Hyperparameter Optimization Across Problem
Tasks

Nicolas Schilling, Torben Windler and Lars Schmidt-Thieme

Abstract Hyperparameter Optimization is a task that is generally hard to
accomplish as the correct setting of hyperparameters cannot be learned from
the data directly. However, finding the right hyperparameters is necessary as the
performance on test data can differ a lot under various hyperparameter settings.
Many researchers rely on search techniques such as grid-search, having the
downside that they require a lot of computation time, as prediction models are
learned for a wide range of possible hyperparameter configurations which is only
feasible in a parallel computing environment. Recently, search methods based
on Bayesian optimization such as SMAC have been proposed and extended
to include hyperparameter performance of the same model on another data
set. These meta learning approaches show that the search for well-performing
hyperparameters can be steered in a more intelligent manner. In this work, we
aim to accomplish hyperparameter optimization across problem tasks where

Nicolas Schilling - Lars Schmidt-Thieme

University of Hildesheim, Information Systems and Machine Learning Lab (ISMLL)
Universitdtsplatz 1, 31141 Hildesheim, Germany

DK nicolas.schilling@xing.com

K schmidt-thieme@ismll.de

Torben Windler

University of Hildesheim

Universitdtsplatz 1, 31141 Hildesheim, Germany
X windlerQuni-hildesheim.de

ARCHIVES OF DATA SCIENCE, SERIES A

(ONLINE FIRrsT) DOI 10.5445/KSP/1000085951/14
KIT ScienTiFic PUBLISHING ISSN 2363-9881
Vol. 4, No. 1, 2018 (o) R

mailto:nicolas.schilling@xing.com
mailto:schmidt-thieme@ismll.de
mailto:windler@uni-hildesheim.de
https://doi.org/10.5445/KSP/1000085951/14

2 Schilling et al.

we specifically target regression and classification problems. We show, that the
incorporation of hyperparameter performance on a classification task is helpful
when optimizing hyperparameters for a regression task and vice versa.

1 Introduction

Hyperparameter Optimization is a task that has to be successfully accomplished
whenever competitive results of a machine learning model are needed. For
scientific publications hyperparameters are optimized across all competing
models in order to ensure a fair comparison between all approaches. For
companies working on a machine learning project, hyperparameter optimization
is usually conducted to maximize prediction performance for the task at hand.
Hyperparameter optimization usually renders a model from delivering poor
results to state-of-the art performance and is therefore inevitable.

Many researchers bank on using grid-search to optimize hyperparameters
where a large set of hyperparameter configurations is simply being tested and
the best performing configuration is used to predict for the test data. Being
easily parallelizable, grid-search is simple to implement but requires a parallel
computing environment such as a compute cluster to be scalable, especially
when the amount of hyperparameters to tune is large, as the number of com-
putations grows exponentially. On the downside, grid-search computations
are independent of each other and knowledge about well performing hyper-
parameter configurations is not used. Ultimately, grid-search is a technique
that is simple to implement, but scales very poorly and therefore interferes
with the goal of making machine learning techniques available to a broad
area of companies and organizations.

Recent research attempts to solve the problem of hyperparameter optimization
by using approaches based on Bayesian optimization techniques. One instance of
Bayesian optimization is surrogate model-based optimization (SMBO), where
a surrogate model is learned on observed performances of a small set of
hyperparameter configurations. Thereafter, the surrogate model can be queried
for a large set of hyperparameter configurations allowing for a more principled
search. After the evaluation is completed, the surrogate model is fitted to the
newly observed performances to increase its prediction quality. The overall
process is repeated until either a cost budget is exhausted, or a performance
criterion on the hyperparameter configurations is met.

Hyperparameter Optimization Across Problem Tasks 3

More recently, researchers have followed the idea of injecting meta knowledge
into the learning process of the surrogate model. This is accomplished by
learning the surrogate model on a large set of hyperparameter performances of
the same model on different data sets, where hyperparameter optimization has
been completed already. This approach has shown to work better than learning
the surrogate model from scratch for every new data set.

