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Abstract

Modeling dislocation multiplication due to interaction and reactions on a mesoscopic scale is an
important task for the physically meaningful description of stage II hardening in face-centered
cubic crystalline materials. In recent Discrete Dislocation Dynamics simulations it is observed
that dislocation multiplication is exclusively the result of mechanisms, which involve disloca-
tion reactions between different slip systems. These findings contradict multiplication models in
dislocation based continuum theories, in which density increase is related to plastic slip on the
same slip system. An application of these models for the density evolution on individual slip
systems results in self-replication of dislocation density. We introduce a formulation of dislo-
cation multiplication in a dislocation based continuum formulation of plasticity derived from a
mechanism-based homogenization of cross-slip and glissile reactions in three-dimensional face-
centered cubic systems. As a key feature, the presented model includes the generation of dislo-
cations based on an interplay of dislocation density on different slip systems. This particularly
includes slip systems with vanishing shear stress. The results show, that the proposed dislocation
multiplication formulation allows for a physically meaningful microstructural evolution with-
out self-replication of dislocations density. The results are discussed in comparison to discrete
dislocation dynamics simulations exposing the coupling of different slip systems as the central
characteristic for the increase of dislocation density on active and inactive slip systems.

Keywords:
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interaction

1. Introduction

One of the most salient features of metal-plasticity is the phenomenon of work-hardening.
It is well known that work-hardening is the result of dislocation multiplication during plastic
deformation. However, the complexity of dislocation interactions during work-hardening have
as yet precluded the development of a dislocation-based theory of work hardening in single5

crystals. Recent Discrete Dislocation Dynamics (DDD) simulations reveal details of dislocation

∗Corresponding author: katrin.schulz@kit.edu

Preprint submitted to Elsevier August 7, 2019



multiplication in face-centered cubic (fcc) single crystals which question traditional pictures of
and models for dislocation multiplication and work-hardening in crystal plasticity [1]. The most
important findings of the named study are (i) dislocation multiplication in the sense of emergence
of ”new” dislocation loops, as opposed to mere line-length increase, is exclusively due to cross-
slip and the formation of glissile junctions. (ii) Dislocations only sweep small areas within their5

slip system before getting involved in further reactions. These reactions seldomly lead to storage
of immobilized dislocations but rather spawn dislocations on other slip systems.

The above named findings contrast assumptions of various continuum dislocation models
used in crystal plasticity. In many dislocation-based crystal plasticity models [2, 3, 4, 5, 6]
dislocation multiplication is modeled by a slip-system-wise adoption of the phenomenological10

Kocks-Mecking [7] theory. Because line length increase in these models is related to plastic slip,
dislocation multiplication on any slip system is solely driven by slip on the same slip system.
Densities on other slip systems only affect the density production related to plastic slip on a
given slip system by contributing to what is called the ”mean free path” of the slip system. No
transfer of density between slip systems may be considered. This is in contrast to the above15

named observation (i). Note, moreover, that the Kocks-Mecking type models are rooted in the
idea of dislocation storage after having traveled on average the length of the mean free path,
which was likewise not corroborated in the named DDD simulations, cf. point (ii).

It may not be surprising that phenomenological models, as the one by Kocks and Mecking
and its derivates, which are necessarily ignorant to microscopic details, do not comply with the20

latter. But also recent models which seek for a detailed representation of dislocation kinematics
do not yet reflect the observations of [1]. Arsenlis and Parks [8] introduced a continuum formu-
lation of plasticity, which is based on connected straight edge and screw dislocation segments.
Thereby, the dislocation line length of one type is increased by the motion of the other disloca-
tion type, respectively. Based on [8], enhanced models have been proposed e.g. by [5, 9, 10]25

which, however, do not change the underlying idea of how line length is increased on the given
slip system. Other aspects of dislocation multiplication have occasionally been incorporated in
these edge–screw models. A model for cross-slip was introduced by [9] based on the kinematic
formulation from Arsenlis and Parks [8]. The model is based on the assumption that the fraction
of screw dislocation density on the slip systems is always proportional to the respective proba-30

bilities of cross-slip. However, since the cross-slip process is not explicitly modeled as an actual
transfer of density between respective slip systems, the dislocation density increase is still based
on plastic slip on the same slip system.

In contrast to the above mentioned edge–screw approaches, the Continuum Dislocation Dy-
namics (CDD) theory [11, 12, 13] is based on the kinematics of curved dislocation lines. It35

provides the foundation to formulate crystal plasticity based on moving closed dislocation lines
in three dimensional systems. Besides the dislocation line length, CDD comprises the change
in dislocation line orientation along the dislocation lines, as represented in an average sense by
the so called curvature density. The curvature density contributes to the change in line length
during evolution (expansion or shrinkage) of closed dislocation loops. CDD has been shown to40

reproduce non-trivial details of dislocation density evolution in comparison to simplified DDD
simulations [14]. Extensions by the incorporation of elastic dislocation interaction have been
presented in [15, 16, 17, 18, 13].

However, the curvature density in planar CDD is a conserved quantity; and for systems of
dislocation loops of a common line sense, the integral of the curvature density is proportional to45

the total number of loops on a slip system. CDD therefore conserves the number of dislocation
loops. Multiplication in the sense of the generation of new dislocation loops is therefore not
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yet incorporated in the CDD evolution equations. A few attempts have been made to introduce
new dislocations in the sense of new topologically closed objects to the CDD evolution equations.
Early attempts were usually based on the idea of Frank-Read sources, e.g. [19, 20, 21]. However,
the picture of a fixed source, which repeatedly produces new dislocations contradicts the obser-
vation of dislocation multiplication in a regime, which is characterized by complex dislocation5

networks and multiple active slip systems [1]. Note also, that no detachment of dislocations from
their initial site (either glissile junction or cross-slip position) were observed in the recent DDD
study. Recently, CDD–based formulations accounting for dislocation annihilation via climb and
cross-slip as well as dislocation multiplication have been presented by [22]. However, the pro-
posed multiplication formulations are still based on the picture of Frank-Read sources, which10

has been shown to be inappropriate [1]. Furthermore the multiplication terms of [22] only affect
the curvature density such that no transfer of line length (i.e. dislocation density) occurs by the
reaction mechanisms themselves. A deposition of reaction products on inactive slip systems, as
observed e.g. in [1], may therefore not be reproduced from these terms.

In this paper, we extend a model of dislocation multiplication [23] for use in CDD theory,15

which incorporates key observations from the DDD simulations [1]. The model is based on a
homogenized description of glissile reactions and cross-slip and describes dislocation multipli-
cation as generation of new dislocation density based on the dislocation density on the involved
slip systems. The formulation is analyzed and compared to DDD simulations [1]. It is shown
that the central feature of the model – the homogenized coupling of different slip systems to20

produce new dislocation density and curvature density – enables a physical description of dis-
location multiplication. In contrast to existing models, the interplay of dislocation densities on
different slip systems is represented, which enables the dislocation density increase on inactive
slip systems to contribute to further dislocation interaction mechanisms.

2. Method25

2.1. Dislocation based continuum model
We describe the elasto-plastic deformation behavior of face-centered cubic (fcc) metals,

where plastic distortions solely results from the evolution of the dislocation state, as represented
by the CDD density variables. The formulation is based on the additive decomposition of the
small–strain distortion tensor into an elastic and a plastic part30

Du = βel + βpl. (1)

The plastic distortion tensor βpl is determined by evaluating the sum of plastic shear over all slip
systems ξ

βpl =

N∑
ξ=1

γξdξ⊗mξ . (2)

Herein, the orientations of the slip systems are defined according to the fcc microstructure by
the orthonormal basis {dξ, lξ,mξ} with the slip plane normal mξ and the slip direction dξ = 1

b bξ,
where bξ is the Burgers vector of length b = |bξ | and lξ = mξ × dξ. The plastic shear γξ is the35

result of dislocation motion on the respective slip systems ξ and thus couples dislocation motion
with plastic deformation.

The dislocation microstructure is characterized on each slip system ξ by the total dislocation
density ρξ, the vector of the geometrically necessary dislocation density κξ = (κξscrew, κ

ξ
edge, 0), and
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the curvature density qξ, which describes the local change in angular orientation of an ensemble
of dislocation lines in an averaging volume. The evolution of the averaged dislocation state
is given by the flux-based evolution equations in conservative form for qξ [12], based on the
isotropic dislocation velocity vξ,

∂tρ
ξ = −∇ · (vξκξ⊥) + vξqξ with κξ⊥ = κξ ×mξ

∂tκ
ξ = ∇ × (ρξvξmξ)

∂tqξ = −∇ ·

(
qξ

ρξ
κξ⊥v

ξ + Aξ∇vξ
)
.

