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Abstract 8 

The high-temperature oxidation mechanism of a series of refractory high entropy alloys: TaMoCrTiAl, 9 

NbMoCrTiAl, NbMoCrAl and TaMoCrAl at 1000°C in air was studied. A complex protective oxide 10 

layer consisting of Al2O3, Cr2O3 and CrTaO4 oxides was observed for the quinary Ta-containing alloy. 11 

The formation of CrTaO4 in this alloy after a short incubation period decreased the oxidation kinetics 12 

from a parabolic to a quartic rate law. Ti was found to support the formation of CrTaO4. In the Nb-13 

containing alloys, the formation of different Nb2O5 polytypes near the metal/oxide interface caused a 14 

highly porous oxide scale and severe oxide spallation.  15 
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1. Introduction 18 

The development of new high temperature structural materials is confronted with the common problem 19 

to realize a favourable combination of elevated temperature (creep and fatigue) strength, room 20 

temperature ductility and high temperature oxidation resistance in a single alloy. Recently, the discovery 21 

of novel multicomponent alloys, so-called High Entropy Alloys (HEAs) or Compositionally Complex 22 

Alloys (CCAs) has led to the development of a large number of new alloy systems with unique and, 23 

thus, attractive property combinations [1]. In contrast to the classical alloy design approach, HEAs do 24 

not have a certain base element but consist of five or more elements in nearly equimolar ratios. As a 25 

result, from a thermodynamic point of view, HEAs exhibit a higher mixing entropy compared to that of 26 

classical alloys which may suppress the formation of ordered intermetallic compounds and favour the 27 

formation of a single-phase with simple crystal structure instead. However, it was demonstrated recently, 28 

that this approach is by far too simple to predict single-phase HEAs and further physical and chemical 29 

effects have to be considered [2]. Rather, proper element selection is more important than the increase 30 

of the number of participating elements only [3, 4].  31 

Recently, HEAs with high concentrations of refractory metals, typically greater than 50 at.%, have been 32 

suggested to possibly fulfill the initially mentioned property portfolio for high-temperature structural 33 

materials, mainly because of their high melting points, strength retention at elevated temperatures and 34 

reasonable room temperature ductility and toughness [5-7]. While microstructure and mechanical 35 

properties of refractory HEAs merit great attention among material scientists, studies on the oxidation 36 

behavior of these materials are still scarce [8]. Moreover, these studies often represent merely a cursory 37 

scan of alloy oxidation properties, in other words, the oxidation mechanisms are not thoroughly 38 

elucidated [9-11]. 39 

In classical metallurgical approaches, the oxidation resistance of high-temperature alloys relies on 40 

additions of Cr, Al and Si enabling the formation of protective Cr2O3, Al2O3 or SiO2 scales. In 41 



 

 

commercially available Ni-base and Fe-base high-temperature alloys, the concentrations of Cr, Al and 42 

Si usually do not exceed 25 at.% (e.g. the NiCrofer 3228 alloy), 11 at.% (B1914 alloy), 3.3 at.% 43 

(GX40CrSi29 alloy), respectively [12,13]. These (maximum) concentrations, on the one hand, ensure 44 

the formation of protective oxide layers and, on the other hand, guarantee that undesirable intermetallic 45 

phases such as Laves and Sigma phases as well as aluminides and silicides do not form. If such an alloy 46 

contains both, Cr and Al, the concentrations of these elements can be reduced as Cr and Al act 47 

synergistically and alloy passivation usually occurs very fast [14]. In many cases, small amounts of Si 48 

(max. 3 at.%) are added to further alleviate the formation of a protective chromia scale. In Nb- and Mo-49 

based alloys, however, higher nominal concentrations of Si in conjunction with the formation of silicides 50 

as Si reservoirs are mandatory to form silica as a protective scale [15-17].  51 

Obviously, decent oxidation resistance requires the addition of significant amounts of Al, Cr and 52 

possibly Si to HEAs. So far this has been scarcely done in literature [9-11, 18-22]. Our own exploratory 53 

work indicates the positive effects of Ta-substitution for Nb within the alloy system NbMoCrTiAl. In 54 

these preliminary studies, however, the mechanisms of oxidation behaviour were not fully rationalized 55 

[9, 11].  56 

Based on these promising, albeit tentative results, we aim to elucidate the key role of the elements Ti, 57 

Nb and Ta on oxidation resistance by studying a systematic series of quaternary and quinary alloys. As 58 

a consequence, two equiatomic 5-component alloys (NbMoCrTiAl, TaMoCrTiAl) as well as two 59 

equiatomic quaternary alloys (NbMoCrAl, TaMoCrAl, i.e. without Ti), were studied. As a long-term 60 

objective, a more comprehensive understanding of the complex oxidation mechanisms may foster 61 

accelerated alloying strategies for oxidation resistant high strength refractory high entropy alloys. 62 

2. Experimental Procedures 63 

All alloys were cast from elemental bulk material by arc-melting (arc-melter AM 0.5 by Edmund Bühler 64 

GmbH) in ~0.6 atm. of Ar. The purities of the used elemental bulk materials Ta, Nb, Mo and Al were 65 

99.9%, while Cr and Ti had purities of 99 % and 99.8%, respectively. The prepared buttons were flipped 66 

over and remelted at least five times in a water-chilled copper mold to facilitate alloy homogenization. 67 

