
An Architecture-based Approach for
Change Impact Analysis of
So�ware-intensive Systems

zur Erlangung des akademischen Grades einer

Doktorin der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Kiana Busch geb. Rostami

Tag der mündlichen Prüfung: 16. Juli 2019

Erster Referent: Prof. Dr. Ralf H. Reussner

Zweite Referentin: Prof. Dr. Barbara Paech

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 Inter-

national License (CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

https://creativecommons.org/licenses/by-sa/4.0/deed.en

Abstract

This thesis presents an architecture-based and model-based approach to change propa-

gation analysis of software-intensive technical systems, which considers heterogeneous

elements from di�erent domains.

One main property of software-intensive technical systems is sustainability. Sustain-

able systems have to continuously change due to internal change triggers, such as error

corrections, or external change triggers, such as changing environments
1
. The quality

attribute, which is concerned with the propagation of a change in a system, is referred to

as maintainability
2
. Thus, maintainability can be considered as a relevant quality attribute

of sustainable systems.

A change to an element of a system can result in further changes to other system

elements. If system elements belong to di�erent domains (e.g., information systems, busi-

ness processes, or automated production systems), changes can propagate across several

domains. For example, an automated production system can involve mechanical and

electrical/electronic components, as well as control software. If mechanical and/or electri-

cal/electronic components such as sensors change, they can also a�ect the corresponding

control software. Additionally, there are di�erent ways to implement a change request.

This can lead to di�erent implementation costs and can a�ect the quality attributes of

the changed system. Estimating the a�ected elements in advance can support the process

of decision making by analyzing the e�ects of a change in advance. However, manual

estimation of changes can be costly and time-consuming. Hence, there is a need for

an approach, which can automatically analyze the change propagation across di�erent

domains.

One possible category of approaches addressing this issue is based on models to analyze

the change e�ort in di�erent scenarios. However, most approaches in this category mainly

focus on the change propagation in only one domain. They neglect the e�ort of changing

a�ected elements in other domains. Neglecting a�ected elements results in inadequate

change e�ort estimation.

To address the aforementioned issues, this thesis presents a generic methodology to

support automated change propagation across several domains. The generic methodology

can be instantiated in a speci�c domain to obtain a change propagation analysis approach

in this domain. Thus, the generic methodology aims at improving the development process

of a model-based change propagation analysis approach by reusing the existing concepts

and best practices. The generic methodology is based on the Karlsruhe Architectural

Maintainability Prediction (KAMP) approach, which is concerned with the change prop-

1
Meir Lehman. “On understanding laws, evolution, and conservation in the large-program life cycle”. In:

Journal of Systems and Software 1 (1979), pp. 213–221.

2
ISO/IEC 25010:2011. Systems and software engineering – Systems and software Quality Requirements and
Evaluation (SQuaRE) – System and software quality models. 2011.

i

Abstract

agation analysis in information systems
3
. Further main contributions of this thesis are

as follows: i) Software systems are a main part of business processes of organizations.

Thus, they a�ect each other during the evolution in a mutual way. For this purpose,

the methodology was instantiated in business processes as an extension of the KAMP

approach to consider these mutual e�ects during the change impact analysis. ii) A fur-

ther approach was developed as an instance of the methodology to support the change

propagation in automated production systems based on the metamodels of mechanical

and electrical/electronic components, as well as control software according to the IEC

61131-3 standard. Thus, this approach enables the analysis of the change propagation in

system elements from di�erent sub-domains of automated production systems. iii) The

previous approaches to change propagation analysis in information systems, business

processes, and automated production systems consider the change propagation caused by

a change request at system level. However, the change requests can in general be speci�ed

at requirements level. Thus, this contribution complements the previous contributions by

extending the existing instances of the methodology to include the requirements changes.

These extensions are based on models representing requirements and design decisions. iv)

Instances of the methodology use change propagation rules to estimate the e�ects of a

change. To avoid the recurring technical code and to improve the readability of the change

propagation rules, a domain-speci�c rule language was developed. v) A new comprehen-

sive and multidimensional categorization of change triggers in business processes was

developed based on the results of a literature review.

The contributions of this thesis regarding the change propagation analysis were evalu-

ated using case studies in each domain. The precision and the recall of the automatically

generated results for di�erent case studies were calculated by comparing the tasks of

the generated results to implement the change scenarios with the corresponding man-

ually created task lists. Additionally, to evaluate the e�ort reduction by an automated

approach to change propagation analysis, the following two metrics were compared: i)

the ratio of the number of model elements, which have to be considered manually, to

the number of all model elements, and ii) the ratio of the number of model elements

generated by the automated approach in each domain to the number of all model elements.

In information systems and business processes, the community case studies “Common

Component Modeling Example (CoCoME)” and “modular Rice University Bidding System

(mRUBiS)” were used. A set of change scenarios for each case study was created based

on the aforementioned category of change triggers in business processes to evaluate the

corresponding approach. To analyze the external validity of the generic methodology,

the automated production systems were considered. For this purpose, the instance of the

generic methodology in this domain was applied to the community case study “extended

Pick and Place Unit (xPPU)”, which represents a lab-size plant. This plant consists of

mechanical and electrical/electronic components, as well as control software according to

the IEC 61131-3 standard.

3
Kiana Rostami et al. “Architecture-based Assessment and Planning of Change Requests”. In: Proceedings
of the 11th International ACM SIGSOFT Conference on Quality of Software Architectures. ACM, 2015,

pp. 21–30.

ii

Zusammenfassung

Die vorliegende Dissertation präsentiert eine automatische domänenübergreifende Wart-

barkeitsanalyse basierend auf der Architektur der Systeme, in deren Entwicklung und

Evolution verschiedene Domänen zusammenarbeiten müssen.

Eine der integralen Eigenschaften software-intensiver technischer Systeme ist ihre

Langlebigkeit. Langlebige Systeme unterliegen kontinuierlichen Anpassungen aufgrund

externer Änderungen, wie Änderungen ihrer Umgebung, oder auch interner Änderungen,

wie zum Beispiel Fehlerbeseitigungen
4
. Die Eigenschaft des Systems, die angibt, welcher

Aufwand erforderlich ist, um ein System gemäß eines gegebenen Änderungsszenarios zu

ändern, wird als Wartbarkeit bezeichnet
5
. Somit ist Wartbarkeit ein wichtiges Qualitätsat-

tribut langlebiger Systeme.

Eine initiale Änderung an einem Element im System kann weitere Änderungen an

anderen Systemelementen zur Folge haben. Stammen die betro�enen Systemelemente

aus mehreren Domänen, wie zum Beispiel aus den Domänen der Informationssysteme,

Geschäftsprozesse oder automatisierten Produktionssysteme, können sich die Änderungen

auch über mehrere Domänen hinweg mit Abhängigkeiten in alle Richtungen ausbreiten.

Ein automatisiertes Produktionssystem kann zum Beispiel aus mechanischen und elektri-

schen Bauteilen, sowie Steuerungssoftware bestehen. Eine Änderung an mechanischen

und/oder elektrischen Bauteilen, wie zum Beispiel Sensoren, kann zu Folgeänderungen

in der entsprechenden Steuerungssoftware führen. Zudem gibt es viele unterschiedliche

Möglichkeiten, wie eine Änderungsanfrage in einem System umgesetzt werden kann.

Verschiedene Möglichkeiten zur Umsetzung einer Änderungsanfrage können zu verschie-

denen Änderungsaufwänden, sowie unterschiedlichen Systemen bezüglich ihrer Qualitäts-

attribute führen. Das Abschätzen der Änderungsfolgen hat deshalb besondere Relevanz

im Entscheidungsprozess. Jedoch können manuelle Änderungsabschätzungen mit hohem

Zeit- und Kostenaufwand verbunden sein. Somit kann eine automatische und domänen-

übergreifende Änderungsausbreitungsanalyse vor der Umsetzung einer Änderungsanfrage

die Vorhersage der Änderungsaufwände und den Entscheidungs�ndungsprozess zu deren

Umsetzung unterstützen.

Eine Möglichkeit zur automatischen Änderungsausbreitungsanalyse ist ein modell-,

sowie szenariobasierter Ansatz zur Wartbarkeitsabschätzung, der Systeme aus mehre-

ren Domänen berücksichtigt. Jedoch konzentrieren sich bestehende modellbasierte und

szenariobasierte Ansätze meist auf die Änderungsausbreitung in einer Domäne und ver-

nachlässigen Änderungsaufwände der Elemente aus Domänen, die in einer gegenseitigen

4
Meir Lehman. “On understanding laws, evolution, and conservation in the large-program life cycle”. In:

Journal of Systems and Software 1 (1979), S. 213–221.

5
ISO/IEC 25010:2011. Systems and software engineering – Systems and software Quality Requirements and
Evaluation (SQuaRE) – System and software quality models. 2011.

iii

Zusammenfassung

Abhängigkeitsbeziehung zur betrachteten Domäne stehen. Dies führt zu einer unzurei-

chenden Abschätzung der Änderungsauswirkungen.

Die vorliegende Dissertation stellt eine generische Methode für eine automatische und

domänenübergreifende Änderungsausbreitungsanalyse vor. Durch die Instanziierung der

generischen Methode in verschiedenen Domänen kann ein vollständiger Ansatz zur au-

tomatischen Änderungsausbreitungsanalyse in der jeweiligen Domäne erstellt werden.

Somit hat die generische Methode zum Ziel, den Entwicklungsprozess einer modellba-

sierten Änderungsausbreitungsanalyse durch die Wiederverwendung von bestehenden

Konzepten zu verbessern. Die generische Methode basiert auf dem Karlsruhe Architec-

tural Maintainability Prediction (KAMP) Ansatz zur Änderungsausbreitungsanalyse in

Informationssystemen
6
. Weitere Beiträge dieser Dissertation können wie folgt zusammen-

gefasst werden: i) Software-Systeme sind integrale Bestandteile der Geschäftsprozesse

moderner Unternehmen. Daher beein�ussen sich Software-Systeme und Geschäftsprozes-

se gegenseitig während der Evolution. Angesichts komplexer gegenseitiger Beein�ussung

bietet der Ansatz als eine Instanz der generischen Methode und eine Erweiterung des

KAMP-Ansatzes eine automatische Änderungsausbreitungsanalyse in den sich gegenseitig

beein�ussenden Domänen der Informationssysteme und der Geschäftsprozesse. ii) Ba-

sierend auf Metamodellen zur Darstellung von mechanischen und elektrischen Teilen,

als auch der Steuerungssoftware im Standard IEC 61131-3 für speicherprogrammierbare

Steuerungen wurde ein weiterer Ansatz (ebenfalls als eine Instanziierung der generischen

Methode) für die Domänen der automatisierten Produktionssysteme entwickelt. Mit dem

Ansatz ist es möglich Änderungen über Systemelemente aus mehreren Sub-Domänen

von automatisierten Produktionssystemen zu verfolgen, um eine umfassende Liste von

Wartbarkeitsaufwänden zu erstellen. iii) Die Änderungsauslöser können sich entweder

auf Architekturmodellebene oder auf Anforderungsebene be�nden. Basierend auf Mo-

dellen zur Erfassung von Anforderungen und Entwurfsentscheidungen in der Domäne

der Informationssysteme, Geschäftsprozesse, sowie automatisierten Produktionssysteme

wurden die bestehenden Instanzen der generischen Methode zur Berücksichtigung von

Anforderungsänderungen erweitert. Somit ergänzt dieser Beitrag die bisherigen Beiträge

bezüglich der domänen-spezi�schen Änderungsausbreitungsanalysen. iv) Die Änderungs-

ausbreitung in den Instanzen der Methode wird durch Änderungsausbreitungsregeln

betrachtet. Hierzu wurde eine domänenspezi�sche Sprache zum Beschreiben der häu�g

benutzten Änderungsausbreitungsregeln zur besseren Lesbarkeit der Regeln sowie zur

Vermeidung von technischem Code vorgestellt. v) Weiter wurde ein mehrdimensionales

Kategorisierungsschema für die Änderungsauslöser in Geschäftsprozessen basierend auf

den Ergebnissen einer umfassenden Literaturrecherche vorgestellt.

Die Beiträge dieser Dissertation zur automatischen Änderungsausbreitungsanalyse wur-

den anhand von Fallstudien in der jeweiligen Domäne evaluiert. Für jede Fallstudie wurde

die Genauigkeit der Ergebnisse des jeweiligen Ansatzes im Vergleich zu manuell erstellten

Ergebnissen angegeben. Zudem wurde die Aufwandsersparnis durch eine automatische

Änderungsausbreitungsanalyse anhand des Vergleichs zweier Metriken gezeigt: i) Die erste

Metrik repräsentiert die Rate der Anzahl der tatsächlich zu ändernden Modellelemente

6
Kiana Rostami u. a. “Architecture-based Assessment and Planning of Change Requests”. In: Proceedings of
the 11th International ACM SIGSOFT Conference on Quality of Software Architectures. ACM, 2015, S. 21–30.

iv

Zusammenfassung

zur Anzahl der gesamten Modellelemente. ii) Die zweite Metrik repräsentiert die Rate

der Anzahl der vom Ansatz vorgeschlagenen Modellelemente zur Anzahl der gesamten

Modellelemente. Für die Validierung des Ansatzes zur automatischen Änderungsausbrei-

tungsanalyse in den Domänen der Informationssysteme und der Geschäftsprozesse wurde

basierend auf den Ergebnissen der systematischen Literaturrecherche zur Ermittlung

der Änderungsauslöser in Geschäftsprozessen repräsentative Änderungsauslöserklassen

identi�ziert. Diese repräsentativen Änderungsauslöserklassen wurden jeweils auf die

Community-Fallstudien “Common Component Modeling Example (CoCoME)” und “mo-

dular Rice University Bidding System (mRUBiS)” angewendet. Für die externe Validität der

Methode wurde die Domäne der automatisierten Produktionssysteme betrachtet. Hierzu

wurde die Instanz der Methode zur automatischen Änderungsausbreitungsanalyse in der

Domäne der automatisierten Produktionssysteme auf die Community-Fallstudie “extended

Pick and Place Unit (xPPU)” angewendet. Die betrachtete Anlage beinhaltet die elektri-

schen und mechanischen Bauteile sowie die Steuerungssoftware im Standard IEC 61131-3

für speicherprogrammierbare Steuerungen.

v

Danksagung

Zunächst möchte ich mich bei meinem betreuenden Professor Ralf Reussner bedanken.

Er hat mich schon zu Studienzeiten für die Wissenschaft begeistern können. Während

meiner Zeit als Doktorandin hat er mir immer wieder neue Möglichkeiten erö�net und

aufgezeigt und mich dabei unterstützt mein Forschungsthema voranzubringen. Auch sehr

herzlich möchte ich mich bei Doktor Robert Heinrich für unzählige Feedback-Runden

und Publikationsprojekte bedanken. Viele Gespräche mit ihnen waren für mich stets eine

Quelle der Inspiration.

Zudem möchte ich mich bei Professorin Anne Koziolek und Professorin Birgit Vogel-

Heuser für wertvolle Diskussionen und erfolgreiche Publikationsprojekte bedanken. Eben-

falls sehr bedanken möchte ich mich bei Professorin Barbara Paech, sowie den Professoren

Bernhard Beckert, Andreas Oberweis, Gregor Snelting, Rainer Stiefelhagen und Walter

Tichy für ihr wertvolles Feedback in Promotionsgesprächen.

Mein besonderer Dank gilt meinem besten Freund Axel für seine Unterstützung in

meinem Leben. Mit ihm konnte ich zahlreiche Diskussionen über das Thema meiner

Forschungsarbeit führen. Ebenfalls bedanken möchte ich mich bei meiner Familie, insbe-

sondere bei Nasrin dafür, dass sie immer für mich da ist.

Auch bei allen Mitarbeitern der SDQ und ARE Forschungsgruppen möchte ich mich sehr

herzlich für die schöne Atmosphäre und tolle Zusammenarbeit bedanken. Insbesondere bei

Sandro Koch, Angelika Kaplan, Johannes Stammel, und Dominik Werle möchte ich mich

für die intensive Zusammenarbeit bei der Betreuung von Studierenden und gemeinsamen

Publikationen bedanken.

Ebenfalls bedanken möchte ich mich herzlich bei den von mir betreuten Studierenden

insbesondere Jakob Bach, Angelika Kaplan, Sandro Koch, Martin Löper, Timo Maier,

Maximilian Peters, und Jannis Rätz für die sehr gute Zusammenarbeit und inspirierende

Gespräche.

vii

Contents

Abstract . i

Zusammenfassung . iii

1. Introduction . 1

1.1. Motivation . 1

1.2. Research Problems . 4

1.3. Research Idea . 5

1.4. Research Goal and Questions . 6

1.5. Context of Thesis . 7

1.6. Contributions . 8

1.7. Outline . 11

2. Foundations . 13

2.1. Model-Driven Software Development . 13

2.1.1. Modeling Languages . 13

2.1.2. Eclipse Modeling Framework . 15

2.2. Change Impact Analysis . 15

2.3. Palladio Component Model . 16

2.4. Metamodel of Business Processes . 16

2.5. Requirements Engineering . 17

2.5.1. Metamodel of Requirements . 19

2.5.2. Metamodel of Options . 20

2.5.3. Metamodel of Design Decisions 20

2.6. The IEC 61131-3 Standard . 21

2.7. Metamodel of Mechanical and Electrical/Electronic Parts of Automated

Production Systems . 22

2.7.1. Abstract Metamodel of Automated Production Systems 23

2.7.2. Speci�c Metamodel of Automated Production Systems 23

2.8. Karlsruhe Architectural Maintainability Prediction 25

3. State of the Art . 27

3.1. Change Propagation in Information Systems 27

3.2. Change Propagation in Business Processes 30

3.2.1. Dynamic Change Propagation in Business Processes 31

3.2.2. Change Propagation in Collaborative Processes 32

3.3. Change Propagation between Information Systems and Business Processes 33

ix

Contents

3.4. Model-based Change Propagation Analysis in Automated Production

Systems . 35

3.4.1. Change Propagation based on UML Models 35

3.4.2. Change Propagation based on Domain-speci�c Models 36

3.5. Change Propagation Analysis based on Requirements Modi�cation . . . 37

3.5.1. Change Propagation Analysis in Information Systems and

Business Processes based on Requirements Modi�cation 38

3.5.2. Change Propagation Analysis in Automated Production Systems

based on Requirements Modi�cation 39

3.5.3. Discussion on Approaches to Change Propagation Analysis based

on Requirements Modi�cation . 40

3.6. Domain-speci�c Languages for Specifying the Change Propagation Rules 40

3.7. Metamodel of Control Software in Automated Production Systems . . . 42

3.8. Discussion . 43

4. Running Examples . 45

4.1. Media Store Example . 45

4.1.1. Model of Software Architecture 45

4.1.2. Model of Business Process . 46

4.2. Minimal Plant Example . 47

4.2.1. Model of Mechanical and Electrical/Electronic Parts 47

4.2.2. Model of Software . 49

5. Maintainability Analysis Methodology . 51

5.1. Generic Methodology for Domain-Spanning Change Propagation Analysis 52

5.2. Domain-independent Elements . 55

5.2.1. Domain-independent Metamodel of Modi�cation 56

5.2.2. Task List Algorithms . 57

5.2.3. Task List Reduction . 60

5.3. Domain-speci�c Elements . 61

5.3.1. Change Propagation Analysis for Elements of Domain Metamodel 62

5.3.2. Change Propagation Analysis for Elements of Context Metamodel 63

5.3.3. Algorithm of Di�erence Calculation 65

5.4. Process of Instantiating the Maintainability Analysis Methodology . . . 65

5.5. Conclusions . 66

6. Change Propagation Analysis in Business Processes 69

6.1. Change Propagation Analysis for Co-evolution of Information Systems

and Business Processes . 70

6.2. Change Propagation Analysis for Elements of Domain Metamodel 71

6.2.1. Metamodel of Domain . 71

6.2.2. Domain-speci�c Metamodel of Modi�cation 75

6.2.3. Algorithm of Change Propagation Analysis 78

6.3. Change Propagation Analysis for Elements of Context Metamodel 92

6.3.1. Metamodel of Context Elements 92

x

Contents

6.3.2. Metamodel of Task Type . 92

6.3.3. Algorithm of Context Task List 93

6.4. Algorithm of Di�erence Calculation . 93

6.5. Conclusions . 93

7. Change Propagation Analysis in Automated Production Systems 95

7.1. Change Propagation Analysis for Co-evolution of Mechanical,

Electrical/Electronic, and Software Elements 96

7.2. Change Propagation Analysis in Mechanical and Electrical/Electronic

Elements . 97

7.2.1. Change Propagation Analysis for Elements of Domain Metamodel 97

7.2.2. Change Propagation Analysis for Elements of Context Metamodel 107

7.2.3. Algorithm of Di�erence Calculation 110

7.3. Change Propagation Analysis in Control Software 110

7.3.1. Change Propagation Analysis for Elements of Domain Metamodel 110

7.3.2. Change Propagation Analysis for Elements of Context Metamodel 121

7.3.3. Algorithm of Di�erence Calculation 124

7.4. Conclusions . 124

8. Change Propagation Analysis from Requirements to a Specific Domain 125

8.1. Change Propagation Analysis for Requirements 126

8.2. Change Propagation Analysis for Elements of Domain Metamodel 127

8.2.1. Metamodel of Domain . 127

8.2.2. Domain-speci�c Metamodel of Modi�cation 128

8.2.3. Algorithms of Change Propagation Analysis 131

8.3. Change Propagation Analysis for Elements of Context Metamodel 137

8.4. Algorithm of Di�erence Calculation . 137

8.5. Conclusions . 138

9. A Language for Change Propagation Rules . 139

9.1. Problem Statement . 140

9.1.1. Event Example – Forward Reference 141

9.1.2. Actor Example – Backward Reference 141

9.1.3. Discussion . 142

9.2. Requirements for Change Propagation Rule Language 143

9.3. Language Design . 143

9.3.1. Rule File . 144

9.3.2. Rule . 146

9.4. Assumptions and Limitations . 149

9.5. Conclusions . 150

10. Categories of Change Triggers in Business Processes 151

10.1. Terminology . 151

10.2. Research Method . 152

10.2.1. Pilot Study . 152

xi

Contents

10.2.2. Review Protocol . 157

10.3. Findings . 161

10.3.1. Publications on Categories of Change Triggers in Business Processes 161

10.3.2. Empirical Studies to Change Triggers in Business Processes . . . 165

10.4. Categorization of Change Triggers in Business Processes 167

10.4.1. W-Questions . 167

10.4.2. Category of Change Triggers in Business Processes 168

10.4.3. Bene�ts of an Explicit Category of Change Triggers 172

10.4.4. Design Decisions and Assumptions 172

10.5. Threats to Validity . 172

10.6. Conclusions . 173

11. Evaluation . 175

11.1. Maintainability Analysis Methodology 175

11.1.1. Evaluation Goals, Questions, and Metrics 177

11.1.2. Evaluation Results . 178

11.1.3. Assumptions and Limitations . 180

11.2. Change Propagation Analysis in Business Processes 181

11.2.1. CoCoME Case Study . 181

11.2.2. mRUBiS Exemplar . 183

11.2.3. Evaluation Goals, Questions, and Metrics 185

11.2.4. Change Scenarios and Evaluation Results for CoCoME 189

11.2.5. Change Scenarios and Evaluation Results for mRUBiS 199

11.2.6. Summary of Evaluation Results 207

11.2.7. Assumptions and Limitations . 210

11.3. Change Propagation Analysis in Automated Production Systems 212

11.3.1. xPPU Case Study . 212

11.3.2. Change Propagation Analysis in Mechanical and

Electrical/Electronic Elements . 213

11.3.3. Change Propagation Analysis in Control Software 220

11.3.4. Assumptions and Limitations . 225

11.4. Discussion of Evaluation Results and In�uencing Factors 225

11.4.1. Discussion of Evaluation Results 225

11.4.2. In�uencing Factors on Results of Change Propagation Approaches 227

11.4.3. Threats to Validity . 231

12. Conclusion . 235

12.1. Summary . 235

12.2. Outlook . 237

A. Appendix . 241

A.1. Relations between International Electrotechnical Commission (IEC)

Model Elements . 241

A.2. Supplementary Material for the Literature Review 246

xii

Contents

Bibliography . 254

xiii

1. Introduction

This thesis presents a generic methodology to develop change propagation analysis ap-

proaches. Instances of the methodology in di�erent domains can be used to analyze the

change propagation in the corresponding domain. This chapter discusses the research

goal and questions derived from research problems, which resulted in the development of

the methodology and its instances.

1.1. Motivation

As software-intensive technical systems are in operation for many years, they can be con-

sidered as sustainable systems [Vog+17]. Sustainable systems have to change continuously

to provide their functionality. This can be considered as a generalization of the Lehman’s

law [Leh79] regarding the continuing change of systems, which do not consist only of

software. The “degree of e�ectiveness and e�ciency with which a product or system can

be modi�ed by the intended maintainers” is de�ned as maintainability [ISO11]. Thus,

maintainability can be considered as one of the main quality attributes of sustainable

systems [HBK18]. According to the above de�nition, the maintainability of a system

correlates with the e�ects of changes in this system. The changes can have their source

within a system, also referred to as internal change triggers, or outside a system, also

referred to as external change triggers [AJ00]. An example of the internal change triggers is

the category of the corrective maintenance, as introduced by Swanson [Swa76]. This type

of the maintenance is concerned with the changes caused by failures and errors in the

system [Swa76]. By contrast, the adaptive maintenance can be considered as an external

change trigger, as it is caused by changes in the environment [Swa76]. Additionally, a

change in a system can cause further changes in the system, also known as change prop-
agation. Hence, the maintainability of a system depends not only on the system under

study, but also on the speci�c change request. In other words, a system can be easier to

maintain for certain change requests, while it is harder to maintain for other requests at

the same time. In order to determine the maintainability of a system for a change request

in advance, the e�ects of this request on the system have to be estimated.

The process of estimating the e�ects of a change starts with a change request, which

initially a�ects a set of system elements. Bohner refers to this set as the Starting Impact

Set (SIS) [Boh02]. The change propagates from the SIS to other system elements. The set

of system elements, which have to actually change due to the SIS, is called Actual Impact

Set (AIS) [Boh02]. However, the change propagation analysis can only estimate the set

of a�ected system elements. In other words, this set is not necessarily equal to the AIS.

The result set of the analysis is also referred to as Candidate Impact Set (CIS) [Boh02]. As

the change propagation analysis can overestimate the AIS, the CIS can include system

1

1. Introduction

elements, which are not actually a�ected [Boh02]. It is also possible to underestimate

the AIS. In this case, a�ected system elements are missing in the result of the change

propagation analysis [Boh02]. According to Bohner [Boh02], the main goal of the change

propagation analysis is that both sets CIS and AIS are as close as possible. This goal is

one of the main challenges during the development of an approach to change propagation

analysis.

The estimation of the e�ects of a change request correlates with how a change request

is implemented. There are often more than one possibility to implement a change [Sta15].

This depends on the SIS, which results from the change request. In other words, di�erent

SIS can lead to di�erent implementations of a change request. This results in di�erent

e�orts and costs depending on how to implement a change request. Thus, estimating

the e�orts of di�erent implementations in advance can help in the decision-making

process [Sta15]. Summarized, one challenging task during the change propagation analysis

is to identify the appropriate implementation of a change request in advance.

Software-intensive technical systems can be composed of elements, which originate

from di�erent domains. In this context, the term domain refers to a discipline, which

comprises systems providing di�erent functionality, but addressing similar business and

technical needs, and are subject to common requirements and terminology. Thus, the

term domain refers to two dimensions: While the �rst dimension regards application

domains, the second dimension is concerned with abstraction levels. Examples of domains

are Information Systems (IS), Business Processes (BP), and automated Production Systems

(aPS).

System elements from di�erent domains can in�uence each other. Examples of domains

a�ecting each other are IS and BP, as IS can be considered as a main part of the BP in

organizations. Mooney et al. categorize the e�ects of IS on BP in automational, informa-
tional, or transformational e�ects [MGK96]. This example shows that system elements

from di�erent domains seldom evolve in isolation, but rather co-evolve. Thus, it is not

su�cient to consider only one domain during the change propagation analysis [Ros+17a].

Summarized, a further challenging task during the estimation of the change e�ort is

considering the a�ected domains and their e�ects on each other.

Software-intensive technical systems do not comprise only software, but also other

elements such as hardware (e.g., sensors or actuators). In other words, a domain can

consist of further sub-domains. For example, the systems in aPS can comprise mechanical

and electrical/electronic components, as well as control software [Vog+17]. Changing a

mechanical and/or electrical/electronic component in these systems can lead to further

changes in the control software [Hei+18]. For example, a change to a sensor in a plant can

lead to a change in the corresponding functionality in the control software [Vog+14a]. If

the change propagation analysis considers only the mechanical and/or electrical/electronic

components, the e�ects of the change on the control software are missing in the result.

Additionally, the approach has to consider the change propagation between hardware and

software of a system, and from a system to its behavior. Summarized, a change propagation

analysis approach has to be able to deal with the heterogeneity of system elements.

The development process of a system involves not only the structure of the system,

but also di�erent organizational and/or technical artifacts [Sta15; Con68; Boh02]. For

example, after the change requests have been implemented in a system, the system has to

2

1.1. Motivation

be tested [Boh02]. This task causes further e�orts in the implementation of the change

requests. Motivated by Conway’s law, there is a dependency between the communication

structures in an organization and the resulting system [Con68]. Thus, it is important to

consider the system not in isolation but rather regarding other in�uencing factors such

as the organization, as also introduced by other researchers such as Stammel [Sta15].

There are also further project-planning tasks, which also have to be considered during

the implementation of a change request [Sta15]. An example of these tasks is assigning

a task to the responsible sta� in an organization during the implementation of a change

request [Sta15]. Summarized, a further challenging task is identifying and considering dif-

ferent organizational and technical artifacts, which are relevant for the change propagation

analysis of a speci�c system.

Current approaches mainly focus on the change propagation analysis in systems com-

prising elements from only one domain [HBK18]. Thus, they neglect the e�ects of a change

to the system elements in one domain on the system elements in other domains [HBK18].

In other words, to analyze the change propagation across di�erent domains, the results

of di�erent approaches developed independently of one another have to be combined.

However, there are fundamental di�erences between the approaches developed in di�erent

domains, or even between di�erent approaches developed in the same domain [HBK18].

For example, the change propagation analysis can be performed manually, automatically,

or semi-automatically. Further, the approaches can be based on di�erent concepts, such as

model-based approaches (e.g., [Sta15]) or code-based approaches in IS (e.g., [Wei81]). There

are also further categories or several sub-categories of the aforementioned categories. For

example, the model-based approaches can use general-purpose modeling languages such

as Uni�ed Modeling Language (UML) (e.g., [BLO03]) or can be based on the modeling

languages tailored to the domain or even to the system under study (e.g., [Hei+18]). In

general, not every category of change propagation analysis approaches can be generalized

to other domains (e.g., code-based approaches in IS). Additionally, there are also di�erent

ways to calculate the output of an approach based on the input of the approach. For this

purpose, di�erent types of algorithms can be used [HBK18]. Even, the outputs of the

approaches can vary [HBK18]. While some approaches calculate the e�ort of a change,

for example based on experts’ experience or prede�ned metrics (e.g., [Boe+00]), other

approaches aim at identifying the a�ected system elements without calculating the costs

of the changes (e.g., [RT01]). Even though we consider only one category of the change

propagation analysis approaches, their results can be at di�erent levels of abstraction.

Summarized, neither di�erent change propagation analysis approaches from di�erent

domains nor the results of them can be easily combined to obtain a domain-spanning

change propagation analysis approach [HBK18]. Thus, there is a need for an approach,

which analyzes the change propagation across domains.

The problems and challenges discussed in this section can be summarized as follows:

Problem 1: Di�erent ways to implement a change request: A change request can be im-

plemented in di�erent ways, which lead to di�erent costs of the development. Iden-

tifying the appropriate implementation in advance supports the decision-making

process. Thus, a challenging task during the implementation of a change request is

to identify the appropriate implementation in advance.

3

1. Introduction

Problem 2: Co-evolution of di�erent domains: System elements a�ected by a change re-

quest can belong to di�erent domains. In other words, di�erent domains a�ect

one another during their evolution. This leads to co-evolution of di�erent domains.

Thus, considering the a�ected domains and their e�ects on each other is one of the

main challenges during the change e�ort estimation.

Problem 3: Heterogeneity of elements: System elements that belong to di�erent domains

are often heterogeneous. For example, a system can consist of hardware (e.g., actua-

tors and sensors) and software. Hence, the change propagation analysis approach

has to be able to consider heterogeneous system elements.

Problem 4: Mismatch of approaches in di�erent domains: One solution idea to address

the previous problems regarding heterogeneous elements from di�erent domains is

to combine the change propagation analysis approaches from these domains or their

results. However, change propagation analysis approaches from di�erent domains

cannot be easily combined to obtain a change propagation analysis approach cover-

ing di�erent domains. It is also di�cult to combine their results. The main reasons

for the problems regarding the compatibility of approaches with each other is that

both approaches and their results are at di�erent abstraction levels, are designed

due to di�erent goals, or can deal only with speci�c types of systems or elements

(e.g., code-based or model-based approach).

Problem 5: Additional organizational and technical e�orts: A change request does not af-

fect only the system elements, but can also cause organizational and technical e�orts.

These e�orts are usually caused by adapting artifacts such as test cases or documen-

tations. Thus, a further challenging task is to identify and consider these e�orts for

a speci�c system and a given change request.

1.2. Research Problems

The previous section discussed the problems and challenges during the development of

an approach to change propagation analysis, which has to consider the co-evolution of

systems from di�erent domains. This section summarizes the discussed problems to derive

the main research problems, which this thesis addresses.

Research problem 1: No common language for heterogeneous elements: Software-

intensive technical systems are sustainable systems, which, in general, are composed

of heterogeneous elements. As discussed by problem 3, if the approach cannot

consider the heterogeneous elements of a system, the results of the approach cannot

fully consider the e�orts of a change on this system. The main problem is caused

due to the fact that there is not any common language to describe the heterogeneous

elements. Additionally, di�erent approaches for speci�c types of elements are not

compatible to each other, as described by problem 4. Nevertheless, it is desirable to

estimate the e�ects of a change to the heterogeneous elements of a continuously

evolving system in advance. This is mainly important due to problem 1, as di�erent

4

1.3. Research Idea

ways to implement a change can have di�erent e�ects on a system. In particular,

di�erent implementation ways can also in�uence di�erent quality attributes of a

system such as maintainability of the system for future changes. Summarized, it is

di�cult to estimate the e�ects of a change to one system element on other system

elements due to their heterogeneity and lack of a common language.

Research problem 2: Undocumentedmutual dependencies: Heterogeneous elements of

software-intensive technical systems can originate from di�erent domains, as de-

scribed by problem 2. However, these elements depend on one another and, thus,

a�ect one another in a mutual way during the evolution. These mutual dependencies

between heterogeneous elements from di�erent domains are often undocumented.

This applies to the context of a system, as a change can also cause organizational

and technical e�orts (cf. problem 5). Summarized, these factors make the prediction

of the change propagation more challenging.

1.3. Research Idea

This section describes the research ideas to address the research problems discussed in the

previous section.

One possible solution to abstract from the heterogeneity of systems’ elements is to use

architectural models, as they represent the “structure, function, or behavior” of a system

in an abstract way [SV06, p. 18]. To use models as a main part of systems, as well as

their development and evolution, they have to be de�ned in a formal way [SV06]. For

this purpose, a formal modeling language can be used [SV06]. Metamodels de�ne the

main constructs of a modeling language and their relations [SV06]. Thus, model-based

approaches can be used to analyze the change propagation in software-intensive technical

systems involving heterogeneous elements from several domains.

Using a model-based approach correlates with the question regarding the relevant

system properties for a change propagation analysis approach, which the system model

has to represent (cf. [Sta73]). One possible solution is the use of models representing the

system’s structure, also known as system’s architecture, as the main artifact during the

change propagation analysis. The structure of a system consists of system elements and

their relationships. Using the system’s structure as the main artifact is motivated by the

reason that “a system’s architecture is the set of principal design decisions made during

its development and any subsequent evolution” [MT10, p. 1]. Additionally, the system’s

structure a�ects the quality attributes of a system [Ros+15b; Sta15; TMD09]. To consider

the impact of a�ected organizational and technical artifacts, the system’s structure can

be annotated by these artifacts [Ros+15b; Sta15]. Thus, considering these artifacts in

addition to the system’s structure can help to estimate the e�ects of a change request more

completely [Ros+15b; Sta15].

To enable the change propagation between heterogeneous elements and across di�erent

domains, a dependency analysis can be used. The concept of dependency analysis has been

used by many researchers in di�erent ways especially in the context of change propagation

analysis (e.g., program slicing [Wei81]). In this context, the idea of a dependency analysis,

5

1. Introduction

in a broader sense, is to utilize the di�erent types of dependencies between di�erent types

of systems’ elements for the change propagation analysis (e.g., [Sta15]). For this purpose,

the relevant types of dependencies for the change propagation between the potentially

a�ected types of systems’ elements have to be identi�ed. The types of systems’ elements

in a single or di�erent domains and the types of their dependencies can be derived from

the metamodel describing the systems’ structure, as it represents di�erent element types

and the relations between them [Con68; SV06].

To combine di�erent change propagation analysis approaches developed in di�erent

domains and/or their results, there is a need for a generic guideline for developing such

approaches. On the one hand, the guideline has to homogenize the results of di�erent

approaches to make them compatible with one another by providing a generic framework.

On the other hand, it has to abstract from individual implementations to allow the devel-

opment of approaches at di�erent granularity levels. Especially, the guideline must not

assume a speci�c programming language or a metamodeling framework. Additionally, the

guideline has to be applicable to di�erent domains and the system within them. Thus, the

guideline shall be mainly considered conceptually.

1.4. Research Goal and Questions

To address the research problems discussed previously the following research goal was

de�ned.

Overall Research Goal Generalize the existing architecture-based approaches to change

propagation analysis in information systems to a domain-spanning approach based

on the system’s architecture and process design, which can also consider the e�ects

of changing di�erent technical and organizational artifacts over the development

and the evolution process of a system.

To achieve this goal, the main research question was de�ned as follows:

Main Research Question Is an architectural model a suitable abstraction to identify change

e�ort across domains?

To analyze the main research question constructively, the following research questions

were derived from the main research question and were designed to address both research

problems:

Research Question 1: How can model-based and architecture-based approaches to change

propagation analysis in information systems be generalized to a generic approach,

which can be applied to the systems comprising heterogeneous elements from

di�erent domains?

Research Question 2: How can the e�ects of a change be identi�ed based on the architec-

ture and using di�erent technical and organizational artifacts over the development

and the evolution process of a system in order to re�ect the mutual dependencies

between heterogeneous elements?

6

1.5. Context of Thesis

1.5. Context of Thesis

In the previous sections, the main research ideas, goals, and questions were presented.

This section describes the scope of the thesis and the main assumptions on the context.

System development process: This thesis proposes approaches to analyze the maintain-

ability of systems in terms of estimation of change e�orts. The development process

of a system in several development models involves di�erent phases such as design,

implementation, and maintenance. Thus, the main usage contexts of the proposed

approaches are the later phases of the development process (e.g., during the opera-

tion and maintenance [Som06]). Nevertheless, they can also be used in the earlier

development phases (e.g., during the design phase [Som06]). In these phases, the

approaches help to analyze the e�ects of frequent or potential future changes on the

design to develop a system with regard to these changes. Even though the changes

to the system in the later phases of the development process may di�er from the

estimated changes in the earlier phases of the development process, the system can

be designed in accordance to maintainability characteristics by considering frequent

or potential changes. In this way, the e�orts for this type of changes can be reduced.

Systems’ architecture: As described in Section 1.3, the approaches are based on the idea of

dependency analysis. Thus, they can be applied to the class of systems, which can be

described as interconnected elements. The granularity of elements di�ers depending

on di�erent in�uencing factors such as phases of the development process. While

the elements in the earlier development process are rather coarse-grained, they can

be decomposed into �ne-grained elements in the later development process. The

more �ne-grained the elements of a system, the more precise the e�orts of a change

to them can be estimated. However, regardless of the granularity of elements, the

approaches can be applied to this class of systems.

Modeling concepts: The approaches described in this thesis can be applied to a wide range

of systems involving heterogeneous elements from di�erent domains. Thus, the

approaches have to abstract from the heterogeneity of systems and their elements.

For this purpose, modeling concepts were used to describe the system at an abstract

level, as discussed in Section 1.3. Thus, one of the main assumptions to use the

proposed approaches is that the elements of a system and their relationships can be

modeled.

Static change propagation analysis: One of the classi�cation of dependency analysis ap-

proaches in IS is static and dynamic change propagation analysis approaches, or

a combination of them, depending on whether the change propagation analysis

approach uses only the structure of a system or run-time analysis (cf. [Kil08; Tip95]

especially in context of program slicing). Although this classi�cation was developed

for IS, it can be generalized to systems in other domains. The approaches presented

in this thesis are mainly concerned with the change e�ort estimation on the basis

of systems’ structure. Thus, the approaches can be considered as static change

propagation analysis approaches in a broader sense, as they can be applied not only

7

1. Introduction

to IS, but also to other domains. In other words, the approaches are not applicable

to the behavior of systems at run-time (i.e., dynamic change propagation analysis).

However, the behavior of a system can be seen as linked activities by considering

the connection to its environment. In this case, the behavior of a system and the

relationship between the system’s elements and its behavior can also be modeled.

In this way, the e�ects of a change to the system on its behavior or vice versa can

be analyzed.

Domain experts: Di�erent roles are involved during the development of a system. The

proposed approaches aim at providing support to domain experts by the maintain-

ability analysis. A domain expert refers to an expert in a speci�c domain. In the

context of this thesis, the role of the domain expert can be narrowed to the experts

who are concerned with the maintainability of the system under study in a speci�c

domain. Note that domain experts are not necessary the same persons, who are

concerned with the development of a change propagation analysis approach. Ex-

amples of domain experts can be software architects in IS, process designers in BP,

and plant manufacturers in aPS [HBK18]. This role is di�erently called by di�erent

researchers. For example, Sommerville referred to this role as maintenance engineer
in [Som06].

Change requests: Change requests are often formulated in natural language. Identifying

the initial change in a system based on a change request is not a trivial task and

has to be undertaken by domain experts [Sta15]. Thus, the proposed approaches

assume that initial changes to systems based on a given change request are known

in advance.

1.6. Contributions

This section gives an overview of the contributions of this thesis and how they answer

the identi�ed research questions to address the overall research goal. Figure 1.1 gives

an overview of the correspondence between the contributions and the chapters of this

thesis on the one hand and the research questions on the other hand. In the following, the

contributions and their correspondence to the research questions are discussed in more

detail.

AMethodology to change propagation analysis: The methodology provides a generic

guideline to develop a change propagation analysis approach in a speci�c domain.

It is based on an approach to change propagation analysis in IS. The methodology

abstracts from the heterogeneity of individual system elements by using modeling

concepts. The change propagation analysis is mainly based on the system’s structure,

which can be annotated with di�erent technical and organizational artifacts. The

idea of the change e�ort estimation is based on the dependency analysis between the

heterogeneous elements. Thus, the methodology answers the �rst research question.

Two interconnected change propagation analysis approaches in IS and BP: The ap-

proaches provide the functionality to estimate the change propagation during the

8

1.6. Contributions

Chapter 5: Methodology

Chapter 9: Language for Change Propagation Rules

Chapter 6: Change Propagation Analysis in
Information Systems and Business Processes

Chapter 7: Change Propagation Analysis in
Automated Production Systems

Chapter 8: Change Propagation Analysis from
Requirements to a Specific Domain

Research Question 1

Research Question 2

complements

complements

instantiates instantiates

instantiates complements

Figure 1.1.: Correspondence between the research questions and the contributions of this

thesis

co-evolution of IS and BP. The approach to change propagation analysis in BP was

developed by instantiating the methodology to this domain. It can be considered

as an extension of the originally developed approach in IS. These approaches

estimate the e�ects of a change request not only in one of both domains, but also

between both domains with regard to mutual dependencies between a BP and the

corresponding IS. Thus, this contribution answers the second research question, as

it considers the mutual dependencies between heterogeneous elements from two

domains, which in�uence each other during their co-evolution.

A change propagation analysis approach in aPS: The approach considers the heteroge-

neous elements of aPS sub-domains, namely mechanical and electrical/electronic

components, as well as control software. Thus, the approach combines further

modular approaches to analyze these sub-domains by instantiating the methodology

to them. In this way, the approaches enable domain experts to analyze the change

propagation in each sub-domain and between them. Additionally, the approaches

provide the functionality to analyze the e�ects of a change request on the behavior of

aPS. Thus, this contribution answers the second research question, as it considers the

mutual dependencies between heterogeneous elements from di�erent sub-domains

of aPS.

Requirements as change triggers: Considering requirements in the change propagation

analysis improves the traceability of changes from requirements to the corresponding

9

1. Introduction

system elements. This is based on, how a change request has to be speci�ed: If a

change is initially speci�ed at system level, the initial change is a model element

in the model of the system’s structure or behavior. If a change is initially speci�ed

at requirements level, the change propagation has to be analyzed �rst from the

a�ected requirements to the model elements of the system’s structure or behavior.

The change can then propagate to the other system elements as in the �rst case. The

analysis was also developed as a further instantiation of the methodology. Thus,

considering the requirements as a further source of change triggers for di�erent

domains complements the previously described contributions regarding the change

propagation analysis in IS, BP, and aPS. Hence, this contribution answers the second
research question.

A Language for change propagation rules: The language enables domain experts to de-

scribe common change propagation rules. For this purpose, the language provides

a reduced set of language elements to improve the development of common rules.

In this way, it abstracts from the technical code needed by a General-purpose

Programming Language (GPL) such as Java. The language aims at improving the

maintainability and the readability of the rules. It can be applied to heterogeneous

elements regardless of the domain and the system under study. Thus, the language

complements the contribution of the maintainability analysis methodology and was

developed to partially answer the �rst research question.

A category of change triggers in BP: The category was developed regardless of a speci�c

sub-domain in BP and, thus, can be used in di�erent organizations. It can be used

not only to estimate the potential risks and sources of changes, but also during the

requirements engineering with regard to potential future changes and risks. This

categorization mainly contributes to the evaluation of the approaches to change

propagation analysis in IS and BP. For this purpose, comprehensive sets of change

requests for two case studies were developed based on this categorization. These

sets cover groups of change triggers along di�erent dimension of this category.

As described previously, the methodology was instantiated in di�erent domains to

obtain change propagation analysis approaches. The methodology was developed to

answer the �rst research question regarding the generalization of a change propagation

analysis originally developed in IS to a generic guideline, which can be applied to the

systems comprising heterogeneous elements from di�erent domains. Thus, it was evaluated

regarding the relevancy and the comprehensiveness by analyzing individual instances at a

high abstraction level. In other words, the evaluation mainly targets at the degree of reuse

for each part of the methodology by considering its instances.

Di�erent instances of the methodology were designed to answer the second research

question regarding the change propagation analysis using the system’s architecture based

on the mutual dependencies between heterogeneous system elements from several domains,

while considering di�erent technical and organizational artifacts. Thus, they provide the

functionality to analyze the change propagation across heterogeneous elements from

di�erent domains. Hence, the instances of the methodology were also evaluated using case

studies regarding the quality of their results. The quality mainly refers to the coverage of

10

1.7. Outline

the results and the actually a�ected system elements in the results in comparison to the

system elements in the results, which are not actually a�ected, and the system elements,

which are missing in the results.

1.7. Outline

This chapter discussed the problems and challenges domain experts face, while developing

a change propagation analysis approach with regard to mutual dependencies between

heterogeneous elements originating from di�erent domains. Based on these problems, the

overall research goal was de�ned. The research questions, which address the overall goal,

were derived from the research problems. Additionally, this chapter gave an overview of

the contributions of this thesis, which answer the research questions. The reminder of

this thesis is organized as follows:

Chapter 2 presents the foundations and concepts for the contributions of this thesis. This

mainly includes the concepts of model-driven software development, the metamodels

used to develop the approaches of the thesis, and the change propagation analysis

approach in IS, which is generalized to be applicable to other domains.

Chapter 3 mainly discusses the state of the art and the related work to the change propaga-

tion analysis in di�erent domains and the language to specify the change propagation

rules.

Chapter 4 illustrates two running examples. The �rst example was designed to illustrate

the problems of the change propagation analysis and the corresponding approaches

in the dependent domains of IS and BP. The second example represents a minimal

plant in aPS, to which the approaches to change propagation analysis for the me-

chanical and electrical/electronic components, as well as the control software in aPS

were exemplary applied.

Chapter 5 presents the generic methodology, which is based, in a broader sense, on an

approach to change propagation analysis in IS. To obtain a complete change propa-

gation analysis approach in a speci�c domain, the generic methodology has to be

instantiated in this domain.

Chapter 6 describes, how the methodology can be instantiated in the domains of IS and

BP, which in�uence each other in a mutual way during their co-evolution. The

proposed instance is one of the possible instantiations of the methodology in these

domains.

Chapter 7 describes further instantiations of the methodology to aPS. As aPS comprises

mechanical and electrical/electronic components, as well as software, several inter-

related instances are created, which are concerned with the change propagation in

each sub-domain and the behavior of aPS.

11

1. Introduction

Chapter 8 complements the contributions of the previous two approaches by extend-

ing the domain-speci�c approaches to include the change propagation analysis in

requirements and design decisions.

Chapter 9 presents a language to support common patterns of change propagation rules

used in approaches to change propagation analysis.

Chapter 10 describes a new comprehensive categorization of change triggers in BP. It is

designed to identify categories of change triggers in BP based on the results of a

literature review.

Chapter 11 presents the evaluation of the discussed contributions. It starts with the eval-

uation of the methodology, followed by the evaluation of the developed instances.

The categorization of change triggers in BP contributes to the evaluation of the

instance of the methodology in BP. This chapter includes, further, the evaluation of

the language to change propagation rules.

Chapter 12 presents a summary of the contributions as well as the evaluation results.

Additionally, it outlines possible future work.

12

2. Foundations

This chapter presents the foundations of this thesis. The �rst section describes the main

concepts of the Model-Driven Software Development (MDSD) and the tool support. Sec-

tion 2.2 gives an overview of change impact analysis in general. An overview of the

Palladio Component Model (PCM) is given in Section 2.3. While the PCM is mainly used

to model the structure of IS, the metamodel for BP is proposed in Section 2.4. The re-

quirement metamodel is proposed in Section 2.5. Section 2.6 presents the standard used

in this thesis for the control software in aPS. The metamodel for the hardware of aPS

is introduced in Section 2.7. The last section of this chapter presents the change impact

analysis approach, on which the methodology and the approaches presented in this thesis

are based.

2.1. Model-Driven So�ware Development

MDSD is a software development paradigm, which is based on models. For this reason, the

term model and its characteristics has �rst to be introduced. There are various de�nitions

of a model. In Rational Uni�ed Process, a model is de�ned as “a semantically closed

abstraction of a system” [Kru04, p. 286]. Another de�nition introduced by Stahl and Völter

is as follows: “A model is an abstract representation of a system’s structure, function or

behavior” [SV06, p. 18]. Depending on the research area there are also other de�nitions of

a model. However, models have common characteristics according to several de�nitions.

The model concept this thesis refers to is based on the model theory of Stachowiak [Sta73].

According to this theory [Sta73], the models have the following characteristics: i) A model

represents the original. The original can be a model. ii) A model is an abstraction of the

original and involves only relevant properties to creators or users of the model. iii) A

model can replace the original for speci�c subjects and for speci�c functions within a

speci�c time period. Section 2.1.1 describes the main concepts of MDSD and their relations.

The tool support for viewing and editing models, as well as code generation is given

in Section 2.1.2.

2.1.1. Modeling Languages

The main idea of MDSD is modeling a software system and generating code from these

models. Thus, one of the goals is to automate the software development. In this context,

models cannot be considered as only a documentation of software systems, but also an

integral part of them. Thus, models in MDSD have to be described in an abstract and a

formal way. The abstraction means the reduction to important aspects of the software

system. The formalization is based on a Domain Speci�c Language (DSL). For this purpose,

13

2. Foundations

a formal modeling language, which is independent of a speci�c platform, but is tailored to

a speci�c domain is used. The domain narrows the area of interest or knowledge. Then,

several transformations allow generating code from models. However, it is also possible

to generate models from models [SV06].

The constructs of a modeling language (i.e., the concepts in a domain) and the relations

between them are de�ned by themetamodel. In other words, a metamodel, which comprises

a set of metaclasses, involves the speci�cation of the abstract syntax and semantics of a

modeling language. The abstract syntax of a language de�nes its structure. A speci�c

graphical or textual notation of the abstract syntax is represented by the concrete syntax.

However, not all constraints and criteria for a well-formed language can be de�ned by

its abstract or concrete syntax. They are de�ned by the static semantics of the language.

The dynamic semantics of a language specify the meaning of its constructs and elements.

Figure 2.1 illustrates the relations between the terms described previously. In this context,

the instances of metamodels are considered as models. A metamodel is an instance of a

meta-metamodel [SV06].

Domain Metamodel Abstract
Syntax

Static
Syntax

DSLConcrete
Syntax

Formal
Model Semantics Modeling

Language

Meta-
Metamodel

respects

gets meaning from

specified based on

<<instanceof>>

<<instance of>>

specified
based on

<<syno nym>>

describes
relevant

concepts of

0..*
subdomains

Figure 2.1.: Relations between modeling concepts [SV06, p. 56]

Two main categories of DSL are internal DSL and external DSL: An external DSL has a

dedicated syntax and a corresponding parser. In other words, an external DSL in general

has its own grammar. By contrast, an internal DSL can be seen as a speci�c type of

Application Programming Interface (API). Thus, it depends on the syntax of the host

language [Fow10].

A further di�erentiating aspect is imperative vs. declarative languages. A declarative

programming language is concerned with “what is to be computed, but not necessarily

how it is to be computed” [Llo94, p. 1]. The latter is called an imperative programming

language.

DSL can be executable, non-executable, or only executable to some degree [MHS05].

In other words, a distinction is made between DSL, from which executable code can

14

2.2. Change Impact Analysis

be generated and DSL, from which no executable code can be generated [Fow10]. For

example, a DSL can compile to another programming language, which can compile to byte

code [Fow10].

2.1.2. Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF)
1

is a modeling framework to create and edit struc-

tured data models. It is developed for Eclipse Integrated Development Environment (IDE)
2
.

For this purpose, it provides the self-describing metamodel language ecore
3
. Models can

be speci�ed based on ecore. Other features such as runtime support for the models are

also provided by EMF. Further, it allows code generation for the models [Ste+09].

As a part of EMF, Xtext
4

is developed. Using Xtext textual DSL can be developed. Xtext

provides a grammar language with a syntax, which is similar to Extended Backus-Naur

Form (EBNF). Further, it provides support for the generation of a parser, as well as a

metamodel and the corresponding code. Further, Xtext provides additional features such

as editors [EV06].

One of the languages, which is implemented in Xtext is the expression language Xbase
5
.

Xbase has a similar syntax as Java. The code written in Xbase can compile to Java code.

Xbase can be embedded in a DSL. The Java dialect Xtend
6

has also a similar syntax as

Java and compiles to Java.

The syntax of the language for change propagation rules presented in this thesis is

speci�ed in EBNF. To present the terminal symbols’ quotation marks (i.e., “ . . . “) are used.

The optional parts of the rules are presented in brackets (i.e., [. . .]). Di�erent alternative

parts of a rule are separated by pipes (i.e., |). Commas (i.e., ,) are used for the concatenation.

Non-terminals can also include white spaces [Pat].

2.2. Change Impact Analysis

Maintainability is de�ned by ISO/IEC as the “degree of e�ectiveness and e�ciency with

which a product or system can be modi�ed by the intended maintainers” [ISO11]. Thus,

the maintainability of a system correlates with the propagation of a change in the system.

A change can be considered as a transition of one state to another (from AS-IS to TO-
BE) [Nwo+18]. It is desirable to estimate the TO-BE state by a change in advance. “The

ability to determine what parts are related to what other parts according to speci�c

relationships” is proposed by Arnold and Bohner in [AB93, p. 2] as traceability. In this

context, the change impact analysis can be de�ned as “the activity of identifying what

to modify to accomplish a change, or of identifying the potential consequences of a

change” [AB93, p. 1]. Although this de�nition is originally proposed in the domain of IS,

1https://www.eclipse.org/modeling/emf
2https://www.eclipse.org
3https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/

package-summary.html
4https://www.eclipse.org/Xtext
5https://www.eclipse.org/Xtext/documentation/305_xbase.html
6https://www.eclipse.org/xtend

15

https://www.eclipse.org/modeling/emf
https://www.eclipse.org
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
https://www.eclipse.org/Xtext
https://www.eclipse.org/Xtext/documentation/305_xbase.html
https://www.eclipse.org/xtend

2. Foundations

the change propagation analysis approaches for other domains presented in this thesis are

also based on this de�nition. This de�nition distinguishes between a change, also referred

to as the trigger of a change, and the potential consequences of this change. A change
trigger presents an event causing the change, while potential consequences of a change are

known as the change impact [Nwo+18]. Thus, the less the impact of a change trigger in a

system, the easier the system can be maintained regarding this change trigger. If the change

impact analysis is conducted at the model level, the result is a set of a�ected or impacted

model elements. A model element is a�ected by a change, “if a modi�cation to that element

or its implementation may be needed to accomplish a change” [BLO03, p. 6]. One method

to identify the a�ected model elements is based on the change propagation rules. Change

propagation rules can be executed repeatedly to determine a transitive closure of directly

and indirectly a�ected elements. Rule is de�ned by Briand et al. as “a speci�cation . . . of

how to derive several collections . . . of elements, corresponding to elements of di�erent

types . . . , that are potentially impacted by a particular change . . . ” [BLO03, p. 6]. Although

this de�nition is originally introduced to specify the change propagation rules for the

UML models based on Object Constraint Language (OCL) constraints, it can also be used

as a general de�nition of change propagation rules.

2.3. Palladio Component Model

The PCM [Reu16] enables software architects to model a component-based software ar-

chitecture. The PCM as a Architecture Description Language (ADL) considers di�erent

viewpoints of a software architecture, namely structural, behavioral, and deployment.

It can be used to predict di�erent quality aspects of a software system such as perfor-

mance [Reu16], maintainability [Sta15; Ros+15b], or reliability [Bro+12]. In general, the

PCM is composed of the following metamodels with respect to di�erent developer roles:

i) The Component Repository Model supports component developers by modeling com-

ponents and interfaces. ii) The System Model allows software architects to model the

software architecture by assembling the components. iii) The Execution Environment
Model enables component deployers to de�ne the underlying hardware nodes. iv) The

Component Allocation Model supports component deployers to specify the deployment of

components on hardware nodes. v) The Usage Model allows domain experts to model the

interaction of users with the software system [BKR09; Reu16].

In the following, PCM or its extensions are used to model the software architecture or

its behavior.

2.4. Metamodel of Business Processes

A BP is de�ned by the Terminology & Glossary of the Work�ow Management Coali-

tion Speci�cation as “a set of one or more linked procedures or activities which col-

lectively realise a business objective or policy goal, normally within the context of an

organizational structure de�ning functional roles and relationships” [Wor99, p. 10]. The

change propagation analysis approach between IS and BP in this thesis is based on

16

2.5. Requirements Engineering

the metamodel of BP, proposed by Heinrich [Hei14]. According to [Hei14, p. 105],

“the BP design represents the usage pro�le of the IS on an abstract level”. The pro-

posed metamodel can be considered as a set of connected activities, as shown in Fig-

ure 2.2 [Hei+17]. Activities are used to model hierarchically nested BP [Hei+17]. A

BP model consists of a set of BP. Each BP can be modeled as a ScenarioBehaviour.

A ScenarioBehaviour is composed of a set of AbstractUserActions, which contain all

control �ow model elements from the UsageModel of PCM [BKR09; Hei14; Hei+17].

An EntryLevelSystemCall is a “call of services at system provided roles” [BKR09,

p. 11]. Thus, EntryLevelSystemCalls represent the system steps in a BP, which are

performed automatically by IS [Hei+17]. Further, the PCM was extended by ActorStep,

AcquireDeviceResource, and ReleaseDeviceResource, as illustrated in Figure 2.2 [Hei+17].

All activities between two related AcquireDeviceResource and ReleaseDeviceResource

need the usage of a speci�c device to be performed [Hei+17]. ActorSteps are activities,

which are manually performed by the actors (i.e., human) [Hei+17]. This metamodel is

based on the Business Process Model and Notation (BPMN) [Obj11] with focus on the

mutual dependencies between IS and BP.

ScenarioBehaviour

Activity

AbstractUserAction

Release
DeviceResource

Acquire
DeviceResource

ActorStepEntryLevelSystem
Call (SystemStep)

[0..1] predecessor

[0..1] successor

1
[0..*] actions_

ScenarioBehaviour

[1..1] scenarioBehaviour_
AbstractUserAction

UsageModel (Excerpt)

[1..1] Scenario

BPUsageModel (Excerpt)

Figure 2.2.: Metamodel of the BP design [Hei14; Hei+17]

2.5. Requirements Engineering

This section clari�es the terminology used in this thesis regarding di�erent concepts of

the requirements engineering and gives an overview of the formalizations of the discussed

concepts. Requirements engineering is de�ned by the IEEE standard 29148 as an “inter-

disciplinary function that mediates between the domains of the acquirer and supplier to

establish and maintain the requirements to be met by the system, software or service of

interest” [IEE11, p. 8]. The standard states the relationship between the roles of an acquirer

(i.e., other synonyms such as “buyer, customer, owner, and purchaser” [IEE11, p. 3] are also

possible.) and a supplier as, the acquirer “acquires or procures a product or service from a

supplier” [IEE11, p. 3]. Requirement represents a “statement which translates or expresses

a need and its associated constraints and conditions” [IEE11, p. 5]. Glinz distinguishes

in [Gli07] three categories of requirements: i) system requirements, ii) project requirements,
and iii) process requirements. System requirements involve i) functional requirements, ii)

17

2. Foundations

performance requirements and speci�c quality requirements, as well as iii) constraints [Gli07].

Examples of speci�c quality requirements are reliability, usability, security, availability,

portability, and maintainability [Gli07]. This categorization is based on the IEEE stan-

dards [IEE90; IEE98], which explicitly mention the performance requirements and on

the fact that there is no standardized de�nition of non-functional requirements (see the

terminology discussion by Glinz [Gli07]). However, he de�ned the term non-functional
requirement as “an attribute of or a constraint on a system” [Gli07, p. 5]. Constraint is

an “externally imposed limitation on system requirements, design, or implementation

or on the process used to develop or modify a system” [IEE11, p. 4]. Attribute is de�ned

by the IEEE standard as an “inherent property or characteristic of an entity that can be

distinguished quantitatively or qualitatively by human or automated means” [IEE11, p. 3].

The architecture of a software system embraces the main design decisions [TMD09].

However, many researchers use the term design decision without clarifying its de�nition.

One of the few discussions on this topic is proposed by Taylor et al. in [TMD09]. Accord-

ing to their discussions, “design decisions encompass every aspect of the system under

development” [TMD09, p. 58]. In particular, examples of these aspects can be “system

structure”, “functional behaviour”, “interaction”, “non functional properties”, and “system’s

implementation” [TMD09, p. 58]. However, a design decision can be implemented in

di�erent ways. For this purpose, Hahn and Schuller introduced in [HS15] the term option
in IS, which connects the design decisions with a certain software architecture. Thus, an

option can be considered as a possible implementation, which has its rationals. Although

several of the introduced terms were originally de�ned in IS, they can also be used in a

broader sense. Thus, this thesis uses these concepts not only in IS, but also in BP and aPS.

After requirements elicitation, they can be expressed in a natural-language text or as a

formal model [IEE11]. A formal model allows structured and systematic capture of relevant

requirements, design decisions, and options, as well as a better traceability in the change

propagation analysis [Dur14]. This provides further supports for automation using tools.

One possible way to formalize the requirements is the use of metamodels, as proposed by

Durdik [DR13; Dur14] and Küster [Küs13]. This thesis is based on the aforementioned

metamodels of [DR13; Dur14; Küs13; HS15] to establish traceability links between the

requirements and the system under study over the design decisions and options. In the

following, the relevant metaclasses of these metamodels are described in more detail.

Figure 2.3 illustrates the relationship between requirements, decisions, and options.

The Relations metamodel is proposed by Hahn and Schuller [HS15] as an extension of

the aforementioned metamodels by Durdik [DR13; Dur14] and Küster [Küs13] to allow

the traceability between di�erent requirements, decisions, and options. Thus, it de�nes

several possible relation types (e.g., to document that there is a con�ict between two

design decisions). Figure 2.3 shows various relation types. Various relation types enable

traceability, as the change propagation can be analyzed based on these relations. Inheriting

from the metaclass TraceableObject allows access to the pre-de�ned relation types. The

following sections give an overview of metamodels of requirements, design decisions, and

options, as proposed by [DR13; Dur14; Küs13; HS15].

18

2.5. Requirements Engineering

DuplicationObject ConflictObject AlternativeObject ParentalObject DependencyObject

TriggerObject ResolveObject CouldResolveObject StakeholderObject

[0..*]duplicateOf [0..*]hasDuplicates [0..*]conflictsWith [0..*]hasConflicts [0..*]alternativeTo [0..*]hasAlternatives [0..*]parentOf [0..*]subpartOf [0..*]dependsOn [0..*]hasDependents

[0..*]triggerOf [0..*]triggeredBy [0..*]resolves [0..*]resolvedBy [0..*]couldResolvedBy[0..*]couldResolve [0..*]stakeholderOf [0..*]hasStakeholders

TraceableObject

Requirement Decision Option

Relations Metamodel (Excerpt)

Decisions Metamodel (Excerpt)Requirements Metamodel (Excerpt) Options Metamodel (Excerpt)

Figure 2.3.: Relationship between requirements, design decisions, and options [HS15],

adapted from [Küs13; Dur14; DR13]

2.5.1. Metamodel of Requirements

The Requirements metamodel is shown in Figure 2.4. It is mainly based on the afore-

mentioned categorization, proposed by Glinz [Gli07]. According to this categorization, a

requirement can regard a system, a process, or a project. A system requirement can be a

constraint on the system, a functional requirement, or a quality requirement [Gli07; HS15;

Dur14].

SystemRequirements ProcessRequirements

ReqRepository

ProjectRequirements

Requirements Metamodel (Excerpt)
Requirement

- specification: EString
- priority: ReqPriorityEnum
- status: ReqStattusEnum

ReqStatusEnum

- new
- accepted
- rejected
- replaced
- done

ReqPriorityEnum

- neutral
- low
- high
- critical

ProjectRequirementSystemRequirement ProcessRequirement

Constraint FunctionalRequirement QualityRequirement

[0..*]system
Requirements

[0..*]systemReq
Requirements

[0..*]project
Requirements

[0..*]processReq
Requirements

[0..*]projectReq
Requirements

[0..*]process
Requirements

[1..1]repository

Figure 2.4.: Metamodel of requirements [HS15], adapted from [Küs13; Dur14; DR13]

19

2. Foundations

2.5.2. Metamodel of Options

Figure 2.5 illustrates the Options metamodel, proposed by Hahn and Schuller [HS15].

As described previously, options present possible solutions [HS15]. Software architects

can annotate the rationale of each option [HS15]. The decision-making process involves

selecting the appropriate options and describing their rationales [HS15; Dur14]. The

rational of an option can be considered as the reason, why the option is needed (adapted

from the IEEE standard [IEE11]). An option can also be a text option or a constraint.

Further, the metamodel allows annotating various decision status for an option such as

open or taken [HS15].

OptionRepository

Options Metamodel (Excerpt) Option

- description : EString
- status : DecisionStattusEnum
- keywords : EString
- isSelected : EBoolean
- isModeled : EBoolean
- isImplemented : EBoolean
- timeStamp : EDate
- title : EString

DecisionStatusEnum

- open
- taken
- reviewed
- obsolete
- replaced
- inConflict

AnalysisRationale TextRationale

TextOption

[1..1]repository

Constraint

Rationale

[0..*]options

[0..*]rationale

Figure 2.5.: Metamodel of options [HS15], adapted from [Küs13; Dur14; DR13]

The metamodel depicted in Figure 2.5 illustrates the Options metamodel at a high

level of abstraction. These options can also be further re�ned to allow a �ne-grained

traceability. As a software architecture presents a set of design decisions during its

development and evolution [TMD09; MT10], options can be further re�ned to include

architectural options. Figure 2.6 illustrates this re�nement involving the architectural

options and their re�nements for the PCM as metamodel �les. The architectural options

involve further options regarding interfaces, components, data types, and deployment. These

options can also be further re�ned. Examples of deployment-speci�c options can be move
component, never allocate to speci�c nodes, or allocate together. PCM was used as a possible

metamodel describing the software architecture. Thus, other metamodels are also possible

due to the provided modular metamodels. The metaclasses of PCMArchitectureOption

metamodel references the metaclasses of PCM. For example, the PCM-speci�c metaclass

in PCMArchitectureOption metamodel regarding never allocate to speci�c nodes references

the a�ected allocation context and the resource container from the PCM [HS15; Küs13;

Dur14; DR13].

2.5.3. Metamodel of Design Decisions

The metamodel presented in Figure 2.7 is concerned with documenting the decisions

and the corresponding rationale. The use of the decision concept allows selecting

20

2.6. The IEC 61131-3 Standard

Options
Metamodel

ArchitectureOptions
Metamodel

PCMArchitectureOptions
MetamodelPCM

Figure 2.6.: Relationship between the metamodels of options, architectural options, and

PCM architectural options and the PCM [HS15], adapted from [Küs13; Dur14;

DR13]

the appropriate options to ful�ll the requirements. Similar to the Options metamodel,

DecisionStatusEnum allows documenting the current status of a decision (e.g., open or

taken) [HS15; Küs13; Dur14; DR13].

DecisionRepository

Decisions Metamodel (Excerpt) Decision

- description : EString
- status : DecisionStattusEnum
- timeStamp : EDate
- title : EString
- usedTerms : GlossaryTerm

DecisionStatusEnum

- open
- taken
- reviewed
- obsolete
- replaced
- inConflictTextRationale

TextOption

[1..1]repository

Rationale

[0..*]decisions

[0..*]rationale

Figure 2.7.: Metamodel of decisions [HS15], adapted from [Küs13; Dur14; DR13]

2.6. The IEC 61131-3 Standard

This section gives an overview of the standard IEC 61131-3 [IEC13]. This standard is

used to program control software, which is deployed on Programmable Logic Controllers

(PLC) [Vog+17; Bus+18c]. Although there are several standards for programming PLC,

this standard is used in most manufacturing systems and, thus, can be stated as “the

state of industrial practice in the next 5 - 10 years” [Vog+15, p. 14]. There are several

dialects of this standard. This thesis uses the dialect developed by CodeSys V3.1 [AG],

as it is very similar to the original speci�cation and provides a run-time environment

for simulating the control software [Bus+18c]. Further, this dialect provides also object-

oriented features [Wer09], which result in “a more e�cient code reuse and increased

safety and stability of software” [Vya13, p. 9]. Additionally, it allows a modular design of

programs [Dus+15].

IEC programs are structured using con�gurations, as illustrated in Figure 2.8. Processing

units of a PLC are represented by resources. Following this standard, an IEC software

is structured with regard to Program Organization Units (POU). POU can be programs,

21

2. Foundations

function blocks, or functions in the IEC standard and can be executed by tasks. Several

programs can be assigned to one resource. Functions act as stateless procedures. A function

block contains input and output variables, as well as a set of operations accessing these

variables. In contrast to functions, function blocks can access global variables. Thus, they

can be considered as stateful. The object-oriented extension provides further features such

as methods or interfaces [JT01; IEC13].

Configuration

Resource

Task Task Task

Program Program Program
…

Resource
…

…

Function
Block

Function
Block

Function
Block

Function
Block

Function
Function

Block

Figure 2.8.: Simpli�ed structure of an IEC program, adapted from the IEC software

model [IEC13]

2.7. Metamodel of Mechanical and Electrical/Electronic Parts
of Automated Production Systems

This work is based on the metamodel representing the structure of the aPS hard-

ware [Hei+18; Koc17]. This metamodel represents a domain-speci�c modeling language,

which is based on Automation Markup Language (AML) models developed by Technische

Universität München (TUM) [Vog+17]. AML is a general-purpose modeling language,

which does not represent the speci�c types of artifacts in an aPS [Hei+18]. Therefore,

AML models are not suitable for change propagation algorithms based on rules, as the

rules are based on the speci�c types of artifacts [Hei+18]. The domain-speci�c metamodel

based on the AML models is described in the following in more detail.

As there are many di�erent elements in aPS, two metamodels were developed at two

abstraction levels. The �rst metamodel represents a plant at a high abstraction level and,

therefore, enables modeling any plant. This metamodel is referred to in the following

as the abstract metamodel. However, its metaclasses can be further re�ned to model a

speci�c plant more precisely. This is the second metamodel, which is designed at a lower

abstraction level. It contains mainly the metaclasses needed to model the Extended Pick

and Place Unit (xPPU), which is a lab-size community case study in aPS. In other words,

the xPPU can be modeled using this metamodel more precisely. However, this metamodel

is limited to the xPPU or plants that are similarly structured. The second metamodel is

referred to hereinafter as the speci�c metamodel [Hei+18].

22

2.7. Metamodel ofMechanical and Electrical/Electronic Parts of Automated Production Systems

2.7.1. Abstract Metamodel of Automated Production Systems

Figure 2.9 gives an overview of the abstract metamodel of the aPS hardware. This meta-

model can describe a plant at an abstract level. Following this metamodel, a plant can

consist of several structures. A structure can contain components and modules. Thus,

it can be considered as a composition of components and modules. Structures present

complex elements. In other words, the use of structures allows grouping the artifacts of a

plant and modeling a plant at a higher abstraction level. Thus, they can be used to improve

the reusability of models [Hei+18].

Structure

Component

[0..*]modules

[0..*]interfaces

Module

Interface[0..*]interfaces

[0..1]structure

[0..*]components

[0..*]modules

Plant
[1..1]plant

[0..*]structures

[0..*]components [0..1]modules

Figure 2.9.: Abstract metamodel of aPS [Koc17; Hei+18]

Modules are artifacts in a plant, which can be assembled by plant manufacturers us-

ing components and other modules [LS17]. By contrast, components are provided by

third-party vendors [LS17]. For example, a motor module can have components for the

communication. Components can represent both mechanical and electrical/electronic

elements. An example of a component can be a screw [Hei+18].

Both modules and components can have interfaces. Interfaces can be considered as

general. In other words, an interface can be a communication interface or a physical

interface for �xing an artifact to a plant [Hei+18].

2.7.2. Specific Metamodel of Automated Production Systems

As described previously, the abstract metamodel can be re�ned to allow modeling a speci�c

plant more precisely. The metamodels presented in this section were designed to model

the xPPU. As the xPPU is a community case study for industrial manufacturing plants,

it is composed of the typical artifacts of an industry plant [Hei+18; Gol+15; Vog+14a].

Although this metamodel is tailored to the xPPU, the abstract metamodel can also be

extended by further elements for any plants containing elements, which do not exist in

the xPPU. To extend the abstract metamodel to a speci�c one, the speci�c components

and modules in the plant under study have to be metamodeled [Hei+18].

23

2. Foundations

2.7.2.1. Components

As described in Section 2.7.1, components are artifacts, which can be purchased from third

parties. According to this de�nition, a component in an aPS model can be considered as

a black box. However, they can be grouped together according to their types [Hei+18].

Examples of this grouping are bus components, as shown in Figure 2.10. Bus components

(e.g., BusBox, BusSlave, or BusCable) are used for communication of other artifacts within

a system [Koc17; Hei+18].

Components can be composed of other components, which can be mechanical and

electrical/electronic components. Thus, composite components cannot be considered in

general as purely mechanical components or purely electrical/electronic components.

However, these components can also be specialized. In contrast to modules, composite

components are provided by third-party vendors and are not assembled by plant manufac-

turers [Hei+18].

Mechanical components and electrical/electronic components can be further re�ned.

Figure 2.10 illustrates the re�nement (i.e., specialization) of these components in the speci�c

metamodel. This metamodel can also be extended by further specializations [Hei+18].

MotorModule
[0..*]interfaces

Module

Interface

[0..*]interfaces

[0..*]modules

BusCable BusBox BusSlave

Component

Screwing

SimpleMotor

[1..*]simpleMotor [1..*]busCable [1..*]busSlave[1..1]busBox

[1..1]screwing

Motor Cable

[0..1]
modules

[0..*]components

Module Repository

Bus Components Interface Repository

Component Repository

Figure 2.10.: Speci�c Metamodel of aPS - An excerpt [Koc17; Hei+18]

2.7.2.2. Modules

As described in Section 2.7.1, a module is composed of components or other modules. In

the following, the composition of components and modules for the MotorModule of the

xPPU is exemplary described. Figure 2.10 illustrates the components and modules of the

MotorModule. The Motor has a physical interface for �xing (i.e., Screwing in Figure 2.10).

This interface enables assembling the motor to the rest of the plant. This physical �xation

represents an interface. Further, there is a need for a bus communication to control the

motor. Bus boxes, bus slaves, and bus cables are specializations of the bus communication.

In addition, the MotorModule requires a real motor (see the SimpleMotor in Figure 2.10).

Thus, the MotorModule consists of other modules, components (e.g., the SimpleMotor),

and interfaces (e.g., the Screwing). It is conceivable that a motor could be provided by

24

2.8. Karlsruhe Architectural Maintainability Prediction

a third party vendor as a black box. In this case, the motor is a component and not a

module [Hei+18].

2.7.2.3. Structures

Modules and components can be grouped into coarse-grained elements to improve the

reusability of elements. As described previously, these elements are called structures.

An example of a structure in the speci�c metamodel is the crane structure. The crane is

composed of several components such as the mechanical component arm. In addition

to components, it contains various modules such as turning table. Each module can be

composed of further components and modules.

2.8. Karlsruhe Architectural Maintainability Prediction

The methodology presented in this thesis can be considered as the generalization of

the Karlsruhe Architectural Maintainability Prediction (KAMP) approach [SR09; Sta15;

Ros+15b]. KAMP is an approach to change propagation analysis in the domain of IS. It

considers the architecture of a software system as the main artifact. The analysis of the

change propagation is based on rules, which consider the relationship between the model

elements of the software architecture. Further, the software architect can annotate the

software architecture with organizational and technical information. In this way, KAMP

considers the impact resulted by these artifacts [SR09; Sta15; Ros+15b].

The approach is composed of a preparation phase and a change request analysis

phase [SR09; Sta15; Ros+15b]. Both phases are described in the following in more detail.

During the preparation phase of KAMP [Sta15; Ros+15b], the software architect models

the architecture of the software system. The architecture model is based on a simpli�ed

version of the PCM. In this version, a further metamodel represents the internal depen-

dencies between the provided roles and the required roles of a component. In other words,

this version omits modeling the Service EFFect speci�cation (SEFF) [BKR09]. Additionally,

the software architect can annotate the software architecture with additional information

such as source code, build con�guration, test cases, deployment, or sta�. The software

architect can model the software system either manually or using a reverse engineering

approach. An example of these approaches is Source Code Model eXtractor (SoMoX),

which is proposed by Krogmann in [Kro12]. This approach reconstructs a PCM model of

a component-based software. Source Code Model eXtractor for Karlsruhe Architectural

Maintainability Prediction (SoMoX4KAMP) is an extension of SoMoX detecting the or-

ganizational and technical artifacts, such as build speci�cation based on heuristics (e.g.,

naming convention for example for pom.xml or Makefile) [Ros+17c].

The next phase is the change request analysis phase. KAMP analyzes the propagation

of a change request in the software architecture automatically. For this purpose, it uses a

rule-based algorithm for the change propagation analysis. This algorithm is composed of

a set of change propagation rules. The change propagation rules consider the relationship

between the metaclasses of the PCM. Each rule represents a change propagation from

an a�ected metaclass to a further metaclass. Thus, a transitive closure of the a�ected

25

2. Foundations

model elements based on the change request can be calculated. The granularity of the

change propagation is based on components, interfaces, and data types. After identifying

all potentially a�ected elements of the software architecture, KAMP calculates the a�ected

organizational and technical artifacts. The result is a task list containing all model elements,

which can be a�ected by a change request [SR09; Sta15; Ros+15b].

26

3. State of the Art

This section gives an overview of the related work to this thesis. The presented approaches

are structured according to the main contributions of this work and the domains under

study (i.e., IS, BP, or aPS). Section 3.1 discusses the relevant approaches to change prop-

agation analysis in IS. The change propagation analysis approaches in the domain of

BP are presented in Section 3.2. The approaches, which consider the co-evolution of IS

and BP are proposed in Section 3.3. Section 3.4 presents the model-based approaches to

change impact analysis in aPS. As requirements can also cause the change propagation,

the approaches to this topic are discussed in Section 3.5. Section 3.6 gives an overview of

the domain-speci�c languages to specify the change propagation rules. An overview of

the metamodels for the control system and more especially for the standard IEC 61131-3

is given in Section 3.7. The last section summarizes the discussion of the state of the art

regarding the change propagation analysis in various domains.

3.1. Change Propagation in Information Systems

In IS there are several approaches addressing the change propagation analysis and cost

estimation [Leh11b; Leh11a]. One of the most relevant approaches is program slicing.

This approach is originally introduced by Weiser [Wei81]. A program slice is described by

Tip [Tip95, p. 1] as “the parts of a program that (potentially) a�ect the values computed at

some point of interest”. The program slicing refers to the method of reducing the program

to the program slice [Wei81; Tip95]. Since introducing this approach, several types of

program slicing and methods to calculate the program slices are developed [Tip95]. Static

and dynamic program slicing are the main categories of these methods [Tip95]. While the

static program slicing does not rely on the input of the program, the dynamic program

slicing considers the known inputs of the program [Tip95; GGS96]. One of the e�cient

methods to calculate the program slices is based on the Program Dependence Graph

(PDG) [OO84; GGS96]. The edges of a PDG represent the data and control dependencies of

a program [GGS96]. The literature review of Tip [Tip95] gives a detailed overview of the

approaches to program slicing. The idea of program slicing is also generalized to slicing

methods for the UML models, as described by [LR11; KMS05].

