
Energy Efficient Frequency Scaling and
Scheduling for Malleable Tasks

Peter Sanders and Jochen Speck

Department of Informatics
Karlsruhe Institute of Technology, Germany

{sanders,speck}@kit.edu

Abstract. We give an efficient algorithm for solving the following schedul-
ing problem to optimality: Assign n jobs to m processors such that they
all meet a common deadline T and energy consumption is minimized by
appropriately controlling the clock frequencies of the processors. Jobs are
malleable, i.e., their amount of parallelism can be flexibly adapted. In
contrast to previous work on energy efficient scheduling we allow more
realistic energy consumption functions including a minimum and maxi-
mum clock frequency and a linear term in energy consumption. We need
certain assumptions on the speedup function of the jobs that we show to
apply for a large class of practically occurring functions.

1 Introduction

In recent years the environmental impact of computing systems and their energy
usage was increasingly recognized as an important issue. Additionally the energy
costs of computers became a more important part of the total costs of computing
systems. Hence much research effort was put into reducing the energy usage of
computers. Frequency scaling and power gating (switch off entire processors if
they are not needed) which were originally invented to increase battery life time
of mobile devices became more and more common in PC and server systems.
Theoretical research work in this area mostly considered NP-hard problems or
jobs which are only sequential (see [7] and [3] for example). The well known YDS
algorithm [8] which also computes an energy-optimal schedule uses a similar
energy model as our work but also only considers one processor and serial jobs.
This work is focused on the energy minimization problem for jobs with flexible
parallelism called malleable jobs as defined in [4]. In this model we will be able
to adapt previous work on makespan optimization [2], [1] and [6] to achieve
polynomial time algorithms.

The main result of our work is that we can compute the optimal schedule
and frequencies to minimize the energy usage for n jobs on m processors in
time O(n log(mn) · logm) or even in O

(
(n
m + 1) logm · log(mn)

)
if we use all m

processors for the computation. We need some assumptions about the speedup
functions but show that these are fulfilled in many common cases. We also gen-
eralize the model to allow an additional linear term in energy consumption. Fur-
thermore, we consider the problem with minimal and maximal clock frequencies,

for which we give an ϵ-approximation. Note that this is an important step to
bridge the gap between real world processors and the simple power laws usually
used in theoretical results.

The rest of the paper is organized as follows: In Section 2 we describe the
model. In Section 2.1 we show that the assumptions we made are commonly
fulfilled. The problem for one job is solved in Section 3. In Section 4 we introduce
noninteger processor numbers and the energy function for them. The algorithm
is given in Section 5. The model is generalized in Section 6.

2 Model

We have a system consisting of m uniform (or physical identical) processors
whose speed (processing frequency) can be adjusted independently. Since one
usually has to increase the processor voltage as one increases the processing
frequency and the voltage is proportional to the electrical current, it is plausible
that the power consumption of a processor is proportional to the cubic frequency.
For our model we set the power consumption of one processor proportional to
fα with α > 2 and processing frequency f . Frequency changes of processors are
immediate and with negligible overhead. If a processor is not used, the power
consumption of that processor will be 0 during that time. In the initial machine
model we have no maximum frequency and the power consumption of a processor
approaches 0 if the frequency approaches 0. An enhanced model is introduced
in Section 6. For the initial model we get

E = p · fα · T

for the energy consumption E of a job which runs on p processors with frequency
f for a time T .

The n jobs we want to schedule on this machine are ready at time 0 and have
a common deadline T . Job j ∈ {1, . . . , n} requires wj clock cycles on a single
processor. The jobs are malleable which means that the number of processors
working on them can be changed over time. There is no penalty for changing
the number of processors. However, a function sj(p) gives the speedup achieved
by using p processors for job j, i.e., the amount of work done for a job j during
a time interval of length t on p processors running at frequency f is f · sj(p) · t
(we will drop the j of sj when there is only one job or the job is clear).

For the rest of the article we assume that two restrictions are met for the
speedup functions s. In Section 2.1 we argue that these conditions are met by a
large class of relevant speedup functions.
The first restriction is that all speedup functions are concave at least between
0 and the processor number p̂ where the maximal speedup is reached. Of course
the speedup for 0 processors is 0 and the speedup for 1 processor is 1.

