Towards Consistency Analysis between Formal and
Informal Software Architecture Artefacts

Jan Keim, Yves Schneider, Anne Koziolek
Karlsruhe Institute of Technology
Karlsruhe, Germany
{jan.keim, yves.schneider, anne.koziolek} @kit.edu

Abstract—Documenting the architecture of a software sys-
tem is important, especially to capture reasoning and design
decisions. A lot of tacit knowledge can easily get lost when
the documentation is incomplete, resulting in threats for the
software system’s success and increased costs. However, software
architecture documentation is often missing or outdated. One
explanation for this phenomenon is the tedious and costly process
of creating documentation in comparison to (perceived) low
benefits. In this paper, we first present our long-term vision,
where we plan to persist information from any sources, e.g.
from whiteboard discussions, to avoid losing crucial information
about a system. A core problem in this vision is the possible
inconsistency of information from different sources. A major
challenge of ensuring consistency is the consistency between
formal artefacts, i.e. models, and informal documentation. We
plan to address consistency analyses between models and textual
natural language artefacts using natural language understanding
and plan to include knowledge bases to improve these analyses.
After extracting information out of the natural language docu-
ments, we plan to create traceability links and check whether
statements within the textual documentation are consistent with
the software architecture models. In this paper, we also outline
our requirements for evaluating our approach with the help of
a community-wide infrastructure and how our approach can be
used to maintain community-wide case studies.

Index Terms—Natural language processing, Software architec-
ture, Software engineering, Software architecture documentation,
Consistency, Natural language understanding

I. INTRODUCTION

The architecture of a software system plays a key role
for the success of the software system. According to [1]],
every well-engineered software system has a good architecture.
Thus, choosing a suitable architecture is important for the
development, maintenance, and evolution of the system system.
To find a suitable architecture, modelling the system can help.
Models improve communication capabilities and can enable
simulation and prediction of software quality attributes like
performance [2]. Modern software development principles
emphasize the importance of modelling [3], [4]. The importance
of modelling is especially emphasized for communication
reasons, but is also seen as key element for iteration planning.
For agile modelling, a practice-based methodology for effective
modelling and documentation of software-based systems, the
creation of models in small elements is fundamental [4].

Knowledge about the software architecture of a system is
important and preserving said knowledge is a key element
for Software Architecture Documentation (SAD). Architects

spend a significant part of the software architecture design
process on expanding their knowledge to come to good design
decisions [5]. Losing knowledge about the system usually
causes its deterioration [[6] and a method to avoid deterioration
is documenting said knowledge, including design decisions.
When design decisions and reasoning that lead to a certain
architecture are documented, the effort of gaining specific
knowledge about the software system also does not have to
be made again. Additionally, in [7]] the authors showed that
there is a positive impact of documentation on the adoption of
open source software (OSS). Although software architecture
documentation brings a lot of benefits, we stated in [§]]
some issues regarding current software documentation that
are outlined in the following.

a) Missing or outdated documentation: A common prob-
lem with SAD is the absence of documentation. Besides the
frequent absence of documentation, irregular updates also cause
the documentation to become outdated. Because of missing
up-to-date SAD, knowledge about a software system tends
to decline. As mentioned earlier, incomplete documentation
and missing knowledge results in the deterioration of software
systems and increased costs for maintenance and evolution [6],
especially for long-living systems. However, Ding et al. showed
in [9]] that only 108 out of 2000 open source projects had some
kind of documentation.

b) Consistency between artefacts: Consistency between
artefacts is important to avoid having any contradictory or
conflicting information in different artefacts. Some approaches
are already tackling consistency between models, e.g. [10],
[11]. When inconsistencies can be, preferably automatically,
found and resolved, architects and developers can operate on
different artefacts but still contribute to the same underlying
system. Thus, they can work with artefacts they are familiar
with and that are most suitable for their intentions. However,
consistency between models and informal software architecture
documentation is barely researched at all. Such informal arte-
facts include documentation written in natural language. Natural
language texts are a common choice for documentation [9],
because natural language is accessible and easy to use. However,
its freedom of expression also has drawbacks like potential
ambiguities and less suitability for automated processing.