All alloys were subsequently heat-treated at 1300-1400°C depending on alloy composition (see Tab.1) 68 

for 20 h in Ar atmosphere to dissolve the dendritic microstructure and achieve near-equilibrium 69 

microstructures at operating conditions. The alloys were cooled in the furnace after the heat treatment 70 

in (streaming) Ar atmosphere with a cooling rate of 4.2 K/min. The ingots were then cut by electrical 71 

discharge machining (EDM) to dimensions of 5 mm x 5 mm x 2 mm, polished up to grit P1200 and 72 

ultrasonically cleaned in ethanol directly before high-temperature exposure. Oxidation tests were carried 73 

out in a Rubotherm thermogravimetric system under isothermal conditions at 1000°C for 24 – 100 hours 74 

in laboratory air. To analyse the oxide morphology, a Focused Ion Beam - Scanning Electron 75 

Microscope (FIB-SEM) DualBeam system of type FEI Helios Nanolab 600 was used. It is equipped 76 

with techniques such as backscatter electron (BSE) imaging, energy-dispersive X-ray spectroscopy 77 

(EDX) as well as electron backscatter diffraction (EBSD). The mean oxide scale thickness and the mean 78 

depth of the internal corrosion zone of the investigated alloys after various exposure times were 79 

determined using three BSE cross-section images in each of which 20 individual measurements were 80 

carried out using the software ImageJ. The preparation of the pre-cut samples for transmission electron 81 

microscopy (TEM) was done by ion milling with Ga+-ions at 5-30kV depending on the lamella thickness 82 

using the FEI Helios Nanolab 600. Subsequent TEM investigations were conducted using a TEM FEI 83 

Talos F200X with 200kV acceleration voltage. The crystal structures of the formed oxides in the surface 84 

scales were analysed by X-ray diffraction (XRD). These XRD measurements were carried out using an 85 

X’Pert Pro MPD diffractometer operating in Bragg-Brentano geometry with Cu-Kα radiation as 86 

described in Ref. [11]. Oxide scales formed on the alloys were removed mechanically from the oxidized 87 



 

 

samples using a scalpel and pestled into powders with particle sizes smaller than 40 µm before XRD 88 

investigations. 89 

 90 

3. Results  91 

3.1 Microstructure 92 

Figure 1 exemplifies the microstructure of the four investigated alloys after suitable annealing as given 93 

in Table 1. None of the alloys is entirely single-phase after annealing. Specifically, the alloys NbMoCrAl 94 

and TaMoCrAl exhibit a noticeable amount of secondary, intermetallic phases which were subsequently 95 

characterized by combined EDX and EBSD (Figs. 2 a.,b.) as well as XRD analysis (see supplementary 96 

materials Figs. S1 a, b). The powder XRD measurements of both alloy NbMoCrAl and TaMoCrAl 97 

revealed a C14-type Laves phase (Cr2Ta/Cr2Nb) and an A15 phase (AlMo3/ Al(Mo, Nb)3) (Figs. S1 a, 98 

b). Further, ordering of the bcc solid solution (A2) towards a B2-type crystal structure of is assumed; 99 

this is indicated by the exclusive B2 superlattice peaks (open diamonds) in the supplementary materials 100 

Figs. S1. In agreement with the XRD measurements, the EDX and EBSD results (Fig. 2) confirm the 101 

presence of C14-type Laves phase in both alloys, however reliable identification between the cubic A15, 102 

A2 and B2 phases seems difficult during automated acquisition and indexing of EBSD patterns.  103 

The microstructure investigations of both quinary alloys NbMoCrTiAl and TaMoCrTiAl were already 104 

published in our latest works [11, 23] and are, thus, only summarized shortly. In contrast to the 105 

quaternary alloys, only minor amounts of both i.e. A15 and C14 secondary phases were observed for 106 

NbMoCrTiAl, appearing as a fringe of tiny dimensions in the vicinity of some grain boundaries (see 107 

Fig. 1). Large grains with an ordered B2-type crystal structure were observed by TEM measurements as 108 

presented in our other work [23]. The alloy TaMoCrTiAl, however, showed after annealing at 1400°C 109 

for 20h merely Cr2Ta Laves phase (20% area fraction) of C14-type (Tab. 1), predominantly located at 110 

grain boundaries, but no evidence of the A15 phase [11]. Volume fractions of the studied alloys were 111 

assessed by BSE-contrast or EBSD measurements if possible and are listed in Tab. 1.  112 

 113 

3.2 Oxidation kinetics 114 

In Figs. 3 a-b, the mass change versus time curves of the alloys NbMoCrAl, NbMoCrTiAl, TaMoCrAl, 115 

TaMoCrTiAl during isothermal exposure in air at 900-1100°C are displayed. The mass change during 116 

isothermal exposure can be rationalized through:  117 

     (∆𝑊/𝐴)𝑛 = 𝑘 ∙ 𝑡   (1) 118 

where ΔW/A is the mass change per unit area, t the exposure time, n the oxidation rate exponent and k 119 

the oxidation constant. A linear plot of (∆𝑊/𝐴)𝑛 vs. t yields the oxidation constant k as the slope of the 120 

straight. From a logarithmic representation of this relation the rate exponent (n) can be derived according 121 

to 122 

    ln ∆𝑊/𝐴 =
1

𝑛
ln 𝑘 +

1

𝑛
ln 𝑡  (2) 123 

as the slope of a double logarithmic plot of mass change versus time. This is depicted for the investigated 124 

alloys at 1000°C in air in Figs. 4a and b and the corresponding n and k values are listed in Tab. 2. Both 125 

