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Abstract Atmospheric models such as the Weather Research and Forecasting (WRF) model provide a
tool to evaluate the behavior of regional hydrological cycle components, including precipitation,
evapotranspiration, soil water storage, and runoff. Recent model developments have focused on coupled
atmospheric‐hydrological modeling systems, such as WRF‐Hydro, in order to account for subsurface,
overland, and river flow and potentially improve the representation of land‐atmosphere interactions. The
aim of this study is to investigate the contribution of lateral terrestrial water flow to the regional hydrological
cycle, with the help of a joint soil‐vegetation‐atmospheric water tagging procedure newly developed in the
so‐called WRF‐tag and WRF‐Hydro‐tag models. An application of both models for the high precipitation
event on 15 August 2008 in the German and Austrian parts of the upper Danube river basin (94,100 km2)
is presented. The precipitation that fell in the basin during this event is considered as a water source, is
tagged, and subsequently tracked for a 40‐month period until December 2011. At the end of the study period,
in both simulations, approximately 57% of the tagged water has run off, while 41% has evaporated back to the
atmosphere, including 2% that has recycled in the upper Danube river basin as precipitation. In
WRF‐Hydro‐tag, the surface evaporation of tagged water is slightly enhanced by surface flow infiltration and
slightly reduced by subsurface lateral water flow in areas with low topography gradients. This affects the
source precipitation recycling only in a negligible amount.

1. Introduction

Global and regional climate models have the ability to predict the atmospheric and terrestrial components of
the hydrological cycle, which are atmospheric water, precipitation, soil moisture, evaporation from the
Earth surface, and runoff (e.g., Dirmeyer, 2013). These models are routinely used to evaluate the effect of cli-
mate and land use change on, for example, precipitation (e.g., Dieng et al., 2017; Im et al., 2014; Laux et al.,
2017; Mahmood et al., 2014; Pielke et al., 2011; Quesada et al., 2017; Serdeczny et al., 2016; Smiatek et al.,
2016). However, such models generally have a crude representation of terrestrial hydrology and generally
neglect the horizontal transport of terrestrial water in dependence of topography and groundwater depth.

The partitioning of precipitation among the terrestrial water components is a complex process quantitatively
not fully understood in all its details yet (Brooks et al., 2015). As noted by Seneviratne et al. (2010), land sur-
face model (LSM) improvements are required in order to better represent soil moisture‐precipitation inter-
action and improve the realism of model results, thus making climate models more suitable for water
resources research. Potential LSM improvements can be reached by enhancing the description of physical
processes (e.g., Niu et al., 2011), as well as by refining the soil feature and land use information (e.g., Gao
et al., 2008).

Recent studies showed that considering the horizontal transport of terrestrial water in a climate model has
an impact on precipitation (e.g., Arnault, Wagner, et al., 2016; Arnault et al., 2018; Kerandi et al., 2017;
Larsen et al., 2016; Maxwell et al., 2007; Rahman et al., 2015; Rummler et al., 2019; Senatore et al., 2015;
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Wagner et al., 2016; Zhang et al. 2019). Indeed, spatially redistributing soil moisture modifies surface fluxes,
which potentially affects boundary layer dynamics, convection initiation and precipitation (e.g., Pielke,
2001).

The present study aims at further investigating and quantifying the contribution of lateral terrestrial water
flow to the regional hydrological cycle by using a climate model which allows considering the horizontal
transport of terrestrial water. For this purpose, as in, for example, Senatore et al. (2015), Arnault, Wagner,
et al., 2016, Arnault et al., 2018), and Kerandi et al. (2017), we generate and compare two simulations with
(1) the Weather Research and Forecasting (WRF) model (Skamarock & Klemp, 2008), a traditional climate
model which considers the terrestrial water transport as being only vertical, and (2) the hydrologically
enhanced versionWRF‐Hydro (Gochis et al., 2015) which includes surface and subsurface lateral water flow.

The atmospheric branch of the hydrological cycle simulated by a climate model can be examined with a sur-
face evaporation tagging method, which consists in tracking the evaporated water online, that is throughout
the model run, from a source region until it precipitates or is advected outside of the simulation domain
(Arnault, Knoche, et al., 2016; Dominguez et al., 2016; Insua‐Costa & Miguez‐Macho, 2018; Knoche &
Kunstmann, 2013; Sodemann et al., 2009; Wei et al., 2015, 2016). It is noted that Arnault, Knoche, et al.
(2016) and Dominguez et al. (2016) and Insua‐Costa andMiguez‐Macho's (2018) taggingmethods were inde-
pendently developed in theWRFmodel. The surface evaporation tagging method allows to quantify regional
precipitation recycling, which is the relative amount of local precipitation originating from local surface eva-
poration in a region. For a 1 × 106‐km2 area in the West African monsoon region, Arnault, Knoche, et al.
(2016) found a regional precipitation recycling of about 12%. A similar number was found by Dominguez
et al. (2016) for an approximately 2 times smaller area in the North American monsoon region, as a moun-
tain ridge enhances the recycling of precipitation in this particular region.

The terrestrial branch of the hydrological cycle simulated by a LSM can be examined with a precipitation
tagging method, which consists in tracking online the precipitation from a source region until it runs off
or evaporates at the surface. Recently, Hu et al. (2018) presented the first implementation of such a precipi-
tation tagging method within the community Noah LSM with multiparameterization options (Noah‐MP,
Niu et al., 2011). Applying their method to an extreme precipitation event at the beginning of the cold season
in the U.S. Pacific Northwest, Hu et al. (2018) found that approximately 30% of the event water remains in
the soil after a 6‐month period, so that the selected event could contribute to local surface evaporation and
groundwater recharge even after a 6‐month period. At the watershed scale, Hu et al. (2018) further showed
that relaxing the assumption of complete mixing between tagged and total soil moisture shortens the transit
time of event water in the first meter of soil, which better fits transit time derived from isotope measure-
ments. For the entire simulation domain covering a land area of 80,000 km2, however, Hu et al. (2018) could
not assess the benefit of relaxing the complete mixing assumption, as observations of transit time at this scale
are not available.

The above‐cited water tagging methods allow to evaluate only separately the atmospheric and terrestrial
branches of the hydrological cycle. Nevertheless, a better understanding of water pathways in the Earth sys-
tem could be reached by adapting these water tagging methods to both atmospheric and terrestrial water
compartments within one model. In this study and for the first time, it is proposed to join the precipitation
tagging method (Hu et al., 2018) and surface evaporation tagging method (e.g., Arnault, Knoche, et al., 2016;
Insua‐Costa & Miguez‐Macho, 2018) within the so‐called joint soil‐vegetation‐atmospheric water tagging
(SVA‐TAG) procedure and apply it for a large river basin and a real event. In particular, we extend
Arnault, Knoche, et al. (2016) WRF tagging method to the terrestrial branch of the hydrological cycle within
the newly developedWRF‐tag andWRF‐Hydro‐tag models. Similar as in Hu et al. (2018), the SVA‐TAG pro-
cedure consists in tracking precipitation through the terrestrial water compartments, (1) vertically within
the Noah LSM (Chen &Dudhia, 2001) in bothWRF‐tag and inWRF‐Hydro‐tag, (2) additionally horizontally
within the surface and subsurface routing modules, and (3) through the atmospheric compartment for the
evaporated part. In comparison to Hu et al.'s (2018) precipitation taggingmethod, the one proposed here also
includes atmospheric water tracking. In the following sections, with the term “precipitation tagging” we
refer to the method including both terrestrial and atmospheric water tracking.

The objective of precipitation tagging with the SVA‐TAG procedure is to evaluate the fate of precipitated
water in both the soil and in the atmosphere if it evaporates. The contribution of lateral terrestrial water
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flow to the regional hydrological cycle is investigated by comparing precipitation tagging results from two
simulations performed with WRF‐tag and WRF‐Hydro‐tag.

A detailed description of the SVA‐TAG procedure newly developed in WRF‐tag and WRF‐Hydro‐tag is pre-
sented in section 2. The setup of an application case study is provided in section 3, and results are discussed
in section 4. A summary and perspectives are finally given in section 5.

2. Joint SVA‐TAG Procedure and Budget Diagnostics

This section details the implementation of the joint soil‐vegetation atmospheric water tagging (SVA‐TAG)
procedure within the WRF model (Skamarock & Klemp, 2008) and its hydrologically enhanced version
WRF‐Hydro (Gochis et al., 2015). These two climate models share a common description of the atmo-
spheric physics. The difference between WRF and WRF‐Hydro lies in the treatment of terrestrial hydrolo-
gical processes, as the lateral terrestrial water flow is neglected in WRF, but considered in WRF‐Hydro, as
illustrated in Figure 1. The WRF and WRF‐Hydro models used in this study are based on the WRF version
3.7 (available at http://www2.mmm.ucar.edu/wrf/users/downloads.html). The selected hydrological exten-
sion of WRF‐Hydro is based on the version 3.0 (available at https://ral.ucar.edu/projects/wrf_hydro/model‐
code), which is compatible with the WRF model version 3.7.

The SVA‐TAG procedure is an online method, which is used to track precipitation, with the objective to
more precisely analyze and quantify the water pathways through the terrestrial and atmospheric compart-
ments of the hydrological cycle. The SVA‐TAG procedure is developed in the WRF andWRF‐Hydro models,
by adapting and extending the atmospheric water tagging method already available in the WRF model ver-
sion 3.5.1 (Arnault, Knoche, et al., 2016). The tagging‐enhanced models versions are referred to as WRF‐tag
and WRF‐Hydro‐tag.

For the precipitation tracking application, SVA‐TAG takes as input the source precipitation Psource (m/s),
defined for a source region and a time period. The method consists in tagging and tracking this water
source through the land surface and through the atmosphere if evaporation occurs. The fate of the tagged
soil‐vegetation‐atmospheric water is described by tagged variables and tagged prognostic equations newly
implemented in the source code. In both terrestrial and atmospheric water compartments, the total and
tagged water are assumed to be completely mixed, so that the physical processes acting on tagged water
are determined with tagged ratio weights, as detailed in the following sections.