In this paper, we add another dimension to the metalearning aspect of recent
work, by learning hyperparameter performance not only across data sets, but
also across problem tasks. Specifically, we chose regression, binary and n-
ary classification, as we need a model that is capable of handling all tasks,
we optimize the hyperparameters of feedforward neural networks. The only
difference between the tasks is the activation function in the output layer, all
other hyperparameters are shared across all tasks and, therefore, a knowledge
transfer between tasks seems possible. On a large meta data set of observed
performances on 70 data sets, we are able to show that the current state of the
art surrogate models are capable of learning across tasks.

2 Related work

In the field of SMBO-based hyperparameter optimization, there are several
publications who propose different surrogate models. The work by Bergstra
and Bengio (2012) suggests to sample hyperparameters from random variables
instead of a grid-search. The authors of Snoek et al (2012) propose to use
Gaussian processes (GP) as surrogate models, as they naturally predict a
distribution over target values. The work by Hutter et al (2011) suggests random
forests as surrogate as they can naturally deal with hierarchical hyperparameters.
The first publication to include hyperparameter performance on other data sets is
Bardenet et al (2013) which learns a ranking SVM to select hyperparameters. A
variant of a neural network that uses a factorization machine as signal function
in the first layer of the network was proposed by Schilling et al (2015). The
factorization machine allows the model to estimate latent features for binary
indicator variables. Finally, Schilling et al (2016) proposes to use a product of
GP experts, as GPs are in general a decent surrogate, but do not scale to large
amounts of meta data.

4 Schilling et al.

In another direction, there are works that try to initialize the hyperparameter
search in a principled manner such as Feurer et al (2015), Wistuba et al (2015),
that answer the question of which hyperparameter configurations to test initially.
Additionally, there are approaches that use genetic algorithms as for example
Reif et al (2012) and Koch et al (2012) or take learning curves into account as
van Rijn et al (2015). Howeyver, as these approaches do not propose surrogates
for SMBO-based hyperparameter optimization, we will restrict our experimental
section on comparing the former group of publications on our meta data.

3 SMBO-Based Hyperparameter Optimization

In this section, we will first introduce the problem of hyperparameter optimization
in general and subsequently show how it is approached using sequential model-
based optimization.

3.1 Hyperparameter Optimization

Let us by D denote the space of all data sets for both our targeted tasks
of regression and classification. Additionally, denote by M the space of all
feedforward neural networks, essentially this is the space of all DAGs associated
with parameters for each of the graph’s edges. The space of all possible
hyperparameter configurations is denoted by A, which for example specifies
the structure of the network to be learned. We call a learning algorithm A
a mapping A : D X A — M, that takes as input a data set D € D and a
hyperparameter configuration 1 € A to then estimate a model M € M. For
many machine learning problems, A searches through the model space and
returns a model by minimizing the regularized empirical loss over training
partition D" of the data set D given the model M

A(D, A) = argmin L(M,D"™™) + R(M). (1)
MeM
With these expressions, we can easily define the problem of hyperparameter op-
timization as finding the hyperparameter configuration A*, where the associated
model minimizes the loss on the validation partition

A* € argmin L(A(D, 1), DY) =: arg min b(1, D),)
EIN AN

Hyperparameter Optimization Across Problem Tasks 5

where we use the short form of b(4, D) for the function we seek to optimize. While
the loss function £ usually has an analytical representation, the evaluation of
the final model parameters returned by the learning algorithm A itself is a black
box function, which makes finding 2* using standard optimization techniques
such as gradient descent impossible. Additionally, not every hyperparameter
dimension of A is represented by continuous values, as for example the number
of latent features in a factorization model or the number of layers and neurons
in neural networks are discrete hyperparameters, also rendering continuous
optimization techniques inapplicable. For this reason, black box optimization
techniques such as SMBO have been employed to solve the hyperparameter
optimization problem.

hd |~ Objective
— Preaciodvean
o = Pedcion Unoartany
ER == St mpeement
\/ o
: \/

Figure 1: Four consecutive SMBO iterations using a Gaussian process as surrogate model and expected
improvement as acquisition function. The x-axis describes a one-dimensional hyperparameter while
the y-axis is the resulting validation performance, with fictional values. In the first trial, the expected
improvement chooses a point with high uncertainty, after having observed this configuration the
exploration is stopped and the true objective is maximized.

