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Kurzfassung

Die hochgenaue Posenschätzung autonomer Fahrzeuge sowohl in HD-Karten als
auch spurrelativ ist unerlässlich um eine sichere Fahrzeugführung zu gewährleisten.
Für die Serienfertigung wird aus Kosten- und Platzgründen bewusst auf hochge-
naue, teure Einzelsensorik verzichtet und stattdessen auf eine Vielzahl von Sen-
soren, die neben der Posenschätzung auch von anderen Modulen verwendet werden
können, zurückgegriffen. Im Fokus dieser Arbeit steht die Unsicherheitsschätzung,
Bewertung und Fusion dieser Sensordaten.
Die Optimierung von Posengraphen zur Fusion von Sensordaten zeichnet sich, im
Gegensatz zu klassischen Filterverfahren, wie Kalman oder Partikelfilter, durch
seine Robustheit gegenüber Fehlmessungen und der Flexibilität in der Model-
lierung aus. Die Optimierung eines Posengraphen wurde erstmalig auf mobilen
Roboterplattformen zur Lösung sogenannter SLAM-Probleme angewendet [83].
Diese Verfahren wurden immer weiter entwickelt und im Speziellen auch zur rein
kamerabasierten Lokalisierung autonomer Fahrzeuge in 3D-Punktwolken erfol-
greich demonstriert [97]. Für die Entwicklung und Freigabe sicherheitsrelevanter
Systeme nach ISO 26262 wird neben der Genauigkeit jedoch auch eine Aussage
über die Qualität und Ausfallsicherheit dieser Systeme gefordert.
Diese Arbeit befasst sich, neben der Schätzung der karten- und spurrelativen Pose,
auch mit der Schätzung der Posenunsicherheit und der Integrität der Sensordaten
zueinander. Auf Grundlage dieser Arbeit wird eine Abschätzung der Ausfallsicher-
heit des Lokalisierungsmoduls ermöglicht. Motiviert durch das Projekt Ko-HAF
werden zur Lokalisierung in HD-Karten lediglich Spurmarkierungen verwendet.
Die speichereffiziente Darstellung dieser Karten ermöglicht eine hochfrequente
Aktualisierung der Karteninhalte durch eine Fahrzeugflotte.
Der vorgestellte Ansatz wurde prototypisch auf einem Opel Insignia umgesetzt.
Der Testträger wurde um eine Front- und Heckkamera sowie einen GNSS-Empfänger
erweitert. Zunächst werden die Schätzung der karten- und spurrelativen Fahrzeug-
pose, der GNSS-Signalauswertung sowie der Bewegungsschätzung des Fahrzeugs
vorgestellt. Durch einen Vergleich der Schätzungen zueinander werden die Un-
sicherheiten der einzelnen Module berechnet. Das Lokalisierungsproblem wird
dann durch einen Optimierer gelöst. Mithilfe der berechneten Unsicherheiten wird
in einem nachgelagerten Schritt eine Bewertung der einzelnen Module durchge-
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führt. Zur Bewertung des Ansatzes wurden sowohl hochdynamische Manöver auf
einer Teststrecke als auch Fahrten auf öffentlichen Autobahnen ausgewertet.
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Abstract

Obtaining frequent and high-precision pose estimates of autonomous vehicles in
HD maps as well as within lanes is essential to ensure reliable vehicle maneuvering.
For reasons of cost and space, expensive high-precision sensors are deliberately
avoided in series production. Instead, a large number of economic sensors are
implemented that can be used by other modules as well. Estimating uncertainties,
evaluation, and fusion of sensor measurements to guarantee fail-safe operation will
be the focus of this thesis.
The use of pose graph optimization techniques to fuse sensor data is characterized,
in contrast to classical filter methods such as Kalman or particle filtering, by its ro-
bustness against erroneous measurements and its modeling flexibility. Pose graph
optimization techniques were first studied on mobile robot platforms to solve the
SLAM problem [83]. These methods have been further developed and successfully
demonstrated for purely camera-based localization of autonomous vehicles in 3D
point clouds [97]. To develop and release safety-relevant systems according to the
ISO 26262 standard, a statement of estimation quality and reliability is indispens-
able.
In addition of map and lane-relative pose estimation, this thesis further surveys the
estimation of pose estimate uncertainties and integrity within sensor data. Based
on this work, a conclusive statement on the reliability of the localization module
can be derived. Motivated by the Ko-HAF project, the presented localization ap-
proach merely relies on lane markers of mapped highway sections. Their memory-
efficient, parametric representation enables a high-frequency update of map con-
tents through a vehicle fleet.
The presented approach was investigated using an Opel Insignia as experimental
vehicle. Its sensor setup was extended by a front and rear camera and a GNSS
receiver. First, the estimation of map and lane-relative vehicle poses, the GNSS
signal evaluation as well as the vehicle’s odometry estimation are presented. Un-
certainties of the estimators are calculated by comparing their estimates. Using
these uncertainties, an evaluation of the estimator’s integrity is carried out. The
localization problem is solved by using optimization. The approach is evaluated on
both highly dynamic maneuvers on a test track and test drives on public highways.
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Notation and Symbols

This chapter introduces notations and symbols used throughout this work. If not de-
clared otherwise, all physical quantities are in SI units. If symbols have more than
one meaning either the context itself or a distinct statement dissolves the ambiguity.

Terminology

GNSS - Global Navigation Satellite System
System for pose estimation through satellite signals. GPS is the US imple-
mentation of a GNSS and is commonly used as pars pro toto, but GNSS re-
ceivers also use Beidou (China), GLONASS (Russia) and Galileo (Europe).

HD-Maps
Navigation maps only contain topological information necessary for routing
and basic ADAS. HD or UHD maps contain more detailed geological and
geometrical information such as lane markers and reflector poles. If used for
fully automated driving these maps are also referred to as FAD maps.

Pose
A pose denotes a position and orientation pair.

Pose Estimation Versus Localization
Robot localization denotes the estimation of the robot’s current pose within
a reference frame or map. Pose estimation can be used as another term for
localization, but is also used when estimating the pose of robot parts, other
robots or landmarks as well as estimating a robot’s set of poses within a time
frame.

Graph, Pose Graph, and Pose Graph Optimization
A graph is a structure, which connect vertices through edges. A pose graph
is a specific implementation of a graph, where all vertices are poses. In pose
graph optimization, some or all graph vertices are optimized to minimize an
objective function, represented by the graph’s edges.
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Measurement Versus Estimation
Measurements are the result of measuring physical quantities or counting
values directly or by applying additional simple arithmetics. Estimation, on
the other side, will be used whenever predictions of quantities that may not
be observable, are made from single or multiple measurements using refined
algorithms.

Odometer, Dead Reckoning and Odometry
Odometers are sensors that measure the distance traveled, usually by count-
ing wheel rotations. Dead Reckoning is a technique to compute the current
pose by advancing priorly determined poses using an estimated course and
speed from an odometer. Odometry is the estimation of pose deltas, which
includes dead reckoning, but also covers other techniques such visual odom-
etry.

Roads and Lanes
See Fig.0.1

marginal strip

medial strip

roa
d

lane

lane boundary

reflector post

lane marker

guard rail

Figure 0.1: Road Nomenclature.

Fonts
Scalars Roman case a, A, b, B, c, C, ...
Vectors Bold lower case aaa, bbb, ccc, ...
Matrices Bold upper case AAA, BBB, CCC, ...
Sets Calligraphic upper case A, B, C, ...
Distributions Calligraphic upper case U , N , ...
Set of Numbers Double-struck upper case N, R, Z, ...
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Vectors, arrays and matrices

Vector and array indices

aaa =


a1
a2
...

an


Matrix indices

AAA =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n


Matrix horizontal composition
If A1 ∈ Rn×k and A2 ∈ Rn×l composing A1 and A2 horizontally results in a matrix
A ∈ Rn×(k+l) and is denoted by

A = [A1,A2] (0.1)

Matrix vertical composition
If A1 ∈ Rk×n and A2 ∈ Rl×n composing A1 and A2 vertically results in a matrix
A ∈ R(k+l)×n and is denoted by

A =

[
A1
A2

]
(0.2)

Covariance matrix
The covariance matrix of a multivariate, normally distributed random variable X is
represented by

ΣΣΣx =ΣΣΣxx =


σ2

1 σ1,2 · · · σ1,n
σ2,1 σ2

2 · · · σ2,n
...

...
. . .

...
σn,1 σn,2 · · · σ2

n


And for the 3D case where x,y,z denote the 3D spatial directions

ΣΣΣx =ΣΣΣxx =

σ2
x σxy σxz

σyx σ2
y σyz

σzx σzy σ2
z
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Acronyms

The correlation matrices of two multivariate, normally distributed random variables
X and Y is represented by ΣΣΣxy and ΣΣΣyx.

Acronyms

AD Automatic Differentiation
ADAS Advanced Driver Assistance Systems
ASIL Automotive Safety Integrity Level

BF Bayes Filter
BFGS Broyden-Fletcher-Goldfarb-Shannon
CAN Controller Area Network

CI Covariance Intersection
CLT Central Limit Theorem

COG center of gravity
DFP Davidon-Fletcher-Powell

DGPS Differential GPS
DOF Degree Of Freedom
DOP Dilution Of Precision

ECEF Earth-Centered, Earth-Fixed
ECI Earth-Centered Inertial

EKF Extended Kalman Filter
FDE Fault Detection and Exclusion
FDI Fault Detection and Identification

GMM Gaussian Mixture Model
GNSS Global Navigation Satellite System

GPS Global Positioning System
HMM Hidden Markov Model

ICP Iterative Closest Point
ICR Instant Center of Rotation

IMM Interacting Multiple Model
IMU Inertial Measurement Unit
INS Inertial Navigation System
IPM Inverse Perspective Mapping
KF Kalman Filter

KKT Karush-Kuhn-Tucker
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Accents and Scripts

LM Levenberg-Marquardt
LOS Line-Of-Sight
LSQ Least-Squares

MHT Multi Hypothesis Tracking
MMAE Multiple Model Adaptive Estimation

MND Multivariate Normal Distribution
NIS Normalized Innovation Squared

NLP Nonlinear Programming
NLSQ Nonlinear Least Squares

NNS Nearest Neighbor Search
NTRIP Networked Transport of RTCM via Internet Protocol

PDF Probability Density Function
PF Particle Filter

PRN Pseudo Random Noise
RAIM Receiver Autonomous Integrity Monitoring

RANSAC Random Sample Consensus
RMSE Root Mean Squared Error

RPM Robust Point Matching
RTCM Radio Technical Commission for Maritime Services

SAS Steering Angle Sensor
SCT Statistical Consistency Test
SfM Structure from Motion

SIFT Scale-Invariant Feature Transform
SLAM Simultaneous Localization and Mapping

SMC Sequential Monte Carlo
SPP Single Point Positioning
SR1 Symmetric-Rank-1
STD Standard Deviation

SURF Speeded Up Robust Features
UKF Unscented Kalman Filter
UTM Universal Transverse Mercator

