential not only for
measuring the suitability of a certain technology or setup but also for pushing
the development of better approaches.

We contribute to the evolution of LD technologies by introducing the DLUBM
for creating reproducible and distributed benchmark environments for LD.
While we extend the LUBM benchmark with features for generating LD, the
approach itself is independent from a specific data generator, as long as the
generator provides means for generating distinct graphs and provides means
for adapting the links between these graphs to interlink the overall dataset.
The substitution of components, e.g., the data generator, is possible due to our
architectural approach as well as the introduced design requirements, which
clearly separate the involved artifacts, the used technologies, and the current
state of the system.

We demonstrate the practical use of DLUBM by evaluating a LD query engine
via DLUBM with the original LUBM queries and different entailment rule sets.
In addition, we demonstrate the adaptation capabilities of the SC approach
by enabling centralized as well as decentralized query evaluation scenarios
through the integration of DLUBM and SCAL.

219

6 Conclusion

In this thesis, we focused on the challenges that arise in relation to the emerging
visions of the IoT, the WoT, and the SWoT as well as related visions such as
the 14.0. These visions have the composition of distributed applications from
a heterogeneous landscape of components in common. Besides the increasing
modularization and the heterogeneity of components, also multi-stakeholder
situations increases the complexity of integration. The development of these
visions shows parallels to the development of the Web, the SW, and the WoD,
which continue to evolve and provide means for Web-scale integration not
only of information but also of applications. For their application in IoT-based
solutions, we have to adapt the concepts and technologies from the Web and
SW to the changed conditions in this new application scenarios.

In this context, we identified several challenges that we grouped in the problem
areas of —integration of distributed components, unspecific development needs,
control of distributed applications, interaction in distributed applications, in-
tegration of non-compliant components, data for distributed benchmarks, and
provisioning of distributed benchmarks. In this context, we constructed the fol-
lowing hypothesis for approaching the problem areas and for finding solutions
that cope with these challenges:

Web and Semantic Web concepts and technologies enable at run-
time 1) the adaptation of components for their integration into
distributed applications, 2) their control in centralized, decentral-
ized, or hybrid manner, and 3) the deployment of this control.

We believed that the combination and extension of established, standardized,
and publicly available Web and SW concepts and technologies can pave the
way for coping with the challenges that accompany emerging IoT, WoT, and
SWoT visions. In particular, we aim to address the heterogeneous landscape of
components and multiple involved stakeholders, thus counteracting the emer-

221

6 Conclusion

gence of isolated, proprietary, non-standardized islands of components, which
support only the integration of applications fitting the specific ecosystem.

From the challenges and our hypothesis, we derived three research questions,
thoroughly investigated their implications, and contributed approaches for their
solution, that include architectures, models, algorithms, implementations, and
evaluations. With these approaches and their implementations, we showed
the feasibility of our hypothesis. In the following, we briefly describe the
contributions per research question and give an outlook on future work for
each of the research areas.

6.1 Contributions

In this section we summarize our research contributions. We describe how they
relate to the individual research questions and how they help to address the
overall hypothesis of the thesis. Furthermore, we briefly discuss how each of
the contributions was achieved, and what its general applicability and impact
are.

Contributions to Research Question 1 With respect to the hypothe-
sis, we ask the first research question:

How can we design an architecture for distributed applica-
tions, based on Web and Semantic Web concepts and tech-
nologies, that enables the adaptation of components at run-
time, supporting both their integration and the deployment of
control logic?

In Chapter 3 on Component Adaptation and Decentralized Application
Control, we presented the following contributions related to this first
research question.

Requirements Analysis We performed a requirements analysis
with respect to the identified challenges for the integration of com-
ponents, the requirements of application use cases, and the de-
centralization of application control logic. First, we required the
Compliance with Integration Paradigms. With this requirement,

222

6.1 Contributions

we enforce the REST and LD paradigms as well as broadly avail-
able and standardized technologies from the Web and SW as the
basis of the approach. Second, we required the Adaptability of
Interaction and Processing. With this requirement, we ensure that
components must provide means for their adaptation to the specific
requirements of the distributed applications. Third, we required the
Separation of Design, Adaptation, and Runtime. With this require-
ment, we considered multi-stakeholder situations, in which differ-
ent stakeholders are responsible for the development, provisioning,
and integration of individual components.

Smart Component-based Integration Architecture We showed
the details of our integration architecture, which incorporates the
required broadly available and standardized technologies from the
Web and SW. With this integration architecture, we enable the
integration of arbitrary components that adhere to the REST and
LD paradigms as well as components that follow our Smart Com-
ponent approach. Depending on the specific application use cases,
we can realize the required integration with only a subset of the
Smart Components in their compositions.

Smart Component As the core of our approach, we introduced
in detail the concept of the Smart Component as well as the
Smart Component architecture. SCs adhere to the REST and LD
paradigms, and thus support the communication with arbitrary
components of the integration architecture. In addition, they sup-
port the adaptation of their interfaces, interaction, and processing
at runtime. With this capabilities, we enable their integration in
the composition of distributed applications at runtime, after de-
ployment and without changing their initial design. Thereby, we
provide support for different stakeholders that lead their develop-
ment, provisioning, and integration. Furthermore, our SC approach
enables the decentralization of application control logic. Depend-
ing on the application use case, we support the distribution of this
application logic to the participating SCs in centralized, decentral-
ized, or hybrid manner.

Smart Component Adaptation Layer With the SCAL, we pro-
vided a domain-independent implementation of our SC approach

223

6 Conclusion

224

and architecture. SCAL supports the standalone deployment of
centralized control for applications, the wrapping of existing com-
ponents, and the programmatic integration as a software library. In
all three cases, SCAL provides the adaptation capabilities of the
SC approach.

Smart Component Adaptation Ontology For the description of
adaptations, we introduced SCAO. This vocabulary provides the
description of all concepts, required for adaptation in the SC ar-
chitecture, as well as their relations. With SCAQO, we enable the
declaration of adaptations in the form of regular RDF resources at
the interfaces provided by SCAL.

NIREST Smart Component Besides the domain-independent im-
plementations of SCAL and SCAO, with NIREST we provided an
implementation of a domain-specific SC. NIREST incorporates
body tracking capabilities as its domain-specific function. Pro-
vided with the necessary hardware, the NIREST tracks the people,
who are in range of its depth video camera, and provides the coor-
dinates of their joints and the center of mass. This information is
available during runtime and subject to further adaptations at the
SCAL interface.

Evaluation of Function As the first of two evaluations, we evalu-
ated the SC approach and architecture with respect to their function.
In this evaluation, we check via testing several adaptations and re-
adaptations, based on the NIREST implementation, the support for
all capabilities of the SC approach. These capabilities fulfill the
requirements of our requirements analysis.

Evaluation of Performance As the second evaluation, we evalu-
ated the SCAL implementation with respect to performance. In this
evaluation, we measure the overhead of the SCAL implementation
on top of the NIREST domain-specific body tracking function. We
compare the performance losses for the different adaptations of
the functional evaluation. In these cases, the overhead of SCAL is
within the lower range of milliseconds.

