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ABSTRACT
Surface structuring in form of streamwise elongated triangu-

lar ridges is investigated in a framework of a fully developed
turbulent channel flow at Reb = 18000. The ridges generate
a strong large-scale secondary motion and hence alter momen-
tum and heat transfer in the channel. A comparison of the ob-
tained skin friction and heat transfer coefficients reveals a 30%
enhancement for both quantities relatively to the smooth chan-
nel. Tripe decomposition analysis of the total stress and heat
flux results in an observation of different mechanisms behind
this enhancements: while the skin friction coefficient is mainly
increased by the secondary-motion-related contribution, the heat
flux is similarly enhanced by the secondary motion and modifi-
cation of turbulent properties of the flow.

INTRODUCTION
Prandtl’s secondary flows of the second kind are known to

be generated in turbulent boundary layer flows with spanwise
heterogeneity of the wall surface [1, 2, 3]. The motions are
large-scale vortical structures (order of the boundary layer thick-
ness) appearing in the plane normal to the primary flow direc-
tion. They extend to the outer flow layer and can significantly
modify the mean velocity profile of the primary flow as well as
the turbulence properties throughout the boundary layer. This
type of motions has been observed in experiments and simu-
lations of turbulent wall-bounded flows over superhydrophobic
surfaces (SHS) with streamwise-elongated slip stripes [4, 5], tur-
bulent flows over spanwise inhomogeneous rough surfaces [6]
and in turbulent duct flows [7]. It is expected that the introduced
modification of the flow field inherently translates into an alter-
ation of the momentum and heat transfer throughout the channel.
The present contribution considers a detailed analysis of the sec-
ondary motions above a surface with streamwise elongated tri-
angular sharp ribs at spanwise separation of approximately one
channel height. In the study we elucidate the effect of secondary
motion formation on the statistical quantities of the velocity and
thermal fields. Furthermore, we clarify the induced alteration of
the skin friction and heat transfer coefficient by the presence of
secondary motion.

Nomenclature

cp [J/(kg K)] specific heat capacity
C f [-] skin friction coefficient
F [kg m / s2] force
h [m] ridge height
heff [m] melt-down element height
k(z) [m] surface distribution function
L [m] length
N [-] matrix dimensions
Nu [-] Nusselt number
Reb [-] Reynolds number
ReDh [-] Reynolds number based on hydraulic diameter
Reτ [-] friction Reynolds number
Pr [-] Prandtl number
Px [Pa/m] mean streamwise pressure gradient
q [W/m2] heat flux
St [-] Stanton number
∆Tw [K] temperature difference
u [m/s] streamwise velocity
v [m/s] wall-normal velocity
w [m/s] spanwise velocity
θ [K] temperature (passive scalar)
uτ [m/s] friction velocity
Ub [m/s] bulk mean velocity
W [m] ridge width
x [m] streamwise coordinate
y [m] wall-normal coordinate
z [m] spanwise coordinate
δ [m] half channel height
θ [-] dimensionless temperature
λ [W/mK] thermal conductivity
ν [m2/s] kinematic viscosity
ρ [kg/m3] density
τ [kg/(m s2)] stress

Subscripts
l lower wall
u upper wall
min minimum
max maximum
ref reference (smooth) case
tot total
w wall

Superscripts
+ inner (viscous) scaling

METHODOLOGY
The analysis is carried out using flow fields produced by a di-

rect numerical simulation (DNS) in a fully developed turbulent
channel flow driven at a constant flow rate (CFR). The code im-
plementation is based on the pseudo-spectral solver with Fourier
expansions in the streamwise (x) and spanwise (z) directions
and Chebyshev polynomials in the wall-normal direction (y) [8].
Due to the CFR approach the bulk Reynolds number is fixed to
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Figure 1. Simulation domain and ridge geometry.

grid size dimensions resolution

(Nx×Ny×Nz) (Lx×Ly×Lz) ∆x+ ∆y+min ∆y+max ∆z+

768×385×384 8δ×2δ×3.72δ 5.2 0.016 4.0 4.7

Table 1. Domain configuration of reference smooth case.