Ta-containing alloys, Fig. 3a, exhibited the lowest mass gain during oxidation at 1000°C. In the early 126 

oxidation stage (t=0.5-4.5h), TaMoCrTiAl showed mass gain with a parabolic rate (n=1.82) which later 127 



 

 

on decreased to a quartic oxidation rate (t=4.5h-100h, n=4.55) yielding a very low mass gain up to 300h 128 

(see Fig. 3a). Interestingly, the Ti-free alloy TaMoCrAl behaved differently with oxidation kinetics 129 

obeying a quartic rate law at the very beginning (t= 0.14h-3h, n= 4.35), subsequently increasing towards 130 

a parabolic oxidation rate (t= 3h-48h, n= 2.08). After 48h of exposure, the TaMoCrAl alloy showed an 131 

abrupt increase in oxidation rate, similar to break-away behavior which resulted in complete oxidation 132 

of the sample after 100h oxidation (see Fig. 3a).  133 

Both Nb-containing alloys (Fig. 3b) generally exhibited substantially higher mass changes and different 134 

oxidation kinetics compared to those of the Ta-containing alloys. The oxidation kinetics of NbMoCrTiAl 135 

increased from near-parabolic kinetics (t= 0.17h-8.17h, n=1.49) to linear one (n=0.82) during exposure 136 

in air at 1000°C (see Tab. 2). For the Ti-free NbMoCrAl, the decrease of oxidation rate exponent was 137 

even more pronounced from n=2.08 to n=0.30 after 7h of exposure to air at 1000°C. Further, after 24h 138 

of oxidation, the mass gain suddenly stopped and subsequent mass loss was observed. After 48h of 139 

exposure to air at 1000°C, the complete sample of NbMoCrAl was oxidized and no residual metal 140 

substrate could be found.  141 

In agreement with the thermogravimetric analyses, inspection of the formed oxide layers of both Ta-142 

containing alloys yielded these to be substantially thinner compared to those on the Nb-containing 143 

variants (see Fig.5a). In addition, the internal corrosion process for both Ta-containing alloys proceeded 144 

distinctly slower during the first 24h compared to NbMoCrTiAl and NbMoCrAl (Fig. 5b). As described 145 

further below, the internal corrosion zone was defined as the area below the oxide scale where corrosion 146 

products, mainly Al2O3, CrN and TiN were detected. For the NbMoCrAl and NbMoCrTiAl alloys, the 147 

internal corrosion zone thickness is interestingly reduced or even disappeared after more than 3h (see 148 

Fig. 5b.); this zone was rarely detected in the cross-sectional images. 149 

According to Fig. 4 and Table 2, oxidation rates of the two Nb-containing alloys are low at the beginning 150 

of the oxidation process indicating the formation of relatively protective scales. In turn, the precipitation 151 

of corrosion products in the metallic substrate which were predominately Al2O3 or TiN is facilitated (as 152 

shown in Figs. 6 and 7). When the oxide scales become non-protective and the oxygen partial pressure 153 

below the oxide scale increases, residual metal and nitrides in the internal corrosion zone were oxidized. 154 

Obviously, the oxidation process became dominant compared to the internal corrosion, i.e. nitridation, 155 

after prolonged oxidation.  156 

3.3 Microstructural analysis of oxide scales 157 

3.3.1. NbMoCrTiAl and NbMoCrAl 158 

As a follow up of our preliminary results [9], we will focus here on elucidating the high-temperature 159 

oxidation mechanism of the Nb-containing HEAs during short term and long term exposure in air up to 160 

100h at 1000°C. Three oxides were identified after 48h oxidation at 1000°C by powder XRD 161 

measurements: Rutile, corundum and Nb2O5 (see supplementary materials Fig. S2). According to our 162 

Rietveld analyses [9], rutile was the dominant oxide phase which formed during high-temperature 163 

oxidation at 1000°C and the volume fractions of the other oxides were much lower (being around 15 164 

Vol.% after 48h) [9]. In Figs. 6a-c, the BSE cross-section images of NbMoCrTiAl present the course of 165 

the complex oxide layer formation after exposure to air for 3h, 48h and 100h, respectively, at 1000°C. 166 

Figure 6d exemplifies the EDX analysis of this alloy after oxidation for 48h. Already after 3h (Fig. 6a) 167 

both, a sequence of thick and thin oxide layers was observed. The thick sublayers are enriched in Nb 168 

and contain pores and cracks. The thin parts exhibit a dense multi-layer structure with Ti-, Al- and Cr-169 

rich oxides. After 48h of oxidation, similar results were observed [9]. Concerning the thin oxide layers 170 

(see the outermost part of the scale in Fig. 6b) pure rutile TiO2 was identified by XRD and EDX (see 171 

also supplementary material Fig. S2.). Underneath, in the order from outside to inside, a multi-layer 172 



 

 

consisting of Al2O3, Cr2O3, Nb2O5 and CrNbO4 oxides was identified (Figs. 6). Below the oxide scale, 173 

internal corrosion products like fine Al2O3 particles and predominately coarse, spherical TiN particles 174 

are found (Fig. 6 b.), of which the phases were confirmed by previous XRD measurements [9]. After 175 