The second restriction is that the function h defined as h(0) = 0 and for
other p as

h : p 7→ α−1

√
sα(p)

p

2

is monotonically increasing for all p < p̄ for a p̄ ∈ N and monotonically decreasing
for all p > p̄. Additionally h should be concave on (0, p̄]. We set p̄ to be the
smallest value for which h reaches its maximum then h is strictly increasing on
(0, p̄] because of the concavity on (0, p̄]. Both functions (h, s) are in general only
known for integer values of p. We can see directly p̄ ≤ p̂.

As this work heavily depends on convexity or concavity properties of func-
tions we restate the following definition known from calculus:

Definition 1. A function f is said to be concave (convex) on an interval [a, b]
when for all x, y ∈ (a, b) with x < y the following holds:
For each r ∈ (0, 1) with z = ry + (1 − r)x we have f(z) ≥ (1 − r)f(x) + rf(y)
(f(z) ≤ (1− r)f(x) + rf(y)).

For functions which are two times continuously differentiable it is known that
concavity (convexity) is equivalent to f ′′(z) ≤ 0 (f ′′(z) ≥ 0) ∀z ∈ (a, b).

2.1 Common Speedup Functions

All speedup functions considered in this section are given as closed formulas and
are two times continuously differentiable except for a finite number of points.
We want to show in this section that the quite technical restrictions from the
model hold for many typical speedup functions and hence do not restrict the use
of the results of this paper.

Linear Speedup Functions One of the easiest types of parallel jobs are those with
linear speedup between 1 and p∗ processors and s(p) = s(p∗) for all p > p∗ (even
for embarrassingly parallel jobs the maximal speedup is reached for p = m). If
we set p̄ = p∗ then h is monotonically decreasing for all p > p̄ and h(p) = p
for all p ∈ (0, p̄) which is monotonically increasing and concave. The speedup
function is also concave between 0 and p∗. Hence these kind of jobs fulfills the
restrictions.

Jobs with Amdahl’s Law Another kind of jobs one often sees are these which
fulfill Amdahl’s Law. If the amount of sequential work is w

k and the amount of
parallelizable work is (1− 1

k)w, we get

s(p) =
w

w
k + (1− 1

k)
w
p

=
k · p

p+ k − 1

as speedup function. Doing the math we get h′(p) > 0⇔ p < (α− 1)(k− 1) and
thus p̄ = (α − 1)(k − 1). For h′′(p) we get h′′(p) < 0 ⇔ p < 2 · (α − 1)(k − 1).
Hence h is concave for all p ∈ (0, p̄) and monotonically increasing in (0, p̄) and
monotone decreasing in (p̄,∞). The speedup function is concave for all p. Thus
these kind of jobs fulfills the restrictions.

Jobs with Parallelization Overhead A situation also very common in parallel
computing is that one can parallelize all the work but one has to pay an ad-
ditional overhead g depending on the number of processors with g(p) ≥ 0 and

3

g′(p) ≥ 0 for all p ≥ 1. Then we get this speedup function:

s(p) =
w + g(1)
w
p + g(p)

=
p · w + p · g(1)
w + p · g(p)

With some calculus we get:

h′(p) > 0⇔ (α− 1)w > p · (g(p) + αpg′(p))

h′′(p) < 0⇔

p · (g(p) + pg′(p))2
2α− 1

α− 1
< (w + pg(p))(2g(p) + 4pg′(p) + p2g′′(p))

All p which fulfill h′(p) > 0 fulfill also h′′(p) < 0 if g′(p) + pg′′(p) ≥ 0. To have
only one local maximum of h the term p · (g(p) + αpg′(p)) has to be strictly
increasing but this is the case if 2g′(p)+pg′′(p) > 0. Hence if 2g′(p)+pg′′(p) > 0
holds for an overhead g then the second restriction is fulfilled.

If w = p2g′(p) then s′(p) = 0 and if the function p 7→ p2g′(p) is strictly
increasing this only holds for only one p = p∗. If 2g′(p) + pg′′(p) > 0 then
p 7→ p2g′(p) is strictly increasing and s′′(p) < 0 for all p ∈ (0, p∗]. For p̂ = p∗ the
first restriction is fulfilled.

Hence if 2g′(p) + pg′′(p) > 0 and g(p) ≥ 0 and g′(p) ≥ 0 hold for all p ≥ 1
both restrictions are fulfilled. We can check this condition for some overheads:

g(p) g′(p) g′′(p) 2g′(p) + pg′′(p)
p 1 0 2

log p p−1 −p−2 p−1

p log p log p+ 1 p−1 3 + 2 log p√
p (2

√
p)−1 −(4p√p)−1 3 · (4√p)−1

p2 2p 2 6p

log2 p 2p−1 log p 2p−2 · (1− log p) 2p−1 · (1 + log p)

So the condition is fulfilled for all of these overheads and all possible sums of
these overheads.