(3)

In the evolution of qξ we employ the closure assumptions introduced in [11], with the dislocation5

alignment tensor

Aξ =
1

2|κξ |2
((
ρξ + |κξ |

)
κξ ⊗ κξ +

(
ρξ − |κξ |

)
κξ⊥ ⊗ κ

ξ
⊥

)
. (4)

The evolution of plastic shear γξ, is obtained from Orowan’s equation,

∂tγ
ξ = vξbρξ. (5)

The evolution equations are closed by the formulation of a velocity law, which character-
izes the relationship between the stresses and the velocity of the dislocation density. Here, we
assume a linear dependency between the effective resolved shear stress τξ and the velocity vξ10

on each slip system, when the effective resolved shear stress exceeds the yield stress (see next
paragraph) on the slip system. The effective resolved shear stress represents the superposition of
a shear stress due to external loading and internal shear stresses of the dislocation microstruc-
ture, τξ = τ

ξ
ext + τ

ξ
int. The internal stress field τ

ξ
int, is divided into long-range and short-range

stresses in the continuum model. Long range stresses are represented using a mean field ap-15

proach as in [16], which is used to resolve the mean dislocation stress field according to the
numerical resolution of the system. Thus, the approach introduces a mesh dependent stress com-
ponent and therefore loses accuracy during coarse graining. For systems with strong gradients
of geometrically necessary dislocations (GNDs), this can be enhanced by short-range correction
stresses [16]. Furthermore, the long-range stress field vanishes in configurations, which only20

consist of statistically stored dislocations (SSDs).
To incorporate the hardening due to dislocation interaction between different slip systems,

we use an additional stress term τy, which reduces the dislocation velocity due to the interaction
with forest dislocations. This stress can be interpreted as a local yield stress and is incorporated
into the velocity law as25

vξ =

 b
B (|τξ | − τy) sign(τξ) if |τξ | > τy

0 if |τξ | ≤ τy.
(6)

Following [18], the yield stress τy = Gbα
√
ρ is applied based on [7, 24] for the system considered

in this paper with the shear modulus G and the constant α = 0.35, since it has been shown that
the ”Taylor” averaging of the forest interaction is a reasonable simplification for high-symmetry
systems.
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The evolution equations, which describe the microstructural evolution, are incorporated into
the numerical framework described in [25] using the finite element code M++ based on a par-
allel multigrid method [26, 27]. The evolution equations of the dislocation densities Eq. (3) are
combined into a system of equations

∂t

(
ρξ

κξ

)
+ ∇ · Fξ

(
ρξ

κξ

)
= Gξ (7)

with the flux Fξ and the source Gξ given as5

Fξ

(
ρξ

κξ

)
= vξ

(
lξ · κξdξ − dξ · κξlξ

(dξ ⊗ lξ − lξ ⊗ dξ)ρξ

)
and Gξ =

(
vξqξ

0

)
. (8)

Herein, the right hand side of Eq. (7) is a production term depending on the curvature density qξ,
whose evolution we treat in a separate transport problem. For a given velocity vξ and alignment
tensor Aξ, we then obtain the transport equation of the curvature density

∂tqξ + ∇ · f ξ(qξ) = gξ (9)

with the flux term f ξ(qξ) =
qξ

ρξ
κξ⊥v

ξ and the rotation term gξ = −∇· Aξ∇vξ. Using a discontinuous
Galerkin scheme, the equations are solved separately on each slip system. Stresses are computed10

by a standard finite element solver, where the same mesh is used for the stress computation and
the evaluation of the internal variables of the microstructure.

2.2. Homogenized model of dislocation multiplication mechanisms

For a better understanding, it is necessary to introduce a clear definition of the terms and their
interpretation as continuum variables used in the following. In analogy to [1], we henceforth15

reserve the term dislocation for the boundary of a slipped area within a slip plane and is always
a closed loop. The interpretation of dislocations as closed objects is distinguished from the
dislocation line, which denotes the directed defect line of which the dislocation consists. Using
these definitions, the model of dislocation multiplication in this paper is based on an analysis of
DDD simulations [1]. The main observations from this study include: (1) The key mechanisms,20

which provides new dislocations are cross-slip and glissile junctions, which both involve an
interplay between different slip systems. (2) The generated dislocations show a limited expansion
before most of their line length is annihilated or involved in further multiplication events. (3) The
remaining dislocation lines are mostly straight segments in a stationary dislocation network, in
which a large part of the angular change, i.e. curvature along the dislocation line, is contained in25

the end-nodes of dislocation junctions. (4) Continued plasticity needs a continued generation of
new dislocations.

The terminological distinction between dislocation lines and dislocations is captured by two
different continuum variables in the CDD theory, namely the dislocation density ρξ (describing
dislocation line length) and the curvature density qξ. The curvature density describes the local30

change in angular orientation of the ensembles of dislocation lines and the integral of qξ over the
simulation volume can be interpreted as the total angular content in the system. If all dislocation
lines have the same line sense, this integral value divided by 2π can be interpreted as the number
of closed dislocation loops in the system. Currently, the kinematics of the CDD formulation is
based on the interconnection of all line orientations of a dislocation loop on the same slip system35
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by the curvature density qξ. Hence, the evolution of the dislocation densities is restricted to the
respective slip systems.

As stated in [1], the observations in the DDD study have consequences for the development
of a multiplication model in dislocation based continuum theories and the kinematics of a con-
tinuum theory itself. In contrast to the current CDD kinematics, most of the contribution to the5

angular content of the dislocations in DDD is concentrated at junction nodes, which are equili-
brated within the three dimensional dislocation network [1]. This includes the glissile and cross-
slip reactions. A dislocation in DDD can consist of physical and virtual line length. The physical
line length denotes the length of the observable dislocation line, whereas the virtual line length
limits the slipped area of a dislocation along dislocation junctions or cross-slipped dislocation10

lines and therefore serves as a coupling element between the slip systems [1]. In contrast, the
current CDD formulation does not incorporate quantities, which could be interpreted as ’virtual’,
i.e. all quantities are ’physical’. Therefore, the CDD kinematics based on dislocations, which
are closed on the same slip system are in conflict with the observations (2), (3) and (4) and do not
allow for a direct transfer into CDD. The development of a continuum theory of dislocation seg-15

ments connecting different slip systems, which would be needed to address those observations,
is complex and beyond the scope of this paper. However, we address the observations (1) and (2)
in conjunction with the available kinematics of the CDD formulation.

The expansion of existing dislocations yielding a dislocation density increase, i.e. an increase
of the dislocation line length, is incorporated in CDD via the source term vξ qξ in the dislocation20

density evolution Eq. (3). The increase in dislocation density is thereby due to the expansion of
an existing curved dislocation. However, the total angular content, namely the number of dislo-
cations in the system determined by the integral of qξ, is conserved and the evolution equations
of all internal variables are restricted to the individual slip system. Dislocation multiplication
in DDD by contrast is always connected to a change of dislocation segments between slip sys-25

tems and a subsequent expansion of the newly generated dislocations. Thereby, the physical
dislocation line, which initiated the multiplication process transforms into virtual line length,
but remains a part of the involved dislocation loop. Further, the concentration of curvature in
the end-nodes of the multiplication object reduces the ability of the constituting dislocations to
increase their line length by their further expansion, which can be interpreted as a reduction in30

’potential’ of dislocation expansion. In order to achieve a dislocation multiplication in line with
the DDD observations, the increase of the angular content in the system based on the transfer
of dislocation density between slip systems and an inhibition of the expansion of dislocations,
which initiate multiplication has to be included in CDD. Therefore, it is necessary to formulate
equations, which include both the dislocation density and the curvature density. In the sequel35

we shall reserve the term dislocation multiplication for the generation of new dislocation density
and curvature density in contrast to the mere expansion of existing dislocations.

In the following, we present a model of dislocation multiplication, which homogenizes the
multiplication mechanisms observed in DDD [1]. Each mechanism contributes to multiplication
with its individual rate at which dislocation density and curvature density is generated on a slip40

system at the expense of dislocation density on one (in case of cross-slip), or two (in case of
glissile reactions) other slip systems. This means a generation of closed dislocation loops, which
can evolve according to the existing kinematics. However, the current formulation of the CDD
kinematics does not permit a concentration of the curvature in a single point as in DDD. Further,
the concept of a ’virtual dislocation line’ does not exist in CDD. We thus account for the coupling45

of the slip systems and the limitation of the expansion of the dislocations by reducing dislocation
density and curvature density on the slip systems, which initiate the multiplication process.
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xr' (br',nr')

xr'' (br'',nr'')
xgl (bgl,nr'')

(a) Intersection of curved dislocation
lines.

xr' (br',nr')

xr'' (br'',nr'')
xgl (bgl,nr'')xgl (bgl,nr'')

(b) Alignment of dislocation lines.

xr' (br',nr')

xr'' (br'',nr'')
xgl (bgl,nr'')

(c) Formation of the glissile junction
(dotted blue line) and its bow-out un-
der stress (solid blue line).