6.1 Contributions

In summary, we showed that we can design an architecture for dis-
tributed applications, based on Web and Semantic Web concepts and
technologies, that enables the adaptation of components at runtime, sup-
porting both their integration and the deployment of control logic. The
SC-based integration architecture enables the integration of SCs and
arbitrary components that adhere to the LD and REST paradigms. The
SC approach and architecture provide components that are adaptable at
runtime in terms of their interfaces, interactions, as well as processing.
Thereby, we enable the integration of components in compositions of
distributed applications at runtime, after their design and deployment.
As a consequence, we decouple the phases in the lifecycle of components
and distributed applications, and support multi-stakeholder integration
scenarios.

Contributions to Research Question 2 With respect to the hypothe-
sis, we ask the second research question:

How can we enable the optimization of interactions between
components, which are based on our architecture, and en-
able the integration of components, which are based on other
specialized architectures?

In Chapter 4 on Interaction Optimization and Mapping, we presented
the following contributions related to the second research question.

Requirements Analysis We performed the first of two require-
ments analyses with respect to the identified challenges for the
optimization of interactions between components in distributed
applications. First, we required the Optimization of Interaction Pat-
terns. With this requirements, we narrow the optimization down
to the optimization of push and pull interaction patterns used for
the realization of data flows between components based on the
frequencies for data provisioning and consumption. Second, we
required the Provisioning of Metadata. With this requirement, we
enforce the provisioning of metadata, which contains optimization-
relevant information, directly at the components. Third, we required
the Self-adaptation of Components. With this requirement, we
consider application scenarios that exhibit dynamically changing

225

6 Conclusion

226

optimization-relevant factors, therefore, require re-optimization,
and, consequently, the autonomous self-adaptation of components.

In addition, we performed a second requirements analysis with re-
spect to the identified challenges for the mapping between domain-
specific architectures and our integration architecture. First, we
required the Compliance with the Integration Architecture. With
this requirement, we enforce the REST and LD paradigms of our
integration architecture. Second, we required the Mapping of In-
teraction and Meta-interaction. With this requirement, we ensure
the realization of cross-architecture data flows. Third, we required
the Lifting and Lowering of Data. With this requirement, we con-
sider the preparation of data for the semantic integration between
components of both architectures.

Frequency-based Network Model and Optimization Algorithm
We provided a network model for capturing the properties of com-
ponents with respect to the optimization goal. The network model
enables the description of components in the compositions of ap-
plications with respect to the required data flows and the frequency
of consumption and provisioning of data. We provided an opti-
mization algorithm that optimizes, based on the network model,
the push and pull interaction patterns for the data flow realization.
In addition, we described the deployment of the network model
and algorithm by utilizing our SC approach.

ROS Architecture Mapping For the mapping of architectures, we
presented the mapping of concepts and interactions between the
domain-specific ROS architecture and our integration architecture
based on the REST and LD paradigms. We extend the mapping
by resource aggregation and introduction of hypermedia, which
exceeds the capabilities of the ROS architecture. In addition, we
describe the support for meta-interaction mapping and data trans-
formation based on the SC approach.

ROS-REST Proxy With ROEST, we provided an proof-of-concept
implementation of the mapping between the ROS architecture and
REST. ROEST supports the mapping of ROS topics to HTTP

6.1 Contributions

resources and the lifting of ROS messages to RDF. The implemen-
tation shows the feasibility of our mapping approach.

Evaluation of Frequency-based Interaction Optimization In
our evaluation, we applied our network model and optimization
algorithm to the initial optimization scenario. We compare the
optimized interaction patterns with the pull-only and push-only
realization of the scenario. The results show the optimization
of the data flows with respect to pull requests, which contain
redundant data, and to push requests, which transfer data that is
not processed.

In summary, we showed that we can enable the optimization of inter-
actions between components, which are based on our architecture, and
enable the integration of components, which are based on other spe-
cialized architectures. The frequency-based network model captures the
characteristics of components in the composition of distributed applica-
tions with respect to the frequencies, at which the components consume
or produce data. The optimization algorithms determines the optimal
pull and push interaction patterns to realize the required data flows.
With both the network model and the algorithm, we provide one specific
way for optimizing the interactions between components. With the ROS
architecture mapping, we show, based on one domain-specific archi-
tecture, the means that are required for establishing cross-domain data
flows. Thereby, we enable the participation of ROS nodes as components
in distributed applications that adhere to our integration architecture.

Contributions to Research Question 3 With respect to the hypothe-
sis, we ask the third research question:

How can we support the evaluation of distributed applica-
tions, based on our architecture, in terms of generating dis-
tributed benchmarks and in terms of providing these bench-
marks as distributed environments?

In Chapter 5 on Distributed Benchmark Generation and Provisioning,
we presented the following contributions related to the third research
question.

227

6 Conclusion

228

Requirements Analysis We performed a requirements analysis
with respect to the identified challenges for the generation and
provisioning of distributed LD benchmarks. First, we required the
Deployment-aligned Data Generation. With this requirement, we
ensure the generation of distinct but interlinked datasets. Second,
we required the Network Layer Distribution. With this requirement,
we ensure support for the distribution of the datasets on the net-
work layer of the OSI model. Third, we required the Deployment
Automation. With this requirement, we consider the complexity
of large-scale distributed environments, which must be reduced
through automation. Fourth, we required the Pervasive Declara-
tion. With this requirement, we point out the comparative nature of
benchmarks, which needs to be supported by guaranteeing the re-
producibility of the same benchmark characteristics through simple
parametrization.

Linked Data Benchmark Environment As the core of our ap-
proach, we introduced the concept of the Linked Data Benchmark
Environment as well as the LDBE architecture. The LDBE provides
a domain-independent framework for the development of specific
LD benchmarks and considers in its lifecycle the configuration,
composition, and deployment of the benchmark environments, as
well as the repetitive execution of evaluations during its deploy-
ment. We realize these phases with container-based virtualization
technologies that support extensive declarations of all required
software components as well as capabilities for composition and
deployment of components in distributed manner.

Distributed LUBM With the Distributed LUBM, we provided a
specific implementation of our LDBE approach and architecture.
The DLUBM provides the means for supporting domain-specific
distributed LD settings at different scales. Thereby, we base the
benchmarking scenario and our implementation on the well-known
LUBM, which we extend with required features and accompany
with additional tooling, to provide the benchmarking scenario as
distributed LD.

Evaluation of Centralized Linked Data Querying As the first of
two evaluations, we evaluate the LD-Fu query engine in a central-

6.2 Outlook

ized LD query scenario. Thereby, DLUBM provides the bench-
marking scenario at different scales on commonly available com-
puting resources. In our experiments, we gain insights on the
performance of the LD-Fu implementation and, indirectly, on the
DLUBM implementation and deployment.