Di�erent types of graphs are used by several approaches to analyze the change propa-

gation. One of the most relevant approaches is proposed by Reps [Rep82]. The presented

algorithms are based on dependency graphs representing the functional dependencies of

attributes. Based on a dependency graph, characteristic graphs are constructed, which

represent the transitive dependencies in the dependency graph. The provided algorithms

can identify the attributes a�ected by a change and update their values. The cost of the

algorithm is proportional to the values a�ected by the change. This property is referred to

27

3. State of the Art

as time optimal [Rep82], as these algorithms are “asymptotically optimal in time” [RT87,

p. 9].

In the context of object-oriented programs, there are several approaches to change

propagation analysis. One of the important approaches is proposed by Ryder and Tip

in [RT01]. This approach is based on call graphs and addresses the problems caused by

subtyping and dynamic dispatch. The change propagation is analyzed on the granularity

of classes, methods, and �elds. This analysis helps to identify the a�ected regression test

drivers. This also allows further analyses regarding regression testing such as identifying

the changes that do not a�ect any tests.

The previous approaches are based on graphs (e.g., PDG or call graphs) to analyze

the change propagation. However, there are a wide variety of categories of approaches.

The review provided by Lehnert [Leh11a] covers 150 approaches from 1991 to 2011. A

taxonomy and a classi�cation of the change propagation approaches are provided based

on this review [Leh11b]. The provided taxonomy contains the following dimensions: i)

analysis scope, ii) utilized techniques, iii) entity granularity, iv) analysis style, v) tool

support, vi) language, vii) scalability, and viii) experimental results [Leh11b]. He divided

the scope of the analyzed approaches into three categories: i) code, ii) models, and iii)

miscellaneous artifacts (e.g., documentation). Due to this review, 65 % of the analyzed

approaches are based on the source code. Further, most approaches neglect the e�ects

of changes on the miscellaneous artifacts. Thus, there is a need for approaches based

on a holistic view of the system under study to consider not only the code, but also the

miscellaneous artifacts.

The proposed methodology in this thesis generalizes the idea of the architecture-based

and model-based approach KAMP [Sta15; Ros+15b] in IS (see Section 2.8). Hence, the

resulting instances of the methodology are scenario-based and architecture-based change

propagation analysis approaches. Although the change propagation analysis in IS is outside

of the scope of this thesis, the remainder of this section presents most relevant related

work in this research area. A detailed overview of these approaches is given in [Sta15;

Ros+15b].

Software Architecture Analysis Method (SAAM) [Kaz+94] is one of the earliest approach

to analyze the software architecture regarding di�erent quality attributes based on scenar-

ios. The approach is composed of several steps. The �rst step is to identify a reference

architecture (i.e., canonical functional partitioning as it is called by the authors) for the

domain under study. The results of the �rst step is, then, mapped the structural decompo-

sition of the software architecture. The next step is concerned with identifying the most

relevant quality attributes, which have to be used to analyze the architecture. Although the

approach can be applied to di�erent quality attributes, the paper discusses the modi�ability

in more detail. To assess the software architecture regarding the chosen quality attribute,

a set of scenarios (i.e., tasks) has to be identi�ed. In the modi�ability example, this set can

contain likely changes. Finally, the software architecture is assessed regarding, whether

and how well it ful�lls the chosen quality attributes. Thus, the approach can also be used

to compare and rank di�erent architecture candidates.

A successor to SAAM is the Architecture Tradeo� Analysis Method (ATAM) [Kaz+98],

which makes trade-o�s between di�erent quality attributes such as modi�ability or perfor-

mance explicit. In this way, it evaluates the architectural design regarding the ful�llment

28

3.1. Change Propagation in Information Systems

of requirements. The method comprises various steps, which can be conducted iteratively.

In the �rst step, the usage scenarios of the resulting system have to be gathered. To

ensure whether the gathered scenarios are relevant for di�erent quality attributes, the

method suggests clarifying requirements of the system, constraints relating to design space,

and system’s environment with regard to di�erent quality attributes. Hence, di�erent

architecture candidates can be obtained and the number of potential possibilities can be

limited. These steps lead to a set of requirements, usage scenarios, quality attributes, and

initial architecture candidates. Then, di�erent architecture candidates have to be assessed

regarding the identi�ed quality attributes in isolation. The next step is concerned with

identifying the sensitivity points (i.e., attributes or parameters in the architecture, which

changes result in a considerable change in the quality attributes). The elements in the

architecture, which can a�ect several sensitivity points at the same time, are considered to

be the trade-o� points. After each iteration, the analysis results have to be compared to

the requirements of the system. If the system ful�lls the requirements, the design or the

implementation of the software can be re�ned.

While the previous both approaches are concerned with di�erent quality attributes,

Bengtsson and Bosch present in [BB99] an approach to architecture-level prediction of

software maintenance. Their approach uses the software architecture and a set of change

scenarios as input to estimate the maintenance e�ort. In particular, domain experts choose

a set of representative change scenarios for a given architecture. The weights of change

scenarios can be chosen either based on expertise of domain experts or maintenance data

from earlier scenarios. In the next steps, the size of both the whole system and the a�ected

parts of it has to be estimated. Based on this information, the e�ort for each scenario can

be estimated as a weighted average.

Similar to the previous approach, Architecture-level Modi�ability Analy-

sis (ALMA) [Ben+04] was designed to analyze the modi�ability of a software

system at the architecture level. This approach also involves several steps. In the �rst step,

the overall goal has to be de�ned. ALMA di�erentiates between three goals during the

modi�ability analysis at the architecture level: i) change e�ort estimation, ii) �exibility

analysis of the architecture regarding di�erent change types, and iii) comparing di�erent

architecture candidates to identify the optimal one. In the next step, a description of the

software architecture has to be prepared with regard to the components of the system and

their relationships, as well as the relationship between the system and its environment.

Then, a set of relevant and representative change scenarios have to be identi�ed. The next

step of ALMA is concerned with changing the software architecture with regard to the

change scenarios and evaluating the a�ected parts of the architecture. The results of the

evaluation can be documented qualitatively or quantitatively. These results have to be

analyzed with regard to the overall goal of the change propagation analysis.

The previously described scenario-based approaches mainly focus on the software

system and neglect the activities regarding project management. One of the approaches

considering the role of the architecture of a software system in the project management,

is proposed by Paulish [Pau01]. He describes the main steps during the process of an

architecture-centric project management, as illustrated in Figure 3.1. After identifying the

market requirements during the requirements analysis, the global analysis is concerned

with in�uencing factors on the resulting product. The risk analysis is the next step in

29

3. State of the Art

this process. The output of these steps (i.e., a list of product features) and a modularized

architecture design are the inputs of the release planning step. The software development
plan deals with project’s costs, schedule, and organization, while focusing on the �rst

release in an incremental development. During the software development, the team
members have to be manged. Mid-course corrections refer to changes in the plan (e.g., due to

unforeseen circumstances). Finally, the software product is released in the release delivery
step. Additionally, the author clari�es the roles and responsibilities of software architect

and project manager in more detail.

Requirements
Analysis

Global
Analysis

Risk
Analysis

Architecture
Design

Release
Planning

Software
Development

Plan

Manage
Development

Team

Release
Delivery

Issues and
Strategies

Architecture
Description

Product
Factors

Market
Requirements

Market
Requirements

Product
Factors

Risks and
Mitigations

Module
View

Schedule
Sequence

Product Mid-Course
Correction

How, Who,
When

Figure 3.1.: Steps of a project management approach based on software architecture [Pau01,

p. 8]

One of the main concepts in the presented process is considering the software architec-

ture in the process of project planning. This concept is also considered by other researchers,

such as Stammel [Sta15]. The approaches presented in this thesis also generalize this

concept. They consider the e�ort of project planning activities along with the architecture

of a system for the change propagation analysis.

3.2. Change Propagation in Business Processes

One of the contributions of this thesis is the change propagation analysis in BP and

between BP and IS. Thus, this section describes the approaches to change propagation

analysis in BP, while the next section gives an overview of the approaches considering the

co-evolution of BP and IS. Some of these approaches are based on the change patterns in

BP provided by Weber et al. [WRR08]. The related approaches to change propagation in

BP can be divided into two categories. The �rst category consists of approaches focusing

on the migration of instances of a schema after a schema modi�cation, also referred

to as dynamic changes by Rinderle et al. [RWR06b; RWR06a]. The second category of

approaches supports the change propagation in collaborative BP. This category contains

also approaches, which consider the change propagation in the models of a BP at di�erent

30

3.2. Change Propagation in Business Processes

abstraction levels. There are also further categories regarding the change propagation and

restoring the consistencies. An example of these categories is restoring the consistencies

between the business rules and the BP schemata (e.g., the approach of Lezoche [LMT08]).

As these approaches are not within the scope of this thesis, they are not further considered

in this section. In the following, the approaches of the aforementioned categories are

discussed in more detail.

3.2.1. Dynamic Change Propagation in Business Processes

This section describes the approaches to dynamic change propagation analysis in BP.

These approaches deal with the migration of instances after changing the BP schema.

Kradolfer and Geppert describe in [KG99] the problems arising when modifying the

work�ow schema (e.g., creation or modi�cation of work�ow types). Based on these

changes, a new version of the a�ected work�ow type is created and stored in the schema.

The correctness of the schema can be checked using the de�ned schema invariants. Their

approach checks whether the existing instances of the work�ow types can be migrated to

the new version. Then, the work�ow instances are migrated to the new type, if possible.

However, their approach focuses only on the change propagation analysis in BP. Further,

they neglect the propagation of changes in work�ow instances. Additionally, they do

not consider additional artifacts that are a�ected by a change but are not covered by the

schema.

Based on the work�ow model ADEPT, several approaches are developed to deal with

the propagation of changes to the process type [Rei+05; RD98]. After a change to the

work�ow schema, the compliance of process instance with the a�ected type is checked.

For this purpose, they o�er correctness criteria based on the control �ow and data �ow.

Thus, the change propagation from an a�ected schema to its instances can be considered.

However, the proposed approaches consider only the change propagation in BP. The

changes to technical and organizational artifacts are also omitted.

Sadiq et al. di�erentiate in [SMO00] between the changes at the level of work�ows

(i.e., an automation of BP) and at the level of their instances. They identi�ed �ve types of

work�ow changes: �ush, abort, migrate, adapt, and build. These changes can be done by the

following operations: adding tasks, removing tasks, changing the properties of a task such

as allocated resources, and modifying the order of tasks. Then, the compliance criteria are

discussed for the existing instances to switch them to the new work�ow model. In [SO99]

Sadiq and Orlowska present a framework to support the dynamic modi�cation based on

a modi�cation methodology. The methodology consists of three phases: de�ning the

modi�cation, conforming to the modi�cation, and e�ectuating the modi�cation. However,

the approach does not support the change propagation between the model of the work�ow

design and the model of the IS architecture supporting the work�ow. Again, the approach

neglects the e�ects of a change to technical and organizational artifacts.

The authors of [Yoo+08] propose an approach to de�ne the schema modi�cation rules in

an eXtensible Markup Language (XML) rule language. These rules can be used to modify

the schema. Further, the instances of the schema can be migrated to the new schema.

However, the proposed approach does not support the change propagation in an instance

or between instances of a schema. Further, they neglect the e�ects caused by changing

31

3. State of the Art

the corresponding IS. The approach does not consider the e�ects of changing technical

and organizational artifacts, as well.

3.2.2. Change Propagation in Collaborative Processes

This category of approaches is concerned with the change propagation analysis in collabo-

rative processes. This is based on the idea that a change can propagate from a process of

one partner to the processes of other partners, as the execution of a process may involve

other partners [FRR12; Fdh+15]. These processes are called collaborative processes [FRR12;

Fdh+15].

Fdhila et al. analyze in [FRR12; Fdh+15] the change propagation in collaborative sce-

narios. The interaction between collaborating partners is de�ned by the choreography

model. They provide change propagation algorithms for the change operations replace,
update, insert, and delete. These algorithms are based on the structure of BP. Using the

delete change operation as an example, the authors show di�erent scenarios to deal with

the change propagation in the semantic of BP. However, they do not o�er an automatic

approach to change propagation analysis and the calculation of a transitive closure in the

instances of a BP. Further, the e�ects of changes on the IS and technical and organizational

artifacts are neglected.

The approach described in [RWR06b] is also concerned with the change propagation

analysis in case of process choreographies. The authors consider the change propagation

from the private processes of one partner to its public processes. If the changed public

processes of this partner and the public process of the other partners are inconsistent,

further actions are necessary. In this way, the change can propagate to the public and

private processes of other partners. The proposed DYnamic CHOReographies (DYCHOR)

framework [RWR06a] uses a formal model based on a �nite state automata. Using this

automata, the approach deals with additive and subtractive change operations. However,

the approach neglects the change propagation between a BP and the IS supporting the BP.

Further, the approach does not consider the e�ects of changing technical and organizational

artifacts.

The approach of Kurniawan et al. [Kur+12] analyzes the change propagation in a

collection of interrelated processes, a so-called process ecosystem. A change can cause

inconsistencies in this ecosystem. Thus, the change propagation can be considered as

restoring the consisting equilibrium. The approach maps the models of BP design to

nodes and the relationships between the nodes to constraints. In this way, restoring the

consisting equilibrium can be considered as a constraint satisfaction problem. Further,

two algorithms were proposed to restore the equilibrium in the process ecosystem. This

approach also neglects the e�ects of a change on the IS supporting the BP and technical

and organizational artifacts.

The approach of Weidmann et al. [Wei+11] is concerned with the change propagation

between the BP models at di�erent abstraction levels. The authors propose the concept

of change queues to implement the change operations. The change queues represent

ordered lists of change operations. The changes in the queue have to propagate to the

process models at the neighboring levels. Then, the elements have to be corresponded

to elements at the current level. The change is considered as accepted after de�ning the

32

3.3. Change Propagation between Information Systems and Business Processes

correspondence. In this way, two process models at di�erent abstraction levels can be

synchronized. However, this change propagation is limited to BP and neglects IS. Again,

they do not consider technical and organizational elements, which are a�ected by a change.

Weidlich et al. [WWM09] consider the situation, in which there are di�erent process

models with overlapping content. The approach uses the activities from process models

that correspond to each other. In contrast to the previous approach, this approach can also

be used for process models that are not de�ned at di�erent abstraction levels. The change

propagation can then be calculated based on the behavioral pro�les of these activities.

The behavioral pro�les de�ne three relations between two nodes in a process graph:

strict order, exclusiveness, and observation concurrency relation. Similar to the previous

approaches, this approach does not consider the e�ects of changes on IS and on technical

and organizational artifacts.

The main limitation of the approaches presented in this section is that they do not

consider the co-evolution of IS and BP. The e�ects of changes on technical and organiza-

tional artifacts are neglected, as well. Further, most approaches do not analyze the change

propagation in the instances of a BP metamodel.

3.3. Change Propagation between Information Systems and
Business Processes

There are several research papers indicating the importance of the co-design of BP and

IS to reduce the gap between the IS and the BP requirements in organizations [LSB02].

Based on this idea, the Co-Design of Business and IT Systems (Co-BITS) method was

developed as a guideline for the co-design [SKL12]. However, this method describes a

manual process of the co-design. There are further works identifying the similarities of

IS and BP [Van+07], describing the mutual dependencies between BP and IS [Aer+04],

providing related metamodels [WGK00], or presenting a methodology to integrate the

knowledge of di�erent stakeholder groups [Gas08]. However, none of the previously

mentioned approaches considers an automated change propagation analysis regarding the

co-evolution of BP and IS. Thus, this section considers only the approach focusing on the

change impact analysis.

Jamshidi and Pahl use graph matching to identify the changes in the model of the BP

design [JP12]. Based on a speci�c change and change pattern, the model of the software

architecture can be changed. However, they neglect the change propagation in each of these

models based on the initial change. Further, they do not consider a�ected organizational

and technical artifacts such as test cases in the process of change propagation analysis.

Sunkle et al. [Sun+13] developed an Enterprise Architecture (EA) ontology based on the

modeling language Architecture-Animate (ArchiMate) [17]. Their approach is based on a

set of cross-grained change propagation rules. The rules are based on heuristic between

the nature of di�erent relations, namely accesses, assignedTo, usedBy, realises, triggers,
and composedOf between the concepts (e.g., behavioral concept). However, the change

propagation rules are modeled at a very high abstraction level. Thus, insu�cient semantics

in relations can result in a high number of false positives as speci�ed by Bohner [Boh02].

33

3. State of the Art

Further, the approach does not consider the impact of the change requests to the other

artifacts that are not modeled by EA.

Boer et al. also present in [Boe+05] a similar approach to change propagation analysis

based on ArchiMate. They use the relationships access, assign, use, realize, and trigger to

formulate coarse-grained heuristics describing the change propagation. The heuristics

present guidelines during the change impact process. An example of a use relationship

can be: Entity B uses the functionality of service A. A possible heuristic is also: “If A is

modi�ed, B may need to be modi�ed as well, because the older functionalities may no

longer be declared in A” [Boe+05, p. 3]. This is an example of a coarse-grained change

propagation rule. There is also a need for more semantics for the relations to avoid too

many false positives. Additionally, the approach does not consider the e�ects of a change

on the other artifacts such as documentation or test cases.

Bodhuin et al. present in [Bod+04] a coarse-grained strategy as a guideline for identifying

misalignments between BP and IS caused by a change. This is done by identifying metrics

such as technological coverage. Given thresholds for these metrics, their values can be

evaluated. The authors propose to consider the nature of di�erent relations, namely

include, dependOn, use, composedOf, and dependOn in the UML notation. Based on these

relations, four very coarse-grained change propagation rules are speci�ed as follows: A

change to an activity in BP and/or a component in IS can propagate to a further activity

in BP and/or to a further component in IS. However, they do not provide an automatic

approach to change impact analysis. Further, they did not identify �ne-grained change

propagation rules based on the relations between BP and IS. Thus, a change propagation at

this level of abstraction can lead to “impacts explosion without semantics” as described by

Bohner [Boh02, p. 5]. Additionally, the approach does not consider the impact of a change

request on technical and/or organizational artifacts such as adapting the documentation.

Avia et al. propose in [AG14] a set of coarse-grained actions based on a set of coarse-

grained rules in the case of change. The rules describe the combination of di�erent values,

namely change types (i.e., modi�cation, deletion, and insertion), the roles of components

(i.e., enabler and requester), and the types of the relationships (i.e., necessary and useful).
The actions are guidelines to solve the misalignments. An example of an action is: “If

there are new requirements, a �rst option is to modify the enabler in order to satisfy

the new requirements” [AG14, p. 8]. “In this case, the relationship type remains as

“necessary”” [AG14, p. 8]. The proposed approach does not present an automatic approach

to change impact analysis. Without further semantics, the change propagation may lead

to a high number of false positives.

As discussed for the aforementioned approaches, there is a need for an automated change

propagation analysis approach, which considers more semantics to reduce the number of

false positives. Further, considering a�ected technical and organizational artifacts such as

documentation can lead to more precise change propagation results.

34

3.4. Model-based Change Propagation Analysis in Automated Production Systems

3.4. Model-based Change Propagation Analysis in Automated
Production Systems

In aPS there are a few attempts in the research area of the change propagation analysis

and maintainability estimation [Hei+18]. One of the common methods of cost estimation

is based on the number of input or output signals [Vog14]. In recent years, metamodels

are used by several approaches to manage the complexity of aPS [Hei+18]. However,

there is still a lack of a domain-spanning metamodel in aPS [Vog+17]. Thus, one way to

model such systems is the use of UML, as discussed in Section 3.4.1. UML diagrams are

based on a single metamodel and are usually class-based models, as described by Lin et

al. [LGJ07]. Another way is to use domain-speci�c modeling languages, which are tailored

to speci�c users of a domain [LGJ07]. The approaches based on domain-speci�c languages

are described in Section 3.4.2.

3.4.1. Change Propagation based on UML Models

This section describes the approaches to change propagation analysis and di�erence

calculation based on UML models.

In [BLO03] the authors present a change impact analysis approach based on UML

models. This approach identi�es the changes between two versions of a UML model (i.e.,

before and after the change). It uses a set of change propagation rules in OCL to calculate

a transitive closure of the model elements a�ected by the change. Further, they use a

distance measure between the initially a�ected element and the elements identi�ed as

changed to prioritize the results.

Kelte et al. [KWN05] present an approach to calculate the di�erences between two UML

models encoded in XML Metadata Interchange (XMI) �les. The approach is based on the

algorithm Longest Common Subsequence (LCS) to identify the similarities between strings.

Thus, it does not need any identi�ers of diagram elements. However, this approach does

not analyze the change propagation.

The approach of Dam and Winiko� [DW10] aims at resolving the inconsistencies for

UML models using OCL constraints. For this purpose, they check the constrains in the

models, after changes were made to these models. For each constraint violated by a change,

a repair plan is generated. Then, the costs of the repair plans are calculated. The approach

presents the cheapest plan to the user.

Delta-P [Sot07] is an approach to compare models based on the Semantic Web techniques.

For this purpose, the model is transformed to the Resource Description Framework (RDF)

notation – a triple-based notation. Then, the models are compared based on the unique

identi�ers. The result is a comparison model. The last step identi�es the change patterns

in the comparison model. This approach does not calculate the change propagation and

the ripple e�ects caused by a change.

Wolter et al. [WKH07] present an approach to compare UML models based on ontologies.

Ontologies are used to de�ne the architecture of the products. In contrast to the other

approaches, they do not use any naming similarities. Thus, the results of the approach do

35

3. State of the Art

not rely on the naming of the single classes. However, their approach does not consider

the propagation of changes.

Scharf and Zündorf present an approach in [SZ11] to identify the di�erences between

several model versions and to merge them. However, the approach does not support the

change propagation in the models.

The previously described approaches were originally developed in the domain of IS.

UML models were not originally de�ned to describe the aPS systems and, thus, cannot

cover the whole semantics of aPS. In [LGJ07] the authors describe the di�erences and

bene�ts of the domain-speci�c modeling languages in contrast to UML as a general-purpose

modeling language: i) UML models rely on the same metamodels, whereas the syntax and

the semantic of the domain-speci�c models are de�ned by their own metamodels. In other

words, they are tailored to a speci�c group of usage and users. ii) The domain-speci�c

models can be considered as instance-based models, whereas the UML diagrams are

usually class-based models [LGJ07]. Further, none of the previously described approaches

considers the impact of other artifacts than code such as technical and organizational

artifacts (e.g., documentation and test cases).

3.4.2. Change Propagation based on Domain-specific Models

In aPS there are various undocumented dependencies between the involved disciplines and

their objects [Jäg+11]. These dependencies and the complexity of the aPS systems make the

estimation of the change impact even more challenging [Vog+15]. Thus, there is a need for

systematic models representing the engineering work�ow in aPS [Jäg+11]. The importance

and the use of models in the recent aPS approaches are discussed in [Vog+15]. This section

describes the maintainability approaches in aPS, which are based on domain-speci�c

models.

Bi� et al. [Bif+15] provide an approach to support linking and versioning di�erent

engineering artifacts. For this purpose, the plant planner provides a model of the plant

structure. Then, domain experts add their engineering results such as AML �les to a

folder. A parser can detect di�erent �le types such as Computer Aided Engineering

eXchange (CAEX) or COLLAborative Design Activity (COLLADA). After detecting the

�les, it generates a model based on the folder contents. A further parser analyzes the �le

contents based on XML Schema De�nition (XSD) to generate Ecore-based metamodels

using the libraries provided by EMF. This enables versioning di�erent engineering artifacts.

A linking metamodel allows generic links between several artifacts. Further, the quality of

the link models can be checked by OCL queries. However, this approach does not support

change impact analysis. It cannot derive a task list for a change request in the plant.

The approach presented by Ladiges et al. [LFL16] learns models by observing the input

and output signals of the control system of a plant. It is based on the assumption that the

state of these systems can be modeled using discrete events [All10]. The approach records

the binary signals between the sensors and actuators on the one hand and the PLCs on

the other hand. Based on these traces, behavioral models are generated. The system is

then monitored to detect the behavioral changes. However, the approach neglects the

structural change propagation in the plant and does not consider the e�ects of a change

on the control software.

36

3.5. Change Propagation Analysis based on Requirements Modi�cation

Lin et al. present in [LGJ07] an algorithm to calculate the di�erences between domain-

speci�c models. The domain-speci�c models are mapped to hierarchical graphs. The

algorithm starts with the top-level model elements and analyzes the submodels hierar-

chically. It calculates a mapping set and a di�erence set. However, the approach does

not consider the change propagation in a domain-speci�c model and does not derive

maintenance task lists.

In [LLE17] an approach is presented to extract variability information from product

variants. It extracts traces from features and relates the features to the corresponding

implementation artifacts. Thus, all implementation artifacts of all variants should exist.

The other assumption is that the features of the product variants are known. However,

the proposed approach does not consider the change propagation and the generation of

maintenance task lists.

The approach of Pietsch et al. [Pie+15] compares models to generate edit scripts used

in delta modules. The resulting edit script can be considered as a new delta module. In

the next steps di�erent relations between the data modules are analyzed (e.g., con�icts).

Several operations such as intersect can be used to create new delta modules based on the

existing delta modules. Then, a related product can be generated by a feature combination.

Again, this approach does not analyze the structure of aPS systems regarding the change

propagation and does not derive maintenance task lists.

Prähofer et al. present in [Prä+16] a feature-oriented modeling framework. They use

several models based on components, for example for product management or system

con�guration. The system implementation can be represented as an Abstract Syntax

Tree (AST). A system dependence graph is calculated based on the AST, which contains

the control and the data �ow of the system implementation. The features and components

are connected to the code. This allows the application of a change impact analysis method.

However, the approach is not based on the structure of an aPS system to analyze the

change impact. Further, it cannot generate the corresponding maintenance task lists.

The approaches described in this section are based on domain-speci�c models. How-

ever, they do not consider the propagation of changes in the architectural model of the

system. Further, none of the approaches uses a domain-spanning model (i.e., hardware and

software) for change impact analysis. Additionally, only a subset of approaches considers

the technical and/or organizational artifacts, which can also be a�ected by a change (e.g.,

documentation or Electronic Computer-Aided Design (ECAD) designs).

3.5. Change Propagation Analysis based on Requirements
Modification

The approaches, which analyze the change propagation from requirements to speci�c

systems can be divided into several subcategories due to the domain under study. As

this thesis considers the domains of IS, BP, and aPS, the related approaches to this topic

can be divided in further categories, accordingly. The following sections discuss the

aforementioned categories in more detail:

37

3. State of the Art

3.5.1. Change Propagation Analysis in Information Systems and Business
Processes based on Requirements Modification

This section gives an overview of the related work, which is concerned with change

propagation analysis in IS and BP triggered by a change to requirements. For this purpose,

this section starts with approaches focusing on change propagation analysis from require-

ments to IS. Then, it presents approaches, which are concerned with analyzing the change

propagation from requirements to BP. Finally, the section discusses the approaches to

change propagation analysis from requirements to both IS and BP.

In IS, Ramesh and Jarke present in [RJ01] a reference model for requirements traceability

based on analyzing traceability tools and structured interviews with 26 organizations in

several business areas. The metamodel comprises the metaclasses object, stakeholder, and

source. Further, they di�erentiate between high-end users and low-end users regarding

their traceability experience and needs. Thus, they provide further reference models for

each group of users. Although the proposed models can be further used for the change

propagation analysis, the paper does not provide in-depth information about the algorithms

to determine the a�ected requirements or system elements.

To support the consistency between requirements and software architecture, Vogelsang

et al. propose a model-based approach in [Vog+14b]. First, the approach formalizes the

requirements from artifacts such as use cases. In the next step, the software architecture

has to be modeled. The approach relates the requirements to the architecture by connecting

the input and the output of the speci�cations and the architectures. In this way, it is mainly

concerned with early detection of inconsistencies. However, the proposed approach does

not analyze the propagation of changes from requirements to IS.

Goknil et al. present several approaches to tracing changes in requirements [Gok+14;

Gok+11] and from requirements to the software architecture [GKB16]. The approaches

are based on rules, which use formal models representing requirements and their relations

to the software architecture. Using these rules, the approaches identify the a�ected

requirements and parts of the architecture. Although these approach use more �ne-

grained semantics of relations, the model of architecture is still at a high abstraction level

without di�erentiating between di�erent types of architectural elements. This can lead to

a high overestimation of the results.

The Goal Business Process Management (GoalBPM) approach aims at connecting the

BP models to the stakeholders’ goals. The approach uses BPMN [Obj11] for modeling

BP and KAOS [Res07] for modeling goals, as stakeholders’ goals are closely connected to

requirements. For this purpose, the relationships between stakeholders’ goals, as well as

between stakeholders’ goals and activities in the BP model have to be modeled. In this way,

changes to the goals or to the BP can be traced to each other in order to identify whether

the BP satis�es the goals. However, this approach was conceptually designed and has to

be conducted informally and manually. Thus, it remains unclear how the propagation of a

change can be analyzed in detail.

[ES05] is one of the few approaches concerning the co-evolution of requirements on the

one hand and IS and BP on the hand. It presents a framework involving �ve dimensions.

Each dimension regards a challenge in requirements engineering during the co-evolution

(e.g., understanding the consistency relationships between the co-evolving entities). Further,

38

3.5. Change Propagation Analysis based on Requirements Modi�cation

they illustrated how the framework can be used based on an application example. Again,

the paper does not propose in-depth information about algorithms for analyzing the

propagation of change.

3.5.2. Change Propagation Analysis in Automated Production Systems
based on Requirements Modification

In aPS, Requirements re�ect “the stakeholders’ needs and therefore the intention of the

plant as well as demanded properties to be competitive and economic” [Vog+15, p. 7].

Thus, requirements changes (e.g., changing market requirements) can be considered as

a main change trigger in aPS [Vog+15]. Vogel-Heuser et al. describe in [Vog+15, p. 4]

the complex dependencies between requirements and the aPS satisfying them during

the evolution as “not all changes of requirements can be ful�lled by changes of only the

software or only the physical parts alone. Quite often in an aPS, changes of the mechanical

and/or the electrical/electronic parts are required, which lead to a subsequent adaptation

of the software”. Hence, a change propagation analysis approach, which considers the

requirements changes, has to provide a holistic view on the system to avoid overlooking

parts of the plant under study. To achieve this, a “semi-formal system requirements

speci�cations” can be used [Vog+15, p. 3]. Belgran and Säfsten refer in [BS09] to a

study conducted in ten Swedish companies, which shows that a detailed speci�cation of

requirements rarely exists in practice [BP95]. However, informal speci�cations “do not

facilitate tests for completeness, unambiguity and consistency” [FL00, p. 2]. Thus, the

maintenance of requirements remains an open issue in aPS [Vog+15].

Legat et al. present in [LFV13] an evolution model for industrial plant at a high ab-

straction level. According to their model, evolution drivers for a speci�c plant result in

changing requirements. These changes result in changing the corresponding properties of

a plant. Additionally, the application of the evolution model on a community case study is

discussed. However, the proposed model is abstract and mainly illustrates the evolution of

a plant conceptually.

The modeling approach of Fay et al. [Fay+15] considers di�erent development artifacts

such as requirements, hardware, and software in aPS. The proposed Systems Modeling

Language (SysML)-based approach di�erentiates between functional and non-functional

requirements. The functional requirements can be further re�ned by other requirements.

Additionally, they use validity relation to represent that a component of a system satisfy

a speci�c functional requirement. However, the proposed approach mainly focuses on

modeling a whole system including its requirements and does not analyze the change

propagation.

Ladiges et al. [Lad+13] illustrate the e�ects of changes to a system on the ful�llment of

its non-functional requirements using a case study. For this purpose, the authors categorize

the evolution scenarios at a high abstraction level. According to this categorization, the

change triggers are not necessarily the requirements, but the system can be directly

changed without adapting the descriptions of requirements. The latter one leads to a gap

between the requirements documentation and the system. The categorization was applied

to several evolution scenarios of the case study. However, the in�uences of changes on the

39

3. State of the Art

non-functional requirements are mainly illustrated and a solution idea is outlined without

providing a modeling language and the corresponding algorithm for change propagation

analysis.

Jamro focuses in [Jam15b] on requirements modeling for control software based on the

IEC 61311-3 standard. The SysML-based modeling approach considers both functional and

non-functional (i.e., mainly performance) requirements. Additionally, an explicit modeling

of Human Machine Interface (HMI) requirements is also possible. Each requirement has a

unique id and can be described as a text �eld. The functional requirements refer to POU in

an IEC software and can be veri�ed by unit tests. Further, the approach allows modeling

the performance requirements resulted from executing POU and device communications.

However, this approach also neglects the change propagation analysis with regard to a

system and its requirements.

3.5.3. Discussion on Approaches to Change Propagation Analysis based on
Requirements Modification

The previously described subsections gave an overview on related work to change propaga-

tion analysis in di�erent domains triggered by a change to requirements. The approaches

to this topic in di�erent domains are designed at di�erent levels of abstraction and are

concerned with di�erent aspects such as documentation of requirements, identi�cation

of tracing links, or change impact analysis. While in some domains such as IS, there are

several approaches dealing with a wide range of the aforementioned aspects, there are only

a few approaches to this topic in other domains such as aPS. The majority of approaches

in aPS present formal models for persisting requirements. A subset of these approaches is

based on SysML. Thus, these approaches neglect the change propagation from require-

ments to the system satisfying them. This issue can also be generalized to the evolution

of models and to other domains, as discussed by Etien and Salinesi [ES05]. The authors

concluded that “several approaches . . . do not provide indications concerning evolution

of the current models. They help to construct new one” [ES05, p. 3]. Further, there are

several approaches in di�erent domains such as IS, BP, or aPS discussing the relevance

of considering the requirements changes and, thus, describing the change propagation

only conceptually and at a high abstraction level. In other words, these approaches do

not provide concrete solutions for this issue. Further, there are only a few approaches

analyzing the propagation of change from requirements to the systems in more than one

domain. Summarized, there is a need for an approach to change propagation analysis

based on requirements modi�cation, which can be extended to other domains.

3.6. Domain-specific Languages for Specifying the Change
Propagation Rules

As the approaches proposed in this thesis are based on change propagation rules, this

section gives an overview of the languages for describing change propagation rules.

There are several approaches, which use UML models to describe the architecture of a

40

3.6. Domain-speci�c Languages for Specifying the Change Propagation Rules

system. One of the most used languages to describe the expressions for the UML models

is OCL [OMG06; HZ04]. There are two types of expressions: i) They can be de�ned as

constraints or invariants for a model in a formal way. ii) They can also be used to query

the elements of a model [OMG06; HZ04].

Several approaches use OCL to de�ne constraints and rules for models. An example of

these approaches is the approach of Dam and Winiko� [DW11]. This approach uses OCL

constraints to describe consistencies in models. If a model changes, the constraints have to

be checked. A repair plan is created in the case of inconsistency. However, this can cause a

more speci�c description of dependency relationships in the models. There is an additional

need for further logic to automatize the generation of repair plans. The approach proposed

by Briand et al. [BLO03] is based on OCL to de�ne change propagation rules. It compares

two versions of UML models to identify the di�erences between them. However, the rules

are speci�ed in an imperative manner. Additionally, they are tailored to the modeling

language UML. This increases the overhead of the adaptation of the analysis to other

modeling languages or domains. Summarized, although OCL can be used to specify the

change propagation rules, it was not originally designed with respect to this topic. This

can lead to complex change propagation rules, which cannot be maintained or adapted

easily.

Lehnert et al. propose in [LFR13] a rule-based approach to identify the a�ected elements.

They consider UML models, source code, and test cases. 180 change propagation rules

identify the potentially a�ected elements based on the currently a�ected elements, the

change type, and the related elements in a �ne-grained manner. The rules are described

in [LFR13] in a XML-based notation. Similar to the previous approaches, the rules are

speci�ed in an imperative manner. Thus, it is di�cult to adapt �ne-grained and imperative

rules to other modeling languages or disciplines. However, the focus of this section is on the

languages, which are tailored to specifying change propagation rules. Thus, the remaining

part of this section discusses the domain-speci�c languages to change propagation rules

and a language, which enables traversing the graph elements in an e�cient way.

Müller and Rumpe propose in [MR15] an approach to change propagation analysis.

Their approach compares UML models to identify the di�erences between them. These

changes invoke rules, which were described in a DSL. However, the proposed DSL by

the authors cannot be used to describes rules to identify the a�ected elements. The rules

generate checklists of the prede�ned development tasks.

VIATRA Query Language (VQL) is a query language for Ecore metamodels. It is based

on graph patterns. Further, it provides support for various features, such as aggregation

patterns [Ber+11]. Although VQL is an expressive model query language and can also be

used to specify the change propagation rules, it was not originally designed with regard

to this issue.

41

3. State of the Art

3.7. Metamodel of Control So�ware in Automated Production
Systems

This section describes the related work, which speci�es the metamodels for the control

software. Although this thesis focuses on the IEC 61131-3 standard, the related approaches

also cover a broader ranges of standards for the control software. As the IEC 61131-3

standard is currently one of the most used standards in industry, it can be used to cover

various applications in the manufacturing systems [Vog+15].

The approach of Thramboulidis [Thr04] is one of the �rst attempts to metamodel the

control software in aPS. The approach is based on the concept of function blocks in IEC

61499 as building blocks in distributed control systems. To support control engineers

during the development, the approach combines the UML models and the function block

construct.

UML for Process Automation (UML-PA) [KV07] aims at combining the UML with the

standard IEC 61311-3 and its object-oriented extension. To provide more support to

practitioners in aPS, UML-PA considers only a subset of all UML diagrams. For example,

the behavior of the software can be modeled using the state machines. Further, UML-PA

provides unambiguous modeling elements for aPS.

Witsch adapted the UML pro�les for the control software in the approach plcML [Wit13].

plcML provides class diagrams to model the structure of the control systems. It also allows

adapting the UML state-charts to PLC state-charts for the control software. PLC state-

charts are deterministic. They allow modeling the behavior of a control software using

states and transitions. The control software under study is the 3
rd

edition of IEC 61311-

3 [Wer09]. This edition represents an object-oriented extension of IEC 61311-3.

A markup language is proposed in [EMO07] to model the control software following

the standard IEC 61311-3. The model allows generating the automation project of a PLC.

The model is based on the Component-based Software Engineering (CBSE) concepts. The

software model is composed of two types of components. The �rst type of components

organizes the structure (i.e., the architecture) of a software (e.g., con�guration, resource,

or task). The second type of components is the computational units (i.e., POU). However,

a metamodel, which speci�es the types of di�erent elements of a control software and

their relationships, is needed to analyze the change propagation more precisely.

A 3 + 1 language for distributed industrial control systems is presented in [Mar+10;

EM12]. The language provides di�erent views for specifying control systems. The �rst

view de�nes the control strategies at a high abstraction level. The second view deals

with the hardware architecture and the physical equipment. The software architecture is

the third view. The last view connects the aforementioned views to create a consistent

model of the system. The software engineering view provides modeling concepts such

as con�guration or program. However, the proposed metamodels and their abstractions

are not suitable for an appropriate change propagation analysis. For example, there is

no di�erence between the speci�c POU types [Mar+10], which can be crucial for the

propagation of change.

Another 3 + 1 view model for Model Integrated Mechatronics (MIM) is proposed by

Thramboulidis in [Thr10]. This view model is based on SysML [OMG12]. The MIM

42

3.8. Discussion

architecture is composed of four layers: mechatronic Layer, application layer, resource layer,

and mechanical process layer [Thr05]. The SysML view is used for the mechatronic layer.

To model the software the IEC 61499 standard is used. The model decomposes the software

based on function blocks, as described in [DT11]. As the metamodel focuses mainly on

function blocks, the abstraction of this metamodel is not suitable for an appropriate change

propagation analysis.

A dependency model is introduced by Feldmann et al. in [Fel+16]. This model represents

the call semantics between di�erent elements of a control program during the compilation

process. Thus, it is represented by a directed labelled graph. The nodes in the graph

represent the elements of the control software such as POU or global variables. As one of

the requirements of the dependency model is its application to a wide range of control

software, the edges specify only four dependency types between the nodes (i.e., read, write,
call, and execute). This dependency model was extended by two further edge types (i.e.,

jumps to and sequential function chart transition) to include the control �ow between the

POUs. Although this dependency graph is one of the �ne-grained models, it is still at a

high abstraction level. Thus, it can result in a high number of false positives during the

change propagation analysis.

Several approaches proposed in this section are based on UML. However, UML without

any modi�cations is not the appropriate way to model the control software [Thr04; KV07].

The main reasons are: i) Most aPS domain experts are not familiar with the language

concepts of UML [Thr04], ii) the mapping between the modeling elements of UML and

the concepts of a standard for control software (e.g., function blocks in IEC 61499) is

not straightforward [Thr04], and iii) many UML modeling elements are super�uous in

aPS [KV07]. For these reasons, this thesis introduces a new metamodel for the object-

oriented extension of IEC 61311-3 [Rät17; Bus+18c]. This metamodel is tailored to the

domain of aPS and to the language concepts of the standard. Thus, it aims at supporting

domain experts with concepts, with which they are familiar. Further, it reduces the

modeling elements to those, which are necessary to model the structure of the system and

to estimate the change propagation.

In a model-based change propagation analysis, the granularity of the metamodel and

its instances a�ects the precision of the change propagation results [Ros15; Bus+18c;

Hei+18]. Various metamodels proposed in this section describe the system’s structure only

in a coarse-grained manner. Thus, the results of the analysis can contain too many false

positives. In other words, the high abstraction level can result in the “impacts explosion

without semantics” [Boh02, p. 5].

3.8. Discussion

This chapter discussed the state of the art regarding the main contributions of this thesis.

Most approaches to change propagation analysis, which were discussed in this chapter,

are limited to only a speci�c domain (e.g., IS, BP, or aPS). Thus, these approaches do not

consider the e�ects of changes to the artifacts of one domain on the artifacts of the other

domains. However, this is important to analyze the impact of a change more precisely and

to support the co-evolution of di�erent domains (e.g., the co-evolution of IS and BP).

43

3. State of the Art

The heterogeneity of approaches in di�erent domains and their results makes them

di�cult to compare [HBK18]. Further, the idea of various approaches such as several code-

based approaches in IS cannot be generalized to the other domains. Thus, the approaches

introduced in this thesis are based on the architecture of systems in a speci�c domain. An

architecture-based approach can be generalized to other domains, as it allows analyzing

the change propagation based on the structure of the system [HBK18].

Similar to the proposed approaches in this thesis, most approaches presented in this

chapter are based on models. The use of models allows to analyze the change propagation

even in the early development phases [Leh11b]. Additionally, models abstract from details

and, thus, allow overcoming the complexity of the systems in a domain [Hei+18]. Various

approaches are based on the general-purpose modeling languages such as UML. However,

UML is not always the appropriate modeling language due its “single de�nition for syntax

and static semantics” and “class-based” nature, as described by [LGJ07, p. 3]. Thus, Lin

et al. [LGJ07] suggest using a domain-speci�c modeling language to de�ne the concepts,

with which the users of a speci�c application domain are familiar. Further, as UML is

originally developed in the domain of IS, the elements of other domains cannot be mapped

to UML concepts [Thr04].

A further limitation of most approaches to change propagation analysis is neglecting

the technical and organizational artifacts, which are a�ected by a change [Ros+15b;

Sta15; Ros+17a; Hei+18]. Lehnert describes in [Leh11a] that only 4 % of 150 approaches

analyzed during the review consider the e�ects of a change on software artifacts such as

documentation. The result of the review also shows that only 7 % of approaches analyze

the e�ects of changing requirements. Therefore, there is a need to involve such artifacts

in the change propagation process.

44

4. Running Examples

The proposed approaches in this thesis are developed to analyze the change propagation

in a speci�c domain, namely IS, BP, and aPS. A simple example in each domain should be

used to illustrate the steps of each approach. The following sections describe the running

examples in each domain.

4.1. Media Store Example

The Media Store example [Reu16] is used to discuss the steps of the approaches to change

propagation analysis in IS and BP. Media Store was originally introduced in [HKR11] as

a simple component-based software system. It was originally designed to reason about

the performance of component-based software systems [HKR11]. Further, development

artifacts such as requirements or PCM models are available. Media Store was extended

continuously to new requirements and technologies [Reu16]. It is implemented as a Java

Platform, Enterprise Edition (Java EE)-based case study demonstrating a host system

for audio �les [Reu16; SK16]. Further, there are several change scenarios for Media

Store illustrating the e�ects of design decisions on di�erent quality attributes such as

performance [Reu16].

4.1.1. Model of So�ware Architecture

As described previously, Media Store serves as a host system for audio �les [Reu16].

Figure 4.1 illustrates the initial architecture of the Media Store example. Media Store

has a three-tier architecture. In the following, the components of Media Store’s software

architecture are described:

• The WebGUI component is the front-end component and represents the presentation

layer. This component enables users to register to and log into the system. Further,

it allows uploading and downloading the audio �les [Reu16].

• The MediaManagement component is the main component in the business logic.

It coordinates the communication between components. Further, it answers the

download requests of users [Reu16].

• The UserManagement component provides services for the registration and login of

users [Reu16].

• The UserDBAdapter component enables the UserManagement component to query

the DataBase component and update the data in the DataBase [Reu16].

45

4. Running Examples

• The ReEncoder component re-encodes the audio �les requested by users [Reu16].

• The re-encoded audio �les are forwarded to the TagWatermarking component, which

watermarked the audio �les using tags [Reu16].

• If users want to download more than one audio �le, the Packaging component

compresses the requested audio �les to an archive �le [Reu16].

• The DataBase component is the main component in the persistence tier storing user

information and metadata of audio �les [Reu16].

• The audio �les themselves are stored in a separate database, which is represented as

the DataStorage component in Figure 4.1 [Reu16].

WebGUI TagWatermarking ReEcorder Database

UserDBAdapterUserManagement

MediaAccessMediaManagement

Packaging DataStorage

IUserManagement

IMediaManagement

IPackaging
IUpload

IDownload IDownload

IDataStorage

IDB

IDownload

IUserDB

Figure 4.1.: Software architecture of Media Store [Reu16]

To illustrate the approaches in the thesis, a slightly modi�ed variant of the Media Store

example, introduced in [Reu16], is chosen. The reason for that is, that the original variant

of Media Store does not have some relevant model elements to illustrate the approaches.

An example of a modi�cation is adding a composed data type user that contains the

personal information a user provides during the registration.

4.1.2. Model of Business Process

There is a main usage model for Media Store [Reu16]. The usage model consists of the

following main system steps: First the user can register to the system. Then they have to

log into the system. After a successful log-in, a list of available audio �les are displayed to

the users. Then they can download or upload audio �les [Reu16].

This usage model is extended by the corresponding actor steps to create a simple BP.

Figure 4.2 illustrates the BP based on the Media Store usage model. As described in Sec-

tion 2.4, the usage model is modeled using actor steps (i.e., marked with AS: in Figure 4.2)

46

4.2. Minimal Plant Example

and system steps (i.e., all other activities in Figure 4.2). Similar to the architecture of Media

Store, a slightly modi�ed variant of its BP is chosen. For example, the users need to enter

personal information and their national identi�cation number to register to Media Store.

This is modeled as data object identity card for the input of the �rst actor step. This

data object corresponds to the data type user containing the personal information of a

speci�c user. The personal information of users is stored in the DataBase component. The

de�ned BP is used to illustrate the steps of the change impact analysis approach for BP.

Th
e

U
se

r o
f M

ed
ia

 S
to

re

AS: Enter personally
identifiable information Register

AS: Enter username
and password Login GetFileList AS: Browse

audio files

AS: Select files
to download Download

AS: Select files
to upload Upload

Identity
Document

× × × ×

Figure 4.2.: Overview of the Media Store’s BP

4.2. Minimal Plant Example

To illustrate the approach to change propagation analysis in aPS a Minimal Plant example

is used. The Minimal Plant example is based on the Pick and Place Unit (PPU) and the

xPPU [Vog+14a]. It consists of a conveyor and two connected ramps at the conveyor.

Further, an optical sensor is installed at the end of the conveyor to detect the work pieces.

Two shapes of work pieces can be di�erentiated, namely a cylinder and a cuboid shape.

Additionally, there is a pneumatic cylinder as pusher to push the work pieces to the

corresponding ramp. Similar to the xPPU, the Minimal Plant example has an operation

panel providing a start button. Pressing the start button allows starting the operation

mode [Vog+14a].

4.2.1. Model of Mechanical and Electrical/Electronic Parts

The Minimal Plant example can be modeled using the abstract metamodel of aPS (see Sec-

tion 2.7.1) and the speci�c metamodel of aPS (see Section 2.7.2). The conveyor and its

connected sensors and ramps can be modeled as a structure. The structure consists of two

ramp components and the following main modules: a conveyor belt, a motor, a pusher, and

an optical sensor. Each module consists of further components. For example, the conveyor

belt consists of a band and a frame, on which several other modules, components, and

interfaces are mounted. Figure 4.3 gives a simpli�ed overview of the hardware of the

Minimal Plant example, as a reduced variant of the xPPU [Vog+14a]. This �gure shows a

simpli�ed instance of an abstract metamodel to illustrate the Minimal Plant example. As

the instance of the speci�c metamodel is similar to the instance of the abstract metamodel,

47

4. Running Examples

it is omitted in the following. The only di�erence between both instances is that the

instance of the speci�c metamodel contains the speci�c types of elements such as optical

sensor as a type instead of the module as a type.

Structure
name: Conveyor

Module
name: Conveyor Belt

Component
name: Frame

Component
name: Band

Module
name: Motor

Component
name: Motor

Module
name: Optical Sensor

Component
name: Optical Sensor

Module
name: Pusher

Module
name: Monostable Cylinder

Module
name: Pressure Sensor

Component
name: Push Head

Component
name: Ramp 1

Component
name: Ramp 2

Interface Repository
name: Interface Repo

Interface
name: Ramp 2 to Frame

Interface
name: Ramp 1 to Frame

Interface
name: Pusher to Cylinder

Interface
name: OptSensor to Frame

Interface
name: Motor to Frame

Plant
name: Minimal Plant

Figure 4.3.: Overview of the hardware of the Minimal Plant example as a reduced variant

of the xPPU [Vog+14a]

48

4.2. Minimal Plant Example

4.2.2. Model of So�ware

The Minimal Plant example is a PLC-based plant. The control software is assumed to

be programmed using the IEC 61131-3 standard. The behavior of the Minimal Plant

example is also based on the xPPU [Vog+14a]. The initialization process of the conveyor

initializes the local variables. After the operator pressed the start button, the conveyor is

initialized. During the initialization, the conveyor runs for a short time. After a successful

initialization, the control software starts the operation mode. The work pieces are conveyed

to the ramps. An optical sensor is used to detect the speci�c types of work pieces at the

extension position. After a speci�c shape of work pieces was detected, the pusher is

extended to push the work piece of a speci�c type to the ramp [Vog+14a].

49

5. Maintainability Analysis Methodology

Sustainable systems have to be continuously changed in order to be able to provide their

functionality correctly over time [Ros15; Leh79]. Thus, sustainable systems have to be

maintainable. Maintainability of a system can be considered as the extent, to which a

system can e�ciently and e�ectively be modi�ed by given changes [ISO11]. In other

words, the maintainability of a system considers the required e�ort to implement a change

request in a system [HBK18]. Thus, the maintainability of a system does not depend only

on the system under study, but also on both the system under study and the upcoming

change requests.

In general, the sustainable systems contain heterogeneous elements from di�erent

domains such as IS, BP, or aPS. In the context of this thesis, a system element represents a

part of the system. Similar de�nitions are also proposed by other authors. For example,

Conway states in [Con68, p. 2] “any system of consequence is structured from smaller

subsystems which are interconnected”. He describes the process of identifying the sub-

systems recursively, as a subsystem can be considered as a system [Con68]. This process

can be iteratively repeated “until we are down to a system which is simple enough to be

understood without further subdivision” [Con68, p. 2]. Similar to the Conway’s de�nition,

the de�nition used in this thesis does not demand further characteristics of the system

elements such as their granularity, as the choice of an element in a system depends on the

context and the usage.

According to [Con68, p. 2], “a description of a system . . .must delineate each of the

subsystems and how they are interconnected”. In the context of this thesis, this descrip-

tion corresponds to the system model, which describes the system elements and their

relationships.

An example of systems comprising heterogeneous elements is an aPS (e.g., a plant),

which in general consists of mechanical, electrical/electronic components and soft-

ware [Vog+17; Hei+18]. A system element in this example can be a mechanical component

such as a physical table or a crane arm.

During the change implementation phase, the system elements from di�erent domains

in�uence each other in a mutual way [Ros+17a; HBK18]. Thus, it is not su�cient, if a

change propagation analysis approach focuses on the maintainability of systems in only

one domain. In other words, the maintainability analysis approaches have to consider het-

erogeneous system elements from several domains and their mutual dependencies [Ros15;

Ros+17a; HBK18].

Most approaches presented in Chapter 3 are designed to analyze the change propagation

in systems in only one domain. Thus, they do not consider the e�ects of a change request

to system elements in one domain on the dependent system elements in other domains.

The results of di�erent approaches from di�erent domains can be di�cultly combined

to obtain a domain-spanning change propagation analysis. The main reasons for the

51

5. Maintainability Analysis Methodology

incompatibility of approaches and their results are that the approaches are often tailored

to speci�c types of systems (e.g., code-based approaches) and are designed at di�erent

levels of abstraction [HBK18]. The aforementioned factors make the need for an approach

essential, which analyzes the change propagation across domains.

This chapter proposes a general methodology to analyze the change propagation in

heterogeneous system elements from di�erent domains [HBK18]. Thus, the methodology

was designed to answer the �rst research question.

The remainder of this chapter is structured as follows: Section 5.1 gives an overview of

the methodology. The methodology consists of two types of metamodels and algorithms:

i) The metamodels and algorithms that can be applied in all domains. This is described

in Section 5.2. ii) The metamodels and algorithms that have to be extended or de�ned

for the domain under study. Section 5.3 discusses these metamodels and algorithms in

more detail. The process of instantiating the methodology in a speci�c domain is given

in Section 5.4. Section 5.5 summarizes the contributions of this chapter.

The results of this chapter have been published in the papers [Ros15; HBK18] and

partially (e.g., duplicate elimination, supporting users’ decision by reducing task list, or

sorting the task list in the instance of the methodology in IS and BP) in the papers [Ros+17a;

Bus+18a].

5.1. Generic Methodology for Domain-Spanning Change
Propagation Analysis

This section proposes the generic methodology for the domain-spanning change propa-

gation analysis. The methodology was developed as a generic guideline for model-based

approaches to change propagation analysis. It aims at improving the development pro-

cess by providing generic (i.e., domain-independent) metamodels and algorithms for all

change propagation analysis approaches, as well as guidelines for the development of a

change propagation analysis approach in a speci�c domain in terms of modular metamod-

els and algorithms. As the methodology is de�ned independently of a speci�c domain

and can be instantiated in di�erent domains, it can be considered as generic. Initially,

the methodology was mainly developed as a generalization of two change propagation

analysis approaches in the domain of IS [Sta15; Ros+15b; Ros+17b] and BP [Ros+17a].

However, it is mainly based on the change propagation analysis approach in IS [Sta15;

Ros+15b]. The generic methodology can be instantiated in a new domain to develop a

change propagation analysis approach in the domain under study. In this thesis, the result-

ing change propagation analysis approach is also referred to hereinafter as an instance of
the methodology. The resulting change propagation analysis approaches are mainly based

on the system’s structure, also known as system’s architecture, re�ecting system’ elements

and their relationships [Con68]. Using the structure of a system as the main artifact is

due to the fact that “a system’s architecture is the set of principal design decisions made

during its development and any subsequent evolution” [MT10, p. 1]. Additionally, di�erent

quality attributes of a system such as maintainability or performance are a�ected by its

structure [Ros+15b; Sta15; TMD09].

52

5.1. Generic Methodology for Domain-Spanning Change Propagation Analysis

The input of the resulting change propagation analysis approach (i.e., the instance

of the methodology) is the model of the systems in the domain and a set of change

requests referring to the changing elements in a system model. The initial change requests

are referred to hereinafter as seed modi�cations [HBK18]. A seed modi�cation in an

instance refers to a model element representing an a�ected system element [Sta15]. Model

elements representing the elements of a system structure are called structural elements in

the following. The instances of the methodology use a change propagation algorithm to

analyze the change propagation in the system model based on the input and to calculate the

output. The output of an instance is a list of potential maintainability tasks to implement

the seed modi�cations. The output is called hereinafter as task list [HBK18; Sta15]. Each

task in the task list refers to an element of the system model that is potentially a�ected by

the seed modi�cations. Further, each task has a task type, which de�nes how to change

the speci�c model element [HBK18; Sta15]. An example of a task can be delete interface I.
While interface I represents the a�ected element, delete represents the task type [HBK18;

Sta15]. A task in a task list can also have sub-tasks. In this example, a sub-task could be

modify the corresponding signatures [HBK18; Sta15].

As the development process of a system involves not only the structure of the system or

the connection to its environment, but also di�erent organizational and technical artifacts

(e.g., test cases or documentation), the maintainability analysis has also to consider these

artifacts [Ros+15b; Sta15]. Model elements corresponding to the organizational and

technical artifacts are referred to hereinafter as context elements [Ros+15b; Sta15]. These

elements are not part of the system model. Considering context elements in addition

to elements regarding the structure and the behavior of a system in the domain under

study during the maintainability analysis is also motivated by the Conway’s law [Con68].

According to this law, “organizations which design systems (in the broad sense used here)

are constrained to produce designs which are copies of the communication structures of

these organizations” [Con68, p. 4]. Thus, each task can also have follow-up tasks, which

reference the context elements. In the previous example, a follow-up task could be update
test cases [HBK18; Sta15]. In this way, the task lists are mainly derived based on the

elements of the system’s structure and behavior. Additionally, the corresponding context

elements can also be considered for each task. This allows a more comprehensive e�ort

estimation with a holistic view on the system under study, the project and the organization,

as well as the involving roles and the responsible sta� (see [Ros+15b; Sta15] for IS). While

this chapter gives an overview of the methodology, concrete instances of the methodology,

as well as the corresponding metamodels and change propagation algorithms to derive

the task lists in di�erent domains are described in the following chapters. In general,

the methodology can be instantiated to the systems with the following characteristics

regarding their structure and behavior, as well as the propagation of changes in these

systems:

Systems’ structure: As described previously, the systems in a speci�c domain can be

speci�ed as a set of structural elements that can be connected to each other [HBK18].

Examples of these are systems that are composed of components and their interfaces.

Components and interfaces in this example represent general components and

interfaces. Examples of components can be software components or components

53

5. Maintainability Analysis Methodology

in the domain of aPS [HBK18]. In this context, the interfaces can be provided

or required by software components [Reu16]. Further, the interfaces can present

physical interfaces for the �xation of mechanical components or the communication

interfaces of the electrical components [Hei+18]. To instantiate the methodology in

a domain, the systems’ structure in this domain has to be de�ned by a metamodel.

The methodology does not depend on a certain type of metamodel. Thus, it can be

used for any metamodel with the aforementioned properties.

Systems’ behavior: Conway demands a further characteristic for a system description: “A

description of a system . . .must describe the system’s connections to the outside

world” [Con68, p. 2]. This is particularly important to analyze the impact of a change

in a system on its outside world. For example, changing a software system may lead

to changes in its provided services. This a�ects the interaction between the software

and its users [Cha+01]. This can be considered as changes in the behavior of the

software. In general, a change may only a�ect the behavior of a system. Further,

a change to the structure of a system may a�ect its behavior (i.e., regarding its

connection to its environment as proposed by Conway [Con68]). To analyze the

change propagation in the behavior of a system, its behavior has to be described

as activities that are connected to each other. Similar to the system’s structure, the

activities are also generally de�ned. For example, the activities can be performed by

a human actor [Hei+17] or a system such as a software, an electrical/electronic, or a

mechanical system [HBK18]. To represent the behavior in a domain, metamodels

with the previously described characteristics have to be de�ned. The methodology

can be instantiated to analyze the impact of a change on the behavior regardless of

the type of the metamodels.

Rule-based change propagation analysis: The instances of the methodology need to im-

plement a change propagation algorithm to analyze the change propagation. In

general, the change propagation algorithm can be composed of a set of change prop-
agation rules. A change propagation rule from element A to element B describes, if

element A changes, the change propagates to element B [HBK18; Bus+18b]. Element

A is referred to hereinafter as the source element and element B as the target element
hereinafter. Change propagation rules are based on the dependencies between the

metaclasses of the aforementioned metamodels describing the system’s structure or

its behavior. In other words, a change propagation rule is described for all systems in

a speci�c domain [Bus+18b]. Thus, change propagation rules highly depend on the

metamodels of the systems’ structure and behavior [Bus+18b]. Domain knowledge

is required to specify change propagation rules.

Figure 5.1 gives an overview of the generic methodology. The rectangles with rounded

corners represent the algorithms, while the other rectangles represent the metamodels. The

algorithms and metamodels of the methodology are referred to hereinafter as the elements
of the methodology in the following. Note that the methodology should be considered as

a guideline to develop an approach to change propagation analysis. It does not require

the use of a speci�c modeling language or a certain programming language. For example,

domain experts can either develop a metamodel or use Enum and GPL code instead, if it is

54

5.2. Domain-independent Elements

possible. Another example is the usage of a GPL or a DSL to describe the algorithms. The

methodology consists of two main parts:

Domain-independent part of themethodology: The �rst part contains the domain-

independent elements of the methodology. During the development of the methodol-

ogy, they were conceptual elements, which can occur in several domains. Factoring

out these elements enables using them in di�erent domains. In the following, the rea-

son for choosing di�erent conceptual elements are described in more detail [HBK18].

Domain-specific part of themethodology: The second part contains domain-speci�c ele-

ments, which have to be instantiated in a domain. The second part can be divided

into two further parts: an obligatory part and an optional part. The obligatory part

contains elements that need to be de�ned or extended in a new domain in order

to instantiate the methodology. The optional part contains methodology elements

that can be extended in a new domain if required. This optional elements of the

methodology is represented by dashed rectangles in Figure 5.1 [HBK18].

D
om

ai
n-

in
de

pe
nd

en
t

D
om

ai
n-

sp
ec

ifi
c Metamodel

of
Domain

Algorithm
of Change

Propagation
Analysis

Change Propagation Analysis for the
Elements of the Domain Metamodel

Metamodel
of Context
Elements

Metamodel
of Task
Types

Change Propagation Analysis for the
Elements of the Context Metamodel

Algorithm
of

Difference
Calculation

Task List Reduction

Metamodel
of Task List
Reduction

Algorithm of
Task List
Reduction

Task List Algorithm

Duplicate
Elimination
Algorithm

Task List
Sorter

Algorithm

Algorithms for
Derivation of
Task Lists

Domain-
specific

Metamodel of
Modification

Algorithm
of Context
Task List

Domain-
independent

Metamodel of
Modification

Figure 5.1.: Overview of the methodology for the domain-spanning change propagation

analysis [HBK18, p. 2]

Section 5.2 describes the domain-independent metamodels and algorithms of the method-

ology in more detail, while the domain-speci�c metamodels and algorithms of the method-

ology are described in Section 5.3.

5.2. Domain-independent Elements

This section describes the metamodels and algorithms of the methodology that can be

used in any instance of the methodology. The domain-independent elements involve a

metamodel to represent the modi�cation regardless of the domain, algorithms for creating

and managing task lists, as well as a metamodel and the corresponding algorithm for

55

5. Maintainability Analysis Methodology

supporting human decisions by reducing task lists. The following subsections describe

these metamodels and algorithms in more detail:

5.2.1. Domain-independent Metamodel of Modification

Identifying the potentially a�ected element types in a speci�c domain plays an important

role during the development of a change propagation analysis approach in this domain.

These element types mainly refer to the concrete metaclasses of the system’s structure

and behavior described previously. In other words, it is important to know whether the

instances of a metaclass representing system elements can in principle be a�ected by a

change. Thus, the types of system elements that can be potentially a�ected by a change

need to be metamodeled. Further, the source types and the target types of system elements

in a change propagation rule have to be determined. The source types and the target types

can be especially important for example to reproduce the cause of the propagation of false

positives. False positives in a task list are model elements referring to elements in the

systems’ structure or behavior that are not actually a�ected by a change [Ros+15b]. Thus,

a domain-independent metamodel representing modi�cations has to re�ect the previously

described properties of change propagation.

Modification
Repository

[1..1]seedModifications

[0..*]changePropagationSteps

Seed
Modification

Change
Propagation

Step

Modification
userDecisionT

S

[1..1]affectedElement

[0..*]causingElements

T
S

Figure 5.2.: Domain-independent metamodel of modi�cation - Simpli�ed excerpt

Figure 5.2 illustrates the domain-independent metamodel of modi�cation. It shows the

common metaclasses of modi�cation in di�erent domains regarding the change propaga-

tion analysis at a high abstraction level. The set of model elements and the corresponding

metaclass of the domain-independent metamodel of modi�cation are described in the

following [HBK18]:

• The �rst class of model elements refers to the set of all model elements in a domain,

which can be potentially a�ected by a change. Modification metaclass in Figure 5.2

represents this set at the metamodel level. If a change propagates between two

elements, one element is the cause of the change (i.e., causing element in Figure 5.2)

and the other element is the a�ected element by the change (i.e., a�ected element
in Figure 5.2). Causing element and a�ected element in Figure 5.2 represent source

element and target element in a change propagation rule.

• The second class of model elements refers to the set of all model elements in a domain,

which domain experts can initially select as changed elements. SeedModification

56

5.2. Domain-independent Elements

metaclass in Figure 5.2 represents this set at the metamodel level. The set of meta-

classes that can be seed modi�cations is a subset of the set of metaclasses that can

be potentially changed (i.e., the previously described class of model elements).

• A change propagation step refers to a�ected model elements that have the same

change cause. ChangePropagationStep metaclass in Figure 5.2 represents this set at

the metamodel level.

• The task list is composed of a set of all SeedModification and the set of all

ChangePropagationSteps. ModificationRepository in Figure 5.2 represents a task

list at the metamodel level.

The aforementioned metaclasses have to be extended to instantiate the methodology

in a new domain. Domain-speci�c metamodel of modi�cation in Figure 5.1 describes the

extension of the Domain-speci�c metamodel of modi�cation metamodel for a new domain.

5.2.2. Task List Algorithms

In addition to metamodels, algorithms play an important role to create and manage task

lists. These algorithms can be used in the instances of the methodology. Which algorithm

is necessary in a speci�c change propagation analysis approach depends on the overall goal

of the change propagation analysis and the usage context. For example, some algorithms

are necessary to create deterministic task lists for the same input. Using these algorithms,

the generated task lists are duplicate-free and sorted. The following sections describe

these algorithms in more detail.

5.2.2.1. Algorithm for Derivation of Task Lists

This section proposes a basic algorithm to derive and manage the task lists (see Algorithm 1

in pseudo-code). This algorithm mainly calls further domain-independent and domain-

speci�c algorithms and gather their results.

In the �rst phase, the algorithm calls the corresponding algorithms to calculate a

base task list. To calculate a base task list, the propagation of changes in the model of

system’s structure and behavior in a speci�c domain has to be analyzed. Additionally,

further activities have to be carried out based on di�erences between two versions of a

system model: i) the base version representing the system’s structure and behavior before

any change and ii) the target version representing the system’s structure and behavior

after changes. Examples of these changes are deleting or adding model elements. The

actual change propagation and the activities caused by the di�erence calculation (e.g.,

by re�ning existing generic algorithms for di�erence calculation) for the elements of

di�erent domains have to be implemented in each domain separately, as they require

domain knowledge (i.e., domain-speci�c Algorithm of Change Propagation Analysis and

Algorithm of Di�erence Calculation in Figure 5.1). These algorithms are described in the

follow-up chapters of this thesis for BP, aPS, and requirements in more detail. Thus, this

phase of the algorithm gathers this information from di�erent domain-speci�c algorithms.

BaseTaskList in Algorithm 1 represents the result of this phase of the algorithm. This

57

5. Maintainability Analysis Methodology

task list contains the initial changes and the structural model elements that are potentially

a�ected by the initial changes.

In the next phase, the algorithm for derivation of task lists calls a further algorithm to

eliminate the duplicates in the task list. The algorithm of duplicate elimination is described

in the following section in more detail (see Section 5.2.2.2).

During the implementation of change requests, it is not always su�cient to only analyze

the change propagation in the system’s structure and behavior, as the change can also cause

technical, management, or organizational e�orts [Sta15]. In other words, the metamodel

of the system’s structure and behavior may not be su�cient to estimate the total e�ort of

a change request [Sta15]. The reason for this is that a change may a�ect elements that

are not considered by the metamodel of the system’s structure and behavior (i.e., context

elements) [Sta15; Ros+15b].

To consider the activities caused by context elements, the next phase of Algorithm 1 is a

call to the corresponding algorithms to extend the tasks of the base task list to include the

context elements. Similar to the �rst step of the algorithm, the instances of the methodology

in each domain have to determine i) which context elements are a�ected by a change to

structural elements and ii) how they change. The reason for this is that the e�ort resulted

from changing context elements requires domain knowledge and cannot be generalized

for all domains. These algorithms are also described in the follow-up chapters for BP and

aPS. For example, component C may be a�ected by a change. Component C can be tested

by test case T. In this phase, the task change component C is extended by further tasks

such as adapt test T or execute test T [Sta15]. This example shows that annotating a task

list regarding speci�c task types requires domain knowledge and has to be implemented

in each domain separately (i.e., Metamodel of Task Types and Algorithm of Context Task
List in Figure 5.1). Thus, this phase of the algorithm gathers the extended task lists of the

domains, in which the methodology is instantiated.

In the last phases, Algorithm 1 calls the corresponding algorithm to sort the task list.

The task list sorter algorithm is described in Section 5.2.2.3 in more detail. The result of this

phase of the algorithm is an annotated task list (i.e., AnnotatedTaskList in Algorithm 1).

The annotated task list contains the base task list and the corresponding context model

elements a�ected by the change.

Algorithm 1 Algorithm for Derivation of Task Lists

Input: BaseVersion . The metamodel instances before changes

Input: TargetVersion . The metamodel instances after changes

BaseTaskList = ∅ . Task list containing the modi�ed domain elements, as well as the added and

removed domain elements

AnnotatedTaskList = ∅ . Base task list annotated with context elements

if BaseVersion , ∅ and TarдetVersion , ∅ then
BaseTaskList = Calculate base task list based on TarдetVersion and BaseVersion
Remove duplicates f rom BaseTaskList
AnnotatedTaskList = Calculate annotated task list based on TarдetVersion, BaseVersion,

and BaseTaskList
Sort AnnotatedTaskList

end if

58

5.2. Domain-independent Elements

5.2.2.2. Duplicate Elimination Algorithm

It is possible that redundant tasks occur in a task list. In general, redundant tasks refer

to the same model element and have the same task type. However, other de�nitions of

redundant tasks are also possible depending on usage context. For example, the tasks

that refer to the same model element but have di�erent task types can also be considered

as redundant. The redundant tasks are referred to hereinafter as duplicates. Duplicates

can have several causes. In the following some causes for duplicates in a task list are

discussed. In general, more than one seed modi�cation can result in duplicates, as di�erent

change propagation rules for di�erent seed modi�cations can cause duplicates in a task list.

Further, duplicates can also occur in a task list for only one seed modi�cation, as di�erent

concatenation of change propagation rules can result in duplicates. In addition, duplicates

can occur in a task list due to several change propagation rules that have the same a�ected

element. However, it is important to have duplicate-free task lists to better estimate the

e�ort of a change request and to have comparable task lists [Ros+17a; HBK18].

The methodology provides an algorithm to eliminate duplicate tasks in a task list. The

duplicate elimination is mainly based on merging the tasks, which refer to the same model

element of the system’s structure and behavior and have the same task type. The idea of

this algorithm is described in the following.

Let A be a set of all tasks in the generated task list and let R be the set of the tasks

that have been already considered by the algorithm. In other words, R is the result set

comprising unique tasks, as these tasks have not been eliminated as duplicate by the

algorithm (hereinafter also referred to as the set of duplicate-free tasks).
To eliminate the duplicates, each task in the task list a ∈ A has to be compared to

all considered tasks (i.e., R). In the next step, the subset of these tasks, which refer to

the same model element of the system’s structure and behavior and has the same task

type as the task under study (i.e., a), has to be identi�ed. If this subset is empty, the task

under study has to be added to the set of duplicate-free tasks (i.e., R). This algorithm can

be recursively applied to all sub-tasks and/or follow-up tasks until the base case. In the

base case, the algorithm merges two tasks, which refer to the same model element of the

system’s structure and behavior and has the same task type. In other words, it removes

one of two identical tasks. Each of both tasks can have (merged) sub-tasks and (merged)

follow-up tasks. However, the sub-tasks and follow-up tasks of both tasks may di�er. In

this case, the algorithm adds the sub-tasks and follow-up tasks of one of both tasks to the

other task and remove the �rst task. In this way, it recursively merges the tasks, as well as

the sub-tasks and the follow-up tasks.

Although the methodology provides an algorithm to merge duplicate tasks in a task

list, there are already various algorithms to eliminate duplicates. As the methodology is

independent of a speci�c tool, technology, or programming language, domain experts can

also use an existing algorithm to obtain a duplicate-free task list.

5.2.2.3. Task List Sorter Algorithm

In order to generate a deterministic task list for the same seed modi�cations, the task lists

have to be sorted after duplicate elimination. Thus, the methodology provides an algorithm,

59

5. Maintainability Analysis Methodology

which can sort tasks together with their sub-tasks and follow-up tasks. Although the

methodology provides a sorting algorithm, any sorting algorithm or its extension and

modi�cation can be used. The only prerequisite is that the algorithms have to be able to

sort tasks on the top level, the sub-tasks, and the follow-up tasks, if this hierarchy of tasks

is used in a certain instance of the methodology.

5.2.3. Task List Reduction

The output of an instance of the methodology in a speci�c domain (i.e., a change propa-

gation analysis approach) is a task list. This task list can contain false positive tasks. An

example of a false positive task in IS could be a task that refers to a third-party component,

which was bought and, thus, cannot be changed [Ros+15b; Ros+17a]. A false positive can

cause other false positives in the task list, as the change propagation rules are applied to

the a�ected elements during the change propagation analysis. Thus, it is important to

consider the tacit knowledge of domain experts during the change propagation analysis to

avoid the propagation of false positives [HBK18]. The following metamodel and algorithm

reduce the task lists by considering the decision of domain experts during the change

propagation analysis.

5.2.3.1. Metamodel of Task List Reduction

This metamodel considers the basic decisions of a domain expert on a task [HBK18]. These

decisions can be either Confirm, Exclude, or Default. After the generation of the task list,

the decisions on all tasks are set to Default. Default shows that no decision was made

manually on this task so far. The domain expert can set the decision on a false positive

task to Exclude and a true positive task to Confirm. In this way, the propagation of false

positives can be avoided.

To support domain experts in their decisions, the a�ected model elements (i.e., tasks)

that cause a change to a further task are grouped for this task. In this way, model ele-

ments that cause a chain of change propagation can be identi�ed. CausingElement and

AffectedElement in Figure 5.2 show this relationship of the change propagation between

model elements. Knowing the causing elements of changing model elements can help

domain experts identify the cause of the propagation of false positives and, thus, can

support the decision-making process.

5.2.3.2. Algorithm of Task List Reduction

As described previously, domain experts can annotate false positives in a task list with

Exclude. This triggers Algorithm 2, which considers their decisions. After a task is

annotated with Exclude, its referenced model element is also annotated with Exclude. The

model element referenced by an excluded task is referred to hereinafter as excluded model
element. Then, all tasks that have this model element as the causing element have to be

removed from the task list. It is also conceivable that more than one model element are

the causing elements of a task. Let set G = {д1, . . . ,дm}, wherem ∈ N, contains all model

elements that are referenced by the tasks in the task list. Model elements д2, . . . ,дm ∈ G

60

5.3. Domain-speci�c Elements

can all be the CausingElements for a change in a task referencing model element д1. In

particular, setG contains all model elements that have to be analyzed. The relation between

two model elements in the task list д1 ∈ G and д2 ∈ G, where changes to д2 cause further

changes to д1 ∈ G, is de�ned by HasCausinдElement relation.

Algorithm 2 �rst removes all tasks, which are initially annotated with Exclude from

the task list. These model elements can be themselves CausingElements for other af-

fected model elements. The model elements that have the excluded model elements as

CausingElement are de�ned by set X . However, the members of set X can also have other

model elements as CausingElements, which are not excluded. The if expression in the

algorithm checks, whether all CausingElements of a member of X are excluded model

elements. In other words, if the if condition for a member of X is true, this model element

has no CausingElements. This model element is then removed from the set of all model

elements that have to be analyzed (i.e., set G). In the last step, the algorithm adds this

model element to the set of all excluded model elements that have to be analyzed in the

next iterations (i.e., set B). The algorithm terminates when set B is empty.

Algorithm 2 Algorithm of Task List Reduction

Input: G . The set of all model elements referenced by the task list

Input: B . The set of model elements initially excluded

D = ∅ . The set of model elements excluded until the current iteration

G = G \ B
while ∃b ∈ B do

D = D ∪ {b}
B = B \ {b}
X = {a ∈ G |(a,b) ∈ HasCausinдElement}
n = |X | . The cardinality of set X

for k = 1 ; k ≤ n ; k + + do
Y = {a ∈ G |(xk ,a) ∈ HasCausinдElement}
if Y ⊆ D then

G = G \ {xk }
B = B ∪ {xk }

end if
end for

end while

5.3. Domain-specific Elements

The previous section described metamodels and algorithms, which can be used in all

domains. To be able to instantiate the methodology in a speci�c domain, the domain-

speci�c metamodels and algorithms of the methodology have to be de�ned or extended.

The following methodology elements have to be considered as guidelines to develop an

instance of the methodology. The concrete metamodels and algorithms in a speci�c domain

are described in the following chapters. The domain-speci�c metamodels and algorithms

can be either mandatory or optional.

61

5. Maintainability Analysis Methodology

5.3.1. Change Propagation Analysis for Elements of Domain Metamodel

This part of the methodology contains the obligatory metamodels and algorithms. It

consists of two metamodels to describe the domain under study and the changes in the

domain. The latter is referred to hereinafter as domain-speci�c metamodel of modi�cation.

In addition to both metamodels, the algorithm for analyzing the change propagation has to

be speci�ed in a speci�c domain. To instantiate the methodology in a new domain, these

metamodels and algorithm have be de�ned or extended in this domain. The following

sections discuss the metamodels and algorithm in more detail.

5.3.1.1. Metamodel of Domain

To analyze the change propagation, the domain under study has to be metamodeled.

The metamodel of the domain has to represent the properties that are relevant for the

maintainability analysis. It involves aspects regarding the structure of systems in the

domain, the data �ow, and the behavior of these systems. The following aspects should be

considered when metamodeling a new domain:

Structure The instances of the methodology aim at analyzing the change propagation

in the structure of the systems in di�erent domains. Thus, the structure of systems in

a domain has to be metamodeled. For example, a system can consist of components

and their composition in an architectural description language such as UML [RJB04] or

PCM [BKR09; Reu16]. The granularity of this metamodel plays an important role in

the precision of the change propagation analysis. The more �ne-grained the system’s

structure is metamodeled, the more precise the task lists can be generated. However, the

granularity of the metamodel is not the only factor in the precision of the task lists. Other

factors are, for example, the granularity of the system model and the change propagation

rules. Domain experts usually create the metamodel of the system’s structure in a speci�c

domain [HBK18].

Data Flow The change can propagate in a system due to the data �ow. For example, a

data dependency graph can be utilized to analyze the change propagation [LOA00]. The

data �ow can also be the cause of change propagation between two domains. The type of

the data that has to be metamodeled depends on the domain. For example, the data in IS

can be represented by data type [BKR09], while the physical data objects in the real world

can represent the data in BP [Ros+17a]. Signals can represent the data in aPS [Hei+18;

Koc17]. However, di�erent types of data can usually be converted or transferred to each

other. Thus, the data �ow can be used to analyze the propagation of changes in di�erent

domains [HBK18].

Behavior The behavior of a system can also be a�ected by a change. A change can

directly a�ect the behavior of a system. At the same time, a change to a system can

lead to changes in its behavior. In other words, a change to the system’s structure can

directly a�ect its behavior or indirectly due to the data �ow. The importance of considering

the behavior during the change propagation analysis is discussed by several works. For

62

5.3. Domain-speci�c Elements

example, Chapin et al. describe in [Cha+01] that a change in an IS can have a high impact

on the experience of its users and the corresponding BP [HBK18].

5.3.1.2. Domain-specific Metamodel of Modification

This metamodel extends the domain-independent metamodel of modi�cation by domain-

speci�c metaclasses. In other words, an instance of the methodology extends the meta-

classes in Figure 5.2, as described in the following:

• Modification: In a speci�c domain, this metaclass has to be extended by other meta-

classes. Each metaclass references the corresponding metaclass of the metamodel of

the domain, which can be potentially a�ected by a change.

• ChangePropagationStep: The concrete change propagation steps in a speci�c do-

main group the speci�c metaclasses extending the Modification metaclass with

the same cause. For example, a change propagation step could be due to the data

dependency [Sta15; Ros+15b].

• SeedModification: A subset of all metaclasses that can be potentially changed

in a speci�c domain (i.e., the extensions of the Modification metaclass) can be

initially a�ected by a change in this domain. In other words, instances of only these

metaclasses can be marked as changed by domain experts. SeedModification has

to be extended to include these metaclasses in a speci�c domain.

• ModificationRepository: In order to be able to create task lists in a new domain, a

ModificationRepository metaclass in this domain has to be de�ned, which extends

the ModificationRepository metaclass of the methodology.