6 Schilling et al.

3.2 Sequential Model-Based Optimization

SMBO starts by evaluating a set of initial observations of b, precisely a few
hyperparameter configurations are chosen, evaluated and then fed into an
observation history

(]—[(D) = {(/ll7b(/ll9D)7"'9(/117b(/117D)}' (3)

This observation history is used as training data for the surrogate model
Y(A). After learning W, it is queried for a range of possible hyperparameter
configurations where its prediction is taken into account and its uncertainty as
well. Then, the hyperparameter configuration that maximizes the acquisition
function is chosen, the configuration is evaluated by running A and then fed
back into the observation history #. At this point, a new iteration of SMBO
is started, where Y is fitted to the updated observation history and queried
again, until some well-performing configuration is found or the time budget
is consumed. An example of four SMBO iterations using a Gaussian process
surrogate on some toy data is given in Figure 1.

The role of the acquisition function a is to find a decent tradeoff between
exploration of A and exploitation of the knowledge of Y. Always evaluating the
hyperparameter configuration where ¥ is maximized would highly exploit it,
however, this leads to low exploration of A, as the maximum is usually in the
vicinity of already observed configurations. On the other hand, one could always
choose the A where the uncertainty is maximal, this leads to high exploration
of A, but may end up finding only mediocre hyperparameter configurations.
In many works the expected improvement (EI) is used as acquisition function
(Jones et al, 1998), and is defined as the expected value of the improvement
function. If we assume the probability for improvement to follow a Gaussian
distribution centered around the predicted mean u(1) and having variance
equal to the predicted variance o(1) by the surrogate, then we can compute EI
analytically using

(AP — u(D) D(Z) + (D) $(Z) if (1) > 0

0 if o(1)=0")

EI(Q) = {
b2 — ()

Z= o(d) ’ ©®)

where ®(Z) is the cumulative distribution function and ¢(Z) the probability
density function of a standard Gaussian.

Hyperparameter Optimization Across Problem Tasks 7

4 Creation of the Meta Data

As the goal is to optimize hyperparameters across the tasks of regression, binary
and n-ary classification, we have to chose a model that is capable of handling
all tasks well, in this section we introduce feedforward neural networks as they
are able to solve all tasks. An artificial feedforward neural network is a machine
learning model that has a structure of a directed acyclic graph, where we restrict
the model space in two ways. At first, we do not allow connections to skip a
layer in our formulation, secondly we assume that the network is always fully
connected, meaning that each hidden neuron receives an input of each other
hidden neuron in the previous layer of the network. With these restrictions, the
state of the /-th hidden layer /; in a neural network with L many layers can be
written as

hl = O'I(WlThl_l + bl) Viel,.. L, (6)

where W; € R™-1"" js the weight matrix connecting each neuron of layer
[— 1 with each neuron in the next layer, b; € R™ is a bias vector and o7 is an
element-wise applied nonlinear activation function. The input layer is simply
the input x € R™ that we want to make predictions for, i.e. hp = x and the
output of the L-th layer will be our prediction

$(x)=hp = o (W] hp—1 + br), (7N

where o, is chosen depending on the task. For regression, o, is simply the
identity function, for binary classification it is a sigmoid function and for
multiclass classification problems the softmax activation function is used.