A main reason for these problems is the tedious and costly
process of creating documentation and keeping it up-to-date.
The (perceived) benefit of documentation must be greater than

the cost of creating and maintaining it [4]. Moreover, software
architects who created the documentation usually do not rely on
the documentation themselves, reducing the perceived benefit
of creating documentation. It is important to research ways
that benefits both parts, reducing costs and improving benefits.

To approach the stated problems, we aim to use natural
language processing (NLP) and natural language understanding
(NLU) techniques. We plan to analyse natural language
documents to extract the contained information about software
architecture. We want to use the extracted information to
compare it with existing models and code of the software
system. To make NLP and NLU feasible in this context, we plan
to incorporate knowledge bases using ontologies with different
types of knowledge: Knowledge about software architecture in
general, domain-specific knowledge about the software system,
and project- and system-specific knowledge about the current
software system itself, i.e. models and code. We expect this to
provide our approach the possibility to gain a more thorough
understanding. A similar effort based on knowledge coming
from ontologies has been made with respect to programming in
natural language with promising results [[I2], where ontologies
were constructed from the API of a system. Considering that
modern development is characterised by agile methods and is
usually performed in an iterative and incremental manner, we
are confident to assume that models and code already exist,
thus can be used in our approach.

Case studies play an important role for our research,
both for analysing typical structures of software architecture
documentation as well as for evaluation purposes. This is
why we are interested in a community-wide infrastructure that
can provide a centralized access to case studies. Besides that,
we also believe that our planned approach can benefit the
community.

The rest of the paper is structured as follows. In[Section I1| we
present our long-term vision for the software architecture devel-
opment and documentation process. We outline in
our next goal about checking consistency, namely consistency
between models and software architecture documentation
written in natural language. In we discuss our
needs to be able to conduct proper evaluation of our approach
using community-wide case studies and how our approach
can benefit a community-wide infrastructure. An overview of
related research is given in and we conclude this

paper in

II. LONG-TERM VISION

Discussions about the architecture of a system under devel-
opment, e.g. in meetings, are a key aspect of development as
well as evolution of software. In these discussions, important
information about the software like design decisions and
their reasoning are discussed and sketches of the software
architecture are drawn on whiteboards and similar. Although
these discussions are important and often contain a lot of
essential information for the success of a software systems,
most information within these discussion are not documented.
Most of the time, only the results are persisted directly into

the software; reasoning and alternatives are not recorded in the
documentation.

Our long-term vision, as stated in [§]], is to explore how
we can improve this situation. We plan to explore ways
of capturing the information gained through discussions in
meetings, including whiteboard discussions. Besides these
face-to-face discussions, we also think about the inclusion
of other forms of communication like mailing lists or issue
trackers. For this, we want to explore in a first step whether
all necessary information can be extracted from spontaneous
speech and similar communication. For example, architects may
express relations like interactions or assumed dependencies
between components. In a second step, we want to explore
the inclusion of informal sketches into the processing to also
include information contained in these. Additionally, we want to
explore whether all collected information can be automatically
processed to be fed both into the documentation and the
software architecture, i.e. into software architecture models.

If automatic updates of models are feasible, ad-hoc pro-
cessing of discussions can be used to provide quick feedback.
This feedback can aid discussions by providing information
about possibilities and impossibilities of certain options and
solutions regarding constraints of the software system under
development. Additionally, these models can be used to predict
further system properties, e.g. performance. This is especially
useful to directly evaluate different design alternatives to find
a suitable solution.

With our approach, we want to accomplish the two major
goals mentioned in [§]]. Firstly, the problem of missing and
insufficiently documented software architecture should be
approached. Currently, information about alternative design
decisions or reasoning is often not persisted but instead thrown
away. We want to reduce the amount of tacit knowledge and we
want to reduce the chance of losing any important information
by simply persisting more information. This also creates the
need for an easy and fast access to the appropriate information
that a user is interested into to avoid actually reducing the
usefulness and handiness because users are overloaded with
information. Secondly, we want to reduce the overhead to create
software architecture documentation and models to support the
architect. This can be realized by automating needed processes
or parts of these processes. This way, architects won’t need to
spend lots of time with updating models and documentation
but can focus on the creation of the actual architecture and
on exploring alternative solutions. Additionally, this might
encourage to actually create and maintain documentation, thus
improve the overall development and maintenance process.