100h of oxidation (Fig. 6c), thick and porous multiphase oxide scales of mostly rutile-type oxide layers 176 

are present, whereas the internal corrosion zone appears much thinner (compared to Fig. 5b) and only 177 

fine TiN and Al2O3 particles were observed (not presented here). 178 

To study the importance of Ti for oxidation resistance in this alloy system, samples of Ti-free equimolar 179 

alloy NbMoCrAl were oxidized under similar conditions at 1000°C in air. Different to NbMoCrTiAl, a 180 

substantial amount of the intermetallic phases A15 and Laves phases (see. Tab. 1) was found after heat-181 

treatment in NbMoCrAl which may impact scale formation. 182 

XRD-analysis after 3h of exposure (not shown here) reveals the formation of the following oxides: 183 

corundum-type chromia and alumina, rutile-type solid solutions of MO2 with major solvents of M=Cr, 184 

Mo, Nb but also pure Nb2O5 oxides. No further oxides are found after prolonged oxidation times, 185 

however, the intensity of the rutile-type oxide increased compared to corundum-type oxide. 186 

Fig. 7 exemplifies BSE-images of NbMoCrAl after 3h and 24h of exposure to air at 1000°C. After 3h 187 

of exposure, the 4.6 +/- 0.5µm thick scale essentially contains oxides of MO2 rutile-type solid solutions 188 

and to a lesser extent of Nb2O5 and Cr2O3 (Fig. 7a). Further precipitates of alumina forming a sparse 189 

scale within the rutile-type layer were identified. Below the oxide scale, the EDX and XRD 190 

investigations reveal the formation of Al2O3 and Cr2N, generally located at the phase boundaries and 191 

within the grains of the Cr2Nb Laves phase (Fig. 7a).  192 

After 24h, the structure of consecutive layers within the scale is clearly seen (see Fig. 7b). Between the 193 

layers, significant porosity is observed that apparently led to delamination of layers. The layers consist 194 

of alternating rutile, Nb2O5, and Cr2O3 as well as semi-continuous layers with Al2O3. Severe crack 195 

formation and spallation occurred in the Nb2O5-rich layers and at the metal/oxide interface (see the lower 196 

area in Fig. 7b). Interestingly, the amount of internal nitridation was clearly reduced after prolonged 197 

oxidation time and no corrosion products were found below the oxide scale (see Fig. 7c). 198 

3.3.2 TaMoCrTiAl and TaMoCrAl 199 

The XRD-measurements of TaMoCrTiAl after 3h and 300h of oxidation at 1000°C in air (Fig. 8) both 200 

yield the formation of titania, alumina, chromia and CrTaO4. In order to investigate the corrosion 201 

products in detail, TEM analyses were performed on a sample oxidized for 3h at 1000°C (see 202 

supplementary materials Fig. S3). A multi-layered oxide scale consisting of outer TiO2, Al2O3, Cr2O3 203 

and inner CrTaO4 could be confirmed. Several round-shaped Al2O3 precipitates below the oxide scale 204 

and within the Laves phase were identified by EDX measurements and TEM diffraction patterns 205 

(displayed in supplementary materials Fig. S3 b-d). 206 

Figure 9 displays the cross-section BSE images after 48h (a), 100h (b) and 300h (c) of oxidation at 207 

1000°C in air and an enlarged EDX-mapping (d) of the zone framed in dashed lines in (a). By 208 

combination of the EDX and XRD investigations (also see Fig. 8), it was found that the oxide scale 209 

composition during 3h till 300h of exposure to air was comparable. As demonstrated in the EDX 210 

mapping in Figure 9d, titania was formed as the top layer, alumina and chromia were identified 211 

underneath. The inner layer consisted of CrTaO4 which became clearly thicker (approx. 8µm) with 212 

oxidation time, whereas the other layers remained unchained (compare Fig. 9a-c).  213 

Since several oxide layers formed during oxidation, it is mandatory to explore which of these oxides 214 

may finally be responsible for the high oxidation resistance of the alloy TaMoCrTiAl. While Al2O3 and 215 



 

 

Cr2O3 are generally considered as protective oxides in literature, little is known about the protectiveness 216 

of CrTaO4. Hence, to study this, the alloy TaMoCrTiAl was oxidized in a separate discontinuous 217 

experiment for 6h at 1000°C. Subsequently, the upper oxide scale consisting of TiO2, Al2O3 and Cr2O3 218 

was removed by mechanical grinding leaving a thin CrTaO4 layer on the surface (see Fig. 10a). Then, 219 

the oxidation of the sample continued in air at 1000°C for 24h (see Fig. 10b). The BSE cross-section 220 

images reveal that no additional oxides were observed on top of the (now “outermost”) CrTaO4 layer 221 

(see Fig. 10b). Only the thickness of the CrTaO4 layer and of the internal corrosion zone, containing 222 

mostly Ti-nitrides and alumina, increased by 4 µm and 14 µm, respectively. This suggests that the 223 

outward diffusion of cations through the CrTaO4 layer was clearly inhibited, while the inward diffusion 224 

of oxygen and nitrogen was not suppressed. It can, therefore, be assumed that the metallic substrate is 225 

effectively protected by the slow growth of CrTaO4 which explains the lower oxidation rates of both Ta-226 

alloys compared to the Nb-alloys (see Tab. 2).  227 

To evaluate the importance of Ti on the high temperature oxidation resistance on TaMoCrTiAl, we 228 

comparatively investigated the quaternary Ti-free TaMoCrAl alloy being exposed to air at 1000°C for 229 

up to 100h. The XRD measurements after 3h of oxidation (see supplementary materials Fig. S4) 230 

identified various oxides: Cr2O3, Al2O3 and CrTaO4. After 48h of oxidation, also Ta2O5 was found in 231 