Reb = 2Ubδ/ν = 18000 for all considered simulations, which
means that any modification of the flow is translated into an al-
teration of the resulting mean streamwise pressure gradient Px
needed to maintain the chosen flow rate. Periodic boundary con-
ditions are applied for velocity field in the streamwise and span-
wise directions, while the wall-normal extension of the domain is
bounded by no-slip boundary conditions at the lower and upper
domain wall (y = 0,2δ). Temperature is treated as passive scalar
with periodic boundary conditions applied for the thermal field
in x- and z-directions, while a constant temperature on lower and
upper wall is applied(Tl and Tu). This results in a fixed heat flux
in the wall-normal direction. The non-dimensionalized tempera-
ture is defined as θ = (Tu−T )/∆Tw with ∆Tw = Tu−Tl , which
translates into the fixed temperature boundary condition at the
lower (θ(y= 0) = 0) and upper wall (θ(y= 2δ) = 1). The Prandtl
number is chosen to be Pr = 0.71, assuming air as the working
fluid. The schematic of the numerical domain is depicted in Fig-
ure 1 with corresponding simulation domain properties summa-
rized in Table 1.

The surface geometry of an elongated triangular ridge is
formed by two converging arcs with r = 0.16δ resulting in a
height distribution k(z) (see Figure 1). It has to be noted that
the introduced structure is homogeneous in the streamwise di-
rection. The ridges are placed on the lower and upper wall with
a surface height of h = 0.16δ and spanwise width of W = 0.32δ.
Elevated structures are place on both channel walls and arranged
symmetrically. The spanwise spacing between the ridges is given
by S = 1.86δ. A rather tall, sharp structure with S≈ 2δ is specif-
ically chosen for the investigation, since this surface geometry
is expected to generate a strong large-scale secondary motion in
the y-z-plane of the turbulent channel flow [2]. The wall structur-
ing is modeled by an immersed boundary method (IBM) through
introduction of external volume force field to the Navier-Stokes

case U+
b Reτ Reb C f Nu St

smooth 18.17 495.2 18000 6.04 ·10−3 79.6 3.11 ·10−3

structured 15.66 574.5 18000 8.09 ·10−3 104.0 4.09 ·10−3

Table 2. Integral flow properties of the considered cases.

equations [9]. Throughout the manuscript the brackets 〈·〉 denote
spatial averaging in spanwise direction and overline ·̄ represents
the temporal and streamwise averaging. Additionally, the total
fluctuation part is denoted with ·′, random turbulent fluctuation
is marked as ·′′ and dispersive fluctuation part is ·̃.

RESULTS
Secondary motion
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Figure 2. Secondary flow characteristics.

The topology of the secondary flow and its magnitude is
shown in Figure 2 (left). The streamwise ridges introduce a
strong vortical secondary motion with a maximum local mag-
nitude of 6.6% of the bulk mean velocity. An upward and
downward motion is observed above the ridge and in the valley,
correspondingly. This corresponds to the presence of counter-
rotating δ-scale vortex-pair. The magnitude of the motion is
rather high compared with the usual value of 2-3% known from
turbulent flows over inhomogeneous rough surfaces, SHS or duct
flows. This effect is linked to the geometry of the introduced
wall elements - the considered elements are significantly taller
(h = 0.16δ) than most of the elements investigated in the liter-
ature (usually h < 0.1) and have a sharp top corner. Figure 2
(right) presents the mean signed swirling strength [10], which
essentially shows the localization and strength of the secondary
vortices in the flow domain. From this plot it is evident that the
large-scale secondary motion is accompanied by small-scale ter-
tiary vortices located at the basis of the introduced ridges. The
magnitude of swirling strength in the present cases is 2-4 times
higher than the values known from literature [2, 3].

Mean flow properties
Table 2 summarizes the integral properties of the considered

flow configurations. Since the flow is symmetric, the mean skin
friction coefficient is:

C f = τw/0.5ρU2
b with τw = (δ−heff)Px, (1)



where heff denotes the the melt down height of the surface struc-
ture and Px is the mean streamwise pressure gradient. For the
smooth and structured case heff = 0 and 0.0056δ, respectively.
The estimated skin friction coefficient is increased by 34% for
the structured surface in comparison to the smooth channel.

Statistical analysis of the thermal field also shows an enhance-
ment of the wall-normal heat flux in the system. The Nusselt
number on lower and upper wall (denoted by subscript l and u)
is computed as

Nul,u =
4(δ−heff)qtot

∆θl,uλ
with ∆θl =

1
δ

∫
δ

0
〈ū〉
〈
θ̄
〉

dy (2)

and ∆θu =
1
δ

∫ 2δ

δ

〈ū〉
(
1−
〈
θ̄
〉)

dy, (3)

with 4(δ−heff) representing the hydraulic diameter. The total
heat flux qtot can be estimated as a sum of the viscous and turbu-
lent contributions in the center of the channel:

qtot = λ
d
〈
θ̄
〉

dy

∣∣∣∣∣
δ

− cpρ v′θ′
∣∣
δ
. (4)

The estimated Nusselt number increases by 30% for structured
surface in comparison to the smooth case. This increase in the
wall-normal heat flux can be partially attributed to the pres-
ence of secondary motion. The Stanton number defined as
St = Nu/(ReDhPr) with Reynolds number based on Ub and the
hydraulic diameter used in the definition of the Nusselt number
(Equation 2) is also increased by 32% for the structured chan-
nel. The Reynolds analogy factor defined as A = 2St/C f changes
slightly (order of 2%) for the smooth and structured case, respec-
tively. This shows that Reynolds analogy factor doesn’t change
for the investigated structured surface with a strong secondary
motion emphasizing similarity in the momentum and heat trans-
port. This similarity is expected, since the surfaces do not intro-
duce any additional pressure drag.