III. CONSISTENCY ANALYSIS

One problem for software development is consistency
between artefacts. If one artefact changes, the changes also
need to be transferred to other artefacts to ensure consistency
between artefacts. Especially in model-driven development,
there are different models with different views on the same
underlying information. There is already a research direction
that deals with the problem of consistency between models. In

[/
metamodel
MM

- __consistency
preservation

rule

@ viewtype

<« — — —» view trans-
formation

Figure 1. Example of a VSUMM in VITRUVIUS [13]

this direction, common approaches are typically using transfor-
mations between models. One approach within this direction
is the VITRUVIUS approach [14]]. A goal of the VITRUVIUS
approach is the generation of a virtual single underlying meta-
model (VSUMM) that ensures consistency between models
and allows accessing the models via views. An example
for a VSUMM can be seen in [Figure 1] where consistency
preservation rules exist between Java and UML and between
Java and the Palladio Component Model (PCM), a software
component model [[15]. Changes to a model of a concrete virtual
single underlying model (VSUM) are propagated with change-
driven incremental transformations to preserve consistency [10].
Within this direction falls the problem we want to tackle:
preserving consistency between models and informal artefacts.
Software architecture documentation can be seen as a special
view on a software system. When documentation is updated,
models need to be updated as well to reflect the adaptations
to the documentation. Similarly, when the software system
updates, e.g. because of an update to a model, there is
the possibility of inconsistent documentation. We see the
consistency problem as one of the reasons, why documentation
often is not done or why documentation deteriorates. In
the following, you can find two examples for statements in
documentations that might cause inconsistencies:

e “Component A is connected to component B via the
Interface 1.”
The architecture of the system initially matched this
statement. However, the connection between component
A and B was removed while refactoring the system.
This causes an inconsistency if the documentation is not
updated accordingly.
o “Component A and component B have to be deployed on
different machines.”
This constraint brings another possible kind of problem
regarding inconsistency. When it is violated in a later
development cycle, the inconsistency needs to be resolved
and either the violation needs to be repaired or the original
constraint needs to be updated.
This is why documentation, like other models, needs to be
reviewed and updated when changes happen. However, there
is the tendency to write less documentation due to consistency

. Software System
Domain Knowledge

Architecture Knowledge

SAD

3

Pre-processing
(Il a)

o

aq

[e}

?)
aseg

a3parmoury

—
—
=

NL Understanding Consistency

() Checks

= =

(Il b)

Figure 2. Overview of planned approach, based on [[16]

problems to avoid the overhead of updating the documentation
conscientiously.

A. Approach

As described in [§]], our idea is to tackle automated consis-
tency analysis between models and informal documentation.
In a first approach, we want to limit informal documentation
to natural language texts. We plan to combine NLP techniques
with knowledge bases about software architecture, the domain
of the software, and the software itself. An overview of
our planned approach is depicted in The approach
can be divided into three major parts: (I) creation of a
knowledge base or update of an existing one, (II) processing
of the natural language input that is split into (Il a) pre-
processing of the input SAD texts followed by (II b) the
main processing to generate a thorough understanding of the
text, and (IIT) analysing consistency by performing consistency
checks between the analysed natural language input and the
system’s architecture. This process should run every time an
artefact, i.e. documentation, architecture, or implementation,
changes to ensure consistency in each increment of a system.

The knowledge base in part (I) takes information from
three different levels into account. On the first level, there
is general knowledge about software architecture containing
concepts such as components, interfaces, and associations. This
general knowledge is extended with knowledge about specific
software architecture styles like microservice architectures.
The second level contains knowledge about the domain of the
software system, i.e. knowledge about the business domain.
This knowledge can be used to support different processing
steps. For example word sense disambiguation can be improved
by giving domain-specific senses more weight when examining
different meanings. The third level includes knowledge about
the current software system, especially about the current
software architecture and its models and preferably even
existing code. Overall, parts of this knowledge base can be
compared to ideas by Yuan [[17] to create an ontology-based
software architecture representation. The general parts of the
knowledge base, namely the general knowledge about software
architecture from level one and partly the domain-knowledge
from level two, can be shared with other projects. This also
means that a comprehensive ontology is not only useful for

our approach but might be useful for the software architecture
and software development community in general.