5.3.1.3. Algorithm of Change Propagation Analysis

As described previously, the change propagation algorithms can be composed of a set of

change propagation rules. Such an algorithm can work iteratively. In other words, the

change propagation rules are iteratively applied to the newly a�ected model elements,

until there are no newly a�ected elements. The change propagation rules are based

on the elements of the metamodel of the domain under study and the domain-speci�c

metamodel of modi�cation [HBK18]. Thus, the change propagation rules depend highly

on the domain under study and have to be speci�ed by domain experts [Bus+18b]. The

change propagation rules can be either in a GPL such as Java or in a DSL, which is tailored

to this problem [Bus+18b; HBK18]. To support domain experts by specifying change

propagation rules, a DSL was developed, which is described in Chapter 9.

5.3.2. Change Propagation Analysis for Elements of Context Metamodel

As described previously, the context elements can also be a�ected by a change request.

These elements are domain-speci�c and can be associated to the elements of the metamodel

of the domain under study. Thus, the modi�cation of a domain element can cause the

modi�cation of the corresponding context elements. For example, if a component is

63

5. Maintainability Analysis Methodology

changed in IS, the corresponding test cases can also be a�ected [Sta15; Ros+15b]. A change

can also involve di�erent roles (e.g., the software architect role in IS [Ros+15b] or the

system engineer role in aPS [Hei+18]), as implementing a change requires the coordination

of the tasks of di�erent roles [Sta15]. Therefore, if information regarding context elements

is available in the domain under study, it should be considered in the change propagation

analysis.

Context elements need not necessarily be used in all usage context of the methodology.

An example of this is an early phase of the development, in which no concrete system

exists. Consequently, the context elements cannot be modeled. Sometimes, considering

the domain elements can be su�cient in the change propagation analysis. This depends

on the overall goal of these approaches. For example, if domain experts are interested

in a rough estimation of the change propagation, context elements need not necessarily

be modeled. Another reason for considering these elements as optional is the develop-

ment e�ort of a methodology instance. Omitting these elements during the development

lowers the development costs. Thus, this part of the methodology can be considered as

optional [HBK18].

The following sections describe the metamodels and algorithms for instantiating the

methodology for the context elements.

5.3.2.1. Metamodel of Context Elements

As described at the beginning of this chapter, organizational and technical artifacts, also

called context elements, play an important role in the change e�ort estimation, as they

cause additional e�ort during the change implementation [Sta15]. These model elements

are not parts of the metamodel of the domain, as the metamodel of the domain mainly

represents the systems in this domain and their connection to their environment. This

metamodel contains the context model elements in a certain domain, which are relevant

for the maintainability analysis. For example, it may be important to calibrate a plant

in aPS, if changes to a component or a module of it are made [Vog+17; Hei+18]. In this

example, the calibration information can represent a context element. Further, the context

elements can also be the elements that are involved in the change propagation analysis.

For example, if activities in BP are changed, knowing the a�ected organizational units may

help plan the implementation of the changes [Ros+17a]. As the metamodel of the domain

can be considered as the main artifact in the change propagation analysis, the elements of

the context metamodel have to reference the elements of the domain metamodel. This

allows identifying the corresponding elements of the context metamodel while analyzing

the change propagation in the elements of the domain metamodel.

5.3.2.2. Metamodel of Task Type

As described previously, a task in a task list can have a task type representing how to

change the a�ected elements in a speci�c domain. Thus, task types depend on a speci�c

domain, such as writing or executing tests. This metamodel consists of the task types in

a speci�c domain [Sta15; HBK18]. As task types show di�erent changes of the elements

of the domain or context metamodel, the metamodel of task types has to reference the

64

5.4. Process of Instantiating the Maintainability Analysis Methodology

corresponding elements of the domain or context metamodels. As it is sometimes su�cient

to know if an element of the domain or context metamodel is changed regardless of the

type of the change, this metamodel can be considered as optional [HBK18].

5.3.2.3. Algorithm of Context Task List

This algorithm identi�es the a�ected context elements and can implement how the context

elements are involved during a change to the domain elements. Additionally, this algorithm

can also consider the speci�c task types. For example, if a component is changed, its test

cases may need to be adapted and re-executed. By contrast, if the component is removed,

its tests cases have to be removed [Ros+15b; HBK18]. Thus, domain knowledge is required

to implement the algorithm of context task list. Further, as the metamodel of context

elements is optional, the algorithm of context task list has to be considered as optional.

5.3.3. Algorithm of Di�erence Calculation

It is conceivable that a change can a�ect the way the elements in a system model are

connected to each other. In other words, a change can a�ect the structure of systems

in a domain, for example by adding or removing system elements [HBK18]. The same

applies to their behavior such as adding or removing activities. To identify such changes,

the di�erence between the system’s structure and behavior before and after the change

has to be calculated. For this reason, the algorithm of di�erence calculation is needed to

calculate the di�erences between the system models before the change (i.e., BaseVersion

in Algorithm 1) and the system models after the change (i.e., TargetVersion in Algorithm 1).

For this purpose, existing generic algorithms to calculate the di�erences between model

elements can be used. The results of these algorithms may need to be further re�ned based

on the knowledge of domain experts and the usage context. The result of this algorithm is

then gathered by Algorithm 1 [Sta15; Ros+15b; HBK18]. As calculating the di�erences

between the system’s structure and behavior may not be always necessary to analyze the

change propagation, this algorithm is considered as optional [HBK18].

5.4. Process of Instantiating the Maintainability Analysis
Methodology

The previous sections describe di�erent methodology elements and their rationale. This

section gives an overview of the process of instantiating the methodology in a speci�c

domain.

Figure 5.3 illustrates in a BPMN-similar notation [Obj11] how to instantiate the method-

ology to obtain a change propagation analysis approach. While the �rst three activities

are mandatory, the last four activities can be considered as optional. This �gure illus-

trates all possible inputs (i.e., data objects) of each activity. In other words, the concrete

instantiations of di�erent methodology elements can have di�erent input data objects.

The �rst activity is concerned with analyzing the systems in a speci�c domain and

constructing a metamodel, which describes the systems’ structure and behavior, as well as

65

5. Maintainability Analysis Methodology

Constructing
metamodel
of domain

Constructing
domain-specific
metamodel of
modification

Developing
algorithm of change

propagation
analysis

Metamodel
of domain

Domain-specific
metamodel of modification

Metamodel
of task type

Based on the
organizational and
technical artifacts in
a specific domain

Based on
systems’ structure
and behavior in a
specific domain

Constructing
metamodel of

context
elements

Constructing
metamodel
of task type

Developing
algorithm of
context task

list

Developing
algorithm

of difference
calculation

× ×× ×

Metamodel
of context
elements

Figure 5.3.: Process for instantiating the methodology

the data �ow in this domain. In the next activity, the system elements that are potentially

a�ected by a change have to be identi�ed. Then, domain experts have to construct

a domain-speci�c metamodel of modi�cation based on the identi�ed system elements

and the metamodel of the domain. The next activity deals with analyzing the change

propagation between di�erent system elements. Based on the results and the previous

two metamodels, domain experts develop the algorithm of change propagation analysis.

Instantiating these three methodology elements allows creating a change propagation

analysis approach, which considers only the domain elements.

If there are organizational and technical artifacts, which have a considerable impact

during the change propagation analysis, the next three activities in Figure 5.3 have to be

considered. The �rst activity is concerned with identifying the relevant organizational

and technical artifacts and creating the metamodel of context elements. During the next

activity, the domain experts have to identify and metamodel the corresponding task types.

Developing the algorithm of context task list allows describing, which context elements

are a�ected by a change to a domain element and how they have to be changed.

If domain experts are also interested in a before and after comparison, they can develop

the corresponding functionality in the last activity of this process.

5.5. Conclusions

This chapter presented a maintainability analysis methodology, which was designed

to provide a guideline for developing change propagation analysis approaches. The

methodology abstracts from the heterogeneity of elements by using modeling concepts

and is, thus, applicable to di�erent domains, which ful�ll the following characteristics:

i) The structure of the systems in these domains can be described as a set of structural

elements and their connections. ii) The e�ects of a change to a system on its behavior can

be analyzed by considering the relationship between the system and its outside world, as

described by Conway [Con68]. iii) The propagation of a change in a system and to its

66

5.5. Conclusions

behavior has to be describable by the means of change propagation algorithms. This can

be seen as a generalization of the dependency analysis. Thus, the methodology considers

the structure of a system as the main artifact during the change propagation analysis.

In general, the methodology comprises two main parts: While the �rst part does not

depend on a speci�c domain and is, thus, applicable to any domain, the second part

has to be instantiated in a domain to develop a change propagation analysis approach.

The second part comprises a mandatory part, which is needed in an instance of the

methodology and an optional part, which can be used to mainly capture the e�ects of

changing elements that are not part of the system’s structure or behavior. The latter

one involves the organizational and technical artifacts, which can also be a�ected by a

change. In this way, the methodology can be applied to systems comprising heterogeneous

elements from di�erent domains. Summarized, this contribution answers the �rst research
question.

67

6. Change Propagation Analysis in
Business Processes

IS are used more and more in organizations to support their BP (e.g., SAP

ERP [MW13]) [Ros+17a]. In general, BP can be expressed as a set of ordered activi-

ties, which can be actor steps or system steps [Hei+17]. Thus, changing an actor step or a

system step can cause further changes in other actor steps and system steps [Ros+17a]. In

other words, the evolutions of IS and BP are closely interwoven. Several authors identi�ed

di�erent categories of impacts of an IS on the BP. For example, Moony et al. categorized

the impact of an IS into automational, informational, and transformational e�ects [MGK96].

In other words, there are mutual dependencies between BP and IS [Ros+17a]. For example,

we assume that users of Media Store [Reu16] need to enter only a username and password

during the registration (see Chapter 4). New regulations force users to enter more informa-

tion such as the date of birth or the national identi�cation number. Thus, the BP of Media

Store needs to be changed. Further, the software of Media Store needs also to be changed

to handle this information. By contrast, a change to IS can cause further changes to BP

and can a�ect users’ behavior [Cha+01]. For example, if the software of the Media Store

provides an alternative option for login (e.g., via an existing social pro�le account), the

corresponding activities in its BP have to be adapted. Thus, BP and IS co-evolve during

their life cycle [Ros+17a]. Consequently, the mutual dependencies between IS and BP need

to be considered while analyzing the maintainability. These mutual dependencies make

the change propagation analysis more di�cult, as the maintainability of IS and BP cannot

be considered in isolation [Ros+17a].

Using models improves understanding, structuring, and analyzing of BP [Ros+17a]. To

consider the mutual dependencies in the change propagation analysis, BP and IS have to

be co-designed [LSB02]. In other words, the metamodels of IS and BP have to present

their mutual dependencies [WGK00]. However, most approaches presented in Chapter 3

consider the change propagation in only one domain (i.e., either IS or BP). Thus, they do

not allow a cross-disciplinary change propagation analysis. They are only a few approaches

considering both IS and BP. However, most of these approaches propose only guidelines

to calculate the change propagation at a very high level of abstraction. The change

propagation analysis at a high level of abstraction can result in “impacts explosion without

semantics” [Boh02, p. 5]. Further, they either do not automatically analyze the change

propagation or do not estimate the e�orts needed to implement a change as an activity

list [Ros+17a]. Additionally, the impact of changing the context elements is omitted by

most approaches.

To address the aforementioned issues, this chapter presents a model-based approach to

automatically analyze the change propagation in BP and between BP and IS. This approach

considers mutual dependencies between BP and IS. Thus, it was designed to answer the

69

6. Change Propagation Analysis in Business Processes

second research question. The proposed approach can be considered as the instantiation of

the generic methodology (see Chapter 5) to BP. It extends the approach of Stammel [Sta15;

Ros+15b; Ros+17b], which is limited to change propagation analysis in IS [Ros+17a].

Section 6.1 gives an overview of the change propagation analysis approach in IS and BP.

Section 6.2 presents the change propagation analysis in the domain metamodel of BP. The

change propagation analysis for the context elements in BP is introduced in Section 6.3.

Section 6.4 describes the di�erence calculation during a before and after comparison. The

chapter concludes in Section 6.5 with an overview of the contributions.

The results of this chapter have been appeared in the papers [Ros+17a; Bus+18a] and

partially (e.g., the instantiation of the methodology in BP) in the paper [HBK18]:

6.1. Change Propagation Analysis for Co-evolution of
Information Systems and Business Processes

This section presents the model-based approach Karlsruhe Architectural Maintainability

Prediction for Business Processes (KAMP4BP). It analyzes the change propagation in

BP during the co-evolution of IS and BP. This approach was developed as two inter-

connected instances of the methodology in IS and BP. Although the methodology was

originally the generalization of both approaches, instantiating the methodology to obtain

these approaches served as a �rst proof of the methodology concept. The change prop-

agation analysis approach in IS is an extension of the original Karlsruhe Architectural

Maintainability Prediction for Information Systems (KAMP4IS) (cf. [Sta15; Ros+15b]) to

enable the analysis of the change propagation between IS and BP. For this purpose, the

approach KAMP4IS had to be extended to analyze the change propagation in IS at a more

�ne-grained level of abstraction (e.g., at the signature and event level instead of interface

level). In addition to the development of KAMP4BP, the combination of both approaches

KAMP4IS and KAMP4BP allows analyzing the change propagation between BP and IS.

Thus, KAMP4IS and KAMP4BP supports software architects and process designers during

the co-evolution. In this chapter, software architects and process designers, as well as domain
experts are used interchangeably.

Figure 6.1 gives an overview of the KAMP4BP approach. The approach consists of

three phases: i) the preparation phase, ii) the impact phase, and iii) the post-analysis

phase [Ros+17a].

The �rst phase of KAMP4BP is the preparation of the input. In general, software archi-

tects and/or process designers prepare the input of the approach manually. The preparation

of input involves modeling the architecture of IS, the design of BP, and the data �ow. If

context elements, such as messaging in BP, need to be considered in the change propaga-

tion analysis, information about these elements has also to be provided. Then, domain

experts have to select the initially changed elements as seed modi�cations [Ros+17a].

In the impact phase, KAMP4BP automatically calculates a temporary task list for the

seed modi�cations. For this purpose, it uses the change propagation algorithms to calculate

the change propagation in IS and BP. The approach generates a temporary task list, which

contains only domain elements potentially a�ected by the seed modi�cations. If domain

70

6.2. Change Propagation Analysis for Elements of Domain Metamodel

experts provided context model elements, KAMP4BP extends the temporary task list to

include the e�orts of changing these elements [Ros+17a].

As described in Chapter 5, the methodology provides the functionality to perform the

post-analysis phase. For example, this phase merges the redundant tasks to eliminate the

duplicates and sorts the tasks in the task list. If domain experts exclude the tasks, which

are not a�ected by the change, this phase regenerates the task list (i.e., task list reduction

in Section 5.2.3) according to these decisions [Ros+17a].

Preparation Phase

Business ProcessSoftware
Architecture

System Model

Additional Information
Source Code
Test Cases
Deployment

…

Organizational Units
Goods

Messages
…

Change Request

Temporary Task ListImpact Phase

Im
pa

ct

on
 B

us
in

es
s

Pr
oc

es
s

Im
pa

ct
 o

n
So

ftw
ar

e

Change Propagation
in Business Process

Design

Change Propagation
in Software
Architecture

Post-analysis Phase
Duplicate Detection

Sorting Task Lists

Task List

Recalculation
of Task List

User Decision

on

Model Phase of Approach Phase of Change
Propagation Algorithm

Input/Output Annotations

Legend:

Figure 6.1.: Overview of the KAMP4BP approach [Ros+17a; Bus+18a]

The following sections describe how to instantiate the methodology to BP to implement

a change propagation analysis approach for this domain.

6.2. Change Propagation Analysis for Elements of Domain
Metamodel

This section presents the metamodels and algorithms that are required to instantiate the

methodology to BP.

6.2.1. Metamodel of Domain

To analyze the change propagation in a speci�c domain, metamodels of systems’ structure

and behavior, as well as the data �ow should be provided, as described in Chapter 5. The

following sections discuss the metamodels of IS and BP with respect to these aspects.

In the following, speci�c metamodels in IS and BP were chosen to model the structure,

data �ow, and behavior. These metamodels create the foundation for developing further

71

6. Change Propagation Analysis in Business Processes

metamodels and algorithms to create instances of the methodology. For example, seed

modi�cations in BP and IS can refer only to the metaclasses of the metamodels, which

have been chosen in this step. It is important to note that other metamodels representing

the structure, data �ow, and behavior are also conceivable.

In general, to obtain a change propagation analysis approach, which ful�lls the require-

ments, domain experts need to know the e�ects of this choice. Several factors in�uence

this choice such as development costs and the granularity of the analysis results. These

in�uencing factors are discussed in more detail in Section 11.4.2 based on the evaluation re-

sults. The decision on the appropriate metamodels for the analysis results from a trade-o�

between di�erent in�uencing factors.

6.2.1.1. Structure

As described in Chapter 5, the system’s structure plays an important role in the change

propagation analysis. In order to be able to analyze the change propagation between BP

and IS, the change propagation in the structure of IS needs to be analyzed. For this purpose,

KAMP4IS [Sta15; Ros+15b] can be used to analyze the change propagation at the level

of components and interfaces. However, a change propagation at this level is too coarse-

grained to consider the mutual dependencies between IS and BP. Therefore, KAMP4IS

has to be extended by a more �ne-grained change propagation analysis. This includes for

example a change propagation analysis based on the signatures of an interface instead

of the interface (cf. [Sta15]). Similar to the initially developed KAMP4IS, the extended

KAMP4IS is based on PCM to represent the systems’ structure in IS.

Figure 6.2 illustrates an excerpt from PCM. The presented metaclasses were

used to extend KAMP4IS to enable a change propagation between IS and BP. An

Interface can be an OperationInterface comprising OperationSignatures [BKR09]

or an EventGroup, which allows event-based communication [Rat13]. An EventGroup

contains at least one EventType, which represents an event sent and received by

components [Rat13]. Both OperationSignatures and EventTypes are Signatures. A

Signature can have parameters of speci�c DataTypes. An OperationSignature can

also have a return type of a certain DataType [BKR09]. Further, Figure 6.2 shows

the relationship between the EntryLevelSystemCall metaclass from the UsageModel of

PCM to the OperationSignature metaclass from the RepositoryModel of PCM [BKR09].

EntryLevelSystemCalls present the service calls to the provided roles of a system [BKR09].

6.2.1.2. Data Flow

The data �ow between IS and BP can be utilized to analyze the change propagation be-

tween these domains, as it can be the cause of the change propagation. To metamodel

the data �ow in BP, the data object concept based on BPMN [Obj11] was used [Ros+17a].

The data object concept represents the data objects in the real world. Actors in BP can

use data objects. Thus, data objects can serve as inputs or outputs of actor steps. They

can be either composite or collection data objects. An example of a composite data object

is the identity document in the Media Store example that is used by its users. Further,

data objects in BP can have corresponding data types in IS. In the previous example, the

72

6.2. Change Propagation Analysis for Elements of Domain Metamodel

Interface

EventGroup Operation
Interface

Signature

Operation
SignatureEventType EntryLevel

SystemCall

DataType

Parameter

[0..*]parentInterfaces
__Interface

[0..*]eventTypes
__EventGroup

[1..1] eventGroup
__ EventType

[1..1]parameter
__EventType

[0..1]eventType
__Parameter [1..1]dataType

__Parameter [0..1]returnType__
OperationSignature

[0..*]parameters__OperationSignature

[0..1]operationSignature
__Parameters

[0..*]signatures__
OperationInterface

[1..1]interface__
OperationSignature

PCM - Repository (Excerpt) UsageModel
(Excerpt)

[1..1]operationSignature
__EntryLevelSystemCall

Figure 6.2.: Relationship between the metamodel of PCM RepositoryModel and Usage-

Model [BKR09]

information of the identity card in a BP can correspond to the user information in the

DataBase component. Figure 6.3 illustrates the corresponding metamodel – DataModel. It

consists of the abstract metaclass DataObjetcs and the metaclasses CollectionDataObject

and CompositeDataObject. Figure 6.3 shows that DataObjects of di�erent types can be

composed to a CompositeDataObject. By contrast, a set of DataObjects of the same

type represents a CollectionDataObject [Ros+17a]. Further, the �gure presents the re-

lationship between DataObject from DataModel and DataType from UsageModel. This

relationship can be used to analyze the change propagation between IS and BP.

DataModel

DataObject

Collection
DataObject

InnerData
Object

Declaration

Composite
DataObject

T
[0..*]DataType

[1..1]DataObject

[0..*]Inner
DataObject
Declarations

[1..1]Composite
DataObject

<<bind T>>
CollectionDataType

DataType

Collection
DataType

Composite
DataType

[0..*]
parentType_
Composite
DataType

[1..1]innerType
_Collection
DataType

<<bind T>>
CompositeDataType

[0..*]Inner
DataObject

DataModel [1..1]DataModel

[1..*]DataObject
PCM - Repository

(Excerpt)

Figure 6.3.: Overview of the metamodel of DataModel and an excerpt of DataType in the

PCM’s RepositoryModel [HBK18]

73

6. Change Propagation Analysis in Business Processes

6.2.1.3. Behavior

The behavior of a system can also be important to estimate the e�ort of a change re-

quest. A change to IS can propagate to their user interfaces. This change has a high

impact on the experience of users and BP [Cha+01]. Thus, the metamodels of BP have to

consider the co-design of IS and BP [LSB02]. KAMP4BP is based on the BPUsageModel

as an extension of PCM UsageModel representing BP regarding the aforementioned co-

design (see the metamodel of BP in Section 2.4). BPUsageModel consists of the following

main metaclasses: actor steps, system steps, acquire device resources, and release device

resources, as discussed in Section 2.4. Figure 6.4 illustrates the relationship of the ex-

cerpts from BPUsageModel, PCM UsageModel, and DataModel, which are relevant for

the change propagation analysis. The system step metaclass of BPUsageModel represents

the EntryLevelSystemCall of PCM [Hei+17]. As described previously, Figure 6.4 shows

the extension of BPUsageModel to enable ActorStep to use DataObjects as input or out-

put [Ros+17a]. The aforementioned relationship can be utilized for the change propagation

analysis between IS and BP.

ScenarioBehaviour

Activity

AbstractUserAction

Release
DeviceResource

Acquire
DeviceResource

ActorStepEntryLevelSystem
Call (SystemStep)

[0..1] predecessor

[0..1] successor

1
[0..*] actions_

ScenarioBehaviour

[1..1] scenarioBehaviour_
AbstractUserAction

UsageModel (Excerpt)

[1..1] Scenario

BPUsageModel (Excerpt) DataModel
(Excerpt)

DataObject

[0..*]Input
DataObject
[0..*]Output
DataObject

Figure 6.4.: Relationship between PCM UsageModel [BKR09], BPUsageModel [Hei+17],

and DataModel [Ros+17a]

Example

In this section the metamodels described previously are applied to the Media Store example

introduced in Section 4.1. In the following, the three aspects regarding the structure, the

data �ow, and the behavior of Media Store are discussed:

Structure: As Media Store is a component-based software system, its structure is

modeled using PCM. The system model is composed of components (e.g., TagWatermarking

or ReEncoder) requiring and providing interfaces (e.g., IDownload).

Data �ow: Di�erent data types in the software of Media Store are also de-

�ned using PCM. An example of a data type could be the composite data type

AudioCollectionRequest composed of other data types such as the Size of the composed

audio �les. The DataModel enables process designers to model the data �ow in BP. An

example of a data object could be the Identity Document, from which users can enter

their personal information such as national identi�cation number during the registration.

This information could be stored as data types in the DataBase component.

74

6.2. Change Propagation Analysis for Elements of Domain Metamodel

Behavior: The behavior of Media Store can be modeled using BPUsageModel [Hei+17].

Figure 4.2 shows a simpli�ed BP model of Media Store as a sequence of actor steps and

system steps.

6.2.2. Domain-specific Metamodel of Modification

To analyze the change propagation in IS and BP, it is necessary to identify the metaclasses

of the metamodel of domain that can be potentially a�ected by a change. The following

sections illustrate the metamodels of modi�cation for IS and BP.

6.2.2.1. Information Systems

The basis of the change propagation analysis in IS is generally provided by

KAMP4IS [Sta15]. However, there is a need for �ne-granular metamodels representing

a�ected elements in IS to analyze the change propagation between BP and IS. As described

previously, KAMP4IS analyzes the change propagation at the level of components and

interfaces. Thus, the corresponding metamodels have to be extended to allow the change

propagation analysis at the level of signatures and events. Furthermore, the metamodels

have to be adapted in accordance to the generic methodology of the change propagation

analysis (see Section 5.3.1.2).

6.2.2.2. Business Processes

This metamodel represents the changes for the potentially a�ected metaclasses of PCM

UsageModel, BPUsageModel, and DataModel. The metaclasses of this metamodel refer

to metaclasses of the aforementioned metamodels that can be potentially changed. To

illustrate the relationship between this metamodel and the methodology, the corresponding

metaclasses of the methodology are illustrated in the following. Further, the extensions of

di�erent metaclasses of the domain-independent metamodel of modi�cation (see Chapter 5)

are discussed:

• SeedModification: The initial changes to the BP metamodel can be: i) actor roles,

ii) device resources used, iii) actor steps, iv) system steps or entry level system

calls, and v) data objects as inputs or outputs of the actor steps. Figure 6.5 shows

the relationship between the SeedModification metaclasses of the methodology,

IS [Sta15], and BP.

• Modification: The following metaclasses of PCM UsageModel, BPUsageModel, and

DataModel can be a�ected by a change: i) roles, ii) device resources, iii) data objects,

and iv) user actions (i.e., acquire device resources, release device resources, actor

steps, and system steps). Figure 6.6 shows the relationship between the Modification

metaclasses of the methodology, IS [Sta15], and BP.

• ChangePropagationStep: Modi�cations in IS and BP can be grouped together due

to the following causes: i) inter business process change propagation (i.e., changes

to the concrete user actions) or ii) change propagation due to data dependency (i.e.,

75

6. Change Propagation Analysis in Business Processes

SeedModification - Methodology (Excerpt)

SeedModification - Information Systems (Excerpt)

ModifyRoleModifyDevice
Resource

Modify
DataObject

ModifyEntry
LevelSystemCall

Modify
ActorStep

BPSeedModification

[0..*]role
Modifications

[0..*]device
Resource

Modifications
[0..*]dataObject
Modifications

[0..*]entryLevel
SystemCall

Modifications

[0..*]actorStep
Modifications

Modify
Signature

Modify
Interface

Modify
DataType

Modify
Component

ISSeedModification

[0..*]signature
Modifications

[0..*]interface
Modifications

[0..*]dataType
Modifications

[0..*]component
Modifications

[0..*]signatureModifications

SeedModification

SeedModification - Business Processes (Excerpt)

Figure 6.5.: Relationship between the domain-independent SeedModification and

SeedModification in IS [Sta15], and BP

Modification - Methodology (Excerpt)

Modification - Information Systems (Excerpt)

Modify
Signature

Modify
Interface

Modify
Connector

Modify
Component

ModifyEntity

Modification

ModifyDataType

ModifyBPRoleModifyDevice
Resource

Modify
DataObject

ModifyAbstract
UserAction

Modify
ISRole

<<bind T>>
T

<<bind T>>
Signature

<<bind T>>
Interface

<<bind T>>
Connector

<<bind T>>
RepositoryComponent

Modification - Business Processes (Excerpt)

<<bind T>>
Role

<<bind T>>
DeviceResource

<<bind T>>
DataObject

<<bind T>>
T

[0..*]signatureModifications[0..*]signatureModifications

T
S

[1..1]affectedElement

[0..*]causingElements

T

<<bind S,T>> T,EObject

<<bind S,T>> DataType,EObject

T

Figure 6.6.: Relationship between the domain-independent Modification and

Modification in IS [Sta15], and BP

changes to data objects, as well as all activities in a BP accessing the a�ected data

objects (i.e., actor steps or system steps)). Figure 6.7 shows the relationship between

the ChangePropagationStep metaclasses of the methodology, IS [Sta15], and BP.

• ModificationRepository contains the domain-speci�c metaclasses of

SeedModification and ChangePropagationStep, as described in Chapter 5.

Figure 6.8 shows the relationship between the ModificationRepository metaclasses

of the methodology, IS [Sta15], and BP.

76

6.2. Change Propagation Analysis for Elements of Domain Metamodel

ChangePropagationStep - Methodology (Excerpt)

ChangePropagationStep -
Information Systems (Excerpt)

ISInter
Component
Propagation

ISIntra
Component
Propagation

ISChange
PropagationDueTo

InterfaceDependencies

ISChange
PropagationDueTo
DataDependencies

ChangePropagationStep

BPChange
PropagationDueTo
DataDependencies

BPInter
BusinessProcess

Propagation

ChangePropagationStep -
Business Processes (Excerpt)

Figure 6.7.: Relationship between the domain-independent ChangePropagationStep and

ChangePropagationStep in IS [Sta15], and BP

ModificationRepository
Information Systems

(Excerpt)

Abstract
Modification
Repository

T
S

[1..1]seedModifications

[0..*]
changePropagationSteps

Modification
Repository

IS
Modification
Repository

BP
Modification
Repository

<<bind S,T>>
T,ChangePropagationStep

<<bind T>>
BPSeedModications

<<bind T>>
ISSeedModications

ModificationRepository - Methodology (Excerpt)

ModificationRepository
Business Processes

(Excerpt)

T

Figure 6.8.: Relationship between the domain-independent ModificationRepository and

ModificationRepository in IS [Sta15], and BP

Example

The previous sections describe the potentially a�ected model elements by a change. In

the Media Store example, a change potentially a�ects all elements in the model of the

software architecture. Examples of the instances of the IS-speci�c modi�cation meta-

classes are components (e.g., the Packaging component), interfaces and their methods

(e.g., the IPackaging interface), or data types (e.g., the AudioCollectionRequest data type).

Although model elements that do not have a correspondence in the Media Store code such

as connectors can also be a�ected by a change, they cannot be chosen as seed modi�cation.

These model elements are relevant to estimate the change propagation properly (i.e., the

77

6. Change Propagation Analysis in Business Processes

change propagation between two components). All other model elements can also be seed

modi�cations in IS.

In the model of the BP design of Media Store, all model elements can be regarded as

a�ected elements. Examples of the instances of the BP-speci�c modi�cation metaclasses

are the actor step enter username and password, the system step download, or the data

object identity document. The user of the approach KAMP4BP can also select almost all

potentially a�ected elements as seed modi�cation.

6.2.3. Algorithm of Change Propagation Analysis

This algorithm is composed of a set of change propagation rules. They use the metaclasses

of the following metamodels: i) DataModel, ii) OrganizationEnvironmentModel [Hei14],

iii) BPUsageModel [Hei14], iv) UsageModel [BKR09], and v) RepositoryModel [BKR09].

The input and output of the algorithms are the instances of the source and the target

metaclasses, respectively. If model elements of the instances of the metamodels for IS

and BP changes, the corresponding change propagation rules are applied. The rules are

de�ned at the level of the metamodel. In this way, they can be applied to all instances of a

metamodel. Each change propagation rule analyzes the change propagation between a

source and a target metaclass of the metamodels for IS and BP. Thus, to de�ne the rules

instances of each metaclass of the aforementioned metamodels are mapped to a set. In

other words, the members of each set represent the elements of metamodel instances of

the same type. An example of a set is the set of all data types in a speci�c instance. In

the following, only the sets of the instances of the metaclasses, which are relevant for the

change propagation rules, are de�ned:

• O = {oo1, . . . ,oon } is a set of all DataObjects in the instances of DataModel.

• L = {ll1, . . . , lln } is a set of all Roles in the instances of OrganizationEnvironment-

Model.

• D = {dd1, . . . ,ddn } is a set of all DeviceResources in the instances of Organizatio-

nEnvironmentModel.

• H = {hh1, . . . ,hhn } is a set of all ActorSteps in the instances of BPUsageModel.

• B = {bb1, . . . ,bbn } is a set of all AcquireDeviceReources in the instances of BPUsage-

Model.

• F = { f f1, . . . , f fn } is a set of all ReleaseDeviceReources in the instances of BPUsage-

Model.

• S = {ss1, . . . , ssn } is a set of all Signatures in the instances of RepositoryModel.

• U = {uu1, . . . ,uun } is a set of all OperationSignatures in the instances of Reposito-

ryModel.

• P = {pp1, . . . ,ppn } is a set of all Parameters in the instances of RepositoryModel.

78

6.2. Change Propagation Analysis for Elements of Domain Metamodel

• T = {tt1, . . . , ttn } is a set of all DataTypes in the instances of RepositoryModel.

• E = {ee1, . . . , een } is a set of all EventTypes in the instances of RepositoryModel.

• G = {дд1, . . . ,ддn } is a set of all EventGroups in the instances of RepositoryModel.

• I = {ii1, . . . , iin } is a set of all Interfaces in the instances of RepositoryModel.

• J = {jj1, . . . , jjn } is a set of all OperationInterfaces in the instances of Repository-

Model.

• C = {cc1, . . . , ccn } is a set of all EntryLevelSystemCalls in the instances of Reposito-

ryModel.

• A = {aa1, . . . ,aan } is a set of all AbstractUserActions in the instances of Reposito-

ryModel.

As ActorStep, AcquireDeviceResource, ReleaseDeviceResource, and

EntryLevelSystemCall are speci�c types of AbstractUserAction, then H ∪B∪ F ∪C ⊆ A.

As OperationInterface and EventGroup are speci�c types of Interface, then J ∪G ⊆ I .
As OperationSignature and EventType are speci�c types of Signature, then U ∪ E ⊆ S .

The relationship between metaclasses of di�erent metamodels can be used to create

binary relations over these sets. The relations are de�ned in the following:

• The relation HasInnerDeclaration is de�ned over the set O . In this relation, the

DataObject ooi ∈ O is associated to the DataObject ooj ∈ O , if the DataObject ooi
contains the DataObject ooj ∈ O as inner declaration.

• The relationHasInput is de�ned over the setsH andO . In this relation, the ActorStep

h ∈ H is associated to the DataObject o ∈ O , if the ActorStep h has the DataObject

o ∈ O as input.

• The relation HasOutput is de�ned over the sets H and O . In this relation, the

ActorStep h ∈ H is associated to the DataObject o ∈ O , if the ActorStep h has the

DataObject o ∈ O as output.

• The relationHasResponsibleRole is de�ned over the setsH and L. In this relation, the

ActorStep h ∈ H is associated to the Role l ∈ L, if the ActorStep h has the responsible

Role l ∈ L. This relation is left-total and right-unique (i.e., it is a function).

• The relation HasSuccessorActorStep is de�ned over the set H . In this relation, the

ActorStep hhi ∈ H is associated to the ActorStep hhj ∈ H , if the ActorStep hhi has

the ActorStep hhj ∈ H as successor. This relation is left-total and right-unique (i.e.,

it is a function).

• The relation HasSuccessorEntryLevelSystemCall is de�ned over the sets H and C .

In this relation, the ActorStep h ∈ H is associated to the EntryLevelSystemCall c ∈ C ,

if the ActorStep h has the EntryLevelSystemCall c ∈ C as successor. This relation is

left-total and right-unique (i.e., it is a function).

79

6. Change Propagation Analysis in Business Processes

• The relation IsCallToSiдnature is de�ned over the setsC andU . In this relation, the

EntryLevelSystemCall c ∈ C is associated to the OperationSignature u ∈ U , if the

EntryLevelSystemCalls c is a call to the OperationSignature u ∈ U . This relation is

left-total and right-unique (i.e., it is a function).

• The relation OperationSiдnatureHasParameter is de�ned over the setsU and P . In

this relation, the OperationSignature u ∈ U is associated to the Parameter p ∈ P , if

the OperationSignature u has a Parameter p ∈ P .

• The relation EventTypeHasParameter is de�ned over the sets E and P . In this

relation, the EventType e ∈ E is associated to the Parameter p ∈ P , if the EventType

e has a Parameter p ∈ P . This relation is left-total and right-unique (i.e., it is a

function).

• The relation HasDataType is de�ned over the sets P and T . In this relation, the

Parameter p ∈ P is associated to the DataType t ∈ T , if the Parameter p has a

DataType t ∈ T . This relation is left-total and right-unique (i.e., it is a function).

• The relation AcquiresDeviceResource is de�ned over the sets B and D. In this

relation, the AcquiresDeviceResource b ∈ B is associated to the DeviceResource

d ∈ D, if the AcquiresDeviceResource b acquires the DeviceResource d ∈ D. This

relation is left-total and right-unique (i.e., it is a function).

• The relationReleasesDeviceResource is de�ned over the sets F andD. In this relation,

the ReleasesDeviceResource f ∈ F is associated to the DeviceResource d ∈ D, if

the ReleasesDeviceResource f releases the DeviceResource d ∈ D. This relation is

left-total and right-unique (i.e., it is a function).

• The relation HasSuccessor is de�ned over the set A. In this relation, the Abstrac-

tUserAction aai ∈ A is associated to the AbstractUserAction aaj ∈ A, if the Abstrac-

tUserAction aai has the AbstractUserAction aaj ∈ A as successor. This relation is

left-total and right-unique (i.e., it is a function).

• The relation HasCorrespondence is de�ned over the sets O and T . In this relation,

the DataObject o ∈ O is associated to the DataType t ∈ T , if the DataObject o has a

corresponding DataType t ∈ T .

• The relation HasReturnType is de�ned over the sets U and T . In this relation,

the OperationSignature u ∈ U is associated to the DataType t ∈ T , if the Opera-

tionSignature u has the DataType t ∈ T as return type. This relation is left-total and

right-unique (i.e., it is a function).

• The relation BelonдsToOperationInter f ace is de�ned over the sets U and J . In this

relation, the OperationSignature u ∈ U is associated to the OperationInterface j ∈ J ,
if the OperationSignature u belongs to an OperationInterface j ∈ J . This relation is

left-total and right-unique (i.e., it is a function).

80

6.2. Change Propagation Analysis for Elements of Domain Metamodel

• The relation BelonдsToEventGroup is de�ned over the sets E and G . In this relation,

the EventType e ∈ E is associated to the EventGroup д ∈ G, if the EventType e
belongs to the EventGroup д ∈ G. This relation is left-total and right-unique (i.e., it

is a function).

In order to be able to analyze the change propagation in IS and BP, there is a need for

change propagation rules in IS and BP and between both IS and BP. Thus, the change

propagation rules can be divided into the following groups: i) the change propagation

rules in BP, as described in Section 6.2.3.1, ii) the change propagation rules between BP

and IS, as described in Section 6.2.3.2, and iii) the change propagation rules in IS, as

described in Section 6.2.3.3. The change propagation rules have to be de�ned based on the

aforementioned sets and the relations between them.

6.2.3.1. Change Propagation in Business Process

Seed modi�cations in BP can be device resources, roles, actor steps, or data objects. A

change to an element of these types triggers the corresponding change propagation rule(s).

The result of each change propagation rule is a set of newly a�ected model elements. These

model elements are the input for the change propagation rules. Algorithm 3 presents the

most relevant change propagation rules needed to calculate the change propagation in BP.

Algorithm 3 Algorithm for the Change Propagation Analysis in the Model of BP design

Input: Model of BP design, seed modi�cations

1: Calculate the change propagation from amodi�ed DataObject to the other DataObjects
using Algorithm 4

2: Calculate the change propagation from modi�ed DataObjects to ActorSteps based on
the modi�ed DataObjects as input or output using Algorithm 5

3: Calculate the change propagation from a modi�ed Role to the corresponding Ac-
torSteps using Algorithm 6

4: Calculate the change propagation from a modi�ed ActorStep to the direct following
ActorStep or EntryLevelSystemCall

Calculate the change propagation from a modi�ed ActorStep, using a DataObject as output, to

the direct following ActorStep that has the same DataObject as input using Algorithm 7

Calculate the change propagation from a modi�ed ActorStep, using the DataObject as output,

to the direct following EntryLevelSystemCall that uses the corresponding DataType as input

using Algorithm 8

5: Calculate the change propagation from a modi�ed DeviceResource to the correspond-
ing Activities

Calculate the change propagation from a modi�ed DeviceResource to the corresponding Ac-

quireDeviceResource and ReleaseDeviceResource using Algorithm 9

Calculate the change propagation from a modi�ed AcquireDeviceResource to the following

AbstractUserActions that use the same DeviceResource using Algorithm 10

Each phase of Algorithm 3 presents a change propagation rule, which is described in

the following as a stand-alone algorithm. Each algorithm is based on the aforementioned

81

6. Change Propagation Analysis in Business Processes

sets and relations. Further, other elements such as branches and loops can exist in the

model of BP design. Branches and loops can also be nested in each other. Most algorithms

of change propagation rules consider these elements. However, the following algorithms

present only the basis variant of the change propagation rules without such elements to

illustrate the idea of the rules.

As described previously, a data object can be recursively composed of other data objects.

It can also be a collection of further data objects. Thus, a change can propagate to the data

objects containing an a�ected data object. The containment relationship between the data

objects can be used for the change propagation analysis. Algorithm 4 presents the change

propagation from a modi�ed DataObject to the other DataObjects. The algorithm is based

on the idea that the DataObject ooi ∈ O in an instance of DataModel (see Section 6.2.1.2) can

have the DataObject ooj ∈ O as the inner declaration. In other words, ooi can be composed

of other DataObjects (i.e., ooi is a CompositeDataObject) or can be a CollectionDataObject.

In this case, changing ooj can result in changing ooi . In general, the composition and the

collection relationships can be combined hierarchically. Thus, Algorithm 4 iteratively

identi�es the potentially a�ected DataObjects based on the discussed relationships. In

each iteration, Y is the set of all DataObjects, which have the a�ected DataObjects as inner

declaration. As sets are duplicate-free, the union of R and Y in each iteration adds only

the elements of Y to R, which are not included in R. The relative complement of R in the

union of R and Y contains also only the DataObjects, which have not yet been considered.

Thus, R is equal to O in the worst case. In other words, Algorithm 4 considers all members

of O in this case.

Algorithm 4 Change propagation from DataObject to DataObject

Input: N ⊆ O . Seed modi�cations

Output: R ⊆ O . Result

R = N
while N , ∅ do

Y = {o ∈ O |(∃n ∈ N) [(o,n) ∈ HasInnerDeclaration]}
N = (R ∪ Y) \ R
R = R ∪ Y

end while

Section 6.2.1.2 describes that an actor step in BP can have inputs or outputs. The inputs

or outputs are represented by data objects. If a data object changes, the corresponding

actor steps may need to be adapted due to the data �ow. Algorithm 5 illustrates the change

propagation from a modi�ed DataObject to the corresponding ActorSteps. The ActorStep

h ∈ H in the model of BPUsageModel can have the DataObject o ∈ O in an instance of

DataModel as input or output. Consequently, a change to o can result in a change to h.

Based on this data �ow, Algorithm 5 identi�es the potentially a�ected ActorSteps.

Algorithm 5 Change propagation from DataObject to ActorStep

Input: N ⊆ O . Seed modi�cations

Output: R ⊆ H . Result

R = {h ∈ H |(∃n ∈ N) [(h,n) ∈ HasInput ∨ (h,n) ∈ HasOutput]}

82

6.2. Change Propagation Analysis for Elements of Domain Metamodel

Actor steps are performed by human actors [Hei+17]. Each human actor takes up at

least one role. Consequently, a responsible role can be assigned to several actor steps. If a

role changes, the actor steps, for which the corresponding human actors are responsible,

may need to be changed. Algorithm 6 presents the change propagation from an a�ected

Role to the ActorSteps with this Role. An actor with the Role r ∈ R in an instance of

OrganizationEnvironmentModel can perform the ActorStep h ∈ H in an instance of

BPUsageModel. Changing the Role r can a�ect all corresponding ActorSteps h. Thus,

Algorithm 6 identi�es all ActorSteps, if the responsible Role changes.

Algorithm 6 Change propagation from Role to ActorStep

Input: N ⊆ L . Seed modi�cations

Output: R ⊆ H . Result

R = {h ∈ H |(∃n ∈ N) [(h,n) ∈ HasResponsibleRole]}

As described previously, a BP can be considered as a set of linked activities [Wor99].

Each activity can be an actor step or a system step [Hei+17]. Thus, an actor step can be the

successor activity of another actor step. Additionally, each actor step can have an input

and an output. The following algorithm considers the change propagation between two

connected actor steps, if the �rst actor step has an output of the same data object as the

input of the successor actor step. This heuristic is based on the change propagation due

to the data �ow, as both actor steps use the same data object. Thus, the successor actor

step is assumed to be dependent on the predecessor actor step. Algorithm 6 presents the

change propagation from the modi�ed ActorStep hi ∈ H in an instance of BPUsageModel

to the directly following ActorStep hj ∈ H , if they use the same DataObject in an instance

of DataModel. As there can be a chain of ActorSteps in BP, the algorithm identi�es the

successor ActorStep of a modi�ed ActorStep based on the aforementioned heuristic in

each iteration. Then, it adds the successor ActorStep to the list of ActorSteps that have to

be analyzed in the next iteration. As each ActorStep cannot have more than one successor

ActorStep [Hei+17], the algorithm can maximally identify one a�ected ActorStep in each

iteration. If the algorithm cannot identify any ActorStep in an iteration, it terminates.

Consequently, it considers all ActorSteps in the BPUsageModel in a worst-case scenario.

In this way, Algorithm 6 iteratively identi�es the potentially a�ected ActorSteps based on

the data �ow.

Algorithm 7 Change propagation from ActorStep to ActorStep

Input: N ⊆ H . Seed modi�cations

Output: R ⊆ H . Result

R = N
while N , ∅ do

N = {h ∈ H |(∃n ∈ N) (∃o ∈ O) [(n,h) ∈ HasSuccessorActorStep ∧ (n,o) ∈ HasOutput ∧
(h,o) ∈ HasInput]}

R = R ∪ N
end while

Similar to the previous case, an actor step can have a successor system step. While the

inputs and the outputs of an actor step can be data objects, the inputs and the output of

83

6. Change Propagation Analysis in Business Processes

a system step can be data types. As described previously, di�erent types of data can be

converted to each other. Thus, a data type in IS can have a corresponding data object

in BP. Algorithm 8 is based on this correspondence. It analyzes the change propagation

from a modi�ed actor step to the successor system step, if one of the output data objects

of the predecessor corresponds to one of the input data types of the successor. It �rst

identi�es the successor EntryLevelSystemCall c ∈ C in an instance of UsageModel of the

a�ected ActorSteph ∈ H in an instance of BPUsageModel. Then, it �nds the corresponding

OperationSignature u ∈ U in an instance of RepositoryModel of the EntryLevelSystem-

Call h. The algorithm identi�es the DataTypes t ∈ T of the input Parameters p ∈ P of the

OperationSignature u. If one of the output DataObjects o ∈ O of the a�ected ActorStep

corresponds to one of the identi�ed DataTypes, the algorithm selects the corresponding

EntraLevelSystemCall as a�ected. Thus, Algorithm 8 identi�es the potentially a�ected

EntryLevelSystemCalls c based on the aforementioned heuristic. As each actor step cannot

have more than one successor system step [Hei+17], the result set of this algorithm is

either empty or contains only one system step.

Algorithm 8 Change propagation from ActorStep to EntryLevelSystemCall

Input: N ⊆ H . Seed modi�cations

Output: R ⊆ C . Result

R = {c ∈ C |(∃n ∈ N) (∃u ∈ U) (∃p ∈ P) (∃t ∈ T) (∃o ∈ O) [(n, c) ∈
HasSuccessorEntryLevelSystemCall ∧ (c,u) ∈ IsCallToSiдnature ∧ (u,p) ∈ HasParameter ∧
(p, t) ∈ HasDataType ∧ (o, t) ∈ HasCorrespondence]}

AcquireDeviceResource and ReleaseDeviceResource are each the start and the end activ-

ity of a sequence of activities, which need a speci�c device [Hei+17]. Thus, changing the

used device can result in changing all AcquireDeviceResources, ReleaseDeviceResources,

and activities in between. Algorithm 9 presents the change propagation from an a�ected

device resource to the corresponding activities regarding acquiring and releasing the device

resource. The DeviceResourced ∈ D in an instance of OrganizationEnvironmentModel can

be used by the AcquireDeviceResources b ∈ B and the ReleaseDeviceResources f ∈ F in

BPUsageModel. A change tod can result in further changes to the activitiesb and f , as they

depend on the a�ected DeviceResource d . Thus, Algorithm 9 calculates the change propa-

gation from a modi�ed DeviceResource to the corresponding AcquireDeviceResources

and ReleaseDeviceResources.

Algorithm 9 Change propagation from DeviceResource to AcquireDeviceResource and

ReleaseDeviceResource

Input: N ⊆ D . Seed modi�cations

Output: R ⊆ (B ∪ F) . Result

R = {b ∈ B |(∃n ∈ N) [(b,n) ∈ AcquiresDeviceResource]}
R = R ∪ { f ∈ F |(∃n ∈ N) [(f ,n) ∈ ReleasesDeviceResource]}

Algorithm 10 identi�es the activities (i.e., abstract user actions) that use an a�ected

device resource. AbstractUserActions a ∈ A in an instance of BPUsageModel can be

between AcquireDeviceResource and ReleaseDeviceResource of the same DeviceResource

84

6.2. Change Propagation Analysis for Elements of Domain Metamodel

d ∈ D. Further, several blocks of AcquireDeviceResource, ReleaseDeviceResource, and

AbstractUserActions in between can be nested in each other. A change to d results

in changes to all following AbstractUserActions a that use d . Algorithm 10 iteratively

calculates the change propagation from the modi�ed AcquireDeviceResource b to the

successor AbstractUserActions a using the same DeviceResource d . In order to be able

to consider the hierarchy level of the nested blocks, this algorithm uses a counter. The

counter increments, if an AcquireDeviceResource of a DeviceResource of the same type

is identi�ed. It counts down, if a ReleaseDeviceResource of a DeviceResource of the

same type is identi�ed. While the previous algorithm calculates the change propagation

from an a�ected DeviceResource to AcquireDeviceResource and ReleaseDeviceResource,

Algorithm 10 calculates the change propagation to AbstractUserActions in between.

Algorithm 10 Change propagation from AcquireDeviceResource to AbstractUserAction

Require: N = {n |n ∈ D} . seed modi�cation: n is the acquireDeviceResource.

Output: R ⊆ A . Result

R = ∅
k = 1

X = {a ∈ A|(n,a) ∈ HasSuccessor }
while X , ∅ ∧ k > 0 do

if {x ∈ X |x ∈ B} , ∅ ∧ {d ∈ D |(∃n ∈ N) (∃x ∈ X) [(n,d) ∈ AcquiresDeviceResource ∧
(x ,d) ∈ AcquiresDeviceResource ∧ (n,x) ∈ HasSuccessor]} , ∅ then

k + +
end if
if {x ∈ X |x ∈ F } , ∅ ∧ {d ∈ D |(∃n ∈ N) (∃x ∈ X) [(n,d) ∈ ReleasesDeviceResource ∧

(x ,d) ∈ ReleasesDeviceResource ∧ (n,x) ∈ HasSuccessor]} , ∅ then
k − −

end if
Y = X
R = R ∪ X
X = {a ∈ A|(∃n ∈ N) [(n,a) ∈ HasSuccessor]}

end while

6.2.3.2. Change Propagation between Business Processes and Information Systems

As described previously, IS and BP have mutual dependencies. Thus, changes can propagate

between IS and BP. Algorithm 11 focuses on the change propagation between both

domains. The data �ow and di�erent types of the data play an important role in the

change propagation analysis, as discussed in the previous sections. Further, a change to

a component-based software system can propagate to its interfaces and provided roles.

Thus, this type of change a�ects BP. The following algorithm utilizes the aforementioned

dependencies to analyze the change propagation between IS and BP. It contains the most

relevant change propagation rules.

Each phase of Algorithm 11 is a change propagation rule that is described in more detail

as a stand-alone algorithm in the following. Each algorithm is based on the aforementioned

sets and their relations.

85

6. Change Propagation Analysis in Business Processes

Algorithm 11 Algorithm for the Change Propagation Analysis between the Model of IS

Architecture and BP Design and vice versa

Input: model of IS architecture and BP design, seed modi�cations

1: Calculate the change propagation from a modi�ed data type to the corresponding data
object using Algorithm 12

2: Calculate the change propagation from amodi�ed data object to the corresponding data
type using Algorithm 13

3: Calculate the change propagation from a modi�ed data type to the corresponding sys-
tem steps (EntryLevelSystemCall) using Algorithm 14

4: Calculate the change propagation from a modi�ed EntryLevelSystemCall to the corre-
sponding OperationSignature using Algorithm 15

5: Calculate the change propagation from a modi�ed OperationSignature to the corre-
sponding EntryLevelSystemCall using Algorithm 16

6: Calculate the change propagation from a modi�ed EntryLevelSystemCall to the corre-
sponding OperationInterface using Algorithm 17

As described previously, the data �ow between IS and BP can cause the propagation

of change. Thus, if a data type is a�ected by a change, it can be important to identify

the corresponding data objects. Algorithm 12 presents the change propagation from the

a�ected DataObject o ∈ O in an instance of DataModel to the corresponding DataType

t ∈ T in RepositoryModel. It calculates the change propagation from IS to BP based on the

data �ow.

Algorithm 12 Change propagation from DataType to DataObject

Input: N ⊆ T . Seed modi�cations

Output: R ⊆ O . Result

R = {o ∈ O |(∃n ∈ N) [(o,n) ∈ HasCorrespondence]}

The described correspondence can be used in opposite direction to calculate the change

propagation. Algorithm 13 presents the change propagation from a�ected DataObject

o ∈ O to the corresponding DataTypes t ∈ T .

Algorithm 13 Change propagation from DataObject to DataType

Input: N ⊆ O . Seed modi�cations

Output: R ⊆ T . Result

R = {t ∈ T |(∃n ∈ N) [(n, t) ∈ HasCorrespondence]}

As described previously, EntryLevelSystemCalls in UsageModel represent system steps

in BP [Hei+17]. An EntryLevelSystemCall can be considered as a call to a system service

(i.e., a signature) [BKR09]. This signature can have a set of parameters and a return variable

of di�erent types. These types are represented by data types [BKR09]. Thus, changing a

data type can result in further changes in the corresponding signatures and system steps.

Based on the aforementioned data �ow, Algorithm 14 �rst identi�es all OperationSignatures

u ∈ U in an instance of RepositoryModel that are called by the EntryLevelSystemCall c ∈ C

86

6.2. Change Propagation Analysis for Elements of Domain Metamodel

in an instance of UsageModel. Then, it identi�es all OperationSignatures u that have at

least one input parameter or a return type. If the type of one of the parameters or the return

type is the same as the a�ected DataType t ∈ T , the corresponding EntryLevelSystemCall

is potentially a�ected by the change. This case shows the propagation of a change based on

the data �ow to the provided roles of the IS system model and then to the BP design model.

Summarized, Algorithm 14 calculates the potentially changed EntryLevelSystemCalls

based on changed DataTypes.

Algorithm 14 Change propagation from DataType to EntryLevelSystemCall

Input: N ⊆ T . Seed modi�cations

Output: R ⊆ C . Result

R = {c ∈ C |(∃n ∈ N) (∃u ∈ U) (∃p ∈ P) [(c,u) ∈ IsCallToSiдnature ∧ ((u,n) ∈ ReturnType ∨
((p,n) ∈ HasDataType ∧ (u,p) ∈ OperationSiдnatureHasParameter))]}

The following algorithm is also based on the correspondence between a system step in

BP (i.e., EntryLevelSystemCall in UsageModel) and a signature in IS, which is called by

this system step. System steps may be directly a�ected by a change, for example due to

new or changing requirements. Changing a system step can result in further changes in

the called signature. Thus, Algorithm 15 calculates the change propagation from BP to IS.

The system step (i.e., an EntryLevelSystemCall) c ∈ C in an instance of UsageModel can be

a call to the OperationSignature u ∈ U in RepositoryModel. Thus, a change to c can result

in a change to u. Algorithm 15 identi�es the potentially a�ected OperationSignatures

based on this correspondence.

Algorithm 15 Change propagation from EntryLevelSystemCall to OperationSignature

Input: N ⊆ C . Seed modi�cations

Output: R ⊆ U . Result

R = {u ∈ U |(∃n ∈ N) [(n,u) ∈ IsCallToSiдnature]}

In contrast to the previous algorithm, the direction of the change propagation in the

following algorithm is from IS to BP. Based on the aforementioned correspondence between

the system steps and the signatures, Algorithm 16 calculates the change propagation from

an a�ected OperationSignature to the corresponding EntryLevelSystemCalls.

Algorithm 16 Change propagation from OperationSignature to EntryLevelSystemCall

Input: N ⊆ U . Seed modi�cations

Output: R ⊆ C . Result

R = {c ∈ C |(∃n ∈ N) [(c,n) ∈ IsCallToSiдnature]}

The signature called by a system step is contained in an interface. Thus, changing a

system system propagates not only to the called signature, but also to the corresponding

interface. Algorithm 17 presents the propagation of a change from a modi�ed EntryLevel-

SystemCall to the corresponding OperationInterface. For this purpose, the algorithm �rst

identi�es all OperationSignatures u ∈ U in an instance of RepositoryModel that are called

by the a�ected EntryLevelSystemCall c ∈ C . Then, it �nds all OperationInterfaces j, to

which the OperationSignature u ∈ U belongs.

87

6. Change Propagation Analysis in Business Processes

Algorithm 17 Change propagation from EntryLevelSystemCall to OperationInterface

Input: N ⊆ C . Seed modi�cations

Output: R ⊆ J . Result

R = {j ∈ J |(∃n ∈ N) (∃u ∈ U) [(n,u) ∈ IsCallToSiдnature ∧ (u, j) ∈

BelonдToOperationInter f ace]}

6.2.3.3. Change Propagation in Information Systems

On the one hand, the seed modi�cation could be in IS. On the other hand, a change can

also propagate from BP to IS. In both cases, considering the change propagation in IS

is relevant for the maintainability analysis. In addition to the extension of metamodels

of modi�cation in KAMP4IS, Algorithm 18 extends the change propagation algorithm of

KAMP4IS, proposed in [Sta15; Ros+15b]. The extension involves the change propagation

at the level of OperationSignatures. Additionally, it considers the change propagation

in DataTypes, EventTypes, and EventGroups. Each phase of Algorithm 18 represents a

change propagation rule.

Algorithm 18 Algorithm of the Change Propagation Analysis in IS Architecture Model

Input: Information system architecture model, seed modi�cations

1: Apply modi�ed KAMP4IS (see the original version in [Sta15; Ros+15b]) at the level of
signatures

2: Calculate the change propagation from a modi�ed DataType to the other DataTypes
using Algorithm 19

3: Calculate the change propagation from amodi�ed data type to the corresponding event
types using Algorithm 20

4: Calculate the change propagation from a modi�ed DataType to the corresponding
EventGroup using Algorithm 21

5: Calculate the change propagation from a modi�ed Signature (i.e., OperationSignature
or EventType) to the corresponding interface (i.e., OperationInterface or EventGroup)
using Algorithm 22

6: Calculate the change propagation from a modi�ed Interface (i.e., OperationInterface
or EventGroup) to its Signatures (i.e., OperationSignature or EventType) using Algo-
rithm 23

7: Calculate the change propagation from a modi�ed EventGroup to the corresponding
Components handling or �ring this EventGroup. This case is an extension of the
change propagation analysis from an a�ected OperationInterface to the Components
providing or requiring this component, as proposed in [Sta15; Ros+15b]

8: Calculate a generalized version of the inter- and intra-change propagation of
KAMP4IS [Sta15; Ros+15b] until no new provided or required role is available

Calculate the change propagation from a modi�ed required role of a component to the provided

role of the same component (the extension includes the sink and source roles, as well as the

operation signatures and the event types)

Calculate the change propagation from a modi�ed provided role of a component to the required

role of another component (the extension includes the sink and source roles, as well as the

operation signatures and the event types)

88

6.2. Change Propagation Analysis for Elements of Domain Metamodel

Algorithm 18 contains the most relevant change propagation rules. The rules are

described as stand-alone algorithms in the following. Each algorithm is based on the

aforementioned sets and their relations.

Section 6.2.1.2 describes how the data types can be modeled using PCM. According

to this metamodel, a data type can be composed of further data types or a collection of

other data types [BKR09]. Thus, if a data type changes and it is contained in a composite

or a collection data type, the change can propagate to the data types containing the

changed data type. Algorithm 19 uses this correspondence to identify the potentially

a�ected DataTypes iteratively. It is based on the idea that the DataType tti in an instance

of RepositoryModel can have the DataType ttj as the inner declaration. In other words, tti
can be a CompositeDataType or a CollectionDataType. In general, these relationships can

be combined recursively. Thus, a change to ttj can result in a change to tti . Algorithm 19

iteratively identi�es the DataTypes that are potentially a�ected by a change to a DataType.

In each iteration, the algorithm assigns the DataTypes to set Y that have the changed

DataTypes as inner declaration. Then, set N is de�ned as the relative complement of R in

the union of R and Y . In other words, set N contains a subset of set Y . This subset contains

the DataTypes that are not already considered, as sets contain only distinct elements. R is

equal to T in the worst case, as the union of all sets N resulted from all iterations and the

initial N is a subset of or equal to set T . Thus, the algorithm has to consider all members

of set T in a worst-case scenario.

Algorithm 19 Change propagation from DataType to DataType

Input: N ⊆ T . Seed modi�cations

Output: R ⊆ T . Result

R = N
while N , ∅ do

Y = {t ∈ T |(∃n ∈ N) [(t ,n) ∈ HasInnerDeclaration]}
N = (R ∪ Y) \ R
R = R ∪ Y

end while

Similar to the operation signatures in PCM, the event types can also have a parameter.

Each parameter has a speci�c data type. If a data type changes, the change can propagate

to the corresponding parameter and, thus, to the event type. Algorithm 20 describes the

change propagation from a modi�ed DataType to the EventTypes based on the afore-

mentioned relationship. The EventType e ∈ E in an instance of RepositoryModel can

have the Parameter p ∈ P . The parameter can have the DataType t ∈ T as its type. If

the DataType t changes, the change can propagate to the EventType e . In this way, the

following algorithm identi�es the potentially a�ected EventTypes.

Algorithm 20 Change propagation from DataType to EventType

Input: N ⊆ T . Seed modi�cations

Output: R ⊆ E . Result

R = {e ∈ E |(∃n ∈ N) (∃p ∈ P) [(e,p) ∈ EventTypeHasParameter ∧ (p,n) ∈ HasDataType]}

89

6. Change Propagation Analysis in Business Processes

As described previously, an event type is contained in an event group. Thus, changing

a data type can result in further changes in the event type and the corresponding event

group. While the previous algorithm identi�es the potentially a�ected EventTypes based

on a modi�ed DataType, Algorithm 21 identi�es the corresponding EventGroups. The

EventGroup д ∈ G in an instance of RepositoryModel can contain several EventTypes

e ∈ E. As described previously, an EventType can have the DataType t ∈ T as the type of

its Parameter. Thus, a change to the DataType t can result in a change to the corresponding

EventGroup д. Algorithm 21 uses this relationship to identify the potentially changed

EventGroups due to a change to a DataType.

Algorithm 21 Change propagation from DataType to EventGroup

Input: N ⊆ T . Seed modi�cations

Output: R ⊆ G . Result

R = {д ∈ G |(∃n ∈ N)(∃p ∈ P)(∃e ∈ E)[(p,n) ∈ HasDataType ∧ (e,p) ∈
EventTypeHasParameter ∧ (e,д) ∈ BelonдsToEventGroup]}

If a signature changes, it is desirable to identify the interface containing this signa-

ture. For this purpose, Algorithm 22 presents the change propagation from a modi�ed

signature to the corresponding interface. The Interface i ∈ I (i.e., OperationInterface or

EventGroup) in an instance of RepositoryModel can contain several Signatures s ∈ S (i.e.,

OperationSignature or EventType). If the Signature s changes, the Interface i has to be

identi�ed.

Algorithm 22Change propagation from Signature (i.e., OperationSignature or EventType)

to Interface (i.e., OperationInterface or EventGroup)

Input: N ⊆ S . Seed modi�cations

Output: R ⊆ I . Result

R = {i ∈ I |(∃n ∈ N) [(n, i) ∈ BelonдsToOperationInter f ace)∨ ((n, i) ∈ BelonдsToEventGroup]}

Algorithm 23 shows the change propagation from a modi�ed interface to its signatures.

A change can also be coarse-grained at the level of interfaces. In this case, it is important

to identify the signatures that belong to this interface. Algorithm 23 selects all Signatures

(i.e., OperationSignature or EventType) in a changed Interface (i.e., OperationInterface or

EventGroup) as a�ected.

Algorithm 23 Change propagation from Interface (i.e., OperationInterface or EventGroup)

to Signature (i.e., OperationSignatures or EventTypes)

Input: N ⊆ I . Seed modi�cations

Output: R ⊆ S . Result

R = {s ∈ S |(∃n ∈ N) [(s,n) ∈ BelonдsToOperationInter f ace) ∨ ((s,n) ∈

BelonдsToEventGroup)]}

The last both phases of Algorithm 18 considers an extension of the existing algorithm

of the initially developed KAMP4IS [Sta15; Ros+15b]. In PCM, the OperationInterface and

90

6.2. Change Propagation Analysis for Elements of Domain Metamodel

EventGroup metaclasses are a speci�c types of the Interface metaclass. Further, the Opera-

tionSignature and EventType metaclasses are speci�c types of the Signature metaclass.

Additionally, the OperationRequiredRole and SourceRole metaclasses are speci�c types of

the RequiredRole metaclass, while the OperationProvidedRole and SinkRole metaclasses

are speci�c types of the ProvidedRole metaclass. Thus, the generalization of the existing

algorithms regarding the inter- and intra-change propagation analysis and the change

propagation analysis due to interface dependencies enables considering the events in the

change propagation analysis. Phases 7 and 8 of Algorithm 18 describe this generalization.

As these algorithms are similar to the original ones described in [Sta15], their description

is omitted in this thesis.

It is important to note that the aforementioned algorithms regarding the change propa-

gation rules are de�ned for PCM and its extensions. In particular, their metaclasses and

the relationships between them were used to de�ne the rules. Other metamodels require

other change propagation rules. Further, the aforementioned change propagation rules

are based on heuristics, which are described for each change propagation rule. Other

heuristics are also possible, which can result in other change propagation rules. The choice

of the appropriate heuristics for a change propagation analysis approach is a trade-o�

decision based on di�erent in�uencing factors. Several in�uencing factors are described

in Section 11.4.2 based on the evaluation results.

Example

In this section, the application of the previously described algorithms to Media Store is

described. As the Media Store represents a small software system, some described model

elements (e.g., events in the software system) or relationships between model elements

(e.g., data objects contained in other data objects) do not occur in the program and in the

corresponding models. Therefore, only a subset of algorithms can be applied to the Media

Store example. In the following, two seed modi�cations and their impact based on the

previously proposed algorithms are described:

Consider that the download method in the IWebGUI interface is renamed. If the user

selects the download method as the seed modi�cation, Algorithm 22 in the domain of

IS identi�es the a�ected interface containing the changed method. Thus, the IWebGUI

interface, which contains the download method, is identi�ed as a�ected by the change. This

change propagates to the corresponding system step download. Algorithm 16 calculates

the change propagation between a method in the domain of IS and a system step in the

domain of BP. The change propagation terminates, as there are no change propagation

rules for the changed model elements and their relationships to other model elements.

The next example illustrates the change propagation due to the data �ow. Consider

that a new national identi�cation number is introduced. In contrast to the previous

national identi�cation number, which is based on numbers, the new one can contain

letters. Thus, the seed modi�cation is the data object Identity Document. In the following,

the application of some change propagation rules on the modi�ed Media Store example

is discussed. Algorithm 13 analyzes the change propagation from the data object to the

corresponding data type. As the identity document is the input of the actor step Enter

personally identifiable information, Algorithm 5 calculates the change propagation

91

6. Change Propagation Analysis in Business Processes

to this actor step. Further, Algorithm 14 calculates the propagation of the change from

the data type to the system step Register. Additionally, the change propagation rules of

the initial KAMP4IS [Sta15] calculate further change propagation for example from the

a�ected data type to the corresponding interfaces.

6.3. Change Propagation Analysis for Elements of Context
Metamodel

Context elements can cause additional e�ort during the implementation of a change

request. Thus, this section proposes the metamodels for context elements and task types,

as well as the algorithm for calculating the context task lists. These metamodels and

algorithms enable domain experts to consider the e�ort of changing context elements

during the change propagation analysis in IS and BP and can be adapted or extended to

further metamodels and algorithms.

6.3.1. Metamodel of Context Elements

There are several reasons for considering context elements. Context elements in BP may

cause additional e�ort, as they have to be changed due to changes to domain elements.

Sometimes it could also be important to know, which context elements are a�ected by a

change. The metamodel of context elements in BP contains the following basic elements:

training courses, massages, goods, and organizational units. This metamodel can be

extended, if required [Ros+17a].

The metamodel of domain elements is the main artifact during the change propagation

analysis. Thus, the metaclasses of context metamodel have to reference the corresponding

metaclasses of the metamodel of domain elements. Figure 6.9 illustrates a simpli�ed

excerpt from the metamodel of context elements.

BusinessProcessSpecification

BPUserActionAnnotation

OrganizationalUnitMessageTrainingCourseGood

[0..*]userActionAnnotations
[1..1]parent

Figure 6.9.: Illustration of context elements of BP - Simpli�ed excerpt

6.3.2. Metamodel of Task Type

No additional task types for the context elements could be identi�ed in BP. However, if

new task types are identi�ed, they could be added to this metamodel [HBK18].

92

6.4. Algorithm of Di�erence Calculation

6.3.3. Algorithm of Context Task List

Actors can use goods while performing their actor steps. If actor steps change, it could be

relevant to consider the goods that are used. Therefore, this algorithm selects the goods

that are used by an a�ected actor step as changed [Ros+17a].

Actor steps can send messages to each other for example due to communication or

synchronization [Obj11]. If actor steps change, the change can also a�ect the sending or

receiving messages. Therefore, this algorithm considers messages if the corresponding

actor steps change [Ros+17a].

Activities in a BP can be performed by di�erent organizational units. Thus, it could be

important to know the organizational units that are a�ected by a change. This algorithm

identi�es the a�ected organizational units [Ros+17a].

If a change a�ects the actor steps, the involved actors in BP could have to be retrained.

For example, changing graphical user interfaces may a�ect the actors accessing them

in their actor steps. Training courses may be necessary in some cases. Therefore, this

algorithm suggests training courses if actor steps are a�ected by a change [Ros+17a].

6.4. Algorithm of Di�erence Calculation

This algorithm identi�es the di�erences between the following models in BP: BaseVersion
and TargetVersion. In particular, it re�nes the results of existing generic algorithms to

calculate the di�erences between models. The results of this algorithm are gathered and

managed by the algorithm for the derivation of task lists, implemented by the methodology.

Example

Consider that users do not need any registration to access the audio �les. This change

should only a�ect the BP design. In other words, the software does not need to be changed.

Thus, the actor step Enter personally identifiable information and the system step

Register, as well as the actor step Enter username and password and the system step

Login are removed. The last step of the approach compares the architectures of IS and

the design of BP before and after the change. Then, it calculates the di�erences between

both versions. The previously described actor steps and system steps are then the seed

modi�cations for the change propagation algorithms of KAMP4IS and KAMP4BP.

6.5. Conclusions

This chapter proposed an approach to support the co-evolution of IS and BP. For this

purpose, the approach uses the mutual dependencies between IS and BP (e.g., the data

�ow) to analyze the change propagation. As the proposed approach in BP was developed

as a further instance of the methodology, it provides further functionality supported by the

methodology such as considering users’ decisions regarding task list reduction. Further,

it allows considering context elements during the co-evolution. Additionally, the before

and after comparison is provided by the algorithm of di�erence calculation. The seed

93

6. Change Propagation Analysis in Business Processes

modi�cations can be de�ned both in IS at the architecture level or in BP at the level of

activities. Based on the seed modi�cations, the approach identi�es the potentially a�ected

model elements of the software architecture in IS and the BP design. Although each of

the approaches can also be used in isolation, a holistic view on IS and BP allows a more

realistic change propagation analysis. Thus, this contribution answers the second research
question introduced in Section 1.4.

94

7. Change Propagation Analysis in
Automated Production Systems

Production plants are often designed and implemented for a speci�c work�ow [Fay+15].

Hence, their design and implementation require high initial cost and e�ort [Lad+13].

Thus, aPS are sustainable systems. They consist of heterogeneous elements from di�erent

sub-domains, such as mechanical, electrical/electronic elements and software [Vog+17;

Hei+18]. A common standard for the software of the PLC-based aPS is the IEC 61131-3

standard [IEC13]. This standard is used in most aPS systems and is assumed to “be the state

of industrial practice in the next 5-10 years” [Vog+15, p. 14]. These heterogeneous elements

are from di�erent domains. Thus, one of the main challenges regarding the maintainability

is considering the mutual dependencies between these elements. In other words, changing

one element from a speci�c domain can lead to further changes of elements from the

same domain or even from other domains. Thus, the involved domains in aPS co-evolve.

These factors make the manually e�ort estimation of changes to aPS very costly and

time-consuming [Vog+17; Hei+18; Bus+18c].

In aPS, there are only few approaches addressing the change propagation analysis.

Most of these approaches do not provide the automation and a tool support, as described

in Chapter 3. Therefore, this chapter presents a model-based approach to automatically

analyze the change propagation in aPS. Using metamodels for describing systems in

di�erent domains allows a holistic view of the domains involved in aPS. In other words,

the approach can analyze the change propagation between heterogeneous elements from

the involved domains based on their mutual dependencies. Thus, the approach was

designed to answer the second research question.

Section 7.1 gives an overview of the approach. The change propagation analysis in

mechanical and electrical/electronic elements is presented in Section 7.2. Section 7.3

proposes the change propagation analysis in a PLC software following the IEC 61131-3

standard. Section 7.4 concludes this chapter.

The results of this chapter are based on the results of the Master’s thesis of Sandro

Koch [Koc17] (i.e., the change propagation analysis in mechanical, electrical/electronic

elements of aPS), the Bachelor’s thesis of Jannis Rätz [Rät17] (i.e., the change propagation

analysis in the control software of aPS), and the practical course [Rät18] (i.e., the change

propagation analysis in the behavior of aPS), which were supervised by the author of this

dissertation. Further, the results of this chapter regarding the change propagation analysis

in mechanical, electrical/electronic elements of aPS and in the control software have been

appeared in the papers [Vog+17; Hei+18] and in the paper [Bus+18c], respectively.

95

7. Change Propagation Analysis in Automated Production Systems

7.1. Change Propagation Analysis for Co-evolution of
Mechanical, Electrical/Electronic, and So�ware Elements

To analyze the change propagation in aPS a model-based approach is developed as an in-

stantiation of the methodology proposed in Chapter 5. This approach is mainly composed

of two interconnected approaches, namely the Karlsruhe Architectural Maintainabil-

ity Prediction for automated Production Systems (KAMP4aPS) approach and the Karl-

sruhe Architectural Maintainability Prediction for International Electrotechnical Com-

mission (KAMP4IEC) approach, which analyzes the change propagation in hardware (i.e.,

mechanical and electrical/electronic elements) and software of aPS. This section gives an

overview of the functionality of this approach.

The idea of the approach is presented in Figure 7.1. It consists of the following steps

similar to KAMP4IS and KAMP4BP: i) the preparation phase, ii) the impact phase, and iii)

the post-analysis phase [Vog+17; Hei+18; Bus+18c].

Preparation Phase

Control
Software

Mechanical
& Electrical/
Electronic
Elements

Correspondence
Model

System Model

Additional Information
Spare List

Test
Documentation

…

Test
Source Code

PLC
…

Change Request

Temporary Task List
Impact Phase

Impact
 on

Software

Change Propagation
in Mechanical &

Electrical/Electronic
Model Elements

Change Propagation
in Software Model

Elements

Post-analysis Phase

Task List

Recalculation
of Task List

User Decision

on

Model Phase of Approach Phase of Change
Propagation Algorithm

Input/Output Annotations

Legend:

Duplicate Detection

Sorting Task Lists

Figure 7.1.: Overview of the KAMP4aPS approach

The input of the approach is prepared in the �rst phase. It involves the manual prepara-

tion of the models for the domain and/or context elements in the plant under study. This

phase could be performed by domain experts for example system engineers. The models

of domain elements involve models of the hardware (i.e., mechanical, electrical/electronic

elements) and the control software. Further, the data �ow in the plant has to be modeled.

This model allows the change propagation between the hardware and the control software

in aPS. The model representing the data �ow is referred to as the correspondence model in

the following [Hei+18]. Although various metamodels allow modeling di�erent elements

and aspects of aPS (e.g., software, hardware, or behavior), domain experts can only model

elements of a system that have to be analyzed (e.g., only the control software in aPS). In this

96

7.2. Change Propagation Analysis in Mechanical and Electrical/Electronic Elements

way, the modeling e�ort can be reduced. Further, if the e�ort due to context elements has

to be estimated, they can also be considered. Examples of context elements for hardware

and software are lists of spare parts, tests, or con�guration. The last step in this phase is

modeling the seed modi�cations [Vog+17; Hei+18; Bus+18c]. The impact phase analyzes

the change propagation in the domain and context model elements automatically. The

PLC software controls the plant. The type of input or output variables in the software

corresponds with the electrical signals. The proposed approaches in this section mainly

focus on the propagation of changes from hardware (i.e., electrical signals) to software (i.e.,

types of input and output variables). Thus, if a seed modi�cation a�ects only the software,

the propagation of changes is only analyzed in software. By contrast, changes to hardware

can propagate to the software. Thus, if the seed modi�cation is in the hardware, the change

propagation in both hardware and software is analyzed. If domain experts modeled context

elements, the approach considers them in the change propagation analysis. The output

of this phase is a task list consisting of the potentially a�ected model elements [Vog+17;

Hei+18; Bus+18c].

Similar to KAMP4BP, the methodology executes the post-analysis phase of the approach.

This phase aims at generating deterministic task lists. For this purpose, it eliminates the

duplicates in the task list and sorts the tasks, as described in Section 5.2. If domain experts

exclude tasks in the task lists, the methodology considers their decisions. In this case, the

methodology iteratively excludes the tasks, which have only excluded causing elements.

Reducing task lists based on the decisions of domain experts are discussed in Section 5.2.3

in more detail.

Section 7.2 describes KAMP4aPS for the change propagation analysis in mechanical

and electrical/electronic elements. Section 7.3 proposes KAMP4IEC analyzing the change

propagation in the control software.

7.2. Change Propagation Analysis in Mechanical and
Electrical/Electronic Elements

This section describes the change propagation analysis in mechanical and electrical/elec-

tronic elements. It proposes the instantiation of the methodology to the hardware of aPS

to develop the KAMP4aPS approach.

7.2.1. Change Propagation Analysis for Elements of Domain Metamodel

Chapter 5 described the central role of the domain metamodel during the change propaga-

tion analysis. This section presents the change propagation analysis based on the domain

metamodel of the aPS hardware. In other words, this section describes the instantiation of

the mandatory part of the methodology.

7.2.1.1. Metamodel of Domain

This section discusses the metamodel for mechanical and electrical/electronic elements

with respect to the three aspects: structure, data �ow, and behaviour. Section 7.3.1.1

presents the domain metamodel for the control software.

97

7. Change Propagation Analysis in Automated Production Systems

Structure The structure of mechanical and electrical/electronic elements was metamod-

eled in a joint work with TUM [Hei+18; Koc17]. Section 2.7 presents the corresponding

metamodels in more detail. The developed metamodels are at two di�erent abstraction

levels, namely an abstract and a speci�c metamodel. The abstract metamodel is developed

to model a generic plant, while the speci�c metamodel specializes the abstract metamodel

for the xPPU plant. Two variants of KAMP4aPS were developed using both metamodels.

Section 11.3 compares the evaluation results of both variants regarding the quality of the

change propagation prediction.

Data Flow The propagation of change from mechanical and electrical/electronic elements

to the corresponding software can occur using the data �ow. In a PLC-controlled plant

the control software runs on a PLC [Vog+17]. The sensors and actuators of the plant are

connected to the inputs and outputs of the physical interfaces of the PLC. These inputs and

outputs correspond to global variables of the PLC software [EMO07]. Figure 7.2 illustrates

the connection between the hardware and the corresponding software [Koc17; Hei+18].

This metamodel connects the interfaces of a PLC to the corresponding global variables.

In the instance of the hardware metamodel, the cables connected to PLC have to use the

same interfaces as PLC. In the instance of the software metamodel, the global variables

are used as the main data �ow in the PLC software, for example by function blocks. This

relationship can be used to analyze the change propagation from the hardware to the PLC

software [Koc17; Hei+18].

Interface Variable
Mapping GlobalVariable

[1..1]program
Variable

[1..1]interface
Declaration

Component
Correspondence

Correspondence
Repository [0..*]component

Correlation
[0..*]variable

Mapping

IEC Repository
Metamodel (Excerpt)

aPS Metamodel
(Excerpt)

Figure 7.2.: Correspondence model illustrating the relationship between communication

interfaces of a PLC and global variables in the control software [Rät18; Koc17;

Hei+18]

Behavior Depending on whether a plant is considered as hardware or hardware and

software in combination, the behavior of the plant can be considered in di�erent ways: If

we only consider the hardware of a plant, the PLC software could determine the behavior

of the plant. In this case, the PLC software could be considered as the behavior of the

plant. If we consider the plant as both hardware and software, the behavior of the plant

can be considered as the interaction between the plant and its operators. The reason for

that is that the PLC software waits for the next interaction of the operator, for example

pressing the start button [Vog+14a].

This work considers both hardware and software in the process of the change propaga-

tion analysis. Thus, the behavior of a plant can be considered as the interaction between

the plant and its operators (see Section 7.3.1.1).