Evaluation of Decentralized Linked Data Querying In our sec-
ond evaluation, we evaluate a decentralized LD query scenario.
Therefore, we integrate the DLUBM implementation with the
SCAL implementation of our SC approach. By utilizing the adapta-
tion capabilities, we deploy the LD retrieval and the query evalua-
tion directly at the distributed components of the DLUBM instance.
In our experiments, we compare differently distributed query eval-
uations and show the use of SCAL in this context.

In summary, we showed that we can support the evaluation of distributed
applications, based on our architecture, in terms of generating distributed
benchmarks and in terms of providing these benchmarks as distributed
environments. The LDBE approach and architecture provide a general
framework for building distributed LD benchmarks. In the framework,
we utilize container-based virtualization technology to cut down the
complexity through automation and enable simple parametrization. With
the DLUBM, we provide a specific implementation of the LDBE that
supports the evaluation of distributed applications by providing repro-
ducible LD settings at different scales.

6.2 Outlook

In the following, we provide an outlook on the future work that we see as open
research opportunities and, at least partially, intend to investigate.

Component Adaptation and Decentralized Application Control

In Chapter 3, we presented our contributions related to Component
Adaptation and Decentralized Application Control. We provided a
comprehensive approach, including an architecture and a domain-
independent prototypical implementation.

229

6 Conclusion

230

We intend to further stabilize the prototypical SCAO and SCAL imple-
mentations to provide a sound, reusable, and openly available software
framework for our approach. This includes the extension of the embed-
ded LDP server and further alignment with the LDP specification, the
definition and implementation of reasonable processing triggers, as well
as working out and extending the means for accessing and manipulating
the state of interpreter runs.

The stabilization of the implementation extends to the efforts on the stan-
dardization of N3 and of the interpretation of rules, e.g., with respect to
requests and mathematical operations. At the time of writing, different
research contributions and community contributions to the W3C, but no
formally established standards, define the N3 rule language and its inter-
pretation. We also consider the evaluation of alternative rule languages
with respect to their standardization, the RDF data model, the semantics
of requests, and the fulfillment of other requirements exposed by the SC
approach.

As an open research opportunity, we see the investigation of the self-
adaptation of SCs by enabling embedded rule programs and queries,
within other rule programs that, consequently, serve as adaptations of
other components trough their appearance in request rules and their
transfer in requests to these other components. Besides the conceptual
and technical challenges, this research area has several implications on
the composition of distributed applications and connects the approach
even further with other research fields such as Artificial Intelligence (AI).

Interaction Optimization and Mapping In Chapter 4, we presented our
contributions related to Interaction Optimization and Mapping. Due to
the follow-up nature of these topics and the focus on the SC approach,
we provided proof-of-concept implementations and application of the
network model and algorithm, which can be further improved to provide
more stable solutions.

We intend to implement the optimization algorithm as a combination
of N3 rules and SPARQL queries, and also to support the deployment
by utilizing the SCs approach and implementation. This implementation
can be used for experimental evaluations of the data flow efficiency in

6.2 Outlook

compositions of SCs at different scales, and eases the consideration and
the understanding of further factors that influence this efficiency.

The network model and optimization algorithm provide the basis for
several potential extensions. For example, the inclusion of further fac-
tors that influence the efficiency of data flows, the consideration of
trade-offs, e.g., between latency and bandwidth, or the consideration of
interdependencies between data flows, i.e., the consideration of effects
when components participate in multiple data flows at the same time and
consume or produce information from several other components.

In addition to the extension of the proof-of-concept implementation to an
more stable solution, e.g., by a consistent mapping to the LDP specifica-
tion and the complete bi-directional interaction, the interaction mapping
between architectures provides further research opportunities. For ex-
ample, the integration of approaches for the mapping of information in
structured data to the semantics provided by the RDF data model, the
integration with the SC approach to enable, e.g., meta-interaction map-
ping, or the application of the general findings to further domain-specific
architectures.

Distributed Benchmark Generation and Provisioning In Chapter 5,
we presented our contributions related to Distributed Benchmark Gen-
eration and Provisioning. We provide a comprehensive approach, includ-
ing the architecture of the domain-independent LDBE and the specific
DLUBM implementation.

We intend to introduce further virtualization to the LDBE architecture by
introducing container-based virtualization to the parametrization, gen-
eration of compositions, and the deployment process to computing re-
sources, instead of using this virtualization solely for the deployment
of LDBE. This pervasive container-based virtualization enables the use
of LDBE Continuous Integration (CI) and Continuous Delivery (CD)
pipelines as well as the further automation of experiments. We intend to
extend the DLUBM implementation accordingly.

As arelated research opportunity, we see the investigation of further LD
data generators in combination with the LDBE framework for the provi-
sioning of distributed LD benchmarks. These LD generators may artifi-

231

6 Conclusion

cially generate LD settings with different characteristics in their datasets
or make use of real-world datasets. Their implementation within the
LDBE enables alternative implementations in addition to the DLUBM.

232

Bibliography

[1] Adida, B., Birbeck, M., McCarron, S., Herman, I.: RDFa core 1.1 -
third edition. Recommendation, W3C (2015)

[2] Al-Fugaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash,
M.: Internet of Things: A survey on enabling technologies, protocols,
and applications. Communications Surveys & Tutorials (2015)

[3] Alug, G., Hartig, O., Ozsu, M.T,, Daudjee, K.: Diversified stress
testing of RDF data management systems. In: Proceedings of the
International Semantic Web Conference (ISWC) (2014)

[4] Angles, R., Boncz, P., Larriba-Pey, J., Fundulaki, 1., Neumann, T.,
Erling, O., Neubauer, P., Martinez-Bazan, N., Kotsev, V., Toma, I.: The
Linked Data Benchmark Council: A graph and RDF industry
benchmarking effort. SIGMOD Record (2014)

[5] Antakli, A., Alvarado Moya, P., Briiderlin, B., Canzler, U., Dammertz,
H., Enderlein, V., Griininger, J., Harth, A., Hoffmann, H., Jundt, E.,
Keitler, P., Keppmann, F.L., Krzikalla, R., Lampe, S., Loffler, A.,
Meder, J., Otto, M., Pankratz, F., Pfiitzner, S., Roth, M., Sauerbier, R.,
Schreiber, W., Stechow, R., Tiimler, J., Vogelgesang, C., Wasenmiiller,
0., Weinmann, A., Willneff, J., Wirsching, H.J., Zinnikus, L., Ziirl, K.:
Virtuelle Techniken und Semantic-Web. In: Web-basierte
Anwendungen Virtueller Techniken: Das ARVIDA-Projekt —
Dienste-basierte Software-Architektur und Anwendungsszenarien fiir
die Industrie. Springer (2017)