4.1 Hyperparameter in Neural Networks

Neural networks can only be learned if a set of hyperparameters has been
specified prior to training, we will now discuss which parameters we treat as
hyperparameters and then discuss the creation of the meta data. The hyperparam-
eters of feedforward neural networks can be grouped into three different classes:

1. Structure-based hyperparameters:
The number of layers L as well as the number of neurons n; for all
layers are hyperparameters that determine the structure of the model
to be learned. We make a slight simplificiation by assuming that »;

8 Schilling et al.

amounts to the same value for all layers. Additionally, the activation
function being used is a hyperparameter, where one can choose between
a sigmoid function, tanh or activation functions based on rectified linear
units (ReLU). We again slightly simplify this choice by assuming that
o7 is equal in all layers, except for the output layer, where the activation
function is defined by the task to be solved.

2. Optimization-based hyperparameters:

The choice of the optimization algorithm is a hyperparameter that crucially
decides whether predictions are useful or not. Usually, one chooses
between plain SGD (Bottou, 2010) or more sophisticated techniques
such as AdaGrad, AdaDelta, RMSProp, ADAM, NADAM and the likes
(Duchi et al, 2011; Zeiler, 2012; Tieleman and Hinton, 2012; Kingma
and Ba, 2014; Dozat, 2016). Some of these optimizers adjust learning
rates and momentums automatically, where only initial values need to be
given. In addition to that, also the mini batch size is an optimization-based
hyperparameter.

3. Regularization-based hyperparameters: In order to avoid overfitting,
neural networks are usually regularized, this may be through L1 or L2
regularization, with associated regularization constant, by dropout regu-
larization with the associated dropout percentage or by other techniques
as early stopping (Prechelt, 1998).

The hyperparameter configurations that have been used in our meta data are
summarized in Table 1. Overall, we end up with 2916 experiments per data
set using these hyperparameter configurations. In order to obtain the ground
truth hyperparameter performance, we have performed a grid search on 70
data sets that have been downloaded mainly from the UCI machine learning
repository (providedon https://archive.ics.uci.edu/ml/index.php by
the University of California, Irvine (USA)). Among these data sets we have 44
binary classification problems, 12 multiclass classification problems and 14
regression problems, in total the meta data consists of 204, 120 (70 datasets X
2,916 hyperparameters) experiments. To make these experiments comparable
between each other, we have to bring RMSE values on the scale of accuracy
values, which is the interval [0, 1]. In order to do so, for each data set we scale
the final RMSE values between 0 and 1 where we assign 1 for the lowest RMSE
and O for the highest RMSE.

https://archive.ics.uci.edu/ml/index.php

Hyperparameter Optimization Across Problem Tasks 9

For RMSE, this is accomplished by computing:

b(A) — min, b(A1)
" max, b(A) — min, b(A1)

bscaled(/l) =1 (8)
For the classification problems, we simply compute the value that we would
subtract from 1 in the above equation. Doing this assigns 1 to the maximum
accuracy and 0 to the minimal accuracy. Scaling the labels is crucial as it allows
the surrogate model to make a fair comparison between data sets and not be
biased towards the easier problems.

Table 1: Overview of the hyperparameter grid used to create the meta data set.

Structure Values

Activation Function || ReLU leakyReLU tanh
Number of Layers 5 10 20
Number of Neurons || 10 20 50
Optimization Values

Optimizer Adam AdaGrad AdaDelta
Number of Epochs 10 100

Regularization Values

Dropout 0 0.2 04

L, Regularization Ly Ly

Regularization 0.01 0.001 0.0001
Constant

5 Experiments

In this section we will conduct two experiments, first we use the meta data
of all problem tasks to learn the surrogate and therefore compare the overall
performances of different surrogate models. In the second experiment we will
evaluate the benefit of including meta data from other tasks, this is accomplished

10 Schilling et al.

by comparing the surrogate’s performances in two variations. The first variant
allows the surrogate to include meta data of other tasks, where in the second
variant they are only learned on the meta data of the target task.