XRD investigations (not shown here). 232 

In Figures 11a-b, the BSE cross-section images of TaMoCrAl after 3h and 48h exposure to air at 1000°C 233 

are displayed. The average oxide layer thickness after 3h oxidation was only 2.1 µm and the layers 234 

appeared adherent with no or minor visible pores or cracks. EDX investigations (not presented here) and 235 

XRD measurements (see supplementary materials Fig. S3) revealed the formation of an upper layer 236 

consisting of Cr2O3 and Al2O3, as well as a thicker inner scale of CrTaO4 (Fig. 11a).  237 

In contrast, after 48h of exposure, a much thicker (28.5µm in average) and porous oxide scale was 238 

observed (Fig. 11b). The outermost layer with a darker contrast in the BSE image is comprised of thin 239 

Cr2O3 and Al2O3 oxides; see Fig. 11b. The inner layer, though, shows a multi-phase structure consisting 240 

essentially of CrTaO4 and Ta2O5 with semi-continuous scales of Cr2O3 and Al2O3 which appear in a 241 

darker contrast in the BSE cross-section image (as shown in Fig. 11b). Below the thick oxide scale, 242 

pronounced internal oxidation was additionally observed, especially at the phase boundaries which were 243 

decorated with alumina and Cr2N particles (Fig. 11b). 244 

4. Discussion 245 

The results presented above clearly reveal a higher oxidation resistance for both Ta-containing alloys 246 

and inferior oxidation behavior for both Nb-containing alloys during exposure to air at 1000°C. Ta, Nb 247 

and Ti, which are present in relatively high concentrations (20 at.% in quinary and 25 at.% in quaternary 248 

alloys, respectively) in the studied alloys, obviously have a pronounced effect on the elevated 249 

temperature oxidation resistance. 250 

The formation of the multi-layered oxide scales as observed in our experiments can be rationalized 251 

taking into account both, thermodynamic and kinetic aspects. In doing so, standard free energies of 252 

formation of the observed oxides at 1000°C were calculated using the commercial software FactSage. 253 

The formation of CrTaO4 and CrNbO4 oxides below the chromia and alumina layers was observed for 254 

the Ta- and Nb-containing alloys, respectively. Assuming the chemical reactions (3) and (4) according 255 

to [24], the standard free energies of formation of CrTaO4 and CrNbO4 were calculated as described in 256 

eqs. (5) and (6). The calculated ΔG0 values are summarized in Tab.3. 257 

   1/2 Cr2O3(s)+1/2 Ta2O5 (s) = CrTaO4 (s) (3) 258 



 

 

   1/2 Cr2O3 (s)+1/2 Nb2O5 (s) = CrNbO4(s) (4) 259 

   ΔG0
CrTaO4= 1/2 (ΔG0

Cr2O3 + ΔG0
Ta2O5)  (5) 260 

   ΔG0
CrNbO4= 1/2 (ΔG0

Cr2O3 + ΔG0
Nb2O5)  (6) 261 

 262 

According to Tab.3, the thermodynamic driving forces are highest for Al2O3 and TiO2 amongst all 263 

considered oxide species, which result in the formation of an initially multi-layered oxide scale, 264 

consisting of the outer TiO2 and the inner Al2O3. According to Fig. 10, though, these oxides seem to be 265 

a product of the transient oxidation only, and do not significantly influence the further oxidation process.  266 

Generally, the impact of Ti on the oxidation resistance seems to be positive. Although the experiments 267 

with the Ti-free alloys NbMoCrAl and TaMoCrAl first indicate superior, i.e. slower, oxidation kinetics 268 

during initial oxidation as compared to their Ti-containing counterparts (see Fig. 3), after longer 269 

oxidation times the oxide scales of both Ti-free alloys were thicker and less adherent (Fig. 5). This is 270 

believed to be the effect of higher Mo-concentrations in the Ti-free alloys and, consequently, the higher 271 

volume fraction of the Mo-rich A15 phase (see Fig. 1) which is known to be intrinsically not oxidation 272 

resistant [25, 26]. The oxidation of the A15 phase causes the formation of volatile Mo-oxides, which 273 

have a destructive effect on the macroscopic integrity of the initially protective oxide scale. As a further 274 

consequence, the oxide scales which formed at prior A15 phase grains eventually became porous 275 

evoking even severe evaporation of Mo-oxides (Fig. 2).  276 

Though the elements Nb and Ta are known to have a similar chemical nature, their effect on the 277 

oxidation behavior of the studied alloys is seemingly different. As the thermodynamic stability of 278 

CrNbO4 is almost the same as those of Cr2O3 and Nb2O5 (Tab. 3), this may apparently lead to a 279 

competition in the formation between these oxides that can explain an only partial formation of CrNbO4. 280 