Figure 1: Schematic visualization of the formation of a glissile reaction between two intersecting curved dislocation lines
on the slip systems ξr′ and ξr′′ with Burgers vector b and slip plane normal n (a). The reaction leads to an alignment
of the dislocation lines due to elastic interaction (b) and subsequently to the formation of a dislocation junction on the
glissile system ξgl (dotted blue line). The dislocation junction lies on the same plane as the dislocation on the reacting
slip system ξr′′ and is able to bow-out under stress (solid blue line) (c). The reaction leads to a concentration of the
dislocation curvature on the reacting slip systems ξr′ and ξr′′ into the endpoints of the junction.

2.2.1. Dislocation multiplication due to glissile reactions
As a first mechanism, we consider the dislocation multiplication due to glissile reactions,

which have the highest probability of occurrence in fcc crystals according to [23]. To point out
the interplay of slip systems by the glissile reaction, we first derive the density equations on
one exemplary reaction using the superscripts r′, r′′ and gl for the involved slip systems. The5

formulations are largely based on observations in the DDD simulations in [1] and recast into a
homogenized continuum description. The process of the glissile reaction formation in DDD is
schematically shown in Fig. 1. For simplicity, the visualization shows a dislocation line segment
of one dislocation loop on each slip system before the lines intersect (Fig. 1(a)). However, in the
continuum theory we assume that generally only a statistical number of dislocations are affected10

by the reaction in each continuum element. In DDD, after an alignment of the dislocation lines
due to the elastic interaction, shown in Fig. 1(b), two reaction partners on the slip systems ξr′ and
ξr′′ react and form a mobile dislocation on a third slip system ξgl. This implies the formation of
a dislocation junction on the glissile system ξgl (dotted blue line in Fig. 1(c)) and its expansion
under stress (solid blue line in Fig. 1(c)) at the expense of the involved dislocation line length on15

the reacting slip systems ξr′ and ξr′′ . In the continuum model, we do not capture the exact process
of the glissile reaction formation, but rather generate a new dislocation with the appropriate
curvature and line length. We incorporate the evolution equations proposed in [23] formulating
the dislocation density generation. There, the junction formation rate is derived by calculating a
collision frequency between an active system ξ and a forest system ζ as20

νξ =
vξ

Lζ
with ξ, ζ = r′, r′′ and ξ , ζ (10)

using the average dislocation spacing of

Lζ ∝
1√
ρζ
. (11)

A dislocation line on each of the reacting slip systems can be both active or act as a forest
density. Therefore the rate of dislocation density generation on the glissile system ξgl - without
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lbow

xr' (br',nr')

xr'' (br'',nr'')
xgl (bgl,nr'')

(a) |vgl | = 0.

lbow

xr' (br',nr')xr' (br',nr')

xr'' (br'',nr'')
xgl (bgl,nr'')

(b) |vgl | > 0.

Figure 2: Configuration of the newly generated dislocation loop on the glissile system ξgl for |vgl | = 0, leading to a
dislocation deposition for |vgl | = 0 (a) and |vgl | > 0, leading to a bow-out for |vgl | > 0 (b).

considering the bow-out - consist of two parts given as

∂tρ
gl
gliss ∝ ρ

r′νr′ + ρr′′νr” (12)

where the ()gliss stands for the glissile mechanism. Thus holds

∂tρ
gl
gliss = C1

(
ρr′vr′

√
ρr′′ + ρr′′vr′′

√
ρr′

)
, (13)

where the constant C1 depends on the magnitude of the Burgers vector and the effective junction
length [23]. The order of magnitude of C1 has been determined by DDD simulations [6].

In DDD, a bow-out can follow the junction formation, which leads to an increase of line5

length and curvature on the glissile system ξgl, shown by the solid blue line in Fig. 1(c). Most of
the newly generated dislocations show a motion of the shared end-nodes of the junction along the
intersecting line of the respective slip planes, which greatly reduces the stress needed to move the
dislocation line [1]. In the available CDD formulation, there is no representation of the effect of
sliding end-nodes of dislocation junctions coupling different slip systems. However, we assume10

that the average distance between junction points scales with the mean dislocation spacing,

lbow =
1
√
ρ
, (14)

which we take to be the same on all slip systems. We consequently choose the average dislocation
spacing as local average bow-out length which is in accordance with [1].

Fig. 2 schematically visualizes the dislocation configurations generated by the bow-out for
zero and non-zero velocity on the glissile system ξgl, incorporating the bow-out length lbow. In15

case of a zero velocity on the glissile system, we assume the generation of line length without
a generation of curvature (Fig. 2(a)). However, in case of non-zero velocity on the glissile slip
system, which is the general case under stress, the glissile reaction is assumed to generate a new
dislocation with an increasing line length and given curvature due to the bow-out (Fig. 2(b)).
Thus, we see the bow-out in case of non-zero velocity as part of the process, which generates a20

new dislocation.
Using this distinction, we denote the contribution of the bow-out to the generated dislocation

density on the glissile system ξgl by the newly generated dislocation density ρ
gl
m,gliss and the
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generated curvature density qgl
m,gliss. Here, a subscript ()m is used to indicate the densities, which

are a result of the dislocation multiplication process. The density ρ
gl
m,gliss includes at least the

dislocation density, which is generated on the glissile system ξgl without bow-out, i.e. ρgl
gliss in

Eq. (13). In case of a zero velocity, thus it holds ∂tρ
gl
m,gliss = ∂tρ

gl
gliss and ∂tq

gl
m,gliss = 0, compare

the schematic sketch in Fig. 2(a). In any other case, i.e. vgl , 0, the bow-out results in a5

generation of a dislocation with increased line length and curvature density proportional to the
mean dislocation spacing (Eq. 14), schematically shown in Fig. 2 (b). Since the dislocation can
only bow-out in one direction and according to [1] almost never completely detaches from its
initial site, we assume an average upper limit of the dislocation density production based on the
line length of a half-circle with the circumference of π

2 lbow. In DDD, most of the dislocation10

lines are immobilized in the dislocation network, or the dislocation does not reach the half-
circle state because the shared end-nodes of the junction are moving apart. Since the current
kinematic framework of CDD does not allow for an exact reproduction of this effect, we do
not aim to capture the bow-out process itself. Instead, we account for the characteristics of the
dislocation network to limit the extent of the bow-out by a parameter C2. With this assumption,15

the resulting rate of dislocation density generation accounting for the bow-out of the dislocations
can be modeled by

∂tρ
gl
m,gliss =

C2
π
2∂tρ

gl
gliss if |vgl| > 0

∂tρ
gl
gliss if |vgl| = 0.

(15)

We describe the average radius of the generated dislocations by the relation lbow/2 = ∂tρ
gl
m,gliss/∂tq

gl
m,gliss

using the average bow-out length lbow from Eq. (14). Thus we obtain the rate of curvature density
generation as20

∂tq
gl
m,gliss = sign(vgl)C2π∂tρ

gl
gliss
√
ρ. (16)

Since in case of vgl < 0 dislocation loop expansion is caused by negative curvature density (see
Eq. 3), we assume ∂tq

gl
m,gliss < 0 if vgl < 0. In the current analysis, we choose C2 = 1, which

implies that the bow-out under stress on average expands up to half of the mean dislocation
spacing, as shown in Fig. 2(b). This value can change, e.g. by accounting for the sliding end-
nodes of dislocation junctions.25

By generating curvature density in along with the dislocation density, the multiplication
model not only increases the line length on the glissile system, but also generates new dislo-
cations in the sense of new closed objects, which is the process we call dislocation multiplica-
tion. These new dislocations subsequently can move according to the existing kinematics and
increase their line length due to loop expansion until the dislocations are involved in a similar30

multiplication event as they are generated from.
The DDD simulations show, that dislocation reactions lead to a loss of line length on the

reacting slip systems ξr′ and ξr′′ in favor of line length, which is part of the dislocation junction
[1]. Furthermore, the reaction limits the expansion of the involved dislocations on the reacting
slip systems. To account for the loss of line length on the slip systems ξr′ and ξr′′ (schematically35

visualized by the dotted blue line in Fig. 1(c)), an annihilation rate is included on the reacting
slip systems

∂tρ
ξ
gliss = −C3∂tρ

gl
gliss with ξ = r’, r”, (17)

where we use Eq. (13) including a parameter C3 scaling the loss of line length on the reacting slip
systems with the line length of the generated dislocation on the glissile system. Thereby, each of
the glissile reactions leads to a generation of a mobile dislocation on a glissile system (Eq. 15 and40
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13) at the expense of the two reacting slip systems. The reaction will therefore lead to a decrease
of dislocation density on average for C3 >

π
4C2. In the following analysis, we choose C3 = 1 as

simplistic approximation and upper limit of the dislocation density reduction. A consideration of
C3 = π