2.1. Terrestrial Water Tagging in WRF‐tag

In the WRF configuration considered in this study, the surface evaporation is computed with the Noah LSM
(Chen & Dudhia, 2001). Noah LSM is a column model, so that only the vertical water flow is taken into
account. A one‐layer snowpack, a one‐layer canopy water, and a multilayer soil moisture are resolved.
Four additional prognostic variables are considered to describe the fate of tagged terrestrial water in

WRF‐tag, which are the tagged snow equivalent water content W tagged
s (m), the tagged canopy water

W tagged
c (m), the tagged liquid soil moisture θtaggedliq (−), and the tagged frozen soil moisture θtaggedice (−). The

prognostic equation of W tagged
s is implemented as follows:

W tagged
s

� �
t|fflfflfflfflfflffl{zfflfflfflfflfflffl}

a1

¼ Psource
solid|fflffl{zfflffl}
a2

−rsRmelt|fflfflffl{zfflfflffl}
a3

−rsEs|{z}
a4

(1)

The subscript t (s) stands for the time derivate, and W tagged
s

� �
t (m/s) is referred to as the tendency ofW tagged

s .

Psource
solid (m/s) is the solid part of the source precipitation, Rmelt (m/s) is the total snowmelt, Es (m/s) is the total

snow sublimation, and rs (−) is the ratio between tagged and total snow equivalent water content. In

equation (1), the tendency ofW tagged
s (a1) is the sum of the following source and sink terms: source snowfall

(a2), tagged snowmelt (a3), and tagged snow sublimation (a4). A list of symbols and mathematical operators
is provided in the Appendix A.

The prognostic equation of W tagged
c is implemented as follows:
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W tagged
c

� �
t|fflfflfflfflfflffl{zfflfflfflfflfflffl}

b1

¼ σf P
source
liq|fflfflfflfflffl{zfflfflfflfflffl}
b2

þ σf rsRmelt|fflfflfflfflffl{zfflfflfflfflffl}
b3

−rcRdrip|fflfflffl{zfflfflffl}
b4

−rcEc|{z}
b5

(2)

σf (−) is the vegetation fraction, Psource
liq (m/s) is the liquid part of the source precipitation, Rdrip (m/s) is the

total water dripping from the canopy to the bare soil, Ec (m/s) is the total canopy water evaporation, and rc
(−) is the ratio between tagged and total canopy water. Dripping occurs when the amount of canopy water

exceeds a threshold. In equation (2), the tendency ofW tagged
c (b1) is the sum of the following source and sink

terms: source rainfall falling on the canopy (b2), tagged snowmelt on the canopy (b3), tagged canopy water
drip (b4), and tagged canopy water evaporation (b5). In this approach, the canopy interception of solid
source precipitation is not explicitly represented.

The tagged water falling on bare soil is referred to as Ptagged
bare (m/s):

Ptagged
bare ¼ 1−σf

� �
Psource
liq þ 1−σf

� �
rsRmelt þ rcRdrip (3)

Ptagged
bare is the sum of liquid source precipitation falling on bare soil, tagged snowmelt on bare soil, and tagged

canopy water drip. The ratio betweenPtagged
bare and the total water falling on bare soil Pbare (m/s), as well as the

surface infiltration I (m/s), are used to derive the tagged surface infiltration Itagged (m/s):

Itagged ¼ Ptagged
bare

Pbare
I (4)

Defining the tagged surface runoff Rtagged
S (m/s) as the tagged surface infiltration excess, it becomes:

Rtagged
S ¼ Ptagged

bare −Itagged (5)

Figure 1. Conceptual view of the terrestrial compartments in theWRF andWRF‐Hydromodeling systems detailed in sec-
tion 2. Water fluxes are represented by red arrows. WRF = Weather Research and Forecasting.

10.1029/2019WR024780Water Resources Research

ARNAULT ET AL. 6220



Within each soil layer, the partitioning between θtaggedliq and θtaggedice is evaluated with a soil freezing/thawing

module as follows:

θtaggedice

� �freez=thaw

t
¼ rθliqθfreezing−rθiceθthawing

θtaggedliq

� �freez=thaw

t
¼ −rθliqθfreezing þ rθiceθthawing

(6)

θfreezing (s
−1) gives the rate of freezing of the total liquid soil moisture and θthawing (s

−1) gives the rate of
thawing of the total frozen soil moisture. rθliq (−) is the ratio between tagged and total liquid soil moisture,

and rθice (−) is the ratio between tagged and total frozen soil moisture. θtaggedice

� �freez=thaw

t
(s−1) and

θtaggedliq

� �freez=thaw

t
(s−1) give the rate of change of θtaggedice and θtaggedliq through freezing/thawing. Tagged frozen

soil moisture is considered to be motionless.

Concerning the vertical transport ofθtaggedliq in the model soil layers, as already mentioned above, we assume a

complete mixing between tagged and total liquid soil moisture (similar to Hu et al., 2018). The prognostic

equation of θtaggedliq is derived from the one‐dimensional diffusive form of Richard's equation used to describe

the vertical transport of the total liquid soil moisture θliq (−):

Δzs θtaggedliq

� �
t|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

c1

¼ Δzs rθliqDθ θliq
� �

z

� �
z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

c2

þ Δzs rθliqKθ
� �

z|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
c3

þ Ftagged
θ|fflfflffl{zfflfflffl}
c4

(7)

Subscript z (m) stands for the derivate operator in the vertical direction; Δzs (m) is the soil layer thick-

ness; Dθ (m
2/s) is the soil water diffusivity; Kθ (m/s) is the hydraulic conductivity; Ftagged

θ (m/s) represents
the tagged external forcing, which is the sum of tagged surface infiltration and tagged direct evaporation

Etagged
d (m/s) for the first soil layer and tagged plant transpiration Etagged

t (m/s) for the soil layers within

the root depth. Etagged
d and Etagged

t are assumed to be proportional to the relative amount of tagged liquid
soil moisture, so that they are computed as the product between total direct evaporation/total transpira-
tion and rθliq .

In equation (7), the tendency of tagged liquid soil moisture content (c1) is the sum of tagged diffusion (c2),
tagged conduction (c3), and the tagged forcing term (c4), in each soil layer. The tagged diffusion and tagged
conduction give the amount of tagged liquid soil moisture exchanged between two adjacent soil layers.
Following Hu et al. (2018), the tagged diffusion (c2) is defined as the total diffusion weighted by rθliq in

the soil layer from which θliq is exchanged through diffusion, which depends on the sign of the vertical
gradient of θliq. Similarly, the tagged conduction (c3) is also defined as the total conduction weighted by
rθliq in the soil layer from which θliq is exchanged through conduction. It is emphasized that the soil layer

from which θliq is exchanged through conduction does not vary with the sign of the vertical gradient of
θliq, as conduction of water in the soil is a downward flux. For this reason, contrarily to Hu et al. (2018),
the tagged diffusion and tagged conduction in equation (7) are treated separately. The tagged water flux
crossing the lower boundary of the bottom soil layer through conduction, which is part of the term (c3) in

equation (7), is considered as the tagged underground runoff Rtagged
G (m/s).

Concerning the implementation of equation (7), as noted by Hu et al. (2018), the total diffusion is not expli-
citly given by the time‐implicit scheme used to solve the Richard's equation in the Noah LSM. Accordingly,
this total diffusion is diagnosed in order to calculate the term (c2) in equation (7).

The sum of tagged snow sublimation, tagged canopy water evaporation, tagged direct evaporation, and
tagged plant transpiration is referred to as the tagged surface evaporation Etagged (m/s). Considering the
amount of tagged snow equivalent water, tagged canopy water and tagged soil moisture as the components
of the tagged terrestrial water storage Stagged (m), the following budget equation of Stagged can be derived
from equations (1)–(7):
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Stagged
� �

t|fflfflfflfflffl{zfflfflfflfflffl}
d1

¼ Psource|fflffl{zfflffl}
d2

−Etagged|fflfflffl{zfflfflffl}
d3

−Rtagged
S|fflfflffl{zfflfflffl}
d4

−Rtagged
G|fflfflffl{zfflfflffl}
d5

(8)

In equation (8), the tendency of Stagged (d1) is the sum of the following source and sink terms: source preci-
pitation (d2), tagged surface evaporation (d3), tagged surface runoff (d4), and tagged underground runoff
(d5). The terms of equation (8) are added to the WRF model outputs. This equation allows quantifying the
partitioning of Psource among the terrestrial water compartments.

2.2. Terrestrial Water Tagging in WRF‐Hydro‐tag

In the WRF‐Hydro configuration considered in this study, the Noah LSM is also used to resolve snowpack,
canopy water, and soil moisture. In comparison to WRF, WRF‐Hydro further resolves surface and subsur-
face lateral water flow as illustrated in Figure 1. Accordingly, the ponded waterWp (m) is introduced in order
to describe overland flow. Furthermore, WRF‐Hydro requires a subgrid at higher resolution in order to
resolve smaller orographic features for the surface and subsurface routing. The fate of tagged overland flow
in WRF‐Hydro‐tag is evaluated with one additional prognostic variable, which is the tagged ponded water

W tagged
p (m). The tagged surface runoff in equation (5) is a source of W tagged

p , so that in WRF‐Hydro‐tag

equation (5) is modified as follows:

ΔW tagged
p

n o
I
¼ Ptagged

bare −Itagged
� �

Δt (9)

ΔW tagged
p

n o
I
(m) is the change of W tagged

p due to tagged infiltration excess within a time step Δt (s).

W tagged
p andθtaggedliq are conservatively disaggregated on the subgrid at higher horizontal resolution, in order to

compute the tagged surface and tagged subsurface routing (described later). The disaggregated tagged

ponded water and tagged liquid soil moisture are namedWhires;tagged
p (m) and θhires;taggedliq (−); the superscript

hires indicates that the variable is defined on the subgrid. The disaggregation factor ofW tagged
p is determined

according to the spatial distribution of the disaggregated total ponded waterWhires
p (m), as the ratio between

Whires
p and Wp. This disaggregation factor is initialized to 1 and is updated at each time step. Similarly, the

disaggregation factor of θtaggedliq is also determined as the ratio between the disaggregated total liquid soil

moisture θhiresliq (−) and θliq.

InWRF‐Hydro, exfiltration occurs when, as a result of the disaggregation,θhiresliq becomes larger than the satu-

rated liquid soil moisture. In this case the water excess from the bottom soil layer is exfiltrated upward, till
the surface. In WRF‐Hydro‐tag, tagged exfiltration from a soil layer to the above one, or to the surface, is

assumed to be equal to the exfiltration ofθhiresliq weighted by the relative amount ofθhires;taggedliq in the considered

layer. The change in Whires;tagged
p associated with this exfiltration process, within a time step, is called

ΔWhires;tagged
p

n o
E
(m).