3 The Optimal Solution for the Single-Job Case

In this section we want to compute the optimal number of processors in terms
of energy usage for a job which fulfills the restriction from Section 2. Now we
will give some lemmata which also will be useful for the multi-job case:

Lemma 1. In an optimal solution for any number of processors p used during
the computation of the job the processing frequency is always the same if you use
p processors.

The detailed proof will be given in the full paper.

Lemma 2. For only one job running on the machine it is optimal to use p̄
processors for the whole time [0, T].

4

Proof. If we want a job to do an amount of work w during a time interval I of
length t with a constant number of processors, the operating frequency depends
only on the speedup reached during I: f = w

s(p)·t . Thus the energy becomes now

a function only dependent on p:

E =
wα

tα−1
· p

sα(p)
=

wα

tα−1
· 1

hα−1(p)

Thus the energy consumption is minimized if h is maximized and it is optimal
to use p̄ processors during I (this is also true for w = 0).

Hence this is true for all subintervals of [0, T] and thus it is optimal to use p̄
processors all the time.

Because of Lemma 1 the work done in an interval I for a job which runs on
p̄ processors for the whole time [0, T] is proportional to the length of I. Because
of Lemma 2 the algorithm to find the optimal number of processors for a job
consists only of the search for the integer value p̄ that maximizes h. It is also
obvious that E is strictly decreasing on [1, p̄]. It is possible that p̄ > m but as h
is strictly increasing in (0, p̄), the minimal E is reached for p = m in this case.

4 Energy Function for Non-Integer Processor Numbers

Until this section all processor numbers were integer. In order to solve the energy-
optimal scheduling problem for multiple jobs we need to handle noninteger pro-
cessor numbers. For a noninteger processor number we introduce the notation
p + τ for the rest of the paper where p is the integer part and τ ∈ [0, 1). The
main goal of this Section is to compute the minimal energy consumption (and
according optimal schedule) of a job with work w to be done in time T when
the job can use an average number of p+ τ processors. A job runs on an average
processor number p+ τ = T−1

∑m
p=0 tpp during time T =

∑m
p=0 tp if it runs on

p processors for time tp. We prove that for any average processor number p+ τ
Consider a job that runs on an average processor number p+ τ . We prove that
it is optimal to only use p and p+ 1 processors for the job. Then we define the
the energy function E of the job to be the mapping from the average processor
number p + τ to the minimal possible energy consumption with this processor
number. In the end we will show some useful properties of E. All processor num-
bers in this section are not bigger than p̄ otherwise you could shrink all larger
processor numbers to p̄ without using more energy (because of Lemma 2).

Lemma 3. If the average number of processors is τ then it is optimal to run on
1 processor for time τT and not to run for time (1− τ)T .

Proof. We consider the case of a job which runs on p processors for a time interval
I1 of length t1 and runs on 0 processors (or does not run) for a time interval I2 of
length t2. Let w be the total work done in I1 (and I2) and Eold = wα

tα−1
1

· p
sα(p) be

the energy used. Set τ := t1·p
t1+t2

. We will now use 1 processor for time τ(t1 + t2)
and 0 processors for time (1− τ)(t1+ t2) and show that this does the same work

5

with no more energy. The energy used to do work w with 0 and 1 processor is

Enew = wα

(τ ·(t1+t2))α−1 · 1
sα(1) =

sα(p)
pα · Eold ≤ Eold.

The repeated use of this argument for all intervals where the job runs on
more than one processor shows that if the average number of processors used
during time T is τ ≤ 1 then it is optimal to use one processor during time τ · T
and 0 processors during time (1− τ) · T .
Lemma 4. If the average number of processors is p + τ ≥ 1 then it is optimal
to run on at least 1 processor throughout [0, T].

The detailed proof will be given in the full paper.

Lemma 5. If the average number of processors is p+τ ≥ 1 then it is optimal to
run on p+1 processors for time τT and to run on p processors for time (1−τ)T .
Proof. We consider the case of a job which runs on p1 processors for a time
interval I1 of length t1 and runs on p2 processors for a time interval I2 of length
t2 (because of Lemma 4 p1, p2 > 0) w.l.o.g. 0 < p1 < p2 ≤ p̄. Let wi be the

work done in Ii and Ei =
wα

i

tα−1
i

· pi

sα(pi)
be the energy used in Ii for i ∈ {1, 2}.