In contrast, the thermodynamic stability of CrTaO4 is clearly higher as of Cr2O3, thus the formation of 281 

distinct and protective CrTaO4 layers below Cr2O3 is facilitated. CrNbO4 oxides, however, have been 282 

found to improve the oxidation resistance of various other alloys, e.g. Nb-Si-based alloys [27, 28.]. Chan 283 

et al. reported enhanced thermal cycling oxidation resistance of Nb-Cr-Si-based alloy due to the 284 

formation of adherent CrNbO4 layers instead of Nb2O5 [29]. Qu et al. reported on enhanced adherence 285 

between oxide scale and substrate of Nb-Si based alloys due to CrNbO4 formation at the metal/oxide 286 

interface [30]. One can, therefore, expect a relatively high oxidation resistance of an alloy forming 287 

CrNbO4.  288 

In our study, both Nb-containing alloys first showed almost parabolic oxidation kinetics with rate 289 

exponents of n=1.49-2.0 suggesting the initial formation of protective oxide layers such as CrNbO4, 290 

Cr2O3 and Al2O3. However, a severe increase of oxidation rates and high mass gain after prolonged 291 

oxidation time indicate porous, fast-growing non-protective oxide scales (Tab 2). As illustrated 292 

schematically in Fig. 12, the increase of the oxidation rates observed for both Nb-containing alloys can 293 

be attributed to the formation of various polymorphic forms of Nb2O5 which have been identified by 294 

XRD (supplementary materials Fig. S2) and EBSD (not presented here).  295 

Especially at temperatures below 1100°C, various monoclinic and orthorhombic polymorphs have been 296 

observed which transform rapidly at temperatures above 1100°C to monoclinic H-Nb2O5, the stable 297 

high-temperature form [31, 32]. In the intermediate temperature range between 1000-1100°C, the 298 

formation of different Nb2O5 polymorphs will lead to severe anisotropic volume expansion and, thus, to 299 

crack formation. In our findings, at least two polymorphic forms of Nb2O5 have been identified by EBSD 300 

and XRD, namely h-Nb2O5 and β-Nb2O5 (supplementary materials Fig. S2). Among all these, β-Nb2O5 301 



 

 

is known to be the most expanding Nb2O5 [27, 28, 33-35]. It is thus, by no means surprising that crack 302 

formation occurs at the interphase substrate/oxide (Fig. 12), hence leading to rapid oxygen ingress and 303 

explains the observed massive increase of mass gain (see Fig. 3), oxidation rates(see Tab. 2) and oxide 304 

scale growth (see Fig. 5) of both Nb-containing alloys. Consequently, the alloy with the highest Nb 305 

content (NbMoCrAl) exhibited the worst oxidation resistance and formed the thickest Nb-rich oxide 306 

scales (see Fig. 5). The effect of the Cr2Nb Laves phase on the oxide layer formation is rather small: the 307 

oxide layer formed on top of the Laves phase grains had a similar thickness as that one formed on top 308 

of the other phases. However, the effect of the Laves phase on internal corrosion is significant. First, 309 

Al2O3 precipitates seem to form primarily in the Laves phase rather than in the matrix. A similar 310 

experimental finding was observed in the alloy TaMoCrTiAl (see supplementary material Fig. S3). 311 

Second, internal corrosion starts at the phase boundaries as TiN and CrN precipitations were abundantly 312 

found between the Laves phase and the matrix (Figs. 6a and 7a). 313 

The CrTaO4 oxide, identified during oxidation experiments of Ta-containing alloys, is supposed to form 314 

by the reaction, eq. 3, and, thus, first requires an incubation period for the formation of Cr2O3 and Ta2O5. 315 

It should be noted, however, that no pure Ta2O5 was observed for TaMoCrTiAl by XRD-analysis 316 

possibly due to the very fast reaction to CrTaO4. Ta2O5, though forming rapidly growing scales with 317 

PBR values of 2.5 [36], is stable only as monoclinic α-Ta2O5 up to 1350°C in contrast to Nb2O5 that 318 

yields numerous polymorphic modifications. Therefore, the oxide scales formed on Ta-containing alloys 319 

(see. Fig. 10) generally show a better adherence compared to Nb2O5-forming alloys. After forming Ta-320 

rich oxide scales it is rather unexpected that the alloy TaMoCrAl finally exhibits break-away oxidation 321 

after prolonged oxidation (see Fig. 11). We attribute this to the above-described formation of the Mo-322 

rich A15 phase in the alloy TaMoCrAl (see Fig. 2) which led to enhanced formation of volatile Mo-323 

oxides resulting in damaging the initially protective oxide scales (see Fig. 3). The influence of the Cr2Ta 324 

Laves phase on the oxidation resistance on both, microscopic and macroscopic level, is similar to that 325 

discussed for the alloy NbMoCrTiAl 326 

Besides the positive effect of the Ti-addition on suppressing the formation of the A15 phase, Ti 327 

obviously plays a beneficial role by decreasing the amount of less favourable Ta2O5 (or Nb2O5) and 328 

increasing the fraction of more favourable Ti-rich rutile-type solid solutions. Interestingly, various Ti-, 329 

Cr-, Ta- and Nb- oxides are known to form highly stable rutile phases and mixed solid solutions like 330 

TiO2 (ICSD: 9161), TaO2 (ICSD: 7624), CrTaO4 (ICSD: 72276), ,TaTiO4 (ICSD: 72278), CrNbO4 331 

(ICSD: 72275) and (Cr,Ti,Ta)O6 (ICSD: 160795) to mention few of them. The PBR value of rutile-type 332 