98

7.2. Change Propagation Analysis in Mechanical and Electrical/Electronic Elements

Example This paragraph shows the instantiations of the previously described metamodels

for the Minimal Plant example introduced in Section 4.1. This section considers only the

hardware of a plant. The previous aspects regarding the structure, the behavior, and the

data �ow for the Minimal Plant example are discussed in the following:

Structure: The abstract and speci�c metamodels of aPS described in Section 2.7.1

and Section 2.7.2 were used to model the structure of the hardware of the Minimal Plant

example. The models show the structure of the same example at two abstraction levels.

The structure model of the Minimal Plant example based on the abstract metamodel is

illustrated in Section 4.2.1. At a high abstraction level, the conveyor structure can have

components for example a frame and a conveyor component. Further, it can have modules

such as optical sensor. At a low abstraction level, each speci�c element such as frame and

conveyor belt can be modeled using a speci�c type of components or modules. An example

of that could be the frame and the conveyor belt as two speci�c types of a component.

Data �ow: As described in Section 4.2, the Minimal Plant example consists of an optical

sensor in its initial con�guration. Using the optical sensor, the presence of a work piece

could be recognized. An example of the correspondence model between the hardware and

the software is the mapping between the interface for the output of the optical sensor and

a global variable as the input of the PLC software.

Behavior: This section considers only the hardware of the plant. Thus, the control

software could be used to describe the behavior. An example is the initialization of stack

or conveyor. The change propagation in control software is described in Section 7.3.1.1 in

more detail.

7.2.1.2. Domain-specific Metamodel of Modification

This metamodel extends the domain-independent metamodel of modi�cation. In other

words, it represents the change to the hardware. Its metaclasses reference the meta-

classes of the domain metamodel for hardware, which can be a�ected by a change. In

the following, the extension of the metaclasses of the domain-independent metamodel of

modi�cation (see Chapter 5) for the abstract metamodel is described. The metaclasses of

the domain-independent metamodel of modi�cation were also extended for the speci�c

metamodel. The domain-speci�c metamodel of modi�cation for the speci�c metamodel

specializes the domain-speci�c metamodel of modi�cation for the abstract metamodel.

For example, the speci�c metamodel can contain the Motor metaclass as a speci�cation

of the Module metaclass in the abstract metamodel. In this case, the domain-speci�c

metamodel of modi�cation for the speci�c metamodel contains a metaclass ModifyMotor

as a speci�cation of the ModifyModule metaclass in the domain-speci�c metamodel of

modi�cation for the speci�c metamodel. While the ModifyModule metaclass references

the Module metaclass, the metaclass ModifyMotor references the Motor metaclass. As the

speci�cation is straightforward, this section presents only the domain-speci�c metamodel

of modi�cation for the abstract metamodel.

• SeedModifications in the hardware can be components, modules, interfaces, or

structures. Figure 7.3 illustrates the relationship between the SeedModification

metaclass of the methodology and the corresponding metaclasses for the mechanical

and electrical/electronic elements.

99

7. Change Propagation Analysis in Automated Production Systems

SeedModification - Methodology (Excerpt)

SeedModification - Automated Production Systems -Hardware (Excerpt)

Modify
Structure

Modify
Interface

Modify
Module

Modify
Component

APSSeedModification

[0..*]structure
Modifications

[0..*]interface
Modifications

[0..*]module
Modifications

[0..*]component
Modifications

SeedModification

Figure 7.3.: Relationship between the domain-independent SeedModification and

SeedModification in mechanical and electrical/electronic elements

• Modification: Components, modules, interfaces, and structures can be potentially

changed. Figure 7.4 illustrates the relationship between the Modification metaclass

of the methodology and the corresponding metaclasses for the mechanical and

electrical/electronic elements.

Modification - Methodology (Excerpt)

Modification - Automated Production Systems - Hardware (Excerpt)

Modify
Structure

Modify
Interface

Modify
Module

Modify
Component

ModifyEntity

Modification

<<bind T>>
Structure

<<bind T>>
Interface

<<bind T>>
Module

<<bind T>>
Component

T
S

[1..1]affectedElement

[0..*]causingElements

T

T T T T

<<bind S,T>> T,EObject

Figure 7.4.: Relationship between the domain-independent Modification and

Modification in mechanical and electrical/electronic elements

• ChangePropagationStep: As described previously, a change propagation due to hard-

ware changes can be a common cause for the change propagation in the mechanical

and electrical/electronic elements. Figure 7.5 illustrates the relationship between

the ChangePropagationStep metaclass of the methodology and the corresponding

metaclasses for the mechanical and electrical/electronic elements.

100

7.2. Change Propagation Analysis in Mechanical and Electrical/Electronic Elements

ChangePropagationStep
 - Methodology (Excerpt)

ChangePropagationStepChangePropagationDueToHardwareChange

ChangePropagationStep - Automated
Production Systems - Hardware (Excerpt)

Figure 7.5.: Relationship between the domain-independent ChangePropagationStep and

ChangePropagationStep in mechanical and electrical/electronic elements

• ModificationRepository is composed of the metaclasses of the SeedModification

and ChangePropagationStep, as described in Chapter 5. Figure 7.6 illustrates the

relationship between the ModificationRepository metaclass of the methodology

and the corresponding metaclasses for the mechanical and electrical/electronic

elements.

ModificationRepository - Automated Production
Systems - Hardware (Excerpt)

Abstract
Modification
Repository

T
S

[1..1]seedModifications

[0..*]
changePropagationSteps

Modification
Repository

aPS
Modification
Repository

<<bind S,T>>
T,ChangePropagationStep

<<bind T>>
APSSeedModication

ModificationRepository - Methodology (Excerpt)

T

Figure 7.6.: Relationship between the domain-independent ModificationRepository and

ModificationRepository in mechanical and electrical/electronic elements

Example

In the Minimal Plant example, both models of the abstract and speci�c models can be

a�ected by a change. This depends on the granularity of the created instances of the

metamodel. For example, if the model of the Minimal Plant example is created as the

instance of the abstract metamodel, the domain expert can select only model elements

at a high abstraction levels such as structure or component as changed. In the instance

of the abstract metamodel, the conveyor structure, modules such as the conveyor belt,

101

7. Change Propagation Analysis in Automated Production Systems

components such as a ramp, or interfaces such as the concrete �xation from motor to

frame could be a�ected by a change. Further, they could be selected by domain experts as

seed modi�cations.

If domain experts use instances of the speci�c metamodel, they can select the model

elements of the instances of the speci�c metamodel as changed. The metaclasses of

the speci�c metamodel are concrete types of metaclasses of the abstract metamodel. For

example, if the model of the Minimal Plant example is an instance of the speci�c metamodel,

domain experts can select the instance of the conveyor or the conveyor belt, instead of the

structure or the module.

7.2.1.3. Algorithm of Change Propagation Analysis

There is a need for di�erent change propagation rules depending on the abstraction level

of the metamodels representing the domain elements. Despite of the abstraction level of

the metamodels, the granularity of the change propagation rules a�ects the quality of the

generated task lists. The change propagation rules are based on the metamodel of the

domain elements. Thus, the granularity of the metamodel determines the granularity of

the change propagation rules. The more coarse-grained the metamodels of the domain

elements, the more coarse-grained the change propagation rules can be speci�ed. However,

there could be coarse-grained change propagation rules for a �ne-grained metamodel. The

following sections describe the change propagation rules for both metamodels at di�erent

abstraction levels:

Algorithm of Change Propagation Analysis for the Abstract Metamodel of aPS This algo-

rithm is composed of a set of change propagation rules that are iteratively applied to the

model of a plant. These rules can be used for any aPS plant that is modeled based on the

abstract metamodel. As the rules are de�ned for the abstract metamodel, they are coarse

granular. In other words, a high number of false positives can occur while analyzing the

change propagation in a speci�c system.

As described previously, the abstract metamodel of the domain elements has a Component,

an Interface, a Module, and a Structure metaclass. Thus, the change propagation rules

are grouped together based on these metaclasses. To de�ne the change propagation rules,

the instances of each metaclass in the abstract metamodel of the domain elements are

mapped to a set. In other words, the members of a set represent the instances of a speci�c

type in an instance of the metamodel. The following sets are de�ned for the change

propagation rules:

• S = {ss1, . . . , ssn } is a set of all Structures in the instances of the abstract metamodel.

• M = {mm1
, . . . ,mmn } is a set of all Modules in the instances of the abstract metamodel.

• C = {cc1, . . . , ccn } is a set of all Components in the instances of the abstract metamodel.

• I = {ii1, . . . , iin } is a set of all Interfaces in the instances of the abstract metamodel.

The relationship between metaclasses can be expressed as binary relations over the

de�ned sets:

102

7.2. Change Propagation Analysis in Mechanical and Electrical/Electronic Elements

• The relationComponentHasInter f ace is de�ned over the setsC and I . In this relation,

the Component c ∈ C is associated to the Interface i ∈ I , if the Component c has the

Interface i .

• The relation ComponentIsInStructure is de�ned over the sets C and S . In this

relation, the Component c ∈ C is associated to the Structure s ∈ S , if the Component

c is in the Structure s .

• The relationComponentIsInModule is de�ned over the setsC and M . In this relation,

the Component c ∈ C is associated to the Module m ∈ M , if the Component c is

contained in the Modulem.

• The relation ModuleHasInter f ace is de�ned over the sets M and I . In this relation,

the Module m ∈ M is associated to the Interface i ∈ I , if the Module m has the

Interface i .

• The relation ModuleIsInStructure is de�ned over the sets M and S . In this relation,

the Module m ∈ M is associated to the Structure s ∈ S , if the Module m is in the

Structure s .

• The relationModuleIsInModule is de�ned over the setM . In this relation, the Module

mmi ∈ M is associated to the Module mmj ∈ M , if the Module mmi is contained in

the Modulemmj .

Algorithm 24 iteratively calculates the change propagation in an instance of the abstract

metamodel. It starts with the seed modi�cations. Depending on the type of the seed

modi�cations, the corresponding phases of the algorithm are executed. This results

in selecting new model elements as changed. These elements are the new input for

Algorithm 24. The algorithm terminates as soon as no new elements are selected in the

previous iteration [Hei+18].

Algorithm 24 Algorithm of the Change Propagation Analysis in aPS Architecture

Model [Hei+18]

Require: Model of the mechanical and electrical/electronic elements based on the abstract

metamodel of structural elements, seed modi�cations

While there is a new element that is selected as changed
1: Calculate the change propagation from a modi�ed Component using Algorithm 25
2: Calculate the change propagation from a modi�ed Module using Algorithm 26
3: Calculate the change propagation from a modi�ed Interface using Algorithm 27

The rules of Algorithm 24 are described as stand-alone algorithms in the following.

Each algorithm is based on the aforementioned sets and their relations.

ChangingaComponent Algorithm 25 analyzes the change propagation from a modi�ed

component to interfaces, structures, and modules. The Component c ∈ C in an instance of

the abstract metamodel can have the Interface i ∈ I . A change to the Component c can

a�ect the Interface i . The Component c can also be contained in the Module m ∈ M or in

103

7. Change Propagation Analysis in Automated Production Systems

the Structure s ∈ S . Thus, changing the Component c may result in changes in the Module

m or in the Structure s . Algorithm 25 identi�es the Interfaces, Modules, and Structures

that are a�ected by a change to a component [Hei+18].

Algorithm 25 Change propagation from Component to Module, Interface, and Struc-

ture [Hei+18]

Input: N ⊆ C . Seed modi�cations

Output: R ⊆ (M ∪ I ∪ S) . Result

R = {m ∈ M |(∃n ∈ N) [(n,m) ∈ ComponentIsInModule]}
R = R ∪ {i ∈ I |(∃n ∈ N) [(n, i) ∈ ComponentHasInter f ace]}
R = R ∪ {s ∈ S |(∃n ∈ N) [(n, s) ∈ ComponentIsInStructure]}

Changing a Module Algorithm 26 analyzes the change propagation from an a�ected

module to the corresponding components, interfaces, structures, and modules [Hei+18].

The Modulemmi ∈ M in an instance of the abstract metamodel can be contained in another

Module mmj ∈ M or in Structure s ∈ S . If the Module mmi is changed, the change can

propagate to the Module mmj or to the Structure s . Further, the Module mmi can also

contain the Component c ∈ C or the Module mmk ∈ M . In this case, changing the Module

mmi can result in changes to the Component c or the Modulemmk . The modulemmi can

also have the Interface iil ∈ I . In the case of changing Modulemmi , its interface iil can also

be changed.

As a change can propagate to all modules contained in the Modulemmi or contain the

Modulemmi , the algorithm �rst identi�es all modules iteratively. N is the set of modules,

which have to be analyzed in the current iteration of the while loop. In each iteration,

the algorithm assigns the modules to set Z . Z contain modules, which contain or are

contained in one of the modules of N . To avoid considering a module multiple times, the

algorithm assigns only a subset of Z (i.e., ((R ∪Z) \ R)) to N . As set R in the loop contains

all potentially a�ected modules up to the current iteration and sets are duplicate-free,

((R ∪ Z) \ R) contains only modules not yet considered. In the last iteration of the loop, R
can contain all modules in the model in the worst case. In other words, R can be equal to

M in this case.

Algorithm 26 Change propagation from a Module to Component, Module, Interface, and

Structure [Hei+18]

Input: N ⊆ M . Seed modi�cations

Output: R ⊆ (M ∪ C ∪ I ∪ S) . Result

R = N
while N , ∅ do

Z = {m ∈ M |(∃n ∈ N) [(n,m) ∈ ModuleIsInModule ∨ (m,n) ∈ ModuleIsInModule]}
N = (R ∪ Z) \ R
R = R ∪ Z

end while
R = R ∪ {c ∈ C |(∃n ∈ N) [(c,n) ∈ ComponentIsInModule]}
R = R ∪ {i ∈ I |(∃n ∈ N) [(n, i) ∈ ModuleHasInter f ace]}
R = R ∪ {s ∈ S |(∃n ∈ N) [(n, s) ∈ ModuleIsInStructure]}

104

7.2. Change Propagation Analysis in Mechanical and Electrical/Electronic Elements

Changing an Interface Algorithm 27 analyzes the change propagation from a modi�ed

interface to components and interfaces. The Modulem ∈ M in an instance of the abstract

metamodel can have the Interface ii j ∈ I . Further, the Component c ∈ C in the same

instance can also have the Interface iik ∈ I . Thus, changes in the Interfaces ii j and iik may

result in changes in the corresponding Modulem and Component c [Hei+18].

Algorithm 27 Change propagation from Interface to Component and Module [Hei+18]

Input: N ⊆ I . Seed modi�cations

Output: R ⊆ (C ∪ M) . Result

R = {c ∈ C |(∃n ∈ N) [(c,n) ∈ ComponentHasInter f ace]}
R = R ∪ {m ∈ M |(∃n ∈ N) [(m,n) ∈ ModuleHasInter f ace]}

Changing a Structure A structure can be used to group the components and modules

logically. It aims at increasing the abstraction level. An example of a structure in the xPPU

is the crane, which is composed of an arm component or a micro switch module [Hei+18].

However, the set of seed modi�cations should be as small as possible to avoid too many

false positives. Choosing a coarse-grained element such as a structure leads to selecting

all contained elements as changed, as described in Algorithm 28. This can result in a very

large overestimation of the a�ected model elements (i.e., too many false positives in the

task list) and even in changing the whole plant. Although Algorithm 28 provides change

propagation rules for an a�ected structure, selecting coarse-grained elements such as

structures should be avoided, if possible. Algorithm 28 selects all contained Components

and Modules. The Structure s ∈ S in an instance of the abstract metamodel can contain

the Component c ∈ C or the Module m ∈ M . Thus, a change in the Structure s can result

in changing the Component c or the Modulem, which it contains [Hei+18].

Algorithm 28 Change propagation from Structure to Component and Module

Input: N ⊆ S . Seed modi�cations

Output: R ⊆ (C ∪ M) . Result

R = {c ∈ C |(∃n ∈ N) [(c,n) ∈ ComponentIsInStructure]}
R = R ∪ {m ∈ M |(∃n ∈ N) [(m,n) ∈ ModuleIsInStructure]}

Algorithm of Change Propagation Analysis for the Specific Metamodel of aPS This algo-

rithm is also composed of a set of change propagation rules similar to the change prop-

agation algorithm for the abstract metamodel. These rules were de�ned for the speci�c

metamodel of the domain elements, as described in Section 2.7.2. The speci�c metamodel

of the domain is created to enable domain experts to create a more �ne-grained model

of the xPPU plant. In other words, this algorithm cannot be used to analyze the change

propagation in any aPS plant. Thus, in order to be able to model an arbitrary plant in

a �ne-grained way, the speci�c metamodel of the domain elements has to be extended

by the speci�c elements of the new plant. In general, if the plant is extended by new

elements, the speci�c metamodel of the domain has also to be extended to include the new

elements. Additionally, there is a need for new change propagation rules based on the

105

7. Change Propagation Analysis in Automated Production Systems

speci�c metamodel to enable a �ne-grained change propagation analysis. This can improve

the quality of the change propagation analysis regarding the number of generated false

positives. As the speci�c metamodel of domain elements is very large and heterogeneous,

only a subset of all possible rules were de�ned. If there is su�cient knowledge available

about the speci�c type of component, module, or interface, the change propagation rules

can be developed by extending the rules for the abstract metamodel. In general, new

change propagation rules for a new speci�c metamodel can be developed similarly, if

required. An example of a speci�c rule is the change propagation to an interface of a

speci�c component such as a ramp. In this case, the generic algorithms can be extended by

a speci�c change propagation rule to include this knowledge. Another example is changing

a sensor. If domain experts know that this change can only propagate to its physical and

signal interface, the generic change propagation rule can specialized so that the change

propagates only to these interfaces. In other words, the domain-speci�c knowledge about

a speci�c plant or type of components, modules, interfaces, and structures can improve

the results of the change propagation analysis. Thus, the speci�c rules highly depend

on the speci�c metamodel of the domain elements. As the developed speci�c rules are a

specialization of the generic rules, their descriptions are omitted in this thesis. The results

of the change propagation analysis based on both rules are compared in Section 11.3.

Example Some change scenarios were chosen to illustrate the change propagation rules

described previously. As the applications of the change propagation algorithms for the

abstract metamodel and the speci�c metamodel are very similar, only the application of

the change propagation algorithm for the abstract metamodel is discussed in the following.

As the Minimal Plant example is a small example, not all change propagation rules could

be covered. Thus, the following change scenario covers a subset of the aforementioned

change propagation rules.

So far work pieces are di�erentiated using their color. In the �rst change scenario metal

work pieces should be detected and sorted out. Thus, the optical sensor should be replaced

by an inductive one. As both sensors are modules, Algorithm 26 would be applied in the

�rst iteration of the change propagation analysis. As a module can contain other modules,

the analysis identi�es all modules that are contained in the a�ected module. Further, it

identi�es all modules that contain the a�ected module. In this example the optical sensor

does not contain or is not contained in another module. Therefore, the algorithm does not

identify other a�ected modules. As a module can have interfaces, Algorithm 26 selects the

corresponding interfaces of all a�ected modules. If the sensor has a physical interface for

the �xation, Algorithm 26 selects the interface. Additionally, the structures that contain

the a�ected modules are selected. Thus, Algorithm 26 selects the conveyor structure that

contains the optical sensor. As a module can contain components, the algorithm selects the

contained components in the a�ected module as changed. Following Algorithm 26, the op-

tical sensor component in the module optical sensor is a�ected by the change. In summary,

the �rst iteration identi�es a�ected components, interfaces, and structures. In the next it-

erations,the algorithm of change propagation analysis applies Algorithm 25, Algorithm 27,

and Algorithm 28 to the newly a�ected model elements. If any new model element is

106

7.2. Change Propagation Analysis in Mechanical and Electrical/Electronic Elements

identi�ed, all change propagation algorithms for modules, interfaces, components, and

structures are applied iteratively [Hei+18].

7.2.2. Change Propagation Analysis for Elements of Context Metamodel

A change to an element in the system’s structure or behavior does not only propagate to the

other elements in the system’s structure and/or behavior, but also to context elements. This

results in additional e�ort during the change implementation. This section proposes the

metamodels and algorithms to consider the context elements in the change implementation.

Thus, it proposes the instiantiation of the optional part of the methodology to mechanical

and electrical/electronic elements of aPS. The following metamodels and algorithms can

be extended, if new context elements are identi�ed.

7.2.2.1. Metamodel of Context Elements

This metamodel represents the context elements with respect to the hardware of aPS. In

addition to the context elements, this metamodel allows specifying the responsible person

roles for conducting a change. In the following, the context elements in the hardware of

aPS are described:

• Test Speci�cations: The main di�erence between components and modules is that

components can be bought by third-party vendors. Thus, they are responsible to test

the components. The quality of the components is ensured by the vendors. Therefore,

the damaged components are replaced. By contrast, modules are assembled by

plant manufacturers using individual components. Thus, plant manufacturers are

responsible for the quality of an assembled module. In general, the functionality of

the whole plant has to be tested after changing a module or component (referred to in

the following as the system test). Figure 7.7 illustrates the test speci�cation [Koc17;

Hei+18].

TestCaseSystemTestTestSpecification
[0..*]systemTests

[1..1]testSpecification

Figure 7.7.: Test speci�cations for mechanical, electrical/electronic elements [Koc17] based

on [Sta15]

• HMI speci�cations: Changing elements of a plant can lead to changes to the interface

between the plant and operators. This can be specialized as the behavior of the

plant (see Section 7.3.1.1) or for the sake of simplicity as HMI speci�cation [Koc17;

Hei+18].

• Calibration speci�cations: After changing the elements of the plant, these elements

and/or the plant have to be calibrated. If an element needs to be calibrated, calibration

speci�cations can be added to this element [Koc17; Hei+18].

107

7. Change Propagation Analysis in Automated Production Systems

• ECAD speci�cations: There can also be design descriptions for some elements of

the plant. After an element was modi�ed, its design descriptions have to be adapted.

This metaclass allows modeling the ECAD design descriptions for elements [Koc17;

Hei+18].

• Documentation speci�cations: There can also be documentation for a plant or its

elements. The following types of the documentation can be modeled: maintenance

documentation, operator instructions, and training documentation. Training docu-

mentation can be either internal or external to the company. Figure 7.8 illustrates

the documentation speci�cation [Koc17; Hei+18].

Training
Documentation
External

Documentation
File

[0..*]instructions

[1..1]documentationFile

Maintenance
Documentation

Operation
Instruction

Training
Documentation

Internal

Documentation

File[0..*]maintenance

[0..*]trainingExternal

[0..*]trainingInternal

Component
DocumentationFile

Interface
DocumentationFile

Structure
DocumentationFile

Module
DocumentationFile

Documentation
Specification
[1..1]documentSpecification

[0..*]structureDocumentation

[0..*]interfaceDocumentation

[0..*]componentDocumentation

[0..*]moduleDocumentation

Figure 7.8.: Documentation speci�cations for mechanical, electrical/electronic ele-

ments [Koc17] based on [Sta15]

• Stock speci�cations: There can also be documentation of the elements of a plant

that are kept in a warehouse. The information about the plant elements in the stock

can be relevant for the maintainability. However, this metaclass should not be used

to specify the entire stock [Koc17; Hei+18].

• Sta� speci�cations: The responsible sta� together with their roles for conducting a

change can also be documented. Figure 7.9 illustrates an excerpt from the metamodel

for specifying the sta�. The roles can be extended if required [Koc17; Hei+18].

7.2.2.2. Metamodel of Task Type

This metamodel consists of the speci�c task types in mechanical, electrical/electronic

elements of aPS. Examples of these task types are calibration, executing the system test,

buying components, or updating the software.

108

7.2. Change Propagation Analysis in Mechanical and Electrical/Electronic Elements

Engineer

Purchaser

Mechanic

Role

RoleList
[1..1]roleList

[0..*]roles

PersonPersonListStaffSpecification
[1..1]personList

[0..*]persons

[1..1]staffSpecification

[1..1]personList [0..*]persons

[0..*]roles

[1..1]staffSpecification [1..1]roleList

Figure 7.9.: Sta� speci�cations for mechanical, electrical/electronic elements [Koc17] based

on [Sta15]

7.2.2.3. Algorithm of Context Task List

If there are context elements for the a�ected domain elements, they have to be considered.

This algorithm allows considering the context elements by a change to a domain element.

As described previously, if elements of a plant are changed, there is a need for sys-

tem tests. This algorithm considers the system tests after changing the elements of a

plant [Koc17; Hei+18].

There could be design descriptions for components, modules, interfaces, or structures

of a plant. If these elements are a�ected by a change, it could be important to consider

their design descriptions. Thus, this algorithm extends the task list by the a�ected design

descriptions [Koc17; Hei+18].

The components, modules, interfaces, and structures of a plant can have documentations.

Changing these elements may lead to changes in their documentations. This algorithm

adds the existing documentations of the a�ected elements to the task list [Koc17; Hei+18].

There could be back-up elements of the components, modules, interfaces, or structures of

a plant in the stock. The documentation of the stock elements can be a�ected by changing

or replacing the elements in a plant. If there are documentations of an a�ected element in

the stock, this algorithm selects these documentations as a�ected [Koc17; Hei+18].

The interface between the machine and humans can be modeled using the HMI speci�ca-

tions. A change to components, modules, interfaces, or structures of a plant can propagate

to the interfaces between the machine and humans. In this case, this algorithm adds the

HMI speci�cations to the task list [Koc17; Hei+18].

Changing elements of a plant can result in the calibration of these elements and/or

the whole plant. Calibrations for the elements of a plant can be modeled, if required.

This algorithm considers the calibration speci�cations by changes to a plant and/or its

elements [Koc17; Hei+18].

Example

An example of context elements in the Minimal Plant example is the calibration information.

If model elements are annotated with this information, the task list contains tasks regarding

new calibration of the corresponding plant.

109

7. Change Propagation Analysis in Automated Production Systems

7.2.3. Algorithm of Di�erence Calculation

This algorithm mainly calculates the di�erences in the structure of the system models by

means of model di�erence calculation between BaseVersion and TargetVersion. It identi�es

the changes to domain elements such as deleted elements from the system model or added

elements to the system model by re�ning the results of existing generic algorithms for

di�erence calculation. The algorithm for the derivation of task lists of the methodology

gathers and manages the results of this algorithm.

Example

In the aforementioned change scenario in Section 7.2.1.3, the optical sensor was replaced

by an inductive sensor. There are di�erent ways to model the change request in this

scenario. The �rst way is to select the optical sensor as changed. This is already described

in Section 7.2.1.3. The second way is to model the system after the change. In other words,

the system needs to be modeled with an inductive sensor instead of the optical sensor.

The approach can identify the changes between both models. Examples of changes in the

resulting task list could be removing the optical sensor and its �xation and adding the new

inductive sensor and its �xation.

7.3. Change Propagation Analysis in Control So�ware

As discussed previously, a PLC-based aPS plant consists of mechanical and electrical/elec-

tronic elements, as well as control software [Vog+17]. The control software runs on a

PLC. A common standard for the control software is the IEC 61131-3 standard [Vog+17].

This section describes KAMP4IEC as an instantiation of the methodology to the control

software following the IEC 61131-3 standard. This allows an automatic change propaga-

tion in the control software. Combining KAMP4aPS and KAMP4IEC enables the change

propagation from the hardware to the software of aPS.

7.3.1. Change Propagation Analysis for Elements of Domain Metamodel

This section describes the metamodel of the domain elements in a control software, which

are programmed according to the standard IEC 61131-1. Further, it presents the instantia-

tion of the mandatory part of the methodology to develop a basis variant of KAMP4IEC.

7.3.1.1. Metamodel of Domain

To automatically analyze the change propagation in a control software, this domain

as a sub-domain of aPS needs to be metamodeled. The following sections present the

metamodel of the domain elements with respect to the three aspects: structure, data �ow,

and behavior.

Structure As described in Section 3.7, there are already metamodels of IEC 61131-1.

However, most metamodels are very detailed. Consequently, the modeling e�ort can be

110

7.3. Change Propagation Analysis in Control Software

too high. Further, some metamodels cover both the structure and the dynamic behavior

of the code. KAMP4IEC presents an approach to static change propagation analysis.

Thus, it is su�cient, if the underlying metamodel presents only the structure of the

control software. To reduce the complexity and modeling overhead of a control software,

this section presents a reduced metamodel with focus on the relevant elements to allow

the change propagation analysis based on the system’s structure. In other words, it

presents a metamodel for the domain elements of a control software following the IEC

61131-1 standard at a higher abstraction level. This metamodel can be divided into two

further metamodels: i) The repository metamodel, which is composed of the software

elements that have to be de�ned only once. After they were de�ned, other elements of

an IEC software can reference these elements. ii) The system metamodel describes the

composition of an IEC software based on the elements de�ned in the repository metamodel.

In other words, a system metamodel references the metaclasses de�ned in the repository

metamodel. Both metamodels are described in more detail in the following sections [Rät17;

Bus+18c]:

Repository Metamodel This metamodel de�nes all elements in a PLC software follow-

ing the IEC 61131-1 standard that can be referenced in the System metamodel. These

elements could be for example GlobalVariables, FunctionBlocks and their Methods and

Properties, Interfaces and their AbstractMethods and AbstractProperties, as well

as Functions. The Repository metaclass contains the metaclasses GlobalVatiables,

Functions, FuctionBlocks, and Interfaces. Figure 7.10 illustrates an excerpt from the

Repository metamodel. In the following, the metamodels and their relationships are

described in more detail [Rät17; Bus+18c].

Function
Block

[0..*]contains
Interface

Function Interface

IEC
Repository

Global
Variable

[0..*]contains
Global
Variable

[0..*]contains
Function
Block

[0..*]contains
Function

Figure 7.10.: Metamodel of IECRepository - An excerpt

An Interface can have AbstractMethods and AbstractProperties. It can also extend

further Interfaces. Figure 7.11 illustrates an excerpt from the Repository metamodel rep-

resenting the relationship between the Interface metaclass and other metaclasses [Rät17;

Bus+18c].

FunctionBlocks can read or write GlobalVariables. Further, they can have Methods

and Properties. FunctionBlocks can implement Interfaces or use objects of them (i.e.,

instantiating Interfaces). Similar to Interfaces, FunctionBlocks may extend other

FunctionBlocks or use their instances (i.e., instantiating FunctionBlocks). Additionally,

FunctionBlocks can call Functions [Rät17; Bus+18c].

111

7. Change Propagation Analysis in Automated Production Systems

[0..1]extends
Interface

Abstract
Property Interface Abstract

Method
[0..*]hasProperty [0..*]hasMethod

Figure 7.11.: Metamodel of IECRepository involving Interface - An excerpt

Methods can implement AbstractMethods and instantiate FunctionBlocks. Methods can

read or write GlobalVariables and Properties of FunctionBlocks. They can also call

Methods and Functions [Rät17; Bus+18c].

Functions can call other Functions. FunctionBlocks can be instantiated within a

Function [Rät17; Bus+18c].

Properties can implement AbstractProperties. The type of a Property can be a

FunctionBlock or an Interface [Rät17; Bus+18c].

Figure 7.12 illustrates a simpli�ed excerpt from the Repository metamodel, which

shows the relationship between a FunctionBlock metaclass and other metaclasses [Rät17;

Bus+18c].

[0..*]extends
FunctionBlock

Global
Variable

FunctionBlock

InterfaceProperty

Is
Property

[0..*]instantiates
FunctionBlock

[0..1]extends
Interface

Function MethodAbstract
Method

[0..*]writesProperty
[0..*]readsProperty

[0..*]has
Property

[0..*]implementsInterface
[0..*]instantiatesInterface

[0..*]readsProperty
[0..*]writesProperty

[0..*]instantiates
FunctionBlock

[0..*]hasMethod

[0..*]calls
Method

[0..*]calls
Method

[0..*]instantiates
FunctionBlock

[0..*]calls
Function

[0..*]writesGlobalVariable
[0..*]readsGlobalVariable

[0..*]writesGlobalVariable
[0..*]readsGlobalVariable
[0..*]calls
Function

[0..*]callsFunction

[0..*]instantiates
Interface

[0..*]hasMthod

Is
Method

Abstract
Property [0..*]

implements

[0..*]has
Property

Figure 7.12.: Metamodel of IECRepository involving FunctionBlock - An excerpt [Rät17]

System Metamodell The system metamodel consists of a Configuration, which is

composed of a Program. A Program can de�ne, read, or write GlobalVariables. Further, it

can instantiate Interfaces and FunctionBlocks. A Program can call Methods and Functions.

112

7.3. Change Propagation Analysis in Control Software

It can also read or write Properties. In other words, the Program metaclass references

the metaclasses of the Repository metamodel. In this way, the control software can be

modeled using the System metamodel [Rät17; Bus+18c].

Data Flow Section 7.2.1.1 proposed the correspondence metamodel, which allows the

change propagation from mechanical and electrical/electronic elements to the PLC soft-

ware. This change a�ects the GlobalVariables, which serve as seed modi�cations for

further change propagation in the PLC software [Koc17; Hei+18; Rät17; Rät18; Bus+18c].

After a change propagated to GlobalVariables, FunctionBlocks or Methods, reading

or writing these GlobalVariables can also be a�ected. The type of GlobalVariables

and Properties can be FunctionBlocks or Interfaces. Further, the return parameter

of Functions and Methods can be FunctionBlocks or Interfaces [Rät17]. The metaclass

DerivedType in Figure 7.13 illustrates the aforementioned data dependencies in a PLC

software.

[0..1]hasDerived
Type

Derived
TypeInterface Function

Block

Property Global
Variable FunktionMethod

[0..1]hasDerived
ReturnType

[0..1]hasDerived
Type

[0..1]hasDerived
ReturnType

Figure 7.13.: Metamodel of IECRepository involving DerivedType - An excerpt [Rät17]

Behavior As described in Section 7.2.1.1, the behavior of a plant can be considered as

the interaction between operators and the plant. In this case, a change to the plant

can a�ect the interaction to its operators. For this purpose, this interaction has to be

metamodeled. At a high abstraction level, the interaction between operators and the plant

can be metamodeled as an ordered sequence of actor steps and system steps. Similar to

BP, the actor steps can only be performed by operators, while the system steps can only

performed by the plant. A system step is usually controlled by the PLC software. Each

system step corresponds to a mode, in which the plant operates automatically [Vog+14a].

Further, the metamodel supports loops or conditions in the behavior of the plant [Rät18].

Figure 7.14 shows an excerpt from the behavior metamodel of the plant.

Example This section shows the instantiations of the previously described metamodels

regarding the structure, the data �ow, and the behavior for the Minimal Plant example

introduced in Section 4.1. This section considers only the software of a plant.

Structure: The repository and the system metamodels described in Section 7.3.1.1

can be used to model the structure of the software of the Minimal Plant example. This

includes a repository model, which contains IEC model elements such as interfaces or

function blocks to control the conveyor. Further, it has global variables, for example to

read outputs of the optical sensor. The system model contains a con�guration, which

113

7. Change Propagation Analysis in Automated Production Systems

HMIElement

Step

SystemStep ActorStep

Mode

[0..*]hasMode

[0..1]hasSuccessor

Method

FuntionBlock

[0..*]callsMethods

[0..*]callsFunctionBlocks

HMIMetaModel (Excerpt)IEC Repository
MetaModel
(Excerpt)

AbstractMethod [0..*]callsAbstractMethods

Figure 7.14.: Metamodel of the HMI involving ActorStep and SystemStep - An Ex-

cerpt [Rät18]

includes a program. A program describes how an IEC program is composed of the model

elements de�ned in the repository model (e.g., the global variables, which values are read

or written by the program).

Data �ow: In the IEC program of the Minimal Plant example, the global variables are

examples of the data �ow. The data �ow includes also interfaces and function blocks,

as they can be used as a speci�c type by other model elements such as properties and

functions.

Behavior: As mentioned previously, the behavior of a plant could be considered as

the interaction of the plant and its operators. For this purpose, the operators of the plant

can press di�erent buttons on the operation panel. This results in executing other modes

of the plant. An example of the operator interaction with the plant is pressing the start

button. Pressing the start button causes the plant to change to the initialization and then

in the automatic mode [Vog+14a].

7.3.1.2. Domain-specific Metamodel of Modification

This section describes the application of the domain-independent metamodel of modi�ca-

tion introduced in Chapter 5 to the aforementioned metamodel of the PLC software. This

allows selecting the changed elements in instances of the aforementioned metamodels.

• SeedModification: The initial change can be divided into the changes in the

IEC software model and in the HMI model. The initial changes in the model of

the IEC software can be i) GlobalVariable, ii) Interface, iii) AbstractMethod, iv)

AbstractProperty, v) FunctionBlock, vi) Method, vii) Property, viii) Function, or

ix) Program. Figure 7.15 illustrates the relationship between the domain-independent

SeedModification and the speci�c SeedModifications in the PLC software.

The initial change in an HMI model can be changing an actor step or a system

step. Figure 7.16 illustrates the relationship between the domain-independent

SeedModification metaclass and the speci�c SeedModifications regarding the HMI.

• Modification: Similar to the SeedModification, the potentially a�ected elements

can be grouped into two categories - speci�c Modifications in the IEC software and

114

7.3. Change Propagation Analysis in Control Software

SeedModification - Methodology (Excerpt)

SeedModification - Automated Production Systems - Software (Excerpt)

IECSeedModification

SeedModification

ModifyGlobalVariable ModifyFunctionBlock ModifyAbstractPropertyModifyAbstractMethod

ModifyFunction ModifyProgram ModifyInterfaceModifyPropertyModifyMethod

[0..*]method
Modifications

[0..*]property
Modifications

[0..*]function
Modifications

[0..*]program
Modifications

[0..*]interface
Modifications

[0..*]abstractPropertyModifications[0..*]functionBlockModifications[0..*]globalVariableModifications[0..*]abstractMethodModifications

Figure 7.15.: Relationship between the domain-independent SeedModification and the

speci�c SeedModifications in an IEC software [Rät17]

SeedModification - Methodology (Excerpt)

SeedModification - Human-Machine Interface (HMI) (Excerpt)

HMISeedModification

SeedModification

ModifyHMISystemStepModifyHMIActorStep

[0..*]actorStepModification [0..*]systemStepModification

Figure 7.16.: Relationship between the domain-independent SeedModification and the

speci�c SeedModifications in an HMI [Rät18]

speci�c Modifications regarding the HMI. In the IEC software i) GlobalVariable, ii)

Interface, iii) AbstractMethod, iv) AbstractProperty, v) FunctionBlock, vi) Method,

vii) Property, viii) Function, ix) Program, or x) Configuration can be a�ected by a

change. Figure 7.17 illustrates the relationship between the domain-independent

Modification metaclass and the speci�c Modifications in a PLC software.

A change can also a�ect the actor steps and system steps of the HMI. Thus, Figure 7.18

shows the relationship between the domain-independent Modification metaclass

and the speci�c Modifications regarding the HMI.

• ChangePropagationStep: One of the main causes of the change propagation in

an IEC software is the data �ow. Figure 7.19 illustrates the relationship be-

115

7. Change Propagation Analysis in Automated Production Systems

Modification - Methodology (Excerpt)

Modification - Automated Production Systems - Software (Excerpt)

ModifyIECComponent

ModificationT
S

[1..1]affectedElement

[0..*]causingElements

T

ModifyConfiguration ModifyGlobalVariable ModifyFunctionBlock ModifyPropertyModifyMethod

ModifyFunction ModifyProgram ModifyInterfaceModifyAbstractProperty ModifyAbstracMethod

<<bind T>> Method <<bind T>> Configuration <<bind T>> GlobalVariable <<bind T>> FunctionBlock <<bind T>> Property

<<bind T>> Function <<bind T>> AbstractProperty <<bind T>> AbstractMethod <<bind T>> Program <<bind T>> Interface

<<bind S,T>> T,EObject

Figure 7.17.: Relationship between the domain-independent Modification and the

Modification of elements in an IEC software [Rät17]

Modification - Methodology (Excerpt)

ModifyHMI

ModificationT
S

[1..1]affectedElement

[0..*]causingElements

T

ModifyHMIActorStep ModifyHMISystemStep

Modification - Human-Machine Interface (HMI) (Excerpt)

<<bind T>> SystemStep<<bind T>> ActorStep

<<bind S,T>> T,EObject

Figure 7.18.: Relationship between the domain-independent Modification and the speci�c

Modifications in an HMI [Rät18]

tween the domain-independent ChangePropagationStep metaclass and the speci�c

ChangePropagationSteps in a PLC software.

Regardless of the mechanical, electrical/electronic elements or the control software,

a change to a plant can a�ect the HMI. Figure 7.20 illustrates the relationship be-

tween the domain-independent ChangePropagationStep metaclass and the speci�c

ChangePropagationSteps regarding the HMI.

• ModificationRepository consists of a SeedModification metaclass and

ChangePropagationSteps, as described in Chapter 5. Figure 7.21 illustrates

the relationship between the domain-independent ModificationRepository

metaclass and the speci�c ModificationRepository in an IEC program.

116

7.3. Change Propagation Analysis in Control Software

ChangePropagationStep - Methodology (Excerpt)

ChangePropagationStep - Automated Production Systems - Software (Excerpt)

ChangePropagationStep

ModifyGlobalVariable ModifyFunctionBlock ModifyAbstractPropertyModifyAbstractMethod

ModifyFunction ModifyProgram ModifyInterfaceModifyPropertyModifyMethod

[0..*]method
Modifications

[0..*]property
Modifications

[0..*]function
Modifications

[0..*]program
Modifications

[0..*]interface
Modifications

[0..*]abstractPropertyModifications[0..*]functionBlockModifications[0..*]globalVariableModifications[0..*]abstractMethodModifications

ChangePropagationDueToDataDependency

Figure 7.19.: Relationship between the domain-independent ChangePropagationStep and

ChangePropagationSteps in an IEC software [Rät17]

ChangePropagationStep - Methodology (Excerpt)

ChangePropagationStep

ChangePropagationToHMIDueToChangesInPlant

ChangePropagationStep - Human-Machine Interface (HMI) (Excerpt)

ModifyHMIActorStep ModifyHMISystemStep

[0..*]actorStepModifications [0..*]systemStepModifications

Figure 7.20.: Relationship between the domain-independent ChangePropagationStep and

the speci�c ChangePropagationSteps in an HMI [Rät18]

7.3.1.3. Algorithm of Change Propagation Analysis

To analyze the change propagation, two algorithms were developed each for the model

of the PLC software and the HMI. The change propagation algorithms are composed of

change propagation rules. The change propagation rules are based on the aforementioned

metamodels in Section 7.3.1.1 for a variant of the IEC 61131-1 standard: i) the Repository

metamodel, ii) the System metamodel, and iii) the HMI metamodel. To de�ne the change

propagation rules the instances of each metaclass of these metamodels have to be mapped

to a set. Further, all elements of the instances of these metamodels are mapped to set

M = {mm1
, . . . ,mmn }. The relation Re f erences is de�ned over the set M . In this relation,

an instance of a metaclass in the Repository, the System, or the HMI metamodel mmi ∈ M
is associated to another instancemmj ∈ M , wheremi ,mj ∈ N and 0 < mi ,mj < mn, if the

instance mmi ∈ M references the instance mmj ∈ M . In the following, the instances of

117

7. Change Propagation Analysis in Automated Production Systems

ModificationRepository - Automated Production
Systems - Software (Excerpt)

Abstract
Modification
Repository

T
S

[1..1]seedModifications

[0..*]
changePropagationSteps

Modification
Repository

IEC
Modification
Repository

<<bind S,T>>
T,ChangePropagationStep

<<bind T>>
IECSeedModication

ModificationRepository - Methodology (Excerpt)

T

Figure 7.21.: Relationship between the domain-independent ModificationRepository and

ModificationRepository in an IEC software [Rät17]

each metaclass of the Repository, the System, and the HMI metamodel are mapped to a

separate set. In other words, the sets contain the concrete instances of each metaclass.

The following sets are the instances of the metaclasses, which are relevant for the change

propagation rules:

• V = {vv1, . . . ,vvn } is the set of all GlobalVariables in the instances of the Repository

metamodel.

• F = { f f1, . . . , f fn } is the set of all Functions in the instances of the Repository

metamodel.

• B = {bb1, . . . ,bbn } is the set of all FunctionBlocks in the instances of the Repository

metamodel.

• T = {tt1, . . . , ttn } is the set of all Methods in the instances of the Repository meta-

model.

• P = {pp1, . . . ,ppn } is the set of all Properties in the instances of the Repository

metamodel.

• A = {aa1, . . . ,aan } is the set of all AbstractMethods in the instances of the Repository

metamodel.

• S = {ss1, . . . , ssn } is the set of all AbstractProperties in the instances of the Reposi-

tory metamodel.

• E = {ee1, . . . , een } is the set of all Interfaces in the instances of the Repository

metamodel.

118

7.3. Change Propagation Analysis in Control Software

• U = {uu1, . . . ,uun } is the set of all Programs in the instances of the System metamodel.

• C = {cc1, . . . , ccn } is the set of all Configurations in the instances of the System

metamodel.

• O = {oo1, . . . ,oon } is the set of all ActorSteps in the instances of the HMI metamodel.

• D = {dd1, . . . ,ddn } is the set of all SystemSteps in the instances of the HMI meta-

model.

• Q = {qq1, . . . ,qqn } is the set of all Modes in the instances of the HMI metamodel.

• W = {ww1
, . . . ,wwn } is the set of all HMIElements in the instances of the HMI meta-

model. Thus, it contains for example all actor steps, system steps, loops, or branches.

To better describe the relations over the aforementioned sets and the algorithm of

change propagation analysis, super sets of the aforementioned sets are de�ned as follows:

G = U ∪ B ∪T is the union set representing the instances of Programs, FunctionBlocks,

and Methods. H = U ∪ B ∪T ∪C is the union set representing the instances of Programs,

FunctionBlocks, Methods, and Configurations. I = U ∪B∪T ∪F is the union set represent-

ing the instances of Programs, FunctionBlocks, Methods, and Functions. J = U ∪B∪T ∪P
is the union set representing the instances of Programs, FunctionBlocks, Methods, and

Properties. K = U ∪ B ∪ T ∪ F ∪ A ∪ P ∪ S ∪ V is the union set representing the in-

stances of Programs, FunctionBlocks, Methods, Functions, AbstractMethods, Properties,

AbstractProperties, and GlobalVariables. L = U ∪ B ∪T ∪ F ∪A∪ P ∪ S ∪V ∪ E is the

union set representing the instances of Programs, FunctionBlocks, Methods, Functions,

AbstractMethods, Properties, AbstractProperties, GlobalVariables, and Interfaces.

The relationship between metaclasses of di�erent metamodels can be expressed as

binary relations over these sets. The following relations re�ne the aforementioned

Re f erences relation:

Inter f aceExtendsInter f ace ⊆ E × E, FunctionBlockInstantiatesInter f ace ⊆ B × E,

ProдramInstantiatesInter f ace ⊆ U × E, ProдramReadsAbstractProperty ⊆ U × S ,

MethodCallsFunction ⊆ T × F , FunctionBlockImplementsInter f ace ⊆ B × E,

MethodInstantiatesInter f ace ⊆ T × E, GlobalVariableHasInter f aceAsType ⊆ V × E,

CallsMethod ⊆ Q × T , FunctionHasInter f aceAsReturnType ⊆ F × E,

FunctionCallsFunction ⊆ F × F , FunctionHasFunctionBlockAsReturnType ⊆ F × B,

ProдramCallsFunction ⊆ U × F , MethodHasInter f aceAsReturnType ⊆ T × E,

MethodHasFunctionBlockAsReturnType ⊆ T × B, HasMode ⊆ D × Q ,

Inter f aceHasMethod ⊆ E × T , CallFunctionBlockConstructor ⊆ F × B,

MethodInstantiatesFunctionBlock ⊆ T × B, ProдramCallsMethod ⊆ U × T ,

AbstractMethodHasInter f aceAsReturnType ⊆ A × E, CallsFunctionBlock ⊆ Q × B,

FunctionBlockCallsMethod ⊆ B × T , MethodReadsGlobalVariable ⊆ T × V ,

MethodReadsProperty ⊆ T × P , PropertyHasInter f aceAsType ⊆ P × E,

CallsAbstractMethod ⊆ Q × A, PropertyHasFunctionBlockAsType ⊆ P × B,

AbstractPropertyHasInter f aceAsType ⊆ S × E, MethodWritesProperty ⊆ T × P ,

AbstractPropertyHasFunctionBlockAsType ⊆ S × B, MethodCallsMethod ⊆ T × T ,

ProдramInstantiatesFunctionBlock ⊆ U × B, MethodReadsAbstractProperty ⊆ T × S ,

119

7. Change Propagation Analysis in Automated Production Systems

FunctionBlockExtendsFunctionBlock ⊆ B × B, FunctionBlockCallsFunction ⊆ B × F ,

MethodWritesGlobalVariable ⊆ T × V , ProдramReadsGlobalVariable ⊆ U × V ,

ProдramWritesGlobalVariable ⊆ U × V , ProдramDeclaresGlobalVariable ⊆ U × V ,

Conf iдurationDeclaresGlobalVariable ⊆ C ×V , Inter f aceHasAbstractMethod ⊆ E ×A,

ProдramCallsAbstractMethod ⊆ U × A, FunctionBlockCallsAbstractMethod ⊆ B × A,

MethodImplementsAbstractMethod ⊆ T × A, MethodCallsAbstractMethod ⊆ T × A,

Inter f aceHasAbstractProperty ⊆ E × S , Conf iдurationInstantiatesProдram ⊆ C × U ,

GlobalVariableHasFunctionBlockAsType ⊆ V × B, ProдramWritesProperty ⊆ U × P ,

ProдramWritesAbstractProperty ⊆ U × S , FunctionBlockReadsProperty ⊆ B × P ,

FunctionBlockWritesProperty ⊆ B × P , FunctionBlockReadsAbstractProperty ⊆ B × S ,

FunctionBlockWritesAbstractProperty ⊆ B×S , MethodWritesAbstractProperty ⊆ T ×S ,

PropertyImplementsAbstractProperty ⊆ P × S , ProдramReadsProperty ⊆ U × P ,

FunctionBlockInstantiatesFunctionBlock ⊆ B × B, and HasSuccessor ⊆ W × W .

The aforementioned relations are sub-relations of the Re f erences relation. A more

detailed description of these relations is given in Appendix A.1.

Based on the aforementioned sets and the binary relations, Algorithm 29 analyzes

the change propagation in a PLC software. Algorithm 29 identi�es set X for each seed

modi�cation n ∈ N . X is composed of all model elements of the instances of the Repository

and System metamodel, which are a�ected by a change to one of the seed modi�cations

n ∈ N . The elements n ∈ N and x ∈ X are in one of the aforementioned sub-relations of

the relation Re f erences . The predicate of this set de�nes for which types of n and x , if

n Re f erences x or x Re f erences n, the change propagates from n to x . Algorithm 29 adds

the model elements x to the set of the results R. In other words, R is the set of potentially

changed model elements.

A change to the instances of the metaclasses FunctionBlock or Interface most probably

a�ects several elements in a PLC software. If FunctionBlocks or Interfaces are a�ected

by a change, Algorithm 29 additionally adds these model elements to the set of the seed

modi�cations (i.e., N). If the seed modi�cation is an instance of the other metaclasses in

the PLC software, Algorithm 29 aborts the change propagation after one iteration. This

heuristic aims at avoiding generating too many false positives by the algorithm. In this

way, Algorithm 29 calculates the change propagation until the set of seed modi�cations is

empty.

After the change propagation in the structure of a PLC software was analyzed, the

change propagation to the HMI has to be considered. For this reason, the results of the

previous steps have to be analyzed. If model elements are FunctionBlocks, Methods, or

AbstractMethods, the change can propagate to a speci�c mode of the plant. Changing the

mode can a�ect the corresponding system steps. Further, a change can propagate from an

a�ected system step to the successor actor steps. An actor step can also have further actor

steps as successor. Changing an actor step can lead to further changes in the successor

actor steps.

Similar to the model of BP design, other model elements such as branches and loops

can exist in the model of the HMI. Branches and loops can also be nested in each other.

Algorithm 29 presents only the basis variant of the change propagation rules without such

elements to illustrate the idea of the rules.

120

7.3. Change Propagation Analysis in Control Software

Algorithm 29 Change Propagation in IEC Architecture Model [Bus+18c]

Input: N ⊆ M . Seed modi�cations

Output: R ⊆ M . Result

R = N
while N , ∅ do

X = {m ∈ M |(∃n ∈ N) [(m,n) ∈ Re f erences ∧ ((n ∈ V ∧m ∈ H) ∨ (n ∈ F ∧m ∈ I) ∨ (n ∈
B ∧m ∈ K) ∨ (n ∈ E ∧m ∈ L) ∨ ((n ∈ A ∨ n ∈ T ∨ n ∈ P) ∧m ∈ G) ∨ (n ∈ S ∧m ∈ J))]}

N = (R ∪ {x ∈ X |x ∈ B ∨ x ∈ E}) \ R
R = R ∪ X

end while
Y = {q ∈ Q |(∃n ∈ (R ∩ (B ∪A ∪T))) [(q,n) ∈ Re f erences]}
R = R ∪ {d ∈ D |(∃y ∈ Y) [(d,y) ∈ HasMode]}
N = R
R = R ∪ {o ∈ O |(∃n ∈ (N ∩ (O ∪ D))) [(n,o) ∈ HasSuccessor]}

Example

Consider that a global variable that represents the output of the optical sensor in the

Minimal Plant example is changed due to replacing the optical sensor with an inductive

one, as described in Section 7.2.1.3. As the application of Algorithm 29 involves the

application of several similar change propagation rules, the application of only a subset

of rules to the changed global variable is discussed in the following. The change to the

global variable can propagate to the corresponding method regarding transporting the

work pieces to the ramp by the conveyor, as this method reads the output of the sensor.

Further, KAMP4IEC selects the con�guration that contains the a�ected model elements

such as the global variable and the method as changed.

7.3.2. Change Propagation Analysis for Elements of Context Metamodel

Similar to IS, BP, and the hardware of aPS, context elements for the PLC software can

cause a higher e�ort during the implementation of a change request. Considering context

elements such as source code �les or test cases helps to estimate the change e�ort more

precisely. Such information can be provided by domain experts. The following sections

discuss the metamodels and algorithms for considering the e�ort caused by changing

context elements.

7.3.2.1. Metamodel of Context Elements

This metamodel enables domain experts to model the context elements. Examples of

context elements in a PLC software are discussed in the following. However, they are

not limited to these examples. If other context elements have to be considered during the

change propagation analysis, this metamodel can be extended to these elements.

• Test speci�cations: Aiello et al. propose acceptance tests for validating user stories

based on best practices in the Test-Driven Development (TDD) [Aie+07]. There are

also test procedures during the design and implementation phase of a PLC software,

121

7. Change Propagation Analysis in Automated Production Systems

as proposed in [JT13; Jam15a]. This procedure involves POU-oriented table tests and

unit tests to validate the implementation of a PLC software. Table tests are a manual

procedure to check the expected values. By comparison, unit tests can cover more

advanced testing scenarios. Thus, one of the context elements in an IEC software is

the test speci�cation [Rät17; Bus+18c].

This metamodel enables domain experts to model the test cases in a PLC software

as acceptance tests and unit tests. Figure 7.22 illustrate this metamodel. Table tests

can be considered as a special form of unit tests. Domain experts can annotate

unit test cases for the IEC elements such as methods, functions, or function blocks.

The acceptance tests should be annotated for the coarse-grained IEC elements.

Examples of such elements are programs, con�gurations, or function blocks. Thus,

this metamodel references the relevant metaclasses of the Repository and System

metamodel [Rät17; Bus+18c].

TestCase
Acceptance

Test

TestSpecification

[0..*]unitTests

[1..1]testSpecification

UniTest

[0..*]acceptanceTests

Figure 7.22.: Test speci�cations for an IEC software [Rät17] based on [Sta15]

• Development artifact speci�cations: Examples of development artifacts are source

code �les or metadata �les, as shown in Figure 7.24. The speci�c metaclasses of

the development artifacts reference the corresponding relevant metaclasses of the

Repository and System metamodel [Rät17; Bus+18c].

IECFile
Source
File

DevelopmentArtifact
Specification

[0..*]metadataFiles

[1..1]developmentArtifactSpecification

Metadata
File

[0..*]sourceFiles

Figure 7.23.: Speci�cation of development artifacts for an IEC software [Rät17] based

on [Sta15]

• Sta� speci�cations: Jamro and Trybus [JT13] propose the development phases of a

PLC software including modeling, implementation, debugging, as well as deployment

and analysis. Additionally, the PLC software should be tested during the modeling

and implementation phase. Based on this development process, the metamodel of

context elements supports modeling the following roles: developer, test developer,

tester, and deployer, as illustrated in Figure 7.24. However, roles during the evolution

of a PLC software may not be limited to the proposed roles. Thus, these roles and

the corresponding metamodel can be extended. This metamodel allows modeling

122

7.3. Change Propagation Analysis in Control Software

the responsible persons for various maintenance tasks. The previously de�ned

roles can also be assigned to the responsible persons. A person can be responsible

for several roles. Several persons can also have the same role. Each role can be

responsible for several IEC model elements in the instances of the Repository and

System metamodel. For example, the instance of the role tester can be assigned to a

program or a function block. This information enables KAMP4IEC to identify the

responsible roles and persons to change an artifact [Rät17; Bus+18c].

Tester

Developer

Deployer

Role

RoleList
[1..1]roleList

[0..*]roles

PersonPersonListStaffSpecification
[1..1]personList

[0..*]persons

[1..1]staffSpecification

[1..1]personList [0..*]persons

[0..*]roles

[1..1]staffSpecification [1..1]roleList
TestDeveloper

Figure 7.24.: Sta� speci�cations for an IEC software [Rät17] based on [Sta15]

7.3.2.2. Metamodel of Task Type

This metamodel extends the generic metamodel of task types described in Section 5.3.2.2.

It contains the speci�c task types in the evolution of an IEC software based on the context

metamodel. Examples of these task types are the implementation of the source code or

the deployment of a changed software [JT13; Rät17].

7.3.2.3. Algorithm of Context Task List

The algorithm of context task list identi�es the a�ected context model elements, if a change

to the corresponding structural model elements in the IEC Repository or System model

occurs.

As described in the previous section, various IEC model elements can be tested. If model

elements in an instance of a PLC software are changed, this algorithm considers testing

these elements or the whole software, for example by unit tests or acceptance tests [Rät17].

Further, this algorithm can consider changing various development artifacts needed to

implement a change [Rät17].

Example

An example of context elements in the PLC software of the Minimal Plant example is the

test speci�cation. In the running example, the global variable representing the value of

the optical sensor has to be changed. If the a�ected method in the change scenario has

unit tests, these tests has to be adapted and re-run.

123

7. Change Propagation Analysis in Automated Production Systems

7.3.3. Algorithm of Di�erence Calculation

If a change a�ects the structure of a PLC software, this algorithm identi�es the di�erences

between BaseVersion and TargetVersion (i.e., the model of the PLC software before and after

the change). This algorithm also re�nes the results of existing generic algorithms for the

di�erence calculation. Examples of changes to domain elements are adding or removing

IEC elements. The algorithm for derivation of task list in the methodology gathers and

manages the results of this algorithm.

7.4. Conclusions

This chapter presented an approach to change propagation analysis in aPS. The approach

is based on interconnected metamodels representing mechanical and electrical/electronic

elements, the control software, as well as the behavior of these systems. Thus, the meta-

models provide a holistic view on the system under study comprising heterogeneous

elements. The approach is composed of several loosely coupled approaches, which sup-

port the change propagation in the aforementioned sub-domains. To develop the change

propagation analysis approach for mechanical and electrical/electronic elements two meta-

models at two abstraction levels were used [Hei+18]. The abstract metamodel and the

corresponding approach can be applied to any plant, while the speci�c metamodel and the

corresponding approach were tailored to a speci�c plant. A further metamodel, which was

mainly speci�ed to model the data �ow between the hardware and the software of a plant,

enables domain experts to trace the changes from hardware to software. In order to model

the control software based on the IEC 61131-3 standard, a further metamodel was pre-

sented. The approach based on this metamodel allows analyzing the change propagation

in control software. Finally, the behavior of aPS can be considered as a set of linked actor

steps and system steps at a high abstraction level (i.e., similar to a BP design [Hei+17]).

The system steps reference di�erent modes of a plant, which are controlled by di�erent

functionality of the control software. In this way, domain experts can analyze the change

propagation from the hardware to the software and from the software to the behavior

of a plant. In other words, the aforementioned approaches analyze the propagation of

a change based on the mutual dependencies between the heterogeneous elements from

di�erent aPS sub-domains. Thus, this contribution answers the second research question.

124

8. Change Propagation Analysis from
Requirements to a Specific Domain

During the life cycle of a system the stakeholder needs change [Zha+14]. As the stake-

holder needs are directly related to their requirements, it is important to document the

relationships both stakeholder needs and requirements [IEE11]. This allows identifying

the origin of a change [IEE11]. As stakeholder requirements are met by system require-

ments, there is a need to maintain further traceability links between them [IEE11]. System

requirements have to be traceable to the architectural design [IEE11]. In addition to

the forward and backward trace links, there are relationships between individual re-

quirements [Zha+14]. These relationships and trace links are the basis for the change

propagation analysis [Zha+14]. As these relationships can be complex, several researchers

introduce di�erent types of relationships (e.g., [Poh95; Dur14; Küs13; Zha+14]). Dahlstedt

and Persson state in [DP05, p. 95] these relationships “are not problematic per-se, but

they in�uence a number of development activities and decisions”. One of these activities

is the change management [DP05]. Omitting these relationships and considering the

requirements in isolation during the change propagation analysis may result in missing

a�ected elements [DP05]. Thus, considering trace links between requirements, as well

as the forward and backward traceability can help to close the gap between changing

stakeholder needs and the resulted system during the life cycle of the system.

This chapter introduces an approach to change propagation analysis, which is based

on the aforementioned relationships between requirements and from requirements to

the system satisfying them. On the one hand, the approach is a further instantiation of

the methodology. On the other hand, it can be considered as an extension of an existing

approach to change propagation analysis in a speci�c domain. Thus, it consists of two parts:

The generic part of the approach is mainly concerned with the change propagation analysis

in requirements and, thus, is independent of a speci�c domain or a speci�c approach.

The speci�c part of the approach introduces traceability from changing requirements to

the model elements of a system in a speci�c domain. To avoid semantic repetitions, this

chapter abstracts from a speci�c domain and provides, how the speci�c part of the approach

should be developed in general. Thus, the contribution of this chapter complements the

contributions of Chapters 6 and 7 by enabling domain experts to specify seed modi�cations

not only for a system model, but also for its requirements model. This allows considering

the evolution of requirements in conjunction with the system satisfying them.

The remainder of this chapter is organized as follows: Section 8.1 gives an overview

of how an existing change propagation analysis approach in a speci�c domain can be

extended to support changes to requirements. For this purpose, further metamodels and

change propagation algorithms have to be speci�ed, which are presented in Section 8.2.

Section 8.3 discusses the design decisions made regarding the identi�cation of context

125

8. Change Propagation Analysis from Requirements to a Speci�c Domain

elements. The development of a before and after comparison for requirements is discussed

in Section 8.4. Section 8.5 outlines the conclusions of this chapter.

The results of this chapter have been partially developed in a practical research

course [HS15]. The corresponding part was supervised by the author of this disser-

tation. Further, parts of the results of this chapter are based on the Bachelor’s thesis of

Timo Maier [Mai18], which the author of this dissertation also supervised. Additionally,

parts of this chapter have been appeared in the paper [MBR18] and in the paper [HBK18].

8.1. Change Propagation Analysis for Requirements

This section gives an overview of a change propagation analysis approach concerned

with requirements changes. This approach can be obtained as an instantiation of the

methodology to requirements models. The approaches to change propagation analysis for

requirements are mainly designed to trace the changes between requirements and from

requirements to system elements. Thus, this chapter presents this approach as an extension

of an existing approach, which presents a generalization of the methodology instantiation

to a speci�c domain (i.e., Chapters 6 and 7). The resulting approach can be considered

as a change propagation analysis approach consisting three phases: i) In the preparation

phase, domain experts model the requirements, the system, and the change requests.

ii) The approach automatically analyzes the change propagation in the system model

in the impact phase. iii) The post-analysis phase provides further functionality such as

sorting or merging the task lists. In other words, it is an abstract view of a domain-speci�c

approach to change propagation analysis such as KAMP4BP or KAMP4aPS. The term

domain-speci�c approach refers to this abstract view of the approaches in the following.

Figure 8.1 gives an overview of an approach considering requirements changes. It

illustrates the approach as an extension of an existing approach such as KAMP4BP or

KAMP4aPS at a high abstraction level. The �gure focuses on the �rst two phases of

the approach, as the third phase is mainly provided by the methodology. The change

propagation analysis can be considered at the requirements level and/or at the system level.

If domain experts are interested in analyzing the change propagation at the requirements

level, models representing them are required. These models can be considered as further

inputs of the approach and, thus, have to be created in the preparation phase. After the

models were created, seed modi�cations can be the model elements of the requirements or

design decisions, and/or the system satisfying them. If at least one of the seed modi�cations

was chosen at the requirements level, the algorithm �rst identi�es the potentially a�ected

requirements and further design decisions. In the next step, the algorithm identi�es the

model elements of the system, which satisfy the a�ected requirements or are selected by

the a�ected design decisions. This results in seed modi�cations at the system level. Based

on these model elements, other a�ected model elements can be identi�ed (e.g., by using

KAMP4BP in Chapter 6 or KAMP4aPS in Chapter 7).

126

8.2. Change Propagation Analysis for Elements of Domain Metamodel

Preparation Phase

System Model

Impact Phase

Change Propagation Analysis
in System Model

Impact on System Model

Change Propagation Analysis
in Requirements, Options, and

Design Decisions

Model of Requirements,
Options, and Design Decisions

Change
Requests

Model Phase of Approach Phase of Change
Propagation Algorithm

Legend:

Change
Propagation
Analysis at
System Level

Change
Propagation
Analysis at
Requirements
Level

Input

Figure 8.1.: Extension of existing approaches to change propagation analysis to consider

requirements, options, and design decisions

8.2. Change Propagation Analysis for Elements of Domain
Metamodel

This section presents the metamodels and algorithms, which are required to develop an

approach to change propagation analysis at the requirements level.

8.2.1. Metamodel of Domain

This section is concerned with metamodeling the domain under study. However, require-

ments describe what a system needs and not the concrete system [IEE11]. Additionally, as

requirements cannot be considered as a stand-alone domain such as IS or aPS [Hei+18],

the previously discussed modeling aspects, namely structure, data �ow, and behavior,

cannot be applied to requirements. To enable the change propagation from requirements,

the metamodel of domain has to be interpreted in a broader sense. This assumes only that

requirements have to be documented using a formal model. The formal model shall include

requirements and their relationships (see the term conceptual architecture introduced by

Soni et al. as “the system in terms of its major design elements and the relationships

among them” [SNH95, p. 1]). Formal models for documenting the requirements and for

enabling the upwards and downwards traceability are also introduced by other researchers

(see [Zha+14] for various dependency types). The change propagation analysis approach,

proposed in this section, is based on the metamodel of Hahn and Schuller [HS15], which

is an extension of the metamodel of Durdik [DR13; Dur14] and Küster [Küs13]. This

metamodel di�erentiates between requirements, options, and design decisions. As require-

ments are independent of a speci�c implementation [IEE11], the implementation can be

considered by using options [HS15]. Options also allow documenting the corresponding

rationals [HS15]. Additionally, the metamodel enables domain experts to document their

design decisions and their rationals [Dur14]. The main reason for using this metamodel

127

8. Change Propagation Analysis from Requirements to a Speci�c Domain

is that it has a modular structure and captures a wide variety of relation types between

requirements, options, and design decisions [HS15]. However, using another metamodel,

which presents di�erent relationships between requirements, options, design decisions,

and/or the system under study is also possible. This metamodel is introduced in more

detail in Section 2.5. As it was originally designed for IS, it considers only options for

the software architecture using the PCM. To use this metamodel in other domains such

as BP and aPS, these options had to be extended for the speci�c domains. Figure 8.2

examplarily illustrates the relationships between various metamodel �les illustrating the

generic options and their re�nements for the software and hardware of aPS.

Options
Metamodel

ApsOptions
Metamodel

ApsHardwareOptions
Metamodel

ApsSoftwareOptions
Metamodel

Figure 8.2.: Relationship between the metamodel of options [HS15] and the aPS-speci�c

options [Mai18]

Example

Consider the case, in which it is planned to have only two shapes of work pieces (e.g.,

cylinder and cuboid) in the Minimal Plant example. A simple requirement can be: “The

shape of work pieces shall be identi�ed”. This requirement can be implemented in di�erent

ways, for example by using di�erent sensor types. In this context, an option can regard

one implementation using a speci�c sensor type. A design decision can select a speci�c

option, which ful�lls this requirement.

8.2.2. Domain-specific Metamodel of Modification

This metamodel mainly refers to the model elements in requirements, options, and design

decisions, which are potentially a�ected by a change. As described in Section 5.3.1.2,

this metamodel can be organized based on seed modi�cations, modi�cations, change

propagation steps, and modi�cation repository. To illustrate how the domain-independent

metamodel of modi�cation has to be extended to develop a metamodel of modi�cation

regarding requirements, options, and design decisions, the corresponding metaclasses of

the methodology are illustrated in the following.

• SeedModification: As described previously, the goal of considering requirements

during the change propagation analysis is primarily to provide domain experts the

opportunity to select the a�ected requirements as initial changes in each domain. In

this case, the seed modi�cations can be: i) requirements, ii) options, or iii) design

decisions. Figure 8.3 shows the relationship between the SeedModification meta-

classes of the methodology and the requirements. Inheriting from seed modi�cations

128

8.2. Change Propagation Analysis for Elements of Domain Metamodel

in other domains enables domain experts to consider the seed modi�cation not only

at the level of system elements, but also at the level of requirements, options, and/or

design decisions. However, it is important to note that the seed modi�cations for

requirements, options, and design decisions need not necessarily extend the seed

modi�cations of a speci�c domain. An example of this can be the early design phases

of the development, in which the system does not exist. In these phases, domain

experts can be interested in the traceability between the requirements, options, and

design decisions.

SeedModification -Methodology (Excerpt)

SeedModification

Requirement
SeedModification

ModifyRequirement
ModifyOption

ModifyDecision [0..*]option
Modification

[0..*]requirement
Modification

[0..*]decision
Modification

SeedModification - Automated Production Systems - Common (Excerpt)

Figure 8.3.: Relationship between the domain-independent SeedModification and

SeedModifications for requirements, design decisions, and options, adapted

from [Mai18]

• Modification: At the requirements level, requirements, options, or design decisions

can be modi�ed in addition to the system elements in a speci�c domain. Figure 8.4

shows the relationship between the Modification metaclass of the methodology

and its extensions for the requirements, design decisions, and options.

Modification - Methodology (Excerpt)

Modification - Requirement (Excerpt)

ModifyTraceableObject

ModificationT
S

[1..1]affectedElement

[0..*]causingElements

T

ModifyRequirement ModifyDecision ModifyOption

<<bind T>> Requirement <<bind T>> Decision <<bind T>> Option

<<bind S,T>> T,EObject

Figure 8.4.: Relationship between the domain-independent Modification and

Modifications for requirements, design decisions, and options, adapted

from [Mai18]

129

8. Change Propagation Analysis from Requirements to a Speci�c Domain

• ChangePropagationStep: The use of change propagation steps enables domain ex-

perts to di�erentiate between di�erent causes of a change propagation. Thus, the

ChangePropagationStep of the methodology has to be re�ned in each instance to

include the change propagation steps, which are required in the instance. The com-

mon change propagation steps of the methodology instance for the requirements

are grouped together to ChangePropagationDueToSpecificationDependencies.

It consists of changes to requirements, options, and design decisions. As

the methodology instance for requirements can be considered as an exten-

sion of a domain-speci�c change propagation analysis approach (e.g., for

aPS), the change propagation steps in each domain can re�ne the common

ChangePropagationDueToSpecificationDependencies (e.g., due to the speci�ca-

tions for hardware or software in aPS [Mai18]). Thus, the domain-speci�c change

propagation steps due to speci�cations can refer not only to the modi�ed require-

ments, options, and design decisions, but also to the system model elements, which

are directly a�ected by them. In other words, these model elements can be consid-

ered as the counterparts of the seed modi�cations for a change propagation analysis

at the system level (e.g., an a�ected component in the aPS hardware or an a�ected

function block in the aPS software). The following sections describe in more detail,

how the domain-speci�c model elements of a system can be derived from a�ected

requirements, options, and design decisions. Figure 8.5 shows the relationship be-

tween the ChangePropagationStep metaclass of the methodology, its extension for

common change propagation steps for requirements, design decisions, and options,

and the extension of that for considering requirements changes in a speci�c domain.

However, the latter one can be considered as optional in some cases. An example of

these cases is, if domain experts are interested only in the change propagation in

requirements, design decision, and options.

ChangePropagationStep - Methodology (Excerpt)

ChangePropagationStep

ChangePropagationDueToSpecificationDependencies

DomainSpecificChangePropagationDueToSpecificationDependencies

ChangePropagationStep - Requirement - Common (Excerpt)

ChangePropagationStep - Requirement - Extension for a Specific Domain (Excerpt)

Figure 8.5.: Relationship between the domain-independent ChangePropagationStep

and ChangePropagationSteps for requirements, design decisions, and op-

tions [Mai18]

• ModificationRepository in a speci�c instance contains the domain-speci�c meta-

classes of SeedModification and ChangePropagationStep, as described in Chapter 5.

As this case is very similar to the extension of the modi�cation repository in the pre-

130

8.2. Change Propagation Analysis for Elements of Domain Metamodel

vious chapters regarding KAMP4BP and KAMP4aPS, the metamodel is not further

depicted.

Example

In general, requirements, options, and design decisions can be a�ected by a change. In the

previous example, the seed modi�cation can be the requirement regarding the identi�cation

of the work pieces’ shapes. It can also be an option, which is concerned with a speci�c

implementation to satisfy the requirement. Even the design decision referring to the

option, which domain experts have chosen, can be the seed modi�cation. Whether the

requirement, the option, or the design decision is the seed modi�cation, depends on the

change request and how the change request has to be implemented. For example, the

change request may directly involve a speci�c sensor type as a possible implementation

to meet the requirement. In this case, the corresponding option is a�ected. If domain

experts have already modeled di�erent options and have opted for a speci�c one (i.e., they

documented their design decisions), the corresponding design decision can be the seed

modi�cation. It is also possible that the requirement has to be changed. For example, the

previously described requirement can become obsolete. In this case, the change request

initially a�ects the requirement.

8.2.3. Algorithms of Change Propagation Analysis

This section presents the algorithms for change propagation analysis at the requirements

level. If a change request is de�ned at the requirements level, the change can propagate

over the requirements, design decisions, and options to the dependent system elements.

This can be done by using the trace links between them (e.g., the traceability metamodel

presented in [RJ01]). After the dependent system elements were identi�ed, a domain-

speci�c approach to change propagation analysis can be used to identify further system

elements (e.g., KAMP4BP or KAMP4aPS). Therefore, to develop a change propagation

analysis at the requirements level (i.e., the seed modi�cations can be requirements, options,

and design decisions), three phases can be di�erentiated:

• Trace links between requirements, options, and design decisions can be used to

identify the a�ected requirements, options, and design decisions. This phase can be

considered as common, as it does not depend on a speci�c domain. This phase is

described in Section 8.2.3.1 in more detail.

• The next phase is concerned with identifying model elements at the system level,

which are directly a�ected by a change to requirements, options, or design decisions.

This depends on the relationships between the domain-speci�c model elements

and requirements, options, or design decision. For example, an option can be

concerned with introducing a new component in a software system to ful�ll a

certain requirement. Thus, changing the requirement can trigger a change in the

option and in the speci�c component in the software system. In contrast to the

previous phase, this phase depends on requirements, options, or design decisions

131

8. Change Propagation Analysis from Requirements to a Speci�c Domain

on the one hand, and the system in a speci�c domain satisfying them on the other

hand. Section 8.2.3.2 describes the change propagation rules for this phase.

• The component in the previous example can be considered as the seed modi�cation

for a change propagation analysis at the system level. This phase identi�es the

a�ected model elements in a system based on this seed modi�cation. An example of a

corresponding approach for the aforementioned seed modi�cation can be KAMP4IS.

Sections 8.2.3.1 and 8.2.3.2 propose the change propagation analysis for the �rst two

phases, while Chapters 6 and 7 introduce the change propagation analysis in the third

phase.

8.2.3.1. Change Propagation Analysis for Requirements, Options, and Design Decisions

This section presents the change propagation rules, which are independent of a speci�c

domain. To utilize the trace links between requirements, options, and design decisions,

some prerequisites have to be ful�lled, which are described in the following in more

detail. Requirements, design decisions, and options can be formulated in di�erent ways

(e.g., unambiguously or vaguely). Similar to the paradigms in IS (e.g., CBSE), there are

guidelines for formulating the requirements. In order to be able to use the trace links

between requirements and the system satisfying them for a change propagation analysis,

the formulated requirements must have certain characteristics. The IEEE 29148 standard

summarizes the characteristics and criteria of the individual requirements and the sets of

requirements, as well as the language to formulate them [IEE11].

According to the IEEE 29148 standard, the individual requirements refer only to nec-

essary capabilities and are independent of a speci�c implementation. Additionally, the

requirements have to be formulated unambiguously and must not have any con�icts to

the other requirements. Each requirement refers to only one requirement and is complete

at the same time. Further, the requirements are feasible regarding the technology. Each

requirement has to be upwards and downwards traceable. In order to ensure the veri�abil-

ity of the requirements, they further need to be measurable. According to this standard,

a set of requirements has to have the following characteristics: “complete”, “consistent”,

“a�ordable”, and “bounded” [IEE11, p. 11f]. A more detailed description of the previously

described characteristics and criteria is given in the standard [IEE11].

The standard speci�es further how to formulate good requirements [IEE11]. One of

the important criteria is that requirements are concerned with what a system needs.

The requirements must not be formulated vaguely. The standard also excludes general

and ambiguous terms. Examples of ambiguous terms are “vague pronouns” or “negative

statements” [IEE11, p. 12].

If requirements do not ful�ll the previously described characteristics and criteria, the

results of a change propagation analysis may be useless (e.g., a change propagation

analysis based on con�icting requirements). Thus, the following change propagation

rules assume that the requirements already meet the characteristics and criteria of the

IEEE 29148 standard [IEE11]. However, the metamodels provided by Durdik [DR13;

Dur14], Küster [Küs13], and Hahn and Schuller [HS15] allow documenting several possible

relationships between requirements, design decisions, and options. This also includes

132

8.2. Change Propagation Analysis for Elements of Domain Metamodel

relationships, which are excluded by the IEEE 29148 standard such as “con�icts with”.

Thus, the following change propagation rules omit these relationships. In other words, the

following rules assume that formal models of requirements, options, and design decisions

exist, which follow the aforementioned guidelines.

Similar to the previous approaches, the change propagation rules are de�ned for all in-

stances of a metamodel. The relevant metamodels for the following rules are Requirements,

Options, and Decisions metamodel (see Section 2.5). To de�ne the rules the instances of

the relevant metaclasses of these metamodels are mapped to a set. These sets are de�ned

in the following:

• Q = {qq1, . . . ,qqn } is the set of all Requirements in the instances of the Requirements

metamodel.

• O = {oo1, . . . ,oon } is the set of all Options in the instances of the Options metamodel.

• D = {dd1, . . . ,ddn } is the set of all DesignDecisions in the instances of the Decisions

metamodel.

• G = O ∪ D is the union set representing the instances of Options and

DesignDecisions.

The relationship between metaclasses of di�erent metamodels can be used to create

binary relations over these sets. These relationships are based on di�erent relation types,

de�ned by Relations metamodel (see Section 2.5). The relations are de�ned in the following:

• The relation RequirementHasDependent is de�ned over the set Q . In this relation,

the Requirementqqi ∈ Q is associated to the Requirementqqj ∈ Q , if the Requirement

qqj is dependent on the Requirement qqi ∈ Q .

• The relation OptionHasDependent is de�ned over the set O . In this relation, the

Option ooi ∈ O is associated to the Option ooj ∈ O , if the Option ooj is dependent on

the Option ooi ∈ O .

• The relation DecisionHasDependent is de�ned over the set D. In this relation, the

DesignDecision ddi ∈ D is associated to the DesignDecision ddj ∈ D, if the Design-

Decision ddj is dependent on the DesignDecision ddi ∈ D.

• The relation TriддerO f is de�ned over the sets Q and G. In this relation, the

Requirement q ∈ Q is associated to the Option or DesignDecision д ∈ G, if the

Requirement q is the trigger of the Option or DesignDecision д.

• The relation ResolvedBy is de�ned over the sets Q and G. In this relation, the

Requirement q ∈ Q is associated to the Option or DesignDecision д ∈ G, if the

Requirement q is resolved by the Option or DesignDecision д.

• The relation CouldBeResolvedBy is de�ned over the sets Q and G. In this relation,

the Requirement q ∈ Q is associated to the Option or DesignDecision д ∈ G, if the

Requirement q could be resolved by the Option or DesignDecision д.

133

8. Change Propagation Analysis from Requirements to a Speci�c Domain

The following algorithms de�ne the change propagation rules based on the aforemen-

tioned sets and relations. These algorithms can be applied to requirements, options, and

design decisions. Thus, they are independent of a speci�c domain.

A requirement, an option, or a design decision can have dependent requirements,

options, or design decisions, respectively. If a requirement changes, the dependent require-

ments can be a�ected. This heuristic can also be applied to options and design decisions.

Algorithm 30 presents the change propagation from requirements to requirements, from

options to options, and from design decisions to design decisions. For this purpose, it

uses RequirementHasDependent , OptionHasDependent , and DecisionHasDependent re-

lations. Depending on, whether a model element of the input n ∈ N is a member of the

Requirement set Q , the Option set O , or the Decision set D, the algorithm applies the

corresponding relation to the model element. If the input model element n ∈ N has a de-

pendent requirement, option, or design decision model element, the algorithm assigns the

dependent model element to set Z in each iteration. As sets do not contain any duplicates,

(R ∪ Z) \ R contains only members of set Z , which are not already contained in the result

set R. The result set R can be equal to either Q , D, or O in the worst case. In this case, the

algorithm iteratively assigns set N all members of either Q , D, or O . Thus, the maximum

number of iterations of the while loop is whether |Q |, |D |, or |O | (i.e., the cardinality of

the sets).