We start by describing both evaluation metrics used by us. The first evaluation
metric is the average rank among all optimizers. This can be obtained by
comparing for every trial the average performance of each surrogate and then
computing a ranking between the surrogate models, where ties are solved by
granting the average rank. If we, for example, have four surrogates that in trial
20 have achieved an average performance of 0.8, 0.7, 0.7 and 0.4 the average
rank would be 1, 2.5, 2.5 and 4.

The second evaluation metric is the average hyperparameter rank achieved by
the individual optimizers. This is computed by simply ranking all hyperparameter
performances for a given data set and then, for each trial computing the average
hyperparameter rank that has been achieved.

5.1 Using all Meta Data

For the first experiment we proceed as follows: For each surrogate and for each
target data set, we learn the surrogate model on the observed performances on the
69 remaining training data sets and then perform 300 SMBO trials, thus allowing
the surrogate to only evaluate a good tenth of the original hyperparameter grid.
Overall, we compare six different surrogate models: At first, we use a random
surrogate model called RANDOM, that randomly picks one hyperparameter
without any knowledge as was proposed in Bergstra and Bengio (2012). Secondly,
we learn a Gaussian Process only on the observed target performances, without
any usage of the meta data, this is called SPEARMINT (Snoek et al, 2012). A
third surrogate model that also does not take the meta data into account is SMAC
(Hutter et al, 2011), which uses a random forest as surrogate. We augmented
SMAC by including the meta-data and call the resulting surrogate SMAC++,
this is the first surrogate that makes use of meta knowledge. Finally, we employ
two surrogate models that are also able to learn hyperparameter performance
across tasks, the first one being FMLP (Schilling et al, 2015), which uses a
combination of a neural network and a factorization machine as surrogate model,
finally, we use a product of GP experts (Schilling et al, 2016) called POGPE,
where an independent GP is learned on each data set in the meta data, and these
GPs are then combined to make predictions on the target data.

Hyperparameter Optimization Across Problem Tasks 11

The average rank is shown in Figure 2, where clearly, we see that the random
surrogate RANDOM performs bad. Both surrogates that are agnostic to the
meta data also do not show a good performance, SMAC performs better than
SPEARMINT in the beginning, but gets overtaken around trial 50. A difference
because of including meta knowledge can be observed when comparing SMAC++
with SMAC, the former consistently shows better results. FMLP produces decent
results, we highlight that for the very first trial - where no information of the
target data has been gathered - FMLP is the best surrogate model, but it quickly
loses agains POGPE, which shows the best performance of all competitors.
The average hyperparameter rank can be seen in Figure 3 and shows a similar
behaviour. Again, the surrogate models that do not include meta data are showing
a much worse performance than the ones that do, please note that the y-axis is
plotted in log-scale. While these surrogates start at an average hyperparameter
rank of 2000, FMLP and POGPE start somewhere around 400 and reach an
average hyperparameter rank of 20 already after having conducted trial 35.

Average Rank on the Meta-Data

i
)
s I
!
§

f

0 50 100 150 200 250 300

Trials

Figure 2: Average Rank of all competing surrogates using all Meta Data.

12

Average Hyperparameter Rank

20 50 100 200

10

Schilling et al.
Average Hyperparameter Rank on the Meta-Data
g — FmLP
S POGPE
—— SPEARMINT
8 - RANDOM
® — SMAC
—— SMAC++
£ o
g &4
3
3 o
£ &
4
=3
g 8
s
I
@
g o |
g R
£
o
]
w

150

Trials

200 250 300

Figure 3: Average Hyperparameter Rank of all competing surrogates using all Meta Data.

—— FMLP_ALL
FMLP_BINARY
POGPE_ALL

—*— POGPE_BINARY

0 50 100 150 200 250 300

Trials

Average Hyperparameter Rank

200

100

—— FMLP_ALL
FMLP_MULTI
POGPE_ALL

—*— POGPE_MULTI

50 100 150 200 250 300

Trials

Figure 4: Average hyperparameter rank for binary and multiclass classification tasks.