Let w = w1 + w2 be the total work done. We now compute how the work w
is optimally distributed between I1 and I2. If we do βw work during I1 and
(1− β)w work during I2 we get the following energy as a function of β ∈ (0, 1):

E(β) =
βαwα

tα−1
1

· p1
sα(p1)

+
(1− β)αwα

tα−1
2

· p2
sα(p2)

We now have to find the minimum of E(β). We do this by computing the β
with E′(β) = 0. This β is a minimum because E′′(β) > 0 for all β ∈ (0, 1). For
A = p1

sα(p1)t
α−1
1

and B = p2

sα(p2)t
α−1
2

the minimizing β is

β =
α−1
√
B

α−1
√
A+ α−1

√
B

Thus the value with the optimal β for E is E = wα · (t1h(p1) + t2h(p2))
−α+1.

We set p := ⌊ t1p1+t2p2

t1+t2
⌋ and τ := t1p1+t2p2

t1+t2
− p then p + τ is the average

number of processors used during I1 and I2 and p1 ≤ p < p + 1 ≤ p2. We now
want to show that using p processors during time (1 − τ)(t1 + t2) and p + 1
processors during time τ · (t1 + t2) is an optimal solution to do the work w
during I1∪I2. In order to do this it is sufficient to show that t1h(p1)+ t2h(p2) ≤
τ · (t1 + t2)h(p+ 1) + (1− τ)(t1 + t2)h(p).

If we set r := τ t1+t2
t1
· p2−(p+1)

p2−p1
then 1 − r = (1 − τ) t1+t2

t1
· p2−p
p2−p1

and with

s := τ t1+t2
t2
· p+1−p1

p2−p1
we get 1− s = (1− τ) t1+t2

t2
· p−p1

p2−p1
. With this we have:

t1h(p1) + t2h(p2) = rt1h(p1) + st2h(p2) + (1− r)t1h(p1) + (1− s)t2h(p2)

= τ · (t1 + t2)

(
p2 − (p+ 1)

p2 − p1
h(p1) +

p+ 1− p1
p2 − p1

h(p2)

)
+(1− τ)(t1 + t2)

(
p2 − p

p2 − p1
h(p1) +

p− p1
p2 − p1

h(p2)

)
≤ τ · (t1 + t2)h(p+ 1) + (1− τ)(t1 + t2)h(p)

6

because h is concave for p1, p, (p+ 1), p2 ∈ (0, p̄].
The repeated use of this argument for all intervals with different numbers of

processors shows that if the average number of processors used during time T is
p+ τ with p ≥ 1 then it is optimal to use p+1 processors during time τ · T and
p processors during time (1− τ) · T .

With Lemma 3 and Lemma 5 we can define the energy usage for an average
number of processors p+ τ as the optimal energy usage of this case:

Definition 2. A job which does work w during time T on an average number
of processors p+ τ with p ∈ N0 uses energy

E(p+ τ) := E(p, τ) :=
wα

Tα−1
· (τ · h(p+ 1) + (1− τ)h(p))−α+1

It is immediately clear that E is a continuous function on (0,∞) and has the
same values as E from Section 3 on integer p

Lemma 6. The function E(p + τ) as defined in Definition 2 is strictly convex
on (0, p̄] and has its minimum at p̄.

Proof. The thing left to show is that E(p+τ) is strictly convex on (0, p̄) and the

minimum at p̄. We will first show that ∂2E(p,τ)
∂τ2 = Eττ (p, τ) > 0 for all p+1 ≤ p̄.

Eτ (p, τ) = −
wα

Tα−1
· (α− 1)(τ · h(p+ 1) + (1− τ)h(p))−α(h(p+ 1)− h(p))

Eττ (p, τ) =
wα

Tα−1
· α(α− 1)(τ · h(p+ 1) + (1− τ)h(p))−α−1(h(p+ 1)− h(p))2

Thus Eττ (p, τ) > 0⇔ h(p+1)−h(p) > 0⇔ p+1 ≤ p̄. It remains to check that

lim
τ→1

Eτ (p, τ) ≤ lim
τ→0

Eτ (p+ 1, τ)

⇔ h(p+ 1)− h(p) ≥ h(p+ 2)− h(p+ 1)

The last inequality is true for p+2 ≤ p̄ because h is concave and true for p+1 = p̄
because h(p+1) ≥ h(p), h(p+2). Thus we have shown that E is strictly convex
for p+ 1 ≤ p̄ and Eτ is strictly increasing for p+ 1 ≤ p̄.