Algorithm 30 Change propagation from Requirement, Option, or DesignDecision to

Requirements, Options, or DesignDecisions, respectively

Input: N ⊆ (Q ∪O ∪ D) . Seed modi�cations

Output: R ⊆ (Q ∪O ∪ D) . Result

U = Q ∪O ∪ D
R = N
while N , ∅ do

Z = {u ∈ U |(∃n ∈ N) [(n,u) ∈ RequirementHasDependent ∨ (n,u) ∈
OptionHasDependent ∨ (n,u) ∈ DecisionHasDependent]}

N = (R ∪ Z) \ R
R = R ∪ Z

end while

While the previous algorithm considers the relationships within requirements, options,

and design decisions, the following algorithm is based on the relationships between

them. This is based on TriддerO f , ResolvedBy, and CouldBeResolvedBy relations. These

relations are de�ned to describe the relationships between a requirement on the one hand

and options and design decisions on the other hand. These relations consider the cases, in

which a requirement can be the trigger of certain options and design decisions or it is (or

could be) resolved by certain options and design decisions. Thus, the dependent options

and design decisions can be a�ected by a change to the requirement. These relations are

used by Algorithm 31 to calculate the change propagation. The algorithm checks for a

model element representing the requirement q ∈ Q , whether it is a trigger of the design

decision d ∈ D or the option model element o ∈ O . Additionally, it checks, whether the

requirement q is (or could be) resolved by the design decision model element d or the

134

8.2. Change Propagation Analysis for Elements of Domain Metamodel

option model element o. The set of results R contains design decisions and/or options, for

which at least one of the predicates in R is true.

Algorithm 31 Change propagation from Requirement to Options and DesignDecisions

Input: N ⊆ Q . Seed modi�cations

Output: R ⊆ (O ∪ D) . Result

G = O ∪ D
R = {д ∈ G |(∃n ∈ N) [(n,д) ∈ TriддerO f ∨ (n,д) ∈ ResolvedBy ∨ (n,д) ∈
CouldBeResolvedBy]}

Algorithms 30 and 31 use trace links in a forward direction to calculate the change

propagation. This heuristic is based on the goal of the change propagation analysis to

identify the dependent model elements at the system level. Using both forward and

backward directions can result in a high overestimation of the results. However, if domain

experts are interested in identifying all requirements, options, design decisions, and model

elements of the system, which can be directly or indirectly related to the seed modi�cations,

both directions can be utilized.

8.2.3.2. Tracing a Change from Requirements, Options, and Design Decisions to
Domain-Specific Model Elements

The previous section was concerned with the change propagation within and between

the requirements, options, and design decisions. This section identi�es the elements of a

system model in a speci�c domain, which are directly a�ected by a change to requirements,

options, and design decisions. As the development of this step is very similar for di�erent

domains, this section abstracts from a speci�c domain and the possible systems within

it. The term domain in this section can regard IS, BP, or aPS. Further, it is assumed that

a formal model of requirements, options, and design decisions exist, which the system

under study satis�es. For this purpose, set V = {vv1, . . . ,vvn } is de�ned as the set of all

model elements of interest in a system model in a speci�c domain. The model elements

of this set for a speci�c instance of the methodology depend on the domain, for which

requirements, options, and design decisions have to be considered. For example, if domain

experts in aPS are interested in the change propagation analysis for the PLC software at

the requirements level, this set contains model elements of the PLC metamodel such as

instances of GlobalVariables, Functions, FunctionBlocks, or Methods. This set can also

contain model elements of Components, Interfaces, Modules, or Structures, as well as

their re�nements such as a speci�c sensor type, if the focus of the change propagation

analysis is the aPS hardware. Other examples are the domain-speci�c model elements in

IS (e.g., DataType) and BP (e.g., DataObject).

As the domain and the systems within it are considered in a broader sense, this section

abstracts from the type of the relationship between requirements, options, and design

decisions on the one hand and the system satisfying them on the other hand. Thus, the

relation Re f erences is de�ned over the sets O and V . In this relation, the Option o ∈ O
is associated to v ∈ V , if the Option o references v . As described previously, v is the set

of all elements of a system model in a speci�c domain such as GlobalVariables in IEC.

135

8. Change Propagation Analysis from Requirements to a Speci�c Domain

Re f erences can be considered as a generic relation, which has to be further re�ned in a

speci�c context by other relations such as IntroduceNew ,Chanдe , orRemove . Additionally,

more �ne-grained relationships can be used. Various types of such relationships in IS

(e.g., merging or splitting components) are given by Relations metamodel, introduced

in Section 2.5.

In particular, if options are changed, the model elements, which are directly referenced

by them, have to be identi�ed. Algorithm 32 uses the aforementioned Re f erences relation

to identify the model elements of a system, which are directly a�ected due to the changed

option. Thus, it has to be re�ned to be able to consider speci�c relation types in a domain.

The speci�cations of the relation Re f erences are not necessarily binary relations, as they

can be de�ned over several sets. For example, MerдesComponents relation can be de�ned

over the set of options and further sets representing the components before the merge

process. In these cases, the algorithm has to be further adapted.

Algorithm 32 Change propagation from Option to domain-speci�c model elements

Input: N ⊆ O . Seed modi�cations

Require: R ⊆ V . Result

R = {v ∈ V |(∃n ∈ N) [(n,v) ∈ Re f erences]}

As described previously, there can be more than one option realizing a requirement.

If domain experts opt for a speci�c option, the aforementioned metamodels proposed

by [HS15; Dur14; Küs13] enable them to document their decision using the Decisions

metamodel, as described in Section 2.5. To document the selected option by a decision, the

Selected relationship can be used. This relationship is presented by the binary relation

Selects . The relation Selects is de�ned over the sets D and O . In this relation, the Design

Decision d ∈ D is associated to the Option o ∈ O , if the Design Decision d selects the

option o.

During the evolution, domain experts can opt for other options. This can be considered

as a change to the existing decisions. Changing a decision can result in changing the

selected options, which can result in further changes in the dependent system elements

realizing the options. This change propagation is considered by Algorithm 33. It uses the

previously described relationships to identify the a�ected model elements of a system

v ∈ V , after the decision d ∈ D changes. This change propagation is based on the option

o ∈ O , which is selected by the design decision d (i.e., Selects relation) and realized by the

system model element v (i.e., Re f erences relation).

Algorithm 33 Change propagation from Decision to domain-speci�c model elements

Input: N ⊆ D . Seed modi�cations

Require: R ⊆ V . Result

R = {v ∈ V |(∃o ∈ O) (∃n ∈ N) [(o,v) ∈ Re f erences ∧ (n,o) ∈ Selects]}

Example

Consider the previously described change requests a�ecting the option, the design decision,

and the requirement. As described previously, Re f erences is a generic relation and shall

136

8.3. Change Propagation Analysis for Elements of Context Metamodel

be re�ned in a speci�c development. The re�nement of this relation in this example is

IntroduceNew , which is concerned with the usage of a new sensor type.

If the option regarding a speci�c sensor is changed, Algorithm 32 identi�es the a�ected

model elements of the Minimal Plant example (i.e., the speci�c sensor type in this example),

which is introduced by the option.

If domain experts opt for another option, the corresponding design decision changes.

Algorithm 33 identi�es the a�ected model elements of the system via the selected option.

In the case of the obsolete requirement, Algorithm 31 identi�es the a�ected options

and design decisions, which are triggered by or are (or could be) solved by the a�ected

requirement. Depending on, whether the algorithm identi�es the a�ected options and/or

design decisions, the result triggers Algorithm 32 and/or Algorithm 33. Both algorithms

result in a�ected model elements of the Minimal Plant example, which are introduced by

the a�ected option.

8.3. Change Propagation Analysis for Elements of Context
Metamodel

In this chapter, requirements are discussed as a possible usage context of the methodology.

As described in Chapter 5, context elements involve technical and organizational artifacts

such as documentations and tests [Ros+15b; Sta15]. Considering these model elements at

the requirements level or at the domain level (i.e., system’s structure and behavior) is a

design decision. This thesis is based on the idea of [MT10] considering the architecture

of a system as its main artifact. Thus, context elements were considered at the level of

the domain. Consequently, the change propagation analysis for the elements of context

metamodel could be omitted during the instantiation of the methodology for the require-

ments. However, there is also possible to consider context elements at the requirements

level. Considering context elements at the requirements level results in developing the

required metamodels and algorithms.

8.4. Algorithm of Di�erence Calculation

Similar to the other instantiations of the methodology, an algorithm for calculating the

di�erences between two models can be developed. A use case for this algorithm is, if the

models of requirements, options, and design decisions have been evolved over time. In this

case, domain experts can be interested in identifying the dependent requirements, options,

design decisions, or other artifacts. The di�erence calculation may result in identifying

the changed, removed, or added requirements, options, or design decisions, which can be

used to identify the dependent model elements of the system under study. The algorithm

for derivation of task lists in the methodology gathers and manages the results.

137

8. Change Propagation Analysis from Requirements to a Speci�c Domain

8.5. Conclusions

This chapter was concerned with requirements, options, and design decisions as change

triggers. The proposed approach builds on a domain-speci�c approach to change propaga-

tion analysis. It utilizes the di�erent types of relationships between requirements, options,

design decisions, and the dependent system elements to analyze the change propagation.

In this way, it enables domain experts to analyze the impact of a change to the models of

both requirements and the system satisfying them.

In particular, the approach presented in this chapter consists of two parts: The �rst part

is independent of the approaches to change propagation analysis in a certain domain. The

second part forms a connecting link between the domain-independent change propagation

analysis for requirements, options, or design decision, and the domain-speci�c approach

to change propagation analysis. To analyze the change propagation in the dependent

system, a further approach such as KAMP4BP or KAMP4aPS has to be used. Thus, the

contributions of Chapters 6 and 7 are complemented by the contribution of this chapter,

as domain experts can specify the change request for both systems and requirements.

Summarized, this contribution partially answers the second research question.

138

9. A Language for Change Propagation
Rules

There are several methods to construct an approach to change propagation analysis (e.g.,

based on change propagation rules or information retrieval). The approaches proposed in

this thesis are based on change propagation rules, which de�ne the propagation of a change

between two system elements. In particular, the rules use metamodels de�ning di�erent

element types as metaclasses and their relations. Hence, the rules depend on a speci�c

metamodel and are applied to all instances of this metamodel. Consequently, changing

the metamodel can result in changing the change propagation rules. As a metamodel can

evolve continuously, maintaining the change propagation rules can be considered as a

main task in the life cycle of change propagation analysis approaches. It is desirable to

keep this maintenance task at a minimum [Bus+18b].

A further aspect in the development of a change propagation analysis approach is

concerned with the role of a domain expert. As described previously, the role of a domain

expert is concerned with the maintenance of the system under study in a speci�c domain.

Although domain experts in a speci�c domain can also have programming knowledge,

they are not necessarily programming experts. Additionally, a change propagation anal-

ysis approach is written in a speci�c programming language, usually in a GPL. This

assumes programming knowledge for domain experts. It is desirable for domain experts

to focus on the maintainability properties of the system under study, and not on the

concrete implementation of the change propagation analysis approach. In other words,

domain experts should be able to focus on the relations between the metaclasses, which

are involved in change propagation rules. In addition to the modularity of the change

propagation analysis approach, the programming knowledge of domain experts also plays

an important role. For example, domain experts may have a limited knowledge of a GPL,

in which the change propagation rules have to be implemented. One way is to delegate

the implementation tasks regarding the change propagation rules to their colleagues, who

have more programming knowledge. However, this solution is time-consuming and can

lead to failure for example due to the lack of shared knowledge. Further, the change prop-

agation rules can be added, removed, or adapted over time. Thus, the described solution

makes the maintainability of change propagation rules di�cult. Summarized, domain

experts should be able to describe at least several common patterns of change propagation

rules [Bus+18b].

For the aforementioned reasons, there is a need for a DSL, which allows focusing on

the relevant information regarding the maintainability analysis. In a model-based and

rule-based approach, this information includes the metaclasses and their relations. The

term domain in the term DSL regards the application domain (i.e., in this case the change

propagation analysis). In the context of this thesis, this de�nition of domain is only used

139

9. A Language for Change Propagation Rules

in the acronym DSL. The change propagation rules can range from very simple to very

complex. In contrast to a GPL, the DSL does need to cover all possible change propagation

rules. The main requirement of the DSL is the ability to be applicable to several common

patterns of the rules. To facilitate the task of implementing the change propagation rules,

the DSL has to provide a reduced set of language elements. In other words, there is a

trade-o� between the size of the subset of rules, to which the DSL can be applied and its

complexity. In other words, the bene�t of a DSL (compared to a GPL) is the reduced set of

language elements for a speci�c domain [Bus+18b].

This chapter addresses the aforementioned issues and presents Change Propagation

Rule Language (CPRL) as a DSL to describe the change propagation rules. This language

enables domain experts to specify several common patterns of change propagation rules.

Using the language allows a �exible adaptation of the rules and facilitates their reuse.

Further, it provides features to integrate the change propagation rules, which are written

in Java. These features can be used to specify complex change propagation rules, which

cannot be written in the proposed language. However, the use of this language can be

considered as optional. In other words, domain experts do not need to use the language,

if they are programming experts in Java. In addition to Java, further interfaces to other

languages such as OCL or Xtend can be provided. This allows domain experts to specify

change propagation rules in various languages. However, the use of a dedicated DSL for

change propagation rules can improve the implementation tasks and the maintainability

of the rules [Bus+18b; Löp18].

CPRL abstracts from the heterogeneity of elements from di�erent domains by consid-

ering the metaclasses and the references between them. Thus, the contribution of this

chapter complements the contribution of Chapter 5 to partially answer the �rst research
question.

Section 9.1 addresses the problems of using a GPL to specify the frequently used patterns

of change propagation rules. Based on these problems and patterns, the requirements

for the corresponding DSL are proposed in Section 9.2. Section 9.3 presents the language

design based on the aforementioned requirements. The main limitations of the language

and the assumptions during the development are discussed in Section 9.4. Section 9.5

brie�y summarizes the contributions of this chapter.

A former version of the language has been appeared in the Master’s thesis of Inna

Belyantseva [Bel18]. The results of this chapter are mainly based on the Bachelor’s thesis

of Martin löper [Löp18]. Both theses were supervised by the author of this dissertation.

A former version of the language was also presented in the paper [Bus+18b]. Thus, the

content of this chapter has been appeared in the aforementioned works.

9.1. Problem Statement

This section describes the problems and shortcomings while using a GPL to specify the

change propagation rules. In the following, the problems are illustrated using excerpts

of a metamodel in IS [Rat13] in Section 9.1.1 and a simpli�ed metamodel in BP based

on [Hei14] in Section 9.1.2. Section 9.1.3 discusses the problems arising during the usage

of a GPL for specifying the change propagation rules.

140

9.1. Problem Statement

1 public static List<EventType> lookUpEventTypeWithEventGroup(Collection<EventGroup>

modifiedEventGroup){

2 List<EventType> eventTypes = new LinkedList<EventType>();

3 for (EventGroup eventGroup : modifiedEventGroup)

4 eventTypes.addAll(eventGroup.getEvent());

5 return eventTypes; }

Listing 9.1: Java code for the lookup in the Event Example - Simpli�ed

9.1.1. Event Example – Forward Reference

Figure 9.1 illustrates the relationship between an event group and the corresponding event

types in IS. This metamodel is an excerpt from the event-based communication developed

by Rathfelder [Rat13]. Event types can be sent and received by components. Event groups

contain at least one event type. Similar to the concept of interfaces in CBSE, event groups

are contracts between the components sending the events and the components processing

them [Rat13].

If an event group is changed (e.g., removed), the contained event types can also be

a�ected. A change propagation rule should describe this change propagation. Listing 9.1

illustrates a possible Java code for this change propagation rule. This code searches

for event groups, which are a�ected by a change. Then, it navigates along a forward
reference to identify the contained event types.

EventTypeEventGroup event [1..*]

Figure 9.1.: Relationship between an event group and its event types - A simpli�ed excerpt

from PCM [Rat13]

9.1.2. Actor Example – Backward Reference

Figure 9.2 presents the relationship between an actor and its roles in an organization in

BP. This is a slightly modi�ed example from the organization environment metamodel

developed by Heinrich [Hei14]. This example considers the human actors as resources. In

this metamodel, each human resource takes up one or more roles in an organization [Hei14].

If a role in an organization is changed, the a�ected human actors need to be identi�ed.

This can be speci�ed by a change propagation rule as illustrated in the Java code example

in Listing 9.2. The Java code iterates over all actor resources and their roles in the model.

If the role is a�ected by the change, the code adds the corresponding actor resource to the

list of a�ected actor resources. This code represents a change propagation rule along a

backward reference.

141

9. A Language for Change Propagation Rules

RoleActorResource role [1..*]

Figure 9.2.: Relationship between an actor resource and the corresponding roles - An

excerpt from a simpli�ed metamodel based on BPUsagemodel [Hei14]

1 public static List<ActorResource> lookUpActorResourceWithRole(IS ISModel, Collection<

Role> modifiedRole) {

2 List<ActorResource> actorResources = new LinkedList<ActorResource>();

3 for (ActorResource actorResource : ISModel.getContainsActorResources())

4 for (Role role : actorResource.getRole())

5 if (modifiedRole.contains(role))

6 actorResources.add(actorResource);

7 return actorResources; }

Listing 9.2: Java code for the lookup in the Actor Example - Simpli�ed

9.1.3. Discussion

In the previous sections two change propagation rules along a forward and along a

backward reference are illustrated. However, a rule can also be along a chain of forward

and backward references. Figure 9.3 gives a simpli�ed excerpt from the PCM involving

interfaces, signatures, and entry level system calls [BKR09]. Detailed information on the

involving metamodels is given in Section 2.3 and Section 2.4. It is conceivable that changes

to operation interfaces can a�ect the corresponding entry level system calls. Beginning

from the a�ected OperationInterfaces in all models, the change propagation rule has to

search along a forward reference for OperationSignatures involved. Then, it has to search

along a backward reference to identify all EntryLevelSystemCalls referencing the a�ected

OperationSignatures. This change propagation rule is a combination of a forward and

backward navigation. In general, a change propagation rule can also be composed of a

chain of forward and backward navigation. The corresponding code, thus, can involve

redundant technical code. The recurring code can also be grouped together (i.e., a method).

However, both solutions could be prone to errors [Bus+18b].

OperationSignatureOperationInterface

[0..*]signatures__
OperationInterface

EntryLevelSystemCall

[1..1]OperationSignature
__EntryLevelSystemCall

Figure 9.3.: Relationship between an operation interface and the corresponding signatures

and entry level system calls - An excerpt from a simpli�ed metamodel based

on the PCM [BKR09]

The recurring technical code could also be a source of error during the evolution of

the metamodel. As described previously, the change propagation rules are described

for a concrete metamodel. Any change to the underlying metamodel results in further

changes in the change propagation rules. This results in changing the recurring technical

142

9.2. Requirements for Change Propagation Rule Language

code for describing the rules in a GPL. Thus, maintaining change propagation rules is a

time-consuming and error-prone task [Bus+18b].

A prerequisite for implementing change propagation rules in a speci�c GPL is pro-

gramming skills in that GPL. A further prerequisite is the knowledge of the software

architecture of the change propagation analysis approach [Bus+18b]. In other words, these

factors (i.e., coding still in general) in�uence the code quality and the maintainability of

the change propagation rules.

It is desirable to have a change propagation rule language, which hides the technical

aspects (e.g., technical recurring code of a GPL) from the domain expert. The language

should ease specifying and maintaining the change propagation rules by focusing on the

metaclasses and their relations. In this way, the language has to increase the reusability of

the change propagation rules [Bus+18b].

9.2. Requirements for Change Propagation Rule Language

As described previously, domain experts may not be the developers of the change propa-

gation analysis approach at the same time. Maybe, they have less experience in the GPL,

in which the change propagation analysis approach is written. Thus, the �rst requirement

is to separate the concerns between both roles. The language shall cover the common

and important change propagation rules, such as the selection of the model elements or

the traceability along the forward or backward references. The current version of the

language is based on KAMP4IS, KAMP4BP, KAMP4aPS, and KAMP4IEC to identify the

common and important categories of change propagation rules [Bus+18b; Bel18; Löp18].

The language shall have a succinct and unambiguous syntax. It aims at reducing the

e�ort for creating and maintaining change propagation rules. The language shall be

declarative. A declarative language hides the implementation details of model traversal

for example in a backward navigation. The language shall allow the validation of rules. In

other words, domain experts can specify only valid references between the elements. This

can be achieved by using an explicit parser and grammar with the type system. Further,

the language shall hide the cardinality of references from domain experts. This also aims

at reducing the work for maintaining the change propagation rules [Bus+18b].

9.3. Language Design

A DSL can be categorized based on the following characteristics (see Section 2.1): i) internal

vs. external, ii) imperative vs. declarative, iii) visual vs. textual, and iv) executable vs.

non-executable DSL [MHS05; Fow10; Löp18]. CPRL represents a declarative language, as

domain experts need only to specify the change propagation over a set of metaclasses

(i.e., a backward change propagation between two metaclasses). One of the requirements

of the CPRL was to reduce the amount of code, which is necessary by a GPL. This can

be achieved by abstracting from the technical code using an explicit grammar and code

generation. Thus, CPRL is developed as an external DSL. Further, CPRL is designed as

143

9. A Language for Change Propagation Rules

a textual language. It is a non-executable DSL. From the CPRL code Java code can be

generated.

Figure 9.4 illustrates a simpli�ed model of CPRL. Di�erent language elements of the

presented model illustrate the identi�ed categories during the analysis of the change

propagation rules of KAMP4IS, KAMP4BP, KAMP4aPS, and KAMP4IEC [Löp18; Bel18].

This section gives an overview on these language elements and their relationships. The

following subsections describe each language element in more detail.

A rule �le contains a rule �le header containing a set of con�gurations (e.g., imports)
and a set of blocks. Each block contains a set of change propagation rules. A block can

be a standard block. In this context, a block is used to group rules. A block can also be

de�ned recursively. The rules in a recursive block are evaluated recursively until they

identify new a�ected model elements. In the context of the language, a rule identi�es

for a set of input model elements a set of output model elements. In other words, a rule

selects a set of output model elements, which are potentially a�ected by the change. For

this purpose, a rule is composed of a �rst lookup followed by a set of lookups. The input

of each lookup is the output of the previous lookup. A lookup can either �lter model

elements (i.e., hereinafter referred to as selection) or enable the navigation between model

elements (i.e., hereinafter referred to as navigation). The �rst lookup in a rule is referred

to as rule source. The input of the rule source is the set of model elements, which are

a�ected by the change. The blocks and the rules are evaluated in the speci�ed order. A

navigation can either be a forward navigation or a backward navigation. In a forward
navigation, the lookup searches for the instances of the a�ected metaclasses along a

forward reference in the metamodel. In a backward navigation the search direction is

reversed. A selection can be either at the type level (i.e., hereinafter referred to as type
selection) or at the instance level (i.e., hereinafter referred to as instance selection). A

lookup can also be a rule call, which is a call to an already speci�ed rule to increase the

reuse of existing rules [Löp18]. The following sections describe the relevant language

elements of CPRL in more detail [Löp18].

9.3.1. Rule File

The rule �le represents the root element of the language. As described previously, a rule

�le is composed of a header and a set of blocks, which are described in the following in

more detail [Löp18].

9.3.1.1. Rule File Header

The �le header contains a set of metamodel imports, Java imports, model imports, and

instance declarations. In this way, the rules de�ned afterwards can reference the external

elements (e.g., metamodels) and further model elements.

In particular, the import can be done either at the level of metamodel or model. At the

level of metamodel, importing a metamodel allows accessing all instances of the metamodel.

At this level, a metamodel, a metaclass, or a structural feature can be referenced.

At the level of models, importing models allows accessing a speci�c instance or a set

of instances with speci�c properties. The properties represent the structural features.

However, model elements cannot be identi�ed in the same way as metaclasses, as model

144

9.3. Language Design

Rule File

Block

StandardBlock

{ordered}

RecursiveBlock

Rule

LookupRuleSource

Navigation

Selection

ForwardNavigation

BackwardNavigation

InstanceSelection

TypeSelection

RuleFileHeader

MetamodelImport

JavaImport

ModelImport

InstanceDeclaration

1
0..*

1

1

1

0..*

0..*

0..*

0..*

1..*

11 {ordered}

1

1

RuleCall

1..*
1 {ordered}

{ordered}

Figure 9.4.: A reduced and simpli�ed illustration of the relevant elements of CPRL as class

diagram, adapted from [Bus+18b; Löp18]

elements cannot be uniquely identi�ed in general (i.e., there is not any attribute in general,

which can be used to identify an instance uniquely.). Thus, an instance declaration can be

generally performed using the evaluation of a predicate.

The predicate can be declared for example by integrating a code block. In this case, all

instances for which the predicate is evaluated to true can be identi�ed. To implement

the code block Xbase is embedded into the grammar of CPRL. The use of an existing

expression language reduces the CPRL grammar. The compiler generates then Java code.

9.3.1.2. Blocks of Change Propagation Rules

A rule �le is composed of a set of blocks. Blocks can be standard or recursive. The

standard blocks group the change propagation rules based on the semantics of the change

propagation (e.g., inter-component change propagation or change propagation due to

hardware change). The rules in a standard block are evaluated only once in the speci�ed

order. A recursive block allows evaluating the rules at least once. The evaluation of the

change propagation rules in an iteration results in new a�ected elements, to which the

rules of the recursive block can be applied. In this case, the rules are evaluated again. The

rules are evaluated, until no new model elements are identi�ed in an iteration. An example

of the application of a recursive block is the analysis of the change propagation within

the composition of model elements. In this example, model elements can be recursively

composed of other model elements. To specify change propagation rules for hierarchically

composed model elements, recursive blocks can be used. The blocks and the contained

rules are evaluated in the order speci�ed by domain experts.

145

9. A Language for Change Propagation Rules

9.3.2. Rule

The approaches presented in this thesis are based on change propagation rules. Thus, rules

are the main elements of CPRL. A rule has an input and an output. The input of a rule is a

subset of model elements, which are a�ected so far. This subset of model elements has to

ful�ll a speci�c predicate (e.g, a speci�c type). After the input is selected, a rule de�nes a

change propagation along references to a set of speci�c model elements. This set presents

the output of the rule. Both input and output of a rule are typed [Löp18].

In general, change propagation rules can be de�ned at the level of metamodel or at the

level of models. If the change propagation rules are de�ned at the level of metamodel, they

can be applied to all instances of the metamodel. De�ning the change propagation rules at

the level of models allows domain experts to specify �ne-grained change propagation rules.

These change propagation rules can be used, for example, if the metamodel is de�ned at a

high abstraction level or if domain experts need to di�erentiate between speci�c instances

of a metaclass. However, they may not be generalizable to the other instances of the same

metamodel, as they are tailored to a speci�c metamodel instance.

A rule is composed of a name, a rule source, and a set of lookups. The name is also a

unique identi�er for the rule. In the following, the rule source and lookups are described

in more detail [Löp18].

9.3.2.1. Roule Source

The rule source selects the model elements, to which the rule has to be applied (i.e., input).

The model elements are of a speci�c source type or its subclasses. This type represents

the type of the rule input. A rule source can be a metaclass rule source, an instance rule

source, or an external rule source.

In a metaclass rule source, a metaclass is referenced. This rule source selects all model

elements that have the same type as the metaclass or one of its subclasses.

In an instance rule source, an instance of a metaclass is referenced. Instance declaration

is described in Section 9.3.1.1.

The external rule source aims at reusing the existing rules. In this case, a speci�c rule

can be referenced. Note that the rules must not reference each other in a way that they

cause a circular dependency. If a rule references another rule, the referenced rule is applied

to the model elements and its output is used as the input of the current rule. The source

type is the type of the output of the referenced rule.

9.3.2.2. Lookups

Lookups are the basic units de�ning the propagation of a change between two sets of

elements. The �rst set is the input of the lookup and the second set is its output. The

concatenation of a set of lookups in a rule allows identifying the a�ected elements based

on the rule sources. In this concatenation, the output of each lookup, which is not the

last lookup, is the input of the next lookup. The output of the last lookup represents the

output of the rule. The output of the rule is added to the list of a�ected elements. In other

words, the outputs of the lookups in between are forwarded to the next lookup and are

not added to the list of the a�ected model elements. This is the main di�erence between a

146

9.3. Language Design

rule and a lookup. Further, the output type of a lookup in between has to have the same

input type of the next lookup.

There are di�erent types of lookups: i) selection, ii) navigation, and iii) rule call. In the

following, di�erent lookup types are described in more detail [Löp18].

Selection of Model Elements The selection speci�es which model element has to be con-

sidered in a rule. Thus, the use of the selection narrows down the set of model elements in

a rule. There are di�erent selection types: i) type selection, ii) instance selection, or iii)

instance selection using predicates.

The type selection allows identifying model elements of a speci�c type. It can be a

general type selection or a subtype selection. The general type selection allows selecting

any types, while the selection type in the subtype selection has to be a subtype of the

input.

The instance selection references an instance, which is already declared. The instance

selection using predicates is a special case of the instance selection, which does not require

the declaration of the instance in advance. In this case, the instances can be selected using

a code block (i.e., predicate) in the rule.

Navigation between Model Elements The use of navigation allows identifying the model

elements of the output set based on the model elements of the input set. This lookup type

navigates along the reference between the model elements of the input and the output. It

identi�es for the input set of a�ected model elements the output set of potentially a�ected

model elements. The navigation direction and the navigation condition determine the

a�ected model elements.

The navigation direction speci�es along which references the model elements have to

be determined. It can be either forward or backward. Each navigation direction de�nes

the available navigation conditions. Forward and backward navigation are described in

the following in more detail [Löp18].

In a forward navigation, the target for the navigation along a structural feature has to

be de�ned. In particular, the target of a forward navigation can be a structural feature, a

metaclass, or an instance, as illustrated in Listing 9.3. If the target is a structural feature, the

lookup determines all model elements based on the value of a structural feature. In other

words, the lookup identi�es all model elements (i.e., the output), to which the input model

elements reference using the value of the speci�c structural features. Additionally, the

identi�ed model elements have the type or a subtype of output. If the target is a metaclass,

the lookup identi�es all model elements, which are instances of the given metaclass or its

subtypes. If the target is an instance of a metaclass, the set of instances has to be de�ned

previously using the instance declaration (see Section 9.3.1.1). In this case, the output is a

subset of this set.

In a backward navigation, the source for the navigation along a structural feature has

to be de�ned. In particular, the source of a backward navigation can be a metaclass, a

metaclass together with a structural feature, or an instance, as illustrated in Listing 9.4. If

the source is a metaclass, the lookup identi�es all model elements, which are instances of

the given metaclass or its subtypes. It is also conceivable that the source has more than

147

9. A Language for Change Propagation Rules

forward navigation = "->" forward navigation target

forward navigation target = forward navigation metaclass target

| forward navigation instance target

| forward navigation structural feature target

forward navigation metaclass target = "metaclass(" metaclass reference ")"

forward navigation instance target = "instance(" instance declaration reference ")"

forward navigation structural feature target = "feature(" structural feature reference "

)"

Listing 9.3: An excerpt from the grammar of CPRL for forward navigation in EBNF

backward navigation = "<-" backward navigation source

backward navigation source = backward navigation metaclass source

| backward navigation instance source

backward navigation metaclass source = "metaclass(" metaclass reference ["," structural

feature reference] ")"

backward navigation instance source = "instance(" instance declaration reference ")"

Listing 9.4: An excerpt from the grammar of CPRL for backward navigation in EBNF

one structural feature with the same type as or a subtype of the input. In this case, the

speci�c structural feature can be used in addition to the metamodel. If the target is an

instance of a metaclass, the set of instances has to be de�ned previously based on the

instance declaration. In this case, the output of the rule is a subset of this set.

Further, it can be important to select causing elements to identify, how the change

propagates in a system model. For this reason, the causing element marker can be used

to select navigation (i.e., causing elements) in a change propagation rule. The causing

elements in a rule cause that a speci�c element is a�ected by a change. If no navigation in

a rule is marked, the �rst navigation is by default the causing element. If an a�ected model

element has not been added to the task list, the model element and its causing element

will be added. Otherwise only the causing element has to be updated.

Rule Call As described previously, rule calls are used to increase the reusability of the

change propagation rules. If a rule is called as a part of another rule, the output of the

referenced rule is returned to the other rule. In this context, a rule call can be seen as a

call to a stateless helper function. Thus, rule calls can be used to avoid code duplicates.

9.3.2.3. Example

Section 9.1 describes various issues regarding the recurring technical code in a GPL during

the implementation of the common change propagation rules. Listing 9.5 illustrates

the application of the language to two examples from Section 9.1 involving the change

propagation each along the forward and backward reference. These examples show that

the rules in CPRL have less technical code. In Listing 9.5, the metamodels for IS and BP

are imported as is and bp, respectively.

148

9.4. Assumptions and Limitations

rule EventTypeWithEventGroup: metaclass(is::EventGroup) -> feature(event);

rule EventTypeWithEventGroup: metaclass(is::EventGroup) -> metaclass(is::EventType);

rule ActorResourceWithRole: metaclass(bp::Role) <- metaclass(bp::ActorStep);

rule ActorResourceWithRole: metaclass(bp::Role) <- metaclass(bp::ActorStep,role);

rule EntryLevelSystemCallWithOperationInterface: metaclass(is::OperationInterface) ->

feature(signatures__OperationInterface) <- metaclass(

is::EntryLevelSystemCall,operationSignature__EntryLevelSystemCall);

Listing 9.5: CPRL rules for the example - two alternatives for forward navigation

(i.e., the EventTypeWithEventGroup rule) and backward navigation (i.e., the

ActorResourceWithRole rule)

The �rst two rules illustrate two alternatives for a forward navigation, depicted in Fig-

ure 9.1. Instead of invoking the generated method getEvent, the rules focus on the

metamodel in IS. The �rst rule shows a forward navigation based on the structural fea-

ture event, while the second rule illustrates a forward navigation based on the metaclass

EventType. Using a metaclass in a change propagation rule causes that the rule considers

all structural features between both metaclasses. By contrast, the �rst alternative allows

selecting a speci�c structural feature between two metaclasses unambiguously.

The next two rules show two possible alternatives to navigate along a backward refer-

ence. The third rule is an example of a backward navigation, which source is a metaclass.

In this rule, the a�ected metaclass is speci�ed, which allows considering all structural

features in between. By contrast, the fourth rule speci�es both the metaclass and the struc-

tural feature in the backward navigation. The last rule speci�es the change propagation

for the third example, illustrated in Figure 9.3. It consists of a forward navigation based on

a speci�c structural feature and a backward navigation using a metaclass and a structural

feature.

This example illustrates two bene�ts of a DSL: i) less technical code in the case of the

concatenation of forward and backward navigation and ii) omitting the cardinality. This

example shows that domain experts do not need to specify the cardinality in the CPRL ex-

plicitly. In other words, no distinction is made between the syntax of the structural features

signatures__OperationInterface and operationSignature__EntryLevelSystemCall. If

domain experts want to implement the change propagation rule in Java, they have to

di�erentiate between the return types of the generated methods invoked. In this example,

while the generated method getOperationSignature__EntryLevelSystemCall() returns

one element, the generated method getSignatures__OperationInterface() returns a

collection of elements.

9.4. Assumptions and Limitations

CPRL was designed to specify several common (i.e., not all) change propagation rules. The

design of the current version of CPRL is based on the categories of change propagation

rules identi�ed during the analysis of KAMP4IS, KAMP4BP, KAMP4aPS, and KAMP4IEC.

These change propagation analysis approaches and the corresponding rules were developed

independent of the language (i.e., before CPRL were developed). In general, CPRL supports

change propagation rules using the forward and the backward navigation based on a

149

9. A Language for Change Propagation Rules

metamodel or its instances. These rules can be executed either sequentially or recursively.

The language provides also other features such as selecting model elements at di�erent

levels in an inheritance hierarchy. The use of CPRL can be considered as optional. For

example, if domain experts are experienced in Java programming, they do not need to use

the proposed language. Further, interfaces to the other programming languages (e.g., OCL

or Xtend) should also facilitate implementing the change propagation rules. Additionally,

other declarative languages such as VQL can also be used [Löp18].

The design of CPRL is based on sets of model elements. For example, predicates use the

elements of these sets. This property aims at hiding the technical code regarding the loops

for selecting only a subset of model elements. Additionally, CPRL can be regarded as local,

as it allows access to only variables in the current loop in the case of nested loops. Thus,

the navigation condition for a speci�c instance is based on the attributes of this instance.

Recursive blocks in CPRL are based on model elements, which are identi�ed in the past

iterations (i.e., the sets cannot be de�ned by users). A recursive block is executed repeatedly

until the change propagation rules contained in the block do not identify further model

elements. Further, the user cannot de�ne new attributes in a lookup or add attributes to

model elements. However, as described previously, the features not provided yet by CPRL

can be written using imperative code in Java. These features not supported yet are not

conceptual restrictions of the language and can be implemented as future work [Löp18;

Bus+18b].

9.5. Conclusions

This chapter presented a declarative language to describe change propagation rules. The

main goal of the development of the language was to support relevant and common

patterns of change propagation rules. The development of the language was based on our

experience that speci�c patterns of change propagation rules are reused. The main pattern

of the rules was the navigation along or against a reference between two metaclasses,

which were called forward and backward reference, respectively. Thus, the language aims

at abstracting from the recurring technical code needed to specify these patterns of rules in

a GPL. This leads to less time to develop rules and the reduction of errors. Further, the use

of a dedicated language provides support to domain experts, who are not the developers

of the change propagation analysis approach or have a little programming experience in a

GPL. Additionally, the language supports sequential and recursive execution of rules at

the metamodel or model level. As the language is a DSL with a reduced set of language

elements, not all possible rules can be speci�ed in the language. To address this issue, the

generated code resulted from the code written in the DSL can be extended by integrating

imperative code in Java. Summarized, this chapter complements the contribution of the

maintainability analysis methodology (see Chapter 5), as it abstracts from the heterogeneity

of elements from di�erent domains by considering metaclasses and references between

them. In this way, it partially answers the �rst research question.

150

10. Categories of Change Triggers in
Business Processes

A software system continuously changes through its life cycle [MG10]. Patterns of change

trigger aims at better predicting and managing possible future changes. For this purpose,

several patterns of change triggers were developed in IS. Maybe the most important

pattern was proposed by Swanson in [Swa76]. This pattern involves three dimensions

categorizing various maintenance activities. Due to this categorization, a maintenance

activity can be corrective, adaptive, or perfective. Several researchers use or adapt his

categorization in di�erent ways.

IS are used in several BP [Ros+17a; Hei+17]. Thus, the activities of BP can be gener-

ally considered as system steps and actor steps [Hei+17]. While system steps present

the activities performed by IS, actor steps are the activities, which are performed by

humans [Hei+17]. Actor steps and system steps in BP depend on each other and a�ect

each other mutually. Consequently, a change in an actor step and/or in a system step can

result in further changes in other actor steps and/or system steps. In general, a change

in BP can lead to further changes in the IS used by the BP and vice versa [Ros+17a]. In

other words, changes in BP can be considered as one of the main change triggers in IS

and vice versa [Cha+01]. In contrast to existing work in IS regarding the categorization of

change triggers, there is no comprehensive category of change triggers in the domain of

BP. To identify the categories of change triggers a literature review was conducted in BP.

This section gives an overview on the design and the results of this review. Section 10.1

presents the terminology used for the literature review. Section 10.2 gives an overview of

the research methodology. The �ndings of the study are provided in Section 10.3. Based

on these �ndings, a categorization scheme for change triggers in BP was developed. Sec-

tion 10.4 presents this categorization. The validity discussion about the research method

is given in Section 10.5. The last section summarizes the contributions of this chapter.

The content of this chapter is based on the results of the diploma thesis of Angelika

Kaplan, which the author of this dissertation supervised [Kap17]. A follow-up study on

this topic was also conducted, which has been appeared in the papers [Kap+18a; Kap+18b].

Thus, most content of this chapter was appeared in the aforementioned works.

10.1. Terminology

There are several de�nitions for change triggers in BP, which are implicitly or explicitly

described in the existing literature. For example, Karthik and Reddy de�ne a change

trigger as “the initiated change is the primary cause of the propagation and the e�ect

of that change becomes the cause of the subsequent stage” [KR16, p. 5]. This de�nition

151

10. Categories of Change Triggers in Business Processes

implicitly introduces a chain of change, which plays an important role in the impact

analysis. Another de�nition of change triggers is proposed by Nwokeji et al. as the

“event or circumstance that can bring about changes in an enterprise” [Nwo+18, p. 1].

For this review, the de�nition of change trigger was generalized and extended to “an

event that can in�uence the operational process. Change triggers can be regarded as

reasons, which initiate a change process. They a�ect the activities of a BP (i.e., manually,

semi-automatically, or automatically) and the actors involved. A change trigger can be a

unique event during the operating time of a BP or can occur recurrently” [Kap17, p. 131].

In this context, categories for change triggers “aggregate similar reasons or events and

group them based on their semantics” [Kap17, p. 131].

10.2. Research Method

To identify change triggers in BP the following main research question was originally

de�ned: “Which categories of change triggers can be identi�ed in BP” [Kap+18a, p. 1]?

During the conduction of the pilot study, two general categories of papers could be

identi�ed: the empirical and non-empirical studies. However, most papers fall into the

latter one. Additionally, the reviewed papers addressed several sub-domains of BP (e.g.,

Business Process Flexibility (BPF)). Due to both �ndings, two (follow-up) secondary

research questions were de�ned to structure the results of the review. They also aim at

improving the classi�cation of change triggers. In addition to the main research question,

both questions were answered during the literature review. First secondary research
question: “In which sub-domains of BP can change triggers be identi�ed” [Kap17, p. 52]?

Second secondary research question: “Is there any empirical evidence for change

triggers provided in a paper” [Kap17, p. 52]?

Figure 10.1 presents the approach during the literature review. To develop a review

protocol a pilot study was conducted iteratively. The goal of the pilot study was to evaluate

the plan during the study. Based on its results, the review protocol of the review was

de�ned.

10.2.1. Pilot Study

The pilot study consists of four iterations. The �rst both iterations can be considered as

a keyword and a descriptor-based approach to identify the appropriate search queries.

However, the results of these iterations showed that the number of search results was very

high. Further, the search results did not contain any relevant papers regarding categories

of change triggers. Thus, the third iteration used structured and generalized search queries.

Based on the results of the third iteration, the search and the analysis strategy were

re�ned in the last iteration. The following subsections describe the pilot study in more

detail [Kap17].

1. Iteration

The goal of the �rst iteration of the pilot study was the identi�cation of the best search

strategy. Thus, several strategies were evaluated in this iteration:

152

10.2. Research Method

Pilot Study

Research Question

Analyzing a Random Set of Papers

Evaluating Search Strategies

Refining Inclusion & Exclusion Criteria

Full-Text Reading

Data Extraction

Interpreting the Results

Evalu-
ating

Venues

Reference-
based
Search

(i.e.,Snow-
balling)

Database Search

Refining
Research
Queries

Identifying
Databases

Review Protocol
Research Question

Full-Text Reading

Applying Inclusion & Exclusion Criteria

Extracting Further Search Terms

Data Extraction

Reducing the Number of Papers

Modified Backward Reference-based Search
for Included Papers

Database Search Strategy

Data Synthesis

Included
Papers

Applying Inclusion & Exclusion Criteria

New Search Terms

Input

Output

No New Search Terms

Figure 10.1.: Overview of the review process involving the pilot study and the review

protocol as an activity diagram [Kap+18a, p. 2]

• Database: The main and the secondary research questions involve several domains.

Thus, the database strategies recommended by Kitchenham [Kee07] had to be adapted

to multidisciplinary databases.

• PICO(C): The PICO(C) strategy, which originates from the medical technique, can

be used to identify research questions and search strategies [Kee07]. The acronym

PICO(C) stands for Population (or Problem), Intervention, Comparison, Outcome, and

Context [Kee07]. However, this strategy cannot be used for the research question in

this review, as the main research question cannot be mapped to the attributes of the

PICO(C) strategy.

• Reference search: This search strategy is based on the initially included papers.

However, as there were not any primary included papers, a snowball search (i.e., a

forward and backward reference search) could not be used in this iteration. Thus,

the �rst step is to show that such publications exist.

• Manual screening of a set of selected venues: A further method to reduce the number

of publications is the manual screening of a set of selected venues. However, this

method had also to be excluded due to the multidisciplinary nature of the main

research question. Another important prerequisite for this method is the period, in

which the research papers were published. However, no information is available

regarding the period, in which the relevant papers with focus on the main research

153

10. Categories of Change Triggers in Business Processes

question were published. Thus, this was a further reason for excluding this method.

Additionally, screening of only a set of selected venues can result in biased results.

As described previously, the database search was the main search strategy in the �rst

iteration. The �rst task of this strategy was to build the search queries. In other words, a

keyword-based and a descriptor-based approach were used. The terms in these queries

were derived from the terminology used in IS. The following search queries were used:

"business process" "change propagation", "business process" "change impact", business

process evolution, business process co-evolution information system, "business process"

"change type", "business process" "change categories", business process information system

change, business process software change, business process modi�cation, enterprise archi-

tecture change impact, enterprise architecture change propagation, and business process

maintenance. Google Scholar (GS) with default preferences was used as the main database,

as it is a multidisciplinary bibliographic database. To reduce the number of hits, the exact

match was used for some queries. In this way, an AND concatenation can be avoided.

Classi�cation scheme (e.g., methods proposed in [BRT93]) could not be used in the search

strategy due to the multidisciplinary nature of the main research question [Kap17].

The aforementioned search queries resulted in a high number of hits (i.e., in some

cases more than 3000000 hits). To improve the search queries, random subsets of the

results were analyzed. The analysis showed that there is only a little overlap of the query

results. However, these subsets did not result in any relevant publications regarding the

categories of change triggers. Thus, the search queries had to be improved in the next

iterations [Kap17].

2. Iteration

In the second iteration, the search queries were generalized. The new queries were

comprised the domain speci�cation (i.e., business process or work�ow), changes and

the corresponding change aspects (i.e., in this case triggers and their synonyms), as

well as synonyms of change categories. Other examples of change aspects are e�ects or

implementations of changes. However, only change triggers are relevant for the main

search query. Thus, change aspect refers to change triggers in the following. Applying the

previous criteria resulted in the following types of search queries [Kap17]:

• ("business process" OR work�ow) AND change AND (taxonomy OR classi�cation

OR class OR classes OR dimension OR typology OR topology OR type OR types OR

category OR categories)

• ("business process" OR work�ow) AND ("change category" OR "change categories"

OR "category of change" OR "categories of change") and ("business process" OR

work�ow) AND ("change type" OR "change types" OR "type of change" OR "types of

change")

The multidisciplinary bibliographic databases were expanded to the following list: GS,

SpringerLink, ACM DL, Web Of Science (WOS), Scopus, Bielefeld Academic Search En-

gine (BASE), and Association for Information System research electronic Library (AISeL).

However, the number of hits was still too high (e.g., in some cases more than 400000 hits).

154

10.2. Research Method

Similar to the previous iteration, random subsets of the results were reviewed. This

aimed at improving the search queries to identify the relevant papers as e�ciently as

possible. The result of the review was a few numbers of research papers with focus on

changes, however, neglecting the change aspect [Kap17].

3. Iteration

The results of the �rst two iterations showed that there is a need for generalized search

queries with a well-de�ned structure. In other words, they must not depend on BP sub-

domains such as BPF or on a speci�c sub-domain of a BP such as health care systems.

Similar to the previous iteration, the change aspect in the search query was speci�ed as

the trigger of the change in this iteration. Other change aspects such as impact were

omitted [Kap17].

In this iteration, the results of two types of search queries were analyzed. As a result,

a search query is the cross product of the following search terms: i) research domain

under study (i.e, "business process" and "work�ow"), ii) "change", iii) synonyms of the

change aspect (i.e., "trigger"), and optional iv) synonyms of the classi�cation scheme (e.g.,

"category"). While the �rst three search terms are mandatory, the latter one is optional.

Thus, the �rst type of the search queries consists of three search terms, while the second

one consists of four terms. Synonyms of each search term were used in a search query.

This iteration used the same bibliographic databases as in the previous iteration. The

number of search terms in a search query is limited in some databases (e.g., a search query

in IEEE Xplore can consist of a maximum of 15 search terms). For this reason, AND and

OR concatenations could not be used for all databases. Thus, explicit cross products of the

search terms were built [Kap+18a].

Both types of search queries still resulted in a high number of hits (e.g., in some cases

more than 300000 hits). Similar to the previous iterations, various random subsets of the

results were reviewed. However, they did not contain relevant papers (i.e., papers with

focus on categories of change triggers). Thus, there was still a need for improving the

search queries. The logical connection between the second and the third search term in

a search query is AND. In this case, the AND concatenation does not result in a strong

connection between both terms. To improve the search query, this concatenation has to

be adapted. Following approaches can be used to adapt the search queries: i) The second

and the third search terms can be combined to one search term (i.e., a phrase search such

as "change trigger*" or "trigger* for change*"). ii) Alternatively, both search terms can be

concatenated using proximity operators (e.g., change* NEAR/5 trigger*). The application

of both approaches and the evaluation of their results showed that most bibliographic

databases do not support the proximity operators. Thus, the �rst approach was applied to

improve the search query in the next iteration [Kap+18a].

4. Iteration

As discussed in the previous iteration, the search queries contain a phrase search consisting

of the term "change" and the synonyms of "trigger" (e.g., "change trigger*"). This iteration

aims at identifying the best search query in terms of relevant papers. Thus, the following

types of search queries were evaluated in this iteration to re�ne the search query [Kap+18a]:

155

10. Categories of Change Triggers in Business Processes

• The �rst type of search queries consists of two search terms: the research domain

under study (i.e., "business process" and "work�ow") and the phrase search consisting

of "change" and synonyms of "trigger" (e.g., "change trigger").

• The second type of search queries consists of three search terms: in addition to the

search terms of the previous type, this type also consists of synonyms of classi�cation

(e.g., "category").

To identify the best search query, random subsets of the results of both search queries

were evaluated. The results of the �rst search query contained more relevant papers. Thus,

this search query was used during the study. Additionally, the full text of the random

sets of papers had to be read to decide whether the papers contain categories of change

triggers. A further bene�t of the full-text reading was extracting further synonyms for

each search term. Further, the search queries had to be adapted due to the speci�c search

characteristics of each database [Kap+18a].

Search Strategies The resulting search strategies of the pilot study are described in the

following [Kap17; Kap+18a]:

Bibliographic databases: The main search strategy was the use of bibliographic databases.

Following bibliographic databases were used in the review: i) GS is a multidis-

ciplinary database. One of the results of the pilot study was that the results of

GS searches contain papers of other databases such as AISeL, IEEE Xplore, and

SpringerLink search. The search results of ii) Scopus and iii) WOS contained only

a few papers. iv) BASE is also a multidisciplinary database. This database provides

options to include the search results of other databases such as AISeL and Springer

Open Choice. In other words, ACM DL, IEEE Xplore, AISeL, and SpringerLink were

omitted, as GS, Scopus, WOS, and BASE contained their search results.

Reference-based search: After a set of included papers has been identi�ed, a reference-

based search was used as the second strategy (i.e., forward and backward snow-

balling). However, this strategy was considered as ine�cient to answer the main

research question. Wohlin de�ned the e�ciency as “the number of included papers

in relation to the total number of candidate papers examined” [Woh14, p. 7]. Thus,

this strategy was conducted only in one iteration.

Selected venues: As described previously, this strategy was excluded due to three main

reasons: i) The research questions were general and multidisciplinary. ii) There were

not any initial included papers. iii) Considering only a set of selected venues can

lead to biased results.

Reading Strategies While the previous section deals with the search strategy, this section

considers the reading strategies to extract the data and to answer the research ques-

tions [Kap17; Kap+18a].

Bibliographic databases: For the papers resulted from the database searches, the title, the

abstract, and the conclusion were read. Further, a local-reading method for the

156

10.2. Research Method

relevant sections containing the search terms was conducted. Additionally, the

inclusion of a paper required skimming the whole paper. After a paper was included,

the relevant data had to be extracted. For this reason, the whole paper was read

intensively.

Modified reference-based search: Local reading the relevant sections could not be applied

to this search strategy, as search terms are required for this method. However, as

these papers were identi�ed by reference, there are not any search terms for these

papers. Consequently, the title, the abstract, and the conclusion of the papers were

analyzed in the �rst step. In the second step, the whole paper was skimmed. If the

paper was included, its content was intensively analyzed in the next phase.

Empirical studies: To identify the empirical studies, the same approach was applied as in

the database search. Further, the method design was analyzed.

10.2.2. Review Protocol

The results of the pilot study led to the review protocol. Based on the Kitchenham’s

guidelines [Kee07] the study was conducted iteratively and incrementally. This section

describes the review protocol in more detail [Kap17; Kap+18a].

10.2.2.1. Research Question

As described in Section 10.2, the goal of the review was to answer the main research

question: “Which categories of change triggers can be identi�ed in BP” [Kap+18a, p. 1]? The

goal of the pilot study was to evaluate the plan of the review. The resulting search queries

were formulated generally. This allowed answering the secondary research questions

regarding the BP sub-domains and the empirical evidence.

10.2.2.2. Search and Data Extraction Process

As described previously, the main search strategy was the database search. Based on the

results of the pilot study (see the fourth iteration of the pilot study) generic search queries

composed of two main search terms were formulated: i) the domain under study (i.e.,

"business process" and "work�ow") and ii) the phrase search consisting of two search terms:

the term "change" and synonyms of the term "trigger". The search query can be considered

as a cross product of both search terms. During the review, further synonyms of trigger

were found. The cross product allows de�ning a new search query by simply combining the

�rst search term with the new synonyms of the second search term. Table 10.1 illustrates

the terms of the phrase search composed of the synonyms of the term "trigger" and the

term "change".

As described previously, GS, WOS, Scopus, and BASE were used in the database search

phase. The search queries were adapted to the syntactical characteristics of each database.

157

10. Categories of Change Triggers in Business Processes

synonyms of "trigger" phrase search for "change" and synonyms of "trigger"

trigger

"change trigger*"

"trigger* for change*"

"trigger* of change*"

"trigger event*"

reason

"change reason*"

"reason* for change*"

"reason* of change*"

force

"change force*"

"force* for change*"

"force* of change*"

driver

"change driver*"

"driver* for change*"

"driver* of change*"

cause

"change cause*"

"cause* for change*"

"cause* of change*"

need

"need for change"

"need to change"

origin

"origin* for change*"

"origin* of change*"

source

"source* for change*"

"source* of change*"

lever

"change lever*"

"lever* for change*"

"lever* of change*"

Table 10.1.: Synonyms for the phrase search involving the term "change" and synonyms

of the term "trigger" [Kap17; Kap+18a; Kap+18b]

10.2.2.3. Analysis Strategies

Despite conducting a pilot study, the number of database hits was still in some cases too

high. While the number of hits of WOS, Scopus, and BASE for any search query was not

more than 170, the number of GS hits for some search queries was more than 17000. For

this reason, analyzing all papers resulted from the database search was not feasible. Thus,

the main goal of this phase was to �nd a strategy to analyze only a subset of hits and,

thus, to identify the relevant papers e�ciently (see [Woh+00] for the de�nition of the

e�ciency). To address this issue, the �rst 20 papers for all search queries of all databases

were analyzed. As the number of hits for GS was much higher than WOS, Scopus, and

BASE, the following two methods were used to systematically �nd subsets of search results

for GS: i) the decomposition of the second search term (i.e., the phrase search) and ii) the

use of a modi�ed search strategy, if the number of hits for the new search queries was still

too high. A further goal of these methods is to avoid the ranking bias of the publications

by the databases. For example, higher citation of a paper can improve its ranking. For this

158

10.2. Research Method

reason, GS can rank older publications higher than the recent ones. Both methods are

presented in the following in more detail [Kap17; Kap+18a].

Decomposition of the second search term According to this method, the more hits of a

search query by GS, the more papers for this query have been analyzed. Depending on

the number of the initial GS hits two categories of the search queries can be built: i) The

number of hits for the search queries in the �rst category is less than 1000. ii) The number

of hits for the search queries in the second category is more than 1000. In the �rst category,

the �rst 20 papers of the search results were analyzed. The search queries in the second

category were decomposed into further search queries based on the second part of the

search query (i.e., the phrase search). This method replaced the asterisk character (i.e., *)

in these queries with the equivalent characters explicitly. In this way, the search query

was replaced with several search queries. In the next step, the �rst 20 papers in the result

of each search query were analyzed. An example of the application of this method is for

the query part "reason* for change*". The number of results for the corresponding search

query was about 2180. This method decomposed this query part into the following query

parts: "reason for change", "reasons for change", "reason for changes", and "reasons for

changes". For each query, the �rst 20 papers were analyzed.

Modified search strategy As described previously, the older a publication, the higher GS

can rank it due to more citations. This method aims at avoiding the ranking bias of these

publications. Similar to the previous method, this method was applied to the search queries

with a high number of hits by GS. Depending on the number of hits of the search queries,

their results were divided into three categories:

• If the number of hits for a search query was less than 500, the �rst 20 papers were

analyzed.

• If the number of hits for a search query was between 500 and 1000, the �rst 20

papers were analyzed. Then, the papers were sorted by time. Additionally, the �rst

20 papers published between 2011 and 2016 were analyzed.

• In all other cases, the method in the second case was applied. Additionally, the �rst

20 papers published between 2006 and 2011 were analyzed.

Tables A.1 to A.9 in Appendix A.2 present the search queries for each database and the

number of hits. They also show which methods were applied to each search query.

10.2.2.4. Inclusion and Exclusion Criteria

The following sections describe the inclusion and exclusion criteria for the main and the

secondary research questions.

Criteria for themain research question This section presents the inclusion criteria for the

main research question. The criteria were based on the content and the bibliographical

data of the papers:

159

10. Categories of Change Triggers in Business Processes

• An included paper has to be in one of the sub-domains of BP. In other words, the

title, the abstract, the keywords (or the descriptors), or the introduction must contain

information regarding BP. Typical indicators for such information are terms such as

Change Management (CM), process management, Business Process Change (BPC),

Business Process Modeling (BPM), or BPF.

• An included paper has to explicitly contain the terms indicating categories of change

triggers. Examples of typical terms for categories are class/es, category/ies, or type/s.
Other change aspects such as change impact were omitted. A paper can also contain

more than one change aspect. In this case, only papers are included, which explicitly

describe change triggers. Although all BP sub-domains are considered (e.g., BPF or

work�ow management), the categories of change triggers have to be generic (e.g.,

independent of a speci�c sub-domain).

• Only research papers from conferences, journals, symposiums, workshops, and

magazines were analyzed.

The exclusion criteria for the study were as follows:

• Papers, which are not in any sub-domain of BP, were excluded.

• Duplicates and redundant information were excluded. Note that duplicates are also

papers with identical semantic contents and contributions. Examples of this are

papers, which were published both in a conference and in a journal as an extended

version. In this case, only the journal papers were included.

• Papers, which are shorter than 7 pages (e.g., short papers), were excluded.

• Papers, which were not free available, were excluded.

• Grey literature were excluded. Examples are technical reports, theses, presentation

slides, white papers, books, or book chapters.

• Papers, which are not written in English, were excluded.

Additional criteria for the secondary research question regarding empirical studies The in-

clusion and exclusion criteria for the main and the secondary research questions were the

same. The following inclusion criteria were only considered for the secondary research

question regarding empirical studies:

• The title or the abstract has to indicate that an empirical study was conducted. The

abstract should describe the method design. Otherwise, the corresponding sections

regarding the method design were reviewed.

• The results of the paper have to originate in a cooperation with an organization (i.e.,

industry).

160

10.3. Findings

Data item Description

Study ID Unique reference ID for the paper

Title Title of the Study

Year Calender year of the publication

Sub-domain Research context or domain

Venue Conference, journal, symposium, workshop, or magazine

Name Name of the speci�c venue

Category Change trigger categories in BP as quotation from the paper

Study type Empirical or non-empirical study

Research method Research design of an empirical study

Change trigger Change triggers in empirical studies as quotation from the paper

Table 10.2.: Data extraction format[Kap17, p. 63]

10.2.2.5. Data Extraction Format

After including a paper, it has been intensively analyzed regarding the research questions.

Table 10.2 presents the data extraction format during the review.

10.3. Findings

This section presents the results of the literature review. The goal of the review was to

answer the main research question and, then, the secondary research questions. Thus,

the papers were analyzed regarding these aspects (i.e., categories of change triggers in

BP, the corresponding BP sub-domains, and the empirical evidence). A descriptive (i.e.,

non-quantitative) data synthesis was conducted for each included paper to extract data

according to Table 10.2. The data synthesis deals with collecting and summarizing the

results of the papers included [Kee07]. Section 10.3.1 presents the papers identi�ed during

the review to answer the main research question. Section 10.3.2 shows the identi�ed

papers regarding the secondary research questions [Kap17; Kap+18a].

10.3.1. Publications on Categories of Change Triggers in Business Processes

The papers were analyzed with regard to the inclusion and exclusion criteria. The included

papers contain terms, which explicitly indicate the change trigger and a categorization.

After a paper has been included, a full-text reading was conducted. To answer the �rst

secondary research question, the corresponding BP sub-domain (e.g., BPF) for each paper

was also extracted. Further, a paper can be either empirical or non-empirical. Tables 10.3

and 10.4 give an overview of the study results.

Overall, only one of the included papers was an empirical study (see [P1] in Table 10.3).

The paper is written in the sub-domain of Organizational Change (OC) and CM. The results

of this paper were gathered through interviews in 28 organizations within six months. The

interviews aimed at identifying the factors for the successful management of changes. In

general, two categories of change triggers were identi�ed: 1) “external drivers” (e.g., due to

161

10. Categories of Change Triggers in Business Processes

Ref. Title Year Categories Sub-

domain

[P1] A new Framework 2007 1. Internal drivers OC

for Managing 1.1. Improving operational e�ciency CM

Change [OT07] 1.2. Need to improve the quality of

products and services

1.3. Process improvement

2. External drivers

2.1. Customer requirement

2.2. Demand from other stakeholders

(e.g., government)

2.3. Regulatory Demand

2.4. Market competition

2.5. Shareholders/city

Table 10.3.: Overview of empirical papers including categories of change triggers in

BP [Kap17, p. 133][Kap+18a]

changing “customers requirements” or other stakeholders, “regulatory demand”, “market

competition”, or “shareholders”) and 2) “internal drivers” (e.g., “improving operational

e�ciency”, “quality of products and services”, or process) [OT07, p. 3]. Further, the paper

states that internal and external drivers in�uence each other. In other words, the internal

drivers are rather “a manifestation of external drivers for change” [OT07, p. 3].

Other included papers (i.e., [P2] to [P10]) were non-empirical papers. Table 10.4 gives

an overview of these papers and the proposed categories of change triggers in BP. In the

following, the proposed category of each paper is brie�y proposed [Kap17].

[P2] can be categorized in the sub-domain of work�ow management technologies

(i.e., automatically performed BP activities). The paper states that an e�ective reacting

to changes is the main challenge of Work�ow Management Systems (WfMS). For this

reason, a set of six criteria is used to classify the change. The �rst criterion considers the

reasons for change. The reasons for change can be grouped into the change triggers due

to developments 1) “outside the system” (i.e., environment) and 2) “inside the system” (i.e.,

problems identi�ed inside the system) [AJ00, p. 2]. If the development is outside the system,

the change can be due to 1.1) “changing business context” (i.e. due to “Business Process

Reengineering (BPR)”, “changing marketplace”, or “demands of individual customers”), 1.2)

“changing legal context” (e.g., due to “new legislature”), or 1.3) “changing technological

contexts” (e.g., due to “new technology” or changing “technical infrastructure”) [AJ00,

p. 2]. If the development inside the system causes the change, its reason can be either 2.1)

“logical design errors” (e.g., “deadlocks or missing data”) or 2.2) “technical problems” (e.g.,

“failing components”) [AJ00, p. 2].

[P3] is concerned with the sub-domain OC. This paper presents internal (e.g., due

to “personnel, culture, or technology”) and external change triggers (e.g., due to “cus-

tomers, competition, or regularity environment”) as a possible way to classify the need for

change [VVL03, p. 4].

162

10.3. Findings

[P4] can be considered in the sub-domain of BPF. The authors present a taxonomy for

BPF, which is based on the taxonomy proposed in [RSS06]. One aspect of this taxonomy

considers the origin of change, which can be either 1) “internal business policies” (e.g.,

due to management strategies and decisions) or 2) “external business regulations” (e.g.,

due to legislature, norms, or contracts) [GV06, p. 4].

[P5] is in the sub-domain of IT/Business Alignment (IT/BA). The authors propose a new

framework in this paper. The framework provides classi�cation along several dimensions

(e.g., “nature of change”, “origin of change”, or “nature of impact of a change”) [NCG08,

p. 5]. The origin of change can be in its turn either 1) “internal” or 2) “external” [NCG08,

p. 5].

[P6] is also in the sub-domain of IT/BA and Change Management System (CMS). The

paper presents an approach to adapt the execution environment, if the corresponding BP

changes. The authors distinguish between two change triggers in BP: 1) automatically

triggered changes (e.g., due to 1.1) “quality indicators” (e.g., “performance”) and 1.2)

“reasons for ine�ciencies” of “user behavior”) and 2) manually triggered changes (e.g., due

to 2.1) changing “technologies”, 2.2) changing “environment”, or 2.3) changing “goals of a

company”) [THF08, p. 3].

[P7] and [P10] give an overview on approaches to change engineering. Due to the lack

of method design, these papers could not be considered as empirical studies. Based on

the results of the literature review they present two categories of reasons for change: 1)

“emergent changes arising from the properties of the product” (e.g., due to 1.1) correcting

errors during the design, 1.2) changes, if products do not ful�ll the safety requirements, 1.3)

changes, if products do not ful�ll the functional requirements, and 1.4) quality problems

of products (e.g., “poor design or incorrect manufacture and assembly instructions”))

and 2) “initiated changes” (e.g., due to 2.1) “customers”, 2.2) “marketing”, 2.3) supporting

maintenance tasks of a product, 2.4) supporting production, 2.5) changes arising from

suppliers, 2.6) “product engineering”, 2.7) management policies of companies, and 2.8)

legislature) [Jar+11, p. 7],[KR16].

[P8] is in the sub-domain of Service-Oriented Computing (SOC). The authors present in

this paper a framework for change management in LCS. Further, a classi�cation for top-

down changes is proposed: 1) “business-centric changes” (e.g., due to “commercial purpose”

such as improvement of a BP) and 2) “regulation-centric changes” (i.e., “complying with

new regulation”) [Liu+11, p. 6].

In the sub-domain of BPM, [P9] presents the problem arising from changing BP over

time. The authors distinguish between triggers “from external factors” (e.g., due to new

technology or legislature) and “from internal factors” (e.g., errors during the design) [KKF12,

p. 5].

Table 10.4 summarizes the results. It shows that several papers distinguish between

external and internal factors of change triggers. Additionally, the categorizations presented

in several papers are hierarchically structured. Both patterns were also used to develop

a comprehensive categorization, which is presented in the next section. Further, the

generalized search query and the modi�ed analysis method allow considering several

sub-domains of BP [Kap17; Kap+18a].

163

10. Categories of Change Triggers in Business Processes

Ref. Title Year Categories Sub-

domain

[P2] Dealing with Work�ow 2000 1. Developments outside WfMS

Change: Identi�cation the system

of Issues and Solutions 1.1. Changing business

[AJ00] context

1.2. Changing legal context

1.3. Changing

technological context

2. Developments inside

the system

2.1. Logical design errors

2.2. Technical problems

[P3] Integrated Enterprise 2003 1. Internal change trigger OC

Transformation: Case 2. External change trigger

Application in Engineering

Project Work in the Belgian

Armed Forces [VVL03]

[P4] Compliant and Flexible 2006 1. Internal business BPC

Business Processes policy change BPF

with Business Rules 2. External business

[GV06] regulation change

[P5] Conceptual Dependencies 2008 1. Internal origin IT/BA

between two Connected of change

IT Domains: Business/IS 2. External origin

Alignment and IT of change

Governance [NCG08]

[P6] Life Cycle for Change 2008 1. Automatically based on CMS

Management in Business 1.1. Measurement of key IT/BA

Process Using performance indicators

Semantic Technologies or quality indicators

[THF08] 1.2. Reasons for ine�ciencies

2. Manually due to

2.1. Technology changes

2.2. Changes in

the environment

2.3. Changes in

the goals of company

164

10.3. Findings

Ref. Title Year Change Trigger Sub-

domain

[P7] Engineering Change: 2011 1. Changes starting EC

An Overview and a chain of changes:

Perspective on 1.1. Emergent (e.g., error

the Literature correction, safety,

[Jar+11] change of function, or

product quality problems)

1.2. Initiated (e.g.,

customers or legislators)

[P8] E�cient Change 2011 1. Top-down change LCS/

Management in Long- 1.1. Business-centric changes SOC

term Composed 1.2. Regulation-centric CM

Services [Liu+11] changes

[P9] Timeline Visualization 2012 1. Triggers (or reasons) for BPM

for Documenting change from external factors

Process Model 2. Triggers (or reasons) for

Change [KKF12] change from internal factors

3. Triggers for evolutionary

changes

[P10] Engineering Changes 2016 1. Emergent changes (Product ECM

in Product Design - A itself due to the error

Review [KR16] during the design process)

2. Initiated changes

(External source)

Table 10.4.: Overview of non-empirical papers involving categories of change triggers in

BP [Kap17, p. 135f][Kap+18a]

10.3.2. Empirical Studies to Change Triggers in Business Processes

Although the main goal of the review was to identify the categories of change triggers

in BP, the search and analysis strategies were general enough to answer the secondary

research questions. The focus of the research question, which this section is concerned, is,

whether there is any empirical study regarding change triggers in BP. In contrast to the

main contribution of the review, which regards to the categories of change triggers in BP,

this question deals with individual change triggers in BP from industry. In other words, the

included papers must have a practical relevance or had to be conducted in cooperation with

industry. Table 10.5 summarizes the empirical studies and the change triggers discussed.

The empirical studies in these papers are based on face-to-face communication, phone

interview, semi-structured interviews, and questionnaires. These papers present the

change triggers and not categories of them. Thus, the change triggers are �ne-grained

and at a low abstraction level [Kap17].

165

10. Categories of Change Triggers in Business Processes

Ref. Title Year Change Trigger Sub-

domain

[P11] New 1998 - IT, the WWW, and communication OC

Organisation technologies advances

Structures for - Homogenisation of global

Global branding and manufacturing

Business: - Increasingly successful

An Empirical global organisation

Study - Customer-demanded advances

[WB98] in levels of service

of transportation goods

- Increased normality of cross-country

and cross-continent trade goods

- Governmental encouragement and

subsidies for industrial investment

- The proliferation of free-trade zones

and trade-blocks

- Changes in political boundaries

- Increases in air leisure

and business travel

- Increasingly global focus

of media and politics

- Globalisation

- Alternative organizational strategies

[P12] Organisational 2000 - To become more competitive OC

Change: The - To improve productivity/e�ciency

Australian - To reduce costs

Experience - To increase capacity

[SL00] - To improve management e�ciency

- To improve occupational

health and safety

- To improve management/

employee communication

- To improve customer service

- To improve workplace culture

- To improve product/service

- To improve input from employees

- To improve sales

166

10.4. Categorization of Change Triggers in Business Processes

Ref. Title Year Change Trigger Sub-

domain

[P13] The Triangular 2007 Social/economic transformation OC

Model for Dealing

with

Organizational

Change [Ala07]

[P14] Implementation 2008 Trigger event: - Leaving the CM

of Organizational centrally planned Soviet Union

Changes in to reorient to European market

Estonian at the beginning of 1990.

Companies - Introduction of western standards

[Ala+08] - Increasing the e�ciency (cf.[Ala07])

Table 10.5.: Overview of the empirical papers containing change triggers in BP (i.e., without

any categorization) [Kap17, p. 138f]

10.4. Categorization of Change Triggers in Business Processes

The previous sections proposed change triggers in BP based on empirical studies, as well

as their categorizations in empirical and non-empirical papers. This section presents a

new categorization based on the data extracted in the previous sections. Further, there is

a need for a scheme or concept to build a new categorization. The concept used for this

categorization is presented in the following section:

10.4.1. W-Questions

This section describes the underlying schema and concept to build a new categorization.

This schema is based on the W-questions. The W-questions are used to structure the

results of the previous sections (see Sections 10.3.1 and 10.3.2) and to develop a new

comprehensive categorization based on these results. The W-questions are described in

the following [Kap17; Kap+18a]:

• Why refers to the corresponding change aspect in BP (i.e., change trigger).

• Who or What describes the participation in a change (i.e., the role).

• Where relates to the origin of a change.

• When or how presents further properties and the characteristics of a change trigger.

Based on the W-questions a categorization scheme was developed, which is composed

of three components. The components regard each the W-questions who, where, and

when [Kap17; Kap+18a].

167

10. Categories of Change Triggers in Business Processes

10.4.2. Category of Change Triggers in Business Processes

As described previously, the answer of the �rst question (i.e., why?) presents the change

trigger. Other questions regard the dimensions of the categorization. Thus, the categoriza-

tion of change triggers in BP is composed of three components at the highest abstraction

level: participation (i.e., to answer the question who?), origin (i.e., to answer the ques-

tion where?), and characteristics (i.e., to answer the question when? or how?). Table 10.6

presents the category of change triggers in BP based on the W-questions. The category

is composed of four abstraction levels, as illustrated in Table 10.6. The abstraction levels

are presented by layers: The �rst layer presents the highest abstraction level. The fourth

layer is the speci�cation of the proposed categorization. Consequently, a component (e.g.,

participation) can be specialized in further subcomponents (i.e., initiators, reluctant partici-
pants, and further participants) in the next higher layer. In other words, a change trigger

can be described using di�erent components of the category and at di�erent abstraction

levels. A change can also cause a chain of further changes [Jar+11]. Thus, a further goal of

the category proposed in Table 10.6 is the support of change triggers in a chain of changes.

The following sections discuss the components of the category in more detail [Kap17;

Kap+18a].

10.4.2.1. Component 1 - Participation

The �rst component in the highest abstraction level is the component participation. The

second layer of Table 10.6 shows that a participant in a change trigger can have either

an initiator (e.g., [P7,P10]), a reluctant (e.g., [P7]), or a further role (e.g., passive). The

initiators and the reluctant participants are opposed to each other (see the change model

of Lewin [Lew47]). These participants have an active role during the change, while

other participants have a passive role in a change process. As all three roles have the

same re�nements at low abstraction levels, only the initiator role is described in more

detail. Both legal and non-legal entities can initiate a change process. The legal entities

can be persons or person groups. At a lower abstraction level, they can be internal or

external stakeholders (e.g., [P1,P7]). In this context, the terms internal and external regard

the structure of an organization. Examples for internal stakeholders are employees or

managers. [EKS08] discusses di�erent roles such as project leader in the sub-domain of BP

management in more detail. By contrast, examples for external stakeholders are customers,

suppliers, or creditors. Further discussion on the stakeholder analysis is given by [Jar+11].

As the categorization proposed in this thesis is general, these components were not further

specialized. The non-legal entities can be considered as methods or systems, which provide

decision support, communication medium (e.g., [P13]), or technical support for internal

stakeholders (e.g., [P2]). Examples for this subcomponent are reports, conferences, or

meetings [Kap17; Kap+18a].

10.4.2.2. Component 2 - Origin

This section discusses the origin of a change trigger [Kap17; Kap+18a]. A change can

have an external or an internal origin (cf. systems theory [Ber68]). Most identi�ed papers

consider this categorization as the main category of change triggers in BP (e.g., [P1,P5,P9]).

The system theory was also applied to economy (e.g., organization), sociology (e.g., social

168

10.4. Categorization of Change Triggers in Business Processes

Layer 1 Layer 2 Layer 3 Layer 4
participation initiators legal entities internal and external stakeholder

non-legal entities control and monitoring systems

key performance indicator

further systems

(e.g., hardware, software, infrastructure)

methods of communication

reluctant – " – – " –

participants

further – " – – " –

participants

origin internal origin person-related in�uence skills and expert knowledge

culture and ethical reasons

leadership style

internal stakeholder requirements

business domain business strategy, business goals

(process and structure) business rules

quality and performance

organizational structure and further events

technology and IT logical design errors in business process model

ine�cient business model design

(e.g., performance, benchmarking)

hardware failure and technical problems

safety

external origin person-related regulations external stakeholder requirements

socioeconomics demography

culture and ethical reasons

politics national legislation

international agreements and conventions

further regulations standards and norms

certi�cation, seal/label (seal guarantees)

economy in�ation

globalization

characteristics of economic systems

location climate

natural disaster and hazards

competing conditions referred to economic system

technology data communication and IT infrastructure

data storage and processing

IT security

hardware evolution

new production methods, working

techniques and methods, materials

characteristics degree of reactive

urgency proactive

degree of low

intensity medium

high

degree of low

complexity medium

high

degree of predictable

prediction unpredictable

degree of top-down change

hierarchy bottom-up change

hybrid change

Table 10.6.: Categories of change triggers in BP [Kap17, p. 169],[Kap+18a, p. 6]

169

10. Categories of Change Triggers in Business Processes

constructs), technology (e.g., hardware), or a combination of those (e.g., socio-economics).
The subcomponents of internal origin also re�ect the described concept (i.e., the third

layer in Table 10.6). To develop a comprehensive categorization of change triggers in BP,

the structure of the categorization has to be extended to include more components. Thus,

the components internal and external have three and seven subcomponents in the next

higher abstraction level, respectively.

The internal origin can be the in�uences of a person, the business domain (i.e., process and
structure) and the technology and IT at a lower abstraction level. The �rst subcomponent

can be considered as the in�uences of a person or a person group who causes a change

in BP. In particular, these in�uences could be due to the expert knowledge (e.g., the

new knowledge of actors can in�uence a BP by improving it), culture and ethical reasons
(e.g., organizational culture [P3]), leadership style [P13], or requirements of the internal
stakeholders (e.g., [P7]).

The second subcomponent (i.e., business domain) can be understood as the organiza-

tional factors triggering a change. At a lower abstraction level, a business domain can

be business strategies, goals, and rules (e.g., [P4]). These components involve the business

policies and expertise. Examples of that are business rules [BRG01]. Its goal is de�ned

by [BRG01] as “to assert business structure or to control or in�uence the behavior of the

business”. They aim at improving the products and services in organizations. As they

aim at regulating BP, they can trigger a change (e.g., [P8]). Other subcomponents of the

business domain are quality attributes such as performance (e.g., [P6]) and further events.
Quality attributes regard the quality of services and products provided by BP, as well as

work�ows. In this case, if the quality attributes are not satis�ed, they can trigger a change

in BP. Further events include events such as �re blights or a new organizational form (e.g.,

[P13]). An example of an organizational form can be corporation.

The last subcomponent of change triggers with an internal origin is technology and

Information Technology (IT). They regard all technical systems, which aim at supporting

BP. This subcomponent also involves models. In this way, comparison of the results in the

real word and the results obtaining from the model can be an indicator for the design in

the real world. A poor design can trigger a change in BP for example by replanning the

corresponding BP (e.g., [P2]). Hardware problems (e.g., [P2]) or safety issues (e.g., [P7])

can be further triggers in this category.

The external origin has seven subcomponents at the next lower abstraction level. As

described previously, this classi�cation is based on economy, sociology, technology and

the combinations of them.

Regulations are one of the most important change triggers, as they constrain the frame

of the BP (e.g., [P6,P8]). The person-related regulations de�ne regulations, which are

caused by persons. In other words, the requirements of external stakeholders in�uence

the corresponding BP (e.g., [P1]). Politics can also trigger a change in BP. It involves

subcomponents such as national (e.g., [P2,P10]) and international laws, conventions, and

agreements (e.g., [P4]). In other words, the location of a company and the aforementioned

subcomponents intertwine. Further regulations can also be reasons for change. Examples

of these regulations are standards and norms (e.g., [P4,P7]), such as quality standard DIN

EN ISO 8402 [ISO92], DIN EN ISO 9000 to 9004 [Bra09], environmental standard ISO

14000, Eco-Management and Audit Scheme (EMAS) [Bra10], certi�cation and seal/label

170

10.4. Categorization of Change Triggers in Business Processes

(i.e., seal guarantees). Economic factors can also a�ect a BP. An example of this can be

in�ation or globalization (e.g., [P11]). Locations such as competing conditions regarding
economic systems (e.g., [P1,P3]) play also an important role as change triggers. Technology
as a further change trigger can be re�ned based on several concepts such as Moore’s

Law [Moo65] or Metcalfe’s Law [MB76]. These re�nements relate to the technological

evolution and development. This includes the IT infrastructure of an organization. The

security of a BP can also act as a change trigger (i.e., attacking an IS, which supports a

work�ow). Additionally, new technologies or production techniques, as well as materials
(e.g., [P10]) are also sources of change. The aforementioned methods include methods for

the management and operational business.

10.4.2.3. Component 3 - Characteristics

The characteristics present the properties of a change [Kap17; Kap+18a]. In contrast to

both previous components, there are only three re�nement layers for characteristics.

The degree of urgency (e.g., [P7], [P10]) presents the need for an immediate action. This

can occur either proactive or reactive. Proactive changes relate to preventive measures.

They can also be innovation drivers due to their creative nature. Reactive changes are

change triggers in an organization referring to measures which have to be taken due to

internal or external events. In contrast to proactive change, they are forced. Hammer and

Champy describe in [HC93] that these changes can cause a radical redesign.