Hyperparameter Optimization Across Problem Tasks 13

5.2 Using Task-Specific Meta Data

Now we would like to assess the performance gain that is achieved by additional
meta data. For each target task, we show the average hyperparameter rank where
hyperparameters are only optimized for all data sets belonging to the target
task in Figure 4 and 5. For both FMLP and POGPE, we compare two variants,
one where we use all meta data to learn the surrogate and the second variant
where we learn the surrogate only on the observed performances of data sets
from the target task.

Figure 4 shows results for the targets tasks of binary and multiclass classifica-
tion. We see that for both tasks, adding meta data of the other two tasks increases
the performance, however, for POGPE the difference is quite small. For some
of the trials the variant without the additional meta data even performs better.
FMLP shows a more principled lift when including additional meta data.

—— FMLP_ALL —— FMLP_ALL
FMLP_CLASSIFICATION FMLP_REG
POGPE_ALL POGPE_ALL

—<— POGPE_CLASSIFICATION —— POGPE_REG

500 1000

200
I

100
I
100 200

50
I

Average Hyperparameter Rank
20
L

Average Hyperparameter Rank
5

10
I

5
I

0 50 100 150 200 250 300 0 50 100 150 200 250 300

Trials Trials

Figure 5: Average Hyperparameter Rank for the joint classification task and for regression.

As one may argue whether binary and multiclass classification are two different
tasks, we have also merged both tasks to a joint classification task and evaluated
if the additional meta knowledge from the regression problems is helpful.
The results for the merged classification task can be seen in Figure 5 on the
left plot. The difference between both variants is rather small, considering
that the only difference is the 14 additional regression problems, this result
is not surprising.

14 Schilling et al.

However, there still is a principled lift in the results of FMLP, showing that
also little information can be used adequately. The results for regression as
targeted problem are shown in the same figure on the right plot. Similar to the
other experiments, we see a consistent lift for FMLP and POGPE, although
the difference again is quite small for POGPE. Overall, we conclude that using
additional meta data from other tasks for hyperparameter optimization improves
the performance of the learned surrogate models.

6 Conclusion

In this paper, we have built a meta data set consisting of roughly 200,000
experiments solving the three tasks of binary and n-ary classification as well
as regression for a range of data sets. We have chosen neural networks as
prediction models, as they are able to solve a range of different tasks but still
use almost the same hyperparameter space. Our results show that learning
hyperparameter performance across problem tasks is possible and generally
improves the performance. For future work, we seek to extend our meta data
set firstly by adding more experiments, this can be accomplished by solving
more data sets or by increasing the hyperparameters that are being optimized.
Additionally, we seek to extend the meta data by adding additional tasks, one
may for example add ranking problems or regression problems of certain types
such as recommender systems.

References

Bardenet R, Brendel M, Kegl B, Sebag M (2013) Collaborative Hyperparameter Tuning.
In: Proceedings of the 30th International Conference on Machine Learning (ICML-
13), Proceedings of Machine Learning Research (PMLR), Dasgupta S, Mcallester D
(eds), vol. 28, pp. 199-207.

Bergstra J, Bengio Y (2012) Random Search for Hyper-parameter Optimization. Journal
of Machine Learning Research (JMLR) 13:281-305.

Bottou L (2010) Large-Scale Machine Learning with Stochastic Gradient Descent. In:
Proceedings of COMPSTAT’ 2010, Physica-Verlag HD, pp. 177-186. DOI: 10.1007/
978-3-7908-2604-3_16.

https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1007/978-3-7908-2604-3_16

Hyperparameter Optimization Across Problem Tasks 15

Dozat T (2016) Incorporating Nesterov Momentum into Adam. International Con-
ference for Learning Representations (ICLR) 2016 Workshop. URL: https://
openreview.net/forum?id=0M0jvwB8 jIp572JJtNEZ.