Figure 3 demonstrates mean velocity profile in inner and outer
scaling (upper plot) and three components of velocity fluctua-
tions (lower plot) for smooth (black dashed lines) and structured
channel (solid colored lines). In outer scaling the mean veloc-
ity profile shows a slight suppression not only below the element
hight y < h in the near wall region, but also for the outer layer
y > 0.6δ. Due to CFR condition the reduction is balanced by a
velocity increase in the region in between (h < y < 0.6δ). The
inner scaling, which utilizes the wall shear stress velocity uτ of
the particular case for non-dimensionalization, shows a signif-
icant reduction in 〈ū〉+ and a clear downward shift of the log-
arithmic layer for the structured case. This is linked to an in-
herent enhancement of the effective friction Reynolds number
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Figure 3. Velocity field statistics.

Reτ = uτδ/ν, which originates from an increase in uτ of the struc-
tured case. The corresponding values for non-dimensional bulk
mean velocity U+

b und Reτ are summarized in Table 2 for both
cases. An enhancement of wall-normal and spanwise velocity
fluctuations can be observed throughout the entire domain of the
structured case. Streamwise velocity fluctuations show a slight
reduction in the near-wall peak magnitude followed by a signif-
icant increase for y > h. For all three velocity components a
maximal increase in the fluctuation intensities can be observed
in the middle of the flow domain at y = δ.

The mean temperature profile (upper plot) and temperature
fluctuations (lower plot) are presented in Figure 4. A slight alter-
ation of the mean temperature profile caused by the structuring
is observed throughout the domain .A more significant modifica-
tion is evident for the temperature fluctuations - while the profiles
overlap up to the near-wall peaks, the rest of the curve experi-
ences a notable increase in the bulk of the temperature field.

Triple decomposition of velocity and thermal field
In order to elucidate flow field modification linked to the sec-

ondary motion formation the triple decomposition as proposed
by Reynolds & Hussain [11] is considered for the streamwise
momentum balance and wall-normal heat flux. The triple decom-
position of a random variable ϕ into mean part with dispersive (·̃)
and random (·′′) fluctuations is defined as:

ϕ(x,y,z, t) = 〈ϕ̄i〉(y)+ ϕ̃i(y,z)+ϕ
′′
i (x,y,z, t), (5)
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Figure 4. Temperature field statistics.

the streamwise momentum balance is given by:

τ

τw,ref︸ ︷︷ ︸
total

=
1

Reτ

d〈ū〉+

dy+︸ ︷︷ ︸
viscous

−
〈
u′′v′′

〉+︸ ︷︷ ︸
turbulent

−〈ũṽ〉+︸ ︷︷ ︸
dispersive

+〈F̄x〉+︸ ︷︷ ︸
forcing

, (6)

where τw,ref is the wall shear stress of the smooth channel. It
has to be noted that the forcing contribution represents the vol-
ume force exerted on the fluid due the application of IBM. The
temporal and streamwise averaging is denoted by · and spanwise
averaging is represented by 〈·〉.
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Figure 5. Triple decomposition of the total wall shear stress.

Figure 5 shows the corresponding decomposition of the total
stress τ into its parts. We can observe a distinct peak for the forc-

ing term in the near-wall region and additional peaks in viscous
contribution. The random turbulent part shows a very similar
distribution for both smooth and structured cases. In the case of
structured configuration, however, the total stress is vastly aug-
mented by additional contribution from the dispersive fluctua-
tions. The contribution is present throughout the wall-normal do-
main extension, which highlights the presence of a strong large-
scale secondary flow. The contribution of the dispersive part lo-
cally exceeds 30% of the total stress (h < y < 0.5δ). Interest-
ingly, the distribution of the dispersive part shows small negative
values in the near-wall region for y < 0.1δ. This can be linked
to the presence of small-scale tertiary vortices located at the ba-
sis of the ridge. Similar behaviour of the dispersive component
is observed by Türk et al. [4] in a turbulent flow over superhy-
drophobic stripes indicating a complex topology of the secondary
motion.
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Figure 6. 2D velocity field statistics.

