
Malleable Sorting
Patrick Flick, Peter Sanders, Jochen Speck

Department of Informatics
Karlsruhe Institute of Technology

Karlsruhe, Germany
{sanders,speck}@kit.edu

Abstract—Malleable jobs can adapt to varying degrees of
available parallelism. This is an interesting approach to more
flexible usage of parallel resources. For example, malleable jobs
can be scheduled optimally and efficiently where more restricted
forms of parallel jobs are NP-hard to handle. However, little
work has been done on how to make fundamental computations
malleable. We study how this can be done for sorting. Our
algorithm is an adaptive version of Multiway Merge Sort and
outperforms a state-of-the art implementation in the multi core
STL when the number of available cores fluctuates.

I. INTRODUCTION

Sorting is one of the most important basic algorithms. Many
computers spend much of their time sorting some values and
a lot of research considers the efficiency of sorting (see [4]).

Sorting is a CPU-time intensive part of many programs.
As multi core CPUs are now common on average systems
and the number of cores per CPU is increasing, parallel
sorting becomes a common subroutine in many applications.
A typical library routine for parallel sorting is the Multiway
Merge Sort from the MCSTL [11] which is also part of many
other libraries. The Multiway Merge Sort is very efficient on
a system with no other jobs running but it is known from
the PhD-thesis of Johannes Singler [10] (one of the MCSTL-
authors) that it looses efficiency if other jobs are running
concurrently.

A malleable task (as defined in [5]) is a task where the
number of assigned cores can be changed from outside during
the execution. In scheduling theory one often finds papers
concerned with the scheduling of malleable tasks see [2] and
[1]. Tasks of this type would be a perfect fit for new systems
with resource aware scheduling strategies which will use the
available resources more efficiently. For an example of the plan
of an adaptive system see [12]. Resource aware scheduling
means here that the number of cores which are assigned to
a task depends also on the current workload of the system.
As many systems today usually execute more than one task in
parallel, these systems may benefit from the ideas of resource
aware scheduling.

Also scheduling will be easier with malleable tasks. If you
can choose the amount of processors assigned to a job only
once, when the job starts, the scheduling problem becomes
NP-hard even with preemption allowed [3]. But if we have
malleable jobs with a concave speedup function we can find
the optimal schedule in polynomial time [1]. We did not
prove that the new malleable sorting fulfills all restrictions for

polynomial time optimal scheduling but it seems to be much
closer than other sorting algorithms.

Our goal in this work was to show that if we add an
internal scheduler to Multiway Merge Sort which also gets
information about the current system load we can significantly
improve the system efficiency in the situation of another job
running in parallel. We see this work as a step towards resource
aware systems which will give each job a certain amount of
resources, which can be changed over time. With the right
kind of jobs which are able to adapt to changing amounts of
resources these systems can improve efficiency significantly.

In order to add an internal scheduler to the Multiway Merge
Sort we had to change it a little but we tried to use as many
parts as possible of the original sorting algorithm. For the rest
of the article we will call our malleable sorter MALMS and
the Multiway Merge Sort from the MCSTL will be called
STLMS.

The main result of this article is that MALMS is nearly
as good as STLMS if there is no other task on the system
but if there is another task running on the system MALMS
shows a big advantage. So the internal scheduler and the
necessary changes to the Multiway Merge Sort to add the
internal scheduler produce a small overhead on an otherwise
empty system but help a lot if other jobs are present.

In Section II we will introduce the algorithm and the general
structure of MALMS and give a short introduction to the
algorithm behind STLMS. Some details of our implementation
and the experimental setup will be described in Section III.
The experimental comparisons under different circumstances
are presented in the experimental Section IV.

II. ALGORITHM

Each sorting algorithm considered in this work (MALMS
and STLMS) gets its input as an array of n elements to be
sorted. The output is an array with the same elements but the
elements are stored in a nondecreasing sequence.