The fact that E has its minimum at p̄ directly comes from the fact that h
has its maximum at p̄.

Definition 3. We define the left derivative of E for integer processor numbers
as
−→
E (p) := lim

τ→1
Eτ (p− 1, τ) and the right derivative as

←−
E (p) := lim

τ→0
Eτ (p, τ).

For noninteger p + τ the left and right derivative are the same and we define−→
E (p+ τ) =

←−
E (p+ τ) = Eτ (p, τ) =: E′(p+ τ).

Lemma 7. We have
←−
E (0) = −∞ and

←−
E (p̄) ≥ 0 and

−→
E (p+τ) ≤ ←−E (p+τ) ∀p+

τ ∈ (0, p̄] and
−→
E (p+ τ),

←−
E (p+ τ) are strictly increasing on (0, p̄].

This lemma is obvious and needs no proof. With Lemma 7 we can define the
inversion of the derivative of the energy function:

7

Definition 4. We have E as in Definition 2 and the left and right derivatives
as in Definition 3. Then for any c ∈ (−∞, 0] we define (E′)−1(c) := p∗ + τ∗ for

p∗ + τ∗ ∈ (0, p̄] with
−→
E (p∗ + τ∗) ≤ c ≤ ←−E (p∗ + τ∗).

Lemma 8. (E′)−1 as defined in Definition 4 is a continuous and monotonously
increasing function on (−∞, 0].

The detailed proof will be given in the full paper.

5 The Optimal Solution for the Multi-Job Case

After the technical section we are now ready to prove the main theorem:

Theorem 1. We have n jobs and for each job j an energy function Ej as in
Definition 2 and the left and right derivatives as in Definition 3 and the inverse
of the derivative of the energy function (E′

j)
−1 as in Definition 4. If we want to

minimize
∑

j Ej(pj+τj) under the restriction
∑

j(pj+τj) ≤ m then there exists

a c ∈ R such that
−→
Ej(p

∗
j + τ∗j) ≤ c ≤ ←−Ej(p

∗
j + τ∗j) for all j holds for an optimal

solution (p∗1 + τ∗1 , . . . , p
∗
n + τ∗n).

If we have found a c such that
∑

j(E
′
j)

−1(c) = m or
∑

j(E
′
j)

−1(c) < m and

(E′
j)

−1(c) = p̄j for all j then we have found an optimal solution.

Proof. We do the first part of the proof by contradiction. Suppose there are
i, j ∈ {1, . . . , n} with −→Ej(p

∗
j + τ∗j) >

←−
Ei(p

∗
i + τ∗i) in an optimal solution. Because

−→
Ej is continuous from the left and

←−
Ei is continuous from the right there exists a

ϵ such that for all y ∈ [p∗j + τ∗j − ϵ, p∗j + τ∗j] and all z ∈ [p∗i + τ∗i , p
∗
i + τ∗i + ϵ] we

have
−→
Ej(y) ≥

←−
Ei(z) + ϵ. Thus we have

Ej(p
∗
j + τ∗j)− Ej(p

∗
j + τ∗j − ϵ) ≥ inf

y∈[p∗
j
+τ∗

j
−ϵ,p∗

j
+τ∗

j
]

−→
Ej(y) · ϵ

≥ sup
z∈[p∗

i
+τ∗

i
,p∗

i
+τ∗

i
+ϵ]

(
←−
Ei(z) + ϵ) · ϵ ≥ Ei(p

∗
i + τ∗i + ϵ)− Ei(p

∗
i + τ∗i) + ϵ2

⇔ Ej(p
∗
j + τ∗j) + Ei(p

∗
i + τ∗i) ≥ Ej(p

∗
j + τ∗j − ϵ) + Ei(p

∗
i + τ∗i + ϵ) + ϵ2

Hence we have shown that there exists a better solution than the optimal solution
which leads to the contradiction.

In case of
∑

j(E
′
j)

−1(c) < m and (E′
j)

−1(c) = p̄j for all j every job runs with
its optimal number of processors. Thus no job can save energy trough running
on a different number of processors. (E′

j)
−1(c) = p̄j is always the case for c = 0.

In case of
∑

j(E
′
j)

−1(c) = m we have used all processors available. As we

have c ≤ 0 and (E′
j)

−1(c) ≤ p̄j for all j in this case we would increase energy

usage if we used less processors. As
−→
Ej(p

∗
j +τ∗j +δ) >

←−
Ei(p

∗
i +τ∗i −δ) for all δ > 0

and all i, j it is not possible to improve the solution by transferring an amount
δ of processors from job i to job j. Hence the solution can not be improved and
thus is optimal.