The degree of intensity regards the impact of change triggers in a chain of changes, which

cause further change triggers (cf. degree of complexity). It answers the last W-question (i.e.,

When? or How?). The impact caused by these changes can be classi�ed as high, medium,

or low. This task has to be done by domain experts. However, the classi�cation is not

always straightforward.

Similar to the previous category, the degree of complexity is concerned with the e�ects

of a change trigger over a long period of time (e.g., [P7]). Consequently, the change

triggers caused by the original change trigger have to be considered for the analysis. The

categorization of a change trigger regarding this component requires the documentation

of the change process (cf. [P9]).

The degree of prediction (e.g., [P7]) presents the probability of the occurrence of a change

trigger. This can be predictable or unpredictable. The degree of prediction can be used for

change triggers that aim at improving the BP.

The degree of hierarchy (e.g., [P13]) addresses the categorization of the change triggers,

which occur in the hierarchical structure of an organization. Its re�nements namely top-
down changes (e.g., [P8]), bottom-up changes, and hybrid/middleware changes can be used

for sociological, economic, and technological contexts and all process types. The top-down

changes present the changes, which originate from the management level. BPR is an

example of such changes. By contrast, the bottom-up changes are initiated by employees.

This section proposed a comprehensive category for change triggers in BP. As the

categorization is not limited to a speci�c sub-domain or sector of BP, it can be regarded as

a generic categorization. It is based on the system theory and the W-questions (see Sec-

tion 10.4.1), which show several aspects of a change trigger. Consequently, the components

of the category at a high abstraction level re�ect the W-questions. Thus, it allows the

171

10. Categories of Change Triggers in Business Processes

categorization of change triggers based on di�erent components (i.e., criteria such as

participation and origin) [Kap17; Kap+18a].

10.4.3. Benefits of an Explicit Category of Change Triggers

This section discusses the bene�ts of a comprehensive category of change triggers in BP:

i) As described previously, BP consist of a set of actor steps and system steps [Hei+17].

The system steps allow invoking the services of an IS [Hei+17]. Thus, both IS and BP

in�uence each other and change together during their life cycles [Ros+17a]. For this

reason, IS and BP have to be considered together in the process of the change propagation

analysis [Ros+17a]. Thus, a comprehensive category of change triggers in BP cannot only

aim at managing the future changes in BP, but also in IS [Kap+18a].

ii) This category can be used to develop a checklist for possible future risks, changes,

and requirements [Kap+18a].

iii) The proposed category abstracts from a speci�c sub-domain of BP. Thus, it presents

a generic category, which can be used in di�erent organizations and BP. Further, a change

trigger can be categorized along several components [Kap+18a].

10.4.4. Design Decisions and Assumptions

This section presents the design decisions and the assumptions during the development of

the proposed category [Kap17; Kap+18a].

The structure of the category presented in Table 10.6 is hierarchically organized. This

structure is proposed by several papers (e.g., [P2]). Consequently, a change trigger can

be categorized in a speci�c or generic manner along a component (e.g., participation).

Di�erent components are independent of each other. Thus, the proposed category can

easily be extended due to its hierarchical structure and the independence of its components.

The initial categorization scheme had �ve layers. However, the categorization was too

complex due to the last layer, as the level of specialization was too high. Thus, the fourth

and �fth levels were merged to avoid a complex categorization scheme.

In order to be able to apply the categorization to any BP, it was developed regardless of

a speci�c sub-domain of BP. Thus, the category can be considered as generic.

The category allows the categorization of a change trigger along di�erent components

(i.e., participation, origin, or properties) or subcomponents at several abstraction levels.

10.5. Threats to Validity

This section discusses the threats to validity during the conduction of the study [Kap17;

Kap+18a].

The main search strategy was the database search, as suggested by Evidence-Based

Software Engineering (EBSE) guidelines such as [Kee07]. As described previously, the

PICO(C) strategy was not applicable to the proposed research questions. The search queries

were derived from the main research question. However, the generic search queries also

allowed answering the secondary research questions.

172

10.6. Conclusions

During the data extraction phase, new synonyms of the search terms were extracted.

These synonyms were used to build cross products of the search terms for new search

queries. This method was used to have a complete set of synonyms.

The search queries had to be adapted to the syntactic characteristics of di�erent

databases. Although the search strategy and the search query were adapted during the

pilot study, they still resulted in a high number of hits (i.e., the number of hits was more

than 52000). Consequently, analyzing all hits could not be conducted feasibly. Thus, the

evidence is limited to the analyzed subset of all papers obtained during the database search.

Biased ranking was also an aspect of the search results. Consequently, older publications

have more citations and can be considered as more relevant in the search results. To avoid

this bias, a method has been developed to identify the recently published papers.

Another �nding during the database search strategy regards the search queries, for

which GS showed more than 1000 hits. In these cases, GS only allowed access to the �rst

1000 results. Thus, this can be considered as a limitation for all systematic studies.

During the pilot study, the initial inclusion and exclusion criteria were re�ned. The

reasons for this were avoiding the subjective bias, a better reproducibility of the results,

the diversity of the contents, and the multidisciplinary nature of the research questions.

10.6. Conclusions

This chapter presented a comprehensive category of change triggers in BP. For this purpose,

a pilot study was iteratively conducted to identify the research method. The resulting

search strategy was chosen to answer the main research question and the secondary

ones. The process was based on the guidelines of Kitchenham [Kee07] and was conducted

iteratively and incrementally. The review protocol and in particular the search and read

strategies were designed to handle a high number of research publications, as well as

their diversity. A further goal was to avoid the bias of the publications. The resulting

publications were mainly divided into empirical studies and non-empirical papers.

The resulting category was designed to answer the following W-questions regarding

di�erent aspects of a change trigger: i) Who or What refers the participation in a change. ii)

Where refers the origin of a change. iii) When or how refers the characteristics of a change

trigger. Thus, the new category comprises several dimensions (i.e., components) to address

the aforementioned aspects. The dimensions were, further, re�ned in four layers, which

represent di�erent abstraction levels. Further, the category can be considered as generic, as

it was developed regardless of a speci�c organization or a sub-domain of BP. Thus, it can

be applied to di�erent BP and organizations. Summarized, this category contributes to the

evaluation of the change propagation analysis approach in BP (see Section 11.2). During

the evaluation, several change scenarios were designed to cover di�erent dimensions of

the category.

173

11. Evaluation

As a contribution of this thesis a maintainability analysis methodology was presented

to facilitate the development of modular change propagation analysis approaches in a

speci�c domain involving heterogeneous elements. The resulting approaches are based on

metamodels and use change propagation rules to describe the dependencies between the

metaclasses. This chapter discusses the evaluation of the methodology and the resulting

approaches.

This chapter is structured as follows: Section 11.1 discusses the relevancy and com-

prehensiveness of the methodology by evaluating its instances in IS, BP, and aPS. In Sec-

tion 11.2, the instance of the methodology in BP is evaluated using two community case

studies. The instance of the methodology in aPS is evaluated using the community case

study xPPU. The results of this evaluation are presented in Section 11.3. Section 11.4 sum-

marizes the results of the evaluation and the in�uencing factors during the instantiation

of the methodology. Further, it discusses the threats to validity.

11.1. Maintainability Analysis Methodology

The maintainability analysis methodology, introduced in Chapter 5, can be considered as

a generic guideline for the development of the change propagation analysis approaches. It

aims at improving the development process by providing generic metamodels and algo-

rithms for various change propagation analysis approaches (i.e., its instances). Additionally,

the methodology provides guidelines for the development of a change propagation analysis

approach in a speci�c domain in terms of modular metamodels and algorithms. Thus, the

methodology aims at facilitating the reuse of not only the metamodels and algorithms,

but also the underlying concepts and best practices needed during the development. To

develop a change propagation analysis approach, the methodology has to be instantiated

in a speci�c domain. As described previously, the resulting approach is also referred to

as an instance of the methodology. Thus, this section discusses the applicability of the

methodology to di�erent domains. The content of this section has been appeared in the

paper [HBK18].

Figure 11.1 illustrates the relationships between the maintainability analysis methodol-

ogy, its instances, and the application of the instances to speci�c systems. As described

in Chapter 5, the output of each instance is an automatically generated task list. It is

conceivable that there can be more than one instance of the methodology in a speci�c

domain (see the �rst both layers of Figure 11.1). One in�uencing factor for both di�erent

instances and the generated task lists is the granularity of the metamodels in a domain. For

example, Chapter 7 shows the use of two metamodels at two di�erent abstraction levels in

aPS. While the abstract metamodel allows modeling any plant, the speci�c metamodel is

175

11. Evaluation

Change Propagation Analysis for the Elements
 of the Domain Metamodel (Mandatory)

Change Propagation Analysis for the Elements
 of the Context Metamodel (Optional)

Domain-independent Part of the Methodology

Domain-specific Part of the Methodology

Set of all Possible Instantiations of the
Methodology in IS and BP (i.e., Approaches)

Set of all Possible Instantiations of the Methodology
for aPS Hardware and Software (i.e., Approaches)

Approach 1

Approach i+1

Approach i

Approach n

Approach 1

Approach j+1

Approach j

Approach m

Set of all Possible Systems under
Study in IS and BP

Set of all Possible Systems under
Study for aPS Hardware and Software

System 1

System e+1

System e

System o

System 1

System f+1

System f

System p

Instantiation Instantiation

Application Application

Maintainability Methodology

Change Impact Analysis Approaches

Systems under Study

…
…

…
…

…
…

…
…

Legend: i, j, e, f, n, m, o, p ∈ ℕ, where 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ e ≤ o, 1 ≤ f ≤ p

Figure 11.1.: Schematic illustration of the relationships between the maintainability analy-

sis methodology, its concrete instances, and the application of the instances

to speci�c systems

tailored to the xPPU. In this way, two di�erent change propagation analysis approaches

have been developed for aPS. Another in�uencing factor is the granularity of the change

propagation rules. The rules can specify the change propagation in a �ne-grained or in

a coarse-grained manner. Additionally, the rules may cover all possible relationships be-

tween all metaclasses or only a few important relationships. The evaluation of KAMP4BP

together with KAMP4IS in the following section shows the e�ect of di�erent change

propagation rules on the generated task lists. There are also other factors such as whether

the optional parts of the methodology are implemented or not due to their relevance in

a speci�c case. These factors lead not only to several instances of the methodology in a

speci�c domain, but also a�ect the quality of the generated task lists of the instances.

During this thesis, one instance of the methodology in the domain of BP and two

instances of the methodology in the domain of aPS were developed. The instance of

the methodology in BP has four variants, which slightly di�er regarding the change

propagation rules. Thus, the goal of this section is not to evaluate the quality of the output

of each individual instance. This section discusses the applicability of the methodology

to di�erent domains based on the developed instances. It is important to note that other

instances of the methodology are also conceivable. In other words, this section focuses on

176

11.1. Maintainability Analysis Methodology

the �rst both layers of Figure 11.1 (i.e., the maintainability analysis methodology and the

resulting instances). The quality of the results of the developed instances (i.e., the latter

both layers of Figure 11.1) is evaluated in the next sections of this chapter (see Sections 11.2

and 11.3).

Section 11.1.1 presents the goals, questions, and metrics of the evaluation. After the

instances of the methodology have been developed, the applicability of the methodology

regarding the reusability of each element of the methodology in the respective instance

was evaluated. An overview of the results is given in Section 11.1.2. Section 11.1.3 discusses

the assumptions and limitations.

11.1.1. Evaluation Goals, Questions, and Metrics

The Goal Question Metric (GQM) plan [Bas92; BCR94] was used to evaluate the methodol-

ogy. The Goal is to evaluate the relevance and the comprehensiveness of the methodology

by instantiating it in di�erent domains. For this reason, the methodology has been instan-

tiated in several domains. These instances were analyzed for the evaluation [HBK18].

Question 1 aims at evaluating the relevance of the methodology: In how many instances

each element of the methodology is used? As described previously, not all elements of the

methodology have to be instantiated in a domain. This highly depends on the development

phase of the system under study, the development e�ort for the instance, and the desired

granularity of the results. The more often an element of the methodology was instantiated,

the more relevant it can be considered. To answer this question, Metric 1 is de�ned as

the ratio, R, of the number of instances in which an element is used, U , to the number of

all instances, N . This metric can be obtained as R = U
N [HBK18].

To evaluate the comprehensiveness of the methodology, Question 2 is formulated:

Can any common metamodel or algorithm be extracted from the instances, which were

not already considered by the methodology? The term common metamodel or algorithm
regards any metamodel or algorithm, which occurs in more than one instance. These

metamodels and algorithms are considered as common in the evaluation, only if they are

necessary to develop the change propagation analysis approaches in these domains. The

less common metamodels or algorithms not considered by the methodology, the more

comprehensive the methodology can be considered. Thus, Metric 2 is the number of the

missing common metamodels or algorithms in the methodology [HBK18].

In the following, an overview of the selected domains is given: The methodology was

instantiated to the domain of BP, as BP can be regarded as a set of actor steps and system

steps at a high abstraction level [Hei+17]. Thus, a change to BP or to the IS used can

propagate not only in each domain, but also to the other domain [Ros+17a]. In this way,

the co-evolution of IS and BP can be considered [HBK18].

The evolution of a plant in aPS involves the evolution of its heterogeneous ele-

ments, which can be mechanical and electrical/electronic elements or the control soft-

ware [Vog+17]. Thus, the co-evolution of di�erent sub-domains can be considered in this

domain. The wide range of the heterogeneous elements in this domain necessitates the

need for an automated change propagation analysis approach. This approach aims at

identifying most elements during the change propagation analysis phase [HBK18].

177

11. Evaluation

Metamodels

& Algorithms:

Domain: IS BP aPS aPS Req Metric

HW SW 1

Domain-independent X X X X X 1.0

Metamodel of Modi�cation

Algorithm for Derivation X X X X X 1.0

of Task Lists

Task Duplicate Elimination X X X X X 1.0

Domain List Algorithm

-inde Algorithm Task List X X X X X 1.0

-pendent Sorter Algorithm

Metamodel of X X X X X 1.0

Task List Task List Reduction

Reduction Algorithm of X X X X X 1.0

Task List Reduction

Change Metamodel of Domain X X X X X 1.0

Propagation Domain-speci�c X X X X X 1.0

for Elements Metamodel of Modi�cation

of Domain Algorithm of Change X X X X X 1.0

Metamodel Propagation Analysis

Domain Change Metamodel of Context X X X X x 0.8

-speci�c Propagation Elements

for Elements Metamodel of Task Types X x X X x 0.6

of Context Algorithm of Context X X X X x 0.8

Metamodel Task List

Algorithm of X X X X X 1.0

Di�erence Calculation

Metric How many common elements in di�erent 0 0 0 0 0

2 instances were missing in the methodology?

Legend: X:used, x : not used, aPS HW: mechanical and electrical/electronic elements in aPS, aPS SW: PLC

software in aPS following the IEC 61131-3 standard

Table 11.1.: Commonalities of the methodology instantiations [HBK18, p. 5]

The seed modi�cation can be selected either at the level of the system elements or

requirements. In the former case, domain experts select system elements as seed modi�ca-

tion based on the change request. In the latter case, the a�ected requirements have to be

identi�ed based on the change request. Maybe requirements cannot be considered as a

stand-alone domain. However, changing requirements causes further changes in the sys-

tems implementing them. Considering requirements is particularly important at the early

stages of the development process and to keep the requirements and the corresponding

systems consistent with each other during the evolution [HBK18].

11.1.2. Evaluation Results
Table 11.1 gives an overview of the evaluation results to answer Question 1 and Ques-
tion 2. In the evaluation, instances of the methodology for IS, BP, aPS, and requirements

have been considered. One instance of the methodology was developed each in IS [Sta15;

Ros+15b] and BP [Ros+17a]. For hardware elements of aPS (i.e., electrical/electronic ele-

ments), two instances of the methodology regarding two abstraction levels of the domain

178

11.1. Maintainability Analysis Methodology

metamodel have been developed and considered. For software elements of aPS (i.e., PLC

software according to the IEC 61131-3 standard), one instance of the methodology has

been created. As described in the previous chapters, to allow modeling the change triggers

at requirements level, the instances of the methodology in IS, BP, and aPS were extended

by instantiation of the methodology to requirements. In other words, the instances of the

methodology regarding requirements complement the other instances of the methodology

in each domain. In order to answer the evaluation questions regarding requirements, the

instances of the methodology in each domain were omitted to focus only on the instances

of methodology regarding requirements. Further, the evaluation abstracts from di�erent

requirements instances regarding di�erent domains (i.e., IS, BP, aPS hardware, or aPS

software) by considering only the conceptual elements. Thus, N (i.e., the number of

all instances) is 5 [HBK18]. The implementation of the domain-speci�c elements of the

methodology in BP, aPS, and requirements was given in Chapters 6 to 8. Thus, this section

only summarizes the results during the instantiations of the methodology.

Question 1 is concerned with, how often the metamodels and algorithms of the method-

ology are used in its instances. The third column of Table 11.1 contains the metamodels

and algorithms of the methodology. The next �ve columns present the instances of the

methodology in IS, BP, hardware elements of aPS, software elements of aPS, and require-

ments. Each cell in these columns states whether the corresponding instance uses or

implements a metamodel or a certain algorithm of the methodology. As described in Chap-

ter 5, the elements of the methodology have to be considered as conceptual. Thus, di�erent

programming languages, tool, and techniques can be used to instantiate the methodology.

For example, a metamodel of the methodology can be in its instances a metamodel, Enum,

or GPL code. An algorithm of the methodology can be in its instances GPL or DSL code.

Thus, the evaluation of the methodology abstracts from the technical implementation by

considering the concepts. The last column contains the values of Metric 1 as the number

of the implementation or the use of each methodology element in the instances to the

number of all instances [HBK18].

As the instances of the methodology are change propagation analysis approaches con-

taining the domain-independent metamodels and algorithms of the methodology, the

number of instances, in which they occur (i.e., U) is 5. In other words, Metric 1 is 1.0 for

the domain-independent metamodels and algorithms of the methodology. However, as the

domain-independent metamodels and algorithms are always provided by the methodology,

they are not considered in the following. All elements of the mandatory part of the method-

ology regarding the domain under study (i.e., metamodel of the domain, domain-speci�c

metamodel of modi�cation, and algorithm for change propagation) were implemented in

all instances. The value of U for these elements of the methodology in its instances is 5.

Metric 1 is 1.0 for these metamodels and this algorithm of the methodology [HBK18].

The instances for IS, aPS hardware, and aPS software implement all optional elements

regarding the change propagation analysis in the context elements. However, the require-

ments instances do not implement the metamodels regarding context elements and task

types, and the corresponding algorithm of context task list. This can be considered as a

design decision, as context elements such as test cases can be considered either at the

system level or at the requirements level. In the instances used for the evaluation, these

methodology elements were developed at the system level, as this thesis considers the

179

11. Evaluation

architecture of a system as its main artifact (see the de�nition of the system’s architecture

in [MT10]). In this example, the speci�cation of requirements does not consider test cases.

However, the corresponding system can be tested whether it satis�es the requirements.

Other instances of the methodology considering context elements at requirements level

are also possible [HBK18].

The BP instance implements a metamodel for the context elements and the correspond-

ing algorithm for the context task list. However, the metamodel for the task type could

not be implemented in BP. Summarized, the value of Metric 1 is 0.8 for the metamodel of

context elements and the algorithm of context task list. The value of Metric 1 is 0.6 for the

metamodel of task types. However, these elements of the methodology were considered

as optional. All instances implement the algorithm of di�erence calculation. Thus, the

value of Metric 1 for this element is 1.0 [HBK18].

Most optional elements of the methodology can be used to consider the impact of

context elements in a domain. However, this depends on the relevance of their impact

during the change propagation analysis. In other words, although considering these

elements can lead to more precise results of the change propagation analysis, they need

not necessarily be implemented in a domain. Thus, if they do not exist in an instance,

they do not a�ect the relevance of the methodology. Further, the mandatory part of the

methodology considering the change in the domain under study was implemented in all

instances. Thus, the methodology can be considered as su�ciently relevant [HBK18].

Question 2 aims at counting the number of common metamodels and algorithms in

the instances of the methodology, which are missing in the methodology. The last row of

Table 11.1 presents the values of this metric. No common relevant metamodel or algorithm

could be found in the instances, which the methodology does not consider. Thus, the value

of Metric 2 is 0 for all instances. Consequently, the methodology can be considered as

su�ciently comprehensive [HBK18].

11.1.3. Assumptions and Limitations

As discussed previously, the methodology o�ers a generic guideline to develop the change

propagation analysis approaches in di�erent domains involving heterogeneous elements.

Thus, there cannot be a unique instance of the methodology in a domain. The outputs of

di�erent instances can vary regarding the precision and recall. For example, an imprecise

prediction of the change propagation can be su�cient in some cases (e.g., prior to the

development of the system). Another example considers the cases, in which domain

experts accept the existence of a few false negatives to avoid having too many false

positives in the task list. These factors can a�ect the quality of the outputs of the instances.

However, the quality of the output of individual instances is independent of the quality of

the methodology. Thus, the evaluation discusses the existence of the elements speci�ed

by the methodology and not the concrete implementation of them.

In the evaluation, only instances of the methodology for IS, BP, aPS, and requirements

have been considered. Maybe, the methodology is also applicable to other domains, which

were not discussed in this section. The application of the methodology to these domains

may di�er from the presented results. Further, except for the hardware elements of aPS

only one instance of the methodology has been developed in other domains. As described

180

11.2. Change Propagation Analysis in Business Processes

previously, these instances may di�er from the presented instances. Thus, the results may

not be transferable to all possible instances. However, the evaluation shows the relevance

of the instantiation of di�erent methodology elements in order to develop an approach to

change propagation analysis in a speci�c domain. Omitting parts of the methodology (e.g.,

the optional parts) can result in false negatives in the output of the instances.

11.2. Change Propagation Analysis in Business Processes

This section presents the evaluation of KAMP4BP, discussed in Chapter 6. As described

previously, KAMP4BP can be considered as an instance of the methodology in the domain

of BP. As the domains of IS and BP interweave, the evaluation results of KAMP4BP also

include the results of KAMP4IS.

For the evaluation of this approach two community case studies were used. These

case studies are described in Sections 11.2.1 and 11.2.2. At the beginning of the chapter,

Figure 11.1 illustrated the relationships between the maintainability analysis methodology,

its concrete instances, and the application of the instances to speci�c systems. The

evaluation presented in this section corresponds to the application of an instance of the

methodology in the domain of IS and BP to two systems (see the latter both layers of

Figure 11.1). Section 11.2.3 discusses the goals, questions, and metrics of the evaluation.

KAMP4BP is a scenario-based approach. Thus, the change scenarios of the evaluation

were developed based on the categories of change triggers in BP, presented in Chapter 10.

These scenarios and the results of the application of the approach to two case studies are

proposed in Sections 11.2.4 and 11.2.5. The results of all change scenarios are summarized

in Section 11.2.6. Section 11.2.7 gives an overview of assumptions and limitations.

The content of this section is based on and extends the results of the Bachelor’s thesis

of Maximilian Peters [Pet18], in which the evaluation scenarios and di�erent cases for the

case studies were developed. This Bachelor’s thesis was supervised by the author of this

dissertation. A former version of the evaluation has been appeared in the paper [Ros+17a].

Thus, most content of this section was appeared in the aforementioned works.

11.2.1. CoCoME Case Study

The hybrid cloud-based Common Component Modelling Example (CoCoME) [HRR16]

was used to evaluate the KAMP4BP approach [Ros+17a]. CoCoME is a component-based

software system [Her+08]. It has been set up in a GI Dagstuhl research seminar as a

community case study [Her+08; Hei+15]. Further, CoCoME presents a common case study

for the approaches in the context of evaluation, as its complexity can be considered as

appropriate [Hei+15]. The availability of several development artifacts makes the use

of CoCoME as a common case study well suited [Hei+15]. Applying several approaches

to a community case study as an evaluation subject allows comparing their evaluation

results [Ros+17a].

CoCoME is a trading system similar to a supermarket chain [Her+08; Hei+15]. Thus,

it is commonly comprehensible [Hei+15]. CoCoME supports processes such as sale or

administrative tasks [Her+08; Hei+15].

181

11. Evaluation

As a trading system CoCoME consists of a set of stores. The stores are connected to an

enterprise server. Each store has a store server, which controls the cash desk line in the

store. A cash desk line consists of a set of cash desks. A cash desk comprises hardware

resources (e.g., barcode scanner), which are connected to the cash desk computer [Her+08;

Ros+17a].

The following sections describe the model of the software architecture of CoCoME and

the corresponding BP.

11.2.1.1. Model of So�ware Architecture

The software architecture of CoCoME is composed of a set of composite components, as

illustrated in Figure 11.2 [Her+08; HRR16; Ros+17a]:

• The composite component TradingSystem::Inventory consists of two further com-

posite components: ::Application and ::Data. The ::Application component

provides operations for the data query and sale booking. The communication and

access to the database are organized using the ::Data component [Her+08; HRR16].

• The composite component WebService::Inventory allows the frontend to access

information regarding the enterprise (e.g., the set of all stores connected to an

enterprise). This component acts as a wrapper between the presentation layer and

the business logic layer [Her+08; HRR16].

• The composite component TradingSystem::CashDeskLine presents the physical

hardware resources of cash desks (e.g., barcode scanner) [Her+08; HRR16].

• The composite component WebService::CashDeskService allows the frontend to

access the cash desk components. Similar to the component WebService::Inventory,

this component is also a wrapper between the presentation layer and the business

logic layer [Her+08; HRR16].

• The composite component WebFrontend::Web presents the presentation

layer [Her+08; HRR16].

The PCM model of the CoCoME used for the evaluation represents the software archi-

tecture comprising the components, interfaces, data types, and event groups. This model

represents the system at the abstraction level of signatures and event types. The interfaces

of the whole system was created based on the following heuristic: These interfaces contain

only the signatures that are used by at least one of the following BP models.

11.2.1.2. Model of Business Processes

CoCoME supports several processes (e.g., the sale or reporting process) [Her+08; HRR16].

In the following, an overview of the relevant processes is given [Her+08; HRR16]:

• The main process of CoCoME is the sale process. It describes the process of buying

products by customers on the cash desks in a store [Her+08].

182

11.2. Change Propagation Analysis in Business Processes

IExpress
LightModel

::Data::Application

IStoreQuery

IStoreDataFactory

IPersistenceContext

IEnterpriseDataFactory

IEnterpriseQuery

TradingSystem::Inventory

WebService::
Inventory

IStoreInventory
Manager

IStoreInventory

IReporting

IEnterprise
Query

TradingSystem::CashDeskLine

WebFrontend::Web

::Connector

::Data::Frontend

ICashDesk
Model

ICashBox
Model

IBarcode
ScannerModel

IPrinter
Model

IUserDisplay
Model

ICardReader
Model

IUserDisplay
IPrinter
IBarcodeScanner

ICashBox
ICashDesk

ICardReader

WebService::CashDeskService

IExpressLight

IEnterprise
Manager

IEnterprise
Reporting

IStore
Manager

AccountSaleEvent
IEnterprisePersistence

IStorePersistence

ICashDesk
IAuthentificator

ICredentialFactory
IUser

IEnterpriseQuery
IStoreQuery

ICash
Desk
Query

ICash
Desk
View

IReceived
Order
View
IShow
Report
View

Figure 11.2.: Component diagram of CoCoME [HRR16; Ros+17a]

• The manage express checkout process is an extension of the sale process. It

describes the sale process, if the customer buys only a few numbers of products. In

this case, the buying process is accelerated [Her+08].

• Buying new products for a store is described in the order products

process [Her+08].

• After receiving the ordered products, the new products have to be inventoried. This

process is de�ned by the receive ordered products process [Her+08].

• The show stock reports process de�nes creating and displaying stock reports in

a store [Her+08].

• The show delivery reports process describes creating reports about the mean

times of the deliveries [Her+08].

• Changing the price of single products is de�ned in the change price

process [Her+08].

11.2.2. mRUBiS Exemplar

modular Rice University Bidding System (mRUBiS) has been initially developed at the Rice

University and INRIA. It was set up for evaluating design patterns, as well as analyzing the

scalability of application servers and their performance
1
. Since then it was extended for

example to serve as an exemplar for self-healing and self-optimization [Vog18]. mRUBiS

is the modularization variant of Rice University Bidding System (RUBiS). Thus, mRUBiS

is a component-based software system.

1
https://cs.nyu.edu/ totok/professional/software/rubis/rubis.html

183

11. Evaluation

RUBiS represents an auction web site. It is developed based on eBay.com. RUBiS

supports main processes of an auction web site such as selling, browsing, and bidding.

Further, following actor roles can interact with RUBiS: visitors, buyers, and sellers. Visitors

can browse the web site. However, they need to register, if they want to buy or sell items
2
.

11.2.2.1. Model of So�ware Architecture

The software architecture of mRUBiS can be considered as a set of composite compo-

nents [AM], as illustrated in Figure 11.3:

• The composite component QueryService provides services for searching items in

the database.

• The composite component PersistenceService allows storing business objects (e.g.,

users, items, or bidding).

• The composite component InventoryService manages the inventory (e.g., query

the number of available instances of a speci�c item).

• The composite component AuthenticationService allows authenticating users.

• The composite component ReputationServices manages rating users.

• The composite component BidAndBuyService provides the ability to bid on items

and to buy items immediately.

• The composite component UserManagementService provides services for managing

users (e.g., registering a new user or querying the user information).

• The composite component ItemManagementService allows managing items (e.g.,

registering an item).

The PCM model of the mRUBiS used for evaluation represents the software architec-

ture comprising components, interfaces, and data types. This architecture model di�ers

slightly in terms of interfaces, as well as components and their interfaces from the original

architecture, depicted in Figure 11.3. The model represents the system at the abstraction

level of signatures.

11.2.2.2. Model of Business Processes

As mRUBiS presents an auction web site based on eBay.com, several processes can be

de�ned. In the following, relevant processes of mRUBiS are discussed. These processes

have been developed in the Bachelor’s thesis of Maximilian Peters [Pet18], which has been

supervised by the author of this dissertation.

• The user registration process describes registering new users on mRUBiS in

order to be able to buy or sell items.

2
http://rubis.ow2.org/

184

11.2. Change Propagation Analysis in Business Processes

Persistence
Service

Inventory
Service

BidAnd
BuyService

Authentication
Service

Item
Management
Service

Reputation
Service

Query
Service

User
Management
Service

BusinessObjectsPersistenceService

Authentication
Service
BusinessObjects
PersistenceService

Query
Service

Basic
QueryService

BasicQueryService BasicQueryService QueryService

QueryService

Authentication
Service

Business
Objects
Persistence
Service

Basic
QueryService

Basic
QueryService

Authentication
Service

Business
Objects
Persistence
Service

Inventory
Service Query

Service

BusinessObjects
PersistenceService

Authen-
tication
Service

BusinessObjects
PersistenceService

BasicQueryService

Query
Service

Query
Service

Figure 11.3.: Component diagram of mRUBiS [AM]

• The process of authenticating registered users is described by the authentication

process.

• If users want to place items on mRUBiS for sale, they have to register them before-

hand. It is de�ned by item registration process.

• mRUBiS allows its users to search for items. If users �nd an item, they can reserve

it. The item query process describes this process.

• Bidding on mRUBiS is described by the bidding process.

• The buy now process describes buying items immediately without bidding on them.

• The reputation process de�nes rating sellers by buyers.

11.2.3. Evaluation Goals, Questions, and Metrics

The GQM plan [Bas92; BCR94] was used to evaluate KAMP4BP. Goal 1 evaluates the

quality of the automatically generated task list in comparison to a reference task list. In

other words, the goal is to evaluate the quality of the results. The reference task list is a

manually created task list. This task list is based on the code, the IS architecture model,

and the model of the BP design. It contains model elements that have to be changed in

order to implement a change. The generated task list contains the model elements, which

the approach automatically identi�es. Note that the users’ decisions regarding task list

185

11. Evaluation

reduction were not considered to avoid in�uencing the results. In other words, the tasks

in a task list, which refer to the elements not a�ected by the change, were not eliminated.

By comparing both a generated task list and the corresponding reference task list a task

in the generated task list can be categorized into three di�erent groups: i) True positive

tasks (tp): These tasks are contained in both the generated task list and the reference task

list. ii) False positive tasks (fp): These tasks are contained only in the generated task list,

but not in the corresponding reference task list. iii) False negative tasks (fn): These tasks

are missing in the generated task list, but can be found in the corresponding reference

task list [Ros+17a].

To avoid considering the same model element at di�erent abstraction levels, the model

elements were considered at the lowest abstraction level. For example, the signatures

of an interface were considered instead of the whole interface. Another example is the

collection data type. In this case, the contained data types were considered [Ros+17a].

The �rst and the second question aim at evaluating the quality of the generated task

list regarding the ratio of true positives, false positives, and false negatives. Question 1.1
is de�ned as: How precise is the automatically generated task list in comparison to the

reference task list? Metric 1.1 quanti�es the �rst question as: precision =
tp

tp + fp
[Pow08].

Thus, this metric relates to the number of true positives and the number of false positives.

Question 1.2 is formulated as: How complete is the automatically generated task list

in comparison to the reference task list? Metric 1.2 measures the completion of the

generated task lists as: recall =
tp

tp +fn
[Pow08]. In other words, this metric relates to the

number of true positives and the number of false negatives [Ros+17a].

The second goal addresses the well-known bene�t of an automated approach regarding

decreasing the e�ort of the change propagation analysis. Goal 2 evaluates the coverage of

the automatically generated task list in comparison to the number of all model elements.

Thus, Question 2 is whether KAMP4BP can reduce the number of model elements needed

to be considered during the change propagation analysis phase. The �rst metric aims

at relating the number of true positives (tp) to the number of all model elements (n).

Metric 2.1 calculates the ratio: rt =
tp
n . The second metric aims at relating the number of

model elements referenced by the generated task list (l = tp + fp) to the number of all

model elements (n). Metric 2.2 calculates rд =
l
n . The e�ort reduction can be calculated

by comparing both metrics [Ros+17a].

Figure 11.4 illustrates the problem arising by using only the precision metric and the

need for the rt and the rд metrics. Consider the �rst example, where the number of all

model elements is 1000 (i.e., n = 1000). Further, the generated task list contains four

elements (i.e., l = 4). Two elements from four elements are false positives (i.e., fp = 2).

The remaining two elements are true positives (i.e., tp = 2). No model element from the

reference task list is missing (i.e., fn = 0). The value of the precision metric is 50%, even

though the approach signi�cantly reduced the number of model elements, which need to

be considered (i.e., the number of model elements in the generated task list is four).

In the second example, the number of all model elements is the same as the �rst example

(i.e., n = 1000). However, the generated task list contains 900 model elements (i.e., l = 900),

from which only 450 model elements are true positives (i.e., tp = 450). In other words, the

remaining model elements are false positives (i.e., fp = 450). Similar to the �rst example,

186

11.2. Change Propagation Analysis in Business Processes

n = 1000

tp = 2
fp = 2

n = 1000

tp = 450

fp = 450

Legend:
A, B: The sets represent all model elements.
(C ∪ E) ⊂ A, (D ∪ F) ⊂ B: The subsets represent all model elements,
which are in the generated task lists.
C, D: The subsets represent all true positives in the generated task list.
E, F: The subsets represent all false positives in the generated task list.

A B

C D
E F

Example 1 Example 2

Figure 11.4.: Comparison of the precision metric using two examples

no false negative exists (i.e., fn = 0). The value of the precision metric is again the same

(i.e., 50%), even though the domain expert has to analyze almost all model elements. In

this case, the approach cannot support the domain expert during the change propagation

analysis approach.

These two examples show two di�erent cases regarding the change propagation analysis,

in which the values of the precision metric are the same. Thus, they make the need

for further metrics clear. These metrics have to be used to di�erentiate between the

aforementioned cases. The goal of these metrics is to determine whether the approach

can reduce the number of model elements, which domain experts need to consider. In

other words, the metrics aim at determining the cases, in which the approach can support

the domain expert during the change propagation analysis. For this purpose, the rt and rд
metrics were used in this evaluation in addition to the precision and recall metrics.

Sections 11.2.4 and 11.2.5 discuss the evaluation of KAMP4BP using di�erent change

scenarios based on CoCoME and mRUBiS. For each change scenario, four cases were

di�erentiated [Pet18]:

1st case: In the �rst case, all change propagation rules proposed in the initial

KAMP4IS [Sta15; Ros+17a] and the extended KAMP4IS (see Section 6.2.3.3), as

well as in KAMP4BP (see Section 6.2.3.1), and between KAMP4IS and KAMP4BP

(see Section 6.2.3.2) are considered.

187

11. Evaluation

2nd case: In the second case, the propagation of change from a modi�ed data type that

is not a seed modi�cation, to several other model elements such as interfaces,

signatures, and entry level system calls is omitted.

3rd case: In the initial variant of KAMP4IS, the change propagation in a component and

between two components (i.e., the change propagation due to inter- and intra-

component dependencies [Sta15]) is determined iteratively. This case considers the

change propagation due to inter- and intra-component dependencies only in one

iteration, as described in the following using an example.

4th case: This case combines both the second case and the third case.

To discuss the third case, Figure 11.5 illustrates the change propagation based on the

inter- and intra-component dependencies in a small example. In this example, there is at

least one component-internal dependency [Sta15; Ros+15b] between the provided role

of each component and its required role. Further, the seed modi�cation is Interface I1
(i.e., Iteration 0 in Figure 11.5). In the �rst iteration, the approach selects the required role

of Interface I1, Component2, and the corresponding provided role of Interface I2. In each

iteration, the approach identi�es the corresponding required role of an a�ected provided

role, as well as, the component, and its corresponding provided role.

Component1 Component2 Component3 Component4

Iteration 0 Iteration 1 Iteration 2 Iteration 3

I1 I2 I3 I4

Figure 11.5.: Schematic illustration of the change propagation due to inter- and intra-

component dependencies in di�erent iterations – Seed modi�cation: Interface

I1 (based on [Sta15; Pet18])

The second and the third case consider the e�ects of two change propagation rules,

which are aforementioned in each case. These change propagation rules were developed

during the training phase of the change propagation algorithm (see [Sta15; Ros+17a]).

However, the observations show that these rules are only used in a small set of scenarios.

The main reasons for this observation are the programming style and the abstraction level.

For example, if the programmers often use chains of method calls, the rules regarding the

inter- and intra-component change propagation are needed. If these rules are not needed,

the use of them can result in more false positives in the results. The goal of these four

cases is to analyze the e�ect of these change propagation rules on the generated task lists.

Additionally, they allow analyzing the in�uencing factor regarding the change propagation

rules on the instances of the methodology and their results.

In the following evaluation, the change propagation due to the inter- and intra-

component dependencies is used to only select the potentially a�ected components. In

other words, the interfaces and signatures, which were resulted due to the inter- and

intra-component dependencies, were considered only as the cause for selecting a�ected

188

11.2. Change Propagation Analysis in Business Processes

components. Consequently, they were not further considered in the evaluation of the

change propagation and the analysis of the task lists. This is due to the black-box principle

of components [Reu16].

11.2.4. Change Scenarios and Evaluation Results for CoCoME

As described in Chapter 6, to adequately analyze the change propagation IS need to

be considered in conjunction with BP. KAMP4BP is a model-based and scenario-based

approach. Thus, KAMP4BP is evaluated using di�erent change scenarios. The change

scenarios used for the evaluation are based on the category of change triggers discussed

in Chapter 10. In other words, they present equivalence classes for change triggers.

Table 11.2 shows the coverage of the categories of change triggers by the change scenarios

of CoCoME. Further, the chosen change scenarios are also equivalence classes of the

relevant metaclasses of PCM [BKR09], BPUsageModel [Hei+17], and DataModel [Ros+17a]

regarding the maintainability. Additionally, the change scenarios were chosen with the

focus of mutual dependencies between the BP and the corresponding IS. The following

change scenarios and evaluation cases are based on the change scenarios and evaluation

cases of a Bachelor’s thesis, which the author of this dissertation supervised [Pet18].

The following sections discuss the change scenarios for CoCoME.

11.2.4.1. Change Scenario 1: Self-checkout

In some CoCoME stores, customers spend a lot of time waiting in queues. The result

of a customer satisfaction survey is introducing self-checkout machines to reduce the

wait times in cashier-assisted checkouts of CoCoME. Thus, the management decides to

introduce new self-checkout machines. The customers can scan the products themselves.

After scanning the products, they can also perform the payment process themselves. One

cashier can attend several self-checkout lanes.

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 71.22% 71.22% 71.22% 71.22%

Recall 100.00% 100.00% 100.00% 100.00%

rд 18.53% 18.53% 18.53% 18.53%

rt 13.20% 13.20% 13.20% 13.20%

Table 11.3.: Results of the 1st change scenario in CoCoME

Table 11.3 summarizes the results for the aforementioned four cases. The initially

selected model elements were the a�ected roles and device resources in BP. The change

mainly propagates to the activities, which need the a�ected resource. Further, the change

a�ects the actor steps performed by the actor roles to be changed. The false positives

in this scenario are mainly the system steps (i.e., the entry level system calls) in the sale

process, as these system steps are still needed for the sale process. The recall is 100%, as

no model elements from the reference task list were missing in the generated task list.

189

11. Evaluation

Layer 1 Layer 2 Layer 3 Coverage

Scenarios

participation initiators legal entities 1, 4, 5, 9, 10

non-legal entities 7

reluctant participants legal entities 8

non-legal entities 6

further participants legal entities 3

non-legal entities 2

origin internal origin person-related in�uence 5

business domain 8

(process and structure)

technology and IT 4

external origin person-related regulations 1

socioeconomics 9

politics 10

further regulations 7

economy 6

location 3

technology 2

characteristics degree of urgency reactive 1, 3, 6, 10

proactive 2, 4, 5,

7, 8, 9

degree of intensity low 5, 9

medium 1, 2, 4,

6, 7, 10

high 3, 8

degree of complexity low 1, 3, 4, 5, 10

medium 2, 7, 9

high 6, 8

degree of prediction predictable 1, 2, 4, 5, 6,

7, 8, 9, 10

unpredictable 3

degree of hierarchy top-down change 1, 2, 3, 4,

6, 8, 9, 10

bottom-up change 5

hybrid change 7

Table 11.2.: Application of categories of change triggers in BP to CoCoME based on [Pet18]

190

11.2. Change Propagation Analysis in Business Processes

The precision is 71.22% for all generated task lists in all cases. This change scenario a�ects

13.20% of all model elements (i.e., rt), as it involves several activities in di�erent BP design

models. rд shows that 18.53% of the model elements can be found in the generated task

list. The di�erence between both metrics rt and rд is due to false positives. The reason

for the generation of the false positives is that the model of the BP design is at a high

abstraction level. Thus, the change request has also to be mapped to seed modi�cations at

a high level of abstraction (i.e., rolls and device resources). In other words, a �ne-grained

metamodel and model can help to improve the results in this scenario. However, the

comparison between rt and rд shows that the generated task list can reduce the e�ort of

change propagation analysis, as only a fraction of all model elements need to be considered

by software architects and/or process designers.

This change scenario a�ects only BP. In other words, IS remains unchanged, as the same

functionality has to be provided before and after the change. As the aforementioned four

cases consider di�erent change propagation rules regarding IS, the values of the metrics

in all four cases are equal.

11.2.4.2. Change Scenario 2: RFID

A new technology based on Radio-Frequency IDenti�cation (RFID) should replace the

barcode technology. An internal study of CoCoME shows that the new technology can

speed up the scanning process. Thus, the management of CoCoME decides to introduce

the RFID technology. For this purpose, RFID tags replace the barcode of products. Further,

cashiers have to use RFID readers instead of barcode scanners.

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 32.96% 77.19% 33.08% 78.57%

Recall 100.00% 100.00% 100.00% 100.00%

rд 35.60% 15.20% 35.47 14.93%

rt 11.73% 11.73% 11.73% 11.73%

Table 11.4.: Results of the 2nd change scenario in CoCoME

Table 11.4 summarizes the results for the aforementioned four cases. As seed modi�ca-

tion, the data object barcode and the corresponding device resource in BP were selected.

This data object has a corresponding data type barcode. Thus, this model element is also

a�ected by the change. As the model element barcode is referenced by several other model

elements (e.g., data types and interfaces), the change propagates to many model elements.

As presented in Table 11.4, the generated task list with all change propagation rules in-

cludes many false positives, as many model elements depend on the seed modi�cations.

Thus, this scenario can be considered as a fundamental change in CoCoME. Consequently,

the precision value for the �rst case is 32.96%.

One reason for this observation is that a change to the data object barcode and the

corresponding data type barcode leads to several false positives due to data dependencies.

191

11. Evaluation

The newly added false positives to the generated task list lead to other false positives due

to the application of the change propagation rules to these model elements. Examples

of such false positives could be interfaces and signatures, as well as other data types

and data objects. One option to reduce the number of false positives is omitting the

corresponding rules. These rules recursively identify data types and data objects based on

the modi�ed data types and data objects. The results for omitting these rules are shown in

the third column of Table 11.4. This option reduces the number of model elements in the

generated task list by more than 50% compared to the total number of model elements in

the generated task list resulted by all change propagation rules. Thus, this option excludes

all model elements such as signatures and interfaces, which use data types referencing the

barcode data type.

Another option to reduce the number of false positives is to reduce the number of

iterations in the inter- and intra-component change propagation, as illustrated in the

fourth column of Table 11.4. This option does not signi�cantly reduce the number of

elements in the generated task list, as it can be seen by comparing the values of precision

and rд metrics. Thus, the reduction of the number of elements in the generated task list in

the fourth case (i.e., combining the second and the third case) is mainly due to omitting

the rules for the data type propagation. The recall values of all four cases show that the

generated task lists contain all model elements of the reference task list.

rt shows that this change scenario a�ects 11.73% of all model elements. rд shows the

ratio of the number of model elements which software architects and/or process designers

need to consider based on the generated task list to all model elements. In the �rst case, rд
is 35.60%, which means that the task list contains 35.60% of all model elements in the �rst

case. After the reduction of the propagation of false positives due to data dependencies, rд
is 15.20%. The third case shows that the reduction of the number of iterations improves

the results slightly (i.e., rд is 35.47%). In addition to omitting the change propagation in

data types, the reduction of the number of iterations (i.e., the fourth case) also reduces

the number of model elements in the generated task list slightly (i.e., rд is 14.93%) in

comparison to the second case. Thus, the results show, even though the generated task list

for this change scenario contains a high number of false positives, it reduces the number of

model elements to be considered signi�cantly even in the �rst case (i.e., 35.60% of all model

elements). The cases, in which the data type propagation is omitted, contain considerably

less model elements than in the �rst case.

Additionally, the approach provides the functionality to explicitly exclude the false

positives (i.e., decision supporting by reducing task lists in Section 5.2.3.1). For this purpose,

the causing elements for each model element in the generated task list are given. In other

words, the traceability allows identifying the cause of the false positive propagation. The

causing elements enable the software architects and/or process designers to reproduce the

change propagation between model elements. Thus, software architects and/or process

designers can exclude the cause of the false positive propagation. The approach uses this

information to calculate a new task list. However, this functionality is not used during the

evaluation to avoid biasing the results.

192

11.2. Change Propagation Analysis in Business Processes

11.2.4.3. Change Scenario 3: Excess Demand

A shortage of a desired product occurs in one of CoCoME stores, which leads to temporary

customers dissatisfaction and drop in sales in this store. Both CoCoME managers and

customers want to solve the problem as soon as possible. The management of CoCoME

decides to adapt the local good transportation from other stores as one of the fastest way

to solve the problem. To adapt CoCoME the according signatures regarding dispatching

products need to be changed.

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 50.00% 50.00% 100.00% 100.00%

Recall 100.00% 100.00% 100.00% 100.00%

rд 0.80% 0.80% 0.40% 0.40%

rt 0.40% 0.40% 0.40% 0.40%

Table 11.5.: Results of the 3rd change scenario in CoCoME

Table 11.5 summarizes the results for the aforementioned four cases. This change

scenario mainly covers the e�ects of a change to signatures. As rд shows, the generated

task list contains only a small fraction of all model elements (i.e., 0.80% of all model elements

in the �rst two cases). In other words, the change a�ects only a small set of all model

elements. However, the precision value of the task list is 50.00% for the �rst two cases. This

scenario is very similar to the example illustrated in Figure 11.4. This example regards cases

with a low value of precision and rд at the same time. The reason for this observation is that

the precision metric considers only true positives and false positives in the generated task

list. Thus, it neglects the number of all model elements. The comparison between rд and

rt for the �rst two cases shows that the software architects and/or process designers need

only consider 0.80% of all model elements using the generated task list. In other words,

the generated task list reduces the e�ort of the change propagation analysis considerably

despite the low precision value. As the data �ow does not cause the propagation of false

positives in this scenario, there is no di�erence between the values of the metrics in the

�rst two cases.

In contrast to the previous scenarios, the signature dependencies cause the propagation

of false positives. Thus, reducing the number of iterations of inter- and intra-component

change propagation reduces the number of false positives signi�cantly. The e�ect of

omitting the corresponding rule can be seen in the last two columns of Table 11.5. As the

generated task lists include no false positives in these cases, the precision is 100.00%. The

generated task list in the third case contains only half as many elements as the generated

task lists in the �rst two cases (i.e., the value of rд for the third case is 0.40%). Further, no

model element from the reference task list is missing in any of the generated task lists. In

other words, the recall value for all cases in this scenario is 100%.

193

11. Evaluation

11.2.4.4. Change Scenario 4: Refactoring

The interfaces of software architecture of CoCoME were designed according to the pro-

vided processes. To separate di�erent concerns, the managers together with the software

architects of CoCoME decide to split the implementation of a provided interface into

several interfaces [Ros+17a]. This change should improve the maintainability of CoCoME

software.

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 100.00% 100.00% 100.00% 100.00%

Recall 100.00% 100.00% 100.00% 100.00%

rд 5.73% 5.73% 5.73% 5.73%

rt 5.73% 5.73% 5.73% 5.73%

Table 11.6.: Results of the 4th change scenario in CoCoME

Table 11.6 summarizes the results for the aforementioned four cases. This change

initially a�ects one of the interfaces provided by CoCoME. Changing an interface results

in change propagation to all its signatures. Further, changes to the signatures of a provided

interface propagate to the corresponding system steps. A change to an interface results

also in changing the components providing or requiring this interface. All model elements

referenced in the generated task list are true positives. Further, no model element from

the reference task list is missing in the generated task list. Thus, the precision and the

recall values of the generated task lists for all cases in this scenario are both 100%. Further,

rt and rд values are equal (i.e., they are 5.73%).

As neither the data dependencies, nor the inter- and intra-component dependencies

cause the change propagation in this change scenario, there is no di�erence between the

discussed four cases.

11.2.4.5. Change Scenario 5: Inventory Improvement

A new employee in the inventory suggests CoCoME to improve the registration of the

ordered products. For this purpose, the corresponding system step in the BP regarding the

registration of the ordered products needs to be adapted.

194

11.2. Change Propagation Analysis in Business Processes

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 100.00% 100.00% 100.00% 100.00%

Recall 100.00% 100.00% 100.00% 100.00%

rд 0.40% 0.40% 0.40% 0.40%

rt 0.40% 0.40% 0.40% 0.40%

Table 11.7.: Results of the 5th change scenario in CoCoME

Table 11.7 summarizes the results for the aforementioned four cases. In this scenario,

the change propagates to the corresponding signatures of the system step. The component,

which provides the interface including the a�ected signature, needs also to be changed.

Thus, this change a�ects only a few model elements of CoCoME (i.e., rt is 0.40%). In this

change scenario, there are neither false positives nor false negatives in the generated task

lists. Thus, precision and recall values for all four cases are 100%. Further, the generated

task lists and the reference task list contain the same model elements. In other words, the

values of rt and rд are equal.

In this scenario, there is no di�erence between the four cases, as the data dependency is

not the reason for the change propagation. Further, the change does not propagate along

inter- and intra-component dependencies.

11.2.4.6. Change Scenario 6: Scalability

Due to globalization and economic growth the management of CoCoME plans to expand

the stores and to extend the range of the o�ered products. However, the current database

cannot scale. For this purpose, CoCoME plans to replace the component handling the data

persistence as one of the �rst steps. However, this change involves several further changes

as hiring new employees. Thus, the long-term consequences of this change can be very

high.

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 100.00% 100.00% 100.00% 100.00%

Recall 100.00% 100.00% 100.00% 100.00%

rд 0.13% 0.13% 0.13% 0.13%

rt 0.13% 0.13% 0.13% 0.13%

Table 11.8.: Results of the 6th change scenario in CoCoME

Table 11.8 summarizes the results for the aforementioned four cases. This change

scenario deals with changing the internal of a component without changing its interfaces.

CoCoME has a component-based software architecture. For this reason, the change request

195

11. Evaluation

can be implemented by only changing the corresponding component. The change does

not propagate to other components and interfaces. Thus, rд and rt are each 0.13%. As

the generated task lists and the reference task list contain the same model elements, the

precision and recall values are each 100%. As this change does not a�ect any data types,

interfaces, and signatures, the generated task lists in all four cases contain the same model

elements.

11.2.4.7. Change Scenario 7: Encryption

One of the outcomes of an internal workshop with managers and employees of CoCoME

is the current login of employees is not secure. CoCoME plans secure login for employees

to accomplish the required security standards. For this purpose, a corresponding data type

needs to be changed.

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 76.92% 90.91% 76.92% 90.91%

Recall 100.00% 100.00% 100.00% 100.00%

rд 1.73% 1.47% 1.73% 1.47%

rt 1.33% 1.33% 1.33% 1.33%

Table 11.9.: Results of the 7th change scenario in CoCoME

Table 11.9 summarizes the results for the aforementioned four cases. In this scenario, a

data type is initially changed. The change mainly propagates to the other model elements

due to the data dependency. Similar to the RFID scenario (see Section 11.2.4.2) the data

�ow results in further false positives in this scenario. Thus, the precision value in the

�rst case is 76.92%. This value is calculated without considering the number of all model

elements in the generated task list, as the precision refers only to the number of true

positives and false positives (see Figure 11.4). The relation between the number of true

positives in the task list to the number of all model elements can be seen by the rд value

(i.e., 1.73% in the �rst case). As the a�ected data type is referenced by a small number of

model elements, the change propagation a�ects only a small fraction of all model elements

(i.e., rt is 1.33%). The comparison between the rt and the rд values in the �rst case shows

that the generated task list considerably reduces the number of model elements, which

domain experts have to consider during the change propagation analysis. As the data �ow

is the reason for the propagation of false positives, omitting the corresponding rules in

the second case reduces the number of false positives. The precision value in the second

case is 90.91%. The generated task list in this case contains 1.47% of all model elements

(i.e., rд). As the inter- and intra-component dependencies do not result in the propagation

of change in this scenario, the generated task lists in the �rst and the third case contain

the same model elements. The generated task list in the last case also contains as many

elements as in the generated task list in the second case (i.e., rд is 1.47% in both cases). No

element is missing in the generated task lists. Thus, the recall value is 100.00% in all cases.

196

11.2. Change Propagation Analysis in Business Processes

11.2.4.8. Change Scenario 8: Managerial Roles

To manage the stores e�ciently, the management of CoCoME plans to combine several

store manager roles into one store manager role. The goal of cutting some management

jobs is to save costs. Thus, one manager is responsible for several stores. As this change

a�ects the role hierarchy and the management of CoCoME, short-term and long-term

consequences of this change can be high.

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 80.00% 80.00% 100.00% 100.00%

Recall 100.00% 100.00% 100.00% 100.00%

rд 4.00% 4.00% 3.20% 3.20%

rt 3.20% 3.20% 3.20% 3.20%

Table 11.10.: Results of the 8th change scenario in CoCoME

Table 11.10 summarizes the results for the aforementioned four cases. The role store
manager is initially a�ected in this change scenario. Additionally, the corresponding inter-

face has also to be refactored in order to be extensible for possible future responsibilities

of the changed role. The second seed modi�cation belongs to the refactoring activities, as

the new merged manager role has to perform the tasks of each store manager. This change

a�ects 3.20% of all model elements in both IS and BP of CoCoME. The precision of the task

list in the �rst both cases is 80.00%. As all model elements in the reference task list can also

be found in the generated task list, the recall value for the �rst both cases is 100.00%. The

propagation of false positives is due to inter- and intra-component change propagation, as

the comparison between the �rst and the third case shows. Further, the data type does not

cause the change propagation in this scenario. For this reason, the generated task lists in

the last two cases contain the same model elements as in the reference task list. Thus, the

precision and recall values are 100.00% for these cases. Further, rt and rд values are equal

(i.e., 3.20%). Although the precision values of the �rst two cases were 80.00%, the values of

the rд metric show that the generated task list contains only a small subset of all model

elements. The reason for this observation was illustrated in Figure 11.4. Summarized, the

generated task lists can signi�cantly reduce the number of model elements that have to be

manually analyzed by domain experts.

11.2.4.9. Change Scenario 9: Receipt

An increasing number of customers pay with credit cards. As the bank statements provide

the list of transactions, it is not economically to print receipts for each sale. To reduce

costs, the cashier shall hand out receipts only upon request (i.e., only if the client asks for

a receipt).

197

11. Evaluation

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 100.00% 100.00% 100.00% 100.00%

Recall 100.00% 100.00% 100.00% 100.00%

rд 0.53% 0.53% 0.53% 0.53%

rt 0.53% 0.53% 0.53% 0.53%

Table 11.11.: Results of the 9th change scenario in CoCoME

Table 11.11 summarizes the results for the aforementioned four cases. The seed modi�-

cation involves the actor steps regarding handing out the receipts in the corresponding

BP. As the actor steps are referenced by a few numbers of other model elements, the

change propagates only to a small fraction of the model elements of the BP design. For

this reason, the rt value is 0.53%. In this scenario, the change propagates to actor steps

with a data dependency to the a�ected actor step. As the change a�ects only the BP design

of CoCoME, the generated task lists in all cases contain the same model elements. Further,

the generated task lists and the reference task list also include the same model elements.

Thus, the precision and recall values are each 100.00%. Additionally, rt and rд values are

equal.

11.2.4.10. Change Scenario 10: Transparency

Due to a new transparency law for the employees in an organization, CoCoME plans to

improve the right to access information about its stores. To implement the law CoCoME

changes the corresponding interface for accessing stock information.

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 70.59% 70.59% 100.00% 100.00%

Recall 100.00% 100.00% 100.00% 100.00%

rд 2.27% 2.27% 1.60% 1.60%

rt 1.60% 1.60% 1.60% 1.60%

Table 11.12.: Results of the 10th change scenario in CoCoME

Table 11.12 summarizes the results for the aforementioned four cases. This change

initially a�ects the interface, which provides access to stock information. The change

propagates from the a�ected interface and its signatures to all interfaces and signatures

referencing them. This can result in further changes in the system steps of the BP design

models. Additionally, a�ecting an interface results in changing the components providing

or requiring it. Thus, the change propagation in one iteration based on the inter- and

intra-component dependencies reduces the number of false positives. As the change

198

11.2. Change Propagation Analysis in Business Processes

request does not a�ect any data types and data objects, the data �ow does not result in

the propagation of false positives. This can also be seen by comparing the values of rд of

all cases in Table 11.12. The comparison shows that the generated task lists in the �rst

two cases contain the same number of model elements. Thus, the values of the precision

and rд metrics are 70.59% and 2.27%, respectively. Accordingly, the task lists in the latter

both cases contain the same model elements, as the last case combines the second and the

third case (i.e., rt and rд values are 1.60% in both cases). As the comparison between the

generated task lists and the reference task list does not result in any false negatives, the

values of recall are 100.00% in all cases.

11.2.5. Change Scenarios and Evaluation Results for mRUBiS

This section shows the change scenarios and the evaluation results of KAMP4BP using

a further evaluation subject, namely mRUBiS. Similar to Section 11.2.4, KAMP4BP was

evaluated using a set of change scenarios based on mRUBiS. As the change scenarios cover

the categories of change triggers in BP (see Chapter 10), they represent equivalence classes

of change scenarios. Table 11.13 shows the coverage of the categories of change triggers by

the change scenarios of mRUBiS. In comparison to CoCoME, mRUBiS is a smaller software

system and has fewer components. Consequently, the BP of mRUBiS contains fewer

activities. These BP do not use any resource devices and data objects. The chosen change

scenarios cover other relevant metaclasses of PCM [BKR09], BPUsageModel [Hei+17],

and DataModel [Ros+17a] regarding the maintainability. Similar to Section 11.2.4, the

scenarios were chosen with focus on the mutual dependencies between the IS and the

corresponding BP. The following change scenarios and evaluation cases are based on the

change scenarios and evaluation cases of a Bachelor’s thesis, which the author of this

dissertation supervised [Pet18].

The following sections discuss the change scenarios for mRUBiS.

11.2.5.1. Change Scenario 1: User Registration

An employee of mRUBiS suggests changes in users’ registration process to improve regis-

tering new users. After this modi�cation, users can also register via phone or email.

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 100.00% 100.00% 100.00% 100.00%

Recall 100.00% 100.00% 100.00% 100.00%

rд 0.83% 0.83% 0.83% 0.83%

rt 0.83% 0.83% 0.83% 0.83%

Table 11.14.: Results of the 1st change scenario in mRUBiS

Table 11.14 summarizes the results for the aforementioned four cases. The change

request initially a�ects the actor step regarding the registration of users. As the user

199

11. Evaluation

Layer 1 Layer 2 Layer 3 Coverage

Scenarios

participation initiators legal entities 1, 2, 7

8, 9

non-legal entities 5

reluctant participants legal entities 4

non-legal entities 6

further participants legal entities 3

non-legal entities 10

origin internal origin person-related in�uence 1

business domain 2

(process and structure)

technology and IT 3

external origin person-related regulations 7

socioeconomics 9

politics 4

further regulations 8

economy 6

location 10

technology 5

characteristics degree of urgency reactive 3, 4, 6

7, 10

proactive 1, 2, 5

8, 9

degree of intensity low 1, 5, 9

medium 2, 4,

6, 7, 8

high 3, 10

degree of complexity low 1, 2, 3

4, 5, 8, 9

medium 7, 10

high 6

degree of prediction predictable 1, 2, 4

5, 8, 9

unpredictable 3, 6, 7, 10

degree of hierarchy top-down change 2, 3, 4, 6

7, 8, 9, 10

bottom-up change 1

hybrid change 5

Table 11.13.: Application of categories of change triggers in BP to mRUBiS based on [Pet18]

200

11.2. Change Propagation Analysis in Business Processes

registration activity has to be performed either way, the software system remains un-

changed. The change propagation rules regarding data dependencies, as well as inter- and

intra-component dependencies mainly refer to the change propagation in the software

architecture. Thus, they do not a�ect the generated task lists in this change scenario.

Consequently, the generated task lists in all cases contain the same model elements as in

the reference task list. Thus, the precision and recall values are 100.00%. In other words, rt
and rд values are equal. The change a�ects only a small set of all model elements (i.e., rt is

0.83%).

11.2.5.2. Change Scenario 2: Performance

To improve the performance of the processes of mRUBiS (i.e., as one of the main quality

attributes), the managers decide to parallelize the software system. For this purpose,

they want to deploy mRUBiS components on di�erent platforms. To have a high degree

of parallelization, it is preferable to have more small components instead of few large

components that contain a majority of business logic. Thus, the components have to be

decomposed.

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 77.78% 77.78% 77.78% 77.78%

Recall 100.00% 100.00% 100.00% 100.00%

rд 7.44% 7.44% 7.44% 7.44%

rt 5.79% 5.79% 5.79% 5.79%

Table 11.15.: Results of the 2nd change scenario in mRUBiS

Table 11.15 summarizes the results for the aforementioned four cases. The refactoring

begins with the component providing inventory services. This interface can be divided

into two further interfaces. Thus, the component providing this interface needs also to

be divided into two components. As this interface is required by other interfaces, the

change propagates to these interfaces. This results in the propagation of false positives.

The precision of the �rst case is 77.78%. As the change does not a�ect any data types, the

precision of the second case is also 77.78%. The false positives are created during the �rst

iteration of inter- and intra-component change propagation. Thus, reducing the number of

iterations does not change the number of false positives (i.e., the precision value is 77.78%

in the third case). Consequently, combining the second and the third case (i.e., the fourth

case) does not in�uence the generated task list. In this scenario, no model element from

the reference task list is missing. Thus, the recall of all four cases is 100%. In this scenario

5.79% of all model elements are actually a�ected by the change. Due to false positives the

generated task list contains 7.44% of all model elements.

201

11. Evaluation

11.2.5.3. Change Scenario 3: Privacy

Due to design �aws clients of mRUBiS can access private data of sellers. However, buyers

should only see seller ratings according to the requirements of the system. Thus, the user

interface for the clients has to be changed.

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 100.00% 100.00% 100.00% 100.00%

Recall 100.00% 100.00% 100.00% 100.00%

rд 3.31% 3.31% 3.31% 3.31%

rt 3.31% 3.31% 3.31% 3.31%

Table 11.16.: Results of the 3rd change scenario in mRUBiS

Table 11.16 summarizes the results for the aforementioned four cases. The change

a�ects the interface regarding displaying sellers’ information. This change a�ects only

a signature of an interface and therefore the component providing it. Thus, the change

a�ects only a small number of all model elements (i.e., rt is 3.31%). The change does

not a�ect any data types. Additionally, the change does not propagate due to inter- or

intra-component dependencies. Thus, the generated task lists in the four cases contain

the same model elements. Further, they do not contain any false positives in four cases.

As no model element from the reference task list is missing, the recall value is 100%. The

values of rt and rд are equal.

11.2.5.4. Change Scenario 4: Additional Information

Due to a new law, users have to provide a Completely Automated Public Turing test to

tell Computers and Humans Apart (CAPTCHA) for human authentication during the

registration and authentication. The BP of mRUBiS must be adapted due to the new law.

However, this change results in higher overhead of users’ registration and authentication.

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 73.33% 73.33% 73.33% 73.33%

Recall 100.00% 100.00% 100.00% 100.00%

rд 12.40% 12.40% 12.40% 12.40%

rt 9.09% 9.09% 9.09% 9.09%

Table 11.17.: Results of the 4th change scenario in mRUBiS

Table 11.17 summarizes the results for the aforementioned four cases. In this change

scenario the seed modi�cations are the corresponding system steps of the user registration

and authentication interface. This change propagates from the a�ected system steps in

202

11.2. Change Propagation Analysis in Business Processes

BP to the corresponding interfaces in IS and then to the components implementing these

interfaces. As the seed modi�cations originate in BP, reducing the number of iterations by

the inter- and intra-component change propagation does not in�uence the results. Further,

the change does not a�ect any data types. Consequently, the generated task lists of all four

cases contain the same model elements. As this change a�ects 9.09% of all model elements

(i.e., rt), it can be considered as a fundamental change to the system. The value of rд for

all cases is 12.40%. In other words, the generated task lists contain a few model elements

more than the reference task list for all cases in this scenario. However, the precision value

is 73.33%, as this metric considers only true positives and false positives in the generated

task list (see Figure 11.4). As no a�ected model element is missing in the generated task

lists, the recall values for all four cases are 100%.

11.2.5.5. Change Scenario 5: New Technology

The software of mRUBiS uses third party libraries. The vendors of the libraries provide

updates (i.e., a new version of the libraries is available.). Therefore, the implementation of

the a�ected components has to be changed.

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 100.00% 100.00% 100.00% 100.00%

Recall 100.00% 100.00% 100.00% 100.00%

rд 0.83% 0.83% 0.83% 0.83%

rt 0.83% 0.83% 0.83% 0.83%

Table 11.18.: Results of the 5th change scenario in mRUBiS

Table 11.18 summarizes the results for the aforementioned four cases. The seed modi�-

cation is the component that is based on the previous version of the libraries. mRUBiS has

a component-based software architecture. Therefore, in this scenario only the implemen-

tation of the component is a�ected by the change. The provided and required interfaces

remain unchanged. The generated task lists and the reference task list contain the same

model elements in all cases. The reason for that is that no data types and interfaces are

a�ected by the change. Thus, the precision and recall values are 100%. Further, rt and rд
have the same values in all cases (i.e., 0.83%).

11.2.5.6. Change Scenario 6: Organizational Growth

mRUBiS plans to expand its services into other countries. After the international expansion,

the database is the bottleneck in the system due to a high number of registrations. Thus,

the corresponding interface has to be exchanged. It is assumed that the expansion has

high long-term consequences.

203

11. Evaluation

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 70.00% 70.00% 70.00% 70.00%

Recall 100.00% 100.00% 100.00% 100.00%

rд 16.53% 16.53% 16.53% 16.53%

rt 11.57% 11.57% 11.57% 11.57%

Table 11.19.: Results of the 6th change scenario in mRUBiS

Table 11.19 summarizes the results for the aforementioned four cases. This change

scenario initially a�ects an interface. The change propagates to interfaces and signatures,

which depend on the a�ected interface and its signatures. This leads to changing all

components requiring or providing the a�ected interfaces. Thus, the generated task lists

contain 16.53% of all model elements. As this change a�ects 11.57% of all model elements,

it has a high impact on the models of IS and BP. In this scenario, the data type does not

cause the change propagation. Thus, omitting the corresponding rules does not a�ect the

results, as it can be seen by comparing the �rst and the second case. Further, the false

positives were generated during the �rst iteration of inter- and intra-component change

propagation. Consequently, the task lists in the �rst and the third case are the same. As

all cases generate the same task list, the precision values of the generated task lists in all

cases are 70.00%. The recall values of all cases are 100%, as no model element from the

reference task list is missing in the generated task lists.

11.2.5.7. Change Scenario 7: Search Query

mRUBiS conducts a customer satisfaction survey to improve its services. Based on this

survey, the managers decide to extend the search possibilities due to customers’ feedback.

This involves searching the products in several price intervals.

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 44.44% 44.44% 44.44% 44.44%

Recall 100.00% 100.00% 100.00% 100.00%

rд 7.44% 7.44% 7.44% 7.44%

rt 3.31% 3.31% 3.31% 3.31%

Table 11.20.: Results of the 7th change scenario in mRUBiS

Table 11.20 summarizes the results for the aforementioned four cases. The seed modi-

�cations are the corresponding signatures for searching products. In this scenario, the

change propagates to components and signatures in the IS, as well as system steps in the

BP. The interface, in which the signatures occur, is required by several other interfaces.

204

11.2. Change Propagation Analysis in Business Processes

Thus, the change propagation results in selecting several components, which are not

actually a�ected by the change. Consequently, the precision value of the results is 44.44%.

As no model element from the reference task list is missing in the generated task lists,

the recall value is 100.00% for all cases. 3.31% of all model elements are a�ected by this

change request (i.e., rt). Although the generated task list contains only a small fraction

of all model elements (i.e., rд is 7.44%), the precision value is low. This scenario is also

very similar to the example illustrated in Figure 11.4. The main reason for this observation

is that the precision neglects the number of all model elements and relates only to the

number of true positives and false positives in the generated task lists. In other words, the

comparison between rt and rд values shows that the approach can signi�cantly reduce the

number of all model elements that need to be considered despite the low precision values.

As this change does not a�ect any data types, the results of the �rst and the second case

are equal. Further, reducing the number of iterations does not improve the precision of

the results, as the false positives are generated in the �rst iteration. Consequently, the task

lists of all cases contain the same model elements.

11.2.5.8. Change Scenario 8: Encryption

So far, users’ passwords are stored as plain-text. Due to a new law and to improve the

security software architects of mRUBiS plan to store the hashes of users’ passwords.

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 38.10% 75.00% 38.10% 75.00%

Recall 100.00% 100.00% 100.00% 100.00%

rд 52.07% 26.45% 52.07% 26.45%

rt 19.83% 19.83% 19.83% 19.83%

Table 11.21.: Results of the 8th change scenario in mRUBiS

Table 11.21 summarizes the results for the aforementioned four cases. The seed modi�-

cation is the data type representing users’ passwords. As several data types are composed

of this data type, the change propagates due to data dependencies to the other data types.

Further, the data dependencies result in the propagation of change to the other model

elements such as signatures or components. Data dependencies also cause several false

positives. Thus, the precision of the task list in the �rst case is 38.10%. For this reason,

neglecting the propagation of change from one data type to the other data types improves

the precision of the results considerably. Thus, the precision of the task list in the second

case is 75.00%. As the inter- and intra-component dependencies do not cause further false

positives, the generated task lists in the �rst and in the third case contain the same model

elements. Thus, the results in both cases have the same precision. Additionally, combining

the second and the third case in the fourth case results in the same task list as in the

second case. As no element of the reference task list is missing in the generated task list,

the recall is 100% in all cases. Further, this change scenario represents a scenario with

205

11. Evaluation

a high impact, as it a�ects 19.83% of all model elements (i.e., rt). Due to false positives

in the generated task lists, the value of rд is 52.07% in the �rst and in the third case and

26.45% in the second and in the fourth cases. Thus, the generated task lists (especially the

second and the fourth case) can considerably reduce the number of model elements, which

domain experts need to consider during the analysis of the change propagation. Note that

this scenario (especially the �rst and the third case) is also similar to the example depicted

in Figure 11.4.

11.2.5.9. Change Scenario 9: Accessibility

The managers of mRUBiS plan to change the interface for the user registration. This

decision aims at improving the accessibility and the usability of mRUBiS, especially for

disabled persons.

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 100.00% 100.00% 100.00% 100.00%

Recall 100.00% 100.00% 100.00% 100.00%

rд 2.48% 2.48% 2.48% 2.48%

rt 2.48% 2.48% 2.48% 2.48%

Table 11.22.: Results of the 9th change scenario in mRUBiS

Table 11.22 summarizes the results for the aforementioned four cases. The seed modi�-

cation is the interface for the user registration, which propagates to the corresponding

signature and system step. This change does not cause any false positives or false negatives.

As no data types are a�ected by the seed modi�cations, omitting the corresponding rules

does not a�ect the generated task list. As this change only impacts one of the interfaces

provided by the software system, reducing the number of iterations in the inter- and intra-

component change propagation does not a�ect the generated task list in this scenario.

Thus, the generated task lists in all cases and the reference task list contain the same model

elements. In this scenario, 2.48% of all model elements are a�ected (i.e., rд and rt values).

11.2.5.10. Change Scenario 10: Competition

In some regions, new organizations cause drop in sales of mRUBiS. Thus, the BP of

mRUBiS has to be changed in these regions due to competition. mRUBiS plans to o�er

direct sales only in these regions. However, the software system is not a�ected by the

change, as it is further used in the other regions.

206

11.2. Change Propagation Analysis in Business Processes

Metric:

Evaluation

Cases:

1st Case: 2nd Case: 3rd Case: 4th Case:

All Rules All Rules 1 Iteration by All Rules without Data

without Data Inter- and Intra- Type Change Propagation

Type Change component and 1 Iteration by Inter- and

Propagation Propagation Intra-component Propagation

Precision 100.00% 100.00% 100.00% 100.00%

Recall 100.00% 100.00% 100.00% 100.00%

rд 2.48% 2.48% 2.48% 2.48%

rt 2.48% 2.48% 2.48% 2.48%

Table 11.23.: Results of the 10th change scenario in mRUBiS

Table 11.23 summarizes the results for the aforementioned four cases. This change sce-

nario a�ects the role bidder, which leads to changing the actor steps corresponding to this

role. In other words, this scenario is only concerned with actor steps performed by bidders.

As this change does not a�ect the software system (i.e., neither the change propagation

due to data dependencies nor the inter- and intra-component change propagation), the

generated task lists in all four cases and the reference task list include the same model

elements. Thus, the precision and recall values are 100.00%. This change a�ects 2.48% of

all model elements (i.e., tt and rд values).

11.2.6. Summary of Evaluation Results

This section presents the summary of the evaluation results regarding both case studies,

namely CoCoME and mRUBiS. Figure 11.6 summarizes the values of rt in comparison to

the values of the precision metric for the �rst case (i.e., applying all change propagation

rules). Along each axis a bloxplot is added to summarize the values of rt and the values of

precision for the �rst case. The boxplot regarding the precision value shows that 75% of

all precision values in this case were higher than 70.44%. The precision values were 100%

in 9 of 20 change scenarios. Thus, the median is 78.89% and the upper quartile is 100%.

On average, the precision value is 79.27%. This diagram can be used for the comparison

between the boxplot regarding the rt values and the boxplots regarding the rд values in

di�erent cases, as described in the following.

Figure 11.7 compares the relation between the precision and rд for all cases. Each

change scenario has the same symbol in all scatter diagrams. Each scatter diagram has

been extended by two boxplots. The vertical boxplot summarizes the values of the precision

in each case, while the horizontal boxplot summarizes the values of rд. In this way, the

values of each metric can be compared between di�erent cases. The comparison between

the precision values and the rt values in Figure 11.6, as well as the precision values and

the rд values in Figure 11.7 shows that there is a tendency towards the number of a�ected

model elements by a change scenario and its precision value. The outliers in the �rst case

(see Figure 11.6) result from the second scenario of CoCoME and the eighth scenario of

mRUBiS with a precision value of 32.96% and 38.10%, respectively. The generated task

lists of these change scenarios contained the most a�ected model elements. In other

words, the rд values are 35.60% and 52.07%, respectively. In these scenarios, the change

a�ects a majority of the model elements (i.e., rt values are 11.73% and 19.83%, respectively).

207

11. Evaluation

●

0 20 40 60 80 100

0
20

40
60

80
10

0

rt in Percent

Pr
ec

is
io

n
in

 P
er

ce
nt

 (a
ll

ru
le

s)

●

●

●

●●

●

Figure 11.6.: Comparing the evaluation results of rt and precision while applying all change

propagation rules

However, it cannot be concluded that a high number of a�ected model elements always

results in a low precision. For example, although the rt value in the �rst CoCoME scenario

is 13.20%, the precision value is rather high (i.e., 71.22%). Further, the comparison between

the precision, rt , and rд values shows although the precision values are rather low in some

cases, the application of KAMP4BP signi�cantly reduces the number of model elements

need to be considered. This can be seen even for the outliers in the �rst case based on

the rt , and rд values. The reason for lower precision and lower rд in some cases has been

already illustrated in Figure 11.4. Additionally, the generated task list contains the least

amount of false positives for change requests, which a�ect only a small number of model

elements.

Omitting the change propagation from data types improved the average of the precision

values in the aforementioned scenarios (i.e., the mean value for the scenarios in this case

is 84.02%). The lower quartile is 72.28% in this case. This means, that 75% of all precision

values in this case were higher than 72.28%.

In the third case, the change propagation due to inter- and intra-component depen-

dencies has been conducted in only one iteration. This is based on the heuristic that the

e�ects of a change in a component-based software remain locally. Although this case

contains the same outliers as in the �rst case, it can reduce the number of model elements

in the generated task lists in several scenarios. This can also be seen by the corresponding

boxplots regarding the precision and rд in Figure 11.7. In this case, the mean value of

the precision metric over all scenarios is 84.24% and the generated task list contains on

average 8.68% of all model elements (i.e., rд). Further, 75% of all precision values were

higher than 72.28%.

In the last case, the algorithm of change propagation iterates only one iteration over

the inter- and intra-component dependencies while omitting the change propagation

within data types. Thus, this case combines the second and the third case. As shown

in Figure 11.7, this also improves the precision values (i.e., the precision is 89.06% on

208

11.2. Change Propagation Analysis in Business Processes

average). Improving the mean value of precision correlates with reducing the mean value

of rд (i.e., rд is 6.35% on average). In this case, 75% of all precision values were higher

than 77.08%. The outlier of the last case regarding the precision value is caused by the

seventh change scenario of mRUBiS with a precision value of 44.44%. The reason for

the low precision is the concatenation of the following change propagation rules: i) the

change propagation from a modi�ed signature to the interface containing the signature

and ii) the change propagation from the a�ected signatures to all components requiring

these signatures. As the signature is not implemented or used in the most components

marked as a�ected, these components were considered as false positives. Neither omitting

the change propagation within a component, nor reducing the number of iterations due

to inter- and intra-component dependencies can improve the precision in this change

●

0 20 40 60 80 100

0
20

40
60

80
10

0

rg (all rules)

Pr
ec

is
io

n
(a

ll
ru

le
s) ●

●

●

●●

● ●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

rg (all rules without data type change propagation)

Pr
ec

is
io

n
(a

ll
ru

le
s

w
ith

ou
t d

at
a

ty
pe

 c
ha

ng
e

pr
op

ag
at

io
n)

●

●

●

●●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

rg (1 iteration by inter− and intra−component propagation)Pr
ec

is
io

n
(1

 it
er

at
io

n
by

 in
te

r−
 a

nd
 in

tra
−c

om
po

ne
nt

 p
ro

pa
ga

tio
n)

●●

●

●●

● ●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

rg (1 iteration and without data type change propagation)Pr
ec

is
io

n
(1

 it
er

at
io

n
an

d
w

ith
ou

t d
at

a
ty

pe
 c

ha
ng

e
pr

op
ag

at
io

n)
●●

●

●●

●

Figure 11.7.: Comparing the evaluation results of tuples (rд, precision) for the aforemen-

tioned four cases. Each change scenario has the same symbol in all diagrams

209

11. Evaluation

scenario. However, the rt value shows that only a small number of model elements are

a�ected in this change scenario. The comparison between the rt and rд values shows that

the generated task list references only a small number of model elements. Thus, it can

improve the change propagation analysis despite the low precision value. The precision

metric relates only to the number of true positives and the number of false positives in a

task list. It neglects the number of all model elements. For this reason, despite the low rд
and rt values, the precision value for this scenario is rather low.

11.2.7. Assumptions and Limitations

Although the goal of the evaluation was to evaluate the quality of the generated task

list by KAMP4BP [Ros+17a], the change propagation rules of the initial KAMP4IS [Sta15;

Ros+15b] and their extensions strongly in�uence the evaluation results of KAMP4BP

(KAMP4IS was evaluated in [Sta15]). The reason is that KAMP4BP extends KAMP4IS.

Further, if a change propagation rule of KAMP4IS results in false positives in the initial

stages of the change propagation analysis (e.g., the second scenario of CoCoME in Sec-

tion 11.2.4.2), these false positives result in further false positives in the later stages of the

change propagation analysis. Therefore, the consequences of two change propagation

rules in IS were exemplary discussed in the evaluation of KAMP4BP. Although precision

values of the second and the third case are higher than in the �rst case, the recall values in

these scenarios are 100%.