[6] Aranda, C.B., Corby, O., Das, S., Feigenbaum, L., Gearon, P., Glimm,
B., Harris, S., Hawke, S., Herman, 1., Humfrey, N., Michaelis, N.,
Ogbuji, C., Perry, M., Passant, A., Polleres, A., Prud’hommeaux, E.,
Seaborne, A., Williams, G.T.: SPARQL 1.1 overview.
Recommendation, W3C (2013)

233

Bibliography

(7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

234

Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.:
LinkBench: A database benchmark based on the Facebook social
graph. In: Proceedings of the International Conference on
Management of Data (SIGMOD) (2013)

Ashton, K.: That ’Internet of Things’ thing. RFID Journal (2009)

Atzori, L., Iera, A., Morabito, G.: The Internet of Things: A survey.
Computer Networks (2010)

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.:
DBpedia: A nucleus for a Web of Open Data. In: Proceedings of the
International Semantic Web Conference (ISWC) (2007)

Bader, S., Wolf, A., Keppmann, F.L.: Evaluation environment for
Linked Data Web Services. In: Proceedings of the Workshop on
Services and Applications over Linked APIs and Data (SALAD)
co-located with the International Conference on Semantic Systems
(SEMANTICS) (2017)

Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H.L., Lemay, A.,
Advokaat, N.: gMark: Schema-driven generation of graphs and
queries. Transactions on Knowledge and Data Engineering (2016)

Barahmand, S., Ghandeharizadeh, S.: BG: A benchmark to evaluate
interactive social networking actions. In: Proceedings of the
Conference on Innovative Data Systems Research (CIDR) (2013)

Barnaghi, P., Presser, M., Moessner, K.: Publishing linked sensor data.
In: Proceedings of the International Workshop on Semantic Sensor
Networks (SSN) co-located with the International Semantic Web
Conference ISWC) (2010)

Beckett, D., Broekstra, J.: SPARQL query results XML format (second
edition). Recommendation, W3C (2013)

Bibliography

[16] Behr, I., Blach, R., Bockholt, U., Harth, A., Hoffmann, H., Huber, M.,
Kifer, T., Keppmann, F.L., Pankratz, F., Rubinstein, D., Schubotz, R.,
Vogelgesang, C., Voss, G., Westner, P., Ziirl, K.:
ARVIDA-Referenzarchitektur. In: Web-basierte Anwendungen
Virtueller Techniken: Das ARVIDA-Projekt — Dienste-basierte
Software-Architektur und Anwendungsszenarien fiir die Industrie.
Springer (2017)

[17] Belshe, M., Peon, R., Thomson, M.: Hypertext Transfer Protocol
Version 2 (HTTP/2). Proposed standard, IETF (2015)

[18] Berners-Lee, T.: Information management: A proposal. Tech. rep.,
CERN (1989)

[19] Berners-Lee, T.: Universal Resource Identifiers in WWW: A unifying
syntax for the expression of names and addresses of objects on the
network as used in the World-Wide Web. Information, IETF (1994)

[20] Berners-Lee, T., Fielding, R.T., Masinter, L.M.: Uniform Resource
Identifiers (URI): Generic syntax. Draft standard, IETF (1998)

[21] Berners-Lee, T., Fielding, R.T., Masinter, L.M.: Uniform Resource
Identifier (URI): Generic syntax. Internet standard, IETF (2005)

[22] Berners-Lee, T., Masinter, L.M., McCahill, M.P.: Uniform Resource
Locators (URL). Proposed standard, IETF (1994)

[23] Berners-Lee, T.: Linked Data (2006), https://rslv.link/ZSqj,
retrieved January 22, 2018

[24] Berners-Lee, T.: Read-write Linked Data (2009),
https://rslv.link/ZSqt, retrieved June 13, 2018

[25] Berners-Lee, T., Cailliau, R., Groff, J.F.: The World-Wide Web.
Computer Networks and ISDN Systems (1992)

[26] Berners-Lee, T., Connolly, D.: Notation3 (N3): A readable RDF
syntax. Team submission, W3C (2011)

[27] Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.:
N3Logic: A logical framework for the World Wide Web. Theory and
Practice of Logic Programming (2008)

235

https://rslv.link/ZSqj
https://rslv.link/ZSqt

Bibliography

[28] Berners-Lee, T., Fischetti, M.: Weaving the Web: The Original Design
and Ultimate Destiny of the World Wide Web by Its Inventor. Diane
Publishing (2001)

[29] Berners-Lee, T., Hendler, J.: Publishing on the Semantic Web. Nature
(2001)

[30] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific
American (2001)

[31] Bizer, C., Heath, T., Ayers, D., Raimond, Y.: Interlinking Open Data on
the Web. In: Proceedings of the Demos and Posters at the European
Semantic Web Conference (ESWC) (2007)

[32] Bizer, C.: The emerging Web of Linked Data. Intelligent Systems
(2009)

[33] Bizer, C., Heath, T., Berners-Lee, T.: Linked Data — the story so far.
International Journal on Semantic Web and Information Systems
(2009)

[34] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak,
R., Hellmann, S.: DBpedia — a crystallization point for the Web of
Data. Web Semantics: Science, Services and Agents on the World
Wide Web (2009)

[35] Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. International
Journal on Semantic Web and Information Systems (2009)

[36] Blum, D., Cohen, S.: Grr: Generating random RDF. In: Proceedings of
the Extended Semantic Web Conference (ESWC) (2011)

[37] Brickley, D., Guha, R.V.: RDF schema 1.1. Recommendation, W3C
(2014)

[38] Brock, D., Schuster, E.: On the Semantic Web of Things. In:
Proceedings of the Semantic Days (2006)

236

Bibliography

[39] Calbimonte, J.P., Sarni, S., Eberle, J., Aberer, K.: XGSN: An
Open-Source semantic sensing middleware for the Web of Things. In:
Joint Proceedings of the International Workshops on the Foundations,
Technologies and Applications of the Geospatial Web (TC) and on
Semantic Sensor Networks (SSN) co-located with International
Semantic Web Conference (ISWC) (2014)

[40] Carothers, G.: RDF 1.1 N-Quads. Recommendation, W3C (2014)

[41] Carothers, G., Seaborne, A.: RDF 1.1 N-Triples. Recommendation,
W3C (2014)

[42] Carothers, G., Seaborne, A.: RDF 1.1 TriG. Recommendation, W3C
(2014)

[43] Carpenter, B.E., Hinden, R.M., Masinter, L.M.: Format for literal IPv6
addresses in URL’s. Proposed standard, IETF (1999)

[44] Cerf, V.G., Kahn, R.E.: A protocol for packet network
intercommunication. Transactions on Communications (1974)

[45] Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 concepts and abstract
syntax. Recommendation, W3C (2014)

[46] Daga, E., Panziera, L., Pedrinaci, C.: A BASILar approach for building
web APIs on top of SPARQL endpoints. In: Proceedings of the
Workshop on Services and Applications over Linked APIs and Data
(SALAD) co-located with the European Semantic Web Conference
(ESWC) (2015)