WGS84 World Geodetic System 1984
WSS Wheel Speed Sensor

Accents and Scripts

aaacam, f Vector in front camera coordinates
aaacam,r Vector in rear camera coordinates
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aaacam Vector in front or rear camera coordinates
aaaicr Vector in ICR coordinates

aaav Vector in vehicle coordinates
aaaw Vector in UTM coordinates
ai, j Matrix index iteration
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()w
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Mathematical Notations
aaa×bbb Cross product of vector aaa and bbb

det(AAA) Determinant of matrix AAA
AAA-1 Inverse matrix
‖AAA‖ Norm of matrix of AAA
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aaa ·bbb Scalar product of vector aaa and bbb

AAAT ,aaaT Transposed matrix / vector
ĀAA,āaa, ā Complex conjugate matrix/vector/scalar

ȧaa Derivation
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A∩B Intersection of set A and B
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Latin Letters
Dr Doppler frequency shift in Hz
Eli Elevation angle of GNSS satellite

F Force in N
Fs Satellite system error factor
Ii Ionospheric delay in m
J Moment of inertia in kgm2

Mgnss 3D GNSS pose estimate
Mmap 3D map matching pose estimate

P Pose, position ppp and orientation qqq)
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III Identity matrix
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1 Introduction

With the introduction of motorized passenger vehicles in the 19th century, engi-
neers have been seeking to make driving safer, more comfortable, and efficient.
From mechanical inventions to decrease mortality in fatal accidents, towards elec-
trical systems that aim to support the driver to prevent accidents during critical
maneuvers, modern Advanced Driver Assistance Systems (ADAS) aim to fully as-
sume vehicle control.
Reliable and accurate knowledge of the vehicle’s current pose and its static and dy-
namic environment is indispensable to safely plan trajectories of autonomous ve-
hicles. Prevailing autonomous prototypes monitor vehicle states and environment
using high-precision, reliable, and costly sensor setups. Providing these features for
series production vehicles strongly confines the variety of feasible sensors. How-
ever, empowered by fusing information of large sensing networks in in-series vehi-
cles, autonomous vehicles become readily available [13]. A key challenge herein
is to robustly detect and capture faulty sensor performance that possibly lead to
severely life-threatening or mortal injuries.
Automotive safety levels, with its highest classification level Automotive Safety
Integrity Level (ASIL)-D, are designed to test and validate reliability of ADAS.
Without assuring their respective integrity requirements, companies will hesitate to
release these features. Nowadays, releasing complex algorithms for vehicle ma-
neuvering according to ASIL-D is avoided by requesting the driver to permanently
monitor the system, making the driver responsible of safe maneuvering to prevent-
ing judicial charges.

1.1 Robust Pose Estimation Problem Statement

This thesis focuses on obtaining frequent, highly accurate, and reliable vehicle pose
estimates within digital highway maps or within highway lanes. These estimates
are indispensable to ensure safe vehicle maneuvering. Real-world environments
impose complexity such as multipath scattering, pose ambiguities, and sensor out-
ages, depicted in Fig. 1.1 to Fig. 1.3 respectively. Furthermore, the uncertainties of
the applied sensors are either unknown or roughly estimated impeding their fusion
and validation. The burden of being reliant on a cost-efficient and space-saving
sensor setup intensifies these issues. Digital maps, often referred to as additional
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1 Introduction

virtual sensors, can help to alleviate these challenges. However, these maps have
to be updated continuously and as availability and performance of wireless inter-
faces cannot meet the requirements to download huge datasets of point clouds, only
sparse HD maps are practical. Lane-level maps represent an applicable approach
as they contain an efficient parametric representation. The public funded project
Cooperative highly automated driving (Ko-HAF)1 aims to collect, fuse, and redis-
tribute lane-level map content2 from near-series vehicles on a back-end server.

1.2 Applications of Robust Pose Estimation

Among various applications where precise and robust pose estimates in structured
environment are advantageous or indispensable, three major fields are presented
below.

Autonomous Vehicles

Beside the gain in comfort when handing over driving task to the system, a major
aim of autonomous vehicles is to decrease traffic mortality. Road accidents caused
3180 deaths, 66513 severely injured and 323799 slightly injured people in Ger-
many in 2017 [76]. Automated driving features have the potential to significantly
decrease the amount of road accidents due to their unconfined learning abilities.
Moreover, individual mobility can be provided to a broad range of people, espe-
cially for those who are unable to operate vehicles due to legal, financial or phys-
ical restrictions. Exchange of static and dynamic map content and vehicle driving
strategies enables intelligent route planning through interacting, autonomous vehi-
cles, investigated in UR:BAN3 and IMAGinE4. Therefore, modern traffic can be
converted to be far more efficient and environmentally compatible, which helps to
decrease air pollutions, especially in cities. Furthermore, automated driving fea-
tures can be used for freight traffic and reallocation of car sharing vehicles.

Mobile Robots

Another, yet similar field of application is mobile robots, independently whether
indoor, outdoor, aerial, ground or underwater. All share the necessity to obtain
exact pose estimates either of the robot itself, other robots, or parts of the robot.

1 https://www.ko-haf.de/
2 With a mean data size of approximately 33 kB/km
3 http://urban-online.org/en/urban.html
4 https://imagine-online.de/en/home/
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Figure 1.1: Outlier - Multipath Scattering. The black line displays the true vehicle move-
ment and the black dots its corresponding Global Navigation Satellite System
(GNSS) pose estimates. Buildings (gray box) with tall, flat surfaces reflect
GNSS signals, which can lead to systematic offsets in GNSS pose estimates (red
dots). The image shows the highway A3 through the Frankfurt Airport.

Figure 1.2: Ambiguities - Map Matching. Detected lane markers (blue lines) are aligned
with the map (gray lines) to estimate map-relative poses (black dots). Due to
missing detections, insufficient field of view or concealed by other vehicles
(black, dashed lines), as displayed in the image, only a subset of lane markers
can be detected. Thus the true pose (red dots) may be ambiguous to the matcher
(light red dots).
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Figure 1.3: Sensor Outage - Shadowing and Illumination. Tunnels (white box) disturb
or preclude GNSS (gray dots) and camera (black dots) pose estimates due to
shadowing of GNSS signals and volatile illumination. However, the true vehicle
movement (blue line) may still be estimated by integrating odometry estimates
(dashed black lines) which drift over time. The image shows a tunnel on the
highway A3.

The latter is of special interest if parts of the robot are not mechanically fixed, e.g.
flexible robot arms or in distributed systems.

Indoor Navigation

A key example of localization in structured environment is indoor navigation,
which is important whenever rescuing robots or firemen enter buildings with dam-
aged infrastructure or decreased visibility due to smog and fire. Indoor localization
and navigation can help to reach a desired point of interest on the shortest way
possible, reducing the required amount of time spent in the building.

1.3 Contribution

The objective of this thesis is to estimate the vehicle’s pose in lane-level highway
maps using a front and rear gray-scale camera, a low-cost GNSS receiver, and the
2D vehicle dynamic sensor data provided over the Controller Area Network (CAN)
interface.
Major limitations are the use of single camera setups with non-overlapping views,
where the distance of detected lane markers cannot be directly observed resulting
in a ray of feasible positions, a low-cost GNSS receiver with systematic offsets and
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1.4 Thesis Outline

susceptibility to multipath scattering and 2D dynamic sensors, which make it im-
practical to estimate roll and pitch angles directly. Furthermore, digital maps have
to be memory efficient, as they are updated constantly from a server. The utilized
maps only contain 2D lane markers, reflector posts and traffic signs.
Promising results were shown to estimate poses within driving lanes or digital
maps using Kalman Filters (KFs), Particle Filters (PFs) or pose graph optimization
techniques. To enable higher-level ADAS applications, both a precise lane- and
map-relative pose estimate must be provided at high frequencies using near-series
sensors and sparse HD maps. While most approaches suffer from limiting appli-
cability due to accuracy, computational effort or robustness, this thesis presents a
localization approach that meets the depicted requirements. As visual pose esti-
mation techniques are prone to viewing conditions, a statement on the estimations
accuracy and integrity must be permanently provided.

The contributions of this thesis are

• An approach to estimate sensor uncertainties, with heterogeneous measuring
principles, without the necessity of costly, high-precision validation sensors
or extensive measurement procedures.

• An elaborate approach for robust map matching of lane marker light rays on
2D point clouds.

• Consolidation of sensor measurements through pose graph optimization to
accurately estimate vehicle poses within lane-level highway maps.

• Detection of temporary and permanent sensor corruption and resolving of
measurement ambiguities.

• Estimation of the current pose accuracy and integrity by investigating the
optimization residuals.

• An extensive evaluation of the algorithms across the vehicle’s full dynamic
range and in demanding scenarios with perturbed viewing conditions.

1.4 Thesis Outline

This thesis is structured as follows.
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Ch. 2: Fundamentals
Chapter 2 introduces essential fundamentals and deepening literature for the
reader to understand and retrace this thesis. A short introduction into quater-
nions and dual numbers is followed by a subsection on multi-sensor data
fusion techniques with the focus on Bayes Filter (BF). The chapter is con-
cluded by an overview on numerical optimization.

Ch. 3: Related Work
Chapter 3 presents pioneer work regarding autonomous driving in urban and
highway areas with a deepening survey and comparison of localization tech-
niques using KFs, PFs and pose graph optimization in particular. This chap-
ter is devoted to present the scope and contribution of this work.

Ch. 4: Robust Pose Estimation
Chapter 4 presents a novel approach for robust vehicle pose estimation in
lane-level highway maps by solving an optimization problem represented
by a pose graph. Sensor uncertainties are estimated from variations within
pose and odometry estimators. These uncertainties are used to weight the
optimization residuals. It’s key elements are the rejection of outliers and re-
solving of map matching ambiguities. Furthermore, an approach to compute
the integrity of optimized pose estimates is provided.

Ch. 5: Experimental Evaluation
Chapter 5 describes the test vehicle setup, software framework, test field,
ground truth, and datasets. Both performance and feasibility of the presented
approach will be investigated using a variety of datasets across the vehicle’s
full dynamic range. Additionally, the approach will be applied on datasets
with demanding viewing conditions, such as rain and undergrade crossings
in cloverleaf intersections. These datasets will be used to investigate whether
the integrity module can detect permanent sensor corruption. The chapter
is concluded by examining the computational burden of the presented ap-
proach.

Ch. 6: Summary, Conclusion and Outlook
Chapter 6 discusses the results and applicability of the presented approach.
Both the approach and sensor setup are examined and future research in this
field is motivated.
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2 Fundamentals

This chapter is devoted to introduce key concepts and some advanced background
information for the reader to understand the presented work herein. At this point,
the author wishes to stay with the basics, without the claim for completeness, and
references to the scientific literature in the corresponding sections.