4C2 as lower limit such that no dislocation density is annihilated for a bowed out junction
is analyzed in Appendix A.5

In the CDD theory, the total dislocation density in one element contains a certain angular
content, which is represented in the curvature density qξ. Thus by removing a part of the dis-
location density, a certain angular range is removed as well. We homogenize this process by
formulating the reduction in curvature density by the dislocation reaction on each of the reacting
slip systems ξr′ and ξr′′ as proportional to the reduction in line length. The reduction in curvature10

density can then be derived as

∂tq
ξ
gliss = −

∂tρ
gl
gliss

ρξ
qξ with ξ = r’, r” (18)

where ρξ and qξ are the dislocation density and curvature density on the reacting slip system.
In DDD, the dislocation network mostly consists of rather straight dislocation lines, which

start and end in dislocation junctions or at the surface. Dislocations typically do not expand
any further after taking place in multiplication events on reacting slip systems. The curvature15

(angular change) is observed to be equilibrated at the end-nodes of dislocation junctions due to
the dislocation network [1]. In CDD, an existing curvature density on the reacting slip systems
always leads to additional line length production in non-zero resolved shear stress conditions.
As a consequence, the immobilizing effect observed in DDD can therefore not be captured by
the average curvature density. A formulation, which approximates this effect in CDD can cur-20

rently only be achieved by assuming that the dislocation curvature does not further contribute
to the source term vξ qξ in the evolution equation of the dislocation density (Eq. 3). Thereby
the ’potential’ of line length increase by dislocation loop expansion is reduced, mimicking the
immobilizing effect of the junction on its constituting dislocations. We apply this assumption
to the dislocations, which take part in the multiplication event on the reacting slip systems ξr′

25

and ξr′′ , as shown in Fig. 1(c) in an exemplary and simplified way by straight lines. This is a
second contribution to the reduction in curvature density on the reacting slip systems ξr′ and ξr′′ ,
which temporarily slows down the generation of dislocation density by expansion of existing
dislocation loops in the given time step.

For simplicity, we assume that the reduction in curvature density is proportional to the re-30

duction in line length due to the reaction, which results in the same relation as derived above
(Eq. 18), assuming a reduction in curvature with constant line length. However, in general the
reduction of curvature density depends on the type of multiplication mechanism (glissile reaction
or cross-slip) and dislocation configuration. Therefore, the scaling between the curvature den-
sity reduction and the reduction of dislocation density is considered by a parameter C4. For the35

reduction of curvature density, we assume two contributions, which are schematically depicted
in Fig. 1(c): First, a contribution from the reduction of line length (dotted blue line) and sec-
ond, a contribution from the reduction of ’potential’ for line length increase by dislocation loop
expansion (remaining straight dislocation lines on slip systems ξr′ and ξr′′ ).

By combining both contributions, we derive the final formulation for the reduction of curva-40

ture density on the reacting slip systems ξr′ and ξr′′ due to the multiplication event as

∂tq
ξ
gliss = −C4

∂tρ
gl
gliss

ρξ
qξ with ξ = r’, r”. (19)
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In the current analysis, we choose C4 = 2 by assuming, that both contributions are added and are
directly proportional to the reduction in line length.

2.2.2. Dislocation multiplication by cross-slip
As a second multiplication mechanism, we consider the dislocation multiplication by cross-

slip, which incorporates the generation of dislocation density on the cross-slip system ξcs based5

on the difference in shear stress between the primary slip system ξp and its cross-slip system
ξcs. The formulation of a generalized cross-slip model for use in different microstructure con-
figurations requires the transformation of the probabilistic nature of cross-slip [28, 29, 30] into a
homogenized continuum theory. In the interest of clarity and the objective of the current study,
we present a simple model based on the cross-slip implementation in the underlying DDD sim-10

ulations [1]. In this subsection, we derive the evolution equations for the dislocation densities
using the superscript p for the primary slip system and cs for the cross-slip system. For the
cross-slip to take place, we assume that the resolved shear stress on the cross-slip system ξcs has
to be equal or greater than the resolved shear stress on the primary slip system ξp, i.e. |τcs| ≥ |τp|.
We ignore slip systems with zero shear stress, thus we apply the condition that cross-slip only15

occurs if τp, τcs , 0. We introduce a thermally activated cross-slip probability, which is similar
to the probability term used in DDD-models, e.g. [28, 29], as

P(Lp) = min
{
β

Lp

L0

∆t
∆t0

exp
(

Vact

kBT
(|τcs| − τIII)

)
; 1

}
, (20)

where Lp is the length of the dislocation line on the primary slip system, which is able to cross-
slip, τcs is the resolved shear stress on the cross-slip system and ∆t is the time-step used in
the simulation. The other parameters are the same as in the underlying DDD simulations: A20

normalization constant β = 105, the activation volume Vact = 300b3, the shear stress at the onset
of stage III hardening τIII = 5MPa and a reference value for length L0 = 1µm and time ∆t0 = 1s
[29, 30]. kB is the Boltzmann constant and the temperature T is chosen to 293K.

As suggested in [30], we assume that dislocation lines within ±10◦ of the ideal screw-
orientation are able to cross-slip. In order to model the fraction of density which is able to25

cross slip, we need assumptions on how the dislocation density is distributed on the circle of di-
rections in the slip plane. For this we employ the assumption that the SSD-density, i.e. ρ−||κp||, is
homogeneously distributed among all line directions. Thus, 1/9 of the SSD density (20◦ around
the positive and negative screw direction each) is potentially able to cross-slip. For the GNDs we
assume that they are potentially able to cross-slip, if the GND orientation lies within ±10◦ of the30

positive or negative screw-orientation. The absolute value of the cosine of the angle the GND
vector includes with the screw direction is given by |κ̃p |

||κp ||
, where κ̃p denotes the screw component

of the GND vector. The possibility of GNDs to cross slip may therefore be derived by evaluating
the Heaviside step function Θ

(
|κ̃p |

||κp ||
− cos

(
π
18

))
, which equals 1 if the GND orientation lies within

±10◦ of the screw orientations and 0 otherwise. To obtain the amount of GND density which35

may potentially cross slip the result of the Heaviside function is multiplied by ||κp||. The total
density which is capable of cross-slip on the primary slip system ξp including the contribution of
the SSD and GND-density is consequently calculated as

ρ̃p =
1
9

(ρp − ||κp||) + ||κp||Θ

(
|κ̃p|

||κp||
− cos

(
π

18

))
. (21)

During the review process one of the reviewers made us aware that the current model introduces a
discontinuous behavior which is arguably undesirable in a continuum model. For the subsequent40
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results this discontinuity did not cause discernible problems. However, in Appendix B, we briefly
describe how this discontinuity may be avoided, based on a suggestion of the very reviewer.

The length of the dislocation line, which is able to cross-slip is determined from the average
dislocation loop radius rp = ρp/qp in an averaging volume

Lp = min
{

2 · 10◦

360◦
2πrp; L

}
(22)

where we limit the dislocation line length to the local mean dislocation spacing L = 1
√
ρ
, which5

we assume to be the same for all slip systems.
Using the probability term Eq. (20), the production rate of the density which cross-slips to

the respective cross-slip system ξcs is

∂tρ
cs
cross = ρ̃p P(Lp)

∆t
, (23)

the production rate on the primary slip system ξp, which loses the respective dislocation density
is10

∂tρ
p
cross = −∂tρ

cs
cross. (24)

We assume that the screw GNDs cross-slip similar to the total density, which means that screw
GND density keeps its orientation after cross-slip and does not transform into SSDs. Thus,
the same relation as for the total dislocation density holds for the screw GND-density for both
involved slip systems

∂tκ̃
cs
cross =

 Pp(Lp)
∆t ||κ

p||Θ
(
|κ̃p |

||κp ||
− cos

(
π
18

))
if κ̃p > 0

−
Pp(Lp)

∆t ||κ
p||Θ

(
|κ̃p |

||κp ||
− cos

(
π
18

))
if κ̃p < 0

∂tκ̃
p
cross = − ∂tκ̃

cs
cross.

(25)

The curvature density part of the multiplication process through cross-slip is formulated accord-15

ing to Eqs. (18, 19). The contribution of the bow-out to the increase of dislocation density and
curvature density is considered analogously to Eqs. (15, 16) by the contribution of the rate of dis-
location density generation ∂tρ

cs
m,cross and curvature density generation ∂tqcs

m,cross to multiplication
as

∂tρ
cs
m,cross =

π

2
∂tρ

cs
cross (26)

and20

∂tqcs
m,cross = sign(vcs)π∂tρ

cs
cross
√
ρ. (27)

Since the relations presented in Eqs. (20 - 27) hold also for the reversed order of the primary
and the cross-slip system, slip systems with the same shear stress show equal dislocation density
generation as long as the density is the same.