The purpose of part (I) is to gain understanding about
the input texts, i.e. the natural language software architecture
documentation. In this part, we plan to use a framework that
is based on the agent-based framework ProNat [16]], [18]]. The
processing begins with a pre-processing task (II a) that performs
basic NLP tasks like parsing, chunking, and sentence splitting.
Moreover, the input is transformed into a graph representation
to prepare the text for the main processing (I b). The main
processing tackles the NLU. Here, we intend to break down the
complex task into smaller subtasks. Each subtask will be solved
using a different agent. In our experience, this enables the usage
of more general approaches as well as the usage of existing
state-of-the-art techniques for each subtask. Additionally, the
usage of agents allows their independent execution. Still, agents
are intended to use information generated by other agents to
either enable their processing or to improve their results. Agents
can also run multiple times to improve their results, e.g. based
on new information provided by other agents. For example,
word sense disambiguation is needed to identify topics within
the document, but the identified topics might also improve the
disambiguation results, e.g. for wrongly disambiguated words.
Example tasks for agents also include coreference resolution
and named entity recognition. By providing access to the
knowledge base, agents can also become domain-aware.

Part (IIT) is used to process the previously gathered informa-
tion to check consistency. Using the gathered information as
well as reasoners and inference, the knowledge base is evaluated
for any discrepancies. For example, the documentation might
state that a specified interface is used by a component to interact
with another component. If there is no connection or the stated
interface cannot be matched with actually existing interfaces, an
inconsistency is found and the user, i.e. the software architect,
is notified. In our current plan, we do not want to automatically
resolve found inconsistencies yet.

B. Planned procedure

We briefly want to outline our intended procedure and the
next steps to realize our approach. A central aspect is the
iterative approach. Development on the three parts depicted in
will be done fairly simultaneously while each part will
be improved iteratively. We want to get results early that can
be used to decide on further necessary actions. Additionally,
dead ends or less promising strategies can be detected early
on and adjustments to our strategies can be made.

For the creation of the knowledge base, we plan to split the
knowledge base into different, mostly independent ontologies.
We also want to start with a simple and rather small knowledge
base to enable early prototypes of our approach. The knowledge
base will then be extended continuously. The general knowledge
will be based on ontology-versions of existing metamodels like
UML or PCM as well as metamodels for code, e.g. from
JaMoPlﬂ or MoDiSC(ﬂ We plan to derive these ontologies by

Uhttps://github.com/DevBoost/JaMoPP:
Zhttps://www.eclipse.org/MoDisco/

transforming existing Ecoreﬂbased metamodels into ontologies.
The system knowledge itself will then be represented by
instantiating the metamodels. We also plan to extend the base
ontologies with further needed attributes and properties, e.g.
to improve natural language processing and understanding, as
well as further relations, e.g. to express relations between PCM
and UML.

An important step to check consistency is the creation of
(traceability) links between text elements and elements within
the knowledge base. To have an early prototype, we plan to
start with simple links that can directly be derived from same or
similar naming. Successively, we plan to improve the discovery
of these links, e.g. by including synonyms as well as further
domain knowledge. As mentioned before, to process the text
we want to use the PARSE framework, where we can reuse
some already existing agents, e.g. an agent for named entity
recognition. New features like discovery of synonyms can then
be added by implementing new agents.

As soon as links are present, we plan to start the actual
consistency analyses. For these analyses, we need to research
the best ways. One method we want to explore could be
based on queries to the knowledge base. The queries could
be generated with the extracted information about relations or
kind of design decision in the input texts. A second method
could be based on inference and reasoners on the ontologies.
We also want to research, if a combination of different methods
is more suitable.