2.1 Numbers

2.1.1 Quaternions

Quaternions were introduced by Hamilton in 1866 [43]. Although frequently used
as another way to express rotations in a 3D space, quaternions originally are an
extension to complex numbers with a broad range of applications. Quaternions are
commonly represented by

q = qw +qxi+qy j+qzk (2.1)

where qw, qx, qy, qz are real numbers and i, j, k are the quaternion units with the
property

i2 = j2 = k2 = i jk =−1 (2.2)

known as the Hamilton convention [43], utilized by most programming libraries
and throughout this work. Another common convention is the JPL convention,
where i jk = 1. A unit quaternion fulfills the condition

||q||=
√

qq =
√

q2
w +q2

x +q2
y +q2

z = 1 (2.3)

where q is the conjugate of q

qqq = qw−qxi−qy j−qzk (2.4)

A pure quaternions fulfills the condition qw = 0. Popularity of quaternions in 3D
space arises from Euler’s rotation theorem, which states that manifold subsequent
rotations about a fixed point can be reproduced by a single rotation around a fixed
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axis. This axis is called Euler axis and will be denoted by uuu = (ux,uy,uz)
T . The

total rotation will be denoted by α . Extending Euler’s formula

eix = cos(x)+ i sin(x) (2.5)

from complex to quaternion numbers yields

q = cos
(

α

2

)
+(uxi+uy j+uzk)sin

(
α

2

)
(2.6)

For simplicity, in the following chapters, a quaternion will be represented by a 4D
vector

qqq =


qw

qx

qy

qz

=


cos(α/2)

sin(α/2)ux

sin(α/2)uy

sin(α/2)uz

 (2.7)

When representing a 3D point [px, py, pz] by a pure quaternion ppp = [0, px, py, pz]
the rotation around a unit quaternion q can be expressed by

ppp′ = H(H(qqq,ppp),qqq) (2.8)

using the Hamilton product between two quaternions

H(qqq,ppp) = qqq · ppp =

 qw pw− pppxyz ·qqqxyz

pwqqqxyz +qwpppxyz + pppxyz×qqqxyz

 (2.9)

qqqxyz and pppxyz denote the 3D quaternion units vector and qw and pw the scalar real
part. ppp′ can be interpreted as ppp rotated clockwise around the Euler axis uuu of qqq
by the angle α . Again, for simplicity, the rotation of a 3D vector ppp around a unit
quaternion qqq will be denoted by

ppp′ = qqq · ppp (2.10)

An inverse or counter-clockwise rotation of qqq can be computed by using a negative
angle α . Due to Euler’s formula, this is equivalent to conjugation of qqq
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q-1 = cos
(
−α

2

)
+(uxi+uy j+uzk)sin

(
−α

2

)
= cos

(
α

2

)
− (uxi+uy j+uzk)sin

(
α

2

)
= q

(2.11)

Quaternion rotations can be combined by

qqq′ = qqq2 ·qqq1 (2.12)

where the rotation around qqq′ resembles a rotation around qqq1 followed by a rotation
around qqq2. This operation is noncommutative. Eq. 2.8 is not a combination of a
clockwise and counter-clockwise rotation. Subsequent quaternion rotations in the
Hamilton product are

ppp′ = qqq2qqq1pppqqq1qqq2 (2.13)

Partial or weighted quaternion rotations, which are essential in recursive state esti-
mation, can be performed by averaging weighted quaternions

qqq =

(
n

∑
i=1

wi

)-1 n

∑
i=1

wiqqqi (2.14)

where wi is the scalar quaternions weight. However, two flaws arise. Firstly, the
averaged quaternion is not a unit quaternion. Secondly, although −qqq and qqq repre-
sent the same rotation, the sign inversion of single quaternions changes the overall
average. Markley et al. [62] present an approach to overcome these issue by
minimizing the weighted sum of the squared Frobenius norm of the corresponding
rotation matrices, which results in

qqq =
[w1−w2 + z]qqq1 +2w2(qqqT

1 ·qqq2) ·qqq2

||(w1−w2 + z)qqq1 +(w2−w1 + z)qqq2||
(2.15)

z =
√

(w1−w2)2 +4w1w2(qqqT
1 ·qqq2)2 (2.16)

Compared to other common rotations, such as Euler angles or Rodrigues’ rotation
formula, rotating with quaternions has the following advantages

• compact storage
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• efficient composition

• stable spherical interpolation1

For completeness, rotation matrices can be derived from quaternions by

RRR(qqq) =


1−2q2

y−2q2
z 2qxqy−2qwqz 2qxqz +2qwqy

2qxqy +2qwqz 1−2q2
x−2q2

z 2qyqz−2qwqx

2qxqz−2qwqy 2qyqz +2qwqx 1−2q2
x−2q2

y

 (2.17)

Example: A 90 degree rotation of the unit-x vector, represented by a pure quater-
nion ppp, around the z-axis results in the unit-y vector. The rotation will be performed
by a quaternion qqq using the rotation matrix representation and the Hamilton prod-
uct.

qqq =


cos(π/2/2)

sin(π/2/2) ·0
sin(π/2/2) ·0
sin(π/2/2) ·1

=


1/
√

2

0

0

1/
√

2

=


qw

0

0

qz

 ppp =


0

1

0

0

=


0

px

0

0


For the rotation matrix RRR(qqq), according to Eq. 2.17, follows

RRR(qqq)ppp =


1−2q2

z −2qwqz 0

2qwqz 1−2q2
z 0

0 0 1




1

0

0

=


1−2q2

z

2qwqz

0

=


0

1

0


And for the Hamilton product

rrr = H(qqq,ppp) =



0qw +


0

0

qz

 ·


px

0

0


0


0

0

qz

+qw


px

0

0

+


0

0

qz

×


px

0

0




=


0

pxqw

pxqz

0



1 See Gimbal Lock

10



2.1 Numbers

And then

qqq · ppp = H(rrr,qqq) =



0+


pxqw

pxqz

0

 ·


0

0

−qz


qw


pxqw

pxqz

0

+0


0

0

−qz

+


pxqw

pxqz

0

×


0

0

−qz





=


0

pxq2
w− pxq2

z

pxqwqz + pxqwqz

0

=


0

0

1

0


with

(qqq · ppp)xyz =


0

1

0

 (2.18)

2.1.2 Dual Numbers

Dual numbers were introduced in the 19th century by Clifford [26]. Similarly to
complex and quaternion numbers, dual numbers extend real numbers by a nilpotent
dual operator ε

d = a+bε (2.19)

where a and b are real numbers and d is a dual number. The dual operator ε has the
property

ε
2 = 0 (2.20)

Different from complex and quaternion numbers, the nonreal part of a dual num-
ber does not feedback to the real part. Addition and subtraction is performed simi-
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larly to complex numbers, where real and dual part are added/subtracted separately.
However, the multiplication differs, due to the dual operator’s property

(a+bε)(c+dε) = ac+(ad +bc)ε +bdε
2 = ac+(ad +bc)ε (2.21)

An elaborate presentation on dual numbers and their arithmetic properties is pre-
sented by Veldkamp [88]. One application for dual numbers is Automatic Differ-
entiation (AD), where derivatives of a function can be computed exactly, by simply
evaluating the function itself using dual numbers instead of ordinary scalars. This
can be particularly useful for optimization algorithms, where derivatives of a func-
tion are needed, for instance for a parameter update step.

2.1.3 Dual Quaternions

Expressing a quaternion’s real numbers qw, qx, qy, qz with dual numbers, is called
a dual quaternion. The dual quaternion is composed of a real and a dual part

qqq = qqqr +qqqdε (2.22)

where qqqr and qqqd are quaternions in a vector representation. Dual quaternions are
used to obtain closed-form algebraic expressions for spatial displacements in sensor
registration [74]. Another application, is the generation of derivatives in the field
of optimization presented in Sec.2.3.3.

2.2 Multisensor Data Fusion

One key challenge of robotics is the fusion of sensor data among a variety of phys-
ical domains to estimate system states that are not be directly observable. One
example is the localization and mapping problem for autonomous vehicles with a
variety of sensors such as its dynamic sensors, cameras, lidars, radars, GNSS re-
ceivers. The aim of filtering techniques is to both recover and increase the accuracy
of system state estimates.
The following section will give a short introduction on temporal generative mod-
els, where the state at time t is only dependent on the state at time t − 1 and the
control u at time t. These models are referred to as Hidden Markov Models. A
more elaborate introduction is presented by Thrun et al. [82] and Bar-Shalom et
al. [11].
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2.2 Multisensor Data Fusion

2.2.1 Bayes Filter

BFs are filters used to estimate system states from measurement and control data.
In the following, bel(xt) will denote the belief of a true system state xt and p(·|·) is
used to describe uncertainties and noise in measurements and system models. Both
are conditional Probability Density Functions (PDFs).
BFs consist of two fundamental steps, outlined in Alg. 1. In the prediction or
transition step a belief bel(xt) is computed from a prior belief bel(xt−1) using
the most recent control variable ut . For localization problems this corresponds to
the numerical integration of a system model’s differential equation to estimate the
movement of a robot. In the estimation, update or innovation step a belief bel(xt)
is computed from another belief bel(xt). Again, for localization problems, this step
corresponds to the fusion of a pose measurement with a pose estimate from a prior
pose updated with the vehicle odometry.

Algorithm 1 Bayes Filter Step [82]

Input: bel(xt−1, ut , zt)
Output: bel(xt)
Prediction Step:

1: bel(xt) =
∫

p(xt |ut ,xt−1)bel(xt−1)dxt−1
Update Step:

2: bel(xt) = η p(zt |xt)bel(xt)

A central issue of BFs is the implementation of the measurement probability
p(zt |xt) and state transition probability p(xt |ut ,xt−1). Gaussian filters were among
the earliest implementations of BF. Beliefs are represented by Multivariate Normal
Distributions (MNDs). Its most prominent representative is the KF [52] described
in Sec. 2.2.3. An alternative to Gaussian Filters are nonparametric filters that ap-
proximate the PDFs by a finite number of samples. Key advantages, towards KFs,
are that highly nonlinear systems and other distributions, including multimodal
distributions, can be modeled. However, there is a trade-off between computation
time and accuracy when choosing the number of samples. Its most prominent rep-
resentatives are Sequential Monte Carlo (SMC) methods or PF described in Sec.
2.2.4.

2.2.2 Multivariate Normal Distributions as Beliefs

To compute the integration in line 1 and composition in line 2 of Alg. 1 either a
closed-form solution or a numerical integration of the belief function or PDF is
required. However, most PDFs do not have definite or finite integrals and their
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numerical integration is computationally expensive. This motivates the applica-
tion of MNDs in Gaussian Filters. MND are represented by a mean vector µµµ and
covariance matrix ΣΣΣ

fff (xxx) =
1

(
√

2π)m det(ΣΣΣ)
exp
(
−1

2
(xxx−µµµ)T

ΣΣΣ
-1(xxx−µµµ)

)
(2.23)

where m is the vector and matrix dimension. MNDs arise as limits of sums of
independent multidimensional random variables, which is known as the Central
Limit Theorem (CLT). The occurrence of MNDs where multidimensional random
variables can be seen as a superposition of many independent individual effects,
motivates their wide applicability. Advantages of using MNDs are

• MNDs can be described with a few parameters, its mean µµµ and covariance
matrix ΣΣΣ

• Addition and composition of uncorrelated MNDs have simple arithmetics
and their result is normally distributed.

