KIT | KIT-Bibliothek | Impressum | Datenschutz

Pyrolysis-induced shrinking of three-dimensional structures fabricated by two-photon polymerization: experiment and theoretical model

Cardenas-Benitez, Braulio; Eschenbaum, Carsten; Mager, Dario; Korvink, Jan G.; Madou, Marc J.; Lemmer, Uli; De Leon, Israel; Martinez-Chapa, Sergio O.

Abstract:
The introduction of two-photon polymerization (TPP) into the area of Carbon Micro Electromechanical Systems (CMEMS) has enabled the fabrication of three-dimensional glassy carbon nanostructures with geometries previously unattainable through conventional UV lithography. Pyrolysis of TPP structures conveys a characteristic reduction of feature size—one that should be properly estimated in order to produce carbon microdevices with accuracy. In this work, we studied the volumetric shrinkage of TPP-derived microwires upon pyrolysis at 900 °C. Through this process, photoresist microwires thermally decompose and shrink by as much as 75%, resulting in glassy carbon nanowires with linewidths between 300 and 550 nm. Even after the thermal decomposition induced by the pyrolysis step, the linewidth of the carbon nanowires was found to be dependent on the TPP exposure parameters. We have also found that the thermal stress induced during the pyrolysis step not only results in axial elongation of the nanowires, but also in buckling in the case of slender carbon nanowires (for aspect ratios greater than 30). Furthermore, we show that the calculated residual mass fraction that remains after pyrolysis depends on the characteristic dimensions of the photoresist microwires, a trend that is consistent with several works found in the literature. ... mehr

Open Access Logo


Verlagsausgabe §
DOI: 10.5445/IR/1000097752
Veröffentlicht am 26.08.2019
Originalveröffentlichung
DOI: 10.1038/s41378-019-0079-9
Coverbild
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Lichttechnisches Institut (LTI)
Karlsruhe School of Optics & Photonics (KSOP)
3D Matter Made to Order (3DMM2O)
Publikationstyp Zeitschriftenaufsatz
Jahr 2019
Sprache Englisch
Identifikator ISSN: 2055-7434
KITopen-ID: 1000097752
HGF-Programm 43.22.03 (POF III, LK 01)
Erschienen in Microsystems & nanoengineering
Band 5
Heft 1
Seiten 38-52
Vorab online veröffentlicht am 26.08.2019
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page