TiO2 generally is more favorable (1.7) [36], therefore the Ti-rich rutile-type oxides show improved 333 

adherence compared to Nb2O5 or Ta2O5 based oxide scales.  334 

The high-temperature oxidation kinetics for the formation of protective alumina or chromia layers is 335 

known to obey parabolic oxidation kinetics [12, 37]. The observed oxidation kinetics and oxide scale 336 

growth for the Ta-containing alloys, however, suggests the formation of a similarly highly protective 337 

oxide scale. After an incubation period that corresponds to the observed first 4.5h for TaMoCrTiAl, very 338 

low oxidation rates according to a quartic rate law were observed (see Tab. 2). The experiments further 339 

present that oxygen inward diffusion through the CrTaO4 scale is rate-determining (see Fig. 9). The 340 

above-mentioned conclusions on the oxidation behavior of TaMoCrTiAl and TaMoCrAl are illustrated 341 

schematically in Fig. 13.  342 

Recently Ren et al. reported on the enhanced oxidation resistance of Ni-based superalloys between 850 343 

and 900°C in air due to the formation of CrTaO4 oxides that form below Cr2O3 oxides after a short 344 

incubation time. The oxidation rate constants published by Ren et al. can be compared with the ones of 345 

our TaMoCrTiAl alloy in the temperature range 900-1100°C (see Tab. 2) [11]. Comparing the logarithm 346 

of oxidation rate constants of rutile-type CrTaO4 comparable activation energies for the oxidation 347 



 

 

process of Q=350 kJ/mol for TaMoCrTiAl and Q=375 kJ/mol for Ni-based alloy [38] can be 348 

accessed(see Fig. 14). Considering the activation energies for chromia (250 kJ/mol) [39] and alumina 349 

forming Ni-based superalloys (400 kJ/mol) [40], it can be stated that the activation energy for oxygen 350 

diffusion through CrTaO4 and oxidation rate constant obviously lie in between, but advantageously 351 

closer to that of alumina.   352 

5. Conclusions 353 

Systematic comparative investigations of the oxidation behaviour of four refractory HEAs within the 354 

system Ta-Nb-Mo-Cr-Ti-Al in a temperature range between 900 and 1100°C lead to the following 355 

conclusions:  356 

(i) The superior oxidation resistance of TaMoCrTiAl at 1000°C in air is the result of the formation of 357 

protective Al2O3, Cr2O3 and CrTaO4 oxide layers. The slow oxygen diffusion through CrTaO4 seems to 358 

be rate determining which may pave the way for further development of oxidation-resistant refractory 359 

HEAs. 360 

(ii) Although the initial formation of similar protective oxide layers consisting of Al2O3, Cr2O3 and 361 

CrNbO4 were observed for NbMoCrTiAl and NbMoCrAl, the highly and anisotropic thermal expansion 362 

of the Nb2O5 polymorphs leads to pore formation and scale spallation.  363 

(iii) Ti-addition plays a crucial role in forming protective rutile type oxides (like CrTaO4), 364 

simultaneously decreasing the amount of less favorable oxides (Nb2O5, Ta2O5). Further, the volume 365 

fraction of the A15 phase can be reduced or even completely suppressed by the Ti-addition. 366 

In our future works, the effect of Y additions aiming at the enhancement of oxidation resistance of 367 

NbMoCrTiAl alloy will be investigated. The oxidation behavior of both Ta-containing alloys is very 368 

promising, however, concerning the mechanical properties, the amount of brittle intermetallic 369 

compounds such as Laves Phases should be reduced. Therefore, the reduction of Cr- and Ta-370 

concentrations in the TaMoCrTiAl system will be undertaken. The alloys with reduced Cr- and Ta-371 

concentrations will be studied in terms of their microstructure and high-temperature corrosion behavior.   372 
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Figure captions 485 

 486 

Fig. 1: BSE images of the investigated alloys TaMoCrTiAl, NbMoCrTiAl, NbMoCrAl and TaMoCrAl 487 

after annealing conditions (see Tab. 1).  488 



 

 

 489 

Fig. 2: Characterization of NbMoCrAl (a.) and TaMoCrAl (b.) by combined EDX and EBSD analysis  490 

 491 

Fig. 3: Specific mass change as a function of time for TaMoCrTiAl and TaMoCrAl (a.) and 492 

NbMoCrTiAl and NbMoCrAl (b.) during isothermal exposure to air at 900 - 1100°C. Measurements 493 

denoted with * are taken from [11] and those with ** from [9].  494 



 

 

 495 

Fig. 4: Double logarithmic plots of mass change against time for TaMoCrTiAl, TaMoCrAl (a.) and for 496 

NbMoCrTiAl and NbMoCrAl (b.) during isothermal oxidation at 1000°C in air up to 48h.  497 

 498 

Fig. 5: Mean oxide scale thickness (a.) and mean depth of internal corrosion (b.) for TaMoCrTiAl, 499 

NbMoCrTiAl, TaMoCrAl, and NbMoCrAl during isothermal exposure to air at 1000°C. 500 



 

 

 501 

Fig. 6: BSE images of NbMoCrTiAl after 3h (a.), 48h (b.) and 100h (c.) of exposure to air at 1000°C 502 

and (d.) the corresponding EDX-mappings of (b.).  503 



 

 

 504 

Fig. 7: BSE images of NbMoCrAl after 3h (a.) and 24h (b.) of exposure to air at 1000°C. A higher 505 

magnification BSE image of the metal/oxide interface of (b.) is displayed in (c.).  506 