• MNDs are widely applicable due to the CLT

• Although MNDs have no definite integral, the definite integral from −∞ to
∞ can be evaluated using the Gaussian integral

Basic Arithmetics

A linear combination of two uncorrelated MNDs X and Y with mean µµµx, µµµy, co-
variance matrices ΣΣΣxx, ΣΣΣyy and correlation matrices ΣΣΣxy, ΣΣΣyx is

Z =AAAX +BBBY+ccc (2.24)
µµµz =AAAµµµx +BBBµµµy +ccc (2.25)

ΣΣΣzz =AAAΣΣΣxxAAAT +AAAΣΣΣxyBBBT +BBBΣΣΣyxAAAT +BBBΣΣΣyyBBBT (2.26)

Further arithmetic properties on MNDs can be found in [5].The addition of MNDs
motivates the prediction step of the KF.

Composite Probability

Fusing measurements of multiple sensors or multiple measurements of single sen-
sors over time can significantly increase the estimation accuracy. Thus, it is elemen-
tary to Gaussian Filters to compose estimates of multiple MNDs with no, known or
unknown correlations. Fig. 2.1 shows the resulting composed covariance matrices
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for these cases in blue. The simplest case is when X and Y are uncorrelated and
results in

KKK =ΣΣΣxx (ΣΣΣxx +ΣΣΣyy)
-1 (2.27)

µµµzz = µµµx +KKK (µµµy−µµµx) (2.28)

ΣΣΣzz =ΣΣΣxxΣΣΣyy (ΣΣΣxx +ΣΣΣyy)
-1 = (III−KKK)ΣΣΣxx (2.29)

KKK can be interpreted as a gain, which describes how much of the update (µµµy−µµµx)
is performed. It is evident that increasing ΣΣΣyy the composite mean tends to µµµz→ µµµx
and decreasing ΣΣΣyy the composite mean tends to µµµz → µµµy. The introduction of KKK
and its interpretation as gain is done intentionally as the update step of KFs uses a
similar notation. If X and Y are correlated and their correlation ΣΣΣxy is known, their
estimates can be fused

KKK = (ΣΣΣxx +ΣΣΣxy)(ΣΣΣxx−2ΣΣΣxy +ΣΣΣyy)
-1 (2.30)

µµµzz = µµµx +KKK (µµµy−µµµx) (2.31)
ΣΣΣzz =ΣΣΣxx +ΣΣΣxy−KKK(ΣΣΣxx +ΣΣΣxy) = (III−KKK)(ΣΣΣxx +ΣΣΣxy) (2.32)

As motivated in Fig. 2.2a, the covariance matrix computed from Eq. 2.32 stays
within the intersection of the corresponding covariance matrices ΣΣΣxx and ΣΣΣyy for
changing correlation matrices. This only holds for correlation matrices within the
intersection. This is a nonrestricting assumption as the noise of a signal cannot be
smaller than its correlation with another signal in general. The idea of Covariance
Intersection (CI) [51] is to compute a covariance matrix, which inherits the inter-
section. Therefore a linear interpolation between two input matrices is computed
by

ΣΣΣ
-1
zz = ωΣΣΣ

-1
xx +(1−ω)ΣΣΣ-1

yy (2.33)

µµµz =ΣΣΣzz
(
ωΣΣΣ

-1
xxµµµx +(1−ω)ΣΣΣ-1

yyµµµy
)

(2.34)

where the scalar ω is typically chosen to minimize either the sum of eigenvalues
(trace) or product of eigenvalues (determinant) of ΣΣΣzz as depicted in Fig. 2.2c. In-
stead of optimizing ω numerically Reinhard et al. [71] presented a closed-form
solution to minimize the determinant of ΣΣΣzz, for matrix dimensions below five, and
trace, for matrix dimensions below four. While Eqs. 2.27 - 2.29 and Eqs. 2.30
- 2.32 are optimal if their assumptions of no or known correlation hold, CI is a
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nonoptimal algorithm and a conservative upper bound of the uncertainty or covari-
ance matrix. Optimal data fusion techniques in presence of unknown correlations
are discussed in [96].
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Figure 2.1: Composition of Multivariate Normal Distributions. Two MNDs with σx = 5
/ σy = 1.5 rotated counterclockwise by π/8 and σx = 1 / σy = 4 are displayed
as black ellipses. Eqs. 2.27 - 2.32 (a), Eqs. 2.30 - 2.32 (b), Eqs. 2.33 - 2.34 (c)
are applied to compute the resulting ellipse (blue). An MND with σx = 0.5 /
σy = 1.5 rotated counterclockwise by π/8 (gray ellipse) is used as correlation for
b).
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Figure 2.2: Covariance Intersection. The black ellipses are similar to Fig. 2.1. However,
the correlation is iteratively rotated counterclockwise by π/16. a) Eq. 2.32 is
used to compute the resulting covariance (blue) which stays within the intersec-
tion of the black ellipses. b) shows the resulting ellipses for CI for increasing
ω ∈ [0,1] and c) its determinant.
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2.2.3 Kalman Filter

The KF was derived by Kalman in 1960 [52]. KFs are an implementation of BFs
for linear systems, where the beliefs are represented by MNDs. Its prediction and
update steps are outlined in Alg. 2.

Algorithm 2 Kalman Filter Step [82]

Input: µµµ t−1, ΣΣΣt−1, uuut , zzzt
Output: µµµ t , ΣΣΣt
Prediction Step:

1: µµµ t =AAAtµµµ t−1 +BBBtuuut
2: ΣΣΣt−1 =AAAtΣΣΣt−1AAAT

t +RRRt
Update Step:

3: KKKt =ΣΣΣtCCCT
t (CtΣΣΣt−1CCCT

t +QQQt)
-1

4: µµµ t = µµµ t +KKKt(zzzt −CCCtµµµ t)
5: ΣΣΣt = (III−KKKtCCCt)ΣΣΣt

Besides linearity, KFs furthermore assume that system states µµµ , control variables
uuut and measurements zzzt are uncorrelated. The prediction step is motivated by the
addition of MNDs, see Eqs. 2.24 - 2.26. The update step is motivated by the com-
position of MNDs, see Eqs. 2.27 - 2.29. Over the years, a plurality of versatile ex-
tensions was investigated by researchers to extend the applicability of KF to nonlin-
ear systems. The Extended Kalman Filter (EKF) [9] and Unscented Kalman Filter
(UKF) [50] are probably its most prominent representatives. A detailed derivation
and introduction on KFs and its derivatives can be found in [91] [82] [44].

2.2.4 Particle Filter

Contrary to parametric KFs, PFs [59] or SMCs are a nonparametric filters. KFs
avoid the computationally expensive numerical integration in Alg. 1 line 1 and
multiplication in Alg. 1 line 2 of PDFs by exploiting the simple arithmetics of
MNDs. PFs represent the belief by samples or particles instead of PDFs. This is
useful, as sampling from PDFs is easier and computationally less expensive than
numerical integration. Fig. 2.3a and Fig. 2.3b show the approximation of a 1D
and 2D MND by a histogram and a grid map, where each bar or cell represents a
sample m at location xm

t with weight wm
t .

It is apparent that there is a trade-off between number of samples, and thus the PDFs
approximation accuracy, and calculation effort. PFs are especially useful when the
usage of non- Gaussian PDFs is required. For example, in multi-lane environments,
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(a) Gaussian distribution represented by
histogram with weights.

(b) 2D multivariate normal distribution ap-
proximated by grid with weights

Figure 2.3: Representing Gaussians with Samples. Non-parametric BF approximate con-
tinuous PDFs with discrete samples.

the lane assignment of detected lane markers can be ambiguous and must be mod-
eled by multimodal PDFs. Alg. 3 delineates the fundamental computation tasks
of a PF step. The PF prediction is computed in line 2, where the prior particles
xt−1 are propagated using the control input ut to xt . The PF update is computed in
line 3 where the weights of the particles wt are recalculated using the conditional
probability of measurement zt given the weights particle xt . Lines 5 - 7 represent
the resampling step. Resampling is necessary to avoid degeneration of particles,
where only a few particles with high weights are left.

Algorithm 3 Particle Filter Step [82]

Input: Xt−1, ut , zt
Output: Xt

1: for m = 1 to M do
2: sample xm

t ∼ p(xt |ut ,xm
t−1)

3: wm
t = p(zt |xm

t )
4: Xt = Xt + 〈xm

t ,w
m
t 〉

5: for m = 1 to M do
6: draw i with probability ∝ wm

t

7: add x[i]t to Xt

This concludes the chapter on multisensor fusion. Wendel [91] or Bar-Shalom et
al. [10] present a good overview on both parametric and nonparametric BFs with
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applications. A more extensive and versatile examination on Probabilistic Robotics
is given by Thrun et al. [82]. Multisensor data fusion is not limited to probabilistic
fusion, a brief survey on additional fusion technigues such as evidential belief rea-
soning, fuzzy reasoning, hybrid fusion and random set theoretic fusion is outlined
in the survey paper of Khaleghi et al. [53].

2.3 Optimization

This section introduces the basics and nomenclature concerning convex optimiza-
tion used throughout this work. For further details on optimization the author rec-
ommends to consult the respective literature. Boyd and Vandenberghe [16] provide
a comprehensive survey on convex optimization. Wright and Nocedal [94] and
Burkards [18] work on optimization further covers nonconvex optimization. An
elaborate summary on large-scale nonlinear optimization is presented by Gould et
al. [41].
Optimization is the task of finding optimal values of a set of parameters or variables
with respect to some objective function, a quantitative measure of the system’s per-
formance. Parameters or variables can be subject to constraints. Identification of
the objective, parameters, and constraints is called modeling. Beside choosing the
right model for the objective, it is of utmost importance to further select an appro-
priate optimization algorithm. In the following, the problem types, solver types,
constraints, and differentiation techniques will be introduced.

2.3.1 Problem Types

There are various problem types in optimization theory, which can be characterized
by the properties described below.

• Linear or nonlinear

• Differentiable or nonsmooth

• Convex or nonconvex

• Constrained or unconstrained

• Continuous, integer or mixed integer

• Finite or infinite dimensional

• Global or local optimization

There are two types of constraints, equality and inequality constraints. While equal-
ity constraints require the current iterate xxxk to be equal to some constant ccci
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xxxk = ccc (2.35)

inequality constraints keep the current iterate below or above a lower or upper
bound ccc

xxxk ≤ ccc (2.36)

LP and convex quadratic programming with equality constraints can be solved di-
rectly or iteratively by solving the Karush-Kuhn-Tucker (KKT) system, which com-
bines and rearranges first-order optimality conditions with equality constraints. In
the special case of equality constraints in KKT systems the method of Lagrangian
multipliers can be applied. Although iterative solving introduces the burden of
balancing between solution precision and solver iterations, it can be beneficial for
solving large systems. Active-set and interior-point methods are solver classes that
are particularly designed to handle inequality constraints and are outlined in Sec.
2.3.2. A set where all points satisfy all constraints is called a feasible set.
There is a distinction between constraints and conditions. While constraints are
used to bind parameter values, conditions are a useful tool to check the optimizer’s
state. Optimality conditions are a mathematical method to check whether the values
of a parameter set are indeed a solution. For the first-order necessary optimality
condition, the derivate or Jacobian must be equal to zero. For the second-order
necessary condition, the second-order derivative or Hessian must be zero.
A problem is considered convex if both its parameter set and objective are convex
as displayed in Fig. 2.4. In a convex feasible set P all connecting lines between
set points are within the set. A function is considered convex if all its connecting
lines are above the function graph. For convex problems the local minimum is also
a global minimum. It is thus sufficient to find the local minimum.