Both algorithms are quite similar as it was our goal to “add”
malleability to the STLMS rather than to implement a whole
new algorithm. The plan was to add flexibility and to inherit
the speed of the original algorithm. For this reason we give a
short description of both algorithms in the next three breaks.

Both algorithms organize their work in work packets
throughout the paper we use k as the number of work packets.
For simplicity of presentation we assume that n

k is integer
for the rest of the paper. For STLMS the number of work



packets is the same as the number of threads. For MALMS the
number of work packets is an optimization parameter. More
work packets bring better adaptivity and malleability but also
more overhead. We present an experimental evaluation of the
overhead in section IV-B.

Both algorithms have three phases. In the first phase the
input array is split into k equal sized packets which are sorted
independently using a sequential sorting algorithm. In the
second phase k − 1 splitters keys are computed. Each splitter
splits all of the k sorted sequences into an upper and an
lower part. Additionally the total number of elements in all
sequences which are between the r-th and the r+ 1-th splitter
is n

k . There are also n
k elements below the first and above the

k − 1-st splitter. In the third phase all elements between the
r-th and the r+1-th splitter are merged into a sorted sequence.
The concatenation of these sequences is the final result.

Both algorithms split the work in each of these phases into
k work packages. In the first phase the sorting of each of
the k packets of input elements is a work package. In the
second phase,finding one of the k − 1 splitters makes up a
work package. A work package of the third phase consist of
the merging of all elements between the r-th and the r + 1-th
splitter.

Now we describe the management of work packages in
MALMS. For each phase a single thread prepares all work
packages and puts them into a queue. After this is done, each
worker thread takes one package from the queue and works
on it. When a worker thread has finished its work package
it takes a new one from the queue or if the queue is empty
it waits until all worker threads have finished their packages.
When all workers have finished their work packages the next
phase starts.

The malleability is organized by the malleable scheduler.
The malleable scheduler manages the queue of work packages,
the threads and the signaling. The malleable scheduler has one
thread per core on the system. Each thread is assigned to one
core. All worker threads visit the malleable scheduler in the
following manner: First the thread checks if it is blocked.
If it is blocked then it goes to sleep. If the thread is not
blocked it fetches a work packet and starts working on it.
If MALMS gets the signal to use a currently not used core
p, the malleable scheduler wakes up the thread assigned to p.
This thread immediately takes a work packet from the queue
and starts working on it. If MALMS is ordered to release a
currently used core p, it blocks the thread assigned to p when
it tries to take a new work package. If the work packages are
small enough, we have a malleable job whose amount of used
cores can be controlled from the outside.

A. Basic Algorithms used in the Three Phases

In this section we describe in short the algorithms used by
MALMS in the three phases.

In the work packets of the first phase the sequential sort
from the STL is used. std::sort(...); calls introspec-
tive sort [6] which has a good worst case behavior but is not
stable. The complexity of each work package in this phase is

Malleable
Scheduler

0 1
Threads

2 3 p-1

...

...1 1 1 0 1

...

NULL

...

availableCores

Schedule

Jobs Work
Queue

Workpackages

Fig. 1. Overview of the design and the principle of operation of the malleable
scheduler.

in Θ(n
k log n

k ). For p parallel threads and p divides k the time
complexity of the first phase is in Θ(n

p log n
k ).

The splitting in the second phase is very important for this
algorithm because there are more splitters which have to be
computed than in STLMS. Each work package consists of the
computation of the r-th splitter and its position in all k sorted
sequences of the first phase (r ∈ {1, . . . , k − 1}). The total
number of elements below the r-th splitter has to be r·n

k . The
0-th splitter is defined to be directly below the smallest element
and the k-th splitter is defined to be directly above the largest
element of all work packages from the first phase.

The splitting algorithm maintains three arrays of size k.
In each array it keeps one position in each sequence. Now
we explain how the r-th splitter is computed. The number of
elements below the splitter must be s = r·n

k . The array lower
is initialized with the positions of the 0-th splitter the array
upper is initialized with the positions of the k-th splitter and
the array current is initialized empty. For the splitting the
following step is repeatedly performed:

1) For all nonempty sequences get the median and attach
the number of elements in the sequence as a weight to
it.