8

With Theorem 1 we can now give the algorithm. Let c∗ be the c of an optimal
solution as in Theorem 1 and p∗j + τ∗j be the amount of processors of job j in the

optimal solution. If we have a c such that
∑

j(E
′
j)

−1(c) < m and (E′
j)

−1(c) < p̄j
for at least one j then we know c < c∗ because all (E′

j)
−1 are monotonously

increasing. If we have a c such that
∑

i(E
′
i)

−1(c) > m then we know c > c∗ also
because all (E′

i)
−1 are monotonously increasing. Hence we can use an interval

halving technique to find the optimal c = c∗.
We also know in which interval to search. The maximal possible c is 0. If

we use the same amount of pm + τm = min{mn , 1} processors for each job then

we know that c∗ can not be smaller than cm = mini
←−
E i(pm + τm) because

pm + τm ≤ p̄i for all i and
∑

i(E
′
i)

−1(cm) ≤ m.
For each job i we have a set of 2p̄i ≤ 2m bend points. These are the points←−

E i(p) and
−→
E i(p) for all p ∈ {1, . . . , p̄}. If we know c∗ lies in an interval (cℓ, cu)

which contains no bend points, we can solve the problem directly. For i with←−
E i(p) ≤ cℓ < cu ≤

−→
E i(p+ 1) for a certain p we have p∗i + t∗i ∈ (p, p+ 1) (case

1). For i with
−→
E i(p) ≤ cℓ < cu ≤

←−
E i(p) for a certain p we have p∗i + t∗i = p

(case 2) thus t∗i = 0. Other cases can not exist.
The computation of (E′

i)
−1(c) is done in two steps. First we search for the two

adjacent bend points of c. If we are in case 2 we are done. In case 1 we know p in
E′

i(p+τ) = c. With some algebra we get (τ ·(hi(p+1)−hi(p))+hi(p))
−α ·Di = c

for a positive Di which does not depend on τ and thus we can compute τ with

τ =
α
√

c−1·Di−hi(p)

hi(p+1)−hi(p)
and then (E′

i)
−1(c) = p+ τ .

We will now compute the exact solution if all bend points are eliminated.
W.l.o.g. let the n jobs be ordered such that the jobs 1, . . . , n1 are from case
1 and the jobs n1 + 1, . . . , n are from case 2. We set mr = m −

∑n
i=1 p

∗
i thus∑n1

i=1 τ
∗
i = mr. For all jobs from case 1 the derivative of the energy function

E′
i(p

∗
i , τ

∗
i) has to be the same (= c∗). With some algebra we get:

D1 · (τ∗1 h1(p1 + 1) + (1− τ∗1)h1(p1))
−α = . . . =

Dn1 · (τ∗n1
hn1

(pn1
+ 1) + (1− τ∗n1

)hn1
(pn1

))−α = c∗

⇔ D
−1
α

1 · (τ∗1 h1(p1 + 1) + (1− τ∗1)h1(p1)) = . . . =

D
−1
α

n1 · (τ∗n1
hn1(pn1 + 1) + (1− τ∗n1

)hn1(pn1)) = (c∗)
−1
α

With Ai = D
−1
α

i · (hi(pi + 1)− hi(pi)) and Bi = D
−1
α

i hi(pi) and G = (c∗)
−1
α we

get Aiτ
∗
i + Bi = G and thus τ∗i = G

Ai
− Bi

Ai
for all i of case 1. We can compute

G through

mr =

n1∑
i=1

τ∗i = G

n1∑
i=1

1

Ai
−

n1∑
i=1

Bi

Ai

and with G we can compute the τ∗i and thus the final solution.
With these prerequisites we can now describe the algorithm:

1. Set cu = 0 and cℓ = cm and the range of bend points [1, p̄i] for each job i.
2. Pick a randomly chosen bend point in (cℓ, cu) and set c accordingly.

9

3. Check if
∑

i(E
′
i)

−1(c) > m then cu = c else cℓ = c and update the range of
bend points for each job.