As discussed previously, the corresponding rules for the second and the third case can

be used in a small number of scenarios depending on the programming style and can result

in more false positives. However, there could be change scenarios, in which omitting

the change propagation from the data types a�ected by an initially changed data type,

as well as the inter- and intra-component change propagation leads to false negatives.

No realistic change scenario could be found in CoCoME and mRUBiS without changing

the case studies to illustrate the problem. However, mRUBiS can be modi�ed in order to

construct an example for a change scenario illustrating this problem. Buyers can leave a

comment for an item in mRUBiS. The description of the comment is realized as STRING. In

this way, any description is allowed. However, consider that the description is a composed

data type and a user changes the composed data type description. Considering both change

propagation rules would result in identifying all a�ected model elements. However, this

would also result in generating a high number of false positives. Omitting both change

propagation rules would result in missing an a�ected method invocation in the task list.

However, this reduces the number of false positives signi�cantly. One can argue that

changing a signature has a little impact. Thus, missing this signature in the task list can

be accepted. In general, omitting such rules can have a high impact on the generated task

list. There are several solutions for the previous example. One solution can be developing

change propagation rules at a low abstraction level (e.g., maybe at the instance level for

the speci�c scenarios). However, the resulting change propagation analysis approach

cannot be generalized to other systems. In other words, the change propagation rules may

need to be adapted for other systems. Another example is a case, in which a signature

in an interface does not contain any a�ected data types as parameters or return type

and has to be renamed as a result of the change request. Such a�ected model elements

210

11.2. Change Propagation Analysis in Business Processes

cannot be easily identi�ed using aforementioned change propagation rules. One heuristic

could be to use the implementation of such interfaces or their signatures. According to

this heuristic, if the implementation of an interface or a signature has to be changed, the

corresponding interface or signature is also a�ected by a change. However, this can lead

to the propagation of the internal changes in a component to its interfaces. In this way, a

component can no longer be considered as a black box. Such heuristics also violate the

information hiding principle and can cause a high number of false positives in the results.

Using component internal dependencies as suggested by Stammel [Sta15; Ros+15b] can

help to identify such interfaces or signatures, only if the providing interface or signature

of a component has a dependency to an a�ected requiring interface or signature. In this

case, the corresponding rules for inter- and intra-component change propagation have

to be used not only to identify the components, as used in previously described change

scenarios, but to identify all potentially a�ected interfaces and signatures, as originally

proposed by Stammel [Sta15]. The latter solution �nds such interfaces and signatures, but

highly overestimate the results in IS projects. One possible solution for all other cases

(e.g., no dependencies to any a�ected model element) can be a heuristic regarding name

search. Another possible solution is to use the coarse-grained elements in a software

architecture such as interfaces instead of more �ne-grained entities such as signatures.

In other words, if the generated task list contains interfaces, they can indicate that the

whole interfaces (i.e., not only individual signatures) need to be considered during the

change propagation analysis. Which heuristics and which change propagation rules have

to be used for a speci�c change propagation analysis approach or a whole software system

highly depend on the coding style and have to be evaluated individually. Summarized,

these examples show that although there are only a few change scenarios for these change

propagation rules, omitting them may result in false negatives. Although omitting these

change propagation rules improves the precision values of the results, there is a trade-o�

decision between the number of false positives and false negatives. In general, domain

experts have to decide which case is suitable for a speci�c change propagation analysis.

This depends on several factors, such as the implementation overhead of the change

propagation analysis approach or the abstraction level of the metamodels, models, and

rules. The in�uencing factors are described in Section 11.4.2.

As discussed at the beginning of the section, the goal of this evaluation was to evaluate

KAMP4BP. KAMP4IS was evaluated in an empirical study (cf. [Sta15]). Thus, the eval-

uation of KAMP4IS is out of scope of the evaluation of this thesis. The aforementioned

examples and the corresponding four cases in the evaluation results aim at illustrating the

e�ects of the evaluation results of KAMP4IS on KAMP4BP.

KAMP4BP provides generic change propagation rules. In general, there can be BP

schema and the corresponding instances. Thus, the algorithm and the rules can be adapted

to a speci�c BP schema. This can highly improve the prediction results. As discussed

previously, the generalization can su�er in these cases.

211

11. Evaluation

11.3. Change Propagation Analysis in Automated Production
Systems

This section presents the evaluation of KAMP4aPS and KAMP4IEC, discussed in Chapter 7.

While KAMP4aPS considers the change propagation in mechanical and electrical/elec-

tronic elements (i.e., hardware) in aPS, KAMP4IEC automatically calculates the change

propagation in the PLC software. These approaches can be considered as instances of the

methodology in the domain of aPS. As described in Chapter 7, a change in mechanical

and electrical/electronic elements of aPS can result in further changes in the PLC software.

However, not every change in the hardware will cause a change in the PLC software.

Thus, to develop a comprehensive set of representative change scenarios, which cover all

relevant equivalence classes of model elements, the change propagation in the hardware

and the software of aPS was evaluated separately.

For the evaluation of these approaches a community case study was used. This case

study is described in Section 11.3.1. At the beginning of the chapter, Figure 11.1 illustrated

the relationships between the maintainability analysis methodology, its concrete instances,

and the application of the instances to speci�c systems. The evaluation presented in

this section corresponds to the application of several instances of the methodology in

the domain of aPS to a system (see the latter both layers in Figure 11.1). Sections 11.3.2

and 11.3.3 discuss the goals, questions, and metrics of the evaluation of KAMP4aPS and

KAMP4IEC, respectively. These sections also present the change scenarios and the results

of the application of the approaches to each scenario. Section 11.3.4 gives an overview of

the assumptions and limitations.

The content of this section is based on the results of a Master’s thesis [Koc17] and a

Bachelor’s thesis [Rät17], which the author of this dissertation supervised. A follow-up

version of the KAMP4aPS evaluation was appeared in the paper [Hei+18]. The evaluation

of KAMP4aPS, which is presented in the following, is based on and extends the evaluation

of the paper [Hei+18]. The evaluation of KAMP4IEC is based on and extends the evaluation

of the paper [Bus+18c] and the Bachelor’s thesis [Rät17]. Thus, most content of this section

was appeared in the aforementioned works.

11.3.1. xPPU Case Study

The xPPU is illustrated in Figure 11.8. It is an extension version of the PPU. It was

established as a community demonstrator for industrial manufacturing plants within the

priority programme SPP 1593 [Hei+18; Vog+17; Bou+17]. The PPU case study “is limited

in size and complexity but provides a valuable trade-o� between problem complexity

and evaluation e�ort” [Vog+14a, p. 1]. Similar to CoCoME, the engineering artifacts and

documents of PPU are available [Vog+17]
3
. Further, a set of change scenarios are de�ned

for the community case study [Vog+14a].

The xPPU presents a lab-size plant, which mainly comprises a stack, a crane, a stamp,

and a conveyor. The stack serves as a store for work pieces. The crane picks the work

pieces from the stack and transports them to other positions of the plant (e.g., stamp).

3
https://www.ais.mw.tum.de/en/research/equipment/ppu/

212

11.3. Change Propagation Analysis in Automated Production Systems

In this process, di�erent types of work pieces can be di�erentiated (e.g., due to their

material) [Vog+17; Bou+17; Vog+14a].

Figure 11.8.: xPPU as a lab-sized demonstrator for aPS [Hei+18, p. 3]

11.3.2. Change Propagation Analysis in Mechanical and Electrical/Electronic
Elements

This section discusses the evaluation of KAMP4aPS, which is presented in Chapter 7.

KAMP4aPS was developed as an instance of the methodology and considers the change

propagation in mechanical and electrical/electronic elements of aPS. In the following, me-
chanical and electrical/electronic elements and hardware are used interchangeably. Changes

in the hardware can cause further changes in the PLC software [Hei+18].

The xPPU plant comprises mechanical and electrical/electronic elements, as well as a

PLC software. The mechanical and electrical/electronic elements of the xPPU were used

to evaluate the KAMP4aPS approach [Vog+17]. The following sections describe the study

design, as well as the change scenarios and the corresponding results.

11.3.2.1. Evaluation Goals, Questions, and Metrics

A GQM plan [Bas92; BCR94] was used to evaluate KAMP4aPS. Similar to KAMP4BP

in Section 11.2.3, Goal 1 evaluates the quality of the automatically generated task lists

in comparison to the manually created reference task lists. The reference task lists were

developed based on the knowledge of the Automatisierung und Informationssysteme (AIS)

group of the TUM. The generated task lists were automatically created by KAMP4aPS.

Similar to the evaluation of KAMP4BP, users’ decisions regarding task list reduction were

not considered. After comparing a generated task list and the corresponding reference

task list, a task can be considered as either true positive (tp), false positive (fp), or false

negative (fn). The focus of Question 1.1 is the precision of the generated task list: How

precise is the automatically generated task list in comparison to the reference task list?

213

11. Evaluation

Metric 1.1 is de�ned as: precision =
tp

tp +fp
to consider the number of true positives and

the number of false positives [Pow08]. In contrast to the �rst question, Question 1.2
considers the completeness of the generated task list: How complete is the automatically

generated task list in comparison to the reference task list? Metric 1.2 is de�ned as:

recall =
tp

tp + fn
to consider the number of true positives and the number of missing model

elements in the generated task list (i.e., false negatives) [Pow08]. Metric 1.1 and Metric 1.2

regard two cases. In the �rst case, both domain and context elements are considered, while

the second case considers only domain elements. Context elements not only involve the

organizational and technical artifacts but also aim at documenting the tacit knowledge of

domain experts. Thus, context elements in the following examples were chosen with regard

to the aforementioned aspects. Additionally, the following scenarios were designed to

involve di�erent context elements (if possible) to be able to evaluate the e�ects of di�erent

context elements. Further, the context elements were modeled at a low abstraction level

and annotated on as many model elements as possible. However, it is conceivable that

documenting the tacit knowledge cannot always be possible or the granularity of the

documentation can vary from scenario to scenario or from aPS to aPS. Additionally, context

elements can be added or removed over time. Further, di�erent domain experts may extend

the model of domain elements with other context elements, as they can consider other

context elements as more relevant for the change e�ort estimation. For these reasons, the

precision and the recall metrics are given in the following change scenarios for both cases

with context elements and without context elements.

Similar to the evaluation of KAMP4BP, the next goal addresses whether KAMP4aPS

can reduce the e�ort needed in the change propagation analysis. Thus, Goal 2 evaluates

the coverage of the automatically generated task list in comparison to the number of all

model elements. As Goal 1 neglects the number of all model elements in the evaluation

results, this goal aims at considering the number of all model elements while analyzing

the change propagation. Question 2 is de�ned as: Can KAMP4aPS reduce the number of

model elements in a domain, which have to be considered by an aPS expert during the

change propagation analysis phase? Metric 2.1 can be de�ned as rt =
tp
n . It is the ratio of

the number of true positives (tp) to the number of all model elements (n). Metric 2.2 is the

ratio of the number of the model elements in a domain referenced by the generated task

list (l = tp + fp) to the number of all model elements (n): rд =
l
n . Metric 2.1 and Metric 2.2

regard only the model elements in a domain. To answer this question, the values of both

metrics have to be compared.

To calculate precision, recall, rt and rд, true positives and false positives have to regard

only the a�ected model elements in the task lists and not how they are a�ected. During

the analysis of the evaluation results, task types should be ignored. Hence, tasks, which

reference the same model element but have di�erent task types, have to be considered

only once.

In the evaluation of KAMP4BP, the e�ects of di�erent change propagation rules on the

generated task list were shown. In the evaluation of KAMP4aPS, the e�ects of two aPS

metamodels on the generated task list should be discussed. The next question aims at

evaluating an appropriate abstraction level of metamodels and the corresponding change

propagation rules for the change propagation analysis in aPS. Question 2.2 is also: Which

214

11.3. Change Propagation Analysis in Automated Production Systems

in�uences has the abstraction level of the metamodel on the quality of the generated task

lists compared to the corresponding reference task list? To answer this question an instance

of both metamodels at di�erent abstraction levels is created. Further, corresponding change

propagation rules were created for each abstraction level, as described in Section 7.2.1.3.

For each change scenario, all calculated metrics for both models at two abstraction levels

were compared.

11.3.2.2. Change Scenarios and Evaluation Results

For evaluating KAMP4aPS, three change scenarios for the hardware of the xPPU were

chosen based on the abstract aPS metamodel, introduced in Section 2.7.1. The abstract aPS

metamodel is composed of structure, component, module, and interface metaclasses. The

following change scenarios cover changing the micro switch module, the ramp component,

and the physical interface of ramp. As a structure acts as a container to organize other

model elements (i.e., modules and components), the following change scenarios do not

cover changes to structure. Additionally, as modules can contain other modules and

components, changes to structures are similar to changes to modules. Another reason

for omitting changes to structures is that a change to a structure represents a change

propagation at a very high abstraction level. A seed modi�cation at a high abstraction

level may result in a high overestimation of the results. Thus, the set of seed modi�cations

should be chosen as small as possible [Hei+18; Ros+17a]. The change scenarios with

component, module, and interface as seed modi�cations represent the equivalent classes

of relevant model elements regarding the change propagation.

To evaluate KAMP4aPS, two models of the xPPU were created manually. The �rst

model is based on the abstract metamodel, whereas the second model is based on the

speci�c metamodel. Both metamodels were based on the AML models provided by the

AIS group of the TUM. While the abstract metamodel can be used to model any plants,

the speci�c metamodel is tailored to the xPPU [Hei+18]. On the one hand, to use the

speci�c metamodel for the other plants, it has to be extended to dedicated elements in

these plants. On the other hand, as the representation of the plant elements in the abstract

metamodel is very abstract, it is expected that a change propagation analysis based on the

corresponding model can lead to results with a low precision [Boh02]. In the following,

the e�ect of the granularity of the metamodel on the results is also discussed. For this

purpose, the change scenarios were also modeled for both xPPU models. The results of

the change propagation analysis are discussed for both models. In general, the domain

expert has to decide on the granularity of the metamodel. Di�erent factors such as the

metamodeling and the implementation overhead, as well as the precision of the results

can a�ect this design decision. These factors are discussed in Section 11.4.2 in more detail.

Change Scenario 1: Module This change scenario is based on the scenario 13 of the xPPU

technical report [Vog+14a]. This scenario describes changing the sensor modules for

better detecting the position of the crane in the xPPU. Prior to the change, the position

of the crane is detected by three micro switches. Each micro switch acts as a binary

sensor detecting whether the crane is in a certain position. Thus, the crane position

can be detected only in three positions exactly. The ability to detect the position of the

215

11. Evaluation

crane should be improved. For this purpose, the micro switches should be replaced by

a single potentiometer. In contrast to a micro switch, the potentiometer can detect the

position of the crane continuously. In this scenario, three micro switch modules are a�ected

initially. A micro switch module contains a micro switch component, a �xture component,

and a communication interface. Thus, this change scenario shows that not only the

micro switches and the potentiometer are a�ected by the change, but also the connected

elements [Hei+18].

Metric:

Model

Abstraction: Abstract Model Speci�c Model

Precision 57.14% 95.24%

(regarding domain and context elements)

Precision 44.90% 95.65%

(regarding domain elements)

Recall 100.00% 100.00%

rд 42.61% 20.00%

rt 19.13% 19.13%

Table 11.24.: Results of the 1st change scenario for the xPPU

Table 11.24 illustrates the evaluation results for both models in the �rst change scenario.

Regardless of the abstraction level of both metamodels, no model element of the reference

task list was missing in the generated task lists (i.e., the recall value is 100.00% for both

models). Thus, only the precision values for both cases with context element and without

context elements are given. Table 11.24 shows that the change propagation analysis based

on the abstract model results in a high number of false positives (i.e., the precision value

regarding the domain and context elements is 57.14%), whereas the generated task list based

on the speci�c model contains only a few numbers of false positives (i.e., the precision

value regarding the structural and context elements is 95.24%). Calculating the precision

values by considering only the domain elements for both abstract and speci�c models also

lead to similar results. In this case, the precision value for the abstract model is slightly

lower (i.e., 44.90%) than the precision value of the case with context elements (i.e., 57.14%).

For the speci�c model, both precision values are almost equal (i.e., 95.24% for the case

with context elements and 95.65% for the case without context elements). The reason for

generating many false positives for the abstract model is that the change propagation rules

could not di�erentiate between di�erent types of plant elements. Examples of this are the

instances of the component and module metaclasses from the abstract metamodel. In this

example, a valve and a ramp are both components. Further, the model does not distinguish

between di�erent types of sensors (e.g., micro switches, optical sensors, or inductive ones)

and motors, as they are all considered as instances of the module metaclass. Therefore, the

analysis cannot stop iterating over new model elements and change propagation rules, as

soon as the type of the model element does not match. By contrast, the change propagation

rules for the speci�c model can distinguish between di�erent types of model elements.

Thus, they can analyze the change propagation and identify the a�ected model elements

more precisely.

216

11.3. Change Propagation Analysis in Automated Production Systems

The rt value shows that 19.13% of all domain model elements are a�ected in this change

scenario. Thus, this scenario can be considered as a fundamental change in the model. As

there are only a few false positives in the generated task list based on the speci�c model,

the rд value for the speci�c model is also 20.00%. However, the generated task list based on

the abstract model contains 42.61% of all model elements due to the high overestimation

described previously.

Change Scenario 2: Component This change scenario is based on the scenario 1 of the

xPPU technical report [Vog+14a]. This scenario describes changing the mechanical

component ramp for increasing the capacity. Before the change, the xPPU has regular

ramps with a total capacity of three work pieces. In this change scenario, the regular

ramps should be replaced by another ramp with more capacity. Thus, a new Y-shaped

ramp with a capacity of six work pieces was selected. The ramp component is contained in

the conveyor structure and has an interface. Via this interface the ramp component

can be connected to the frame of the plant. Thus, replacing the ramp a�ects the frame and

the �xation interface [Hei+18].

Metric:

Model

Abstraction: Abstract Model Speci�c Model

Precision 27.78% 100.00%

(regarding domain and context elements)

Precision 25.00% 100.00%

(regarding domain elements)

Recall 100.00% 100.00%

rд 28.87% 7.22%

rt 7.22% 7.22%

Table 11.25.: Results of the 2nd change scenario for the xPPU

Table 11.25 summarizes the results for both models in the second scenario. The change

a�ects only 7.22% of all model elements actually (i.e., rt). No element is missing in the

generated task lists for both the abstract and the speci�c model. Thus, the recall value

for both cases is 100.00%. Similar to the �rst change scenario, only the precision values

for both cases with context element and without context elements are discussed in the

following.

Similar to the �rst scenario, the change propagation analysis for the abstract model

overestimates the a�ected model elements. This results in a low precision for the abstract

model (i.e., the precision value for the cases with context elements is 27.78%.). Considering

only the domain elements also leads to similar results regarding the precision value (i.e., the

precision value is 25.00%.). The rд value for this model shows that the change propagation

selects only 28.87% of all model elements as changed, despite the low precision. This e�ect

(i.e., lower precision and lower rд at the same time) is already illustrated in Figure 11.4.

The reason for this e�ect is that the precision considers only the number of true positives

217

11. Evaluation

and false positives. In contrast to precision, rд relates to the number of all selected model

elements (i.e., true positives and false positives) and the number of all model elements.

Similar to the �rst change scenario, the results of the change propagation analysis based

on the speci�c model are precise (i.e., the precision value in this case is 100.00%). Thus,

the generated task list and the reference task list contain the same model elements of the

speci�c model.

Change Scenario 3: Interface This change scenario is not based on the xPPU technical

report due to the small dimension of the change and was, thus, developed separately. This

scenario describes changing the physical interface of the ramp component for improving

the friction. This scenario was chosen due to its change propagation characteristics.

In the xPPU, an interface connects the ramp to only one main element of the plant,

namely the frame. Thus, if the change propagation rules were not designed accurately,

the result of the change propagation analysis may also contain all elements connected to

the frame. In this change scenario, the interface modi�cation a�ects the connected ramp

and frame [Hei+18].

Metric:

Model

Abstraction: Abstract Model Speci�c Model

Precision 11.61% 100.00%

(regarding domain and context elements)

Precision 8.57% 100.00%

(regarding domain elements)

Recall 100.00% 100.00%

rд 36.08% 3.09%

rt 3.09% 3.09%

Table 11.26.: Results of the 3rd change scenario for the xPPU

Table 11.26 illustrates the evaluation results for both models in the case of changing

an interface. As described previously, the rt value shows that the change a�ects only a

small number of all model elements (i.e., 3.09%). Similar to the previous change scenarios,

no model element from the reference task list was missing in the generated task lists for

both models. Thus, this scenario considers only the precision metric for the discussed

cases (i.e., with and without context elements). However, the generated task list for the

abstract model contains 36.08% of all model elements (i.e., rд). This shows that the change

propagation analysis cannot di�erentiate between di�erent types of model elements. Thus,

it overestimates the results to avoid overlooking model elements (i.e., false negatives).

The overestimation results in a precision value of 11.61% for the abstract model for the

case with context elements. The case without context elements results in slightly lower

precision value (i.e., 8.57%). In contrast to the abstract model, the change propagation

analysis for the speci�c model does not contain any false positives. Therefore, the precision

of the generated task list for the speci�c model is 100.00%.

218

11.3. Change Propagation Analysis in Automated Production Systems

11.3.2.3. Summary of Evaluation Results

This section summarizes the evaluation results of KAMP4aPS based on the xPPU models

at two abstraction levels. In the previously described change scenarios, no model element

from the reference task lists is missing in the generated task lists by KAMP4aPS regardless

of the abstraction level of the models. However, the abstraction of the metamodel in�uences

the resulting instances (i.e., models) and the granularity of the change propagation rules

(i.e., as the rules distinguish between di�erent types of model elements). They in�uence

the precision of the evaluation results. In particular, the change propagation algorithm

for the abstract metamodel iterates over all change propagation rules, until the algorithm

does not identify new model elements in the current iteration. The corresponding change

propagation rules for an abstract metamodel are also de�ned at an abstract level. In other

words, they cannot consider the speci�c types of the metaclasses such as components or

modules. The bene�t of this is that the abstract metamodel and the corresponding change

propagation rules can be applied to any plant. However, they overestimate the results

by generating a high number of false positives. By contrast, the change propagation

analysis based on the speci�c metamodel generates only a few numbers of false positives

in the previously described change scenarios. The corresponding change propagation

algorithm consists of a set of change propagation rules, which were tailored to the speci�c

metamodel. Thus, extending the speci�c metamodel requires new change propagation

rules. Summarized, there is a trade-o� design decision between the abstraction level of

the metamodel and the corresponding change propagation rules on the one hand and the

e�ort of developing and changing the metamodel, the corresponding change propagation

rules, and the precision of the results on the other hand. This is discussed in Section 11.4.2.

11.3.2.4. Assumptions and Limitations

In the evaluation of KAMP4aPS, two metamodels at two abstraction levels were considered.

The speci�c metamodel was designed based on the xPPU. As the xPPU is a community case

study, the corresponding metamodel contains typical elements of a plant such as cranes and

sensors (i.e., the specializations of structure, module, component, and interface) [Hei+18;

Vog+14a]. To use the metamodel and the change propagation rules for another plant, the

speci�c metamodel has to be extended to the elements of the plant under study. More �ne-

grained abstraction levels of the metamodel are also conceivable. For example, di�erent

sensors from di�erent vendors could be metamodeled separately. If the metamodel is

too �ne-grained or tailored to a speci�c plant, it cannot be generalized adequately. In

the sensor example, if a plant uses other sensors or even the same sensors from other

vendors, the metamodel has to be extended or refactored and the corresponding change

propagation rules have to be adapted. The speci�c metamodel was chosen, as it contains

typical plant elements [Hei+18]. Further, more metaclasses and relations between the

metaclasses in a metamodel correlate with more change propagation rules. This increases

the e�ort of implementing the change propagation analysis approach.

As described previously, the task types during the analysis of duplicates in the task

list were ignored. In other words, the true positives and false positives regard only the

a�ected elements in the task lists and not how they are a�ected. For example, the tasks

219

11. Evaluation

Add component table and Change component table were considered only once, as both

refer to the element table. Thus, considering these tasks as two di�erent tasks can result

in other values of the metrics. Another in�uencing factor on the results is the technical

and organizational artifacts that have to be considered. Considering other technical and

organizational artifacts can lead to other values of the metrics especially the precision

and recall metrics. For this purpose, the evaluation considers not only domain elements

together with context elements, but also domain elements without context elements. As

the value of the recall metric was 100.00% for all change scenarios, only the precision

metric regarding both cases were calculated. The values of the precision metric regarding

the domain and context elements are similar to the values of the precision metric regarding

only the domain elements in the discussed change scenarios.

As described previously, the evaluation compares the results for two models at two

abstraction levels. For this purpose, the models contained the same elements. An example

of this is the simple motor. It is represented as a speci�c element type in the speci�c

metamodel, while it can be modeled only as a component using the abstract metamodel.

Thus, the modeling e�ort for both models was the same.

11.3.3. Change Propagation Analysis in Control So�ware

This section presents the evaluation results of KAMP4IEC, which is proposed in Section 7.3.

KAMP4IEC can be considered as a further instance of the methodology. It analyzes the

change propagation in a PLC software, which is developed based on the IEC 61131-3

standard. To evaluate the approach, the PLC software of the xPPU was used. The following

sections describe the goals, questions, and metrics of the evaluation, as well as the change

scenarios and the corresponding results.

11.3.3.1. Evaluation Goals, Questions, and Metrics

A GQM plan [Bas92; BCR94] was used for the evaluation of KAMP4IEC. Similar to the

evaluation of KAMP4BP and KAMP4aPS, Goal 1 evaluates the quality of the automatically

generated task lists in comparison to the manually created reference task lists. The

reference task list is based on the PLC software and the corresponding model based on

the metamodels for the IEC 61131-3 programs. It references model elements regarding

the program elements that have to be modi�ed to implement the change. The generated

task list is automatically created by the approach. Similar to the previous evaluations the

decision of users regarding task list reduction was not considered. After comparing a

generated task list and the corresponding reference task list, a task can be considered as

either true positive (tp), false positive (fp), or false negative (fn). Question 1.1 is concerned

with the precision of the generated task list: How precise is the automatically generated

task list in comparison to the reference task list? Metric 1.1 relates to the number of true

positives and the number of false positives as: precision =
tp

tp +fp
[Pow08]. Question 1.2

deals with missing elements in the generated task list: How complete is the automatically

generated task list in comparison to the reference task list? Metric 1.2 relates to the

number of true positives and the number of false negatives as: recall =
tp

tp +fn
[Pow08].

220

11.3. Change Propagation Analysis in Automated Production Systems

Similar to KAMP4BP, the next goal addresses whether the use of KAMP4IEC decreases

the e�ort of the change propagation analysis. Thus, Goal 2 evaluates the coverage of

the automatically generated task list in comparison to the number of all model elements.

Question 2 is de�ned as: Can KAMP4IEC reduce the number of model elements, which

domain experts need to consider during the change propagation analysis phase? To answer

this question, two metrics were de�ned, similar to the previous evaluations. Metric 2.1 is

the ratio of the number of model elements referenced by the reference task list (tp) to the

number of all model elements (n): rt =
tp
n . Metric 2.2 is the ratio of the number of model

elements referenced by the generated task list (l = tp + fp) to the number of all model

elements (n): rд =
l
n . The e�ort reduction can be observed by comparing the values of

both metrics. Comparing both metrics allows analyzing whether KAMP4IEC can reduce

the e�ort of the change propagation analysis.

11.3.3.2. Change Scenarios

To evaluate KAMP4IEC, a set of change scenarios were identi�ed. The change scenarios

can be considered as equivalence classes of model elements, which are relevant for the

change propagation analysis. Thus, the change scenarios cover all relevant metaclasses.

Additionally, they cover the change propagation rules, which were de�ned based on

the relations of the metaclasses. The �rst three change scenarios analyze the impact of

changing a hardware part of a plant on the PLC software. These scenarios are partially

developed based on the evolution scenarios of the xPPU [Vog+14a]. The other change

scenarios were designed to cover the remaining relevant IEC metaclasses and the remaining

change propagation rules.

If the change propagation algorithm for the PLC software (see Algorithm 29) identi�es

a�ected function blocks and interfaces in the model of software, it adds these model

elements to the set of seed modi�cations to calculate further change propagation. Thus,

changing function blocks or interfaces can have a high impact on the results of the

algorithm. For this purpose, several change scenarios were designed to consider changes

to function blocks or interfaces.

This section describes the change scenarios. The following section discusses the results

of the evaluation. The evaluation scenarios and results are based on and extend the

scenarios and results of the KAMP4IEC evaluation appeared in [Rät17; Bus+18c].

Change Scenario 1: Structure The �rst change scenario was designed based on one of the

evolution scenarios of the xPPU [Vog+14a]. This scenario deals with removing the stamp of

the xPPU. Consequently, the seed modi�cations are the input and output global variables,

as well as the function block realizing the stamp functionality. This change scenario

covers the following seed modi�cations in the IEC repository model: GlobalVariable and

FunctionBlock.

Change Scenario 2: Module This change scenario corresponds to the �rst change scenario

of the hardware (see Section 11.3.2.2). It considers replacing three micro switch modules

for the detection of the crane positions with a single potentiometer. This scenario is also

based on one of the evolution scenarios of the xPPU [Vog+14a]. The sensors are connected

221

11. Evaluation

to the PLC. Consequently, the input and output of the PLC are presented in the model

as global variables. In this scenario, the corresponding global variables for the input of

the micro switches have to be changed. This change scenario covers the following seed

modi�cation in the IEC repository model: GlobalVariable.

Change Scenario 3: Component This scenario deals with removing the binary start button

of the plant and adding a rotary one. The goal is switching between di�erent production

modes. The global variable corresponding to the binary start button has the type BOOL.

Thus, the type of the corresponding global variable has to be changed from BOOL to INT.

This change scenario covers the following seed modi�cation in the IEC repository model:

GlobalVariable.

Change Scenario 4: Function Block In this change scenario, a function block and its meth-

ods have to be renamed. The function block mainly provides the functionality to control

the conveyor in the xPPU. This function block is instantiated by a further function block.

Additionally, the methods of this function block are called by the methods of another

function block. This change scenario covers the following seed modi�cation in the IEC

repository model: FunctionBlock.

Change Scenario 5: Function Block This change scenario was designed to analyze the

e�ects of refactoring a function block, which implements the functionality of the crane

in the xPPU. The refactoring involves splitting the function block into further function

blocks due to separation of concerns. Similar to the previous scenario, a further function

block instantiates the a�ected function block and several of its methods call the methods

of the a�ected function block. This change scenario covers the following seed modi�cation

in the IEC repository model: FunctionBlock.

Change Scenario 6: Function Block This change scenario is concerned with changing a

function block, which mainly provides the functionality of the stack in the plant. Similar

to the previous both scenarios, this function block is instantiated by a further function

block, which methods call the methods of the a�ected function block. The change has

also a refactoring nature without changing the functionality of the function block. This

change scenario covers the following seed modi�cation in the IEC repository model:

FunctionBlock.

Change Scenario 7: Function Block This change scenario analyzes the e�ect of changing

a function block, which is accessed by several IEC elements. For this scenario, the PLC

software has to be changed to contain a new function block. This function block implements

an existing interface. It is also extended by another function block. Additionally, the return

type of a function is the new function block. Further elements of the PLC software contain,

access, or extend the new function block. Thus, the impact of deleting this function block

has to be analyzed. This change scenario covers the following seed modi�cation in the

IEC repository model: FunctionBlock.

222

11.3. Change Propagation Analysis in Automated Production Systems

Change Scenario 8: Function For this change scenario, a new helper function

CheckGreaterEquals was added to the PLC software. CheckGreaterEquals provides the

functionality to compare two values. The helper function is accessed by several IEC ele-

ments. It is also called by another functions and function blocks. Several elements of the

PLC software contain or call the helper function. This change scenario analyzes the e�ect

of deleting CheckGreaterEquals on the PLC software. Thus, this change scenario covers

the following seed modi�cation in the IEC repository model: Function.

Change Scenario 9: Interface In this change scenario, a new interface was added to the

PLC software. The new interface is accessed by several other IEC elements. It extends an

existing interface. A function block in the PLC software implements the new interface.

There are also other IEC elements using this interface (e.g., a global variable of the interface

type). This scenario analyzes the impact of deleting this interface. Thus, this change

scenario covers the following seed modi�cation in the IEC repository model: Interface.

Change Scenario 10: Interface This change scenario should represent a fundamental

change to the PLC software. In this change scenario, an interface, which is implemented by

several function blocks, has to be changed. The change mainly involves renaming the in-

terface and its methods. Thus, this change scenario covers the following seed modi�cation

in the IEC repository model: Interface.

Change Scenario 11: Interface In this change scenario, the e�ects of a change to a further

interface has to be analyzed. Compared to the previous scenario, this interface is imple-

mented by a function block and is instantiated by another function block. Additionally, the

function block implementing this interface has to implement not only its abstract methods,

but also its abstract properties. Further, the methods of the interface are called by another

function block. Thus, this change scenario covers the following seed modi�cation in the

IEC repository model: Interface.

Change Scenario 12: Method In this scenario, the return type of an abstract method of

an interface was changed from BOOL to Enum. A function block implements this abstract

method. Further, this method is called or contained by other IEC elements. Thus, this

change scenario covers the following seed modi�cation in the IEC repository model:

AbstractMethod.

Change Scenario 13: Property This change scenario considers the e�ect of changing a

return type of an abstract property of an interface from BOOL to INT. A property of a

function block implements this abstract property. Further, this method is called directly or

indirectly by other IEC elements. Thus, this change scenario covers the following seed

modi�cation in the IEC repository model: AbstractPrperty.

Change Scenario 14: Program In this scenario, the main program is renamed. Thus, this

change scenario covers the following seed modi�cation in the IEC system model: Program.

223

11. Evaluation

11.3.3.3. Evaluation Results

Table 11.27 illustrates the evaluation results of KAMP4IEC. The rows present the change

scenarios described previously. The second and the third column each contain the values

of the precision and the recall metrics. Additionally, two further ratios were calculated

(i.e., rt and rд). rt is the ratio of the model elements, which are actually changed (i.e., true

positives) to all model elements, while rд presents the ratio of all model elements in the

generated task list by KAMP4IEC to all model elements. As the scenarios analyze the

impact of changing di�erent model elements, the number of all model elements slightly

varies from scenario to scenario. Some scenarios have more model elements than in the

original xPPU model. Consequently, they are more complex than the original xPPU model.

These change scenarios were constructed to be able to cover as many dependencies and

change propagation rules as possible.

Change

Scenario:

Metric:

Precision Recall rt rд

Change Scenario 01: Structure (Hardware) 89.19% 100.00% 14.22% 15.95%

Change Scenario 02: Module (Hardware) 100.00% 100.00% 5.15% 5.15%

Change Scenario 03: Component (Hardware) 100.00% 100.00% 2.15% 2.15%

Change Scenario 04: Function Block (Software) 75.00% 100.00% 7.76% 10.34%

Change Scenario 05: Function Block (Software) 83.33% 100.00% 10.78% 12.93%

Change Scenario 06: Function Block (Software) 80.95% 100.00% 7.33% 9.05%

Change Scenario 07: Function Block (Software) 100.00% 100.00% 4.98% 4.98%

Change Scenario 08: Function (Software) 100.00% 100.00% 2.13% 2.13%

Change Scenario 09: Interface (Software) 100.00% 100.00% 3.73% 3.73%

Change Scenario 10: Interface (Software) 87.65% 100.00% 30.60% 34.91%

Change Scenario 11: Interface (Software) 97.83% 100.00% 19.40% 19.83%

Change Scenario 12: Method (Software) 100.00% 100.00% 2.15% 2.15%

Change Scenario 13: Property (Software) 100.00% 100.00% 1.72% 1.72%

Change Scenario 14: Program (Software) 100.00% 100.00% 0.86% 0.86%

Table 11.27.: Evaluation results of the approach to change propagation analysis for the

control software regarding precision, recall, rt , and rд

Table 11.27 shows that no model element from the reference task lists was missing in

the generated task lists. In other words, the value for the recall metric was 100.00% for the

previously discussed change scenarios. To avoid false negatives, the change propagation

rules overestimate the results. This leads to a high recall value by the generated task list.

This was motivated by the overall goal during the development of the approach regarding

accepting more false positives in order to avoid false negatives. Additionally, Table 11.27

shows that the precision values of the �rst, fourth, �fth, sixth, tenth, and eleventh change

scenarios are not 100.00%. In other words, only the generated task lists of these scenarios

contain false positives. As discussed previously, this is due to the trade-o� design decision

between di�erent factors in�uencing the recall and the precision values (see Section 11.4.2).

In particular, avoiding more false negatives corresponds with accepting more false positives.

As the change propagation rules were designed to avoid as many false negatives as possible,

224

11.4. Discussion of Evaluation Results and In�uencing Factors

they generate false positives in the results. In principle, the change propagation rules

could also be adapted to generate fewer false positives by omitting the less likely change

scenarios. However, the generated task lists may contain false negatives. Additionally, the

change scenarios with lower precision values present fundamental changes to the PLC

software, as it can be seen by the rt values in Table 11.27. Thus, if a change results in false

positives in an iteration, the false positives can result in further false positives. In general,

the approach provides the functionality to avoid the propagation of change by considering

users’ decisions (see Section 5.2.3). In such cases, aPS experts can exclude the cause of a

false positive propagation. However, this functionality was not used to avoid biasing the

evaluation results. Despite the precision value, rt and rд show that KAMP4IEC generates

only a few false positives for the aforementioned change scenarios. Furthermore, the

comparison between rt and rд shows that the approach reduces the e�ort of the change

propagation analysis, as aPS experts have to analyze only a subset of all model elements

using the generated task lists.

11.3.4. Assumptions and Limitations

Similar to the previously described approaches, the change propagation rules of KAMP4IEC

are based on a prede�ned metamodel (see Section 7.3.1.1). This metamodel covers the

relevant IEC elements for the change propagation analysis. IEC elements, which are not

contained in the metamodel (e.g., data types that are de�ned by users) can be partially

mapped to the existing metaclasses. Another solution is extending the metamodel and the

change propagation rules to cover the new metaclasses and their relationships [Bus+18c].

As there are di�erent dialects for IEC 61131-3, it was not feasible to provide metamodels

and change propagation analysis approaches for all existing dialects. The metamodel,

which was developed for KAMP4IEC, is based on the dialect of CodeSys V3.1. This

dialect is very similar to the original standard and additionally provides Object-Oriented

Programming (OOP). Using the OOP extension enables domain experts to modularize the

PLC software. However, the PLC programs, which were developed using other dialects may

require an adapted version of the proposed metamodel. One solution is to change these

programs to use the OOP extensions. Another solution is to adapt the proposed metamodel

and the change propagation rules to the IEC dialect used for a speci�c program [Bus+18c].

11.4. Discussion of Evaluation Results and Influencing Factors

Section 11.4.1 describes the relation between the evaluation results and the research

questions, introduced in Section 1.4. Additionally, Section 11.4.2 presents the in�uencing

factors on the results of the methodology instances. A discussion on validity is given

in Section 11.4.3.

11.4.1. Discussion of Evaluation Results

This section describes, to which extent the evaluation results answer the research questions

proposed in the introduction chapter (see Section 1.4).

225

11. Evaluation

One of the main contributions of this thesis is the development of a maintainability

analysis methodology. For this purpose, the idea of a model-based and architecture-based

approach, which was originally developed in IS [Sta15], was generalized to a domain-

independent methodology. Thus, the comprehensiveness of the methodology and the

relevance of the methodology’s elements were evaluated by instantiating the methodol-

ogy in di�erent domains comprising heterogeneous elements. The instantiations of the

methodology to these domains resulted in model-based and architecture-based approaches

to change propagation analysis in the respective domain. The evaluation of the method-

ology regarding the comprehensiveness shows, although the domains are di�erent and

contain heterogeneous elements, the methodology provides comprehensive concepts to

develop model-based and architecture-based approaches in these domains. The evaluation

of the methodology regarding the relevance of the methodology’s elements shows that

the mandatory part of the methodology regarding the change e�ort caused by systems’

structure and behavior in a domain had to be instantiated in all considered domains to

obtain a complete approach to change propagation analysis. For this purpose, metamodels

of the system’s architecture were used, which represent the structure of the heterogeneous

elements in these domains. Further, the optional part of the methodology regarding the

change e�ort caused by context elements can also be considered in a domain, if the change

e�ort resulted from organizational and technical artifacts in this domain can considerably

contribute to the e�ort of implementing the change. Thus, the evaluation shows that

the methodology provides relevant concepts for the development of a model-based and

architecture-based change propagation analysis approach in di�erent domains comprising

heterogeneous elements. Summarized, the development of the methodology as a general-

ization of a change propagation analysis approach in IS on the one hand and the evaluation

regarding its comprehensiveness and the relevance of its elements on the other hand

answer the �rst research question (see Section 1.4).

While the previous paragraph discussed the applicability of the elements of the methodol-

ogy during the development of a model-based and architecture-based approach in di�erent

domains comprising heterogeneous elements, this paragraph is concerned with the evalu-

ation of the resulting approaches in each domain. These approaches analyze the change

propagation using the dependency analysis based on mutual dependencies of heteroge-

neous elements in di�erent domains. For this purpose, these approaches were applied to

several community case studies as representative case studies in the respective domain.

During the evaluation, the precision, the recall, and the fraction of model elements in

the task lists to all model elements were evaluated. Additionally, di�erent in�uencing

factors were varied such as the abstraction levels of the used metamodel or di�erent sets of

change propagation rules. These factors leaded to di�erent instances of the methodology

in each domain. The evaluation results show that the output (i.e., task lists) of the instances

reduced the e�ort of the change propagation analysis for domain experts by considerably

reducing the set of all model elements, which have to be analyzed by domain experts. Ad-

ditionally, the results show that considering mutual dependencies between heterogeneous

elements from di�erent domains (e.g., IS and BP) or sub-domains of a domain (e.g., aPS)

provide domain experts a holistic change propagation analysis across di�erent domains.

The evaluation results for two metamodels at di�erent abstraction levels in aPS shows that

�ne-grained metamodels representing several types of elements and their relationship can

226

11.4. Discussion of Evaluation Results and In�uencing Factors

improve the results of the change propagation analysis approach. Considering di�erent

change propagation rules in BP allowed analyzing the e�ects of rules, which were designed

due to di�erent programming style, on the results of the change propagation analysis.

In general, considering more semantics (e.g., the metaclasses of a metamodel and their

relationships) can improve the results of the change propagation analysis. The importance

of considering semantics during the change propagation analysis is also discussed by other

researchers such as Bohner [Boh02]. However, there are di�erent in�uencing factors,

which can result in di�erent approaches to change propagation analysis and a�ect their

results. These in�uencing factors are discussed in the following section. Additionally,

extending the architectural model of a system by organizational and technical artifacts

can result in more comprehensive task lists due to considering the tacit knowledge of

domain experts. Summarized, the evaluation shows that the e�ects of a change can be

identi�ed based on the architecture of a system and the design of a process by considering

the mutual dependencies between heterogeneous elements from di�erent domains. Hence,

this answers the second research question (see Section 1.4).

As described previously, the methodology is based on the idea of the dependency analysis

between heterogeneous architectural elements from di�erent domains. Thus, the instances

of the methodology mainly use architectural models and the dependencies between their

elements to analyze the change propagation. The development of a methodology to con-

struct model-based and architecture-based approaches on the one hand and the evaluation

of the instances of this methodology in di�erent domains on the other hand show that an

architectural model is a suitable abstraction to identify the change e�ort across di�erent

domains. Thus, these contributions answer the overall research question (see Section 1.4).

The evaluation shows that there is not a unique instance of the methodology in a speci�c

domain. There are di�erent in�uencing factors, which result in di�erent instantiations of

the methodology. Thus, the following section discusses these in�uencing factors in more

detail.

11.4.2. Influencing Factors on Results of Change Propagation Approaches

In Sections 11.2 and 11.3, di�erent instances of the methodology are applied to three

community case studies in di�erent domains. The instances varied from the change propa-

gation rules (see Section 11.2) to the abstraction level of the metamodels (see Section 11.3).

These and other factors a�ect the results of the generated task lists regarding the precision,

the recall, and the ratio of the number of model elements in the generated task list to all

model elements. The previous sections explicitly described some in�uencing factors and

their e�ects in the corresponding change scenarios. This section summarized the relevant

in�uencing factors. These factors can also be considered as guidelines to instantiate the

methodology in a speci�c domain.

In addition to the in�uencing factors described in the following, there are also factors,

which are derived from the overall objectives of a change propagation analysis approach.

For example, the goal of a change propagation analysis is not always identifying all

a�ected elements of the system in advance. The goal can also be a rough estimation of

the a�ected elements, for example to re�ne the architecture design of the system or to

227

11. Evaluation

weigh a possible implementation against another one regarding their e�ects. Thus, it is

important to consider the overall objectives in advance.

11.4.2.1. Metamodel of Domain

The metamodel of the domain is used to describe the system under study in a speci�c

domain. It contains the relevant metaclasses and their relationships. According to Sta-

chowiak [Sta73], a model is created to ful�ll a certain purpose for certain subjects (i.e., in

this context, subjects are domain experts who are responsible for maintaining the system)

in a certain period. As described by this characteristic, the properties of the metamodel and

the corresponding model cannot be generally speci�ed and must be relevant to domain

experts and especially for the purpose. The choice of the relevant properties depends on

the context and the usage of the model. One of these properties is the granularity of the

metamodel. This property is concerned with the level of abstraction. In other words, the

main question is, which elements of the system under study a metaclass represents. For

example, in KAMP4aPS two metamodels at two abstraction levels were considered. The

abstract metamodel is composed of four metaclasses. In this metamodel, the metaclass

component represents all parts of a plant, which can be bought from a third-party vendor.

Each metaclass from the abstract metamodel was further re�ned in the speci�c metamodel.

This metamodel provides re�ned metaclasses for a component metaclass such as arm or

di�erent sensor types [Hei+18]. The choice of the metamodel a�ects the resulting change

propagation rules. In the abstract metamodel, the change propagation rules can only

di�erentiate between the relationship between four types of model elements, namely

structures, modules, components, and interfaces. In the component example, the change

propagation rules for the abstract metamodel cannot di�erentiate whether a component is

an arm or a sensor. As shown in Section 11.3.2.2, the evaluation results for the speci�c

metamodel are more precise than those for the abstract metamodel. However, which meta-

model and in particular which properties of the resulting model seem relevant to domain

experts (i.e., subjects) for the maintainability analysis (i.e., purpose) cannot be determined

in advance. Nevertheless, there are some factors in�uence the choice of the properties. In

the following, relevant in�uencing factors on this design decision are described in more

detail.

One of the in�uencing factors aims at the period in the previously described character-

istic. This corresponds to the phases of the development life cycle. While the system does

not exist in the early phases (e.g., concept, planning, or design), the late phases are mainly

concerned with the maintenance [Lar04]. In other words, a concrete system exists in the

late phases of the development process. If a change propagation analysis approach is used

in the early phases, the metamodel of the domain may be designed at a very coarse-grained

manner, as the concrete system and the model elements could not be speci�ed at that

time. Thus, a coarse-grained metamodel can support modeling the system at an abstract

level of abstraction. This model can be used during the design phase to reason about the

possible future changes and their e�ects. In this way, the system can be incrementally

designed and developed with regard to the maintainability. A change propagation analysis

approach can also be applied in an iterative and incremental development process [Lar04].

228

11.4. Discussion of Evaluation Results and In�uencing Factors

One can argue that a comprehensive metamodel can be designed in advance, which

contains all possible types of system elements at a �ne-grained abstraction level. This

argument cannot be accepted in general, as some domains such as aPS can involve a

wide variety of artifacts, which di�er in their properties. From which properties can be

abstracted during the development of the metamodel is a design decision (e.g., whether

the granularity of a component, a sensor, a sensor type such as an optical sensor, or

even a speci�c optical sensor from a certain vendor is su�cient). This design decision

also corresponds to the context, the usage, and the purpose of the metamodel, as well as

the e�ort of designing the metamodel, which represents a further relevant in�uencing

factor. Metamodeling all possible parts at a �ne-grained level of abstraction is a time-

consuming and error-prone task. Further, a �ne-grained metamodel, which is composed

of several thousand metaclasses, is di�cult to use. In the aPS example, it may be possible

that proprietary parts have to be explicitly designed for a plant. Thus, not all possible

parts can be known in advance. Additionally, only a small fraction of a comprehensive

metamodel can be relevant to model the systems. This corresponds to another in�uencing

factor, which is concerned with how many systems have to be modeled using a speci�c

metamodel. If the metamodel is used to model only one system, omitting the elements,

which are not used, lowers the cost during the metamodeling phase.

Another in�uencing factor is concerned with how long a system and the correspondence

metamodel and model are in operation. If a system is in operation for decades (e.g., some

aPS plants [Vog+17; Hei+18]), a �ne-grained metamodel, which may be tailored to the

system, improves the change propagation analysis. For this purpose, the system under

study has also to be modeled at a �ne-grained level of abstraction.

As described previously, a �ne-grained metamodel increases the e�ort and the cost of

the development. If the metamodel does not allow modeling the coarse-grained parts of

a system, it increases the modeling e�ort. In this case, it is possible that the metamodel

cannot be used at the early phases of development, in which parts of the system are not

yet known at a �ne-grained level of abstraction.

The evolution of the system is a further in�uencing factor. If the metamodel is designed

at a very �ne-grained level of abstraction and is tailored to certain systems, the systems and

the metamodel, as well as the corresponding models have to co-evolve. This factor should

also be considered in an iterative and incremental development process. Additionally, this

restricts the use of the metamodel for other systems, as the metamodel has to be adapted

and extended for further systems.

The result of the change propagation analysis (i.e., the purpose) is a major in�uencing

factor during the design of the metamodel. Section 11.3.2.2 shows that a �ne-grained meta-

model improves the results of the analysis signi�cantly. The previously described factors

are a subset of all factors in�uencing the design of the metamodel. Depending on these

in�uencing factors, the context, and the usage of the metamodel, di�erent metamodels

can be developed.

After a metamodel has been developed or selected, its instances have to be created

re�ecting the system under study. Several in�uencing factors a�ect the choice of the

appropriate model for a certain purpose. These factors are very similar to the factors

in�uencing the design of the metamodel, described previously. One di�erence is that

the granularity of the metamodel limits the granularity of the resulting models. In other

229

11. Evaluation

words, if the metamodel was designed at a high abstraction level such as the abstract

model of aPS, the resulting models may have many elements. However, the types of

elements are either component, module, interface, or structure in this example. Further,

adapting or extending a metamodel to include future element types (i.e., the evolution of

the metamodel) can result in changing all its instances. Thus, the choice of a metamodel

and the appropriate instance for the change propagation analysis is a trade-o� decision,

which can be in�uenced by the previously described factors.

11.4.2.2. Algorithm for Change Propagation Analysis

The previous section discussed di�erent in�uencing factors on a metamodel design. Fur-

ther, it discussed the e�ects of the granularity and the quality of a metamodel on the

corresponding change propagation rules using the abstract and the speci�c metamodel

of aPS. This section assumes that a metamodel and its appropriate instance have already

been developed or selected. Thus, it discusses di�erent factors in�uencing the choice of

the change propagation rules.

Similar to the metamodels, one of the important in�uencing factors is the granularity

of the change propagation rules. If the change propagation rules consider many change

propagation cases, which also cover the rare change propagation situations, the analysis

can result in a high overestimation of the a�ected elements (i.e., too many false positives).

Section 11.2 illustrates this factor based on four cases. It considers the e�ects of two change

propagation rules on the results, which consider change propagation situations depending

on the programming style. Although they resulted in false positives in several change

scenarios in the evaluation, omitting them can lead to false negatives in general, even if

they did not occur in the change scenarios of the evaluation.

If the change propagation rules consider only a few change propagation cases, which

occur in most change scenarios, the analysis can result in an underestimation of the

a�ected elements (i.e., false negatives). On the one hand, an underestimation may result

in missing relevant model elements for the change propagation analysis. Elements are

considered to be important for the change propagation analysis for example if the e�ort of

changing them is high. Thus, these model elements have to be contained in the generated

task lists. In other words, if task lists do not contain elements, which cause a high change

impact, domain experts have to manually analyze the change propagation in the system

models. On the other hand, a high overestimation of the results may cause that the

generated task list contains almost all model elements in the worst case. In other words, a

high overestimation increases the e�ort of the change propagation analysis, as domain

experts may have to manually analyze all system models in the worst case. In some cases

an overestimation and in other cases an underestimation can be accepted by domain

experts. However, a high overestimation or a high underestimation may distort the results.

Whether an overestimation or an underestimation is acceptable, depends on the overall

objectives of the analysis and cannot be generally determined in advance. Additionally, the

overestimation and the underestimation a�ect each other. Avoiding the underestimation

of the results can lead to an overestimation, as domain experts need to develop change

propagation rules considering rare change propagation situations.

230

11.4. Discussion of Evaluation Results and In�uencing Factors

Another important in�uencing factor is the development costs of the change propa-

gation analysis approach. Considering many change propagation rules at a �ne-grained

abstraction level corresponds to a detail analysis of the system (e.g., at the later phases of

the development process or if the approach needs to be tailored to a system) or similar

systems (e.g., at the early phases or if the approach shall be applied to many systems).

Thus, the generalizability of the approach and the phases of the development process are

two further in�uencing factors. Further, the rules depend on the overall objectives of the

change propagation analysis approach, as discussed previously. In the previous approaches,

the change propagation rules are developed with regard to avoiding the underestimation of

the results. However, the change propagation rules can be principally adapted or extended

according to the scenario or system under study. Additionally, if domain experts can accept

an underestimation, the change propagation rules considering rare change propagation

situations can be omitted. This can signi�cantly reduce the false positive generation (e.g.,

the four cases in the evaluation of KAMP4BP).

If a metamodel presents a system at a �ne-grained abstraction level and the change

propagation rules are also developed at a �ne-grained abstraction level, the generated task

lists contain a few numbers of false positives and false negatives (e.g., the speci�c variant

of KAMP4aPS). However, the development costs of these change propagation analysis

approaches are higher than the costs of the approaches generating a vague estimation.

Further, to apply such approaches to the other systems, the metamodel and the change

propagation rules have to be adapted or extended. One reason to develop such �ne-grained

approaches is, if the system is in operation for a long period. To sum up, the choice and the

granularity of change propagation rules are a trade-o� decision, which can be in�uenced

by several factors.

11.4.2.3. Seed Modifications

The previous two sections described the in�uencing factors on the choice of the metamodel,

the resulting model, and the change propagation rules. If the metamodel, the model, and

the change propagation rules have been �xed, the choice of the seed modi�cation a�ects

the results. The reason for this is that a change request can be implemented in di�erent

ways [Sta15; Ros+15b]. Using di�erent seed modi�cations can result in di�erent task

lists. On the one hand, using di�erent seed modi�cations can support domain experts to

compare di�erent possible implementations. On the other hand, a change propagation

analysis approach cannot be considered as a black box, as domain experts should know

the granularity of the used metamodel and the change propagation rules. In this way, they

can identify the valid seed modi�cations, which are supported by the change propagation

analysis approach.

11.4.3. Threats to Validity

In the previous sections, the evaluation results of KAMP4BP, KAMP4aPS, and KAMP4IEC

were proposed. These approaches were developed as instances of the methodology. They

are model-based and rule-based approaches, which analyze the propagation of changes in

di�erent scenarios. Thus, this section addresses the threats to validity of these instances

231

11. Evaluation

of the methodology as model-based and rule-based approaches regardless of the domain

under study. However, examples from each approach are used to illustrate the discussed

threats. The following classes of threats to validity are based on [Run+12].

11.4.3.1. Internal Validity

Internal validity deals with “a causal relationship between outcomes and intervention/treat-

ment” [Run+12, p. 39]. The proposed change propagation analysis approaches are based

on models. In other words, the metaclasses and their relationships a�ect not only the

resulting models, but also the change propagation rules, as the rules consider these rela-

tionships to trace the propagation of changes. The choice of the metamodel essentially

a�ects the change propagation rules. For this purpose, the most metamodels used for the

previous approaches were created by domain experts. For example, the metamodel of BP

was derived from BPMN [Hei+17]. Another example is the aPS metamodels, which were

created based on the AML models provided by the domain experts from the AIS group of

the TUM [Hei+18]. The quality of the resulting models is also one of the most important

in�uencing factors, as they can vary in di�erent factors such as precision and granularity.

Further, di�erent domain experts could model the same element di�erently. For example,

aPS experts can model a motor either as a component, which was bought from a third-party

vendor, or as a module, which is composed of other parts (e.g., components or modules).

For this purpose, the generated task lists were compared with the reference task lists,

which were created manually. The comparison considers only elements, which occurred

both in the system under study and its model. Additionally, there is not only one way to

implement a change. In other words, there could be more than one possible set of seed

modi�cations and one possible reference task list for a change scenario. However, it was

assumed that di�erent task lists involve similar model elements [Ros+17a; Hei+18].

11.4.3.2. External Validity

External validity addresses “the domain to which study �nding can be general-

ized” [Run+12, p. 39]. The authors also state in [Run+12, p. 19] that “for descriptive

research questions, the case study may be feasible if representativeness of a sampling

based study may be sacri�ced for better realism in a case study.” In other words, the appli-

cation of the proposed approaches to other case studies or even to other scenarios may lead

to other results. However, a case study “investigates a contemporary phenomenon in depth

and within its real-life context, especially when the boundaries between phenomenon and

context are not clearly evident” [Yin08, p. 18]. Thus, this can be applied to “many, if not

most, research studies in software engineering” [Run+12, p. 19].

To evaluate the proposed approaches three community case studies were used. They

are composed of typical elements of the systems in each domain and provide typical

functionality [Hei+18]. Thus, it can be assumed that other systems in each domain have

a similar structure [Hei+18]. Using community case studies, it is possible to compare

di�erent research approaches [HRR16]. As it was not feasible to consider all possible

change scenarios for the evaluation, the change scenarios were chosen to cover the relevant

metaclasses of each metamodel for the change propagation analysis. The application of the

232

11.4. Discussion of Evaluation Results and In�uencing Factors

instances of the methodology to other change scenarios results in other task lists, which

can lead to di�erent values of the considered metrics in this evaluation. The evaluation

results show that instances of the methodology can be developed and applied to a set

of change scenarios to consider the mutual dependencies between di�erent domains or

sub-domains of a domain to obtain more comprehensive task lists. Further, a literature

review has been conducted to systematically identify categories of change triggers in

BP [Kap+18a]. Thus, the change scenarios in BP were also developed with focus on this

comprehensive categorization. However, if the change triggers are considered from other

view points, they can also be assigned to other subcategories. In aPS, the change scenarios

were also chosen to represent the common changes in this domain [Hei+18]. The change

scenarios for the PLC software also cover all change propagation rules.

As the change scenarios in the evaluation cover the relevant metaclasses at a �ne-grained

level, the complex scenarios can be considered as a composition of the �ne-grained changes.

Nonetheless, other case studies and more change scenarios in future can support to draw

conclusions from the results of the evaluation.

11.4.3.3. Construct Validity

Construct validity “shows that the correct operational measures are planned for the

concepts being studied” [Run+12, p. 39]. The proposed approaches are model-based and

scenario-based. The goal of the evaluation for each instance of the methodology was to

evaluate the quality of the results of the change scenarios in each domain. As not all

possible change scenarios can be analyzed, the choice of representative change scenarios

is an important aspect. Thus, the change scenarios in BP are based on a comprehensive

category of change triggers resulted from a literature review (see Chapter 10). The change

scenarios in aPS show common changes in this domain [Vog+14a; Hei+18]. Further,

the change scenarios were chosen to cover all important equivalence classes of model

elements. These classes represent the metaclasses of the metamodels in each domain,

which are relevant for the change propagation analysis. Further, the models in aPS were

created manually based on the AML models, which have been already used to model the

xPPU [Hei+18].

11.4.3.4. Reliability

This validity discussion, also known as conclusion validity, describes “to what extent

the data and the analysis are dependent on the speci�c researchers” [Run+12, p. 72]. To

evaluate KAMP4BP two community case studies were used to lower the risk of biased

results. Further, a comprehensive category of change triggers in BP was determined in a

literature review. In aPS, the researchers from the AIS group of the TUM were involved in

the construction of the metamodels by providing the AML models and the selection of

the appropriate change scenarios. The description of some change scenarios was already

proposed in the previous work of the AIS group [Vog+14a]. Additionally, statical metrics

were used to quantify the results [Hei+18].

233

12. Conclusion

This chapter summarizes the contributions of this thesis and the evaluation and gives an

overview of possible future work.

12.1. Summary

This thesis presented a generic methodology, which generalizes the idea of a model-based

and architecture-based approach to change propagation analysis in IS (i.e., [Sta15]). The

methodology uses the systems’ structure as the main artifact for the change propagation

analysis. Thus, it can be considered as a guideline to develop change propagation analysis

approaches for di�erent domains comprising heterogeneous elements. Chapter 5 gave an

overview of the characteristics of the systems and the domains, in which the methodology

can be instantiated. As the methodology abstracts from a speci�c implementation, tool,

and technology, it provides a generic guideline. To abstract from the heterogeneity of

elements, the methodology uses modeling concepts. These concepts allow for a dependency

analysis between di�erent types of elements. In this way, the methodology answers the

�rst research question. Additionally, the systems’ structure and behavior can be extended

with further information regarding organizational and technical artifacts in a project

(e.g., similar to [Sta15]), which enable domain experts to derive more complete lists of

a�ected elements. This is based on the idea that changing these artifacts can considerably

contribute to the e�ort resulted by a change request. To develop a change propagation

analysis approach, the methodology can be instantiated in a speci�c domain. The instances

of the methodology in di�erent domains analyze the e�ects of an initial change request

on the systems’ structure and behavior based on a dependency analysis. In this thesis, the

instances of the methodology were used to analyze the complex co-evolution of IS and BP,

as well as the co-evolution of heterogeneous elements in aPS.

The instance of the methodology in BP was developed as an extension of the original

approach to change propagation analysis in IS (i.e., [Sta15]). IS are used in several BP, for

example, to support customers to achieve their goals [Cha+01]. Thus, considering IS or

BP in isolation and without their mutual dependencies can lead to underestimation of the

change e�ort. Hence, composing the change propagation analysis approaches in IS and

BP provides domain experts a holistic view on a system and its behavior. They allow for

analyzing the propagation of a change not only in one domain, but also between both

domains. Thus, this contribution answers the second research question.

To analyze the change propagation in mechanical and electrical/electronic components,

as well as control software of aPS, several loosely-coupled approaches were developed.

Each approach was developed as an instance of the methodology and is concerned with

the maintainability analysis of a sub-domain of aPS. For this purpose, several metamod-

235

12. Conclusion

els representing heterogeneous elements from di�erent sub-domains were used. These

metamodels give domain experts a holistic view on the system under study. One of these

metamodels represents the data �ow between hardware and control software in aPS. Thus,

the composition of the corresponding approaches for hardware and control software

allows analyzing the propagation of a change from the hardware of a plant to its control

software. Additionally, metamodeling the behavior of aPS as a linked list of actor steps

and system steps enables the traceability of a change from the control software to the

behavior of a plant. Summarized, the approaches allow analyzing the change propagation

in each sub-domain of aPS and between them to answer the second research question.

Domain experts have to de�ne seed modi�cations for each change request either at the

level of system elements or requirements. However, the previously described instances of

the methodology support seed modi�cations, which are de�ned for system models. To

address this issue, these instances were extended to enable domain experts to specify seed

modi�cations at requirements level. Using this extension, the propagation of a change can

be analyzed in requirements and design decisions, as well as to the model of the system

satisfying them. Thus, this contribution aims at closing the gap between the changing

needs of stakeholders and requirements on the one hand and the resulting system one the

other hand. Thus, it complements the last both contributions.

As the methodology and its instances are based on the dependency analysis methods,

they can be considered as rule-based approaches. To support domain experts to specify

change propagation rules, Chapter 9 proposed a language for these rules. The language

aims at providing a set of language elements to cover the relevant and common patterns

of change propagation rules. Examples of these patterns are navigation along or against

the direction of a reference between two metaclasses or their instances. The language can

be considered as declarative, as it abstracts from the technical code, for example, needed

for traversing models. A further bene�t of using a dedicated language for change propa-

gation rules is that the domain experts do not need any in-depth information about the

implementation of the change propagation analysis approach. Thus, a main requirement

of the language was to di�erentiate between the tasks of the roles of domain experts and

developers of change propagation analysis approaches. The language complements the

maintainability analysis methodology by abstracting from the heterogeneity of elements

in di�erent domains. Thus, it partially answers the �rst research question.

As IS and BP can in�uence each other mutually, a subset of all possible changes has its

source in BP. To systematically determine and analyze the category of change triggers

in BP, a literature review was conducted. The new comprehensive category allows for

categorization of change requests along di�erent dimensions (i.e., participation, origin,

or characteristics of a change request) and at di�erent abstraction levels. Additionally,

this category can be used as a guideline to design BP and IS with regard to possible future

changes. It can also be used to facilitate requirements elicitation and managing future

changes and risks. As the category was developed independently of a speci�c organization

or a sub-domain of BP, it can be considered as generic. This category contributes to the

evaluation of the methodology’s instance in BP.

One of the main contributions of this thesis was to analyze, how a change propagation

analysis approach in IS can be generalized to a domain-independent approach, which is

applicable to other domains with heterogeneous elements. For this purpose, the method-

236

12.2. Outlook

ology was developed and instantiated in di�erent domains. Thus, the methodology was

evaluated regarding the relevance of di�erent elements of it and its completeness. For

this purpose, the elements of the methodology were analyzed, whether they were needed

in di�erent instantiations. Additionally, di�erent instantiations were analyzed regarding

missing elements in the methodology.

The instances of the methodology were analyzed regarding the quality of their results.

Its instances in IS and BP were applied to two case studies: the community case study

CoCoME and the exemplar mRUBiS. The instances developed to analyze the change

propagation in mechanical and electrical/electronic components, as well as the control

software of aPS were evaluated using the hardware and the software of the community

case study xPPU. The community case studies were used for the evaluation, as they allow

comparing the evaluation results of di�erent approaches. The evaluation of the instances

focused on the precision, recall, and coverage of their outputs (i.e., generated task lists).

To this end, di�erent change scenarios were developed. The change scenarios for BP

are based on the aforementioned category of change triggers in this domain. A further

prerequisite for the choice of the scenarios was to cover all equivalence classes of model

elements, which are relevant for maintainability. For each change scenario, a further list

of actually a�ected model elements was created manually. The output of the instances for

each change scenario was compared to the corresponding list, which was created manually.

Thus, the precision, recall, and coverage metrics regard this comparison. Further, di�erent

metamodels and models (i.e., for the evaluation of the instance in aPS), as well as change

propagation rules (i.e., for the evaluation of the instance in BP) were developed. Based on

these metamodels, models, and rules di�erent in�uencing factors during the development

of instances, as well as their outputs were extracted and discussed.

12.2. Outlook

This section discusses the potential future work that addresses the possible extensions

and improvements of the aforementioned approaches, as well as the limitations of them.

So far, only one instance of the methodology was developed for each domain or sub-

domain, except for the aPS hardware. In order to analyze the applicability of the methodol-

ogy in di�erent domains, the methodology can be instantiated in each domain in di�erent

ways. The instances can be developed based on the in�uencing factors, described in Sec-

tion 11.4.2. These instances can be used to systematically analyze the e�ects of the

in�uencing factors. Thus, it is possible to develop a guideline based on this experience

for the development of the possible future instances of the methodology. The e�ects of

di�erent in�uencing factors not only on the development of individual instances, but also

on their results regarding precision and completeness can be systematically analyzed.

In order to analyze the applicability of the methodology, it was instantiated in IS, BP, aPS

both at system level and requirements level. However, the application of the methodology

is not limited to these domains. In other words, the methodology can be instantiated in

other domains, which ful�ll the characteristics described in Section 5.1. The instantiation

of the methodology to new domains enables a broader analysis of the applicability of the

di�erent methodology’s parts.

237

12. Conclusion

The methodology is mainly based on an approach to change propagation analysis,

developed in IS [Sta15]. This approach was evaluated using an empirical study. The study

has shown that an automated approach helps less-experienced users to estimate more

complete and precise change e�ort. The approaches in this thesis were developed to

show that a generalization of this architecture-based and model-based approach can be

applied to heterogeneous elements from di�erent domains. Thus, the instances of the

methodology developed in this thesis were evaluated using community case studies. In this

way, it was, further, shown that an architecture-based and model-based approach originally

developed in IS can be extended to other domains comprising heterogeneous elements.

However, future empirical studies can show, to what extent the use of an automated

approach can help domain experts during the analysis of change propagation in di�erent

domains. The setup of these empirical studies can be chosen similar to the previous work

conducted by Stammel [Sta15]. Hence, users can be assigned to one of the following three

groups: i) The less-experienced users of a treatment group, who use the tool. ii) The less-

experienced users of a control group, who analyze the change propagation manually. iii)

The experienced users of an expert group, who analyze the change propagation manually.

The results of these groups and the time required to perform the tasks can be compared to

draw further results regarding the bene�ts of an automated approach.

A further possible work could also be concerned with the scalability analysis of the

automated approaches proposed in this thesis. For this purpose, di�erent types of depen-

dencies between model elements such as forward references or loops can be utilized. In

addition to these types, di�erent number of model elements and di�erent rule types can

be used. Further, the time needed to create models can be compared to the frequency of

the future change requests and the time needed to analyze the change propagation both

manually and automatically. Additionally, other factors can also be considered such as

the time needed to develop the corresponding instances of the methodology at di�erent

abstraction levels (see Section 11.4.2). In this way, it can be estimated, when the e�ort to

create an automated approach to change propagation analysis could pay o�.

The approach to change propagation analysis in BP (see Chapter 6) was developed using

a generic metamodel for BP (i.e., [Hei+17]). Thus, the corresponding change propagation

rules are also developed generically. In order to improve the precision of the results,

�ne-grained metamodels representing speci�c IS and BP can be de�ned. A modeling

language, which is tailored to a speci�c context or system allows for de�ning more �ne-

grained change propagation rules. This enables domain experts to estimate the change

propagation more precisely. However, this approach cannot be applied to any systems.

Additionally, the development time and costs can be higher than a generic approach due

to more �ne-grained metamodeling and code development.

Similar to IS, there are di�erent programming languages and their dialects to develop

control software. Di�erent programming languages and their dialects include language

elements and features, which a metamodel of the language can represent. Considering

these language elements can enable domain experts to analyze the change propagation

more precisely. The metamodel proposed in this thesis is mainly based on the CodeSys

V3.1. dialect for the IEC 61131-3 standard. Thus, it is conceivable to develop further

metamodels representing other programming languages and/or their dialects in the future.

In order to develop complete change propagation analysis approaches, change propagation

238

12.2. Outlook

rules in addition to metamodels have to be speci�ed. In this way, the change propagation

analysis approach can cover a wider range of control software.

The output of the approaches presented in this thesis is a set of potentially a�ected

model elements. Thus, a possible future work could be to use this output for analyzing

the costs of a change request. A more �ne-grained output can help to estimate costs more

precisely. For this purpose, the costs of changing di�erent system elements should be

known in advance. Costs can be estimated in di�erent ways (e.g., in person-months).

Domain experts have to select seed modi�cations in the model based on the change

requests. Thus, a further future work could be an automated identi�cation of seed mod-

i�cations based on the change requests. How the seed modi�cations can be identi�ed

automatically, depends on the change requests. For example, an extension of a natural

language processing approach (e.g., [JM09]) can be used to analyze a text containing the

change requests.

The approaches proposed in this thesis need models representing the architecture of a

system. In IS, di�erent reverse engineering approaches exist, which extract the software

architecture from code (e.g., [Kro12]) and extend it with technical and organizational

artifacts (e.g., [Ros+17c]). These approaches use heuristics to extract architecture-related

information. The idea of these approaches can also be applied to other domains to derive

models of the system’s architecture automatically. An example for such approaches is a

process mining approach (e.g., [Aal16]). A further example could be an automated approach

to extract architecture models from control software. It is also possible to develop an

approach to change propagation analysis based on a metamodel, which the output of a

speci�c reverse engineering approach is based on.

The approaches proposed in this thesis can be further extended to include versioning

systems’ architecture based on their models during the development and the evolution of

these systems. This idea can also be extended by considering technical and organizational

artifacts. The results can, then, be used for further analysis such as future decision-making

processes.

The change propagation rule language can be extended with regard to described limita-

tions in Section 9.4. An example of a possible extension could be to allow users to de�ne

and to change the set of a�ected model elements in a recursive block. A further example

of a technical extension is to reference change propagation rules, which are de�ned in

di�erent rule �les to improve the reusability of the rules.

A possible future work could also be the evaluation of the change propagation rule

language. For this purpose, experts in di�erent programming languages can describe the

change propagation rules in the corresponding languages. The results can be compared

to the results of the experts, who speci�ed the change propagation rules in CPRL with

regard to di�erent aspects such as lines of code or scalability. Additionally, an empirical

study can be conducted. The participants could be experts in a programming language

and domain experts, who are not experienced in the programming language. The focus of

the study could be on how a change propagation rule language can help less-experienced

domain experts to describe the rules.

Chapter 5 highlighted the importance of considering the system’s structure and design

in interrelated domains during the maintainability analysis to obtain holistic change

propagation analysis approaches. These approaches can help to identify the change e�ort

239

12. Conclusion

across di�erent domains comprising heterogeneous elements. Hence, the methodology

and its instances aim at providing a domain-spanning change propagation analysis based

on system’s structure and design.

240

A. Appendix

A.1. Relations between International Electrotechnical
Commission (IEC) Model Elements

This section gives a detailed description of the binary relations, which are de�ned in Sec-

tion 7.3.1.3. The relations are de�ned over the sets representing the instances of di�erent

metaclasses in Repository and System metamodel for IEC, as well as the instances of HMI

metamodel. The sets are also de�ned in Section 7.3.1.3.

• The relation ProдramInstantiatesInter f ace is de�ned over the setsU and E. In this

relation, the Program u ∈ U is associated to the Interface e ∈ E, if the Program u
instantiates the Interface e .

• The relation FunctionBlockInstantiatesInter f ace is de�ned over the sets B and E.

In this relation, the FunctionBlock b ∈ B is associated to the Interface e ∈ E, if the

FunctionBlock b instantiates the Interface e .

• The relation FunctionBlockImplementsInter f ace is de�ned over the sets B and E.

In this relation, the FunctionBlock b ∈ B is associated to the Interface e ∈ E, if the

FunctionBlock b implements the Interface e .

• The relation Inter f aceExtendsInter f ace is de�ned over the set E. In this relation,

the Interface eei ∈ E is associated to the Interface eej ∈ E, if the Interface eei extends

the Interface eej .

• The relation GlobalVariableHasInter f aceAsType is de�ned over the sets V and E.

In this relation, the GlobalVariable v ∈ V is associated to the Interface e ∈ E, if the

GlobalVariable v has the Interface e as type.

• The relation GlobalVariableHasFunctionBlockAsType is de�ned over the sets V
and B. In this relation, the GlobalVariable v ∈ V is associated to the FunctionBlock

b ∈ B, if the GlobalVariable v has the FunctionBlock b as type.

• The relation FunctionHasInter f aceAsReturnType is de�ned over the sets F and

E. In this relation, the Function f ∈ F is associated to the Interface e ∈ E, if the

Function f has the Interface e as return type.

• The relation FunctionHasFunctionBlockAsReturnType is de�ned over the sets F
and B. In this relation, the Function f ∈ F is associated to the FunctionBlock b ∈ B,

if the Function f has the FunctionBlock b as return type.

241

A. Appendix

• The relation CallFunctionBlockConstructor is de�ned over the sets F and B. In this

relation, the Function f ∈ F is associated to the FunctionBlock b ∈ B, if the Function

f calls the constructor of the FunctionBlock b.

• The relation MethodInstantiatesInter f ace is de�ned over the sets T and E. In this

relation, the Method t ∈ T is associated to the Interface e ∈ E, if the Method t
instantiates the Interface e .

• The relation MethodHasInter f aceAsReturnType is de�ned over the sets T and E.

In this relation, the Method t ∈ T is associated to the Interface e ∈ E, if the Method

t has the Interface e as return type.

• The relation MethodHasFunctionBlockAsReturnType is de�ned over the setsT and

B. In this relation, the Method t ∈ T is associated to the FunctionBlock b ∈ B, if the

Method t has the FunctionBlock b as return type.

• The relation MethodInstantiatesFunctionBlock is de�ned over the sets T and B. In

this relation, the Method t ∈ T is associated to the FunctionBlock b ∈ B, if the

Method t instantiates the FunctionBlock b.

• The relation Inter f aceHasMethod is de�ned over the sets E and T . In this relation,

the Interface e ∈ E is associated to the Method t ∈ T , if the Interface e has the

Method t .

• The relation AbstractMethodHasInter f aceAsReturnType is de�ned over the sets A
and E. In this relation, the AbstractMethod a ∈ A is associated to the Interface e ∈ E,

if the AbstractMethod a has the Interface e as return type.

• The relation AbstractMethodHasFunctionBlockAsReturnType is de�ned over the

sets A and B. In this relation, the AbstractMethod a ∈ A is associated to the Func-

tionBlock b ∈ B, if the AbstractMethod a has the FunctionBlock b as return type.

• The relation PropertyHasInter f aceAsType is de�ned over the sets P and E. In this

relation, the Property p ∈ P is associated to the Interface e ∈ E, if the Property p has

the Interface e as type.

• The relation PropertyHasFunctionBlockAsType is de�ned over the sets P and B. In

this relation, the Property p ∈ P is associated to the FunctionBlock b ∈ B, if the

Property p has the FunctionBlock b as type.

• The relation AbstractPropertyHasInter f aceAsType is de�ned over the sets S and

E. In this relation, the AbstractProperty s ∈ S is associated to the Interface e ∈ E, if

the AbstractProperty s has the Interface e as type.

• The relation AbstractPropertyHasFunctionBlockAsType is de�ned over the sets S
and B. In this relation, the AbstractProperty s ∈ S is associated to the FunctionBlock

b ∈ B, if the AbstractProperty s has the FunctionBlock b as type.

242

A.1. Relations between IEC Model Elements

• The relation ProдramInstantiatesFunctionBlock is de�ned over the sets U and B.

In this relation, the Program u ∈ U is associated to the FunctionBlock b ∈ B, if the

Program u instantiates the FunctionBlock b.

• The relation FunctionBlockInstantiatesFunctionBlock is de�ned over the set B. In

this relation, the FunctionBlock bbi ∈ B is associated to the FunctionBlock bbj ∈ B, if

the FunctionBlock bbi instantiates the FunctionBlock bbj .

• The relation FunctionBlockExtendsFunctionBlock is de�ned over the set B. In this

relation, the FunctionBlock bbi ∈ B is associated to the FunctionBlock bbj ∈ B, if the

FunctionBlock bbi extends the FunctionBlock bbj .

• The relation MethodCallsFunction is de�ned over the sets T and F . In this relation,

the Method t ∈ T is associated to the Function f ∈ F , if the Method t calls the

Function f .

• The relation FunctionBlockCallsFunction is de�ned over the sets B and F . In this

relation, the FunctionBlock b ∈ B is associated to the Function f ∈ F , if the

FunctionBlock b calls the Function f .

• The relation ProдramCallsFunction is de�ned over the setsU and F . In this relation,

the Program u ∈ U is associated to the Function f ∈ F , if the Program u calls the

Function f .

• The relation FunctionCallsFunction is de�ned over the set F . In this relation, the

Function f fi ∈ F is associated to the Function f fj ∈ F , if the Function f fi calls the

Function f fj .

• The relation MethodReadsGlobalVariable is de�ned over the sets T and V . In this

relation, the Method t ∈ T is associated to the GlobalVariable v ∈ V , if the Method t
reads the GlobalVariable v .

• The relation MethodWritesGlobalVariable is de�ned over the sets T and V . In this

relation, the Method t ∈ T is associated to the GlobalVariable v ∈ V , if the Method t
writes the GlobalVariable v .

• The relation ProдramReadsGlobalVariable is de�ned over the sets U and V . In this

relation, the Programu ∈ U is associated to the GlobalVariablev ∈ V , if the Program

u reads the GlobalVariable v .

• The relation ProдramWritesGlobalVariable is de�ned over the sets U and V . In

this relation, the Program u ∈ U is associated to the GlobalVariable v ∈ V , if the

Program u writes the GlobalVariable v .

• The relation ProдramDeclaresGlobalVariable is de�ned over the sets U and V . In

this relation, the Program u ∈ U is associated to the GlobalVariable v ∈ V , if the

Program u declares the GlobalVariable v .

243

A. Appendix

• The relation Conf iдurationDeclaresGlobalVariable is de�ned over the sets C and

V . In this relation, the Con�guration c ∈ C is associated to the GlobalVariable v ∈ V ,

if the Con�guration c declares the GlobalVariable v .

• The relation Inter f aceHasAbstractMethod is de�ned over the sets E and A. In

this relation, the Interface e ∈ E is associated to the AbstractMethod a ∈ A, if the

Interface e contains the AbstractMethod a.

• The relation ProдramCallsAbstractMethod is de�ned over the sets U and A. In

this relation, the Program u ∈ U is associated to the AbstractMethod a ∈ A, if the

Program u calls the AbstractMethod a.

• The relation ProдramCallsMethod is de�ned over the sets U and T . In this relation,

the Program u ∈ U is associated to the Method t ∈ T , if the Program u calls the

Method t .

• The relation FunctionBlockCallsAbstractMethod is de�ned over the sets B and A.

In this relation, the FunctionBlock b ∈ B is associated to the AbstractMethod a ∈ A,

if the FunctionBlock b calls the AbstractMethod a.

• The relation FunctionBlockCallsMethod is de�ned over the sets B andT . In this rela-

tion, the FunctionBlock b ∈ B is associated to the Method t ∈ T , if the FunctionBlock

b calls the Method t .