Concerning the subsurface routing module in WRF‐Hydro, the available water is defined as the amount of

θhiresliq above the field capacity. This available water is determined for each soil column; it is considered as

“free” and flows laterally along the water table gradient following the Dupuit‐Forcheimer saturated flow
assumptions. Each soil column receives available water flow from upstream and provides available water
flow toward downstream. The net available water flow is referred to as the net subsurface lateral water flow.

In WRF‐Hydro‐tag, the net tagged subsurface lateral water flow qhires;taggedsub (m) is assumed to be the net dif-
ference between upstream and downstream tagged available water flow, and is computed as follows:

qhires;taggedsub ¼ rhiresCavail

� �upstream
qhiressub

� �IN

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
qhires;taggedsubf gIN

− rhiresCavail

� �local
qhiressub

� �OUT

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
qhires;taggedsubf gOUT

(10)
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qhiressub

� �IN
(m) is the incoming total available water flow from upstream and qhiressub

� �OUT
(m) is the outgoing

total available water flow toward downstream, following the steepest descent. rhiresCavail (−) is the ratio between
tagged and total available water. The superscript upstream indicates that the ratio is evaluated for the
upstream soil column, and the superscript local indicates that the ratio is evaluated for the local soil column.

qhires;taggedsub

n oIN
(m) is the incoming tagged available water flow from upstream, and qhires;taggedsub

n oOUT
(m) is

the outgoing tagged available water flow toward downstream.

Once qhires;taggedsub is computed for each soil column, it is vertically distributed as follows. If qhires;taggedsub is nega-
tive, which means that the soil column loses tagged water, the tagged water amount to be retrieved is

removed from the top soil layer downward. If qhires;taggedsub is positive, which means that the soil column
receives tagged water, the tagged water amount to be added is distributed from the bottom soil layer toward
the surface, using the relative amount of tagged liquid soil moisture as a depth‐weighting factor. This depth‐
weighting factor is applied in order to prevent tagged liquid soil moisture in the first soil layer to be directly
moved to the bottom soil layer when the tagged liquid soil moisture has not infiltrated to that bottom layer

yet. The change in Whires;tagged
p associated with this subsurface routing process, within a time step, is the

tagged exfiltrating subsurface water flow ΔWhires;tagged
p

n o
SSR

(m).

In WRF‐Hydro, the subgrid also provides a river channel network, in order to compute the channel flow

routing for resolving river discharge. If Whires
p is located on a river channel grid cell, the amount of Whires

p

exceeding the retention depth is removed from the land surface and added to the channel river flow. The
retention depth is defined as a linear decreasing function of terrain slope, with a default value of 0.001

mm for flat terrain. The change in Whires
p caused by river runoff, within a time step, is called ΔWhires

p

n o
CR

(m). In WRF‐Hydro‐tag, the change in tagged ponded water caused by river runoff is called

ΔWhires;tagged
p

n o
CR

(m) and is computed by using the ratio rhiresp (−) between tagged and total ponded water

as weighting factor.

ΔWhires;tagged
p

n o
CR

¼ rhiresp

n olocal
ΔWhires

p

n o
CR

(11)

Concerning the channel flow routing module in WRF‐Hydro, water flow in the river channel network is
described with a diffusive wave formulation allowing for backwater effects, and channel geometrical
parameters and Manning's roughness coefficient prescribed as functions of Strahler stream order
(Strahler, 1957). Channel‐land surface interaction is, however, not considered in this version of WRF‐

Hydro, so that the channel flow routing does affect neither Whires
p nor θhiresliq . A groundwater bucket

can also be activated in order to estimate the baseflow contribution to the channel flow. In the pass‐
through option, this bucket model collects the underground runoff from the Noah LSM and distributes
it to all the channel grid cells of the basin. In this conceptual approach, however, the baseflow does
not interact with the land surface. Neither channel flow tagging nor baseflow tagging is included in
WRF‐Hydro‐tag.

Concerning the overland routing module inWRF‐Hydro, the lateral flow ofWhires
p is computed along the gra-

dient of ponded water elevation using a diffusive wave equation adapted from Julien et al. (1995). Each grid
point receives surface water flow from upstream and provides surface water flow toward downstream, which
results in a net surface lateral water flow. In WRF‐Hydro‐tag, the net tagged surface lateral water flow

qhires;taggedsfc (m) is assumed to be the net difference between upstream and downstream tagged surface water
flow, and is computed as follows:

qhires;taggedsfc ¼ rhiresp

n oupstream
qhiressfc

� �IN

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
qhires;taggedsfcf gIN

− rhiresp

n olocal
qhiressfc

� �OUT

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
qhires;taggedsfcf gOUT

(12)
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qhiressfc

� �IN
(m) is the incoming total surface flow from the upstream grid point and qhiressfc

� �OUT
(m) is the

outgoing total surface flow toward the downstream grid point, following the steepest descent. Similarly,

qhires;taggedsfc

n oIN
(m) is the incoming tagged surface flow from the upstream grid point and qhires;taggedsfc

n oOUT

(m) is the outgoing tagged surface flow toward the downstream grid point. The change in tagged ponded

water caused by overland flow is called ΔWhires;tagged
p

n o
OVR

(m) and is equal to qhires;taggedsfc .

In WRF‐Hydro‐tag, the definition of the tagged surface runoff Rtagged
S (m/s) is extended and includes tagged

overland flow.

Rtagged
S ¼

ΔWhires;tagged
p

n oagg

CR
− ΔWhires;tagged

p

n oagg

OVR

Δt
(13)

The superscript agg indicates aggregated fields from the finer subgrid to the coarserWRF grid. With this defi-
nition, tagged surface runoff is (1) enhanced when tagged ponded water enters a channel grid cell, (2)
enhanced when the net tagged overland flow is negative, and (3) reduced when the net tagged overland flow

is positive. In WRF‐Hydro‐tag, the definition of the tagged underground runoffRtagged
G (m/s) is also extended

and includes tagged subsurface lateral water flow.

Rtagged
G

� �
WRF‐Hydro‐tag

¼ Rtagged
G

� �
WRF‐tag

−
qhires;taggedsub

n oagg

Δt
(14)

Rtagged
G

� �
WRF‐tag

is the Rtagged
G formulation considered in WRF‐tag, and Rtagged

G

� �
WRF‐Hydro‐tag

is the updated

Rtagged
G formulation considered in WRF‐Hydro‐tag. With this definition, tagged underground runoff is (1)

enhanced when the tagged soil moisture flux crosses the lower boundary of the bottom soil layer through
conduction, (2) enhanced when the net tagged subsurface lateral water flow is negative, and (3) reduced
when the net tagged subsurface lateral water flow is positive. The advantage of equations (13) and (14) is
to allow closing the tagged terrestrial water budget with WRF‐Hydro‐tag using the same tagged water flux
variables as with WRF‐tag.

Whires;tagged
p and θhires;taggedliq are aggregated back to the coarser WRF grid using a simple mean operator, in

order to update W tagged
p and θtaggedliq . The prognostic equation of W tagged

p that has been implemented in

WRF‐Hydro‐tag can be written as follows:

W tagged
p

� �
t|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

e1

¼
ΔW tagged

p

n o
I

Δt|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
e2

þ
ΔWhires;tagged

p

n oagg

E

Δt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
e3

þ
ΔWhires;tagged

p

n oagg

SSR

Δt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
e4

−Rtagged
S|fflfflffl{zfflfflffl}
e5

(15)

In equation (15), the tendency of tagged surface waterW tagged
p (e1) is the sum of the following source and sink

terms: tagged infiltration excess (e2), tagged exfiltration (e3), tagged exfiltrating subsurface flow (e4), and
tagged surface runoff (e5).

Accordingly, the prognostic equation of tagged column soil moisture contentW tagged
θ (m) in WRF‐Hydro‐tag

can be written as follows:

W tagged
θ

� �
t|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

f 1

¼ Itagged|fflffl{zfflffl}
f 2

−Etagged
d|fflfflffl{zfflfflffl}
f 3

−Etagged
t|fflfflffl{zfflfflffl}
f 4

−
ΔWhires;tagged

p

n oagg

E

Δt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f 5

−
ΔWhires;tagged

p

n oagg

SSR

Δt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f 6

−Rtagged
G|fflfflffl{zfflfflffl}
f 7

(16)
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In equation (16), the tendency ofW tagged
θ ( f1) is the sum of the following source and sink terms: tagged infil-

tration ( f2), tagged direct evaporation ( f3), tagged plant transpiration ( f4), tagged exfiltration ( f5), tagged
exfiltrating subsurface flow ( f6), and tagged underground runoff ( f7).

The budget of tagged terrestrial water equation (8) implemented in the Noah LSM (section 2.1) can also be

used in the WRF‐Hydro‐tag framework after adding W tagged
p to the tagged soil storage variable Stagged. The

updated formulations of Stagged, Rtagged
S , and Rtagged

G are added to the WRF‐Hydro‐tag outputs, so that the
tagged terrestrial water budgets from WRF‐tag and WRF‐Hydro‐tag simulations can be easily compared.
Such a comparison aims at quantifying the effect of lateral terrestrial water flow on the partitioning
of Psource.

2.3. Atmospheric Water Tagging in WRF‐tag and WRF‐Hydro‐tag

The atmospheric core of theWRF andWRF‐Hydro models offers a set of physical parameterizations in order
to account for subgrid‐scale processes. Subscale atmospheric processes that are usually parameterized are
the short and long wave radiation, atmospheric turbulence, and cumulus convection. At moist convection
permitting resolution (horizontal grid spacing of the order of a few kilometers) cloud physics can be assumed
to be resolved by the microphysics scheme without the help of a cumulus parameterization.

Following Arnault, Knoche, et al. (2016), in case of disabled cumulus parameterization, the tagged surface
evaporation Etagged can be tracked in the atmosphere until it precipitates or is advected outside of the simu-
lation domain. This method can be used with bothWRF‐tag andWRF‐Hydro‐tag, as these two models share
the same atmospheric core. The evaporation tagging method was first implemented within the WRF single‐
moment five‐class microphysics scheme (WSM5) of Hong et al. (2004), and the Yonsei University (YSU) pla-
netary boundary layer (PBL) scheme of Hong et al. (2006). Now, the method is extended and additionally
implemented in the WRF single‐moment six‐class microphysics scheme (WSM6) of Hong and Lim (2006)
and the asymetric convective model version 2 (ACM2) PBL scheme of Pleim (2007), in order to widen the
range of possible applications. Implementation details are similar to those already provided in Arnault,
Knoche, et al. (2016) and are not repeated here for the sake of brevity.