2.2.3. Combined mechanisms of dislocation density
Combining the multiplication mechanisms described in section 2.2.1 and 2.2.2, we incor-

porate the dislocation density generation and reduction due to glissile reactions and cross-slip,

12



zero shear stress

Figure 3: schematic overview of the three considered slip systems ξ = 1, 2, 3 with the respective glissile reactions.

which affects line length and curvature density, into the CDD evolution equations, see Eq. (3).
The extended evolution equations are given as

∂tρ
ξ = −∇ · (vξκξ⊥) + vξqξ + ∂tρ

ξ
m + ∂tρ

ξ
gliss + ∂tρ

ξ
cross

∂tκ
ξ = ∇ × (ρξvξmξ) + ∂tκ

ξ
cross

∂tqξ = −∇ ·

(
qξ

ρξ
κξ⊥v

ξ + Aξ∇vξ
)

+ ∂tq
ξ
m + ∂tq

ξ
gliss + ∂tq

ξ
cross,

(28)

where ∂tκ
ξ
cross =

(
∂tκ̃

ξ
cross, 0, 0

)
. Each slip system ξ contains a reduction in dislocation density and

curvature density due to glissile reactions and cross-slip as well as an increase due to generation
of dislocations including the bow-out. The individual contributions from dislocation generation
through glissile reactions and cross-slip are combined into one variable each for the rate of dis-
location density generation ∂tρ

ξ
m = ∂tρ

ξ
m,gliss + ∂tρ

ξ
m,cross and the curvature density generation5

∂tq
ξ
m = ∂tq

ξ
m,gliss + ∂tq

ξ
m,cross.

2.3. Simulation setups

2.3.1. Simplified systems
In order to illustrate the presented multiplication mechanisms in the continuum framework,

we first neglect all dislocation density fluxes in the set of equations Eq. (28) to solely evaluate10

the multiplication terms in a simple benchmark setup. In this local continuum formulation all
spacial gradients in the evolution equations are zero, resulting in a system of ordinary differential
equations. The setup mimics a fully periodic system, in which no dislocation lines can leave the
simulation volume. Although this configuration is artificial, it allows to investigate the behavior
of the equations of the multiplication model in a setup, which is not influenced by the different15

orientation of the individual slip systems with respect to the system geometry. We analyze the
influence of the glissile and the cross-slip mechanism separately. The elastic material parameters
are given by the elastic modulus E = 71.3 GPa, a Poisson’s ratio ν = 0.34 and a Burgers vector
of b = 0.256 nm.

First, we only consider the glissile mechanism as described in section 2.2.1. We restrict the20

investigation to three slip systems incorporating three glissile reactions, as schematically shown
in Fig. 3. Two slip systems (ξ = 1 and ξ = 2) are subjected to a constant shear stress on the
slip system of τ1,ext = τ2,ext = 15MPa, which resembles a resolved shear stress due to external
loading. On slip system ξ = 3 the shear stress is set to zero (τ3,ext = 0) in order to mimic active
and inactive slip systems. We choose an initial dislocation density of ρ1 = ρ2 = 3 × 1012 1

m2 on25

the active slip systems 1 and 2 and ρ3 = 1 × 1012 1
m2 on the inactive slip system 3. Furthermore,
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Figure 4: System setup for CDD - DDD comparison.

the initial dislocation density vector and the initial curvature are set to zero, κξ = 0 and qξ = 0.
The glissile constant C1 is chosen as C1 = 0.064 similar to [6]. This yields a configuration in
which the dislocation density on active slip systems is larger than on the inactive slip system, but
all slip systems are a possible partner of the glissile reactions.

In a second example, we only evaluate the cross-slip mechanism as explained in section 2.2.2.5

We consider a system with two slip systems (ξ = 1 and ξ = 2) subjected to two different stress
configurations: (i) Both slip systems have the same shear stress τ1,ext = τ2,ext = 15MPa and (ii)
the slip systems have different shear stresses of τ1,ext = 10MPa and τ2,ext = 15MPa. In both stress
configurations, we choose a homogeneous initial dislocation density of ρ1 = ρ2 = 1 × 1012 1

m2

with κξ = 0 and qξ = 0.10

2.3.2. Full fcc system with tensile loading
We aim to compare the presented multiplication model to DDD simulations from [1]. There-

fore, we apply the model to a cubic system as shown in Fig. 4 with edge length of 5 × 5 × 5 µm
and 12 fcc slip systems.

The system is subjected to a constant strain-rate of ε̇ = 5000 s−1 by applying a tensile dis-15

placement on the x-normal-surfaces in x-direction aligned with the [100] crystal orientation. The
side surfaces are traction free. Dislocation lines can leave the simulation volume through all sur-
faces. This is achieved by allowing for an outflow of dislocation density flux in direction of the
outer surface normal vector. A detailed explanation of the numerical implementation is given in
[31]. In the configuration investigated here, there are eight slip systems with the same nonzero20

Schmid-factor, i.e. active slip systems, and four with a zero Schmid-factor, i.e. inactive slip
systems. For the latter, we set v = 0 in order to avoid dislocation motion and cross-slip activity
on these systems due to stress concentrations at the external boundaries. This ensures, that any
dislocation evolution observed on inactive slip systems is only caused by glissile reactions. The
strain-rate and boundary conditions for the dislocation density fluxes are chosen corresponding25

to the DDD simulations from [1].
In the DDD simulations, the dislocation structure is relaxed from a random distribution of

closed dislocation loops prior to straining [1]. This leads to the formation of a dislocation net-
work, which shows a certain density distribution in the inner region and declines towards the
boundaries, as shown for one representative DDD simulation in Fig. 5(a). Due to the random30

initial loop distribution, the topology of each dislocation network is slightly different. However,
the higher dislocation population in the inner region of the system is a common characteristic of
all relaxed dislocation networks. In the continuum, we mimic this characteristic by prescribing
a SSD density distribution in the center of the system, which decreases towards the boundaries
as shown in Fig. 5(b). The GND density is assumed to be zero in the initial state. The decrease35
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(a) Relaxed initial dislocation microstructure of one repre-
sentative DDD simulation.
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(b) Initial total dislocation density distribution in CDD.

Figure 5: Relaxed initial dislocation microstructure in one representative DDD simulation (a) and initial distribution of
the total dislocation density in CDD in a central plane averaged over all slip systems (b).

of the dislocation density at the boundaries is described by a cumulative distribution function
of the Gaussian normal distribution (Gaussian error function) with a gradient towards the outer
boundaries in the three coordinate directions. For the Gaussian error function we use a mean
value of 2.15 µm and a standard deviation of 0.3 to distribute an initial dislocation density of
ρξ = 1.6 × 1012 1

m2 per slip system in the middle of the system to almost zero at the boundaries.5

This results in an average density of ρξ ≈ 1×1012 1
m2 per slip system and a total initial dislocation

density of ρtot ≈ 1.19 × 1013 1
m2 , when summarized over all slip systems. We chose κξ = 0 and

qξ = 0 initially in order to focus on the interplay of the dislocation density between slip systems.
The elastic material parameters and the constant C1 are chosen as before.

3. Results10

In this section, we first consider the simplified system setup described in section 2.3.1 to
understand the general behavior of the set of equations (Eq. 28) for glissile and cross-slip indi-
vidually. Then, we apply the multiplication model to the setup including 12 fcc slip systems and
compare the results to DDD simulations.

3.1. Investigation of multiplication mechanisms in simplified slip configurations15

3.1.1. Glissile reactions in a simplified system
In a first analysis, we only consider glissile reactions occurring between three slip systems,

where the shear stress is zero on slip system 3, as visualized in Fig. 3. Therefore, the slip system
3 is inactive and serves only as a passive reaction partner, which also contributes to the total
dislocation density evolution according to Eq. (13). We assume an infinite homogeneous system20

such that all spatial gradients can be neglected in Eq. (28), resulting in a system of ordinary
differential equations. The evolution of the dislocation density per slip system over simulation
time is depicted in Fig. 6(a). The glissile reactions between the slip systems yield an increase in
dislocation density on the active as well as the inactive slip systems until a saturation after about
0.4 µs with no significant further increase in dislocation density. On the two active slip systems,25
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Figure 6: Dislocation density per slip system over simulation time (a) and contribution of the glissile evolution equation
by the dislocation density reduction and density generation terms integrated over the simulation time (b) for the simplified
setup in section 2.3.1. Additionally, the net density transfer on each slip system is shown.

a slight decrease in dislocation density is observed directly at the beginning of the simulation.
The final saturation of the dislocation density is caused by the increase of the yield stress with
increasing dislocation density, which reaches the applied shear stress (Eq. 6), rendering all slip
systems inactive.