C. Benefits

In [8]], we described the reduction of time-consuming manual
work as a major goal of our approach. The human workload as
well as the amount of undesirable work may be reduced and
our approach might support the software architect to recognise
and update inconsistencies. We also see further benefits besides
the reduction of manual work. Firstly, consistency between
models and software architecture documentation is tackled.
In iterative development and evolution of software, where
software including its architecture and documentation needs
to be updated regularly, consistency checks are particularly
helpful. Our approach may also help reducing the overhead
needed for software architects to create and update either
documentation or models. When documentation or models
are updated, the respective other artefacts also need to be
updated and consistency between these should be ensured.
Additional benefits may arise, when this approach is combined
with tools and frameworks that can perform transformations
between code and software architecture models, e.g. within the
VITRUVIUS approach or with SoMoX [19] and similar tools.
Incorporating such a code-to-architecture-transformation could
also enable architecture conformance checks between SAD
in natural language and the implementation via the generated
software architecture models.

Moreover, our current plan involves a generation of trace-
ability links between documentation and models. This tackles

3https://wiki.eclipse.org/Ecore

https://github.com/DevBoost/JaMoPP
https://www.eclipse.org/MoDisco/
https://wiki.eclipse.org/Ecore

another problem of SAD as creating and maintaining trace-
ability links is still a challenge [20]. The created traceability
links may also increase knowledge and understanding about
the system.

IV. CONNECTION TO A COMMUNITY-WIDE
INFRASTRUCTURE

In this section, we want to outline our requirements for
evaluating our approach with the help of a community-wide
infrastructure and how our approach can be used to maintain
community-wide case studies.

In order to validate the proposed approach, we plan to use
various case studies. Several different case studies already exist
and each one offers different properties and advantages for
different application fields. Common case studies in the field
of software architecture include RUBiS| SPECjEnterprisef’}
and Sock Shop[?}

For our approach, one of the requirements to use case studies
for evaluation is an existing documentation that describes
textually the software architecture using natural language.
Preferably, the documentation should also include the reasoning
behind architectural decisions together with their context and
consequences. It would also be preferable, if a case study was
accompanied by an available GIT history and issue trackers,
so that other forms of natural language communication could
also be considered. While looking for such case studies, we
realized that they are hard to find. Although documentation is
one of the recommended practices for improving development
and maintenance support [21]], open source software often
either does not have any or only shallow documentation [9].
Furthermore, [22] showed that incomplete or confusing docu-
mentation is the biggest problem with open source software.
Two examples for suitable case studies that we found are
TeaStord’] and TEAMMATES|

For this reason, a central collection of maintained case studies
would be advantageous. They should particularly contain
models, implementation, and (natural language) documentation.
Such a collection is not only advantageous for us, but is
also beneficial to the whole software architecture research
community. Among other things, this would make it easier to
find and select suitable case studies. For us, an important motive
to have such a central collection is the possibility to evaluate
the generalizability and robustness of our approach. At the
same time, sharing case studies enables a proper comparison of
evaluation results of different approaches. Furthermore, having
an increasing amount of case studies would also enable the
creation of a natural language corpus dedicated to software
architecture. A dedicated software architecture documentation
corpus would make it possible to develop new machine learning
approaches or the adapt existing ones that are coined for
the processing of software architecture documents. Because

4http://rubis.ow2.org/

Shttps://spec.org/jEnterprise2018web/
Shttps://github.com/microservices-demo/microservices-demo
"https://github.com/DescartesResearch/TeaStore
8https://github.com/TEAMMATES/teammates

different approaches might need various kinds of artefacts of a
system, i.e. different kinds of models, the case studies probably
need to be (jointly) enriched with these artefacts. Artefacts of
the software system might include UML (component) models
as well as Palladio component models and similar. To ensure
consistency between the different artefacts, approaches like the
previously mentioned VITRUVIUS approach can be used.

Our approach can also help to maintain this central collection
of community-wide case studies. Researchers usually need to
get to know and understand the architecture and structure of a
case study to be able to decide if a case study is applicable
and suitable. For this and other purposes, documentation is
useful and important. Having consistent documentation for
a given software system and its architecture is therefore key
to a functioning case study infrastructure. Especially, when
a case study evolves or needs to be maintained, changes to
the software and the architecture might happen, resulting in
possibly outdated documentation. Our approach can help to
maintain the documentation and ensure consistency.