• The relation MethodImplementsAbstractMethod is de�ned over the sets T and A.

In this relation, the Method t ∈ T is associated to the AbstractMethod a ∈ A, if the

Method t implements the AbstractMethod a.

• The relation MethodCallsMethod is de�ned over the set T . In this relation, the

Method tti ∈ T is associated to the Method ttj ∈ T , if the Method tti calls the Method

ttj .

• The relation MethodCallsAbstractMethod is de�ned over the sets T and A. In this

relation, the Method t ∈ T is associated to the AbstractMethod a ∈ A, if the Method

t calls the AbstractMethod a.

• The relation Inter f aceHasAbstractProperty is de�ned over the sets E and S . In

this relation, the Interface e ∈ E is associated to the AbstractProperty s ∈ S , if the

Interface e has the AbstractProperty s .

• The relation ProдramReadsProperty is de�ned over the setsU and P . In this relation,

the Program u ∈ U is associated to the Property p ∈ P , if the Program u reads the

Property p.

• The relation ProдramWritesProperty is de�ned over the sets U and P . In this

relation, the Program u ∈ U is associated to the Property p ∈ P , if the Program u
writes the Property p.

244

A.1. Relations between IEC Model Elements

• The relation ProдramReadsAbstractProperty is de�ned over the sets U and S . In

this relation, the Program u ∈ U is associated to the AbstractProperty s ∈ S , if the

Program u reads the AbstractProperty s .

• The relation ProдramWritesAbstractProperty is de�ned over the sets U and S . In

this relation, the Program u ∈ U is associated to the AbstractProperty s ∈ S , if the

Program u writes the AbstractProperty s .

• The relation FunctionBlockReadsProperty is de�ned over the sets B and P . In this

relation, the FunctionBlock b ∈ B is associated to the Property p ∈ P , if the Func-

tionBlock b reads the Property p.

• The relation FunctionBlockWritesProperty is de�ned over the sets B and P . In

this relation, the FunctionBlock b ∈ B is associated to the Property p ∈ P , if the

FunctionBlock b writes the Property p.

• The relation FunctionBlockReadsAbstractProperty is de�ned over the sets B and S .

In this relation, the FunctionBlock b ∈ B is associated to the AbstractProperty s ∈ S ,

if the FunctionBlock b reads the AbstractProperty s .

• The relation FunctionBlockWritesAbstractProperty is de�ned over the sets B and

S . In this relation, the FunctionBlock b ∈ B is associated to the AbstractProperty

s ∈ S , if the FunctionBlock b writes the AbstractProperty s .

• The relation MethodReadsProperty is de�ned over the setsT and P . In this relation,

the Method t ∈ T is associated to the Property p ∈ P , if the Method t reads the

Property p.

• The relation MethodWritesProperty is de�ned over the setsT and P . In this relation,

the Method t ∈ T is associated to the Property p ∈ P , if the Method t writes the

Property p.

• The relation MethodReadsAbstractProperty is de�ned over the setsT and S . In this

relation, the Method t ∈ T is associated to the AbstractProperty s ∈ S , if the Method

t reads the AbstractProperty s .

• The relation MethodWritesAbstractProperty is de�ned over the sets T and S . In

this relation, the Method t ∈ T is associated to the AbstractProperty s ∈ S , if the

Method t writes the AbstractProperty s .

• The relation PropertyImplementsAbstractProperty is de�ned over the sets P and S .

In this relation, the Property p ∈ P is associated to the AbstractProperty s ∈ S , if the

Property p implements the AbstractProperty s .

• The relation Conf iдurationInstantiatesProдram is de�ned over the sets C and U .

In this relation, the Con�guration c ∈ C is associated to the Program u ∈ U , if the

Con�guration c instantiates the Program u.

245

A. Appendix

• The relationCallsMethod is de�ned over the setsQ andT . In this relation, the Mode

q ∈ Q is associated to the Method t ∈ T , if the Mode q calls the Method t .

• The relation CallsAbstractMethod is de�ned over the sets Q and A. In this relation,

the Mode q ∈ Q is associated to the AbstractMethod a ∈ A, if the Mode q calls the

AbstractMethod a.

• The relation CallsFunctionBlock is de�ned over the sets Q and B. In this relation,

the Mode q ∈ Q is associated to the FunctionBlock b ∈ B, if the Mode q calls the

FunctionBlock b.

• The relation HasMode is de�ned over the sets D and Q . In this relation, the Sys-

temStep d ∈ D is associated to the Mode q ∈ Q , if the SystemStep d has the Mode

q.

• The relationHasSuccessor is de�ned over the setW . In this relation, the HMIElement

ww1
∈W (e.g., an actor step) is associated to the HMIElementww2

∈W (e.g., a system

step), if the HMIElement ww1
has the HMIElement ww2

as successor.

A.2. Supplementary Material for the Literature Review

Chapter 10 describes the review protocol of the literature review to identify categories

of change triggers in business processes. The literature review was mainly based on

the results of a database search method, which also described in Chapter 10 in more

detail. This section presents the supplementary material for the study. This includes the

search query for each database, the number of hits for each query, and the corresponding

time span. The following tables also provide the relevant database settings. The content

of this chapter is based on the results of a diploma thesis, which the author of this

dissertation supervised [Kap17]. The supplementary material for a follow-up study is

given in [Kap+18b].

246

A.2. Supplementary Material for the Literature Review

Database Adapted Search Queries for Search Term "trigger" #Hits

GS ("business process" OR work�ow) AND ("change trigger" OR

"change triggers")

504

WoS TOPIC: (("business process" OR work�ow) AND change* AND

trigger*) Timespan: All years. Search language=Auto

54

Scopus ALL (("business process" OR work�ow) AND ("change* trigger*")) 18

BASE ("business process" OR work�ow) AND ("change trigger" OR

"change triggers")

9

GS ("business process" OR work�ow) AND ("trigger for change" OR

"trigger for changes" OR "triggers for change" OR "triggers for

changes")

362

Scopus ALL (("business process" OR work�ow) AND "trigger* for

change*")

4

BASE ("business process" OR work�ow) AND ("trigger for change" OR

"trigger for changes" OR "triggers for change" OR "triggers for

changes")

5

GS ("business process" OR work�ow) AND ("trigger of change" OR

"trigger of changes" OR "triggers of change" OR "triggers of

changes")

143

Scopus ALL (("business process" OR work�ow) AND "trigger* of change*" 8

BASE ("business process" OR work�ow) AND ("trigger of change" OR

"trigger of changes" OR "triggers of change" OR "triggers of

changes")

5

GS ("business process" OR work�ow) AND ("trigger event" OR "trig-

ger events")

~4790

WoS TOPIC: (("business process" OR work�ow) AND trigger* AND

event*) Timespan: All years. Indexes: SCI-EXPANDED, SSCI.

46

Scopus ALL (("business process" OR work�ow) AND "trigger* event*") 30

BASE ("business process" OR work�ow) AND ("trigger event" OR "trig-

ger events")

12

Table A.1.: Overview of search queries including the search term "trigger" [Kap17, p. 68]

247

A. Appendix

Databse Adapted Search Queries for Search Term "reason" #Hits

GS ("business process" OR work�ow) AND ("change reason" OR

"change reasons")

383

WoS TOPIC: (("business process" OR work�ow) AND change* reason*)

Timespan: All years. Indexes: SCI-EXPANDED, SSCI.

102

Scopus ALL (("business process" OR work�ow) AND "change* reason*") 6

BASE ("business process" OR work�ow) AND ("change reason" OR

"change reasons")

–

GS ("business process" OR work�ow) AND ("reason for change" OR

"reason for changes" OR "reasons for change" OR "reasons for

changes")

~2180

("business process" OR work�ow) AND ("reason for change") 751

("business process" OR work�ow) AND ("reason for changes") 148

("business process" OR work�ow) AND ("reasons for change") ~1040

("business process" OR work�ow) AND ("reasons for changes") 414

Scopus ALL (("business process" OR work�ow) AND "reason* for

change*")

18

BASE ("business process" OR work�ow) AND ("reason for change" OR

"reason for changes" OR "reasons for change" OR "reasons for

changes")

14

GS ("business process" OR work�ow) AND ("reason of change" OR

"reason of changes" OR "reasons of change" OR "reasons of

changes")

177

Scopus ALL (("business process" OR work�ow) AND "reason* of change*") 2

BASE ("business process" OR work�ow) AND ("reason of change" OR

"reason of changes" OR "reasons of change" OR "reasons of

changes")

14

Table A.2.: Overview of search queries including the search term "reason" [Kap17, p. 69]

248

A.2. Supplementary Material for the Literature Review

Database Adapted Search Queries for Search Term "force" #Hits

GS ("business process" OR work�ow) AND ("change force" OR

"change forces")

712

WoS TOPIC: (("business process" OR work�ow) AND change* force*)

Timespan: All years. Indexes: SCI-EXPANDED, SSCI.

60

Scopus ALL (("business process" OR work�ow) AND "change* force*") 38

BASE ("business process" OR work�ow) AND ("change force" OR

"change forces")

–

GS ("business process" OR work�ow) AND ("force for change" OR

"force for changes" OR "forces for change" OR "forces for changes")

~1630

("business process" OR work�ow) AND "force for change" 898

("business process" OR work�ow) AND "force for changes" 27

("business process" OR work�ow) AND "forces for change" 809

("business process" OR work�ow) AND "forces for changes" 32

Scopus ALL (("business process" OR work�ow) AND "force* for change*") 44

BASE ("business process" OR work�ow) AND ("force for change" OR

"force for changes" OR "forces for change" OR "forces for changes")

21

GS ("business process" OR work�ow) AND ("force of change" OR

"force of changes" OR "forces of change" OR "forces of changes")

~1,450

("business process" OR work�ow) AND "force of change" 277

("business process" OR work�ow) AND "force of changes" 12

("business process" OR work�ow) AND "forces of change" ~1190

("business process" OR work�ow) AND "forces of changes" 31

Scopus ALL (("business process" OR work�ow) AND "force* of change*") 11

BASE ("business process" OR work�ow) AND ("force of change" OR

"force of changes" OR "forces of change" OR "forces of changes")

21

Table A.3.: Overview of search queries including the search term "force" [Kap17, p. 70]

249

A. Appendix

Database Adapted Search Queries for Search Term "driver" #Hits

GS ("business process" OR work�ow) AND ("change driver" OR

"change drivers")

~1180

("business process" OR work�ow) AND "change driver" 349

("business process" OR work�ow) AND "change drivers" 951

WoS TOPIC: (("business process" OR work�ow) AND change* driver*)

Timespan: All years. Indexes: SCI-EXPANDED, SSCI.

29

Scopus ALL (("business process" OR work�ow) AND "change* driver*") 69

BASE ("business process" OR work�ow) AND ("change driver" OR

"change drivers")

14

GS ("business process" OR work�ow) AND ("driver for change" OR

"driver for changes" OR "drivers for change" OR "drivers for

changes")

~1830

("business process" OR work�ow) AND "driver for change" 671

("business process" OR work�ow) AND "driver for changes" 47

("business process" OR work�ow) AND "drivers for change" ~1180

("business process" OR work�ow) AND "drivers for changes" 58

Scopus ALL (("business process" OR work�ow) AND "driver* for

change*")

40

BASE ("business process" OR work�ow) AND ("driver for change" OR

"driver for changes" OR "drivers for change" OR "drivers for

changes")

34

GS ("business process" OR work�ow) AND ("driver of change" OR

"drivers of change" OR "driver of changes" OR "drivers of changes")

~2820

("business process" OR work�ow) AND "driver of change" 893

("business process" OR work�ow) AND "driver of changes" 51

("business process" OR work�ow) AND "drivers of change" ~1980

("business process" OR work�ow) AND "drivers of changes" 78

Scopus ("business process" OR work�ow) AND "driver* of change*" 38

BASE ("business process" OR work�ow) AND ("driver of change" OR

"drivers of change" OR "driver of changes" OR "drivers of changes")

34

Table A.4.: Overview of search queries including the search term "driver" [Kap17, p. 71]

250

A.2. Supplementary Material for the Literature Review

Database Adapted Search Queries for Search Term "cause" #Hits

GS ("business process" OR work�ow) AND ("change cause" OR

"change causes")

990

WoS TOPIC: (("business process" OR work�ow) AND change* cause*)

Timespan: All years. Indexes: SCI-EXPANDED, SSCI.

147

Scopus ALL (("business process" OR work�ow) AND "change* cause*") 105

BASE ("business process" OR work�ow) AND ("change cause" OR

"change causes")

23

GS ("business process" OR work�ow) AND ("cause for change" OR

"cause for changes" OR "causes for change" OR "causes for

changes")

329

Scopus ALL (("business process" OR work�ow) AND "cause* for change*" 4

BASE ("business process" OR work�ow) AND ("cause for change" OR

"causes for change" OR "cause for changes" OR "causes for

changes")

46

GS ("business process" OR work�ow) AND ("cause of change" OR

"cause of changes" OR "causes of change" OR "causes of changes")

797

Scopus ALL (("business process" OR work�ow) AND "cause* of change*") 5

BASE ("business process" OR work�ow) AND ("cause of change" OR

"cause of changes" OR "causes of change" OR "causes of changes")

46

Table A.5.: Overview of search queries including the search term "cause" [Kap17, p. 72]

Database Adapted Search Queries for Search Term "need" #Hits

GS ("business process" OR work�ow) AND "need for change" ~8510

WoS TOPIC: (("business process" OR work�ow) AND "need for

change") Timespan: All years. Search language=Auto.

7

Scopus ALL (("business process" OR work�ow) AND "need for change") 4

BASE ("business process" OR work�ow) AND "need for change" 61

GS ("business process" OR work�ow) AND "need to change" ~17800

Scopus ALL (("business process" OR work�ow) AND "need to change") 14

BASE ("business process" OR work�ow) AND "need to change" 61

Table A.6.: Overview of search queries including the search term "need" [Kap17, p. 73]

251

A. Appendix

Datenbank Adapted Search Queries for Search Term "origin" #Tre�er

GS ("business process" OR work�ow) AND ("origin for change" OR

"origin for changes" OR "origins for change" OR "origins for

changes")

5

WoS TOPIC: (("business process" OR work�ow) AND origin* AND

change*) Timespan: All years. Indexes: SCI-EXPANDED, SSCI.

124

Scopus ALL (("business process" OR work�ow) AND "origin* for

change*")

–

BASE ("business process" OR work�ow) AND ("origin for change" OR

"origin for changes" OR "origins for change" OR "origins for

changes")

2

GS ("business process" OR work�ow) AND ("origin of change" OR "ori-

gin of changes" OR "origins of change" OR "origins of changes")

121

Scopus ALL (("business process" OR work�ow) AND "origin* of change*") 2

BASE ("business process" OR work�ow) AND ("origin of change" OR "ori-

gin of changes" OR "origins of change" OR "origins of changes")

2

Table A.7.: Overview of search queries including the search term "origin" [Kap17, p. 74]

Database Adapted Search Queries for Search Term "lever" #Hits

GS ("business process" OR work�ow) AND ("change lever" OR

"change levers")

311

WoS TOPIC: (("business process" OR work�ow) AND change* AND

lever*) Timespan: All years. Search language=Auto.

102

Scopus ALL (("business process" OR work�ow) AND ("change* lever*")) 7

BASE ("business process" OR work�ow) AND ("change lever" OR

"change levers")

2

GS ("business process" OR work�ow) AND ("lever for change" OR

"lever for changes" OR "levers for change" OR "levers for changes")

303

Scopus ALL (("business process" OR work�ow) AND "lever* for change*") 11

BASE ("business process" OR work�ow) AND ("lever for change" OR

"lever for changes" OR "levers for change" OR "levers for changes")

2

GS ("business process" OR work�ow) AND ("lever of change" OR

"lever of changes" OR "levers of change" OR "levers of changes")

252

Scopus ALL (("business process" OR work�ow) AND "lever* of change*") 4

BASE ("business process" OR work�ow) AND ("lever of change" OR

"lever of changes" OR "levers of change" OR "levers of changes")

2

Table A.8.: Overview of search queries including the search term "lever" [Kap17, p. 76]

252

A.2. Supplementary Material for the Literature Review

Database Adapted Search Queries for Search Term "source" #Hits

GS ("business process" OR work�ow) AND ("source for change" OR

"source for changes" OR "sources for change" OR "source for

changes")

122

WoS TOPIC: (("business process" OR work�ow) AND source* AND

change*) Timespan: All years. Indexes: SCI-EXPANDED, SSCI.

162

Scopus ALL (("business process" OR work�ow) AND "source* for

change*")

–

BASE ("business process" OR work�ow) AND ("source for change" OR

"source for changes" OR "sources for change" OR "sources for

changes")

19

GS ("business process" OR work�ow) AND ("source of change" OR

"source of changes" OR "sources of change" OR "sources of

changes")

~1,460

("business process" OR work�ow) AND "source of change" 649

("business process" OR work�ow) AND "source of changes" 133

("business process" OR work�ow) AND "sources of change" 722

("business process" OR work�ow) AND "sources of changes" 140

Scopus ALL (("business process" OR work�ow) AND "source* of change*") 69

BASE ("business process" OR work�ow) AND ("source of change" OR

"source of changes" OR "sources of change" OR "sources of

changes")

19

Table A.9.: Overview of search queries including the search term "source" [Kap17, p. 75]

253

Bibliography

[17] Enterprise Architecture at Work: Modelling, Communication and Analysis.
Springer, 2017.

[Aal16] Wil van der Aalst. Process Mining: Data Science in Action. 2nd ed. Springer,

2016. isbn: 978-3-662-49850-7. doi: 10.1007/978-3-662-49851-4.

[AB93] Robert Arnold and Shawn Bohner. “Impact Analysis - Towards a Framework

for Comparison”. In: Proceedings of the Conference on Software Maintenance,
ICSM 1993, Montréal, Quebec, Canada, September 1993. 1993, pp. 292–301. doi:

10.1109/ICSM.1993.366933.

[Aer+04] Ad Aerts, Jan Goossenaerts, Dieter Hammer, and Hans Wortmann. “Archi-

tectures in context: on the evolution of business, application software, and

ICT platform architectures”. In: Information and Management 41.6 (2004),

pp. 781–794.

[AG] Janz Tec AG. CODESYS - Entwicklungssoftware für Industriesteuerungen. url:

https://www.janztec.com/embedded-pc/codesys (visited on 10/31/2017).

[AG14] Oscar Avila and Kelly Garcés. “Change Management Contributions for

Business-IT Alignment”. In: Business Information Systems Workshops.
Springer, 2014, pp. 156–167.

[Aie+07] Giovanni Aiello, Marco Alessi, Manfredi Bruccoleri, Carlo D’Onofrio, and

Giuseppe Vella. “An Agile methodology for Manufacturing Control Systems

development”. In: 2007 5th IEEE International Conference on Industrial Infor-
matics. Vol. 2. 2007, pp. 817–822.

[AJ00] Wil van der Aalst and Stefan Jablonski. “Dealing with work�ow change:

identi�cation of issues and solutions”. In: Computer Systems Science and
Engineering 15.5 (2000), pp. 267–276.

[Ala+08] Ruth Alas et al. “Implementation of organizational changes in Estonian

companies”. In: Journal of Business Economics and Management 4 (2008),

pp. 289–297.

[Ala07] Ruth Alas. “The triangular model for dealing with organizational change”.

In: Journal of Change Management 7.3-4 (2007), pp. 255–271.

[All10] Lindsay Allen. “Veri�cation and Anomaly Detection for Event-Based Control

of Manufacturing Systems”. PhD thesis. University of Michigan, 2010.

[AM] System Analysis and Germany Modeling Group at the HPI/University of

Potsdam. Modular Rice University Bidding System (mRUBiS). url: https://ww
w.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/case-stu

dies/mrubis/ (visited on 01/28/2019).

255

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1109/ICSM.1993.366933
https://www.janztec.com/embedded-pc/codesys
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/case-studies/mrubis/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/case-studies/mrubis/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/case-studies/mrubis/

Bibliography

[Bas92] Victor Basili. Software Modeling and Measurement: The Goal/Question/Metric
Paradigm. Tech. rep. University of Maryland, 1992.

[BB99] PerOlof Bengtsson and Jan Bosch. “Architecture Level Prediction of Software

Maintenance”. In: Proc. of 3rd CSMR. 1999, pp. 139–147.

[BCR94] Victor Basili, Gianluigi Caldiera, and H. Dieter Rombach. “The Goal Question

Metric Approach”. In: Encyclopedia of Software Engineering. Wiley, 1994.

[Bel18] Inna Belyantseva. “Eine domänenspezi�sche Sprache für Änderungsausbre-

itungsregeln”. Masterarbeit. Karlsruhe Institute of Technology, 2018.

[Ben+04] PerOlof Bengtsson, Nico Lassing, Jan Bosch, and Hans van Vliet.

“Architecture-level Modi�ability Analysis (ALMA)”. In: Journal of Systems
and Software 69.1-2 (2004), pp. 129–147. issn: 0164-1212. doi: 10.1016/S0164

-1212(03)00080-3.

[Ber+11] Gábor Bergmann, Zoltán Ujhelyi, István Ráth, and Dániel Varró. “A Graph

Query Language for EMF Models”. In: Theory and Practice of Model Trans-
formations. Ed. by Jordi Cabot and Eelco Visser. Springer Berlin Heidelberg,

2011, pp. 167–182.

[Ber68] Ludwig von Bertalan�y. General system theory: foundations, development, ap-
plications. International library of systems theory and philosophy. G. Braziller,

1968.

[Bif+15] Stefan Bi�, Emanuel Mätzler, Manuel Wimmer, Arndt Lüder, and Nicole

Schmidt. “Linking and versioning support for AutomationML: A model-

driven engineering perspective”. In: INDIN. IEEE, 2015, pp. 499–506. isbn:

978-1-4799-6649-3.

[BKR09] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio Component

Model for Model-driven Performance Prediction”. In: Journal of Systems and
Software 82.1 (2009), pp. 3–22. issn: 0164-1212.

[BLO03] Lionel Briand, Yvan Labiche, and L. O’Sullivan. “Impact Analysis and Change

Management of UML Models”. In: ICSM. 2003.

[Bod+04] Thierry Bodhuin, Ra�aele Esposito, Cristina Pacelli, and Maria Tortorella.

“Impact Analysis for Supporting the Co-Evolution of Business Processes and

Supporting Software Systems”. In: CAiSE Workshops (2). FCSIT, Riga TU,

2004, pp. 146–150.

[Boe+00] Barry Boehm et al. Software Cost Estimation with COCOMO II. Prentice Hall,

2000. isbn: 0130266922.

[Boe+05] Frank de Boer et al. “Change impact analysis of enterprise architectures”. In:

IRI -2005 IEEE International Conference on Information Reuse and Integration
(2005), pp. 177–181.

[Boh02] Shawn Bohner. “Software change impacts-an evolving perspective”. In: Inter-
national Conference on Software Maintenance. 2002, pp. 263–272. doi: 10.110

9/ICSM.2002.1167777.

256

https://doi.org/10.1016/S0164-1212(03)00080-3
https://doi.org/10.1016/S0164-1212(03)00080-3
https://doi.org/10.1109/ICSM.2002.1167777
https://doi.org/10.1109/ICSM.2002.1167777

Bibliography

[Bou+17] Safa Bougou�a, Kilian Meßzmer, Suhyun Cha, Emanuel Trunzer, and Birgit

Vogel-Heuser. “Industry 4.0 interface for dynamic recon�guration of an

open lab size automated production system to allow remote community

experiments”. In: 2017 IEEE International Conference on Industrial Engineering
and Engineering Management (IEEM) (2017), pp. 2058–2062.

[BP95] Monica Bellgran and Öhrström Pernilla. “Design and Evaluation of Assembly

Systems - A Study of Ten Swedish Manufacturing Companies”. In: Proceedings
of the 13th International Conference on Production Research. ICPR ’95. 1995.

[Bra09] Jörg-Peter Brauer. DIN EN ISO 9000: 2000 �. umsetzen: Gestaltungshilfen zum
Aufbau Ihres Qualitätsmanagementsystems. Vol. 4. Hanser Verlag, 2009.

[Bra10] Jana Brauweiler. “Umweltmanagementsysteme nach ISO 14001 und EMAS”.

In: Integratives Umweltmanagement: Systemorientierte Zusammenhänge zwis-
chen Politik, Recht, Management und Technik (2010), pp. 279–299.

[BRG01] BRG. Business Rules Group. http://www.businessrulesgroup.org. 2001.

[Bro+12] Franz Brosch, Heiko Koziolek, Barbora Buhnova, and Ralf Reussner.

“Architecture-Based Reliability Prediction with the Palladio Component

Model”. In: IEEE Transactions on Software Engineering 38.6 (2012), pp. 1319–

1339. doi: 10.1109/TSE.2011.94.

[BRT93] Henri Barki, Suzanne Rivard, and Jean Talbot. “A keyword classi�cation

scheme for IS research literature: an update”. In: Mis Quarterly (1993), pp. 209–

226.

[BS09] Monica Bellgran and Kristina Säfsten. Production Development: Design and
Operation of Production Systems. Springer, Jan. 2009. isbn: 1848824955,

9781848824959. doi: 10.1007/978-1-84882-495-9.

[Bus+18a] Kiana Busch, Robert Heinrich, Axel Busch, and Ralf Reussner. “Automated

Analysis of the Co-evolution of Software Systems and Business Processes”. In:

Software Engineering 2018, Fachtagung des GI-Fachbereichs Softwaretechnik,
06.-09. March 2018, Ulm, Deutschland. 2018.

[Bus+18b] Kiana Busch et al. “A Cross-Disciplinary Language for Change Propagation

Rules”. In: 14th IEEE International Conference on Automation Science and
Engineering (CASE). IEEE, 2018, pp. 1099–1104. doi: 10.1109/COASE.2018.85

60364.

[Bus+18c] Kiana Busch et al. “A Model-Based Approach to Calculate Maintainabil-

ity Task Lists of PLC Programs for Factory Automation”. In: IECON 2018 -
44th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2018,

pp. 2949–2954. doi: 10.1109/IECON.2018.8591302.

[Cha+01] Ned Chapin, Joanne Hale, Khaled Kham, Juan Ramil, and Wui-Gee Tan.

“Types of Software Evolution and Software Maintenance”. In: Journal of
Software Maintenance 13.1 (2001), pp. 3–30.

[Con68] Melvin Conway. “How do Committees Invent?” In: Datamation 14 (1968),

pp. 28–31.

257

https://doi.org/10.1109/TSE.2011.94
https://doi.org/10.1007/978-1-84882-495-9
https://doi.org/10.1109/COASE.2018.8560364
https://doi.org/10.1109/COASE.2018.8560364
https://doi.org/10.1109/IECON.2018.8591302

Bibliography

[DP05] Åsa Dahlstedt and Anne Persson. “Requirements Interdependencies: State

of the Art and Future Challenges”. In: Engineering and Managing Software
Requirements. Ed. by Aybüke Aurum and Claes Wohlin. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2005, pp. 95–116. isbn: 978-3-540-28244-0. doi:

10.1007/3-540-28244-0_5.

[DR13] Zoya Durdik and Ralf Reussner. “On the Appropriate Rationale for Using

Design Patterns and Pattern Documentation”. In: Proceedings of the 9th ACM
SIGSOFT International Conference on the Quality of Software Architectures
(QoSA 2013). 2013.

[DT11] George Doukas and Kleanthis Thramboulidis. “A Real-Time-Linux-Based

Framework for Model-Driven Engineering in Control and Automation”. In:

IEEE Transactions on Industrial Electronics 58 (2011), pp. 914–924. doi: 10.11

09/TIE.2009.2029584.

[Dur14] Zoya Durdik. “Architectural Design Decision Documentation through Reuse

of Design Patterns”. PhD thesis. Karlsruhe Institute od Technology, 2014.

[Dus+15] Kerstin Duschl, Denise Gramß, Martin Obermeier, and Birgit Vogel-Heuser.

“Towards a taxonomy of errors in PLC programming”. In: Cognition, Technol-
ogy & Work 17.3 (2015), pp. 417–430. doi: 10.1007/s10111-014-0307-x.

[DW10] Hoa Dam and Michael Winiko�. “Supporting change propagation in UML

models”. In: 2010 IEEE International Conference on Software Maintenance. 2010,

pp. 1–10.

[DW11] Hoa Dam and Michael Winiko�. “An agent-oriented approach to change

propagation in software maintenance”. In: Autonomous Agents and Multi-
Agent Systems 23.3 (2011), pp. 384–452. issn: 1573-7454. doi: 10.1007/s1045

8-010-9163-0.

[EKS08] Stefan Eicker, Jessica Kochbeck, and Peter Schuler. “Employee competencies

for business process management”. In: International Conference on Business
Information Systems. Springer. 2008, pp. 251–262.

[EM12] Elisabet Estévez and Marga Marcos. “Model-Based Validation of Industrial

Control Systems”. In: IEEE Transactions on Industrial Informatics 8.2 (2012),

pp. 302–310. doi: 10.1109/TII.2011.2174248.

[EMO07] Elisabet Estévez, Marga Marcos, and Darío Orive. “Automatic generation of

PLC automation projects from component-based models”. In: The Interna-
tional Journal of Advanced Manufacturing Technology 35.5 (2007), pp. 527–540.

doi: 10.1007/s00170-007-1127-4.

[ES05] Anne Etien and Camille Salinesi. “Managing Requirements in a Co-evolution

Context”. In: 13th IEEE International Conference on Requirements Engineering
(RE 2005), 29 August - 2 September 2005, Paris, France. 2005, pp. 125–134. doi:

10.1109/RE.2005.37.

[EV06] Sven E�tinge and Markus Völter. “oAW xText: a framework for textual DSLs”.

In: Workshop on Modeling Symposium at Eclipse Summit 32 (Jan. 2006), p. 4.

258

https://doi.org/10.1007/3-540-28244-0_5
https://doi.org/10.1109/TIE.2009.2029584
https://doi.org/10.1109/TIE.2009.2029584
https://doi.org/10.1007/s10111-014-0307-x
https://doi.org/10.1007/s10458-010-9163-0
https://doi.org/10.1007/s10458-010-9163-0
https://doi.org/10.1109/TII.2011.2174248
https://doi.org/10.1007/s00170-007-1127-4
https://doi.org/10.1109/RE.2005.37

Bibliography

[Fay+15] Alexander Fay et al. “Enhancing a Model-based Engineering Approach for

Distributed Manufacturing Automation Systems with Characteristics and

Design Patterns”. In: Journal of Systems and Software 101.C (2015), pp. 221–

235. issn: 0164-1212. doi: 10.1016/j.jss.2014.12.028.

[Fdh+15] Walid Fdhila, Conrad Indiono, Stefanie Rinderle-Ma, and Manfred Reichert.

“Dealing with change in process choreographies: Design and implementation

of propagation algorithms”. In: Information Systems 49 (2015). doi: 10.1016

/j.is.2014.10.004.

[Fel+16] Stefan Feldmann, Florian Hauer, Sebastian Ulewicz, and Birgit Vogel-Heuser.

“Analysis framework for evaluating PLC software: An application of Semantic

Web technologies”. In: ISIE. IEEE, 2016, pp. 1048–1054.

[FL00] Georg Frey and Lothar Litz. “Formal methods in PLC programming”. In:

Proceedings of IEEE international conference on systems, man and cybernetics
(SMC). Vol. 4. 2000, pp. 2431–2436. doi: 10.1109/ICSMC.2000.884356.

[Fow10] Martin Fowler. Domain Speci�c Languages. 1st. Addison-Wesley Professional,

2010.

[FRR12] Walid Fdhila, Stefanie Rinderle-Ma, and Manfred Reichert. “Change prop-

agation in collaborative processes scenarios”. In: CollaborateCom’12. 2012,

pp. 452–461.

[Gas08] Susan Gasson. “A Framework for the Co-design of Business and IT Systems”.

In: HICSS. IEEE Computer Society, 2008, p. 348.

[GGS96] Michael Goldapp, Ulrich Grottker, and Gregor Snelting. “Validierung soft-

waregesteuerter Meßsysteme durch Program Slicing und Constraint Solving”.

In: Statusseminar des BMBF Softwaretechnologie (1996), pp. 405–425.

[GKB16] Arda Goknil, Ivan Kurtev, and Klaas van den Berg. “A Rule-Based Change Im-

pact Analysis Approach in Software Architecture for Requirements Changes”.

In: CoRR abs/1608.02757 (2016).

[Gli07] Martin Glinz. “On Non-Functional Requirements”. In: 15th IEEE International
Requirements Engineering Conference (RE 2007) (2007), pp. 21–26.

[Gok+11] Arda Goknil, Ivan Kurtev, Klaas van den Berg, and Jan-Willem Veldhuis.

“Semantics of trace relations in requirements models for consistency checking

and inferencing”. In: Software and Systems Modeling 10.1 (2011), pp. 31–54.

issn: 1619-1374. doi: 10.1007/s10270-009-0142-3.

[Gok+14] Arda Goknil, Ivan Kurtev, Klaas Berg, and Wietze Spijkerman. “Change Im-

pact Analysis for Requirements: a Metamodeling Approach”. In: Information
and Software Technology 56 (Aug. 2014). doi: 10.1016/j.infsof.2014.03.00

2.

[Gol+15] Ursula Goltz et al. “Design for future: managed software evolution”. In:

Computer Science - Research and Development 30.3 (2015), pp. 321–331. issn:

1865-2042. doi: 10.1007/s00450-014-0273-9.

259

https://doi.org/10.1016/j.jss.2014.12.028
https://doi.org/10.1016/j.is.2014.10.004
https://doi.org/10.1016/j.is.2014.10.004
https://doi.org/10.1109/ICSMC.2000.884356
https://doi.org/10.1007/s10270-009-0142-3
https://doi.org/10.1016/j.infsof.2014.03.002
https://doi.org/10.1016/j.infsof.2014.03.002
https://doi.org/10.1007/s00450-014-0273-9

Bibliography

[GV06] Stijn Goedertier and Jan Vanthienen. “Compliant and �exible business pro-

cesses with business rules”. In: 7thWorkshop on BPMDS’06 at CAiSE’06. CEUR-

WS.org, 2006, pp. 94–104.

[HBK18] Robert Heinrich, Kiana Busch, and Sandro Koch. “A Methodology for Domain-

spanning Change Impact Analysis”. In: 2018 44th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA). IEEE, 2018, pp. 326–

330. doi: 10.1109/SEAA.2018.00060.

[HC93] Michael Hammer and James Champy. Reengineering the Corporation: A Man-
ifesto for Business Revolution. HarperBusiness, 1993.

[Hei+15] Robert Heinrich et al. “A Platform for Empirical Research on Information

System Evolution”. In: 27th International Conference on Software Engineering
and Knowledge Engineering. 2015, pp. 415–420.

[Hei+17] Robert Heinrich, Philipp Merkle, Jörg Henss, and Barbara Paech. “Integrating

business process simulation and information system simulation for perfor-

mance prediction”. In: International Journal on Software & Systems Modeling
16.1 (2017), pp. 257–277. issn: 1619-1366. doi: 10.1007/s10270-015-0457-1.

[Hei+18] Robert Heinrich et al. “Architecture-based change impact analysis in cross-

disciplinary automated production systems”. In: Journal of Systems and Soft-
ware 146 (2018), pp. 167–185. issn: 0164-1212. doi: https://doi.org/10.101

6/j.jss.2018.08.058.

[Hei14] Robert Heinrich. Aligning Business Processes and Information Systems: New
Approaches to Continuous Quality Engineering. Springer, 2014.

[Her+08] Sebastian Herold et al. “CoCoME - The Common Component Modeling Ex-

ample”. In: The Common Component Modeling Example: Comparing Software
Component Models. Ed. by Andreas Rausch, Ralf Reussner, Ra�aela Miran-

dola, and František Plášil. Springer Berlin Heidelberg, 2008, pp. 16–53. doi:

10.1007/978-3-540-85289-6_3.

[HKR11] Jens Happe, Heiko Koziolek, and Ralf Reussner. “Facilitating Performance Pre-

dictions Using Software Components”. In: IEEE Software 28.3 (2011), pp. 27–

33.

[HRR16] Robert Heinrich, Kiana Rostami, and Ralf Reussner. The CoCoME Platform for
Collaborative Empirical Research on Information System Evolution. Tech. rep.

KIT, 2016.

[HS15] René Hahn and Peter Schuller. Architecture as Connection between Require-
ments and Quality Prediction to Support Design Decisions. Praxis der Forschung:

Modellbasierte semiautomatische Unterstützung des Architekturentwurfs

nach Anforderungsänderungen. 2015.

[HZ04] Heinrich Hussmann and Ste�en Zschaler. “The Object Constraint Language

for UML 2.0 - Overview and Assessment”. In: Upgrade 5.2 (2004), pp. 25–28.

[IEC13] IEC. IEC 61131-3 Standard - Programmable controllers - Part 3: Programming
languages. International Electrical Commission, 2013.

260

https://doi.org/10.1109/SEAA.2018.00060
https://doi.org/10.1007/s10270-015-0457-1
https://doi.org/https://doi.org/10.1016/j.jss.2018.08.058
https://doi.org/https://doi.org/10.1016/j.jss.2018.08.058
https://doi.org/10.1007/978-3-540-85289-6_3

Bibliography

[IEE11] IEEE. “Systems and software engineering – Life cycle processes –

Requirements engineering”. In: ISO/IEC/IEEE 29148:2011(E) (2011).

[IEE90] IEEE. “IEEE Standard Glossary of Software Engineering Terminology”. In:

IEEE Std 610.12-1990 (1990).

[IEE98] IEEE. IEEE Recommended Practice for Software Requirements Speci�cations.
1998.

[ISO11] ISO/IEC 25010:2011. Systems and software engineering – Systems and software
Quality Requirements and Evaluation (SQuaRE) – System and software quality
models. 2011.

[ISO92] DIN ISO. “8402 Qualitätsmanagement und Qualitätssicherung”. In: Begri�e,
Berlin (1992).

[Jäg+11] Tobias Jäger, Alexander Fay, Thomas Wagner, and Ulrich Löwen. “Min-

ing technical dependencies throughout engineering process knowledge”.

In: ETFA2011. 2011, pp. 1–7. doi: 10.1109/ETFA.2011.6058985.

[Jam15a] Marcin Jamro. “POU-Oriented Unit Testing of IEC 61131-3 Control Software”.

In: IEEE Transactions on Industrial Informatics 11.5 (2015), pp. 1119–1129.

[Jam15b] Marcin Jamro. “SysML Modeling of Functional and Non-functional Require-

ments for IEC 61131-3 Control Systems”. In: Progress in Automation, Robotics
and Measuring Techniques. Springer International Publishing, 2015, pp. 91–

100. isbn: 978-3-319-15796-2.

[Jar+11] T. Jarratt, Claudia Eckert, Nicholas Calwell, and P. John Clarkson. “Engineer-

ing change: an overview and perspective on the literature”. In: Research in
engineering design 22.2 (2011), pp. 103–124.

[JM09] Dan Jurafsky and James Martin. Speech and language processing : an intro-
duction to natural language processing, computational linguistics, and speech
recognition. Pearson Prentice Hall, 2009. isbn: 9780131873216 0131873210.

[JP12] Pooyan Jamshidi and Claus Pahl. “Business Process and Software Architecture

Model Co-evolution Patterns”. In: MiSE’12. IEEE, 2012, pp. 91–97.

[JT01] Karl-Heinz John and Michael Tiegelkamp. “Building Blocks of IEC 61131-3”.

In: IEC 61131-3: Programming Industrial Automation Systems: Concepts and
Programming Languages, Requirements for Programming Systems, Aids to
Decision-Making Tools. Springer Berlin Heidelberg, 2001, pp. 21–64.

[JT13] Marcin Jamro and Bartosz Trybus. “Testing Procedure for IEC 61131-3 Control

Software”. In: IFAC Proceedings Volumes 46.28 (2013), pp. 192–197.

[Kap+18a] Angelika Kaplan, Kiana Busch, Robert Heinrich, and Anne Koziolek. “Cat-

egories of Change Triggers in Business Processes”. In: 2018 44th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA). IEEE,

2018, pp. 252–259. doi: 10.1109/SEAA.2018.00049.

261

https://doi.org/10.1109/ETFA.2011.6058985
https://doi.org/10.1109/SEAA.2018.00049

Bibliography

[Kap+18b] Angelika Kaplan, Kiana Busch, Robert Heinrich, and Anne Koziolek. Sup-
plementary material for the study on categories of change triggers in business
processes. Tech. rep. 7. Karlsruhe: Karlsruhe Institute of Technology (KIT),

2018.

[Kap17] Angelika Kaplan. “Eine empirische Studie zu Änderungskategorien in Bezug

auf Änderungsauslöser in Geschäftsprozessen”. Diplomarbeit. Karlsruhe

Institute of Technology, 2017.

[Kaz+94] Rick Kazman, Len Bass, Gregory Abowd, and Mike Webb. “SAAM: a method

for analyzing the properties of software architectures”. In: Software Engi-
neering, 1994. Proceedings. ICSE-16., 16th International Conference on. 1994,

pp. 81–90. doi: 10.1109/ICSE.1994.296768.

[Kaz+98] Rick Kazman et al. “The Architecture Tradeo� Analysis Method”. In: Pro-
ceedings. Fourth IEEE International Conference on Engineering of Complex
Computer Systems (Cat. No.98EX193). Jan. 1998, pp. 68–78. doi: 10.1109/ICE

CCS.1998.706657.

[Kee07] Sta�s Keele. “Guidelines for performing systematic literature reviews in

software engineering”. In: Technical report, Ver. 2.3 EBSE Technical Report.
EBSE. sn, 2007.

[KG99] Markus Kradolfer and Andreas Geppert. “Dynamic Work�ow Schema Evo-

lution Based on Work�ow Type Versioning and Work�ow Migration”. In:

CoopIS’99. 1999, pp. 104–114.

[Kil08] Malia Kilpinen. “The emergence of change at the systems engineering and

software design interface”. PhD thesis. University of Cambridge, 2008.

[KKF12] Sonja Kabicher-Fuchs, Simone Kriglstein, and Kathrin Figl. “Timeline Visual-

ization for Documenting Process Model Change”. In: EMISA. 2012, pp. 95–

108.

[KMS05] Huzefa Kagdi, Jonathan Maletic, and Andrew Sutton. “Context-Free Slicing

of UML Class Models”. In: ICSM. IEEE Computer Society, 2005, pp. 635–638.

[Koc17] Sandro Koch. “Automatische Vorhersage von Änderungsausbreitungen am

Beispiel von Automatisierungssystemen”. Masterarbeit. Karlsruhe Institute

of Technology, 2017.

[KR16] Karunanidhi Karthik and K. Janardhan Reddy. “Engineering Changes in

Product Design-A Review”. In: IOP Conference Series: Materials Science and
Engineering. Vol. 149. 1. IOP Publishing. 2016, p. 012001.

[Kro12] Klaus Krogmann. Reconstruction of Software Component Architectures and
Behaviour Models using Static and Dynamic Analysis. Vol. 4. The Karlsruhe

Series on Software Design and Quality. KIT Scienti�c Publishing, 2012. doi:

10.5445/KSP/1000025617.

[Kru04] Philippe Kruchten. The Rational Uni�ed Process: An Introduction. The Addison-

Wesley object technology series. Addison-Wesley, 2004. isbn: 9780321197702.

262

https://doi.org/10.1109/ICSE.1994.296768
https://doi.org/10.1109/ICECCS.1998.706657
https://doi.org/10.1109/ICECCS.1998.706657
https://doi.org/10.5445/KSP/1000025617

Bibliography

[Kur+12] Tri Kurniawan, Aditya Ghose, Hoa Dam, and Lam-Son Lê. “Relationship-

Preserving Change Propagation in Process Ecosystems”. In: Service-Oriented
Computing. Springer Berlin Heidelberg, 2012, pp. 63–78.

[Küs13] Martin Küster. “Architecture-Centric Modeling of Design Decisions for Val-

idation and Traceability”. In: Proceedings of the 7th European Conference
on Software Architecture (ECSA ’13). Vol. 7957. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2013, pp. 184–191.

[KV07] Uwe Katzke and Birgit Vogel-Heuser. “COMBINING UML WITH IEC 61131-3

LANGUAGES TO PRESERVE THE USABILITY OF GRAPHICAL NOTATIONS

IN THE SOFTWARE DEVELOPMENT OF COMPLEX AUTOMATION SYS-

TEMS”. In: IFAC Proceedings Volumes 40.16 (2007). 10th IFAC,IFIP,IFORS,IEA

Symposium on Analysis, Design, and Evaluation of Human-Machine Systems,

pp. 90–94. issn: 1474-6670. doi: https://doi.org/10.3182/20070904-3-KR-

2922.00016.

[KWN05] Udo Kelte, Jürgen Wehren, and Jörg Niere. “A Generic Di�erence Algorithm

for UML Models”. In: Software Engineering. Vol. 64. LNI. GI, 2005, pp. 105–116.

[Lad+13] Jan Ladiges et al. “Evolution of Production Facilities and its Impact on Non-

Functional Requirements”. In: International Conference on Industrial Informat-
ics (INDIN) 2013 - Proceedings of the 11th International Conference on Industrial
Informatics. IEEE, 2013.

[Lar04] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development (3rd Edition). Prentice Hall

PTR, 2004. isbn: 0131489062.

[Leh11a] Ste�en Lehnert. A Review of Software Change Impact Analysis. Tech. rep.

Ilmenau University of Technology, Department of Software Systems / Process

Informatics, 2011.

[Leh11b] Ste�en Lehnert. “A Taxonomy for Software Change Impact Analysis”. In: Pro-
ceedings of the 12th International Workshop on Principles of Software Evolution
and the 7th Annual ERCIM Workshop on Software Evolution. IWPSE-EVOL ’11.

ACM, 2011, pp. 41–50. doi: 10.1145/2024445.2024454.

[Leh79] Meir Lehman. “On understanding laws, evolution, and conservation in the

large-program life cycle”. In: Journal of Systems and Software 1 (1979), pp. 213–

221.

[Lew47] Kurt Lewin. “Group decision and social change”. In: Readings in social psy-
chology 3 (1947), pp. 197–211.

[LFL16] Jan Ladiges, Alexander Fay, and Winfried Lamersdorf. “Automated Deter-

mining of Manufacturing Properties and Their Evolutionary Changes from

Event Traces”. In: Intelligent Industrial Systems 2.2 (2016), pp. 163–178. doi:

10.1007/s40903-016-0048-7.

263

https://doi.org/https://doi.org/10.3182/20070904-3-KR-2922.00016
https://doi.org/https://doi.org/10.3182/20070904-3-KR-2922.00016
https://doi.org/10.1145/2024445.2024454
https://doi.org/10.1007/s40903-016-0048-7

Bibliography

[LFR13] Ste�en Lehnert, Qurat-ul-ann Farooq, and Matthias Riebisch. “Rule-Based

Impact Analysis for Heterogeneous Software Artifacts”. In: 17th European
Conference on Software Maintenance and Reengineering, CSMR 2013, Genova,
Italy, March 5-8, 2013. 2013, pp. 209–218. doi: 10.1109/CSMR.2013.30.

[LFV13] Christoph Legat, Jens Folmer, and Birgit Vogel-Heuser. “Evolution in in-

dustrial plant automation: A case study”. In: IECON Proceedings (Industrial
Electronics Conference). 2013, pp. 4386–4391. isbn: 9781479902248. doi: 10.11

09/IECON.2013.6699841.

[LGJ07] Yuehua Lin, Je� Gray, and Frédéric Jouault. “DSMDi�: a di�erentiation tool

for domain-speci�c models”. In: European Journal of Information Systems 16.4

(2007), pp. 349–361.

[Liu+11] Xumin Liu, Athman Bouguettaya, Qi Yu, and Zaki Malik. “E�cient change

management in long-term composed services”. In: Service Oriented Computing
and Applications 5.2 (2011), pp. 87–103.

[LLE17] Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander Egyed. “Vari-

ability extraction and modeling for product variants”. In: Software and System
Modeling 16.4 (2017), pp. 1179–1199.

[Llo94] JW Lloyd. “Practical advantages of declarative programming”. English. In:

Conference Proceedings/Title of Journal: Joint Conference on Declarative

Programming. 1994, pp. 3–17.

[LMT08] Mario Lezoche, Michele Missiko�, and Leonardo Tininini. “Business Process

Evolution: a Rule-based Approach”. In: the 9th Workshop on Business Process
Modeling, Development, and Support (BPMDS’08). 2008.

[LOA00] M. Lee, A. J. O�utt, and R. T. Alexander. “Algorithmic analysis of the impacts

of changes to object-oriented software”. In: Proc. 34th Intern. Conf. on TOOLS.

2000, pp. 61–70.

[Löp18] Martin Löper. “Eine Sprache für die Spezi�kation disziplinübergreifender

Änderungsausbreitungsregeln”. Bachelorarbeit. Karlsruhe Institute of Tech-

nology, 2018.

[LR11] Kevin Lano and Shekoufeh Kolahdouz Rahimi. “Slicing Techniques for UML

Models”. In: Journal of Object Technology 10 (2011), 11: 1–49. doi: 10.5381/j

ot.2011.10.1.a11.

[LS17] Arndt Lüder and Nicole Schmidt. “AutomationML in a Nutshell”. In: Hand-
buch Industrie 4.0 Bd.2: Automatisierung. Ed. by Birgit Vogel-Heuser, Thomas

Bauernhansl, and Michael ten Hompel. Springer Berlin Heidelberg, 2017,

pp. 213–258. isbn: 978-3-662-53248-5.

[LSB02] Kecheng Liu, Lily Sun, and Keith H. Bennett. “Co-Design of Business and IT

Systems - Introduction by Guest Editors”. In: Information Systems Frontiers
4.3 (2002), pp. 251–256. doi: 10.1023/A:1019942501848.

264

https://doi.org/10.1109/CSMR.2013.30
https://doi.org/10.1109/IECON.2013.6699841
https://doi.org/10.1109/IECON.2013.6699841
https://doi.org/10.5381/jot.2011.10.1.a11
https://doi.org/10.5381/jot.2011.10.1.a11
https://doi.org/10.1023/A:1019942501848

Bibliography

[Mai18] Timo Maier. “Automatic Derivation of Change Propagation Based on Require-

ment Changes in Automated Production Systems”. Bachelorarbeit. Karlsruhe

Institute of Technology, 2018.

[Mar+10] Marga Marcos, Elisabet Estévez, Nagore Iriondo, and Dario Orive. “Analysis

and validation of IEC 61131-3 applications using a MDE approach”. In: ETFA.

IEEE, 2010, pp. 1–8.

[MB76] Robert M Metcalfe and David R Boggs. “Ethernet: Distributed packet switch-

ing for local computer networks”. In: Communications of the ACM 19.7 (1976),

pp. 395–404.

[MBR18] Timo Maier, Kiana Busch, and Ralf Reussner. “An Approach to Require-

ment Analysis in Automated Production Systems”. In: Workshop Software-
Reengineering & Evolution and Workshop Design For Future. Softwaretechnik-

Trends, 2018.

[MG10] Sharon McGee and Des Greer. “Sources of Software Requirements Change

from the Perspectives of Development and Maintenance”. In: International
Journal on Advances in Software. Vol. 3. 1 & 2. 2010.

[MGK96] John Mooney, Vijay Gurbaxani, and Kenneth Kraemer. “A Process Oriented

Framework for Assessing the Business Value of Information Technology”. In:

SIGMIS Database 27.2 (1996), pp. 68–81. issn: 0095-0033.

[MHS05] Marjan Mernik, Jan Heering, and Anthony Sloane. “When and How to

Develop Domain-speci�c Languages”. In: ACM Comput. Surv. 37.4 (2005),

pp. 316–344. doi: 10.1145/1118890.1118892.

[Moo65] Gordon Moore. Cramming More Components Onto Integrated Circuits, Elec-
tronics,(38) 8. 1965.

[MR15] Klaus Müller and Bernhard Rumpe. “A Methodology for Impact Analysis

Based on Model Di�erencing”. In: Softwaretechnik-Trends 35.2 (2015).

[MT10] Nenad Medvidovic and Richard Taylor. “Software Architecture: Foundations,

Theory, and Practice”. In: Proceedings - International Conference on Software
Engineering. 2010, pp. 471–472. isbn: 978-1-60558-719-6. doi: 10.1145/18102

95.1810435.

[MW13] Simha Magal and Je�rey Word. Business Process Integration with SAP ERP. 1st.

Epistemy Press LLC, 2013. isbn: 0985600861, 9780985600860.

[NCG08] Selmin Nurcan, Bruno Claudepierre, and Islem Gmati. “Conceptual Depen-

dencies between two connected IT domains: Business/IS alignment and IT

governance”. In: Research Challenges in Information Science, 2008. RCIS 2008.
Second International Conference on. IEEE. 2008, pp. 87–98.

[Nwo+18] Joshua Nwokeji, Faisal Aqlan, Tony Clark, Balbir Barn, and Vinay Kulkarni.

“A Modelling Technique for Enterprise Agility”. In: HICSS. AIS Electronic

Library (AISeL), 2018.

[Obj11] Object Management Group. Business Process Model and Notation (BPMN)
Version 2.0. Tech. rep. Object Management Group, 2011.

265

https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1810295.1810435
https://doi.org/10.1145/1810295.1810435

Bibliography

[OMG06] OMG. Object Constraint Language Speci�cation, version 2.0. Ed. by OMG. OMG

document formal/2006-05-01. Object Modeling Group. 2006.

[OMG12] OMG. OMG Systems Modeling Language (OMG SysML), Version 1.3. Object

Management Group, 2012. url: http://www.omg.org/spec/SysML/1.3/.

[OO84] Karl Ottenstein and Linda Ottenstein. “The Program Dependence Graph in a

Software Development Environment”. In: SIGPLAN Not. 19.5 (1984), pp. 177–

184. issn: 0362-1340. doi: 10.1145/390011.808263.

[OT07] John Oakland and Steve Tanner. “A new framework for managing change”.

In: The TQM Magazine 19.6 (2007), pp. 572–589.

[Pat] Richard Pattis. EBNF: A Notation to Describe Syntax. web site. https://www.i

cs.uci.edu/~pattis/misc/ebnf2.pdf.

[Pau01] Daniel Paulish. Architecture-centric Software Project Management: A Practical
Guide. Addison-Wesley Educational Publishers Inc, 2001. isbn: 0201734095.

[Pet18] Maximilian Peters. “Evaluation und Optimierung der Wartbarkeit von

Software-Architekturen”. Bachelorarbeit. Karlsruhe Institute of Technology,

2018.

[Pie+15] Christopher Pietsch, Timo Kehrer, Udo Kelter, Dennis Reuling, and Manuel

Ohrndorf. “SiPL - A Delta-Based Modeling Framework for Software Product

Line Engineering”. In: 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015. 2015,

pp. 852–857. doi: 10.1109/ASE.2015.106.

[Poh95] Klaus Pohl. “A process centered requirements engineering environment”.

PhD thesis. RWTH Aachen University, Germany, 1995.

[Pow08] David Powers. “Evaluation: From Precision, Recall and F-Factor to ROC,

Informedness, Markedness & Correlation”. In: Machine Learning Technologies
2 (2008).

[Prä+16] Herbert Prähofer, Daniela Rabiser, Florian Angerer, Paul Grünbacher, and

Peter Feichtinger. “Feature-Oriented Development in Industrial Automation

Software Ecosystems: Development Scenarios and Tool Support”. In: Proceed-
ings 14th IEEE International Conference on Industrial Informatics (INDIN 2016).
2016, pp. 1218–1223. doi: 10.1109/INDIN.2016.7819353.

[Rat13] Christoph Rathfelder. “Modelling Event-Based Interactions in Component-

Based Architectures for Quantitative System Evaluation”. PhD thesis. KIT,

2013. 358 pp. isbn: 978-3-86644-969-5. doi: 10.5445/KSP/1000032232.

[Rät17] Jannis Rätz. “Erweiterung eines Wartbarkeits-Frameworks für die Program-

miersprache IEC 61131-3”. Bachelorarbeit. Karlsruhe Institute of Technology,

2017.

[Rät18] Jannis Rätz. Change Propagation Analysis in PLC-based Automated Production
Systems. Practical Course: Software Quality Engineering with Eclipse. 2018.

266

http://www.omg.org/spec/SysML/1.3/
https://doi.org/10.1145/390011.808263
https://www.ics.uci.edu/~pattis/misc/ebnf2.pdf
https://www.ics.uci.edu/~pattis/misc/ebnf2.pdf
https://doi.org/10.1109/ASE.2015.106
https://doi.org/10.1109/INDIN.2016.7819353
https://doi.org/10.5445/KSP/1000032232

Bibliography

[RD98] Manfred Reichert and Peter Dadam. “Adept�ex—Supporting Dynamic

Changes of Work�ows Without Losing Control”. In: Journal of Intelligent
Information Systems 10.2 (1998), pp. 93–129. doi: 10.1023/A:1008604709862.

[Rei+05] Manfred Reichert, Stefanie Rinderle, Ulrich Kreher, and Peter Dadam. “Adap-

tive Process Management with ADEPT2”. In: 21st Intern. Conference on Data
Engineering. IEEE, 2005, pp. 1113–1114.

[Rep82] Thomas Reps. “Optimal-time Incremental Semantic Analysis for Syntax-

directed Editors”. In: Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’82. ACM, 1982, pp. 169–176.

isbn: 0-89791-065-6. doi: 10.1145/582153.582172.

[Res07] Respect-IT. A KAOS Tutorial. 2007.

[Reu16] Reussner, Ralf and Becker, Ste�en and Happe, Jens and Heinrich, Robert and

Koziolek, Anne and Koziolek, Heiko and Kramer, Max and Krogmann, Klaus,

ed. Modeling and Simulating Software Architectures – The Palladio Approach.

ISBN: 978-0-262-03476-0. MIT Press, 2016.

[RJ01] Balasubramaniam Ramesh and Matthias Jarke. “Toward Reference Models

for Requirements Traceability”. In: IEEE Transaction on Software Engineering
27.1 (2001), pp. 58–93. issn: 0098-5589. doi: 10.1109/32.895989. url: https:

//doi.org/10.1109/32.895989.

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Uni�ed Modeling Lan-
guage Reference Manual, The (2Nd Edition). Pearson Higher Education, 2004.

isbn: 0321245628.

[Ros+15a] Kiana Rostami, Johannes Stammel, Robert Heinrich, and Ralf Reussner.

“Architecture-based Assessment and Planning of Change Requests”. In: Pro-
ceedings of the 11th International ACM SIGSOFT Conference on Quality of
Software Architectures. ACM, 2015, pp. 21–30.

[Ros+15b] Kiana Rostami, Johannes Stammel, Robert Heinrich, and Ralf Reussner.

“Architecture-based Assessment and Planning of Change Requests”. In: Pro-
ceedings of the 11th International ACM SIGSOFT Conference on Quality of
Software Architectures. QoSA ’15. ACM, 2015, pp. 21–30. doi: 10.1145/27371

82.2737198.

[Ros+17a] Kiana Rostami, Robert Heinrich, Axel Busch, and Ralf H. Reussner.

“Architecture-based Change Impact Analysis in Information Systems and

Business Processes”. In: 2017 IEEE International Conference on Software Archi-
tecture (ICSA). IEEE, 2017, pp. 179–188. doi: 10.1109/ICSA.2017.17.

[Ros+17b] Kiana Rostami, Johannes Stammel, Robert Heinrich, and Ralf Reussner.

“Change Impact Analysis by Architecture-based Assessment and Planning”.

In: Software Engineering 2017, Fachtagung des GI-Fachbereichs Softwaretechnik,
21.-24. Februar 2017, Hannover, Deutschland. 2017, pp. 69–70.

267

https://doi.org/10.1023/A:1008604709862
https://doi.org/10.1145/582153.582172
https://doi.org/10.1109/32.895989
https://doi.org/10.1109/32.895989
https://doi.org/10.1109/32.895989
https://doi.org/10.1145/2737182.2737198
https://doi.org/10.1145/2737182.2737198
https://doi.org/10.1109/ICSA.2017.17

Bibliography

[Ros+17c] Kiana Rostami et al. “Reconstructing Development Artifacts for Change

Impact Analysis”. In: 19. Workshop Software-Reengineering und-Evolution.

2017.

[Ros15] Kiana Rostami. “Domain-spanning Maintainability Analysis for Software-

intensive Systems”. In: Gemeinsamer Tagungsband der Workshops der Tagung
Software Engineering 2015, Dresden, Germany, 17.-18. März 2015. 2015, pp. 106–

108.

[RSS06] Gil Regev, Pnina So�er, and Rainer Schmidt. “Taxonomy of Flexibility in

Business Processes”. In: Business Process Modeling, Design and Support 236

(2006).

[RT01] Barbara Ryder and Frank Tip. “Change impact analysis for object-oriented

programs”. In: PASTE. ACM, 2001, pp. 46–53.

[RT87] Thomas W. Reps and Tim Teitelbaum. “Language Processing in Program

Editors”. In: IEEE Computer 20.11 (1987), pp. 29–40. doi: 10.1109/MC.1987.1

663414.

[Run+12] Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. Case Study
Research in Software Engineering: Guidelines and Examples. 1st. Wiley, 2012.

isbn: 1118104358, 9781118104354.

[RWR06a] Stefanie Rinderle-Ma, Andreas Wombacher, and Manfred Reichert. “Evolu-

tion of process choreographies in DYCHOR”. In: On the Move to Meaningful
Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE. Vol. 4275. Springer

Berlin Heidelberg, 2006, pp. 273–290. doi: 10.1007/11914853_17.

[RWR06b] Stefanie Rinderle-Ma, Andreas Wombacher, and Manfred Reichert. “On the

Controlled Evolution of Process Choreographies”. In: Proc. 22nd Int’l Conf.
on Data Engineering (ICDE’06). 2006, p. 124.

[SK16] Misha Strittmatter and Amine Kechaou. The Media Store 3 Case Study System.

Tech. rep. 2016,1. Faculty of Informatics, Karlsruhe Institute of Technology,

2016.

[SKL12] Navid Karimi Sani, Shokoofeh Ketabchi, and Kecheng Liu. “The Co-design of

Business and IT Systems: A Case in Supply Chain Management”. In: Infor-
mation Systems, Technology and Management - 6th International Conference,
ICISTM 2012, Grenoble, France, March 28-30, 2012. Proceedings. 2012, pp. 13–27.

doi: 10.1007/978-3-642-29166-1_2.

[SL00] Lawson Savery and J Alan Luks. “Organizational change: the Australian

experience”. In: Journal of Management Development 19.4 (2000), pp. 309–317.

[SMO00] Sadiq Sadiq, Olivera Marjanovic, and Maria Orlowska. “Managing Change

and Time in Dynamic Work�ow Processes”. In: International Journal of Com-
putational Intelligence Systems (2000), pp. 93–116.

268

https://doi.org/10.1109/MC.1987.1663414
https://doi.org/10.1109/MC.1987.1663414
https://doi.org/10.1007/11914853_17
https://doi.org/10.1007/978-3-642-29166-1_2

Bibliography

[SNH95] Dilip Soni, Robert Nord, and Christine Hofmeister. “Software Architecture in

Industrial Applications”. In: Proceedings of the 17th International Conference on
Software Engineering. ICSE ’95. ACM, 1995, pp. 196–207. isbn: 0-89791-708-1.

doi: 10.1145/225014.225033.

[SO99] Shazia Sadiq and Maria Orlowska. “Architectural Considerations in Systems

Supporting Dynamic Work�ow Modi�cation”. In: SABPM’99. 1999.

[Som06] Ian Sommerville. Software Engineering: (Update) (8th Edition) (International
Computer Science). Boston, MA, USA: Addison-Wesley Longman Publishing

Co., Inc., 2006. isbn: 0321313798.

[Sot07] Martín Soto. “Delta-P: Model Comparison Using Semantic Web Standards”.

In: Softwaretechnik-Trends 27.2 (2007).

[SR09] Johannes Stammel and Ralf Reussner. “KAMP: Karlsruhe Architectural Main-

tainability Prediction”. In: Proc. of 1st. L2S2 Workshop. 2009, pp. 87–98.

[Sta15] Johannes Stammel. “Architekturbasierte Bewertung und Planung von Än-

derungsanfragen”. PhD thesis. KIT, 2015.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Springer Verlag, 1973.

[Ste+09] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:
Eclipse Modeling Framework 2.0. 2nd. Addison-Wesley Professional, 2009.

[Sun+13] Sagar Sunkle et al. “Analyzing Enterprise Models Using Enterprise

Architecture-Based Ontology”. In: Model-Driven Engineering Languages and
Systems: 16th Intern. Conference. Springer, 2013, pp. 622–638.

[SV06] Thomas Stahl and Markus Völter. Model-Driven Software Development: Tech-
nology, Engineering, Management. Wiley, 2006. isbn: 978-0-470-02570-3.

[Swa76] E. Burton Swanson. “The Dimensions of Maintenance”. In: Proceedings of
the 2Nd International Conference on Software Engineering. ICSE ’76. IEEE

Computer Society Press, 1976, pp. 492–497.

[SZ11] Andreas Scharf and Albert Zündorf. “Di�erence Visualization for Models

(DVM) - Visualizing model changes directly within diagrams”. In: 2011.

[THF08] Uttam Kumar Tripathi, Knut Hinkelmann, and Daniela Feldkamp. “Life cycle

for change management in business processes using semantic technologies”.

In: JCP 3.1 (2008), pp. 24–31.

[Thr04] Kleanthis Thramboulidis. “Using UML in control and automation: a model

driven approach”. In: 2nd IEEE International Conference on Industrial Infor-
matics, 2004. INDIN ’04. 2004 (2004), pp. 587–593.

[Thr05] Kleanthis Thramboulidis. “Model-integrated mechatronics - toward a new

paradigm in the development of manufacturing systems”. In: IEEE Transac-
tions on Industrial Informatics 1 (2005), pp. 54–61.

[Thr10] Kleanthis Thramboulidis. “The 3 + 1 SysML View-Model in Model Integrated

Mechatronics”. In: Journal of Software Engineering and Applications 3.2 (2010),

pp. 109–118. doi: 10.4236/jsea.2010.32014.

269

https://doi.org/10.1145/225014.225033
https://doi.org/10.4236/jsea.2010.32014

Bibliography

[Tip95] Frank Tip. “A Survey of Program Slicing Techniques”. In: Journal of Program-
ming Languages 3 (1995), pp. 121–189.

[TMD09] Richard Taylor, Nenand Medvidovic, and Erik Dashofy. Software Architecture:
Foundations, Theory, and Practice. Wiley Publishing, 2009. isbn: 0470167742,

9780470167748.

[Van+07] Irene Vanderfeesten, Jorge Cardoso, Jan Mendling, Hajo Reijers, and Wil

van der Aalst. “Quality Metrics for Business Process Models”. In: BPM and
Work�ow Handbook 2007. 2007.

[Vog+14a] Birgit Vogel-Heuser, Christoph Legat, Jens Folmer, and Stefan Feldmann.

Researching Evolution in Industrial Plant Automation: Scenarios and Docu-
mentation of the Pick and Place Unit. Tech. rep. Institute of Automation and

Information Systems, Technische Universität München, 2014.

[Vog+14b] Andreas Vogelsang, Sebastian Eder, Georg Hackenberg, Maximilian Junker,

and Sabine Teu�. “Supporting concurrent development of requirements and

architecture: A model-based approach”. In: 2014 2nd International Conference
on Model-Driven Engineering and Software Development (MODELSWARD).
2014, pp. 587–595.

[Vog+15] Birgit Vogel-Heuser, Alexander Fay, Ina Schaefer, and Matthias Tichy. “Evo-

lution of software in automated production systems: Challenges and research

directions”. In: Journal of Systems and Software 110 (2015), pp. 54–84.

[Vog+17] Birgit Vogel-Heuser et al. “Maintenance e�ort estimation with KAMP4aPS for

cross-disciplinary automated PLC-based Production Systems - a collaborative

approach”. In: IFAC-PapersOnLine 50.1 (2017). 20th IFAC World Congress,

pp. 4360–4367. issn: 2405-8963. doi: https://doi.org/10.1016/j.ifacol.2

017.08.877.

[Vog14] Birgit Vogel-Heuser. “Usability Experiments to Evaluate UML/SysML-Based

Model Driven Software Engineering Notations for Logic Control in Manu-

facturing Automation”. In: Journal of Software Engineering and Applications
7.11 (2014), pp. 943–973.

[Vog18] Thomas Vogel. “mRUBiS: An Exemplar for Model-Based Architectural Self-

Healing and Self-Optimization (Artifact)”. In: Dagstuhl Artifacts Series 4.1

(2018), 1:1–1:4.

[VVL03] Eileen Van Aken, Dirk Van Goubergen, and Geert Letens. “Integrated enter-

prise transformation: case application in engineering project work in the

Belgian Armed Forces”. In: Engineering Management Journal 15.2 (2003),

pp. 3–16.

[Vya13] V. Vyatkin. “Software Engineering in Industrial Automation: State-of-the-Art

Review”. In: IEEE Transactions on Industrial Informatics 9.3 (2013), pp. 1234–

1249. doi: 10.1109/TII.2013.2258165.

270

https://doi.org/https://doi.org/10.1016/j.ifacol.2017.08.877
https://doi.org/https://doi.org/10.1016/j.ifacol.2017.08.877
https://doi.org/10.1109/TII.2013.2258165

Bibliography

[WB98] D. Wright and N. Burns. “New organisation structures for global business:

an empirical study”. In: International Journal of Operations & Production
Management 18.9/10 (1998), pp. 896–923.

[Wei+11] Monika Weidmann et al. “Business process change management based on

process model synchronization of multiple abstraction levels”. In: 2011 IEEE
International Conference on Service-Oriented Computing and Applications,
SOCA 2011. 2011, pp. 1–4.

[Wei81] Mark Weiser. “Program Slicing”. In: Proceedings of the 5th International Con-
ference on Software Engineering. ICSE ’81. IEEE Press, 1981, pp. 439–449. isbn:

0-89791-146-6.

[Wer09] Benedikt Werner. “Object-oriented extensions for iec 61131-3”. In: IEEE In-
dustrial Electronics Magazine 3.4 (2009), pp. 36–39.

[WGK00] Brian Warboys, R. Mark Greenwood, and Peter Kawalek. “Systems Engineer-

ing for Business Process Change”. In: Springer, 2000. Chap. Modelling the

Co-Evolution of Business Processes and IT Systems, pp. 10–23.

[Wit13] Daniel Witsch. “Modellgetriebene Entwicklung von Steuerungssoftware auf

Basis der UML unter Berücksichtigung der domänenspezi�schen Anforderun-

gen des Maschinen- und Anlagenbaus”. PhD thesis. Technische Universität

München, Lehrstuhl für Automatisierung und Informationssysteme, 2013.

[WKH07] Katharina Wolter, Thorsten Krebs, and Lothar Hotz. “Ontology-based Model

Comparison”. In: Softwaretechnik-Trends 27.2 (2007).

[Woh+00] Claes Wohlin et al. Experimentation in Software Engineering: An Introduction.

Kluwer Academic Publishers, 2000.

[Woh14] Claes Wohlin. “Guidelines for snowballing in systematic literature studies

and a replication in software engineering”. In: 18th EASE. ACM. 2014, p. 38.

[Wor99] Work�ow Management Coalition Speci�cation. Work�ow Management Coali-
tion - Terminology & Glossary (WFMC-TC-1011). Feb. 1999.

[WRR08] Barbara Weber, Manfred Reichert, and Stefanie Rinderle-Ma. “Change Pat-

terns and Change Support Features - Enhancing Flexibility in Process-aware

Information Systems”. In: Data & Knowledge Engineering 66.3 (2008), pp. 438–

466. issn: 0169-023X.

[WWM09] Matthias Weidlich, Mathias Weske, and Jan Mendling. “Change Propagation

in Process Models Using Behavioural Pro�les”. In: IEEE SCC. IEEE Computer

Society, 2009, pp. 33–40.

[Yin08] Robert Yin. Case Study Research: Design and Methods (Applied Social Research
Methods). Fourth Edition. Sage Publications, 2008. isbn: 1412960991.

[Yoo+08] Sanghyun Yoo et al. “Rule-based Dynamic Business Process Modi�cation

and Adaptation”. In: 2008 International Conference on Information Networking,
ICOIN 2008, Busan, Korea, January 23-25, 2008. IEEE, 2008, pp. 1–5. isbn:

978-89-960761-1-7.

271

Bibliography

[Zha+14] He Zhang et al. “Investigating dependencies in software requirements for

change propagation analysis”. In: Information and Software Technology 56.1

(2014), pp. 40–53. issn: 0950-5849. doi: https://doi.org/10.1016/j.infsof

.2013.07.001.

272

https://doi.org/https://doi.org/10.1016/j.infsof.2013.07.001
https://doi.org/https://doi.org/10.1016/j.infsof.2013.07.001

Acronyms

ADL Architecture Description Language . 16

AIS Actual Impact Set . 1

AISeL Association for Information System research electronic Library . . . 154

ALMA Architecture-level Modi�ability Analysis . 29

AML Automation Markup Language . 22

API Application Programming Interface . 14

aPS automated Production Systems . 2

ArchiMate Architecture-Animate . 33

AST Abstract Syntax Tree . 37

ATAM Architecture Tradeo� Analysis Method . 28

BASE Bielefeld Academic Search Engine . 154

BP Business Processes . 2

BPC Business Process Change . 160

BPF Business Process Flexibility . 152

BPM Business Process Modeling . 160

BPMN Business Process Model and Notation . 17

BPR Business Process Reengineering . 162

CAEX Computer Aided Engineering eXchange . 36

CAPTCHA Completely Automated Public Turing test to tell Computers and

Humans Apart . 202

CBSE Component-based Software Engineering . 42

CIS Candidate Impact Set . 1

CM Change Management . 160

CMS Change Management System . 163

Co-BITS Co-Design of Business and IT Systems . 33

CoCoME Common Component Modelling Example . 181

COLLADA COLLAborative Design Activity . 36

CPRL Change Propagation Rule Language . 140

DSL Domain Speci�c Language . 13

273

Bibliography

DYCHOR DYnamic CHOReographies . 32

EA Enterprise Architecture . 33

EBNF Extended Backus-Naur Form . 15

EBSE Evidence-Based Software Engineering . 172

ECAD Electronic Computer-Aided Design . 37

EMAS Eco-Management and Audit Scheme . 170

EMF Eclipse Modeling Framework . 15

GoalBPM Goal Business Process Management . 38

GPL General-purpose Programming Language . 10

GQM Goal Question Metric . 177

GS Google Scholar . 154

HMI Human Machine Interface . 40

IDE Integrated Development Environment . 15

IEC International Electrotechnical Commission . 241

IS Information Systems . 2

IT Information Technology . 170

IT/BA IT/Business Alignment . 163

Java EE Java Platform, Enterprise Edition . 45

KAMP Karlsruhe Architectural Maintainability Prediction 25

KAMP4aPS Karlsruhe Architectural Maintainability Prediction for automated

Production Systems . 96

KAMP4BP Karlsruhe Architectural Maintainability Prediction for Business

Processes . 70

KAMP4IEC Karlsruhe Architectural Maintainability Prediction for International

Electrotechnical Commission . 96

KAMP4IS Karlsruhe Architectural Maintainability Prediction for Information

Systems . 70

LCS Longest Common Subsequence . 35

MDSD Model-Driven Software Development . 13

MIM Model Integrated Mechatronics . 42

mRUBiS modular Rice University Bidding System . 183

OC Organizational Change . 161

OCL Object Constraint Language . 16

OOP Object-Oriented Programming . 225

PCM Palladio Component Model . 13

274

Bibliography

PDG Program Dependence Graph . 27

PLC Programmable Logic Controllers . 21

POU Program Organization Units . 21

PPU Pick and Place Unit . 47

RDF Resource Description Framework . 35

RFID Radio-Frequency IDenti�cation . 191

RUBiS Rice University Bidding System. 183

SAAM Software Architecture Analysis Method . 28

SEFF Service EFFect speci�cation . 25

SIS Starting Impact Set . 1

SOC Service-Oriented Computing . 163

SoMoX Source Code Model eXtractor . 25

SoMoX4KAMP Source Code Model eXtractor for Karlsruhe Architectural

Maintainability Prediction . 25

SysML Systems Modeling Language . 39

TDD Test-Driven Development . 121

TUM Technische Universität München . 22

UML-PA UML for Process Automation . 42

UML Uni�ed Modeling Language . 3

VQL VIATRA Query Language . 41

WfMS Work�ow Management Systems . 162

WOS Web Of Science . 154

XMI XML Metadata Interchange . 35

XML eXtensible Markup Language . 31

xPPU Extended Pick and Place Unit . 22

XSD XML Schema De�nition . 36

275

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Research Problems
	Research Idea
	Research Goal and Questions
	Context of Thesis
	Contributions
	Outline

	Foundations
	Model-Driven Software Development
	Modeling Languages
	Eclipse Modeling Framework

	Change Impact Analysis
	Palladio Component Model
	Metamodel of Business Processes
	Requirements Engineering
	Metamodel of Requirements
	Metamodel of Options
	Metamodel of Design Decisions

	The IEC 61131-3 Standard
	Metamodel of Mechanical and Electrical/Electronic Parts of Automated Production Systems
	Abstract Metamodel of Automated Production Systems
	Specific Metamodel of Automated Production Systems

	Karlsruhe Architectural Maintainability Prediction

	State of the Art
	Change Propagation in Information Systems
	Change Propagation in Business Processes
	Dynamic Change Propagation in Business Processes
	Change Propagation in Collaborative Processes

	Change Propagation between Information Systems and Business Processes
	Model-based Change Propagation Analysis in Automated Production Systems
	Change Propagation based on UML Models
	Change Propagation based on Domain-specific Models

	Change Propagation Analysis based on Requirements Modification
	Change Propagation Analysis in Information Systems and Business Processes based on Requirements Modification
	Change Propagation Analysis in Automated Production Systems based on Requirements Modification
	Discussion on Approaches to Change Propagation Analysis based on Requirements Modification

	Domain-specific Languages for Specifying the Change Propagation Rules
	Metamodel of Control Software in Automated Production Systems
	Discussion

	Running Examples
	Media Store Example
	Model of Software Architecture
	Model of Business Process

	Minimal Plant Example
	Model of Mechanical and Electrical/Electronic Parts
	Model of Software

	Maintainability Analysis Methodology
	Generic Methodology for Domain-Spanning Change Propagation Analysis
	Domain-independent Elements
	Domain-independent Metamodel of Modification
	Task List Algorithms
	Task List Reduction

	Domain-specific Elements
	Change Propagation Analysis for Elements of Domain Metamodel
	Change Propagation Analysis for Elements of Context Metamodel
	Algorithm of Difference Calculation

	Process of Instantiating the Maintainability Analysis Methodology
	Conclusions

	Change Propagation Analysis in Business Processes
	Change Propagation Analysis for Co-evolution of Information Systems and Business Processes
	Change Propagation Analysis for Elements of Domain Metamodel
	Metamodel of Domain
	Domain-specific Metamodel of Modification
	Algorithm of Change Propagation Analysis

	Change Propagation Analysis for Elements of Context Metamodel
	Metamodel of Context Elements
	Metamodel of Task Type
	Algorithm of Context Task List

	Algorithm of Difference Calculation
	Conclusions

	Change Propagation Analysis in Automated Production Systems
	Change Propagation Analysis for Co-evolution of Mechanical, Electrical/Electronic, and Software Elements
	Change Propagation Analysis in Mechanical and Electrical/Electronic Elements
	Change Propagation Analysis for Elements of Domain Metamodel
	Change Propagation Analysis for Elements of Context Metamodel
	Algorithm of Difference Calculation

	Change Propagation Analysis in Control Software
	Change Propagation Analysis for Elements of Domain Metamodel
	Change Propagation Analysis for Elements of Context Metamodel
	Algorithm of Difference Calculation

	Conclusions

	Change Propagation Analysis from Requirements to a Specific Domain
	Change Propagation Analysis for Requirements
	Change Propagation Analysis for Elements of Domain Metamodel
	Metamodel of Domain
	Domain-specific Metamodel of Modification
	Algorithms of Change Propagation Analysis

	Change Propagation Analysis for Elements of Context Metamodel
	Algorithm of Difference Calculation
	Conclusions

	A Language for Change Propagation Rules
	Problem Statement
	Event Example – Forward Reference
	Actor Example – Backward Reference
	Discussion

	Requirements for Change Propagation Rule Language
	Language Design
	Rule File
	Rule

	Assumptions and Limitations
	Conclusions

	Categories of Change Triggers in Business Processes
	Terminology
	Research Method
	Pilot Study
	Review Protocol

	Findings
	Publications on Categories of Change Triggers in Business Processes
	Empirical Studies to Change Triggers in Business Processes

	Categorization of Change Triggers in Business Processes
	W-Questions
	Category of Change Triggers in Business Processes
	Benefits of an Explicit Category of Change Triggers
	Design Decisions and Assumptions

	Threats to Validity
	Conclusions

	Evaluation
	Maintainability Analysis Methodology
	Evaluation Goals, Questions, and Metrics
	Evaluation Results
	Assumptions and Limitations

	Change Propagation Analysis in Business Processes
	CoCoME Case Study
	mRUBiS Exemplar
	Evaluation Goals, Questions, and Metrics
	Change Scenarios and Evaluation Results for CoCoME
	Change Scenarios and Evaluation Results for mRUBiS
	Summary of Evaluation Results
	Assumptions and Limitations

	Change Propagation Analysis in Automated Production Systems
	xPPU Case Study
	Change Propagation Analysis in Mechanical and Electrical/Electronic Elements
	Change Propagation Analysis in Control Software
	Assumptions and Limitations

	Discussion of Evaluation Results and Influencing Factors
	Discussion of Evaluation Results
	Influencing Factors on Results of Change Propagation Approaches
	Threats to Validity

	Conclusion
	Summary
	Outlook

	Appendix
	Relations between IEC Model Elements
	Supplementary Material for the Literature Review

	Bibliography