To further investigate the observed dislocation density behavior, the contribution of the glis-5

sile evolution equations in Eq. (28) are compared separately for the active slip systems 1 and
2 and the inactive slip system 3 in Fig. 6(b). Each of the slip systems is involved in two indi-
vidual reactions with a second slip system, see also Fig. 3. First, it contributes to a reduction
in dislocation density

(
∂tρ

ξ
gliss

)
. Second, new dislocation density is generated due to the reac-

tion of the other two slip systems, contributing to a dislocation density increase
(
∂tρ

ξ
m,gliss

)
. By10

summarizing the density reduction and density generation on each slip system, the net den-
sity transfer between the slip systems is obtained. The rates are integrated over time given as
ρ
ξ
gliss =

∫
t ∂tρ

ξ
glissdt and ρξm,gliss =

∫
t ∂tρ

ξ
m,glissdt. As expected, the density reduction terms ρξgliss are

always negative, whereas the generation terms ρξm,gliss are always positive. On the inactive slip
system 3, the dislocation density is generated by a deposition of dislocations as a consequence15

of the reaction between the two active slip systems 1 and 2. The generation terms exceed the
dislocation density reduction, since the inactive slip system only serves as a passive reaction
partner. This leads to a net increase in dislocation density, which matches the increase observed
on the inactive slip system as expected, cf. Fig. 6(a). In contrast, the density reduction terms
on the active slip systems 1 and 2 exceed the density generation, since the dislocation density20

on these slip systems is only generated by the reaction of one of the active slip systems with the
inactive slip system 3, i.e. a passive reaction partner. Therefore, on the active slip systems, a net
loss in dislocation density is observed due to the glissile reaction itself, as shown in Fig. 3. This
can be understood by considering Eq. (13): one summand vanishes, if an inactive slip system
(no plastic slip rate) is involved. The slight decrease in dislocation density at the beginning of25

the simulation in Fig. 6(a) is a consequence of this behavior and the chosen initial conditions.
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Figure 7: Dislocation density per slip system over simulation time (a) and contribution of the cross-slip evolution equation
by the density reduction and density generation terms integrated over the simulation time for an unequal shear stress
distribution between both slip systems (b).

The dislocation density generation on active slip systems due to ρξm,gliss is always related to an
increase in curvature density (∂tq

ξ
m,gliss, Eq. (16)). The subsequent increase in total dislocation

density, shown in Fig. 6(a), thus follows from the expansion of the newly generated dislocations
due to the increase in curvature density.

3.1.2. Cross-slip in a simplified system5

In a second analysis, we evaluate the cross-slip mechanism exclusively using the system setup
described in section 2.3.1. Again, we use a local simulation, which neglects all density fluxes.
First, the same initial dislocation density and the same shear stress of τext = 15MPa is chosen
on both slip systems. Due to the assumption of symmetric cross-slip activation for equal shear
stress conditions, the contribution to dislocation density increase is also symmetric. Fig. 7(a)10

shows the results of the dislocation density evolution with a significant density increase, which
evolves equally on both slip systems. In contrast to the glissile junction, the total dislocation
density can not become less through cross-slip, since the lower bound of dislocation density
evolution is equal dislocation density before and after the cross-slip.

In case of an unequal shear stress distribution between the slip systems, i.e. τ1,ext = 10MPa15

and τ2,ext = 15MPa, the dislocation density on the slip system with higher stress increases,
whereas the density on the slip system with lower shear stress slightly decreases. The contribu-
tion of the cross-slip evolution by the dislocation density reduction term ρ

ξ
cross and the generation

of new dislocation density ρξm,cross according to Eq. (28) is shown in Fig. 7(b). The results show
that in case of unequal shear stress distribution, the cross-slip shifts the generation of dislocation20

density in direction of the slip system with higher shear stress.

3.2. Dislocation multiplication in a fcc crystal with 12 slip systems

For the comparison of the continuum formulation with the DDD results [1] we work with
the [100] high-symmetry setup described in section 2.3.2. First, cross-slip is neglected and only
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Figure 8: Dislocation density evolution per slip system with only glissile reactions compared to one DDD simulation and
the average over 10 DDD simulations for active and inactive slip systems (a), total dislocation density compared to 10
DDD simulations (b) using the setup described in section 2.3.2. The CDD results in (a) are plotted for each slip system
individually, in which the curves for active and inactive slip systems coincide, respectively.

glissile reactions contribute to dislocation multiplication as described in section 2.2.1. The results
are shown in Fig. 8 in comparison with DDD data, which also were obtained considering the
glissile mechanism only.

The evolution of the dislocation density is shown in Fig. 8(a) for the active as well as the
inactive slip systems. The results show that the glissile reactions lead to an increase of disloca-5

tion density on the active slip systems, whereas the reactions feeding into inactive slip systems
merely deposit dislocation density with vanishing curvature. In contrast to CDD, the dislocation
density evolution in DDD shows slight deviations between the different symmetric slip systems
due to the statistical nature of the dislocation network. However, it can be seen that the CDD
dislocation density increase on both the active and inactive slip systems follows the respective10

DDD data on average. The dislocation density on the active slip systems initially declines, be-
fore increasing nearly linearly. Subsequently, the dislocation density on the inactive slip systems
slightly increases with the increasing density on the active slip systems after about 0.4 % strain.

To analyze the evolution of the total dislocation density in CDD, the evolution is compared
to 10 DDD simulations from [1] (Fig. 8(b)). The results show that the continuum model is able15

to reproduce the total density evolution observed in the DDD simulations quite accurately. The
total dislocation density increase is about 50 % for a strain of 0.8%. However, an initial dip in the
dislocation density evolution can be observed corresponding to the dips in the dislocation density
evolution per slip system shown in Fig. 8(a).

Finally cross-slip and glissile reactions are combined for the simulation. In Fig. 9 the dislo-20

cation density evolution is depicted for the individual slip systems and for the total density, each
time compared with according DDD results. The comparison to DDD shows that the evolution
of dislocation density on both the active and inactive slip systems in CDD is in the same range
for the given loading range (Fig. 9(a)). Particularly, the inactive slip systems show a significant
density increase in both the DDD and the continuum results. However, the dislocation density25

increase on active slip systems in DDD is almost linear, whereas the CDD results show a nonlin-
ear behavior - CDD slightly underestimates the increase in dislocation density on the active slip
systems in the beginning, while the density increase is overestimated later. Also for the inactive
slip systems a larger dislocation density increase compared to DDD is observed after about 0.6%
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Figure 9: Same as Fig. 8, but with glissile reactions and cross-slip. Additionally, the increase of the number of generated
dislocations measured by the integral of the curvature density is shown in (b). The CDD results in (a) are plotted for each
slip system individually.

strain.
Fig. 9(b) shows the total dislocation density as well as the evolution of the number of gen-

erated dislocations in comparison to 10 DDD simulations. This comparison serves to connect
the increase in dislocation density to an increase in the number of dislocations in contrast to the
expansion of existing dislocations. It can be observed that the total dislocation density increases5

approximately by a factor of 3 until 0.8 % strain and compares well to the corresponding DDD
dislocation density evolution. Regarding the number of generated dislocations, the increase cor-
relates with the increase in total dislocation density after 0.1% strain. Here, a factor of 10 can
be measured, which is significantly more than the increase in dislocation density. However,
the dislocation density increase is clearly nonlinear with a small decrease after overcoming the10

yield stress and an overestimated density evolution compared to DDD in the second half of the
simulation. The decline of dislocation density at the beginning (Fig. 9(a) and Fig. 9(b) and anal-
ogously in Fig. 8(a) and Fig. 8(b)) occurs due to the dislocation density flux through the outer
surfaces, which dominates the total density evolution at this stage. This becomes particularly
obvious in the results in Appendix A. Here, the parameter choice C3 = π/4 for Eq. (17) prevents15

a dislocation density reduction by the glissile reaction.