Duchi J, Hazan E, Singer Y (2011) Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization. Journal of Machine Learning Research 12:2121-2159.

Feurer M, Springenberg JT, Hutter F (2015) Initializing Bayesian Hyperparameter
Optimization via Meta-Learning. Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, pp. 1128—1135.

Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential Model-based Optimization
for General Algorithm Configuration. In: Proceedings of the 5th International
Conference on Learning and Intelligent Optimization (LION 2011), Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, vol. 6683, pp. 507-523. DOI: 10.
1007/978-3-642-25566-3_40.

Jones DR, Schonlau M, Welch W1J (1998) Efficient Global Optimization of Expen-
sive Black-Box Functions. Journal of Global Optimization 13(4):455-492, Kluwer
Academic Publishers, Hingham (USA). DOI: 10.1023/A:1008306431147.

Kingma DP, BaJ (2014) ADAM: A Method for Stochastic Optimization. arXiv preprint
(arXiv:1412.6980). URL: https://arxiv.org/abs/1412.6980.

Koch P, Bischl B, Flasch O, Bartz-Beielstein T, Weihs C, Konen W (2012) Tuning
and Evolution of Support Vector Kernels. Evolutionary Intelligence 5(3):153-170,
Springer. DOI: 10.1007/s12065-012-0073-8.

Prechelt L (1998) Early stopping — But When? In: Neural Networks: Tricks of the trade,
Montavon G, Orr G, Miiller K (eds), Lecture Notes in Computer Science, vol. 7700,
Springer, pp. 55-69. DOI: 10.1007/978-3-642-35289-8_5.

Reif M, Shafait F, Dengel A (2012) Meta-Learning for Evolutionary Parameter Opti-
mization of Classifiers. Machine Learning 87(3):357-380, Springer US. DOI: 10.
1007/s10994-012-5286-7.

van Rijn JN, Abdulrahman SM, Brazdil P, Vanschoren J (2015) Fast Algorithm
Selection Using Learning Curves. In: International Symposium on Intelligent Data
Analysis (IDA 2015), Springer, Cham, Lecture Notes in Computer Science, vol. 9385,
pp. 298-309. DOI: 10.1007/978-3-319-24465-5_26.

Schilling N, Wistuba M, Drumond L, Schmidt-Thieme L (2015) Hyperparameter Opti-
mization with Factorized Multilayer Perceptrons. In: Machine Learning and Knowl-
edge Discovery in Databases (ECML PKDD 2015), Lecture Notes in Computer Sci-
ence, vol. 9285, Springer, Cham, pp. §7-103. DOI: 10.1007/978-3-319-23525-7_6.

Schilling N, Wistuba M, Schmidt-Thieme L (2016) Scalable Hyperparameter Optimiza-
tion with Products of Gaussian Process Experts. In: Machine Learning and Knowledge
Discovery in Databases (ECML PKDD 2016), Springer, Cham, Lecture Notes in
Computer Science, vol. 9851, pp. 33—48. DOI: 10.1007/978-3-319-46128-1_3.

Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian Optimization of Machine
Learning Algorithms. In: Advances in Neural Information Processing Systems 25,
Curran Associates, Inc., pp. 2951-2959.

https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1023/A:1008306431147
https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/s12065-012-0073-8
https://doi.org/10.1007/978-3-642-35289-8_5
https://doi.org/10.1007/s10994-012-5286-7
https://doi.org/10.1007/s10994-012-5286-7
https://doi.org/10.1007/978-3-319-24465-5_26
https://doi.org/10.1007/978-3-319-23525-7_6
https://doi.org/10.1007/978-3-319-46128-1_3

16 Schilling et al.

Tieleman T, Hinton G (2012) Lecture 6.5-rmsprop: Divide the Gradient by a Running
Average of its Recent Magnitude. Neural Networks for Machine Learning 4(2):26-31,
COURSERA.

UCI Machine Learning Repository (2018) Datasets. URL: https://archive.ics.
uci.edu/ml/datasets.php.