2) Compute the weighted median w of the medians of the
sequences.

3) For each sequence find the splitting point where w would
fit into the sorted sequence by binary search and store
it in current.

4) Count the elements between lower and current in
c.

5) If c is larger than s then upper is replaced with
current else lower is replaced with current and
s = s− c.

6) Repeat the step if there are more than k + 16 elements
remaining between lower and upper together in all
sequences.

The remaining elements are then sorted and the r-th splitter
and its positions are computed. The complexity of each work
package in this phase is in Θ(k log2 n

k ). For p parallel threads
the time complexity of the second phase is in Θ(k2

p log2 n
k ).

A work package of the third phase consists of merging k
sorted sequences into one sorted sequence. We use the loser
tree [4] implementation which is also part of the STLMS.

2



The complexity of each work package in this phase is in
Θ(n

k log k). For p parallel threads and p divides k, the time
complexity of the third phase is in Θ(n

p log k).

III. REALIZATION AND TESTING ENVIRONMENT

A. Machines for Experiments

The Machine used for experimental evaluation is a system
composed of two quad-core Intel Xeon 5345 (Woodcrest)
processors. Both sockets access the memory through a shared
memory controller. Thus this machine has a uniform memory
architecture (UMA) which simplifies the experimental evalua-
tion because we do not have to consider NUMA effects. Table
I shows the technical details of the machine.

Both machines are running a Linux Kernel version 2.6.32-
38-generic x86 64 and a GCC version 4.4.3. The Linux
scheduler of the system has the standard parameters of the
installation. For STLMS it is solely responsible for the distri-
bution of work among the cores.

Name Xeon
CPU Model Intel Xeon 5345
#Sockets 2
#Cores 8 (4 per Socket)
#Threads 8
Architecture Woodcrest
Frequency 2.33 GHz
L1 Cache 2x 4x 16 KiB
L2 Cache 2x 4x 512 KiB
L3 Cache 2x 2 MiB (shared)
Memory 16 GiB
Memory architecture UMA
Kernel version 2.6.32-38-generic x86 64
GCC version 4.4.3

TABLE I
TECHNICAL DATA OF THE MACHINE USED FOR THE EXPERIMENTS.

B. Thread Pinning

The malleable scheduler uses pinned threads. Each thread is
pinned to a certain CPU core, thus the Linux scheduler cannot
schedule any thread on any other CPU core than the one it is
pinned to.

The threads are pinned by setting their CPU affinity mask,
which determines the set of CPU cores on which the thread
is eligible to run. The CPU affinity mask is set via the Linux
function sched_setaffinity() [7], in order that each
thread is only eligible to run on exactly one CPU core, thus
pinning them to that CPU core.

C. Signaling System

The malleable scheduler manages the signals over a dedi-
cated signal handler thread. We use Linux realtime signals as
defined in the man pages of signal.h [8]. We use one signal
for adding a core and another signal for releasing a core. The
core number for which the action should be taken is sent as
the accompanying value of the signal.

D. Method of measurement

For the experiments each tests was run 50 times. The
running times were aggregated using a 10% trimmed mean to
eliminate irregularities resulting from background work by the
operating system. The input data for the experiments consists
of random uniformly distributed 32-bit integer elements. The
input sizes are powers of 10.

The running times are measured using the POSIX compat-
ible call:
clock_gettime(CLOCK_REALTIME,...), which is in-
dependent from the position (core/socket) of the calling thread
and enables timing with nanosecond precision.

For each test a new process is created, which reads a
randomly generated input file, and measures the running time
for one of the algorithms. The measured time includes initial-
ization and starting of threads for the malleable scheduler for
MALMS. This way it includes the overhead from starting the
malleable scheduler as well as the initialization of the OpenMP
thread pool, which creates the threads for the MCSTL inside
the call to the MCSTL sort routine. This is more than fair,
because the MCSTL sort routine needs by far less time to
sort 100 elements with 8 threads, than the initialization of the
malleable scheduler in MALMS needs.