As in Arnault, Knoche, et al. (2016), the tendency equations of tagged water species are vertically and
temporally integrated and summed online during the model run, in order to provide the budget equation
of the two‐dimensional tagged atmospheric water content Wtagged (m) in the model outputs:

W tagged
� �

t|fflfflfflfflfflffl{zfflfflfflfflfflffl}
g1

¼ Etagged|fflfflffl{zfflfflffl}
g2

−Otagged
NET|fflfflffl{zfflfflffl}
g3

−Ptagged|fflffl{zfflffl}
g4

(17)

In equation (17), the tendency of Wtagged (g1) is the sum of the following source and sink terms: tagged
surface evaporation (g2), net outflow of tagged atmospheric water (g3), and tagged precipitation (g4). In this
approach, Ptagged is not further tracked in the soil, except if it falls in the source region during the tagging
period, as in this case it is part of Psource. Integrating equation (17) spatially in the source region and tempo-
rally for a sufficiently long period, the ratio between Ptagged and Psource gives an estimate of the recycling of
the source precipitation occurring in the source region. It is emphasized that the source precipitation recy-
cling aims at quantifying the fate of precipitated water in the atmosphere, whereas the regional precipitation
recycling (e.g., Arnault, Knoche, et al., 2016; Dominguez et al., 2016) aims at quantifying the source of a pre-
cipitated water, particularly from local surface evaporation in a given region. Therefore, source precipitation
recycling and regional precipitation recycling are two distinct measures, and source precipitation recycling
results obtained in this study are not directly comparable to regional precipitation recycling results
previously published.

The terms of equation (17) are added to the model outputs. This equation allows further on to quantify the
partitioning of Psource among the atmospheric water compartments in WRF‐tag/WRF‐Hydro‐tag.

3. Application Study
3.1. WRF and WRF‐Hydro Models Setup

In order to demonstrate the newly developed SVA‐TAG procedure described in section 2, an application of
WRF and WRF‐Hydro for the upper Danube river basin of Germany and Austria (94,100 km2, displayed in
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Figure 2b) is presented. The study period is 2008–2011, during which Danube streamflow data are available
at the location of Kienstock (Austria), the outlet of the subcatchment considered in this study. The choice of
this study region is motivated by the fact that this is one of the main river basins in central Europe and the
proven reasonable WRF‐Hydro performance in this case (Arnault et al., 2018). In the following, the study
region is referred to as Δ. Two subregions are also considered, namely, the northern subregion Δ1 character-
ized by moderate topography and the southern subregion Δ2 characterized by steep topography, in order to
analyze the respective effects of lateral terrestrial water flow and topography on water pathways.

For the WRF setup, the single domain shown in Figure 2a is considered. It covers the study region Δ, with
150 × 200 horizontal grid points and a grid spacing of 5 km.With such a horizontal resolution the simulation
can be considered as convection‐permitting (Karki et al., 2017), so that cumulus parameterization is dis-
abled in this setup. The vertical grid has 50 vertical levels up to 10 hPa. The model is initialized at 0000
UTC on 1 January 2007 and run for five consecutive years, using the 6‐hourly operational analyses from
the European Center for Medium‐range Weather Forecast at 0.125° horizontal resolution for the initial
and lateral boundary condition. The model time step is set to 30 s. Following Rummler et al. (2019), the first
simulation year is considered as spin‐up period for land surface variables. For the parameterization of
subgrid‐scale processes, the long and short wave radiation schemes of Mlawer et al. (1997) and Dudhia
(1989), and the ACM2 PBL schemes are enabled. Microphysical processes are described with the WSM6
scheme and soil processes with the Noah LSM. Using the precipitation data set from the European
Climate Assessment & Dataset project (Haylock et al., 2008), Arnault et al. (2018) showed that these WRF
parameterization options reduce the precipitation bias for central Europe and are hence suitable for an
application in the area of interest.

In the default Noah LSM there are four soil layers with respective thicknesses of 0.1, 0.3, 0.6, and 1.0 m,
resulting in a total soil thickness of 2 m. For a precipitation tagging application, as shown by Hu et al.
(2018), this vertical gridding is too coarse to fully capture the lag of tagged soil moisture response in deeper
layers. Therefore, the default four soil layers are replaced by 20 soil layers with a constant thickness of 0.1 m,
thus keeping the total soil thickness of 2 m. The soil layer numbers defining the depths of the root zone,
which are provided for each vegetation class in a look‐up table, have beenmodified in order to keep the same
root depths as in the default Noah LSM. In comparison to Arnault et al. (2018), the Noah LSM has been cali-
brated in order to reduce the simulated surface evaporation amounts and improve the resemblance to the
surface evaporation product from the model tree ensemble (Jung et al., 2009, 2010). In particular, the bare
soil evaporation parameter which has a default value of 2 (see details in Ek et al., 2003) has been set to 4,
and the minimum stomatal resistance of the forest land use/land cover classes has been multiplied by a
factor of 2.

A WRF‐Hydro simulation is also conducted, using the same setup as described above for theWRF part. For
theHydro part, a subgrid with a grid spacing of 500 m is considered in order to compute subsurface, overland
and channel flow routing (Figure 2b). The routing processes are computed with a time step of 30 s, as for the
WRF part. The subgrid is obtained with theWRF‐Hydro Pre‐processing Tool. The digital elevation data from
the hydrological data and maps based on Shuttle Elevation Derivatives at Multiple Scales (HydroSHEDS)
data base (Lehner et al., 2008) serves as input, and the minimal number of pixels to define a stream is set
to 3. A groundwater bucket using the pass‐through option is also activated, in order to estimate the baseflow
contribution in the upper Danube river basin. In this WRF‐Hydro setting the default values for surface
roughness, lateral hydraulic conductivity, retention depth, and channel parameters are used, except for
the Manning coefficients, which have been decreased for calibration purpose, ranging from 0.08 at the
stream order 1 to 0.01 at the stream order 8.

WRF and WRF‐Hydro model outputs are saved at an hourly interval. In WRF‐Hydro, additionally, stream-
flow is accumulated during the run and saved at a daily interval.

3.2. Model Evaluation

Model results are evaluated with the daily gridded precipitation product from the European Climate
Assessment & Dataset project (Haylock et al., 2008), referred to as POBS, the monthly gridded surface
evaporation product from themodel tree ensemble (Jung et al., 2009, 2010), referred to as EOBS, and the daily
discharge at gauge Kienstock from the Global Runoff Data Center (2015), referred to as QOBS.
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Monthly time series of Δ‐averaged P and E, and Q at Kienstock are displayed in Figure 3. In WRF, the dis-
charge at Kienstock is evaluated with the Δ‐averaged runoff R, which is the sum of surface and underground
runoff. Both WRF andWRF‐Hydro approximately reproduce the observed monthly variations of these three

components of the hydrological cycle. Precipitation is mostly overesti-
mated, with an annual difference to observation of +45.5 mm/year
(+4.6%) for WRF and 46.8 mm/year (+4.8%) for WRF‐Hydro.

The annual cycle of surface evaporation is well captured by both models,
with some overestimation during the winter months and underestimation
during the spring and autumn months. Annually, WRF overestimates
EOBS by 2.7 mm/year (+0.6%) and WRF‐Hydro by 7.3 mm/year (+1.5%).
The slight increase in surface evaporation induced by WRF‐Hydro is the
consequence of ponded water infiltration, which increases the soil water
storage, as discussed by, for example, Senatore et al. (2015), Arnault
et al. (2018), Rummler et al. (2019), and Zhang et al. (2019).

Strikingly, the monthly variation of Δ‐averaged runoff in WRF matches
the monthly variation of discharge at Kienstock in WRF‐Hydro and is
close to the observation. This demonstrates the ability of both WRF and
WRF‐Hydro in closing the Δ‐averaged terrestrial water balance at the
monthly time scale. The modeled total runoff and discharge are generally
underestimated with an annual difference to observation of −19.1
mm/year (−3.3%) for WRF and −24.0 mm/year (−4.1%) for WRF‐
Hydro. This negative bias could be related to groundwater dynamics,
which is well captured neither by the Δ‐averaged underground runoff in
WRF nor by the groundwater bucket and pass‐through option in WRF‐
Hydro. The slight decrease in annual discharge in WRF‐Hydro is related
to the above‐discussed slight increase in annual surface evaporation
caused by the ponded water infiltration.

Daily time series ofΔ‐averaged PWRF, PWRF ‐ Hydro, and POBS are displayed
in Figure 4. The time series of Figure 4a have been filtered with a 7‐day
moving average filter for visualization purpose. The unfiltered WRF and
WRF‐Hydro time series are close, each with a correlation to observation
of 0.87 for the period 1 January 2008 to 31 December 2011. This demon-
strates the skill of theWRF andWRF‐Hydro setups of section 3.1 in repro-
ducing daily variations of the Δ‐averaged precipitation product.

Figure 2. (a) Terrain elevation (meters above sea level) of the 5‐km resolutionWeather Research and Forecasting domain.
The solid black lines delineate the political boundaries. (b) Terrain elevation of the routing grid at 500‐m resolution
coupled with the Weather Research and Forecasting domain in the WRF‐Hydro setup. The thin black lines show river
channels with a Strahler stream order equal to or above 5. The bold black contour delineates the part of the upper Danube
river basin referred as the study region Δ. Δ is divided into two subregions delineated by the bold magenta contour: Δ1
characterized by moderate topography in the north, and Δ2 characterized by steep topography in the south. The white
circle indicates the location of the river gauge at Kienstock (Austria). The terrain height scale is given by the colored bar to
the right.

Figure 3. (a) Monthly time series of precipitation P (mm/day) from the
observational data set, WRF and WRF‐Hydro, spatially averaged over the
study region Δ (see bold black contour in Figure 2b). (b) As in (a) except for
the Δ‐averaged monthly surface evaporation E (mm/day). (c) As in (a)
except for the monthly discharge Q (mm/day) at Kienstock (see location in
Figure 2b). In the case of WRF, Q is evaluated with the Δ‐averaged runoff R,
that is, the sum of surface and underground runoff. WRF = Weather
Research and Forecasting.