V. RELATED WORK

The underlying problems for our approach, including closely
related problems, can be found in various research directions.

Schroder and Riebisch [23]] tackle a similar problem that
is conformance checking between software architecture and
source code. With their approach, the software architect
can state architecture rules in a special controlled natural
language. A knowledge base is then created by combining
an ontology derived from these architecture rules with an
ontology derived from source code. Architecture violations
are then identified using reasoning on this knowledge base.
One major difference to our planned approach is the targeted
conformance. The approach by Schroder and Riebisch targets
conformance between software architecture and code while
we aim to check consistency between software architecture
documentation and software architecture. Additionally, their
approach processes controlled natural language, while we aim
to support natural language as it is easier to use and a common
choice for SAD [9].

The research direction covering traceability that usually spans
requirements and source code is also a closely related research
topic. Concepts and ideas to create these traceability links might
be helpful and mutual problems do exist. Zheng et al. developed
an approach that creates traceability links between features of
software product lines and source code through product line
architecture using an extended architecture description language
to describe product features [20]. Other research about trace-
ability focuses on the analyses of structure and dependencies
of source code [24]-[26]. These approaches, like many others,
use information retrieval methods to create traceability links.
Compared to our idea, they do not use NLU to gain a better
understanding of the underlying information. Although there
are approaches that consider semantics [27], these approaches
do not use the full potential of NLU techniques. They do apply
certain information retrieval methods that are more semantical,

http://rubis.ow2.org/
https://spec.org/jEnterprise2018web/
https://github.com/microservices-demo/microservices-demo
https://github.com/DescartesResearch/TeaStore
https://github.com/TEAMMATES/teammates

but they do not aim to gain considerable and proper natural
language understanding.

Another related research direction covers SAD and the
documentation of design decisions. Kruchten describes in [28]]
a classification of design decisions and provided an ontology to
capture said design decisions. He states that design decisions are
both explicitly and implicitly visible in the resulting software
architecture, where for example non-existence is only implicitly
visible. To understand the full reasoning behind a software
architecture, the implicit knowledge needs to be made explicit.
The architectural knowledge repositories introduced in [29] try
to tackles this problem. Alexeeva et al. [30] give an overview of
literature addressing design decision documentation including
publications aimed at consistency and compliance of decisions
and architecture. Yet, consistency between architecture and
design decisions is, in our opinion, barely tackled and focus
often lies on traceability.

Lastly, the research area of natural language processing,
especially for software engineering, is important in our context.
PARSE [31] is a project with the goal to transform spoken
explanation into script-like programs [18]]. The agent-based
framework ProNat [16] was developed to approach this goal.
As there are many shared problems and similar difficulties, we
plan to use parts of the research for PARSE. The problem of
mapping natural language texts to models in general is also
tackled by approaches that try to create models, i.e. UML
models, out of requirements and similar. Approaches are using
structural analyses [[32]] or semantic roles [33]] to resolve this
problem. Although the creation of models is different from
comparing the texts with existing models, underlying concepts
of the structural analyses or considering semantic roles can be
useful.

All the mentioned research directions are in one way or
another related to our goals or related to parts of our goals.
However, we do not see consistency between SAD in natural
language texts and software architecture models properly
tackled yet.

VI. CONCLUSION

In this paper, we presented our idea to improve software
architecture documentation. We explained that an important
benefit of software architecture combined with good documenta-
tion is the reduction of tacit knowledge. To tackle this problem,
we presented our long-term vision, where we want to explore
how to capture, understand, and persist what software architects
explain and discuss on whiteboards. In this process, as much
information as possible should be persisted to document design
decisions and reasoning. Additionally, models might be updated
automatically to predict quality attributes like performance.

We showed our next goal that consists of checking con-
sistency between software architecture models and informal
software architecture documentation in form of natural language
text, which we did not see properly covered in existing
research. We outlined our planned approach that uses an
agent-based framework to break down the whole task into
subtask and incorporates knowledge from different sources.