E. CPU hotplugging

Some experiments use CPU hotplugging to disable single
CPU cores for use by the operating system and its scheduler.
As the hotplugging was very slow (deactivate a core with
STLMS running 0.7s, for MALMS running 0.4s) and the time
to switch on or off a core was even depending on which sorting
algorithm was running, we only used the hotplugging for
experiments where the amount of processors used for sorting
was constant for the whole runtime.

CPU hotplugging is a feature build into the Linux kernel
[9] which enables dynamically disabling CPU cores at
run-time of the operating system. To disable a CPU core a
“0” (to re-enable a “1”) is written into the virtual file
/sys/devices/system/cpu/cpuX/online, where
X is the ID of the core.

F. Loadtask

The idea of a malleable sorter fits best into a system where
the availability of resources changes over time.

For the main experiment we used a task which was running
at the same time as MALMS and STLMS. The basic unit
of work of the Loadtask is going over a basic array of 1000
integers and performing three integer operations on each. This
basic unit of work is called a loop. These loops are counted
to have a measurement for the amount of work done in the
Loadtask. To have a significant cache footprint we have 10000
different basic arrays per core which are visited repeatedly.

When Loadtask loads a core it sends a signal (if MALMS is
running) and starts a thread pinned on this core which starts
to execute loops. When Loadtask unloads a core it sends a
signal (if MALMS is running) and stops the thread pinned
to this core. The running of Loadtask depends on time slots.

3



The length of the time slots can be controlled from outside.
All load and unload operations are done at the beginning of
a time slot. Which cores are loaded or unloaded is controlled
by a deterministic pattern which is repeated after some time
slots until the end of the sorting task. All patterns here consist
of four time slots.

The sorting algorithms to be tested are started at the
same time when Loadtask first starts blocking cores this is
controlled via Linux real-time signals. With the same system
we make sure that Loadtask stops immediately after the sorting
algorithm has finished. Loadtask sends signals to the sorting
algorithms when it starts to use a core and when it releases a
core.

IV. EXPERIMENTS

A. Comparison with no system load

The first experiment compares the algorithms in a system
with no further active processes. Table II shows the results
for sorting 32-bit uniformly distributed integers. The first row
shows the running times of the sequential GCC std::sort imple-
mentation, which are used for comparison and for evaluating
the absolute speedups. For STLMS and MALMS with various
values for k the running time and the absolute speedup is
shown.

The absolute speedup values for STLMS and MALMS
show that for input sizes up to 104 32-bit integer elements,
the sequential GCC std::sort performs at least equally well
and parallelization overhead dominates the running time for
the parallel algorithms. Hence all following experiments are
conducted using at least 105 elements.

Throughout all input sizes, the STLMS performs better or
as good as MALMS due to more overhead by the malleable
scheduler within MALMS. However, starting at 106 elements,
the overhead for MALMS is small. The more workpackages
(k) are used for MALMS the more overhead comes into
play due to more workpackages in the queue, and thus more
synchronization overhead within the queue.

B. Overhead for malleability depending on k

The running time of the algorithm depends heavily on the
parameter k, i.e. the number of workpackages. In particular,
the running time of the splitting phase is in Ω(k2/p) because
k2 splitting elements are calculated. An experiment in which
k is steadily increased from 8 up to 800 shows the different
running times of the three phases of the algorithm (see
Figure 2).

The running time of the run-formation phase decreases
slightly but remains almost constant. The running time for the
merge step increases slightly, which matches its logarithmic
growth in k. While the running time for the splitting phase
makes only a small contribution to the total running time of
0.78% for k = 8 and still a minor 5.6% for k = 48, its running
time increases rapidly to pass the 50% for k = 368 and
reaching a contribution of 75.5% for k = 800 workpackages.

This shows, that a good choice for k is vital to the perfor-
mance of MALMS. While a big k creates a huge overhead for

the splitting phase, a k that is chosen too small has an impact
on the adaptability of the algorithm. An optimal choice for k
depends upon the input size and type, the machine and other
running processes and their activity profile.