10.1029/2019WR024780Water Resources Research

ARNAULT ET AL. 6227



At the daily scale, the observed discharge at Kienstock is also approxi-
mately well reproduced by our WRF‐Hydro simulation, as displayed in
Figure 5, with a correlation of 0.76 and a Kling‐Gupta efficiency
(Gupta et al., 2009) of 0.66. Differences between modeled and observed
discharge are related to (1) discrepancies in the spatial distribution of
modeled precipitation, (2) potential model misrepresentation of soil
and land surface processes, and (3) potentially inadequate values of dis-
tributed soil and land surface parameters, which are currently assigned
as a function of soil classes. Nevertheless, the fact that modeled
Δ‐averaged precipitation and modeled discharge at the basin outlet give
a comparably high correlation to daily observation demonstrates the skill
of the WRF and WRF‐Hydro setups of section 3.1 in realistically repre-
senting observed water fluxes in the study region. This suggests that
these model setups also have the potential to realistically represent the
water pathways of a given source of water through the terrestrial and
atmospheric water compartments in the study region. We therefore state
that these model setups are suitable for investigating the contribution of
lateral terrestrial water flow to the regional hydrological cycle occurring
in the area of the upper Danube river basin with the SVA‐TAG proce-
dure of section 2.

3.3. Precipitation Tagging Setup

The SVA‐TAG procedure of section 2 is now applied to the source precipitation defined as the precipitation
falling in Δ between 1200 UTC 14 August 2008 and 1800 UTC 16 August 2008. This period of tagging event
was selected as it corresponds to one of the wettest events of the summer 2008 (see Figure 4b). The exact start
and end dates of the tagging period have been chosen in order to cover the entire event in the simulation.

The first objective is to investigate the fate of this source precipitation in the simulated regional hydrological
cycle withWRF‐tag and withWRF‐Hydro‐tag, until the end of the simulation in December 2011. The second
objective is to assess the contribution of lateral terrestrial water flow to the fate of this source precipitation.

Technically, the WRF and WRF‐Hydro 5‐year simulations of section 3.1 are reconducted using the model
versions enhanced with the SVA‐TAG procedure, namely,WRF‐tag andWRF‐Hydro‐tag. Tagged water vari-
ables are initialized to 0, and the source precipitation is set as the precipitation falling inΔ during the tagging
period. Traditional three‐dimensional terrestrial and atmospheric water variables, their tagged counterparts,
and the two‐dimensional terms of the budgets of tagged terrestrial water and tagged atmospheric water,
namely, equations (8) and (17), are saved in the model outputs.

4. Tagging Results and Discussions
4.1. Characteristics of Total Water Fluxes During the Tagging Period

Tagged water is part of the total water, so that the knowledge of the processes acting on total water can help
understanding the processes acting on tagged water. For this purpose, this section aims at presenting the
characteristics of the total water fluxes during the tagging period.

Figure 6 provides maps ofWθ,0 − 100, which is the total soil moisture con-
tent between 0‐ and 100‐cm depths, andWθ,100 − 200, which is the total soil
moisture content between 100‐and 200‐cm depths, averaged for the
tagging period. The maps of the left column are from WRF‐tag, whereas
the maps of the right column are from the difference between WRF‐tag
and WRF‐Hydro‐tag. The southern subregion Δ1 and the northern subre-
gion Δ2 are also indicated in Figure 6 in order to analyze the respective
effects of lateral terrestrial water flow and topography on total soil moist-
ure and total water fluxes. In WRF‐tag, during the tagging period,
Wθ,0 − 100 and Wθ,100 − 200 show similar spatial patterns, with enhanced
amounts in Δ2. This is related to larger precipitation amounts generally

Figure 4. (a) Daily time series of Δ‐averaged daily precipitation P (mm/day)
from the observational data set, WRF and WRF‐Hydro, filtered with a 7‐day
moving average filter. (b) As is (a) except for the unfiltered daily precipita-
tion during the period June–September 2008. The circled symbol “T”
indicates the selected event for the source precipitation on which the soil‐
vegetation‐atmospheric water tagging procedure of section 2 is applied.

Figure 5. Daily time series of daily dischargeQ (m3/s) at Kienstock from the
gauge observation and WRF‐Hydro.
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occurring in the Alpine region. In comparison to WRF‐tag, WRF‐Hydro‐tag predicts drier soils in the steep
topography subregion Δ2 and wetter soils in the moderate topography subregion Δ1.

Figure 7 provides maps of the total water fluxes from WRF‐tag (a–d) and from the difference between
WRF‐tag and WRF‐Hydro‐tag (e–h), accumulated for the tagging period. In WRF‐tag the precipitation
generated during the tagging period, previously referred as Psource, covers the entire study region Δ, with
enhanced amounts over the highest mountain ranges inΔ2. The spatial patterns of theWRF‐tag total surface
runoff follow the spatial patterns of Psource, which is coherent with the fact that in the Noah LSM the
surface runoff is computed as the part of the precipitation which does not infiltrate. The high amounts of
surface runoff occurring at the highest elevations are related to snowmelt. The WRF‐tag total underground
runoff is rather located in Δ2, in relation with the above‐discussed enhanced total soil moisture, whereas the
WRF‐tag total surface evaporation occurs all over Δ.

In comparison to WRF‐tag, WRF‐Hydro‐tag generates slightly different spatial patterns of Psource, which,
however, do not directly affect the differences in total surface runoff, total underground runoff and total
surface evaporation between WRF‐tag and WRF‐Hydro‐tag during the tagging period, as displayed in
Figures 7e–7h. The WRF‐Hydro‐tag induced changes in total surface runoff and total underground runoff
are rather related to topography. In particular, WRF‐Hydro‐tag generates more total surface runoff and less
total underground runoff in Δ2 but less total surface runoff and more total underground runoff in Δ1. This is
related to themore realistic description of the surface runoff generationmechanism inWRF‐Hydro, which is
more efficient in steep topography gradient areas. Indeed, the subsurface lateral water flow accumulates
total soil moisture toward valley bottoms. In steep terrain this generates total exfiltration in association with
soil drying, whereas in moderate terrain this increases the total underground runoff in association with soil
wetting, as shown in Figures 6c and 6d. Consequently, WRF‐Hydro‐tag mainly enhances total surface
evaporation in Δ1 (see Figure 7h), which is in agreement with the slight increase in annual surface evapora-
tion in WRF‐Hydro previously discussed in section 3.2.

4.2. Horizontal Distribution of Tagged Soil Moisture

Precipitation tagging results are qualitatively assessed with the maps of W tagged
θ;0−100 , which is the tagged soil

moisture content between 0 and 100 cm depth, and W tagged
θ;100−200 , which is the tagged soil moisture content

between 100‐ and 200‐cm depths, displayed for 1 September 2008, 1 September 2009, and 1 September

Figure 6. (a) Map of Wθ,0 − 100 (mm) that is the total soil moisture content between 0‐ and 100‐cm depths, averaged for
the tagging period between 1200 UTC 14 August 2008 and 1800 UTC 16 August 2008, derived from WRF‐tag. The
location of the subregions Δ1 and Δ2 is indicated by the bold magenta contour. (b) As in (a) except forWθ,100 − 200 (mm)
that is the total soil moisture content between 100‐ and 200‐cm depths. (c and d) as in (a) and (b) except for the difference
between WRF‐tag and WRF‐Hydro‐tag. WRF = Weather Research and Forecasting.
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2010 in Figures 8–10, respectively. As in Figures 6 and 7, panels (a) and (b) in Figures 8–10 show the WRF‐
tag result, whereas the right column shows the differential result between WRF‐tag and WRF‐Hydro‐tag.
The two subregions Δ1 and Δ2 are also indicated in Figures 8–10 in order to analyze the respective effects
of lateral terrestrial water flow and topography on the tagged soil moisture horizontal distribution.

On 1 September 2008, which is 15 days after the end of the tagging period, the tagged soil moisture in both
WRF‐tag and WRF‐Hydro‐tag is mainly confined between 0‐ and 100‐cm depths, with spatial patterns close
to the spatial patterns of Psource (Figure 8). In WRF‐tag, some infiltration of tagged soil moisture below
100‐cm depth has already occurred at this date, especially in Δ2 where Psource is enhanced. In
WRF‐Hydro‐tag, the infiltration of tagged ponded water increases the amount of tagged soil moisture, which

can be seen in Δ1 forW
tagged
θ;0−100 and in Δ2 forW

tagged
θ;100−200. ConcerningW

tagged
θ;0−100 in Δ2, the effect of tagged ponded

water infiltration is counterbalanced by the tagged exfiltration, which is enhanced in steep topography
gradient areas.

One year later, which is on 1 September 2009,W tagged
θ;0−100 has largely been removed in Δ2 but not in Δ1 in both

WRF‐tag and WRF‐Hydro‐tag, as displayed in Figure 9. Indeed, as noticed by Sprenger et al. (2016), the

Figure 7. (a–d) Maps of accumulated total water fluxes (mm) for the tagging period between 1200 UTC 14 August 2008
and 1800 UTC 16 August 2008, namely, source precipitation Psource, total surface runoff RS, total underground runoff
RG, and total surface evaporation E, derived from WRF‐tag. (e–h) As in (a)–(d) except for the difference between WRF‐
Hydro‐tag and WRF‐tag. WRF = Weather Research and Forecasting.
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travel time of precipitated water in the root zone is mainly driven by subsequent precipitation amounts.

Hence, the infiltration of W tagged
θ;0−100 to lower soil layers is quicker in Δ2 which receives more precipitation,

except for the highest elevation parts which experience a sufficiently long lasting soil freezing to block

infiltration. In comparison to WRF‐tag on 1 September 2009, the value of Wtagged
θ;0−100 in WRF‐Hydro‐tag is

higher in Δ2, and lower in Δ1. Contrarily, the value of W
tagged
θ;100−200 in WRF‐Hydro‐tag is lower in some parts

of Δ2 and mainly higher in Δ1. Indeed, for steep terrain such as Δ2 the tagged subsurface lateral water
flow in WRF‐Hydro‐tag generates tagged exfiltration, which tends to accumulate tagged soil moisture in
the upper layers. Whereas for moderate terrain such as Δ1 the tagged subsurface lateral water flow rather
accumulates tagged soil moisture in the lower soil layers. As a side note, the fact that for some high

Figure 8. (a and b) Map ofW tagged
θ;0−100 (mm) that is the tagged soil moisture content between 0‐ and 100‐cm depths, at 0000

UTC on 1 September 2008, derived from WRF‐tag. (b) As in (a) except for W tagged
θ;100−200 (mm) that is the tagged soil

moisture content between 100‐ and 200‐cm depths. (c and d) As in (a) and (b), except for the difference between WRF‐tag
and WRF‐Hydro‐tag. WRF = Weather Research and Forecasting.