[47] Dell’Aglio, D., Calbimonte, J.P., Balduini, M., Corcho, O., Della Valle,
E.: On correctness in RDF stream processor benchmarking. In:
Proceedings of the International Semantic Web Conference (ISWC)
(2013)

[48] Dillon, T.S., Zhuge, H., Wu, C., Singh, J., Chang, E.: Web-of-Things
framework for Cyber-Physical Systems. Concurrency and
Computation: Practice and Experience (2011)

[49] Domingue, J., Fensel, D., Hendler, J.A. (eds.): Handbook of Semantic
Web Technologies. Springer (2011)

237

Bibliography

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

238

Domingue, J., Fensel, D., Hendler, J.A.: Introduction to the Semantic
Web Technologies. In: Handbook of Semantic Web Technologies.
Springer (2011)

Dominguez-Sal, D., Martinez-Bazan, N., Muntes-Mulero, V., Baleta,
P., Larriba-Pey, J.L.: A discussion on the design of graph database
benchmarks. In: Proceedings of the Technology Conference on
Performance Evaluation and Benchmarking (TPCTC) (2011)

Duan, S., Kementsietsidis, A., Srinivas, K., Udrea, O.: Apples and
oranges: A comparison of RDF benchmarks and real RDF datasets. In:
Proceedings of the International Conference on Management of Data
(SIGMOD) (2011)

Duerst, M., Suignard, M.: Internationalized Resource Identifiers
(IRIs). Proposed standard, IETF (2005)

Duquennoy, S., Grimaud, G., Vandewalle, J.J.: The Web of Things:
interconnecting devices with high usability and performance. In:
Proceedings of the International Conference on Embedded Software
and Systems (ICESS) (2009)

Erling, O., Averbuch, A., Larriba-Pey, J., Chafi, H., Gubichev, A., Prat,
A., Pham, M.D., Boncz, P.: The LDBC social network benchmark:
Interactive workload. In: Proceedings of the International Conference
on Management of Data (SIGMOD) (2015)

Faulkner, S., Eicholz, A., Leithead, T., Danilo, A., Moon, S.,
Doyle Navara, E., O’Connor, T., Berjon, R.: HTML 5.2.
Recommendation, W3C (2017)

Fielding, R.T., Lafon, Y., Reschke, J.: Hypertext Transfer Protocol
(HTTP/1.1): Range requests. Proposed standard, IETF (2014)

Fielding, R.T., Nielsen, H.F., Mogul, J., Gettys, J., Berners-Lee, T.:
Hypertext Transfer Protocol —- HTTP/1.1. Proposed standard, IETF
(1997)

Fielding, R.T., Nottingham, M., Reschke, J.: Hypertext Transfer
Protocol (HTTP/1.1): Caching. Proposed standard, IETF (2014)

Bibliography

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Fielding, R.T., Reschke, J.: Hypertext Transfer Protocol (HTTP/1.1):
Authentication. Proposed standard, IETF (2014)

Fielding, R.T., Reschke, J.: Hypertext Transfer Protocol (HTTP/1.1):
Conditional requests. Proposed standard, IETF (2014)

Fielding, R.T., Reschke, J.: Hypertext Transfer Protocol (HTTP/1.1):
Message syntax and routing. Proposed standard, IETF (2014)

Fielding, R.T., Reschke, J.: Hypertext Transfer Protocol (HTTP/1.1):
Semantics and content. Proposed standard, IETF (2014)

Fielding, R.T.: Architectural Styles and the Design of Network-based
Software Architectures. Ph.D. thesis, University of California (2000)

Gandon, F., Schreiber, G.: RDF 1.1 XML syntax. Recommendation,
W3C (2014)

Gershenfeld, N., Krikorian, R., Cohen, D.: The Internet of Things.
Scientific American (2004)

Gruber, T.R.: A translation approach to portable ontology
specifications. Knowledge Acquisition (1993)

Guinard, D.: A Web of Things Application Architecture — Integrating
the Real-World into the Web. Ph.D. thesis, ETH Zurich (2011)

Guinard, D., Trifa, V.: Towards the Web of Things: Web mashups for
embedded devices. In: Proceedings of the Workshop on Mashups,
Enterprise Mashups and Lightweight Composition on the Web (MEM)
co-located with the International World Wide Web Conference
(WWW) (2009)

Guinard, D., Trifa, V., Mattern, F., Wilde, E.: From the Internet of
Things to the Web of Things: Resource-oriented architecture and best
practices. In: Architecting the Internet of Things. Springer (2011)

Guinard, D., Trifa, V., Pham, T., Liechti, O.: Towards physical
mashups in the Web of Things. In: Proceedings of the International
Conference on Networked Sensing Systems (INSS) (2009)

239

Bibliography

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

240

Guinard, D., Trifa, V., Wilde, E.: A resource oriented architecture for
the Web of Things. In: Proceedings of the Internet of Things
Conference (IOT) (2010)

Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge
base systems. Web Semantics: Science, Services and Agents on the
World Wide Web (2005)

Gyrard, A.: Designing Cross-Domain Semantic Web of Things
Applications. Ph.D. thesis, TELECOM ParisTech (2015)

Gyrard, A., Bonnet, C., Boudaoud, K., Serrano, M.: Assisting IoT
projects and developers in designing interoperable Semantic Web of
Things applications. In: Proceedings of the International Conference
on Data Science and Data Intensive Systems (DSDIS) (2015)

Gyrard, A., Bonnet, C., Boudaoud, K., Serrano, M.: LOV4IoT: A
second life for ontology-based domain knowledge to build Semantic
Web of Things applications. In: Proceedings of the International
Conference on Future Internet of Things and Cloud (FiCloud) (2016)

Gyrard, A., Datta, S.K., Bonnet, C., Boudaoud, K.: Standardizing
generic cross-domain applications in Internet of Things. In:
Proceedings of the Globecom Workshops (GC Wkshps) (2014)

Gyrard, A., Datta, S.K., Bonnet, C., Boudaoud, K.: Cross-domain
Internet of Things application development: M3 framework and
evaluation. In: Proceedings of the International Conference on Future
Internet of Things and Cloud (FiCloud) (2015)

Gyrard, A., Serrano, M., Atemezing, G.A.: Semantic Web
methodologies, best practices and ontology engineering applied to

Internet of Things. In: Proceedings of the World Forum on Internet of
Things (WF-IoT) (2015)

Gyrard, A., Serrano, M., Patel, P.: Building interoperable and
cross-domain Semantic Web of Things applications. In: Managing the
Web of Things. Morgan Kaufmann (2017)

Hammer-Lahav, E., Nottingham, M.: Defining well-known Uniform
Resource Identifiers (URIs). Proposed standard, IETF (2010)

Bibliography

[82] Harris, S., Seaborne, A.: SPARQL 1.1 query language.
Recommendation, W3C (2013)

[83] Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.U.,
Umbrich, J.: Data summaries for on-demand queries over Linked Data.
In: Proceedings of the International Conference on World Wide Web
(WWW) (2010)