C. Comparison with hotplugged cores

This experiment compares both algorithms when cores are
disabled during the whole runtime using CPU hotplugging.
The STLMS is still executed with 8 Threads which are then
distributed among the active cores by the operating system
scheduler. MALMS on the other hand uses only the active
cores via its pinned threads and distributes the workpackages
onto the active cores.

The running times for MALMS and the STLMS are plotted
in Figure 3. MALMS uses k = 48 workpackages while sorting
106 integers on the eight-core machine.

A perfect speedup (PERFECT) is calculated and plotted
besides MALMS. The sequential value for the perfect speedup
is set equal to the sequential case for MALMS when seven
cores are blocked and only one core remains active. The
results show that MALMS adapts better. The running time of
MALMS and the amount of available cores are proportional
to each other, and the running time shows a stable, predictable
behavior. The running time for the STLMS on the other hand
behaves in a more unpredictable fashion.

When 1, 2 or 3 cores are disabled, the 8 Threads of the
STLMS distribute badly onto the remaining cores and thus
MALMS achieves a relative advantage of 84%, 82% and
31% respectively. For 4 and 5 disabled cores, MALMS still
has an advantage even though the 8 threads of the STLMS
should distribute well onto 4 remaining cores. When 7 cores
are disabled, thus only one core remains active and both
algorithms are executed sequentially, the overhead of MALMS
becomes of importance with a 16% disadvantage relative to
the STLMS.

We also did the comparison with hotplugged cores for
STLMS using more than 8 threads and thus using more
workpackages. But STLMS with 24, 48 and 100 threads was
just generally slower than STLMS with 8 threads. In particular,
the disadvantage of STLMS when 1, 2 or 3 cores are disabled
could not be reduced.

The experiment with hotplugged cores shows that the
STLMS can not always use the available cores efficiently if
their number does not fit to the number of threads even when
the number of available cores is constant during the execution.
MALMS does not have this problem.

D. Comparison with dynamically loaded cores

As the measurements in this experiment have a bigger
variance than the measurements in the other experiments we
performed one test with the same parameters 100 times and
we will present boxplots.

In order to test if the advantage comes from using the load
information or from the smaller workpackages, we performed
the tests also for MALMS noinfo which is just MALMS
where the receiving of signals from Loadtask is disabled.

4



Input Size 102 103 104 105 106 107 108

STDSORT 172 62 66 80.0 94.9 111.0 126.0
STLMS 4 530 485 64 21.7 18.3 20.0 22.0
STLMS SU 0.04 0.13 1.03 3.7 5.19 5.52 5.72
MALMS k = 8 9 942 974 108 25.5 18.8 19.6 22.0
MALMS k = 8 SU 0.02 0.06 0.61 3.14 5.06 5.63 5.71
MALMS k = 24 15 470 1 515 144 28.3 20.0 20.7 23.2
MALMS k = 24 SU 0.01 0.04 0.46 2.84 4.75 5.33 5.43
MALMS k = 48 22 287 2156 208 32.7 20.9 21.1 23.5
MALMS k = 48 SU 0.01 0.03 0.32 2.45 4.54 5.24 5.37

TABLE II
RUNNING TIME FOR STDSORT, STLMS AND MALMS FOR SORTING 32-BIT UNIFORMLY DISTRIBUTED INTEGERS. THE ABSOLUTE SPEEDUP (SU) IS

CALCULATED FOR STLMS AND MALMS USING STDSORT AS SEQUENTIAL ALGORITHM. THE RUNNING TIME IS GIVEN AS t/n WHERE t IS THE TOTAL
RUNNING TIME IN NANOSECONDS.

Fig. 2. Running times for the different phases while sorting n = 106 integers with MALMS using k = 8 . . . 800.