(a) Convex and nonconvex function (b) Convex and nonconvex set

Figure 2.4: Convex Problem. A problem is convex if both the objective function and feasi-
ble set are convex

Using these properties, optimization problems can be divided into six categories.
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• Linear Programming
linear objective, linear constraints, continuous parameter space, finite dimen-
sional

• Quadratic Programming
quadratic objective, linear constraints, continuous parameter space, finite di-
mensional

• Nonlinear Programming
nonlinear objective, nonlinear constraints, continuous parameter space, finite
dimensional

• Linear Integer Programming, integer programming
linear objective, linear constraints, integer or mixed integer parameter space

• Non-smooth optimization
nondifferentiable objective function or constraints

• Optimal Control
Optimization problem includes dynamics in form of differential equations
(infinite dimensional)

For the following sections the parameter space, constraints and objective function
will be assumed to be continuous and finite dimensional. Thus, the remaining
problem types are Nonlinear Programming with its special cases quadratic pro-
gramming and LP. As all quadratic programming problems where the matrix of
the quadratic part is positive definite and all LP problems are convex, a particular
emphasis will be put on convex optimization.

2.3.2 Solver Types

Given an objective function and parameter set with an initial guess for its values,
it is the solver’s task to perform an intelligent sequence of improved estimates or
iterates to minimize or maximize the objective function. The strategy how to move
from one iteration to another distinguishes the solver algorithms. While some
solvers use the values of the objective and constraint functions and, optionally,
their first- and/or second-order derivatives, others accumulate information from
prior iterates.
This section introduces the solver types used for convex optimization, while some
solvers are applicable to nonconvex problems with no or bearable adjustments, oth-
ers require more modifications. An overview on application of these solvers and
required modifications is presented by Gould et al. [41] and Wright and Nocedal
[94]. Although convex problems can be solved directly through matrix factoriza-
tion or decomposition, these techniques are unstable for ill-conditioned matrices
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or numerically expensive for large-scale optimization. This holds for convex prob-
lems with equality constraints, by solving the KKT system, as well. There are
almost innumerable implementations of optimization solvers for convex optimiza-
tion. Hence, the solver types will be divided into the following categories:

Unconstrained optimization

• Line-Search Methods

• Trust-Region Methods

Constrained optimization

• Active-Set Methods

• Gradient-Projection Methods

• Interior-Point Methods

Line-search algorithms first compute a search direction pppk and then a step length
αk, which describes how much the current iterate xxxk is updated along this direction.
Contrastively, trust-region algorithms first approximate the objective f by a model
mk and estimate a trust-region, depending on the estimated accuracy of the model.
Secondly, the search direction is computed by optimizing the model mk within the
trust-region.
Active-set, gradient-projection and interior-point methods are used for convex opti-
mization with inequality constraints and internally apply line-search or trust-region
methods. Active-set methods move along search directions until inequality con-
straints are reached. Once reached, these constraints are considered as equality
constraints and added to an active set of equality constraints, thus the naming.
Graphically speaking, these optimization techniques tend to move along the hull
of the feasible set, which motivates another optimization technique called interior-
point. Its idea is to stay within the feasible set, by restricting the update direction
through barrier functions along the inequality constraints. This sounds impractical
but is often more efficient than active-set methods for large problems [94].

Line-Search Methods

Line-search methods are probably the most intuitive optimization algorithms. They
pursue an iterative strategy where the current iterate xxxk is updated along a primarily
computed search direction pppk by the amount αk, called step size, outlined in Alg.
4. The search direction is computed using first-order and optionally second-order
derivatives. While steepest-descent methods only use first-order derivatives (Jaco-
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bians), Newton methods additionally use the objective’s second-order derivatives
(Hessians) for quadratic convergence. Quasi- Newton or Gauss- Newton methods
differ from Newton methods as they do not compute, but approximate Hessians
using the information gained from the Jacobian of prior iterates. This can be ben-
eficial as the computation of Hessians can be expensive, erroneous, and cumber-
some [94]. Its most well-known implementations are Broyden-Fletcher-Goldfarb-
Shannon, Symmetric-Rank-1 and Davidon-Fletcher-Powell methods.
Once the search direction pppk is computed, it is necessary to compute the step size
αk. Exact line-search methods attempt to find the global objectives minimum for
αk. This is computationally expensive as many function evaluations are necessary.
Inexact line-search methods follow another strategy, where the step size search is
aborted once certain conditions on the objectives decrease and curvature are met.
Wolfe or Goldstein conditions are the most established of these conditions.

Algorithm 4 Line Search Methods

1: Compute a search direction pppk
2: Go along search direction from current iterate xxxk
3: Find a step length α for pppk by mimimizing

min
α>0

f (xxxk +αpppk)

4: Repeat until convergence

Trust-Region Methods

Trust-region methods do not minimize the objective itself, but a model mk of the
objective within a trusted region around the current iterate xxxk. The estimation of
trust-regions is a nontrivial task and similar to the problem of estimating the step
size αk in line-search methods.
Trust regions are usually defined by an Euclidean distance to xxxk or ball around xxxk.
However, a weighted distance or Mahalanobis distance, interpreted as ellipsoid, or
box-shaped trust region are also used. Choosing the right size for the trust region is
of utmost importance. Small regions result in unnecessary plurality of steps, while
large regions result in the necessity to decrease the trust region iteratively as the
model does not behave as the objective. Thus, trust regions are typically chosen
iteratively from prior steps. A deepening examination of trust-region algorithms
can be found in [94].
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Algorithm 5 Trust-Region Methods

1: Evaluate objective f
2: Construct model funtion mk which approximates f near xxxk
3: Estimate a trust region where mk is a good approximation
4: Find pppk subject to xxxk + pppk stays in the trust region

min
pppk

mk(xxxk + pppk)

5: Optionally decrease trust region if decrease in f is not sufficient
6: Repeat until convergence

Active-Set Methods

Active-set methods are used to iteratively solve constrained, convex problems.
While the method of Lagrange multipliers can be applied to convex problems with
equality constraints, active-set methods can further handle inequality constraints,
by keeping a working setWk of active constraints, updated throughout the active-
set algorithm iterations. This set includes all equality constraints and those inequal-
ity constraints reached by the solver, imposed as equality constraints. The resulting
equality constrained, convex subproblem is solved by solving the resulting KKT
system, which can be computed directly through factorization or iteratively through
conjugate gradients.
Evidently, adding and subtracting constraints to the active set is challenging. Alg.
6 outlines the main steps of active-set methods. Its most prominent representatives
are primal, dual, primal-dual active-set methods and simplex methods.

Algorithm 6 Active-Set Methods

1: Create quadratic sub problem q using the working setWk
2: Solve equality constrained quadratic sub problem q
3: if Computed step length α is blocked by constraints 6∈ Wk then
4: Add blocking constraints toWk+1

5: if Constraints fromWk can be dropped then
6: Remove constraints fromWk+1

7: Repeat until iterate minimizes q andWk unchanged

Gradient-Projection Methods

A drawback on active-set methods is the slow change of the working set, which
usually is only updated by a single index at each iteration. This is distinctively
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slow for large-scale problems with many constraints. Gradient-projection methods
overcome this drawback by allowing rapid changes to the working setWk of active
constraints. Alg. 7 displays the main steps of gradient-projection methods. Each
iteration consists of two steps. In the first step, a search direction pppk for the uncon-
strained problem is computed via steepest descent. This direction is bent around
the violated constraints. The resulting point is called Cauchy point. In the second
step, the equality constrained problem with all active constraints at the Cauchy
point is solved. These types of algorithms are most effective for simple constraints,
such as bounds on parameters, where the feasible set’s hull is similar to a box.

Algorithm 7 Gradient Projection Methods

1: Search along steepest descent direction pppk from current iterate xxxk
2: while constraint violated do
3: Bent pppk around constraint so that iterate xxxk stays in the feasible set.
4: Add all active constraints at xxxk to working setWk.
5: Solve the subproblem using the constraints from the working setWk
6: Repeat until convergence

Interior-Point Methods

As active-set methods solve equality constrained subproblems, they usually move
along the hull of the feasible set. Gradient projection methods behave similarly
by projecting the iterate direction on the hull of the feasible set. Interior-point
methods iteratively approach the optimal solution from the interior of the feasible
set. Iterates are forced to stay within the interior of the feasible set using barrier
functions, commonly with logarithmic properties, which penalize small distances
to the hull of the feasible set. The barrier parameter µ scales the influence of the
barrier function in contrast to the objective. The resulting perturbed KKT system
can then be solved by using Newton’s method.
As µ → 0 the perturbed solution xµ,k converges to the solution of the unperturbed
problem. For convergence or stability reasons, a substitution, refered to as slack
variable/vector s is introduced. Similarly, the problem can be rearranged to for a
dual problem. These methods are referred to as primal-dual interior-point methods.
More details and an extension of interior-point methods to nonconvex problems
can be found in [94]. Alg. 8 outlines the main steps of an interior-point algorithm.
Interior-point methods use more expensive steps than active set methods, but gener-
ally require less iterations [94], making them more efficient for very large problems
in practice.
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Algorithm 8 Interior Point Methods

1: Choose σk ∈ (0,1]
2: Update µ and
3: Compute step length αk by solving the linear system derived from the perturbed

KKT conditions
4: Update current iterate xxxk, Lagrangian multiplier and the slack variable
5: Repeat until convergence or no feasible direction possible

2.3.3 Differentiation

The fastest and most precise way to compute derivatives is to use analytic deriva-
tives. However, calculation of analytic derivatives by hand or through symbolic
variables is tedious and unfeasible as algorithm complexity increases. One solution
is to approximate derivatives using numerical differentiation, such as forward or
central differences

ḟforward(x) =
f (x+h)− f (x)

h
(2.37)

ḟcentral(x) =
f (x+h)− f (x−h)

2h
(2.38)

where h is a small step, ideally infinitesimal small h→ 0, but big enough to prevent
numerical errors due to rounding in floating point arithmetic or machine epsilon.
The latter postulates that derivatives cannot be computed exactly and their accu-
racy further depends on the absolute x-value2. Furthermore, the function has to
be reevaluated. Fig. 2.5 shows the numerical error using forward and central
differences. Central differences have a smaller error of O(h2) than forward or
backward differences, which have O(h). The error estimation of open and closed
Newton-Cotes formulae are derived from the Taylor series expansion. Naturally,
higher-order differences, such as Ridders’ Method [72], come with a smaller error
but increased computation time.