4. Discussion

A dislocation density based multiplication model including glissile and cross-slip mecha-
nisms is introduced and compared to DDD data. In order to understand the evolution mecha-
nisms in the homogenized continuum approach, an isolated investigation of the mechanisms in20

simplified systems is conducted first and complemented by a tensile test of the full fcc system.
Analyzing the mechanisms in isolated systems show that includes glissile reactions leads to

a net density increase on inactive slip systems. The density on inactive slip systems also acts as a
passive partner for glissile reactions towards active slip systems, which leads to the generation of
new dislocation density and curvature density, i.e. a generation of a new dislocation. However, if25

the dislocation density and curvature density generation on active slip systems and the subsequent
expansion of the newly generated dislocation is not able to overcome the loss of dislocation
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density due to the reaction with other slip systems, the total density decreases. This becomes
particularly obvious in the beginning of the simulation in Fig. 6, where the initial condition of
qξ = 0 only allows for a density increase due to the glissile mechanism. In this case, the reaction
serves as an annihilation term, which reduces the density until the generated curvature density
produces enough line length to overcome the density loss. Since the total dislocation density is5

contained in the dislocation density flux and contributes to the multiplication, there is no part
of the density, which is stored in stable, or even immobile configurations. However, the results
show that even in this simple setup the model is able to capture two key findings from DDD
simulations: (1) multiplication mechanisms involve the generation of dislocation density as a
result of an interplay of different slip systems and (2) dislocation density is deposited on inactive10

slip systems.
Especially finding (2) is worthy to be analyzed more closely. The increasing density on the

inactive slip system not only serves as a passive partner for further multiplication events, but also
contributes to other dislocation reactions, whose effect on hardening is captured by the ”Taylor”-
type flow-stress term. As a consequence, the inactive slip system is only ”inactive” in the sense15

of a zero dislocation velocity. It does, however, contribute to hardening through an increase in
dislocation density. This effect can be observed in the saturation of the density on the active slip
systems (Fig. 6(a)) due to the flow-stress which is a function of the total dislocation density, i.e.
including the increasing density on the inactive slip systems. It is obvious that a multiplication
model based on a slip-system-wise adoption of the Kocks-Mecking [7] theory would show no20

dislocation density evolution on an inactive slip system. As a consequence, an inactive slip
system would not contribute to further dislocation interaction and hardening. The deposition
of density on inactive systems is affecting cross hardening and possibly affects changing strain
paths.

In contrast to the glissile reaction, cross-slip as a mechanism has no net loss in total dislo-25

cation density. Dislocation density is generated on the respective cross-slip system, where the
bow-out of the dislocation takes effect, connected with a loss of dislocation density on the other
slip system. Therefore the dislocation density increases significantly on the cross-slip systems.
This is further amplified by the current assumption, that, as for glissile reactions, the cross-slip
rate always involves a fraction of the total dislocation density if the conditions are met. As30

long as the stress is large enough and dislocation density exists, dislocation multiplication will
take place. In case of an equal shear stress on two slip systems, the cross-slip probability is the
same on both slip systems, see Fig. 7, thus we assume that cross-slip happens on both slip sys-
tems equally. This can be interpreted as double cross-slip processes, which are averaged into an
equal density increase on both slip systems connected with an expansion of the newly generated35

dislocations. In case of a different resolved shear stress on the primary and cross-slip system,
multiplication takes place on the slip system with the higher resolved shear stress. The cross-slip
mechanism of the our simple model is therefore close to the DDD cross-slip process and intended
to reinforce the coupling of dislocation density by multiplication due to interplay of different slip
systems induced by the glissile reaction. However, for an averaging over many different (and40

possibly anisotropic) dislocation configurations, an analytic dislocation orientation distribution
as e.g. proposed in [32] should be used.

Similar to the results in the simplified setup, the net dislocation density transfer between
active slip systems in the full setup is zero. This leads to an equal dislocation density increase
on active and inactive slip systems, respectively. The dislocation density increase on the active45

and inactive slip systems as well as the increase in total dislocation density observed in DDD
are captured well by the continuum model as shown in Fig. 8. However, the slight dislocation
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density decrease right after the yield point is observed even for an exclusion of the annihilation
effect of the glissile reaction (Eqs. 15 and 17), as shown in the Appendix A, and can be related
to the fact that a significant amount of line length leaves the simulation volume in the initial
phase of the simulation. Due to the numerical inhibition of any dislocation motion on inactive
slip systems, where boundary conditions can affect the velocity field despite a vanishing nominal5

Schmid-factor, the dislocation density evolution on these systems can be observed as a result
of the investigated mechanism, i.e. glissile reactions, only. Comparing the results in Fig. 8
to the simplified system in Fig. 6 yields the following conclusion for inactive slip systems: The
combined effect of all 48 slip system pair combinations of the glissile reaction yields a dislocation
density annihilation due to reactions of active with inactive slip systems, and a dislocation density10

increase due to deposition of reaction products. Here, the complex interplay of different densities
and velocities on the slip systems, represented by the glissile evolution equation, leads to different
glissile rates depending on whether or not an inactive slip system is involved in the reaction. The
evolution of the dislocation density on inactive slip systems therefore depends on the interplay
between active slip systems, which is in accordance with observations in DDD.15

The addition of dislocation multiplication via cross-slip in the full system yields a higher
dislocation density increase on all slip systems, including the four inactive slip systems. This
observation is in accordance with the behavior of the DDD-simulations (Fig. 9) and further cor-
roborated by observations in [33] where it also is shown that cross-slip increases the number
of junctions. It has to be remarked that the good agreement of the CDD results with DDD is20

achieved without introducing any additional fitting parameter compared to the simulations with-
out cross-slip other than using the same cross-slip model as in DDD. Here, the characteristics of
the presented model to couple the density increase on different slip systems with the considered
multiplication mechanisms becomes particularly well visible: although there is no velocity on
the inactive slip systems, thus an influence of bow-out of the generated dislocations is excluded,25

a higher dislocation density increase is observed compared to the case without cross-slip (Fig. 8).
This can be explained by a higher dislocation density production on active slip systems due to
cross-slip, which yields again a higher rate of glissile reactions towards the inactive slip systems.

The integration of the curvature density on all slip systems can be interpreted as the number
of closed dislocations, which are generated by the multiplication mechanisms. The observed30

correlation between the total dislocation density and the number of generated dislocations, as
shown in Fig. 9(b), corresponds to observations in DDD. Furthermore, starting from about 0.1%
strain until the end of the simulation, the number of generated dislocations increase by a factor
of 10, whereas the line length increases only by a factor of 3. This indicates an increase of the
average dislocation curvature in the system over time, and thus forms the basis for the description35

of an increasingly dense dislocation network.
However, it can be observed that the rate of dislocation density increase is overestimated.

This is due to the fact that by focusing on dislocation multiplication, further mechanisms which
limit the dislocation density increase are not accounted for. In DDD the expansion of dislocations
is limited by their involvement in further reactions, where large parts of the angular change of the40

line orientation is equilibrated in end-nodes of dislocation junctions [1]. In the CDD framework,
the consideration of dislocation annihilation, rather stable Lomer junctions and entangled dislo-
cations could lead to a limitation of the dislocation density increase as observed from dislocations
in networks.

Summarizing, the current work shows that the presented multiplication model is able to re-45

produce key findings from DDD simulations [1]: Dislocation multiplication is a result of mech-
anisms involving an interplay of dislocation density between slip systems and the dislocation
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density increase is largely driven by the generation of new dislocations instead of an expansion
of existing dislocations. Furthermore, the glissile reaction plays an important role particularly for
the dislocation density evolution on inactive slip systems. These findings are attained by the abil-
ity of the model to generate new dislocation density and curvature density based on the interplay
of dislocation densities and the coupling between slip systems. By generating curvature density5

along with dislocation density, closed dislocations are generated, which are able to produce line
length by dislocation loop expansion. Compared to existing models, e.g. [2, 3, 4, 5, 6], which
are driven by plastic slip on the same slip system, the multiplication process itself is independent
of the plastic slip on the slip system of the new dislocation. Due to the resulting prevention of
self-replication of dislocation density, the presented model shows results per slip system closer to10

DDD observations than would be possible with existing derivates of the Kocks-Mecking-based
multiplication model [7]. Thus, the proposed multiplication model provides a promising first
approach to extend the available CDD formulation of planar expanding dislocation loops by in-
cluding mechanisms of evolving dislocation networks. The model mimics the DDD observations
by including multiplication mechanisms, which involve an interplay of dislocations on different15

slip systems as induced by cross-slip and glissile reactions. The approach therefore provides a
basis for the description of the evolution of dislocation networks, which is demonstrated using
example systems.

However, there remain several open questions for the CDD formulation, providing a basis for
future research. First, an improved cross-slip model could be formulated based on homogeniz-20

ing further DDD cross-slip mechanisms such as e.g. proposed by [33]. Thereby, it could be ac-
counted for further mechanisms in the continuum formulation, which are based on features of the
dislocation microstructure instead of using a mechanism, which is solely driven by the resolved
shear stress. Furthermore, by accounting for an analytic orientation distribution as proposed
in [32], the cross-slip model can potentially be generalized for use in arbitrary microstructure25

configurations. Second, since the curvature density in the present form does not allow to dis-
criminate between curvature along the dislocation line and concentrated at single junction nodes,
the representation of mechanisms leading to the formation of stable dislocation networks, e.g. by
incorporating stable or sliding end-nodes of dislocation junctions is not yet possible. Therefore,
the contribution of line length production by loop expansion is also supposed to be overestimated30

in this case. To overcome this problem, the formulation should include ”stored” dislocation cur-
vature in stable or fixed end-nodes of dislocation junctions. Apart from glissile reactions, an
improved formulation could also include Lomer reactions and annihilation mechanisms, like the
collinear reaction, which limits the expansion of dislocations and provide a basis for the stability
of dislocation networks. Further, dislocation network mobility should incorporate a description,35

which captures the high scattering regarding the bow-out length and average travel distance of
dislocations in the DDD-simulation [1]. Therefore, some of the phenomenological assumptions
in the current model should be replaced by kinematically closed formulations for the evolution
e.g. of dislocation segments instead of closed loops.