In this experiment we have one other task (Loadtask)
running on our system. It changes the used cores and the
amount of used cores regularly over time. We startet with
pattern 1 which models the behviour of a small job which
uses some cores heavily and others not at all. The time slots
when a core is used are marked with black boxes.

1 2 3 4 5 6 7 8 CPU

1

2

3

4

Slot Pattern 1

The runtime of the sorting algorithm is not the only inter-
esting measurement here. It is also interesting how much the
work of the other task is hindered by the sorting algorithm.
Hence we also measured the number of loops Loadtask was
able to perform while running in parallel to the tested sorting
algorithm. The number of loops is a measure for the work
performed by Loadtask. Due to the different running times of
the different sorting algorithms we will only give the number
of loops divided by the running time of the sorting algorithms.

For n = 106 integers to sort 2ms time slots and k = 100
workpackages and Loadtask running pattern 1 we get a clear
advantage of MALMS over STLMS: On average STLMS
needs 190% more time than MALMS, and the average speed
of Loadtask running in parallel to the STLMS reaches only
77.8% of the speed when it runs in parallel to MALMS.
MALMS noinfo slows down Loadtask about the same as

5



Fig. 3. Running time for sorting n = 106 integers while cores are disabled via hotplugging. Using k = 48 workpackages for MALMS.

STLMS but can coplete the sorting faster. The boxplots of this
experiment are given in Figure 4. We also tested with n = 107

integers to sort 6ms time slots and k = 100 workpackages
and Loadtask running pattern 1. This produced similar results.
On average STLMS needs 43.7% more time than MALMS,
and the average speed of Loadtask running in parallel to the
STLMS reaches only 93.2% of the speed when it runs in
parallel to MALMS (see Figure 5). In general the advantage of
MALMS over STLMS is reduced for larger sorting workloads.

As we can see from Figure 4 and Figure 5 MALMS has
the additional advantage of a much smaller variance. Hence
this shows that the usage of MALMS can improve the global
efficiency and reliability of the system. Because of the small
variance of runtimes of MALMS this shows a significant
improvement of MALMS over STLMS if another job runs
in parallel.

For other patterns as pattern 2 which also work much on
some cores and do not use others, we get similar results for the
advantage of MALMS over STLMS. We tested with n = 107

integers to sort 6ms time slots and k = 100 workpackages and
Loadtask running pattern 2 (see Figure 6). On average STLMS
needs 23.4% more time than MALMS, and the average speed
of Loadtask running in parallel to the STLMS reaches only
81.2% of the speed when it runs in parallel to MALMS.
As this pattern contains more work for Loadtask the values
for the normalized work are higher than for pattern 1. We
also tested with n = 106 integers to sort 2ms time slots
and k = 100 workpackages and Loadtask running pattern 2.
STLMS used 71.8% more time than MALMS on average,

and the average speed of Loadtask running in parallel to
STLMS was reduced to 85.3% compared to Loadtask running
in parallel to MALMS. [Bilder fuer den kleinen Test mit
pattern 2?]

⊗

1 2 3 4 5 6 7 8 CPU

1

2

3

4

Slot Pattern 2

Figure 6 also shows that using the load information is very
important, as MALMS noinfo is even slower as STLMS in
the case of n = 107 integers and pattern 2.

Unfortunately MALMS is not better than STLMS for all
patterns. If we use a pattern like pattern 3 where the work
of loadtask is evenly distributed among cores we get different
results.

6



Fig. 4. Results with parallel running Loadtask (pattern 1) for sorting n = 106

integers 2ms time slots and k = 100 workpackages. The second picture shows
the performance of Loadtask.

1 2 3 4 5 6 7 8 CPU

1

2

3

4

Slot Pattern 3

As we can see from Figure 7 and Figure 8 the variance of
MALMS is now bigger. In the case of n = 106 and 2ms time
slots we have a small average slowdown of 10.9% of STLMS
compared to MALMS but in case of n = 107 and 6ms time
slots STLMS is even 4.2% faster than MALMS on average.
But due to the variance of both sorting algorithms in case of
pattern 3 we can not tell which is really faster.