Figure 9. As in Figure 8 except on 1 September 2009.
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elevation partsW tagged
θ;100−200 on 1 September 2009 remains much higher in WRF‐Hydro‐tag than in WRF‐tag is

related to locally enhanced Psource and enhanced infiltrated amounts, leading to a slower depletion of tagged
soil moisture in WRF‐Hydro‐tag at these locations. The contribution of tagged snowmelt to tagged ponded
water infiltration at the high elevation parts (see equations (3) and (9)) also contributes to this tagged soil
moisture enhancement in WRF‐Hydro‐tag.

Two years later, which is on 1 September 2010, most of W tagged
θ;0−100 has been depleted in both WRF‐tag and

WRF‐Hydro‐tag, as displayed in Figure 10. In Δ2 W tagged
θ;100−200 has also been mainly depleted, except for the

parts which experience a sufficiently long lasting soil freezing, as previously mentioned. In comparison to

WRF‐tag on 1 September 2010, the value of W tagged
θ;100−200 in WRF‐Hydro‐tag is slightly lower in Δ1, which is

related to the enhancement of tagged underground runoff in moderate terrain (see next section).

4.3. Horizontal Distribution of Tagged Water Fluxes

In order to complement the above analysis of tagged soil moisture, maps of tagged water fluxes from
equations (8) and (17) are accumulated for the whole study period and shown in Figure 11. As in
Figures 6–10, the left column of Figure 11 shows the WRF‐tag result, whereas the right column shows the
differential result between WRF‐tag and WRF‐Hydro‐tag. In the WRF‐tag simulation, the tagged surface

runoff, tagged underground runoff, and tagged surface evaporation, previously referred to as Rtagged
S ,

Rtagged
G , and Etagged, respectively, cover the entire study region Δ and display spatial patterns close to those

in Psource (Figure 7a). Noticeably,Rtagged
S accumulated for the whole study period in Figure 11a is nearly iden-

tical to the total surface runoff accumulated for the tagging period in Figure 7b, except for the snowmelt
parts. This is related to the fact that in WRF‐tag the tagged surface runoff is almost entirely generated when
source precipitation occurs (see also equation (5)).

In the WRF‐tag simulation, Rtagged
G accumulated for the whole study period in Figure 11b shows not only

enhanced values in Δ2, as with the total underground runoff accumulated for the tagging period in
Figure 7c, but also much larger values in Δ1. Indeed, the root zone transit time of tagged soil moisture is
larger in Δ1 than in Δ2 in relation with enhanced precipitation amounts in the Alpine region (Δ2), as
mentioned above (Sprenger et al., 2016). Accordingly, the accumulation for the whole study period allows
to display the tagged underground runoff in Δ1, which takes a longer lapse of time to be generated. The
tagged precipitation, previously referred to as Ptagged (see equation (17)), is comparatively much smaller,
with enhanced values in Δ2, as displayed in Figure 11d. This suggests that the mountainous part of the basin
has a blocking effect on the tagged atmospheric water.

Figure 10. As in Figure 8 except on 1 September 2010.
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In comparison to WRF‐tag, WRF‐Hydro‐tag generates slightly different spatial patterns of Psource, which
directly affect Etagged. This contributes to the small differences in Ptagged displayed in Figure 11h. The

WRF‐Hydro‐tag induced changes in Rtagged
S and Rtagged

G rather follow the WRF‐Hydro‐tag induced changes
in total surface runoff and total underground runoff previously described in section 4.1 (cf. Figures 11e

and 11f with Figures 7f and 7g). In particular, WRF‐Hydro‐tag generates much more Rtagged
S and much less

Rtagged
G inΔ2 but slightly lessR

tagged
S and slightly moreRtagged

G inΔ1. This effect ofWRF‐Hydro‐tag onRtagged
S and

Rtagged
G is attributed to the tagged subsurface lateral water flow, which either generates tagged exfiltration and

increases Rtagged
S in steep terrain or accelerates the infiltration of tagged soil moisture and increases Rtagged

G in
moderate terrain. Indeed, the tagged surface lateral water flow increases the tagged infiltration area toward
valley bottoms. For the case of moderate terrain where the topography gradients are not steep enough to
generate tagged exfiltration, the expansion of the tagged infiltration area leads to an acceleration of the
tagged infiltration.

Figure 11. (a–d) Maps of accumulated tagged water fluxes (mm) for the whole study period from 1 January 2008 to 31
December 2011, namely, tagged surface runoff Rtagged

S , tagged underground runoff Rtagged
G , tagged surface evaporation

Etagged, and tagged precipitation Ptagged, derived from WRF‐tag. (e–h) As in (a)–(d) except for the difference between
WRF‐Hydro‐tag and WRF‐tag. WRF = Weather Research and Forecasting.
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4.4. Vertical Distribution of Tagged Water

Precipitation tagging results are further qualitatively assessed with the
time‐height diagrams of spatially averaged tagged soil and atmospheric
water ratio in Figure 12, which allows to jointly visualize the fate of the
tagged water in the soil and atmospheric water compartments. In this
figure, the tagged soil water ratio is defined as the tagged soil moisture
ratio, which is the ratio between tagged and total soil moisture, whereas
the tagged atmospheric water ratio is defined as the ratio between tagged
and total atmospheric water. Also, the plotted data are daily averaged in
order to mask the diurnal cycle. More particularly, Figure 12a displays
the Δ‐averaged tagged water from WRF‐tag for the whole study period
from 1 January 2008 to 31 December 2011. Figures 12b and 12c display
the difference between WRF‐tag and WRF‐Hydro‐tag results for the Δ1

and Δ2 subregions, in order to further analyze the respective effects of
lateral terrestrial water flow and topography on the vertical distribution
of tagged water.

In the WRF‐tag simulation, the tagged water infiltrates and partially fills
the 2 m of soil within a fewweeks, as shown by the profile of tagged moist-
ure ratio in Figure 12a. We find that 12% of the tagged water evaporates
during the first 10 days following the beginning of the tagging period in
the WRF‐tag simulation, which contributes to the convective systems
occurring in the study region and generates the plumes of enhanced
tagged atmospheric water displayed in Figure 12a. During the week
following the tagging event, these plumes are characterized by tagged
atmospheric water ratio values above 1% in the lower tropospheric levels
and above 0.1% in the midtropospheric levels.

We find that in WRF‐tag the tagged soil moisture ratio at a depth of 1 m
reaches its maximum of 6.5% at the beginning of March 2009, whereas
the tagged soil moisture ratio at a depth of 2 m reaches its maximum of
2.8% 2 months later. Afterward, the tagged soil moisture ratio decreases
in all layers, especially during the warmmonths when Etagged is enhanced.
Accordingly, the tagged atmospheric water ratio is also enhanced during
the warm months, with a decrease from year to year. Three years after
the tagging period, in 2011, the tagged atmospheric water ratio, as well
as the tagged soil moisture ratio in the first 50 cm of soil, is generally
below 0.01%.

In comparison to WRF‐tag, at the end of the tagging period WRF‐Hydro‐
tag has increased the tagged soil moisture ratio in the first 50 cm of soil by
+0.1 to +1%, as shown in Figures 12b and 12c. Indeed, as already
mentioned, the additionally resolved lateral terrestrial water flow in
WRF‐Hydro‐tag allows for the source precipitation to partly remain at

the surface as tagged ponded water, which consequently increases the amount of tagged soil infiltration
and tagged soil moisture. However, quickly after the end of the tagging period, the tagged soil moisture ratio
in the upper soil layers decreases faster in WRF‐Hydro‐tag than in WRF‐tag. This means that the washing
out of precipitated water by subsequent precipitation amounts described by Sprenger et al. (2016) is acceler-
ated by the description of lateral terrestrial water flow, through enhanced tagged infiltration in moderate
terrain such as Δ1, and enhanced tagged exfiltration in steep terrain such as Δ2.

In Δ1, the near‐surface layer of depleted tagged soil moisture in WRF‐Hydro‐tag widens, propagates
downward, and reaches the soil bottom at 2‐m depth after a 2‐year period, as shown in Figure 12b.
During that 2‐year period, the Δ1‐averaged tagged soil moisture ratio in the lower soil layers of WRF‐
Hydro‐tag remains larger than in WRF‐tag, which is in correspondence with the above‐discussed increased
amount of tagged soil infiltration during the tagging period in WRF‐Hydro‐tag. From 2009 on, the fact that

Figure 12. (a) Time‐height diagram of tagged soil and atmospheric water
ratio (%), spatially averaged over the study region Δ at a daily time scale,
derived from WRF‐tag. The x axis gives the time from 1 January 2008 to 31
December 2011, with the circle symbol “T” indicating the period of the
source precipitation from which the tagged water originates. The bold hor-
izontal line indicates the surface, and the y axis gives the average height
above (below) the surface in kilometers (cm). (b) As in (a) except for the
difference between WRF‐Hydro‐tag and WRF‐tag spatially averaged over
the subregion Δ1. (c) As in (a) except for the difference between WRF‐
Hydro‐tag and WRF‐tag spatially averaged over the subregion Δ2. WRF =
Weather Research and Forecasting.
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in Δ1 the tagged soil moisture in the upper soil layers in WRF‐Hydro‐tag
becomes again slightly larger than in WRF‐tag is related to exfiltration
of tagged soil moisture from lower soil layers to upper soil layers and a
weak generation of tagged surface runoff in Δ1 (see section 4.5.3 and
Figure 13b). In Δ2 the tagged exfiltration is much enhanced by the steep
topography gradients, so that from mid‐2009 on the tagged soil moisture
in the upper soil layers in WRF‐Hydro‐tag becomes again larger than in
WRF‐tag, as shown in Figure 12c. As a consequence, from mid‐2009 on
the previously discussedWRF‐Hydro‐tag induced layer of depleted tagged
soil moisture almost disappears in Δ2.

Concerning the atmospheric water compartment, WRF‐Hydro‐tag
slightly enhances the ratio of tagged atmospheric water mainly during
the few weeks following the tagging event, up to +0.1%, and slightly
reduces this ratio afterward, up to −0.01%, in both subregions Δ1 and
Δ2. This is related to the effect of WRF‐Hydro‐tag on tagged soil moisture
and Etagged, which is discussed in details in the following section.

4.5. Budgets and Transit Time

Precipitation tagging results are quantitatively assessed with the budget
equations (8) and (17) of tagged terrestrial water and tagged atmospheric
water, respectively. Figures 13 and 14 display the spatially averaged terms
of these budgets as daily accumulated time series from 1 January 2008 to
31 December 2011. In particular, Figures 13a and 14a display the Δ‐
averaged budgets from WRF‐tag, whereas Figures 13b, 13c, 14b, and 14c
further display the differences in the Δ1‐averaged budgets and Δ2‐aver-
aged budgets betweenWRF‐tag andWRF‐Hydro‐tag, with the aim to ana-
lyze the respective effects of lateral terrestrial water flow and topography
on water transit time. Sums for the 4‐year period are provided in Table 1.