Another way to compute derivatives is Automatic Differentiation (AD). The idea is
to use dual numbers due to the similarity between the polynomial derivative prop-
erty and the binomial theorem using Pascal’s triangle. Let P(x) be a polynomial of
the form

2 fraction bits of IEEE 754 double-precision are fixed

26



2.3 Optimization

10−18 10−14 10−10 10−6 10−2 10210−16

10−11

10−6

10−1

104

Step size h

N
um

er
ic

al
er

ro
r

Figure 2.5: Numerical Errors Using Forward and Central Differences on x3. This figure
shows the numerical errors when using forward (red) and central (blue) differ-
ences to estimate the derivative of x3, which is 3x2. For this function, the numer-
ical error increases with increasing x ∈ {0.01,0.1,1.0,10.0} denoted by brighter
colors. The error was computed on an Dell M4800 workstation, see Appx. A.3.

P(x) = p0 + p1x+ p2x2 + ...+ pnxn (2.39)

Using a dual number (x+ε) instead of the scalar x, expanding all polynomial terms
using the binomial theorem, and removing all terms with εk if k ≥ 2 results in

P(x) = p0 + p1x+ p2x2 + ...+ pnx2

+ p1ε +2p2xε + ...+npnxn−1
ε

= P(x)+ Ṗ(x)ε

(2.40)

The dual component inherits the derivative of P(x). Intuitively, as many functions
can be represented by an infinite Taylor Series Expansion around a radius of con-
vergence, dual numbers can also be used for trigonometric, exponential, logarith-
mic functions as well. Computing units typically use Taylor Series Expansion to
approximate these functions as well. Due to the chain rule of differentials multi-
variate functions can be handled as well. A profound introduction into derivatives
is presented by Wright et al. [94]. AD is further used to estimate second-order
derivatives using hyper-dual numbers [35].
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After a brief introduction on the development of autonomous vehicles, pioneer
work and recent progress, a substantial survey on the field of localization and map-
ping for autonomous vehicles will be presented.

3.1 Autonomous Driving

In 1977, Tsukuba Mechanical Engineering Laboratory constructed a car that was
able to follow white lane markers at 30 km/h. In 1986, the project PROMETHEUS
was launched, intended to improve all areas of European road traffic. In the course
of this project, Dickmanns et al. presented VaMoRs-P [32], [33], a Mercedes 500
SEL with automated lateral control driving at 130 km/h. It recognized lane mark-
ers and estimated its lane-relative pose. Their most prominent drive was in 1995
from Munich, Germany, to Odensee, Denkmark, a 1600 km drive with about 95 %
traveled automatically. Simultaneously in 1995, researchers from the Robotics In-
stitute of Carnegie Mellon University, drove a Pontiac Trans Sport, named RALPH,
from Pittsburgh to San Diego in No hands across America [69], [68]. The vehi-
cle’s lateral controller was active 98.20 % of the time while longitudinal control
was performed manually.
To foster the development of autonomous cars, the DARPA launched competitions
from 2004 to 2007 [17]. Starting with a 240 km route through the Mojave Desert
in 2004, which none of the participants was able to complete, a second competition
in 2005 was launched. The new 212 km route in the Mojave Desert was completed
by five cars and was won by Stanley [84]. In 2007, the DARPA launched a 60 km
race in a nonpublic urban environment with human test drivers, which was won by
a Chevrolet Tahoe named Boss [87].
Another milestone was set by Ziegler et al. [97] in 2013. They were able to adapt
a Mercedes Benz S 500, called Bertha, so that it was able to drive autonomously
from Mannheim to Pforzheim, Germany. A 103 km course covering rural roads,
small villages and major cities, while relying merely on near-series sensors in com-
bination with digital maps, vision, and radar sensors.
Nowadays, innumerable companies and universities are seeking to provide au-
tonomous driving features to publicity. However, unclear legal situations, fail-safe
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system requirements1 and cost factors have prevented public introduction of au-
tonomous systems so far, making a permanent human monitoring inevitable.

3.2 Localization and Mapping

The ability to obtain precise knowledge of vehicle system states and local environ-
ment is essential for ADAS. One crucial task of enhanced ADAS is the estimation
of map- and lane-relative poses, also referred to as localization, and the creation of
maps or mapping. Simultaneous Localization and Mapping (SLAM) [24] solves
both the localization and mapping problem at the same time by incorporating land
markers into the system states. The objective is to overcome the burden of inaccu-
rate sensors by fusing their measurements over time.
Three main approaches for fusing sensor data will be reviewed in the following.
The most prominent approach is the KF [52] and its successors, the EKF [9] and
the UKF [50]. KFs assume Gaussian noise and linear systems. If these assumptions
hold, KFs are optimal and computationally efficient. EKFs extend KFs to nonlinear
systems by local linearization of system equations. UKFs, on the other hand, prop-
agate multiple states and approximate their mean state and covariance using the
propagated states. However, if measurements are not normally distributed, for ex-
ample due to ambiguities, the filter cannot be applied directly and needs significant
extensions to track multiple system states.
This motivates the second approach called SMC or PF [59]. Its basic idea is to
approximate PDFs using multiple samples called particles. If more particles are
used the approximation gets better but computational effort increases. Both KFs
and PFs are Bayes filters and assume a Markov chain.
Last but not least, the localization problem can be solved via optimization of a
nonlinear error function represented as a pose graph. An example is the Graph-
SLAM [83]. All three approaches are compared in Sec. 3.2.4.

3.2.1 Kalman Filtering

The KF is one of the most widely used filters due to its plainness and ease of imple-
mentation. Its major assumptions are that state-space models are linear and system
and measurement noise follow a Gaussian distribution. If these assumptions are
met, the KF is an optimal estimator. There are many implementations of the KF
for localization. Popular for aerial, but also used for terrestrial, robots are com-
binations of GNSS and Inertial Measurement Unit (IMU) sensors. Pose estimates
are updated through numerical integration of the IMU using a Strapdown algorithm

1 ISO 26262
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[85]. The combination of an IMU with a computing unit, to solve the Strapdown al-
gorithm, is called Inertial Navigation System (INS). Adding sensors, such as GNSS
receivers, to limit the orientation, velocity, and position drifts in combination with
INS are called aided INS. Typically an EKF is used to fuse the estimates. The INS
is used in the Kalman update step and the Kalman innovation is performed using
the GNSS pose estimate.
Barshan and Durrant-Whyte [12] extended these GNSS/INS systems to further esti-
mate the inertial sensor errors, such as offset and scaling errors of the accelerometer
and gyroscopes of the IMU, to further increase the accuracy of pose estimates.
Similarly Sukkarieh et al. [80] estimate low-frequency errors of IMUs as well
as misalignments of IMU and GNSS units. Faulty GNSS pose estimates due to
multipath scattering, are excluded by comparing the Mahalanobis distance of the
Kalman update vector to a χ2 threshold. The innovation covariance matrix is used
for the Mahalanobis distance.
Werries and Dolan [92] propose an online adaption of covariance matrices of KFs to
further increase the accuracy of GNSS/INS systems. For the covariance matrix, the
estimation of the GNSS receiver is used. Those estimates typically rely on Dilution
Of Precision (DOP) values. The system covariance matrix is computed from the
Kalman update vector, while considering prior and posterior state uncertainties.
To increase the robustness of GNSS/INS systems Abuhashim et al. [2] propose
a sequential combination of an innovation-based and a model-based Fault Detec-
tion and Identification (FDI). The innovation-based FDI relies on a Statistical Con-
sistency Test, where the Mahalanobis distance in innovation steps of the KF is
compared to a χ2 threshold. When a measurement is classified as faulty, a subse-
quent model-based FDI checks the measurement. Here, the author chose a Mul-
tiple Model Adaptive Estimation technique, where several models are fused using
weights computed from the similarity between the models. There are various ap-
proaches to extend Global Positioning System (GPS)/INS systems. Gao et al. [36]
as well as Hazlett et al. [45] additionally incorporate a Wheel Speed Sensor (WSS)
to improve odometry estimates in the KF update step and increase the vehicle po-
sition accuracy.
Toledo-Moreo et al. [86] have a similar setup but switch between odometry models
of the WSS. A four-wheel model, for dynamic scenarios, and a simplified first-order
model are used to estimate the odometry from the WSS. An Interacting Multiple
Model (IMM) filter is used to switch between models depending on the scenario.
Laneurit et al. [55] furthermore add a camera to support the pose estimate accuracy.
A simple lane tracker [8] is used to estimate vehicle poses within a road map.
Additionally, object detections with a road membership, from a lidar sensor, are
used to further improve the position accuracy. Similarly, Aeberhard et al. [3] use
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a digital map together with a GNSS sensor, vehicle odometry, cameras and lidar
sensors. A KF is used to estimate the vehicle pose within digital maps.
Dawood et al. [28] use a virtual 3D city model from a GIS as a map in combination
with a camera for accurate pose estimates. Features from a camera image and
a virtual image, created from a GIS, are extracted via a Harris Corner Detector
and Scale-Invariant Feature Transform descriptors and are aligned via a POSIT
algorithm [29]. The measurements are fused in an IMM-UKF.

3.2.2 Particle Filtering

PFs are SMC methods, which represents posterior PDFs by a set of samples called
particles. Advantages of PFs compared to KFs are that state-space models can be
nonlinear and PDFs do not have to be Gaussian. However, the PF has an increased
computational effort depending on the number of particles. There are many ap-
proaches to solve the localization problem with PFs.
Gregory et al. [38] estimate vehicle poses using a GNSS/INS unit and vehicle
odometer data. Results show that the PF performs better than a similar KF imple-
mentation. The authors motivate these results due to inherent errors of IMUs and
their time-varying changes. Despite GNSS/INS system, PFs are frequently used
when multimodal and other non Gaussian distributions are present. Multimodal
states can occur when estimating map-relative poses in multi-lane environments
with concealed perceptions.
Chausse et al. [23] apply a PF to estimate vehicle poses in lane-level maps using a
camera, GNSS receiver, IMU, Steering Angle Sensor (SAS), and vehicle odometer.
The application of a PF, compared to a priorly implemented KF [55], is motivated
due to ambiguities in multi-lane environments. Likewise, Jo et al. [49] utilize a PF
for vehicle localization using a low-cost GPS, a precise digital map with centimeter
accuracy, a front and rear camera and vehicle on-board motion sensors such as
WSS and yaw rate sensor. Their Root Mean Squared Error (RMSE) position for a
recorded testfield dataset is 54 cm.
Levinson et al. [58] solve the localization problem using a PF together with a
GPS sensor, an IMU, a WSS, and a lidar sensor together with a high-resolution
environment map. The map was priorly recorded and optimized via Graph-SLAM
[84] and has a map error of less than 10 cm. During a 20 min drive the author
suggests that lateral error were almost always within 10 cm, although the errors
were sometimes as large as 30 cm.
A PF approach is suggested by Schindler [73] to estimate poses within a HD map,
where lane markers are represented by circular arc splines. Points of detected lane
markers, from a monocular camera, are aligned via prototype fitting, which is a
generalization of Iterative Closest Point (ICP) algorithms. Additionally, a four-
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layer laser scanner provides hypothesis of surrounding landmarks and a GNSS re-
ceiver is used for initialization within the map. A localization error below1 m and
an orientation error below 1 deg was achieved.
A similar localization sensor setup is used by Deusch et al. [30]. Tree trunks,
road signs and reflector posts, extracted from three front-facing lidars and an ad-
ditional camera that mainly detects lane markers, are used to estimate the vehicle
pose within a grid map. The data is fused using an PF approach and the vehicle’s
final pose is extracted by computing a weighted particle mean. A key feature of
this approach is that landmarks are efficiently stored in feature vector instead of a
raw grid map itself, decreasing the necessary map storage to 22 kB/km. The local-
ization module has been extensively tested in the Autonomous Driving project [54]
on a 5 km campus track at Ulm University, resulting in a lateral Standard Deviation
(STD) error of 17 cm with a mean error of 9 cm and an orientation error of 0.01 deg
and 0.23 deg respectively.