4. If there are bend points left in (cℓ, cu) goto 2.
5. Do the exact calculation as above.

The expected number of times the loop 2-4 is executed is in O(log(mn))
because there are Θ(nm) bend points. Each time we have to choose one random
bend point this is possible in time O(n). In 3 we have to invert n functions. Each
can be done in time O(logm) if all values of hi(p) are given. Additionally we
have to update n ranges of breakpoints in 3. Each update can be done in O(1)
with the p computed during function inversion done for the same job. The check
in 4 can be done in O(n). The exact calculation also takes time in O(n).

Altogether the algorithm takes time in O(n log(mn) · logm). It remains to
compute the frequencies and to place the jobs onto the m× T processor × time
rectangle.

We now know p∗i and t∗i for each job i. We reserve p∗i processors for each job i
for the whole interval [0, T]. For the τ∗i and the remaining processors we can use
McNaughton’s wrap-around rule [5]. This can be done in time O(n) and each
job i runs on p∗i processors for time (1− τ∗i)T and on pi + 1 processors for time
τ∗i T additionally any job changes its number of processors at most two times. A
more detailed solution for a similar problem is given in [1]. With τ∗i and p∗i we
can compute the work distribution between the phase with p∗i processors and
the phase with p∗i +1 processors in a similar way as we computed β in the proof
of Lemma 5. Then the time, work and number of processors of both phases are
known and the frequency can be computed with w = s(p) · f · t.

The parallelization is done in a similar way as we did it in [6] for another
problem. If each processor does the computation of (E′

i)
−1(c) for n

m jobs and
takes care of their list of bend points we only have to use collective operations
for sum, broadcast of c and a distributed random pick. Such operations cost
time Θ(logm). In the loop 2-4 each processor computes (E′

i)
−1(c) for n

m jobs in
O
(
n
m logm

)
and takes part in the collective sum in time O

(
n
m + logm

)
. Thus

the main part of the algorithm runs in O
(
(n
m + 1) logm · log(mn)

)
. Frequency

computation can be done in time O
(
n
m + 1

)
. The placement can be done with

prefix sum in time O
(
n
m + logm

)
.

6 The Enhanced Model

If we have an additional linear term in the energy usage (maybe from memory
or other parts which can not change their frequency) like in Enew = p · fα · T +

p · δ · T with δ being independent of the job then
−→
E new(p, t) =

−→
E (p, t) + δT

and
←−
E new(p, t) =

←−
E (p, t) + δT . The optimal solution for the single job case is

p̄new = (E′
new)

−1(0) ≤ p̄ which can be noninteger. As E′
new is just E′ with an

additional constant we can use the same techniques as in the original model to
get an optimal solution for the multi-job case.

Many processors have minimal and maximal operating frequencies (because
of memory requirements or the length of signal paths). For this case we have

10

to do a bit more theory first. We will restrict the presentation here to case of a
maximal frequency fG because the case of a minimal frequency is analogous.

There are two amounts of resources which are interesting. One is the absolute
minimal amount of resources for our job p1 + τ1 and the other is the minimal
amount of resources p2 + τ2 above we can use the standard techniques already
introduced. Let fq(p + τ) be the frequency for the part of the job which runs
on q processors. fq is defined on (q − 1, q + 1). When we use β from the proof
of Lemma 5 we can compute fp(p+ τ) and fp+1(p+ τ) for the optimal solution
through βw = s(p+ 1)fp+1(p+ τ)T · τ and (1− β)w = s(p)fp(p+ τ)T · (1− τ).
Doing some algebra we get:

fp(p+ τ)

fp+1(p+ τ)
= α−1

√
s(p)(p+ 1)

s(p+ 1)p
≥ 1

Thus fp(p + τ) ≥ fp+1(p + τ). Because the energy usage E is a continuous
decreasing function of p + τ we know that fp+1 and fp are continuous de-
creasing functions. Hence we can use the techniques for the case with unre-
stricted frequencies as long as fp(p + τ) ≤ fG this gives us p2 + τ2. The ab-
solute minimum of resources needed for our job can be computed trough w =
s(p1)fGT (1−τ1)+s(p1+1)fGTτ1. Let p be such that fp+1(p+1) ≤ fG ≤ fp(p). As
fp(p) ≥ fp(p2+τ2) ≥ fp+1(p2+τ2) ≥ fp+1(p+1) and s(p)fGT ≤ w ≤ s(p+1)fGT
we know that p ≤ p1 + τ1 ≤ p2 + τ2 ≤ p+ 1 and thus p = p1 = p2.

Now we can define the energy function Ẽ on (p+τ1, p+τ2). The frequencies on
(p+τ1, p+τ2) will be f̃p and f̃p+1. We know from the proof of Lemma 5 that E(β)

is convex hence for an optimal energy usage f̃p(p + τ) = fG for all τ ∈ [τ1, τ2].