For the selected tagging event, WRF‐Hydro‐tag produces 0.5% more
Δ‐averaged Psource than WRF‐tag. This difference in precipitation amount
for a selected event is related to differences in atmospheric circulation
between the WRF‐tag and WRF‐Hydro‐tag simulations. Nevertheless, it
is assumed that the precipitation partitioning processes of Psource in the
two models can be compared.

4.5.1. Tagged Terrestrial Water in WRF‐tag

In theWRF‐tag simulation, mostRtagged
S occurs during the tagging period, as shown in Figure 13a. The tagged

water which infiltrates is temporarily stored in the 2 m of soil depth, and is slowly depleted through Etagged

andRtagged
G . At the end of theWRF‐tag simulation, approximately 1.9% of the tagged water remains in the soil,

while 57.2% has run off and 40.9% has evaporated back to the atmosphere (Table 1).

In comparison to Hu et al.'s (2018) result obtained for an extreme precipitation event at the beginning of the
cold season in the U.S. Pacific Northwest, we find that, in our simulation, the amount of tagged water
remaining in the soil at the end of the tagging event is 85%, the other 15% being approximately equally dis-
tributed among surface runoff and surface evaporation. On the other hand, Hu et al. (2018) found that only
66% of their tagged water was in the soil at the end of their tagging event, as 29% also went to the snow
storage in their case. Furthermore, after a 6‐month period, Hu et al. (2018) found that the amount of tagged
water in the soil decreased to 53% with the complete mixing assumption and to 30% when relaxing this
assumption, which gives a reduction between −13% and −36%. In our case, with the complete mixing
assumption, we find that the amount of tagged water in the soil decreases to 64% after a 6‐month period,
which corresponds to a reduction by −21%. Relaxing the complete mixing assumption would certainly
accelerate the depletion of tagged water from the soil, although, similar to Hu et al. (2018), we do not have
observational products of transit time at the scale of our study region to validate the benefit of relaxing
this assumption.

Figure 13. (a) Daily time series of the tagged terrestrial water fluxes from
the budget equation (8) derived from WRF‐tag, spatially averaged over the
study region Δ and displayed as daily accumulated sums (mm) from 1
January 2008 to 31 December 2011. Psource, Etagged, Rtagged

S , Rtagged
G , and

(Stagged)t stand for source precipitation, tagged surface evaporation, tagged
surface runoff, tagged underground runoff and change in tagged terrestrial
water storage, respectively. (b) As in (a) except for the difference between
WRF‐Hydro‐tag and WRF‐tag spatially averaged over the subregion Δ1.
(c) As in (a) except for the difference betweenWRF‐Hydro‐tag andWRF‐tag
spatially averaged over the subregion Δ2. WRF = Weather Research and
Forecasting.
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4.5.2. Tagged Atmospheric Water in WRF‐tag
In the WRF‐tag simulation, Etagged is enhanced during the warmmonths (see Figure 14a). During the weeks
following the tagging event in 2008, Etagged is mostly the result of tagged canopy water evaporation, tagged
direct evaporation and tagged plant transpiration, as the sublimation of the tagged snow received at the high
elevations of the upper Danube river basin has a rather small contribution at basin scale (not shown).
However, the tagged canopy water and tagged soil moisture in the first soil layer are quickly depleted, so that
Etagged occurring during the years 2009–2011 is primarily due to tagged plant transpiration, which pumps
tagged soil moisture from lower soil layers.

In the atmosphere, Etagged contributes to the precipitation occurring
in Δ during the tagging period and subsequent precipitation events
during the warm months, although most of the tagged evaporated
water produced during the simulation is advected outside of the
lateral boundaries of the source region, as diagnosed in Figure 14a.
Indeed, as pointed out by Van der Ent and Savenije (2011), length
scales of atmospheric water motions are usually larger than 2,000
km in temperate climates, which is much larger than the source
region considered in this study with a size of approximately 500 km
× 200 km.
4.5.3. Effect of WRF‐Hydro‐tag on Tagged Terrestrial Water

In comparison to WRF‐tag, WRF‐Hydro‐tag produces less Rtagged
S

during the tagging event and increases the amount of tagged soil
moisture storage in both subregions Δ1 and Δ2, as shown in
Figures 13b and 13c.

Figure 14. (a) Daily time series of the tagged atmospheric water fluxes from the budget equation (17) derived fromWRF‐
tag, spatially averaged over the study region Δ and displayed as daily accumulated sums (mm) from 1 January 2008 to 31
December 2011. Etagged, Otagged

NET , (Wtagged)t, and Ptagged stand for tagged surface evaporation, net outflow of tagged
atmospheric water, change in tagged atmospheric water and tagged precipitation, respectively. (b) As in (a) except for the
difference between WRF‐Hydro‐tag and WRF‐tag spatially averaged over the subregion Δ1. (c) As in (a) except for the
difference betweenWRF‐Hydro‐tag andWRF‐tag spatially averaged over the subregionΔ2. WRF=Weather Research and
Forecasting.

Table 1
Partitioning of the Source Precipitation, Having Fallen in the Upper Danube
River Basin (See Bold Black Contour in Figure 1b) From 1200 UTC 14 August
2008 to 1800 UTC 16 August 2008, Among the Terrestrial and Atmospheric
Water Compartments, at the End of the WRF/WRF‐Hydro Simulations on 31
December 2011

Water flux WRF WRF‐Hydro

Source precipitation 33.5 mm 33.6 mm
Soil storage 1.9% 1.6%
Surface runoff 7.5% 16.8%
Underground runoff 49.7% 41.1%
Evapotranspiration (atmospheric
transport and recycled precipitation)

40.9% (38.8, 2.1%) 40.5% (38.4, 2.1%)

Note. WRF = Weather Research and Forecasting.
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In Δ1 the excess of tagged soil moisture inWRF‐Hydro (see Figure 13b) is slightly depleted by Etagged in 2008.

In 2009 and 2010, this excess of tagged soil moisture is mostly depleted byRtagged
G and to a much lower extend

by Rtagged
S as well. From 2010 on the Δ1‐averaged tagged soil moisture amount in WRF‐Hydro‐tag becomes

smaller than that in WRF‐tag. This is related to the WRF‐Hydro‐tag induced increase in Rtagged
G in Δ1 dis-

cussed in section 4.3 (see Figure 11f) and confirms that the tagged subsurface lateral water flow in moderate
terrain accelerates the infiltration of tagged soil moisture.

In Δ2 the excess of tagged soil moisture in WRF‐Hydro (see Figure 13c) is mostly depleted by Rtagged
S in 2008,

which confirms that the relative decrease in tagged soil moisture in the upper soil layer in WRF‐Hydro‐tag,
in comparison to WRF‐tag, is related to tagged surface runoff generation (see sections 4.4 and Figure 12c). In

2009, Rtagged
G is delayed in comparison to Rtagged

S , which results in a transient enhancement of tagged soil
moisture in WRF‐Hydro‐tag in comparison to WRF‐tag, as displayed in Figure 13c. The delayed production

of Rtagged
S in Δ2 in WRF‐Hydro‐tag is mostly counterbalanced by a reduction of Rtagged

G , as displayed in
Figures 11e, 11f, and 13c and Table 1.

The above‐described result implies that on the one hand, taking into account surface lateral water flow in a
LSM increases the transit time of the precipitated water in the root zone by not moving the infiltration excess
directly to the surface runoff. However, this transit time increase is reduced in steep topography gradient
areas such as Δ2 where the delayed surface runoff generation also accelerates the depletion of precipitated
water from the root zone. On the other hand, taking into account subsurface lateral water flow in a LSM
reduces the transit time of precipitated water in the root zone of low topography gradient areas such as
Δ1, where slopes are sufficient to expand the infiltration area of precipitated water toward valley bottoms,
but not steep enough to generate exfiltration.
4.5.4. Effect of WRF‐Hydro‐tag on Tagged Atmospheric Water
The tagged ponded water infiltration in WRF‐Hydro‐tag enhances Etagged during the tagging period and the
following weeks, especially in Δ1 as shown in Figure 14b. In the case of Δ2, E

tagged is rather reduced in asso-

ciation with the production of Rtagged
S , as shown in Figure 14c. Accordingly, Δ1‐averaged Ptagged is slightly

enhanced, whereasΔ2‐averaged P
tagged remains almost unchanged during the tagging period and the follow-

ing weeks. This WRF‐Hydro‐tag induced effect on Etagged and Ptagged, occurring during and just after the tag-
ging period, is referred to as the primary effect.

During the warmmonths of 2009–2011, Etagged in Δ1 is generally lower in WRF‐Hydro‐tag than inWRF‐tag,
in relation with the layer of depleted tagged soil moisture in WRF‐Hydro‐tag occupying a large part of the
root zone (see Figure 12b). In Δ2 this effect is overbalanced by the tagged exfiltration which maintains some
tagged soil moisture in the first soil layer and enhanced tagged direct evaporation through all the WRF‐
Hydro‐tag simulation. However, the increase in Δ2‐averaged Etagged in 2009 underbalances the decrease in
Δ1‐averaged Etagged, in relation with the much larger area covered by Δ1, so that both Δ1‐averaged Ptagged

and Δ2‐averaged Ptagged decrease in 2009, as well as in 2010 and 2011. This WRF‐Hydro‐tag induced effect
on Etagged and Ptagged, occurring from a few months after the tagging period, is referred to as the
secondary effect.

As a side note, the fact that the annual surface evaporation is slightly higher in WRF‐Hydro (see section 3.2,
and also Senatore et al., 2015, Arnault et al., 2018, Rummler et al., 2019, Zhang et al., 2019) is considered to
be related to the primary increasing effect on Etagged, and the relatively high frequency of precipitation
events in the study region which masks the secondary decreasing effect on Etagged.

4.6. Source Precipitation Recycling

This section is to evaluate the amount of precipitation from a single event, namely, Psource, that recycles in
the source region as precipitation. This evaluation is conducted with the source precipitation recycling ratio,
defined as the ratio between Ptagged and Psource spatially averaged over the source region, which in our case is
the study region Δ. This ratio is displayed in Figure 15 as a daily time series.

In the WRF‐tag simulation, the recycling of Psource mostly occurs during the warm months when Etagged is
enhanced, mainly in 2008 and in 2009, with a small contribution in 2010 and 2011. More particularly, a large
part of this recycling occurs during the first weeks following the event, that is 1.5%, as shown in Figure 15a.