The expected benefits include consistent documentation and
increased traceability but also a reduction in the human
workload. We discussed our requirements to be able to properly
evaluate our ideas, i.e. the requirement to have a collection of
case studies. In the discussion we briefly highlighted possible
benefits of such a collection, both for us and for the community.
Moreover, we outlined, how our approach might be beneficial
for the maintenance of said collection.

REFERENCES

[11 N. Medvidovic and R. N. Taylor, “Software architecture: Foundations,
theory, and practice,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2, ser. ICSE "10. New
York, NY, USA: ACM, 2010, pp. 471-472.

[2] R. H. Reussner, J. Henss, and M. Kramer, “Introduction,” in Modeling
and Simulating Software Architectures — The Palladio Approach, R. H.
Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek, H. Koziolek,
M. Kramer, and K. Krogmann, Eds. Cambridge, MA: MIT Press,
October 2016, ch. 1, pp. 3-15.

[3] S. W. Ambler and M. Lines, Disciplined agile delivery: A practitioner’s
guide to agile software delivery in the enterprise. 1BM Press, 2012.

[4] S. W. Ambler, “Agile modeling,” http://agilemodeling.com/.

[5] R. Farenhorst and H. van Vliet, “Understanding how to support architects
in sharing knowledge,” in ICSE Workshop on Sharing and Reusing
Architectural Knowledge, 2009, pp. 17-24.

[6] D. L. Parnas, “Software aging,” in Proceedings of the 16th International
Conference on Software Engineering, ser. ICSE *94. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1994, pp. 279-287.

[71 S. A. Ajila and D. Wu, “Empirical study of the effects of open source
adoption on software development economics,” Journal of Systems and
Software, vol. 80, no. 9, pp. 1517-1529, 2007.

[8] J. Keim and A. Koziolek, “Towards consistency checking between
software architecture and informal documentation,” in 2019 IEEE
International Conference on Software Architecture Companion (ICSA-C),
2019, accepted, to appear. [Online]. Available: |https://sdqweb.ipd.kit
edu/publications/pdfs/keim2019nemi.pdf

[91 W. Ding, P. Liang, A. Tang, H. v. Vliet, and M. Shahin, “How do open

source communities document software architecture: An exploratory

survey,” in 19th International Conference on Engineering of Complex

Computer Systems, 2014, pp. 136-145.

M. E. Kramer, M. Langhammer, D. Messinger, S. Seifermann, and

E. Burger, “Change-driven consistency for component code, architectural

models, and contracts,” in /8th International ACM SIGSOFT Symposium

on Component-Based Software Engineering (CBSE), 2015, pp. 21-26.

H. Klare, “Multi-model Consistency Preservation,” in Proceedings of the

21st ACM/IEEE International Conference on Model Driven Engineering

Languages and Systems: Companion Proceedings, MODELS 2018,

October 2018, pp. 156-161.

M. LandhiduBer, S. Weigelt, and W. F. Tichy, “NLCI: a natural language

command interpreter,” Automated Software Engineering, vol. 24, no. 4,

pp. 839-861, Dec 2017.

J. Meier, H. Klare, C. Tunjic, C. Atkinson, E. Burger, R. Reussner,

and A. Winter, “Single underlying models for projectional, multi-view

environments,” in Proceedings of the 7th International Conference on

Model-Driven Engineering and Software Development (MODELSWARD

2019). SCITEPRESS, 2019, to appear.

E. J. Burger, “Flexible views for view-based model-driven development,”

in Proceedings of the 18th International Doctoral Symposium on

Components and Architecture, ser. WCOP ’13. ACM, pp. 25-30.