Wistuba M, Schilling N, Schmidt-Thieme L (2015) Learning Data Set Similarities
for Hyperparameter Optimization Initializations. In: Proceedings of the 2015 In-
ternational Conference on Meta-Learning and Algorithm Selection (MetaSel’15),
CEUR-WS.org, Aachen (Germany), vol. 1455, pp. 15-26.

Zeiler MD (2012) ADADELTA: An Adaptive Learning Rate Method. arXiv preprint
(arXiv:1212.5701). URL: https://arxiv.org/abs/1212.5701.

https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
https://arxiv.org/abs/1212.5701

Hyperparameter Optimization Across Problem Tasks 17

Appendix

Table 2: Dataset overview (1/3), mainly provided via the UCI machine learning repository (dataset
names are searchable on UCI Machine Learning Repository (2018)), except for the energy dataset
(being a private dataset and not available via the repository).

Name #Classes #Features #Instances
Regression

Airfoil-self-noise 6 1,503
bodyfat 15 252
cadata 8 20,640
CASP 9 45,730
cpusmall 12 8,192
energy (private dataset, not via UCI) 102 50,088
eunite2001 16 336
housing 13 506
mg 6 1,385
mpg 7 392
pyrim 27 74
slice-localization 386 53,500
space-ga 6 3,107
triazines 60 186

Binary Classification

AlA 2 123 30,956
A9A 2 123 16,281
appendicitis 2 7 106
australian 2 14 690
banana 2 2 5,300
bands 2 19 539
bupa 2 6 345
census 2 41 142,521
chess 2 36 3,196
cod-rna 2 9 488,565
coil2000 2 85 9,822
covtype-binary 2 54 581,012
credit-a 2 16 690
credit-g 2 21 1,000

18

Schilling et al.

Table 3: Dataset overview (2/3), provided via the UCI machine learning repository (dataset names

are searchable on UCI Machine Learning Repository (2018)).

Name #Classes #Features #Instances
crx 2 15 653
diabetes 2 8 768
german-numer 2 24 1,000
heart 2 13 270
hepatitis 2 19 155
housevotes 2 16 435
ijjennl 2 22 91,701
ionosphere 2 34 351
kr-vs-kp 2 6 28,056
liver-disorders 2 5 200
magic 2 10 19,020
mammographic 2 5 961
mushrooms 2 112 8,124
phoneme 2 5 5,404
pima 2 8 768
real-sim 2 20,959 72,309
ring 2 20 7,400
saheart 2 9 462
sonar 2 60 208
spambase 2 57 4,597
spectfheart 2 44 267
splice 2 60 2,175
svmguidel 2 4 4,000
svmguide3 2 21 1,243
tic-tac-toe 2 9 958
twonorm 2 20 7,400
WIA 2 300 47,272
WSA 2 300 49,749
wdbc 2 30 569
wisconsin 2 9 699

Hyperparameter Optimization Across Problem Tasks

19

Table 4: Dataset overview (3/3), provided via the UCI machine learning repository (dataset names

are searchable on UCI Machine Learning Repository (2018)).

Name #Classes #Features #Instances
Multi-Class Classification

covtype 7 54 581,012
glass 6 9 216
mnist 10 780 60,000
poker 10 10 1,000,000
satimage 6 36 4,435
SensIT Vehicle (combined) 3 100 78,823
sensorless 11 48 58,509
shuttle 7 9 43,500
svmguide2 3 20 391
svmguide4 6 10 312
usps 10 256 7,291
vowel 11 10 528

	Hyperparameter Optimization Across Problem Tasks
	Introduction
	Related work
	SMBO-Based Hyperparameter Optimization
	Hyperparameter Optimization
	Sequential Model-Based Optimization

	Creation of the Meta Data
	Hyperparameter in Neural Networks

	Experiments
	Using all Meta Data
	Using Task-Specific Meta Data

	Conclusion