3.2.3 Pose Graph Optimization

Pose graph optimization techniques estimate an optimal set of poses by optimiza-
tion a nonlinear Least-Squares (LSQ) problem. Vehicle and landmark pose esti-
mates are represented by graph vertices and constraints between poses are repre-
sented by graph edges. Solving an optimization problem instead of using classic
BFs has the advantage that nonlinear error terms can be incorporated, parameter
boundaries can be set, residuals can be monitored, loop-closures between detection
can be incorporated and additional parameters can easily be solved. However, due
to the high complexity, it is indispensable to choose the right solver and formulate
the problem in an efficient manner.
Thrun et al. [83] were among the first to successfully solve the SLAM problem via
pose graph optimization. They introduce an approach called Graph-SLAM, which
represents the SLAM problem as a graphical network. One key idea is to reduce
the number of variables of typical SLAM solvers by removing map features and
shifting their information in sparse matrices accordingly. Thus, only pose variables
remain. They evaluate their approach using a robot on a Segway RMP platform
equipped with odometry sensor, lidar and a GNSS sensor.
When HD maps are already present and the objective is to estimate the pose within
the map, one problem of pose graph optimization is the initialization within the map
if no positioning sensor is provided. Olson et al. [67] use a variant of stochastic
gradient descent for faster convergence on pose graph problems for poor initializa-
tion. However, a low-cost GNSS receiver, which can provide sufficiently precise
initial estimates, is typically present.
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Lategahn et al. [57] presented an approach for localization using a mono camera
setup, an IMU and large-scale feature maps. Feature maps are created priorly using
a high-precision GNSS receiver and a stereo camera setup. The feature map is com-
puted via pose graph optimization. To localize the vehicle within the map, land-
marks of the mono image are associated with features from the map and adjusted
by optimizing the pose using motion constraints from the IMU to prior poses. Out-
liers are rejected by examining their back projection error to a threshold, while it is
ensured that at least half of all measurements are retained. Lane-level maps confine
the amount of data, which is of special interest for wide-area maps or frequent map
updates, as lanes can be represented efficiently using parametric functions such as
splines or clothoids. Jeong et al. [48] extract road markings from a stereo camera
setup and fuse the extractions together with vehicle odometry estimates in a Graph-
SLAM. To increase the robustness of loop closures and matching on sub-maps, a
random forest method is used to classify road markings into six categories. An
average accuracy of 1.10 m was achieved over 4.70 km.
As priorly motivated, lane marker classification can help to decrease, but cannot
exclude, erroneous map matches and false loop closures. Thus, it is important
to reduce the influence of outliers. In pose graph optimization techniques a loss
function is typically used to degrade outlier influence. Suenderhauf et al. [81]
present an approach for robust Graph-SLAM that detects and rejects outliers during
optimization. By making constraints switchable, the graph representation is subject
to optimization.
Abramov et al. [1] perceive multi-lane detections from cameras. Lane marker
detections from a serial automotive camera are refined by a second experimental
camera and processed by a Graph-SLAM algorithm to obtain a lane feature set
and a lane-relative trajectory. Such systems can also be used, during long-term
perturbation of digital maps, as fall-back solutions.

3.2.4 Comparison

This section is concluded by a discussion on advantages and disadvantages of pose
graph optimization techniques to solve the localization problem, compared to clas-
sic BFs such as EKFs and PFs. The most important features are discussed below
and summarized in Tab. 3.1.

Multimodal Distributions

A key assumption of KFs is the assumption of Gaussian noise, which is unimodal.
Multimodal distributions are hard to model within KFs. If current states can be
approximated by multiple Gaussian distributions, multiple KF states or Gaussian
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3.2 Localization and Mapping

Mixture Models can be filtered over time [89]. However, this introduces additional
issues, such as determining when multimodal states can be merged or must be di-
vided. These issues also arise when using pose graph optimization. PFs on the other
side do not presume a PDF and can intuitively be used for multimodal distributions
as well. Although more particles are required to adequately represent multimodal
states. This is especially useful when localization in multi-lane environments with a
lane marker detection system as presented by Chausse et al. [23] or Schindler [73].
However, the extraction of single states, typically required by subsequent modules,
from a plurality of PF states is a nontrivial problem. G-means clustering algorithms
[42] can be used to extract single system states from an unknown amount of point
cloud agglomerations.

Ambiguous Measurements

Ambiguous measurements and multimodal states are closely related as the latter
usually arises from the former. Similar to multimodal distributions, ambiguous
measurements are rather intricate to model in conventional KF techniques, e.g.
through Multi Hypothesis Tracking [82], and are intuitively included in PF. For
pose graph optimization, it is possible to model ambiguous measurements directly
in the residual or let the solver switch between ambiguous measurements, removing
the need of multiple potential states at equal time stamps.

Parameter Constraints and Boundaries

Parameter constraints or boundaries can be incorporated straightforward into opti-
mization problems. There are sophisticated solvers for constrained optimization,
such as the method of Lagrangian multipliers for equality constraints or active-set
and interior-point methods for equality and inequality constraints. Although there
are activities in including constraints in KFs [75] or PFs [21], they solve an ambiva-
lent problem and are usually not distinct. Simon and Simon [75] present a method
to incorporate inequality constraints into a KF. The idea is to project unconstrained
KF estimates on a constraint surface. This procedure is similar to quadratic pro-
gramming. Whereas Chao et al. use constraints to reweigh particles to eliminate
those that do not fulfill the proposed constraints.

Nonlinear Systems

EKFs and UKFs are, among other derivatives of KFs, BFs that can handle moderate
nonlinear systems with limited linearization errors. PFs are better suited when
faced with higher-order nonlinearity. When compared to UKFs this property is
obvious as SMC methods use more particles than a few sigma-points of UKFs.
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Similarly, pose graph optimization techniques can readily be applied to nonlinear
systems. When applying optimization techniques, the problem of convexity arises
and convergence can be difficult to prove or may not be provable at all.

Computational Effort

Computational efficiency is of particular importance for real-time applications, es-
pecially when cost, heating, or space plays a decisive role. A detailed discussion on
computational complexity of mathematical operations and algorithms is presented
by Arora and Barak [6].
KFs and most of its derivatives are among the most efficient filters concerning com-
putational effort. Its major computational task is the inversion of an n-dimensional
matrix, where n denotes the number of system states, which is O(n3) for Gauss-
Jordan elimination. By using fast matrix multiplication [77], the inverse of a matrix
can be computed with O(n2.38) [27]. Note that most recent extensions of this algo-
rithm perform slightly faster.
For the single-agent localization problem, the state space dimension n is gener-
ally very small. Hence, for PFs the main computational complexity arises from the
number of particles m. The most computationally expensive tasks are sampling and
resampling techniques [82], [15], [22]. While independent sampling, where a ran-
dom particle has to be searched m times with O(logm) time, requires O(m logm)
time, low variance sampling, where particles are aligned and equidistantly sam-
pled, requires O(m) time [82]. Bolic et al. investigated computational complexity
of several resampling techniques for PFs. A rule of thumb is to assume that com-
putational complexity increases linearly with the number of particles. However, as
the PF problem is well suited for parallelization in presence of many particles [22],
[47], the computational workload for the CPU can be further decreased. However,
this comes with an additional computational workload for the GPU. Hendeby et al.
[47] show that resampling can be done in O(log(m)) time on a CPU with an addi-
tionalO(log(m/nproc)) on the GPU, where nproc is the number of GPU processors.
For m≈ nproc this has a constant complexity.
For most optimization solvers, the complexity of an iteration and the convergence
rate can be estimated quite well, e.g. Quasi-Newton methods have superlinear con-
vergence and each iteration is performed inO(logn) time [94], where n is the num-
ber of parameters subject to optimization. However, in real-world applications, the
amount of steps necessary until a convergence criteria is met highly depends on the
nonlinearity of the system, the initial values, machine epsilon2, problem formula-
tion, solver type and convergence criteria itself. Hence, hard real-time properties

2 see IEEE 754
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are difficult to guarantee and usually only computational time estimates, from em-
pirical investigations, can be provided.

Outlier Rejection

For linear systems and uncorrelated measurements with Gaussian noise, KFs are
optimal. There is no better estimator in presence of known uncertainties. But
real-world applications almost always violate these properties. Misclassification,
sensor disruption, failed convergence and additive noise yield, along with other er-
rors, false measurements, referred to as outliers. The quality of estimates highly
depends on robustly detecting and rejecting these outliers. This typically leads to a
trade-off between rejection rate and availability of measurements.
For KF approaches, most algorithms screen the update step, see Alg. 2, line 4.
Rejecting outliers can be implemented by applying a hypothesis test on the up-
date. For MND a χ2-test can be used to reject new measurements. The Euclidean
length of the update step is converted to the statistical Mahalanobis distance, using
the measurement covariance matrix QQQt . If the statistical distance exceeds the χ2-
threshold, the update is rejected. This test is also known as Normalized Innovation
Squared (NIS)-test [4]. An essential task herein is to choose an adequate signifi-
cance level, comprising the trade-off between outlier rejection and availability of
measurements. Further analysis on robustification of KFs can be found in [82] and
[63]. PFs are, by their design, more robust against outliers than KFs as long as there
are no or significantly fewer particles close to outliers. There is a trade-off between
rejecting outliers and accepting multimodal states, by increasing the particles noise
during propagation. For pose graph optimization techniques robustness against out-
liers can be achieved by applying an adequate loss function, which diminishes the
influence of outliers. Moreover, pose graph optimization can be designed, so that
outliers can be switched off [81] to exclude their influence.
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EKF PF Pose graph optimization

Multimodal Distributions o + o

Ambiguous Measurements o + + +

Parameter Constraints and Boundaries o + + +

Nonlinear Systems + + + + +

Computational Effort + + - - -

Outlier Rejection + + + +

Table 3.1: Pose Graph Optimization Versus Bayes Filters.
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4 Robust Pose Estimation

This chapter presents an approach to robustly estimate rover poses within HD maps
as well as within simultaneously created local maps of lane markers, as depicted in
Fig. 4.1.

Figure 4.1: Robust Pose Estimation. The objective of robust pose estimation is to robustly
and accurately estimate the rover’s driven trajectory (blue line), given raw pose
(gray shaded circles) and odometry (dashed black lines) estimates from sensor
readings, while simultaneously detecting and rejecting outliers (red circle).