10.1029/2019WR024780Water Resources Research

ARNAULT ET AL. 6237



About +0.6% of recycling occurs in 2009, +0.07% in 2010, and +0.01% in
2011, reaching a total of 2.14% for the entire simulation.

The impact of WRF‐Hydro‐tag on the source precipitation recycling is
small and almost negligible, with an increase reaching +0.01% during
the few weeks following the tagging period, followed by a decrease of
−0.02% during the year 2009 and −0.01% during the year 2010, as illu-
strated in Figure 15b.

The effect of WRF‐Hydro‐tag on the source precipitation recycling can
be related to the above defined primary and secondary effects (see
section 4.5.4). Primarily, the surface flow infiltration in WRF‐Hydro‐tag
increases the transit time of the precipitated water in the root zone, which
increases Etagged and accelerates the recycling of the source precipitation.
This primary effect is perturbed by the presence of steep topography
gradient areas where the subsurface lateral water flow reduces the transit
time of precipitated water in the root zone through surface runoff genera-
tion. Secondarily, the subsurface lateral water flow in WRF‐Hydro‐tag
also reduces the transit time of precipitated water in the root zone of the
low topography gradient areas through enhanced infiltration, which
reduces Etagged and decelerates the source precipitation recycling.

5. Summary and Perspectives

In this study, the evaporation tagging method developed for the regional WRF model by Arnault, Knoche,
et al. (2016) has been enhanced with a precipitation tagging method, implemented in the Noah LSM and
in the overland and subsurface routing modules of WRF‐Hydro. The tagging‐enhanced versions of the
WRF and WRF‐Hydro models have been named as WRF‐tag and WRF‐Hydro‐tag. This so‐called joint
SVA‐TAG procedure allows (1) tracking a source of water through the hydrological compartments resolved
inWRF‐tag andWRF‐Hydro‐tag for a limited‐area domain and (2) quantifying the contribution of theWRF‐
Hydro‐resolved lateral terrestrial water flow to the hydrological cycle at regional scale.

As a test application, the SVA‐TAG procedure was applied to WRF‐tag and WRF‐Hydro‐tag simulations of
the precipitation event which occurred in the upper Danube river basin between 1200 UTC 14 August 2008
and 1800 UTC 16 August 2008. This precipitation was considered as water source, tagged and tracked for a
40‐month period until December 2011. The consideration of the fate of ponded water in WRF‐Hydro‐tag
enhanced the amount of tagged infiltration during the event, which increased the root zone transit time
of the tagged water and slightly increased the tagged surface evaporation and the source precipitation recy-
cling during the few weeks following the tagging event. This effect was reduced in steep topography gradient
areas where the enhanced tagged exfiltration counterbalanced the enhanced tagged infiltration. Afterward,
the subsurface lateral water flow in WRF‐Hydro‐tag induced a faster depletion of the tagged soil moisture in
low topography gradient areas, thereby decreasing the root zone transit time of the tagged water in these
areas, which slightly decreased the tagged surface evaporation and the source precipitation recycling.

The dependency relationship between topography gradients, lateral terrestrial water flow, and precipitation
recycling gives a new insight on how the terrestrial and atmospheric branches of the hydrological cycle are
connected, which should be further investigated. This is especially relevant for mountainous regions such as
the Alps, where a recent study showed that the additional description of lateral terrestrial water flow poten-
tially enhances internal model variability (Rummler et al., 2019).

The reduced impact of lateral terrestrial water flow on tagged surface evaporation obtained in this study may
be related to the fact that the study region is located in a humid climate, where soil moisture is not a limiting
factor of surface evaporation (e.g., Anyah et al., 2008). Future studies could assess if the consideration of lat-
eral terrestrial water flow in the SVA‐TAG procedure would have a larger influence on water pathways in
semiarid regions.

A shortage of the precipitation tagging method applied in this study is the simplistic representation of the
groundwater dynamics. This could be improved by extending Hu et al.'s (2018) method to the Noah‐MP's

Figure 15. (a) Daily time series of the source precipitation recycling ratio
(%) in the study region Δ derived from WRF‐tag. (b) As in (a), except for
the difference between WRF‐Hydro‐tag and WRF‐tag. WRF = Weather
Research and Forecasting.
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groundwater dynamics option from Fan et al. (2007) and Miguez‐Macho et al. (2007). The comparison with
terrestrial water age observations carried out in catchment transit time research (e.g., Hu et al., 2018;
McDonnell et al., 2010; McGuire & McDonnell, 2006) could be used to further evaluate and improve the
description of terrestrial water pathways in the model.

It is emphasized that, with a relatively small coding effort, our SVA‐TAG procedure can be applied to any
water source in the Earth system resolved in WRF‐tag and WRF‐Hydro‐tag. This can potentially bring
further new insights to the mechanisms involved in the joint atmospheric‐terrestrial hydrological cycle at
regional scale, for example, concerning the soil moisture‐precipitation feedback (e.g., Duerinck et al., 2016).

To conclude, another innovative aspect of the SVA‐TAG procedure is its ability to quantify the impact of
modifying terrestrial water pathways on atmospheric water pathways, which is highly relevant for water
resources management. Future studies could for example apply the SVA‐TAG procedure to land use/land
cover change scenario experiments (e.g., Chen & Dirmeyer, 2017) and build a conceptual view of process
chain linking a modification of the land surface to a modification in the available water resources.

Appendix A: List of symbols

This appendix provides a list of symbols used the equations of section 2, including the unit and a short description. The
symbols are organized in three categories, the first one related to total variables, the second one related to tagged
variables, and the last one related to mathematical operators
List of symbols related to total variables

Dθ (m2/s) Soil water diffusivity
Δt (s) Time step

ΔWhires
p

n o
CR

(m) Subgrid change of ponded water due to river runoff

Δzs (m) Soil layer thickness
E (m/s) Surface evaporation
Ec (m/s) Canopy water evaporation
Es (m/s) Surface snow sublimation
I (m/s) Surface infiltration
Kθ (m/s) Soil hydraulic conductivity
P (m/s) Precipitation at the surface
Pbare (m/s) Water falling on bare soil

qhiressfc

� �IN (m) Subgrid incoming surface lateral water flow

qhiressfc

� �OUT (m) Subgrid outgoing surface lateral water flow

qhiressub

� �IN (m) Subgrid incoming subsurface lateral water flow

qhiressub

� �OUT (m) Subgrid outgoing subsurface lateral water flow

Q (m/s) discharge at basin outlet
R (m/s) sum of surface runoff and underground runoff
Rdrip (m/s) Canopy water drip
RG (m/s) Underground runoff
Rmelt (m/s) Snowmelt at the land surface
RS (m/s) Surface runoff
σf (−) Vegetation fraction
θfreezing (s−1) Rate of freezing liquid soil moisture
θliq (−) Liquid soil moisture

θhiresliq
(−) Subgrid liquid soil moisture

θthawing (s−1) Rate of thawing frozen soil moisture
Wp (m) Ponded water

Whires
p (m) Subgrid ponded water

Wθ,0 − 100 (m) soil moisture content between 0‐ and 100‐cm depths

Wθ,100 − 200 (m) soil moisture content between 100‐ and 200‐cm depths
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List of symbols related to tagged variables

ΔWhires;tagged
p

n o
CR

(m) Subgrid change of tagged ponded water due to river runoff

ΔWhires;tagged
p

n o
E

(m) Subgrid change of tagged ponded water due to exfiltration

ΔWhires;tagged
p

n o
OVR

(m) Subgrid change of tagged ponded water due to overland flow

ΔWhires;tagged
p

n o
SSR

(m) Subgrid change of tagged ponded water due to exfiltrating subsurface flow

ΔW tagged
p

n o
I

(m)] Change of tagged ponded water due to infiltration excess

Etagged (m/s) Tagged surface evaporation
Etagged
d (m/s) Tagged direct evaporation

Etagged
t (m/s) tagged plant transpiration

Ftagged
θ (m/s) Tagged external forcing in Richard's equation

Itagged (m/s) Tagged surface infiltration
Otagged
NET (m/s) Net outflow of tagged atmospheric water

Psource (m/s) Source precipitation
Psource
liq (m/s) Liquid source precipitation

Psource
solid (m/s) Solid source precipitation

Ptagged (m/s) Tagged precipitation at the surface
Ptagged
bare (m/s) Tagged water falling on bare soil

qhires;taggedsfc (m) Subgrid net tagged surface lateral water flow

qhires;taggedsfc

n oIN
(m) Subgrid incoming tagged surface lateral water flow

qhires;taggedsfc

n oOUT
(m) Subgrid outgoing tagged surface lateral water flow

qhires;taggedsub (m) Subgrid net tagged subsurface lateral water flow

qhires;taggedsub

n oIN
(m) Subgrid incoming tagged subsurface lateral water flow

qhires;taggedsub

n oOUT
(m) Subgrid outgoing tagged subsurface lateral water flow

Rtagged
G

(m/s) Tagged underground runoff

Rtagged
S

(m/s) Tagged surface runoff

rc (−) Tagged canopy water ratio

rhiresCavail

� �local (−) Subgrid tagged column‐available water ratio at local grid point

rhiresCavail

� �upstream
(−) Subgrid tagged column‐available water ratio at upstream grid point

rhiresp

n olocal (−) Subgrid tagged ponded water ratio at local grid point

rhiresp

n oupstream
(−) Subgrid tagged ponded water ratio at upstream grid point

rs (−) Tagged snow equivalent water content ratio
rθice (−) Tagged frozen soil moisture ratio
rθliq (−) Tagged liquid soil moisture ratio

Stagged (m) Tagged terrestrial water storage
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θtaggedice
(−) Tagged frozen soil moisture

θtaggedliq
(−) Tagged liquid soil moisture

θhires;taggedliq
(−) Subgrid tagged liquid soil moisture

Wtagged (m) Tagged vertically integrated atmospheric water content
W tagged

c (m) Tagged canopy water

W tagged
p (m) Tagged ponded water

Whires;tagged
p (m) Subgrid tagged ponded water

W tagged
s (m) Tagged snow equivalent water content at the land surface

W tagged
θ

(m) Tagged soil moisture content in the soil column

W tagged
θ;0−100

(m) Tagged soil moisture content between 0‐ and 100‐cm depths

W tagged
θ;100−200

(m) Tagged soil moisture content between 100‐ and 200‐cm depths

Mathematical operators

M Any variable
(M)t Time derivate operator
(M)z Terrestrial derivate operator in the vertical direction
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