5. Conclusion40

We introduce a dislocation multiplication model in the context of a dislocation based formu-
lation of crystal plasticity, which addresses the challenge of a direct homogenization of discrete
multiplication mechanisms through cross-slip and glissile reactions. The model is based on the
generation of new dislocation density at the expense of dislocation density on one (in case of
cross-slip) or two (in case of glissile reactions) other slip systems. Therefore, a key feature is45
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that the multiplication formulation couples the dislocation density evolution between different
slip systems.

The results show that the interplay of dislocation densities between the different slip systems
leads to a density evolution on all slip systems akin to DDD-simulations. Particularly, the distri-
bution of dislocation density distinguished between active and inactive slip systems is reproduced5

correctly. The coupling of the dislocation density evolution on multiple slip systems correctly
accounts for the deposition of dislocation density on inactive systems due to glissile reactions. In
contrast to multiplication models which are based on line length increase related to plastic slip,
dislocation density increase on inactive systems is able to contribute to further dislocation inter-
action. On active slip systems, new mobile dislocations are generated and successively expand10

due to the generation of curvature density contributing also to further plasticity and hardening.
Additionally, the results show that the generation of new dislocations in the continuum formula-
tion correlates well with the number of generated dislocation in DDD.

The work gives a first extension of the kinematic framework of CDD, which is based on
the evolution of closed dislocation loops within their respective glide planes, towards including15

topological aspects of evolving dislocation networks. An open issue is e.g. the proper translation
of dislocation curvature, which is equilibrated at junction nodes within the network and thus no
longer available for dislocation line length production, to enable a meaningful representation of
stable dislocation networks.
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Appendix A. Fcc crystal with different glissile reaction parameters

In the current Appendix, we investigate the net density loss due to the choice of parameters
in our model for the glissile reaction. The model as described by Eqs. (10) - (19) involves a dis-
location density decrease on the reacting slip systems (Eq. 17). If the parameters C2 in Eq. (15)30

and C3 in Eq. (17) are chosen as C3 > π
4C2, the glissile process leads to a net density annihi-

lation, which has to be overcome by expansion of the generated dislocations in order to result
in an overall dislocation density increase. In contrast to the results presented before, here, the
parameters are chosen as C3 = π

4C2 with C2 = 1. For this limiting case, the density reduction
and production cancels out, thus there is no overall change in line length for the glissile process35

depicted in Fig. 1 by combining Eqs. (15) and (17). The simulation setup is chosen as described
in section 2.3.2 considering glissile reactions and cross-slip. The parameter C1 in Eq. (13) is cho-
sen as C1 = 0.032 in order to scale the dislocation density production. This allows a dislocation
density increase per slip system in the range of the DDD results, as shown in Fig. A.10. It is
observed, that the dislocation density on active slip systems initially slightly decreases similar to40

Fig. 9. Furthermore, the increase in dislocation density is overestimated on all slip systems after
a strain of 0.4 %.
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Figure A.10: Same as Fig. 9(a), but with C1 = 0.032 and C3 = π
4 . The CDD results are plotted for each slip system

individually.

In order to have a detailed look at the contribution of the glissile reaction process, we consider
the averaged dislocation density in the inner part of the system given by a cubic volume with
half of the edge length of the full system. As explained in section 2.3.2, the initial dislocation
density in this area is approximately homogeneous. By minimizing the impact of the system
boundary, we thus investigate the contribution of the multiplication mechanisms to the change of5

the dislocation density evolution. The comparison of the density evolution for the two parameter
sets (according to Fig. A.10 and Fig. 9) up to 0.1% strain are given in table A.1. It can be seen that

Strain [%] C1 = 0.032, C3 = π/4 C1 = 0.064, C3 = 1
ρ [1/µm2] active ρ [1/µm2] inactive ρ [1/µm2] active ρ [1/µm2] inactive

0 1.60 1.60 1.60 1.60
0.02 1.60 1.60 1.60 1.60
0.04 1.60 1.61 1.58 1.60
0.06 1.65 1.63 1.62 1.60
0.08 1.80 1.66 1.82 1.61
0.1 1.97 1.69 2.04 1.63

Table A.1: Dislocation density evolution on active and inactive slip systems averaged over a central cubic volume with
half of the edge length of the full system up to 0.1 % strain. Comparison of two different parameter sets C1 = 0.032,C3 =
π
4 (shown in Fig. A.10) and C1 = 0.064,C3 = 1 (shown in Fig. 9).

for the parameter set of Fig. A.10 the dislocation density is stable in the evaluated volume on both
types of slip systems until a density increase is observed due to the multiplication mechanisms.
For the parameter set in Fig. 9, a minimal decrease in density prior to the increase is observed for10

the active systems only.
For further analysis of the density dip observed in Fig. A.10, the dislocation density leaving

the outer surfaces of the simulation volume can be evaluated by measuring the dislocation flux
on all slip systems through the outer system surfaces. The dislocation density leaving the system
is measured to be 0.22× 1012 1/m2 until a strain of 0.1 %. This confirms, that the dips are caused15

by the boundary impact on the dislocation flux.
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Appendix B. Perspectives for the cross-slip model

For the cross slip model in Section 2 we assumed a distribution of the dislocation density on
the circle of directions in the primary slip plane (indexed with p) based on the total dislocation
density ρp and the GND vector κp. Before we discuss the assumed distribution underlying the
model in the main paper we present a general approach for obtaining the amount of dislocation5

density which can cross slip. Following [30] we assume that cross slip is possible for dislocations
having a line direction within an angular interval ±∆ϕ around the positive and negative screw
dislocation (∆ϕ = 10◦ = π/18 in the main paper).

We assume a distribution of density ρp(ϕ) on the space of directions parametrized by the angle
ϕ a dislocation line includes with the (positive) screw direction. With this convention positive10

and negative screw directions are found at ϕ = 0 and ϕ = π, respectively. The distribution ρp(ϕ)
must be non-negative and has to fulfill the following constraints,∫ 2π

0
ρp (ϕ) dϕ = ρp, (B.1)∫ 2π

0
ρp (ϕ) (cosϕ, sinϕ) dϕ =

(
κ

p
s , κ

p
e

)
, (B.2)

where κp
s and κp

e denote the screw component and the edge component of the GND vector κp.
Given such a distribution function, the total amount of density which might cross slip is

obtained as15

ρ̃p =

∫ ∆ϕ

−∆ϕ

ρp (ϕ) dϕ +

∫ π+∆ϕ

π−∆ϕ

ρp (ϕ) dϕ. (B.3)

Any reasonable assumption on ρp (ϕ) therefore yields a possible cross slip density ρ̃p needed for
the cross slip model introduced in the main text.

The assumption underlying the cross slip model in the current work is

ρp(ϕ) =
1

2π
(ρp − ‖κp‖) + ‖κp‖δϕκ , (B.4)

where ϕκ denotes the angle which the GND direction includes with the screw direction, and δϕκ
denotes the Dirac delta-distribution located at this angle. Inserted into (B.3), the constant part20

yields what is called SSD part in the main text and the delta distribution yields the Heaviside
function term, as the integrals over the delta distribution evaluates to 1 if the angle ϕκ is within
the integration interval and to 0 else. The Heaviside function is the reason that in this model the
fraction of possible cross slip density may change discontinuously for high GND contents with
a direction close to the border of the cross slip regions defined by the angle ∆ϕ.25

Smooth options for assuming the density ρp(ϕ) are available in the literature. A simple ansatz
is to use a truncated tensor expansion [12] (equivalent to a truncated Fourier expansion [11]),
such that

ρp(ϕ) =
1

2π
[
ρp + 2κ · l(ϕ) + 4l(ϕ) · Ap · l(ϕ)

]
, (B.5)

with Ap obtained from the closure assumption (4) and l(ϕ) = (cosϕ, sinϕ).
The presumably best ansatz for assuming the density ρp(ϕ) derives from a maximum infor-30

mation entropy principle [32, 34]. This yields the density as a multiple of a von Mises distribution
around the GND direction in the form

ρp(ϕ) =
ρp

2πI0(Λ)
exp (Λ cos(ϕ − ϕκ)) , (B.6)
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where Λ is obtained from
I1(Λ)
I0(Λ)

=
‖κp‖

ρp , (B.7)

with I0 and I1 denoting modified Bessel functions of first kind. In order to use this maximum
entropy ansatz the latter equation needs to be (approximately) solved for Λ and an approxima-
tion for the cumulative distribution function of the von Mises distribution would be required to
simplify evaluating the integrals in (B.3).5
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