[84] Harth, A., Kifer, T., Keppmann, F.L., Rubinstein, D., Schubotz, R.,
Vogelgesang, C.: Industrielle VT-Anwendungen auf Basis von
Web-Technologien. In: Proceedings of the VDE-Kongress — Internet
der Dinge (2016)

[85] Hartig, O., Bizer, C., Freytag, J.C.: Executing SPARQL queries over
the Web of Linked Data. In: Proceedings of the International Semantic
Web Conference (ISWC) (2009)

[86] Hermann, M., Pentek, T., Otto, B.: Design principles for Industrie 4.0
scenarios. In: Proceedings of the Hawaii International Conference on
System Sciences (HICSS) (2016)

[87] Hinden, R.M., E., D.S.: Internet Protocol, version 6 (IPv6)
specification. Draft standard, IETF (1998)

[88] Huppler, K.: The art of building a good benchmark. In: Proceedings of
the Technology Conference on Performance Evaluation and
Benchmarking (TPCTC) (2009)

[89] Jackson, M.: Defining a discipline of description. Software (1998)

[90] Jacobs, I., Walsh, N.: Architecture of the World Wide Web, volume
one. Recommendation, W3C (2004)

[91] Jara, A.J., Olivieri, A.C., Bocchi, Y., Jung, M., Kastner, W., Skarmeta,
A.F.: Semantic Web of Things: an analysis of the application
semantics for the [oT moving towards the IoT convergence.
International Journal of Web and Grid Services (2014)

[92] Jara, A.J., Scarrone, E., Ladid, L.: Enabling a World-Wide Web of
Things: An analysis and overview of the application semantics and
standards for the IoT. Tech. rep., EU-China FIRE project (2014)

241

Bibliography

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

242

Joshi, A.K., Hitzler, P.,, Dong, G.: LinkGen: Multipurpose Linked Data
generator. In: Proceedings of the International Semantic Web
Conference (ISWC) (2016)

Kamilaris, A., Yamusak, S., Ali, M.I.: WOTS2E: A search engine for a
Semantic Web of Things. In: Proceedings of the World Forum on
Internet of Things (WF-IoT) (2016)

Katasonov, A., Kaykova, O., Khriyenko, O., Nikitin, S., Terziyan, V.:
Smart semantic middleware for the Internet of Things. In: Proceedings

of the International Conference on Informatics in Control, Automation
and Robotics (ICINCO) (2008)

Keppmann, F.L., Kifer, T., Stadtmiiller, S., Schubotz, R., Harth, A.:
High performance Linked Data processing for Virtual Reality
environments. In: Proceedings of the Posters and Demos at the
International Semantic Web Conference (ISWC) (2014)

Keppmann, F.L., Kifer, T., Stadtmiiller, S., Schubotz, R., Harth, A.:
Integrating highly dynamic RESTful Linked Data APIs in a Virtual
Reality environment. In: Proceedings of the Posters and Demos at the
International Symposium on Mixed and Augmented Reality ISMAR)
(2014)

Keppmann, F.L., Maleshkova, M.: Towards pervasive Web API-based
systems. In: Proceedings of the Research Workshop co-located with
the Karlsruhe Service Summit (KSS) (2015)

Keppmann, F.L., Maleshkova, M.: Smart components for enabling
intelligent Web of Things applications. In: Proceedings of the
International Conference on Intelligent Systems and Applications
(INTELLI) (2016)

Keppmann, F.L., Maleshkova, M., Harth, A.: Building REST APIs for
the Robot Operating System — mapping concepts and interaction. In:
Proceedings of the Workshop on Services and Applications over
Linked APIs and Data (SALAD) co-located with the European
Semantic Web Conference (ESWC) (2015)

Bibliography

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Keppmann, F.L., Maleshkova, M., Harth, A.: Towards optimising the
data flow in distributed applications. In: Proceedings of the Workshop
on Web APIs and RESTful Design Workshop (WS-REST) co-located
with the International World Wide Web Conference (WWW) (2015)

Keppmann, F.L., Maleshkova, M., Harth, A.: Semantic technologies
for realising decentralised applications for the Web of Things. In:
Proceedings of the International Conference on Engineering of
Complex Computer Systems (ICECCS) (2016)

Keppmann, F.L., Maleshkova, M., Harth, A.: Adaptable interfaces,
interactions, and processing for Linked Data Platform components. In:
Proceedings of the International Conference on Semantic Systems
(SEMANTICS) (2017)

Keppmann, F.L., Maleshkova, M., Harth, A.: DLUBM: A benchmark
for distributed Linked Data knowledge base systems. In: Proceedings
of the On the Move to Meaningful Internet Systems Conferences
(OTM) (2017)

Keppmann, F.L., Stadtmiiller, S.: Semantic RESTful APIs for dynamic
data sources. In: Proceedings of the Workshop on Services and
Applications over Linked APIs and Data (SALAD) co-located with the
European Semantic Web Conference (ESWC) (2014)

Koch, J., Velasco, C.A., Ackermann, P.: HTTP vocabulary in RDF 1.0.
Working group note, W3C (2017)

Kaotis, K., Katasonov, A.: Semantic interoperability on the Web of
Things: The semantic smart gateway framework. In: Proceedings of
the International Conference on Complex, Intelligent, and Software
Intensive Systems (CISIS) (2012)

Krummenacher, R., Norton, B., Marte, A.: Towards linked open
services and processes. In: Proceedings of the Future Internet
Symposium (FIS) (2010)

Lasi, H., Fettke, P., Kemper, H.G., Feld, T., Hoffmann, M.: Industry
4.0. Business & Information Systems Engineering (2014)

243

Bibliography

[110] Le-Phuoc, D., Dao-Tran, M., Pham, M.D., Boncz, P., Eiter, T., Fink,
M.: Linked stream data processing engines: Facts and figures. In:
Proceedings of the International Semantic Web Conference (ISWC)
(2012)

[111] McCarron, S.: XHTML+RDFa 1.1 - third edition. Recommendation,
W3C (2015)

[112] McCrae, J.P., Abele, A., Buitelaar, P., Cyganiak, R., Jentzsch, A.,
Andryushechkin, V.: Linked Open Data Cloud (April 2018) (2018),
https://rslv.link/ZSqP, retrieved on 01.05.2018.