Thus we can compute f̃p+1(p+τ) trough w = s(p)fGT ·(1−τ)+s(p+1)f̃p+1(p+

τ)Tτ . With f̃p+1(p+ τ) we can compute Ẽ(p+ τ). Doing some analysis we see

that Ẽ is convex on (p+τ1, p+τ2). Obviously Ẽ is continuous, Ẽ(p+τ) ≥ E(p+τ)

and Ẽ(p+τ2) = E(p+τ2). Hence we also have
−→̃
E (p+τ2) ≤

−→
E (p+τ2). We also can

compute M :=
←−̃
E (p+ τ1) = Tfα

G(s(p+1)−α · (p+1)(s(p+1)− s(p)))s−1(p+1)
which is a function of the input values.

Let c be as in Section 5 then we get: If c ≤
←−̃
E (p+ τ1) our job just gets p+ τ1

processors because it is the minimal number so we can put this amount away

and continue with the other jobs. If c ≥
−→̃
E (p+τ2) we can use the technique from

Section 5. If we know that the optimal solution lies between the bend points for
p + τ1 and p + τ2 (these are new bend points for the enhanced model) then we
do not know how to compute an exact solution. But then we know the minimal
derivative M (the same is true for a minimal frequency).

If we want to compute a solution which only uses an amount of ϵ more energy
than the optimal solution we can do it in the following way: For each job for
which the amount of processors is already known we sum up these amounts.
Let the difference between these amounts and m be m̃. We now do interval
halving on (M,

−→̃
E (p + τ2)). For every c we invert the E′ and Ẽ′ (depending

on which one applies) with an maximal additive error of ϵ
8n . Then we compare

11

∑
(E′)−1(c) +

∑
(Ẽ′)−1(c) with m̃. If the remaining interval is smaller than

ϵ · (M · 2m)−1 we know that the lower end of the interval stands for a feasible
solution with a maximal additive error of ϵ.

The algorithm needs time in O
(
n log(8nϵ−1) · log(2mM2ϵ−1)

)
and can be

parallelized in a similar way as above.
The placement is done as in Section 5. The frequency calculations for jobs

with energy function Ẽ is clear for the others we can do it in the same way as
in Section 5.

7 Conclusion

We have shown that with two restrictions it is possible to solve our energy effi-
cient scheduling problem optimally in near linear time. The major step to solve
the problem was to build continuous convex energy functions and to use some
calculus on them. This is somehow surprising because many related problems
are known to be NP-hard. The two restrictions do not limit the applicability too
much because many classes of parallel jobs fit into these restrictions.

Acknowledgment This work was partly supported by the German Research Foun-
dation (DFG) as part of the Transregional Collaborative Research Center ”In-
vasive Computing” (SFB/TR 89). We also like to thank the unknown reviewer
who gave a very helpful two page review.

References

1. Jacek Blazewicz, Mikhail Y. Kovalyov, Maciej Machowiak, Denis Trystram, and Jan
Weglarz. Preemptable malleable task scheduling problem. IEEE Transactions on
Computers, 55, 2006.

2. Jacek Blazewicz, Maciej Machowiak, Jan Weglarz, Mikhail Y. Kovalyov, and De-
nis Trystram. Scheduling malleable tasks on parallel processors to minimize the
makespan: Models and algorithms for planning and scheduling problems. Annals of
Operations Research, 129, 2004.

3. Jian-Jia Chen and Tei-Wei Kuo. Multiprocessor energy-efficient scheduling for real-
time tasks with different power characteristics. In Parallel Processing, 2005. ICPP
2005. International Conference on.

4. Joseph Y-T. Leung, editor. Handbook of Scheduling. CRC, 2004.
5. Robert McNaughton. Scheduling with deadlines and loss functions. Management

Science, 6(1), 1959.
6. Peter Sanders and Jochen Speck. Efficient parallel scheduling of malleable tasks. In

Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE International.
7. Chuan-Yue Yang, Jian-Jia Chen, and Tei-Wei Kuo. An approximation algorithm for

energy-efficient scheduling on a chip multiprocessor. In Proceedings of the conference
on Design, Automation and Test in Europe - Volume 1, DATE ’05.

8. Frances Yao, Alan Demers, and Scott Shenker. A scheduling model for reduced
cpu energy. In ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER
SCIENCE, pages 374–382. IEEE Computer Society, 1995.

12