507 
Fig. 8: XRD plots of TaMoCrTiAl after 3h and 300h oxidation at 1000°C in air. 508 

 509 



 

 

 510 

Fig. 9: BSE images of TaMoCrTiAl after 48h (a.), 100h (b.), 300h (c.) exposure to air at 1000°C and 511 

EDX mapping (d.) of cross-section marked in (a.). The horizontal lines indicate the interface between 512 

the oxide layer and the internal corrosion zone. 513 

 514 

Fig. 10: Investigation of the protectiveness of the inner CrTaO4 oxide layer during exposure to air at 515 

1000°C. The darker upper oxide layer consisting of TiO2, Al2O3 and Cr2O3 was removed, i.e. the CrTaO4 516 

is the outer oxide layer here (a.), after subsequent 24h oxidation at 1000°C in air no additional oxides 517 

visible on top of CrTaO4 (b.) 518 



 

 

 519 

Fig. 11: BSE images of TaMoCrAl after 3h (a.) and 48h (b.) of exposure to air at 1000°C in air. 520 



 

 

 521 

Fig. 12: Oxidation behavior of NbMoCrTiAl (a.) and NbMoCrAl (b.) during exposure at 1000°C in air  522 



 

 

 523 

 Fig. 13: Oxidation behavior of TaMoCrTiAl (a.) and TaMoCrAl (b.) during exposure at 1000°C in air  524 



 

 

 525 

Fig. 14: Logarithm of the oxidation rate over reciprocal temperature during steady-state oxidation (after 526 

CrTaO4 formation) of TaMoCrTiAl and CrTaO4-forming Ni-based superalloy [39]. Scatter regions of 527 

oxidation rate for Al2O3 (olive shaded area) and Cr2O3 (blue shaded area) forming alloys after [41]  528 

Table captions 529 

Tab.1 Annealing conditions and identified phases of the investigated alloys. Volume fractions were 530 

accessed by means of BSE-contrast (denoted with *) or EBSD measurements (marked as †). The A2/B2 531 

and A15 phases cannot be distinguished by means of BSE contrast or EBSD.  532 

alloy annealing 

conditions 

identified phases area fractions /method 

NbMoCrTiAl 1300°C, 20 h A2/B2 

Al(Mo,Nb)3 (A15) 

Laves phase, Cr2Nb (C14) 

99% * 

0.5% * 

0.5% * 

NbMoCrAl 1300°C, 20 h A2/B2+Al(Mo,Nb)3 (A15) 

Laves phases, Cr2Nb (C14)9 

60% † 

40% † 

TaMoCrTiAl 1400°C, 20 h A2/B2 

Laves phases, Cr2Nb (C14) 

80% * 

20% * 

TaMoCrAl 1400°C, 20 h A2/B2+AlMo3 (A15) 

Laves phases, Cr2Nb, (C14)) 

65% † 

35% † 

 533 

 534 



 

 

Tab. 2 Oxidation rate exponents (n) with regression coefficient (R2) and oxidation constants (k) 535 

calculated from the curves shown in Fig. 3 536 

Alloy t1 [h] t2 [h] n R2 oxidation rate constant k  

TaMoCrTiAl 0.4 4.5 1.82 0.99 kp=3.34·10-2 [mg2/cm4 h2] 

4.5 100.0 4.55 0.96 kq=2.97·10-3 [mg4/cm8 h4] 

TaMoCrAl 0.4 3.0 4.35 0.96 kq=1.91·10-4 [mg4/cm8 h4] 

3.0 48.0 2.08 0.99 kp=7.96·10-3 [mg2/cm4 h2] 

NbMoCrTiAl 0.4 8.2 1.49 0.97 kl=1.24·10-1 [mg/cm2 h] 

8.2 100.0 0.82 0.99 kl=3.45·10-1 [mg/cm2 h] 

NbMoCrAl 0.4 7.6 2.08 0.95 kp=6.95·10-2 [mg2/cm4 h2] 

7.6 24.00 0.30 0.99 kl=1.12·10-1 [mg/cm h] 

 537 

Tab. 3 standard free energy of formation of relevant oxides at 1000°C 538 

Oxide Cr2O3 Ta2O5  TiO2 

(rutile) 

Al2O3 MoO3 Nb2O5 CrTaO4 CrNbO4 

ΔG0[kJ/mole 

O2] 

-538 -598 -713 -853 -293 -540 -568 -539 

 539 
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Supplementary Material 541 

 542 

 543 

 544 

Fig. S1: Powder XRD patterns of NbMoCrAl (a.) and TaMoCrAl (b.). For better visibility of low-545 

intensity peaks in the XRD, the intensity is plotted on a logarithmic scale. 546 
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Fig. S2: Powder XRD analysis of the formed oxide scale of NbMoCrTiAl after 48h of exposure to air 549 

at 1000°C [9]. For better visibility of low-intensity peaks in the XRD, the intensity is plotted on a 550 

logarithmic scale.  551 
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 553 

Fig. S3: STEM image (HAADF contrast) of TaMoCrTiAl after 3h exposure at 1000°C in air (a) as well 554 

as a magnification of the oxidized Laves phase (Cr2Ta ) in (b.). TEM diffraction pattern of the marked 555 

oxides in (a.). TEM ring diffraction pattern of Al2O3 (d.). EDX mapping of Fig. (b.) (e.). 556 
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Fig. S4: XRD measurement of TaMoCrAl after 3h exposure to air at 1000°C  559 
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