R. Reussner, S. Becker, E. Burger, J. Happe, M. Hauck, A. Koziolek,

H. Koziolek, K. Krogmann, and M. Kuperberg, “The Palladio

Component Model,” KIT, Fakultit fiir Informatik, Karlsruhe, Tech. Rep.,

2011. [Online]. Available: http://digbib.ubka.uni-karlsruhe.de/volltexte/

1000022503

S. Weigelt and W. F. Tichy, “Poster: ProNat: An Agent-Based System

Design for Programming in Spoken Natural Language,” in 37th IEEE

International Conference on Software Engineering (ICSE), vol. 2, 2015,

pp. 819-820.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

http://agilemodeling.com/
https://sdqweb.ipd.kit.edu/publications/pdfs/keim2019nemi.pdf
https://sdqweb.ipd.kit.edu/publications/pdfs/keim2019nemi.pdf
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

E. Yuan, “Towards ontology-based software architecture representa-
tions,” in Ist IEEE/ACM International Workshop on Establishing
the Community-Wide Infrastructure for Architecture-Based Software
Engineering, ECASE@ICSE. 1EEE, 2017, pp. 21-27.

S. Weigelt, T. Hey, and W. F. Tichy, “Context model acquisition from
spoken utterances,” International Journal of Software Engineering and
Knowledge Engineering, vol. 27, no. 09n10, pp. 1439-1453, 2017.

O. Travkin, M. Von Detten, and S. Becker, “Towards the combination
of clustering-based and pattern-based reverse engineering approaches.”
in Software Engineering (Workshops), 2011, pp. 23-28.

Y. Zheng, C. Cu, and H. U. Asuncion, “Mapping features to source
code through product line architecture: Traceability and conformance,”
in [EEE International Conference on Software Architecture, April 2017,
pp. 225-234.

S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of
the documentation essential to software maintenance,” in Proceedings of
the 23rd Annual International Conference on Design of Communication:
Documenting & Designing for Pervasive Information. ACM, 2005, pp.
68-75.

F. Zlotnick, “Github open source survey 2017, http://opensourcesurvey
org/2017/, Jun. 2017.

S. Schroder and M. Riebisch, “An ontology-based approach for docu-
menting and validating architecture rules,” in Proceedings of the 12th
European Conference on Software Architecture: Companion Proceedings,
ser. ECSA *18. ACM, 2018, pp. 52:1-52:7.

H. Kuang, P. Méder, H. Hu, A. Ghabi, L. Huang, J. Lii, and A. Egyed,
“Can method data dependencies support the assessment of traceability
between requirements and source code?” Journal of Software: Evolution
and Process, vol. 27, no. 11, pp. 838-866, 2015.

A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto, D. Poshy-
vanyk, and A. D. Lucia, “When and how using structural information to
improve IR-based traceability recovery,” in 17th European Conference
on Software Maintenance and Reengineering, 2013, pp. 199-208.

J. I. Maletic and A. Marcus, “Supporting program comprehension
using semantic and structural information,” in Proceedings of the 23rd
International Conference on Software Engineering, ser. ICSE *01. IEEE
Computer Society, 2001, pp. 103-112.

A. Mahmoud and N. Niu, “On the role of semantics in automated
requirements tracing,” Requirements Engineering, vol. 20, no. 3, pp.
281-300, September 2015.

P. Kruchten, “An ontology of architectural design decisions in software
intensive systems,” in 2nd Groningen workshop on software variability.
Citeseer, 2004, pp. 54-61.

P. Kruchten, P. Lago, and H. v. Vliet, “Building up and reasoning
about architectural knowledge,” in Quality of Software Architectures, ser.
Lecture Notes in Computer Science. Springer, 2006, pp. 43-58.

Z. Alexeeva, D. Perez-Palacin, and R. Mirandola, “Design decision
documentation: A literature overview,’ in Software Architecture, ser.
Lecture Notes in Computer Science. Springer, Cham, 2016, pp. 84-101.
S. Weigelt, “PARSE — Programming ARchitecture for Spoken Explana-
tions,” https://parse.ipd.kit.edu/,

0. Keszocze, M. Soeken, E. Kuksa, and R. Drechsler, “Lips: An IDE
for model driven engineering based on natural language processing,” in
Ist International Workshop on Natural Language Analysis in Software
Engineering (NaturaLiSE), 2013, pp. 31-38.

T. Gelhausen and W. F. Tichy, “Thematic role based generation of UML
models from real world requirements,” in International Conference on
Semantic Computing (ICSC), 2007, pp. 282-289.

http://opensourcesurvey.org/2017/
http://opensourcesurvey.org/2017/
https://parse.ipd.kit.edu/