[113] Merkel, D.: Docker: Lightweight Linux containers for consistent
development and deployment. Linux Journal (2014)

[114] Merofio-Pefiuela, A., Hoekstra, R.: grlc makes GitHub taste like
Linked Data APIs. In: Proceedings of the European Semantic Web
Conference (ESWC) (2016)

[115] Mihindukulasooriya, N., Menday, R.: Linked Data Platform 1.0
primer. Working group note, W3C (2015)

[116] National Science Foundation: Cyber-Physical Systems Summit. Tech.
rep., National Science Foundation (2008)

[117] Nielsen, H.F., Fielding, R.T., Berners-Lee, T.: Hypertext Transfer
Protocol — HTTP/1.0. Information, IETF (1996)

[118] Nottingham, M.: Web linking. Proposed standard, IETF (2010)
[119] Nottingham, M.: Web linking. Proposed standard, IETF (2017)

[120] Nottingham, M., Sayre, R.: The Atom syndication format. Proposed
standard, IETF (2005)

[121] Novo, O., Beijar, N., Ocak, M., Kjéllman, J., Komu, M., Kauppinen,
T.: Capillary networks — bridging the cellular and IoT worlds. In:
Proceedings of the World Forum on Internet of Things (WF-1oT)
(2015)

244

https://rslv.link/ZSqP

Bibliography

[122] Ostermaier, B., Elahi, B.M., Romer, K., Fahrmair, M., Kellerer, W.:
Dyser: Towards a real-time search engine for the Web of Things. In:
Proceedings of the Conference on Embedded Network Sensor Systems
(SenSys) (2008)

[123] Overdick, H.: The resource-oriented architecture. In: Proceedings of
the Congress on Services (Services) (2007)

[124] Patel, P, Gyrard, A., Datta, S.K., Ali, M.I.: SWoTSuite: A toolkit for
prototyping end-to-end Semantic Web of Things applications. In:
Proceedings of the Posters and Demos at the International World Wide
Web Conference (WWW) (2017)

[125] Patel-Schneider, P.F., Motik, B.: OWL 2 Web ontology language
mapping to RDF graphs (second edition). Recommendation, W3C
(2012)

[126] Peon, R., Ruellan, H.: HPACK: Header compression for HTTP/2.
Proposed standard, IETF (2015)

[127] Peterson, D., Gao, S., Malhotra, A., Sperberg-McQueen, C.M.,
Thompson, H.S.: W3C XML schema definition language (XSD) 1.1
part 2: Datatypes. Recommendation, W3C (2012)

[128] Pfisterer, D., Romer, K., Bimschas, D., Kleine, O., Mietz, R., Truong,
C., Hasemann, H., Kréller, A., Pagel, M., Hauswirth, M., Karnstedt,
M., Leggieri, M., Passant, A., Richardson, R.: SPITFIRE: Toward a
Semantic Web of Things. Communications Magazine (2011)

[129] Postel, J.: Internet Protocol. Internet standard, IETF (1981)

[130] Presser, M., Barnaghi, P.M., Eurich, M., Villalonga, C.: The SENSEI
project: integrating the physical world with the digital world of the
network of the future. Communications Magazine (2009)

[131] Prud’hommeaux, E., Carothers, G.: RDF 1.1 Turtle. Recommendation,
W3C (2014)

245

Bibliography

[132] Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J.,
Berger, E., Wheeler, R., Ng, A.: ROS: an Open-Source Robot
Operating System. In: Proceedings of the Workshop on Open Source
Software co-located with the International Conference on Robotics and
Automation (ICRA) (2009)

[133] Rukzio, E., Paolucci, M., Wagner, M., Berndt, H., Hamard, J., Schmidt,
A.: Mobile service interaction with the Web of Things. In: Proceedings
of the International Conference on Telecommunications (ICT) (2006)

[134] Ruta, M., Scioscia, F., Pinto, A., Di Sciascio, E., Gramegna, F., Ieva,
S., Loseto, G.: Resource annotation, dissemination and discovery in
the Semantic Web of Things: a CoAP-based framework. In: Joint
proceedings of the International Conferences on Green Computing and
Communications (GreenCom) and Internet of Things (iThings) and
Cyber, Physical and Social Computing (CPSCom) (2013)

[135] Ruta, M., Scioscia, F., Di Sciascio, E.: Enabling the Semantic Web of
Things: Framework and architecture. In: Proceedings of the
International Conference on Semantic Computing (ICSC) (2012)

[136] Ruta, M., Scioscia, F., Pinto, A., Gramegna, F., Ieva, S., Loseto, G.,
Di Sciascio, E.: A CoAP-based framework for collaborative sensing in
the Semantic Web of Things. Procedia Computer Science (2017)

[137] Ruta, M., Scioscia, F., Pinto, A., Gramegna, F., Ieva, S., Loseto, G.,
Di Sciascio, E.: CoAP-based collaborative sensor networks in the
Semantic Web of Things. Journal of Ambient Intelligence and
Humanized Computing (2018)

[138] Sachs, J., Beijar, N., Elmdahl, P., Melen, J., Militano, F., Salmela, P.:
Capillary networks — a smart way to get things connected. Ericsson
Review (2014)

[139] Sahlmann, K., Schwotzer, T.: MOCAP: Towards the Semantic Web of
Things. In: Proceedings of the Posters and Demos at the International
Conference on Semantic Systems (SEMANTiICS) (2015)

[140] Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A
SPARQL performance benchmark. In: Proceedings of the International
Conference on Data Engineering (ICDE) (2009)

246

Bibliography

[141] Schreiber, G., Raimond, Y.: RDF 1.1 primer. Recommendation, W3C
(2014)

[142] Schreiber, W., Ziirl, K., Zimmermann, P. (eds.): Web-basierte
Anwendungen Virtueller Techniken: Das ARVIDA-Projekt —
Dienste-basierte Software-Architektur und Anwendungsszenarien fiir
die Industrie. Springer (2017)

[143] Scioscia, F., Ruta, M.: Building a Semantic Web of Things: issues and
perspectives in information compression. In: Proceedings of the
International Conference on Semantic Computing (ICSC) (2009)

[144] Seaborne, A.: SPARQL 1.1 query results CSV and TSV formats.
Recommendation, W3C (2013)

[145] Seaborne, A.: SPARQL 1.1 query results JSON format.
Recommendation, W3C (2013)

[146] Shadbolt, N., Berners-Lee, T., Hall, W.: The Semantic Web revisited.
Intelligent Systems (2006)

[147] Shelby, Z., Hartke, K., Bormann, C.: The Constrained Application
Protocol (CoAP). Proposed standard, IETF (2014)

[148] Shelby, Z.: Constrained RESTful Environments (CoRE) link format.
Proposed standard, IETF (2012)

[149] Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte,
J.P., Riahi, M., Aberer, K., Jayaraman, P.P., Zaslavsky, A., Zarko, L.P,,
Skorin-Kapov, L., Herzog, R.: OpenloT: Open Source
Internet-of-Things in the cloud. In: Proceedings of the International
Workshop on Interoperability and Open-Source Solutions for the
Internet of Things (InterOSS-I0T) co-located with the International
Conference on Software, Telecommunications and Computer
Networks (SoftCOM) (2015)

[150] Speicher, S., Arwe, J., Malhotra, A.: Linked Data Platform 1.0.
Recommendation, W3C (2015)

[151] Speicher, S., Arwe, J., Malhotra, A.: Linked Data Platform paging 1.0.
Working group note, W3C (2015)

247

Bibliography

[152] Speiser, S., Harth, A.: Integrating Linked Data and services with
Linked Data Services. In: Proceedings of the Extended Semantic Web
Conference (ESWC) (2011)