In order to clarify the composition of the total stress con-
tributions we consider a two-dimensional representation of the
contribution terms without spanwise averaging as shown in Fig-
ure 6 for mean velocity, streamwise fluctuations, random turbu-
lent and dispersive components. The footprint of secondary mo-
tion is clearly visible in the mean velocity field resulting in a
strong bulging above the ridge. The bulge corresponds to a low-
momentum path (LMP) caused by the secondary-flow-driven up-
wash. Similar distribution modification is observed for

√
u′′u′′

augmented by an additional high-intensity peak at the top of the
ridge. Furthermore, one can observe a rather homogeneous dis-
tribution of

√
u′′u′′ in the valley between ridges resembling the

well know near-wall peak from a smooth channel flow config-
uration. The random turbulent component u′′v′′ shows a rather



homogeneous distribution in spanwise direction. A slight aug-
mentation of the distribution is evident above the ridge geometry
and along the valley. This spanwise homogeneity coincides with
the previous observation from the Figure 5, where the random
turbulent contribution in the structured channel is only slightly
changed relatively to the smooth channel. At the same time, the
dispersive contribution ũṽ exhibits a rather strong spanwise inho-
mogeneity with a strong peak located above the ridge. This local
peak translates into a global enhancement of the total stress for
the structured case.

Application of the triple decomposition to the wall-normal
balance of the heat flux yields

q
qw,ref︸ ︷︷ ︸
total

=
1
Pr

d
〈
θ̄
〉+

dy+︸ ︷︷ ︸
viscous

−
〈
v′′θ′′

〉+︸ ︷︷ ︸
turbulent

−
〈
ṽθ̃
〉+︸ ︷︷ ︸

dispersive

+
〈
q̄ f
〉+︸ ︷︷ ︸

forcing

, (7)

The decomposition of the total heat flux is presented in Fig-
ure 7. Similar to the velocity field, the viscous contribution is
slightly enhanced due to the introduction of the ridge geome-
try with the forcing contribution becoming present in the near-
wall region. In contrast to the total stress, the random turbu-
lent heat flux significantly changes for the structured channel.
While the near wall region remains almost unaffected, the outer
region 0.5δ < y < 1.5δ of the random turbulent heat flux expe-
riences a pronounced augmentation. The dispersive heat flux
is also prominent throughout the domain showing a fairly sim-
ilar distribution to the dispersive contribution of the total wall
shear stress. However, comparing the heat flux decomposition
to the wall shear stress decomposition, one can state that the
overall increase in the heat flux is not only governed by the dis-
persive contribution, but also partially originates from the en-
hancement of the random turbulent contribution in the outer flow.
Two-dimensional counterpart of the spanwise averaged quanti-
ties, namely mean temperature, temperature fluctuations as well
as random turbulent and dispersive components of the total heat
flux are presented in Figure 8. The mean temperature distribution
exhibits a spanwise inhomogeneity due to the structuring similar
to the mean velocity. A peak of temperature fluctuations is con-
centrated above the ridges and can be linked to the symmetrical
arrangement of the structures. Interestingly, the spanwise inho-
mogeneity is pronounced even stronger for the random turbulent
heat flux showing a vast enhancement on the line connecting two
opposite ridges. The dispersive contribution looks very similar to
the dispersive contribution of the total stress a local peak above
the ridge.

CONCLUSIONS & OUTLOOK
A fully developed turbulent channel flow with symmetric wall

structuring is investigated with respect to alteration of skin fric-
tion and heat transfer at Reb = 18000. It is shown that the intro-
duction of streamwise aligned triangular ridges results in a strong
large-scale secondary motion. At the same time we observe an
enhancement of the heat transfer and skin friction coefficient by
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Figure 7. Triple decomposition of the total heat flux.
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Figure 8. 2D temperature field statistics.

approximately 30%. The triple decomposition shows that the al-
teration of the skin friction coefficient is mainly governed by the
additional dispersive component, which can be directly linked to
the presence of secondary motion. As for the heat transfer coef-
ficient, it is shown that its augmentation is linked not only to an
additional dispersive contribution, but also to an enhancement of
random turbulent contribution in the bulk of the flow. These dif-
ferences originate from the variation of spanwise inhomogeneity
introduced by the ridge geometry on the mean properties and
fluctuations of velocity and thermal fields.

In the future, we plan to vary the relative position of the intro-
duced structures in order to modify secondary motion topology
and investigate the effect of the modification on the skin friction
drag and heat transfer.
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