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INTRODUCTION

Near-wall turbulence manipulation via spanwise wall forc-

ing [1] is a class of effective techniques to reduce skin-frition

drag in turbulent flows. It attracts large interest because of the

challenging understanding of the drag reduction mechanisms,

its conceptual simplicity and promising control performance.

The most beneficial technique in the class is streamwise trav-

eling waves of spanwise wall velocity [2], which theoretically

achieves a sizeable net-power saving and whose drag reduction

capabilities have been confirmed both numerically [3] and ex-

perimentally [4]. Spanwise-wall oscillations are the simplest

method that is based on periodic in-plane motions of a solid

boundary in the spanwise direction. The oscillation gener-

ates a spanwise periodic shear layer that favourably interacts

with near-wall turbulence and yields drag reduction [5, 6]. To

date, most experimental implementations of such techniques

either rely on the mechanical movement of the wall or require

complex mechanical actuation devices [4, 7, 8]. A notable

exception is the work by Ghebali et al. [9], who tried to re-

produce the shear profile introduced by the wall motion via a

particular undulated surface.

Plasma actuators (PAs) promise a comparably simpler de-

sign approach, since a mainly wall-parallel momentum [? 10]

is imparted to the flow without any moving parts.free of mov-

ing parts. Accordingly, PAs have lately established in the field

of aerodynamic flow control [11]. Furthermore, first success-

ful attempts to mimic wall oscillations with PAs have been

shown by Choi et al. [12] by means of a series of tri-electrode

configurations.

Even though promising as a proof of concept, the chosen

arrangement featured a remarkable gap between adjacent ac-

tuators, resulting in individually exerted oscillations instead

of a coherent spanwise fluid movement. Near-wall turbulence

intensity was reduced, however no supporting drag measure-

ments were performed. Thus, the present work aims at devel-

oping a novel PA configuration for turbulent drag reduction,

which reduced the spanwise inhomogeneity. It is hypothesized

that this in turn improves the control authority of the induced

periodic spanwise shear layer and consequently leads to an ad-

vanced flow control concept to mimic spanwise wall forcing.

PLASMA-ACTUATION CONCEPT

In the present stage of the current project a novel plasma-

actuation concept has been developed. Its design reduces the

unavoidable spanwise wavelength of the forcing by adjacently

placing electrodes on both sides of the dielectric, as presented

in figure 1 (a). The AC-DBD plasma actuator is made up of a

polyethylene terephthalate dielectric and 10µm thick silver

electrodes [13]. It requires three high-voltage transformers

to power the electrodes (HV1, HV2, HV3) according to the

timing diagram in figure 1 (b). This new concept reduces the

spanwise wavelength of the forcing by 50 % compared to [12].

Figure 1: (a) Cross-section view of AC-DBD plasma actuator

configuration. High-voltage (HV1, HV2, HV3) and grounded

(GND) electrodes are indicated in corresponding color. (b)

Signal of electrode power control versus time.

FLOW-FIELD ANALYSIS

The velocity fields from high-speed particle image velocime-

try of two distinct opposing phases of one oscillation cycle,

indicate an oscillatory motion in the yz-plane; see figure 2.

Since the experiment was conducted in quiescent air, the im-

pact of external airflow remains yet to be considered [14]. Any

assessment of the flow characteristics with respect to control

of small-scale turbulence has, therefore, to be elaborated with

carefulness.

For the applied oscillation frequency of 50 Hz, the selec-

tion of an air channel flow at Reτ = 250 (channel height

0.025m) [8] is selected, matching the optimal oscillation pe-

riod of T+ = 125 [3]. This allows for a non-dimensionalisation

to viscous units. From the velocity fields, wall-normal profiles

of spanwise velocity w+(y+) and shear ∂w+/∂y+ were ex-

tracted, as shown in figures 3 (a), (b). The profiles reveal both

inherent Stokes-layer and shearing action importantly occur-

ring within the sublayer region (y+ = 5). Figures reffig:three

(c) and (d) still indicate spatio-temporal distribution of the

spanwise velocity. However, a new concept leads to a signif-

icantly reduction of such spanwise variations as compared to

previous experimental efforts [12]. Furthermore, time, veloc-

ity and length scales are found favourable for turbulent flow

control.

Magnitude and influence of the wall-normal flow are not
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Figure 2: PIV mean fields of spanwise velocity magnitude (0 to 3.5, 29 levels from white to black). (a) ϕ = 11
12
π. (b) ϕ = 23

12
π.

Figure 3: (a), (b) Phase-averaged profiles of spanwise velocity w+(y+) and shear ∂w+/∂y+ extracted in the center of the encap-

sulated electrode for eight phase positions. (c), (d) Velocity distribution in the ϕz-plane for y+ = 5, 10 (−3.5 < w+ < 3.5, 29 level

from blue to red).

further evaluated for the quiescent air case, since any external

flow will immediately change this weak impact to the overall

topology. This airflow influence is foreseen to be investigated

in future studies.

CONCLUDING REMARKS

A first estimation of the successfully introduced actua-

tion concept for spanwise plasma oscillation from PIV data

in quiescent conditions, is carried out with respect to turbu-

lence control, and gives promising insights into the induced

flow characteristics, aimed at mimicking a spanwise-oscillating

wall. Near-future campaigns will include another characteri-

sation experiment that involves the effect of external airflow

on the oscillation, in order to rate the control mechanism more

rigorously.
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