[153] Sporny, M.: HTML+RDFa 1.1 - second edition. Recommendation,
W3C (2015)

[154] Sporny, M.: RDFa lite 1.1 - second edition. Recommendation, W3C
(2015)

[155] Sporny, M., Kellogg, G., Lanthaler, M.: JSON-LD 1.0.
Recommendation, W3C (2014)

[156] Stadtmiiller, S.: Dynamic Interaction and Manipulation of Web
Resources. Ph.D. thesis, Karlsruhe Institute of Technology (2016)

[157] Stadtmiiller, S., Speiser, S., Harth, A.: Future challenges for Linked
APIs. In: Proceedings of the Workshop on Services and Applications
over Linked APIs and Data (SALAD) co-located with the European
Semantic Web Conference (ESWC) (2013)

[158] Stadtmiiller, S., Speiser, S., Harth, A., Studer, R.: Data-Fu: A language
and an interpreter for interaction with Read/Write Linked Data. In:
Proceedings of the International World Wide Web Conference
(WWW) (2013)

[159] Stirbu, V.: Towards a RESTful plug and play experience in the Web of
Things. In: Proceedings of the International Conference on Semantic
Computing (ICSC) (2008)

[160] Traversat, B., Abdelaziz, M., Doolin, D., Duigou, M., Hugly, J.C.,
Pouyoul, E.: Project JXTA-C: Enabling a Web of Things. In:
Proceedings of the Hawaii International Conference on System
Sciences (HICSS) (2003)

[161] Trifa, V., Wieland, S., Guinard, D., Bohnert, T.M.: Design and
implementation of a gateway for Web-based interaction and
management of embedded devices. In: Proceedings of the International
Workshop on Sensor Network Engineering IWSNE) at the
International Conference on Distributed Computing in Sensor Systems
(DCOSS) (2009)

248

Bibliography

[162] Verborgh, R., Hartig, O., De Meester, B., Haesendonck, G., De Vocht,
L., Vander Sande, M., Cyganiak, R., Colpaert, P., Mannens, E., Van de
Walle, R.: Querying datasets on the Web with high availability. In:
Proceedings of the International Semantic Web Conference (ISWC)
(2014)

[163] Verborgh, R., Steiner, T., van Deursen, D., van de Walle, R.,
Gabarré Vallés, J.: Efficient runtime service discovery and
consumption with hyperlinked RESTdesc. In: Proceedings of the

International Conference on Next Generation Web Services Practices
(NWeSP) (2011)

[164] W3C OWL Working Group: OWL 2 Web ontology language
document overview (second edition). Recommendation, W3C (2012)

[165] Webber, J., Parastatidis, S., Robinson, I.: REST in Practice:
Hypermedia and Systems Architecture. O’Reilly Media (2010)

[166] Weithoner, T., Liebig, T., Luther, M., Bohm, S.: What’s wrong with
OWL benchmarks? In: Proceedings of the International Workshop on
Scalable Semantic Web Knowledge Base Systems (SSWS) co-located
with the International Semantic Web Conference (ISWC) (2006)

[167] Wilde, E.: Putting things to REST. Tech. rep., UC Berkeley: School of
Information (2007)

[168] Wilde, E., Kofahl, M.: The locative web. In: Proceedings of the
International Workshop on Location and the Web (LocWeb) co-located
with the International World Wide Web Conference (WWW) (2008)

[169] Zhang, Y., Duc, PM., Corcho, O., Calbimonte, J.P.: SRBench: A
streaming RDF/SPARQL benchmark. In: Proceedings of the
International Semantic Web Conference (ISWC) (2012)

249

DECENTRALIZED
CONTROL AND
ADAPTATION IN
DISTRIBUTED
APPLICATIONS ¢

via Web and Semantic Web Technologies

Increased use of mobile devices, wearables,
and sensors characterizes current develop-
ments in multiple domains. In this context,
the visions of the Internet of Things, Web of
Things, and Semantic Web of Things as well
as related visions such as Industry 4.0 promise
interconnection and collaboration between
billions of “things”. Still, what we are currently
witnessing is the proliferation of isolated is-
lands of custom solutions that cannot be easily
integrated or extended.

The work presented in this book provides an
approach and an implementation for enabling
decentralized control in distributed applica-
tions composed of heterogeneous components
by benefiting from the interoperability provid-
ed by the Web stack and relying on semantic
technologies for enabling data integration. In
ISBN 976-37315.0966-0 particular, the concept of Smart Components
enables adaptability at runtime through an
adaptation layer and is complemented by a
reference architecture as well as a prototypi-
783731 50 cal implementation.

Gedruckt auf FSC-zertifiziertem Papier

	Acknowledgments
	Abstract
	Figures
	Tables
	Listings
	Algorithms
	Equations
	Introduction
	Challenges
	Hypothesis
	Research Questions
	Methodology
	Contributions
	Outline
	Publications

	Foundations
	The Web and Related Visions
	World Wide Web (WWW)
	Semantic Web (SW)
	Web of Data (WoD)
	Internet of Things (IoT)
	Web of Things (WoT)
	Semantic Web of Things (SWoT)
	Positioning of the Thesis

	Paradigms, Architectures, and Technologies
	Representational State Transfer (REST)
	Semantic Web Technologies (SWT)
	Linked Data (LD)

	Concepts and Terminology
	Component
	Application
	Interaction
	Meta-interaction
	Processing
	Lifecycle

	Component Adaptation and Decentralized Application Control
	Introduction
	Scenario
	Challenges
	Related Work
	Contributions

	Approach for Smart Component-based Integration
	Requirements
	Smart Component-based Integration Architecture
	Smart Component

	Implementation of the Smart Component Adaptation Framework
	Smart Component Adaptation Layer
	Smart Component Adaptation Ontology
	NIREST Smart Component

	Evaluation
	Evaluation of Function
	Evaluation of Performance

	Summary

	Interaction Optimization and Mapping
	Introduction
	Scenario
	Challenges
	Contributions

	Approach for Frequency-based Interaction Optimization
	Optimization Scenario
	Requirements
	Frequency-based Network Model and Optimization Algorithm

	Approach for Domain-specific Architecture Mapping
	Mapping Scenario
	Requirements
	ROS Architecture Mapping

	Implementation of the ROS-REST Proxy
	Evaluation of Frequency-based Interaction Optimization
	Summary

	Distributed Benchmark Generation and Provisioning
	Introduction
	Scenario
	Challenges
	Related Work
	Contributions

	Approach for Linked Data Benchmark Environments
	Requirements
	Linked Data Benchmark Environment

	Implementation of the Distributed LUBM
	Configuration Phase Implementations
	Composition Phase Implementations
	Deployment Phase Implementations

	Evaluation
	Evaluation of Centralized Linked Data Querying
	Evaluation of Decentralized Linked Data Querying

	Summary

	Conclusion
	Contributions
	Outlook

	Bibliography