[Ergebniszusammenfassung hier]
⊗

Fig. 5. Results with parallel running Loadtask (pattern 1) for sorting n = 107

integers 6ms time slots and k = 100 workpackages. The second picture shows
the performance of Loadtask.

V. CONCLUSION

We were able to build a malleable sorter (MALMS) which
is a connection between the theory of malleable tasks and the
solution of a practical problem. Because of the performance
of our new sorter this is much more than an example for a
malleable job. The comparison with the Multiway Merge Sort
from the STL shows that our sorter provided with the load
information is much faster if there is another job running in
parallel to the sorter on the same system. Although our sorter
has more overhead than STLMS it is not much slower on an
otherwise empty system. We also showed that the information
MALMS gets about other running jobs has a relevant share in
its performance. Additionally the retreat from cores used by
other jobs makes these jobs faster. Altogether we could show
that using system load information inside an application can
increase system efficiency.

For further research it would be interesting to find other
widely used algorithms that can be made malleable with
similar gains.

7



Fig. 6. Results with parallel running Loadtask (pattern 2) for sorting n = 107

integers 6ms time slots and k = 100 workpackages. The second picture shows
the performance of Loadtask.

ACKNOWLEDGMENT

This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative
Research Centre ”Invasive Computing” (SFB/TR 89).

REFERENCES

[1] Jacek Blazewicz, Mikhail Y. Kovalyov, Maciej Machowiak, Denis Trys-
tram, and Jan Weglarz. Preemptable malleable task scheduling problem.
IEEE Transactions on Computers, 55:486–490, 2006.

[2] Jacek Blazewicz, Maciej Machowiak, Jan Weglarz, Mikhail Y. Kovalyov,
and Denis Trystram. Scheduling malleable tasks on parallel processors
to minimize the makespan: Models and algorithms for planning and
scheduling problems. Annals of Operations Research, 129:65–80(16),
July 2004.

[3] Jianzhong Du and Joseph Y.-T. Leung. Complexity of scheduling parallel
task systems. SIAM J. Discrete Math., 2(4):473–487, 1989.

[4] D. E. Knuth. The Art of Computer Programming—Sorting and Search-
ing, volume 3. Addison Wesley, 2nd edition, 1998.

[5] J. Y-T. Leung, editor. Handbook of Scheduling. CRC, 2004.
[6] David R. Musser. Introspective sorting and selection algorithms. Softw.

Pract. Exper., 27:983–993, August 1997.
[7] Linux Man Pages. Man page to sched setaffinity.
[8] Linux Man Pages. Man page to signal.h.

Fig. 7. Results with parallel running Loadtask (pattern 3) for sorting n = 106

integers 2ms time slots and k = 100 workpackages. The second picture shows
the performance of Loadtask.

[9] Ashok Raj. CPU hotplug support in linux(tm) kernel.
[10] Johannes Singler. Algorithm Libraries for Multi-Core Processors. PhD

thesis, Karlsruher Institut für Technologie (KIT), 2010.
[11] Johannes Singler, Peter Sanders, and Felix Putze. MCSTL: The multi-

core standard template library. In Anne-Marie Kermarrec, Luc Boug,
and Thierry Priol, editors, Euro-Par 2007 Parallel Processing, volume
4641 of Lecture Notes in Computer Science, pages 682–694. Springer
Berlin / Heidelberg, 2007.

[12] Jürgen Teich, Jörg Henkel, Andreas Herkersdorf, Doris Schmitt-
Landsiedel, Wolfgang Schröder-Preikschat, and Gregor Snelting. In-
vasive computing: An overview. In Michael Hübner and Jürgen Becker,
editors, Multiprocessor System-on-Chip – Hardware Design and Tool
Integration, pages 241–268. Springer, Berlin, Heidelberg, 2011.

8



Fig. 8. Results with parallel running Loadtask (pattern 3) for sorting n = 107

integers 6ms time slots and k = 100 workpackages. The second picture shows
the performance of Loadtask.

9