The localization problem will be modeled as a graph or graphical network, il-
lustrated in Fig. 4.2. A graph connects vertices through edges. For localization
problems poses, prepresented by vertices, are connected through constraints, repre-
sented by edges. These type of graphs will be called pose graphs. Before presenting
the pose graph optimization and the key challenges when applying this technique
for the localization and mapping problem, the pose representation and coordinate
frame will be introduced.

Coordinate Frames

Earth-Centered Inertial (ECI) frames are practical when estimating satellite poses,
which orbit the earth, through ephemeris data or by integrating differential equa-
tions, and will be denoted using an eci superscript. ECI frames have their origins at
the earth’s center of mass but do not rotate with respect to the stars. Earth-Centered,
Earth-Fixed (ECEF) frames are convenient when estimating earth-relative poses.
These frames rotate with respect to the earth. One of the most prominent ECEF
frames is the World Geodetic System 1984 (WGS84) reference frame, denoted by
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Pi+1

Pi

Pi+2 Pi+3 Pi+5

Pi+4

Edge / Constraint

Vertex / Pose

Figure 4.2: Pose Graph Scheme. Displayed is a graphical network with poses P as vertices,
which are linked via constraints represented as edges.

w. The WGS84 reference ellipsoid is a model of the earth’s surface and is conve-
nient when estimating poses using GNSS satellites. However, computing a rover’s
trajectory in spherical coordinates such as WGS84 is cumbersome as longitude
angles correspond to varying distances depending on the latitude angle. The Uni-
versal Transverse Mercator (UTM) frame1 projects the curved earth’s surface on
a plane surface through Mercator projection. The UTM frame is locally isogo-
nal as orientations can be computed directly from the rover’s velocity vector using
basic trigonometry. This property is useful when estimating robot movements on
the earth’s surface. All vectors in UTM coordinates are denoted using u or no sub-
script. This will be the default frame and the pose graph will be represented in this
frame. For the vehicle v frame the rear axle center is projected on a ground plane.
The Instant Center of Rotation (ICR) frame describes displacements of the vehicle
chassis towards the vehicle body, which is displayed in Fig. 4.3. Displacements
can result from high lateral or longitudinal accelerations. The indices cam, f and
cam,r denote the front and rear camera coordinate frame. The camera’s center is
represented by its focal point. The cam frame will be used to denote vectors either
in the front or rear camera frame. The conversion of a pose with position ppp and
orientation quaternion qqq from UTM u to vehicle v coordinates is as follows

pppu = qqqu
v · pppv + pppu

v

qqqu = qqqu
v ·qqqv

1 MGRS Zone Number "32", Band Letter "U" for Frankfurt
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4.1 Pose Graph Optimization

where (·)u
v denotes the vehicle pose in w-coordinates and · the Hamilton product

between quaternions, introduced in Eq. 2.10. This holds for conversions between
other frames correspondingly.

v

icr

cam,f
cam,r

pv
icr,q

v
icr

picr
cam,f,q

icr
cam,f

rcam,f

Figure 4.3: Coordinate Frames. The coordinate frame names are displayed in blue. Each
detected lane marker (blue) is represented by a set of light rays rrr. Lateral and
longitudinal vehicle acceleration results in roll and pitch rotations of the icr
frame towards the v frame.

4.1 Pose Graph Optimization

The idea of pose graph optimization algorithms is to represent and solve the local-
ization problem as an optimization problem. The goal is to find an optimal set of
poses P that minimizes a constrained nonlinear least squares problem, represented
by a graph. The graph itself consists of poses with constraints between them. It is
the optimizer’s task to find the optimal poses P, during a specified time interval, de-
picted in Fig. 4.4. Pose estimates M from a GNSS receiver or matched lane marker
detections on HD maps are not subject to optimization. Graph edges or constraints
between or within these poses represent residuals in the optimizer, described in
detail in Sec. 4.2.

All map matching and GNSS pose estimates Mi are added to a set of estimates
Mmap andMgnss with indices sets Jmap and Jgnss. Additionally a parameter block
Pi is added for each estimate to the set Pmap and Pgnss with indices imap and ignss re-
spectively. A map matching pose estimate denotes the pose resulting from matching
lane marker detections, in the vehicle v frame with HD maps or prior lane marker
detections.

41



4 Robust Pose Estimation

fp(Pi)

f∆p(Pi,Pi+1)

fp(Pi+2)fp(Pi+1)

f∆p(Pi+1,Pi+2) f∆p(Pi+2,Pi+3)
Pi Pi+1 Pi+2 Pi+3

Mi Mi+2Mi+1 ...

...

Mi,i+1 Mi+1,i+2 Mi+2,i+3

Figure 4.4: Simplified Pose Graph. The localization problem can be represented by a
graphical network where vehicle poses P (circles) are subject to optimization.
Poses P are linked to pose estimates Mi using a residual function ftext p or to
other poses using odometry estimates Mi,i+1 and the corresponding residual f∆p.

P = (P1 . . .Pn) M= (M1 . . .Mn)

Pmap : P ∀i ∈ Jmap Mmap :M∀i ∈ Jmap

Pgnss : P ∀i ∈ Jgnss Mgnss :M∀i ∈ Jgnss

While parameter blocks Pi from the set Pgnss only consist of a vehicle position in
UTM coordinates pppi and orientation qqqi, poses from the set Pmap also contain the
ICR rotation of the vehicle chassis towards the vehicle body qqqv

icr,i. ICR rotations
are solely used to project lane marker detections from monocular cameras on the
surface ground plane.

Pi = (pppi,qqqi) ∀i ∈ Jgnss (4.1)
Pi = (pppi,qqqi,qqqv

icr,i) ∀i ∈ Jmap (4.2)

As motivated in the introduction of this thesis, outlier rejection and resolving am-
biguities plays an important role when trying to achieve robust pose estimates. To
embed these capabilities in the optimization problem, a loss function ρ is applied.
Loss functions typically have linear properties for small values but their slope de-
creases with increasing values to weaken the influence of outliers. The generic,
constrained nonlinear least squares problem is proposed as follows
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min
P

1
2
( ∑

i∈Jgnss

ρgnss(d2
gnss(Pi))+

∑
i

ρodo(d2
odo(Pi,Pi+1))+

∑
i∈Imap

ρmap(d2
map,1(Pi,Pi+1), . . . ,d2

map,k(Pi,Pi+1)))

s.t. li ≤ Pi ≤ ui

(4.3)

where li and ui are the lower and upper bounds for the parameter block Pi. d denotes
the raw residual between pose estimates, presented in Sec. 4.2. The loss function
ρ , presented in Sec. 4.3, is applied on the quadratic raw residual d2 to reduce the
influence of outliers

f (·) = ρ(d2(·)) (4.4)

The resulting adapted residual f is returned to the optimizer. To solve the local-
ization problem online, only the most recent sensor measurements are taken into
consideration, to keep computational effort low and constant. Therefore, loop clo-
sures are not taken into consideration, as they are highly unlikely to occur during
small time intervals on highways. Consequently, constraints are stated only within
subsequent parameter blocks or the block itself, although in general, constraints
between any subset of parameter blocks can be implemented. Fig. 4.5 displays the
final structure of the pose graph. Pose estimates exceeding a residual threshold are
indicated as outliers by red dots. Blue dots denote deactivated ambiguities, e.g. for
ambiguous map matches of detected lane markers.

4.2 Measurement Processing and Residuals

Residuals are used to give feedback to the optimization solver whether a parameter
block variation is desirable or not. Residuals are represented in the pose graph
as edges. For statistical data, it is feasible to use a statistical distance measure
instead of using Euclidean distances. For multivariate normally distributed data,
with mean µµµ and covariance matrix ΣΣΣ, the Mahalanobis distance [61] is used. It
can be interpreted as a distance in STDs instead of a metric unit. The Mahalanobis
distance

dmahal =
√

dT
euclΣ

-1deucl (4.5)
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fodo(Pi,Pi+1)

fgnss(Pi+1)

fodo(Pi+1,Pi+2) fodo(Pi+2,Pi+3)
Pi+1

Mgnss,i+1

fgnss(Pi)

Pi

Mgnss,i

fmap,1..k(Pi+2)

...

Pi+2

Mmap,i+2,kMmap,i+2,1

...

...

...

Modo,i,i+1 Modo,i+1,i+2 Modo,i+2,i+3

Figure 4.5: Pose Graph. For each map match or GNSS pose estimate Mmap and Mgnss a
vehicle pose P is added, which is subject to optimization. Poses are connected
through adapted residuals f . Outliers (red) and ambiguities (blue) are detected
and resolved by the solver.

is computed by scaling the Euclidean distance with the inverse root of the covari-
ance matrix. Commonly the information matrix

I = Σ
− 1

2 (4.6)

which is the inverse square root of the covariance matrix, is used for convenience
instead of the covariance matrix. The respective literature and this thesis, uses a
calligraphic I for the information matrix and a calligraphic J for index sets. The
information matrix I is computed by inversion and Cholesky decomposition of the
covariance matrix. In the following, covariance matrices ΣΣΣ are 6x6 matrices if not
stated otherwise. The top-left 3x3 matrix represents the position uncertainty and
the bottom-right 3x3 matrix the orientation uncertainty respectively. It will be as-
sumed that position and orientations of raw sensor measurements are uncorrelated.
Estimation of covariance matrices is explained in detail in Sec. 4.6.1.

4.2.1 GNSS

GNSS receivers can be used to estimate geospatial positions and velocities from
transmission time or pseudoranges and Doppler frequency shifts or deltaranges
of electromagnetic waves (≈ 1.50 GHz) transmitted from a system of satellites.
Each satellite is equipped with several high-precision atomic clocks. The time of
signal transmission, of each satellite, is encoded in electromagnetic waves through
phase-shifting. To confine each satellite signal from a mixture of signals and to
precisely estimate signal start and signal frequency shift, a cross-correlation of a
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4.2 Measurement Processing and Residuals

unique 1023 bit Pseudo Random Noise (PRN) code is conducted. The receiver
uses the time of arrival to estimate distances to satellites. To prevent the necessity
of high-precision, and expensive, atomic clocks in GNSS receivers, the receiver’s
clock2 drift dtc is also estimated, increasing the amount of necessary satellites, to
solve for all unknowns, from three to four. Thus, GNSS receivers are also used as
high-precision clocks for network synchronization, communication network, and
data encryption3. Beside the time stamp itself, GNSS signals also contain impre-
cise satellite orbit data called almanacs, precise orbit data called ephimeris and
other informations, such as satellite conditions.

In the following, the Single Point Positioning (SPP) algorithm for GNSS pseudor-
anges will be shortly outlined and the corresponding residual for the pose graph op-
timization will be presented. The program package RTKLIB4 is employed, which
provides most of the algorithms for GNSS processing.

Position Estimation

The objective of SPP is to find an optimal 3D position pppw and clock bias dtc, de-
noted by the vector xxx, given m pseudorange measurements Pr

xxx = (pppwT,dtc)T = (x,y,z,dtc)T (4.7)

yyy = (Pr,1,Pr,2, ..Pr,m)
T (4.8)

yyy = h(xxx)+vvv (4.9)

where h(xxx) is the nonlinear measurement equation and vvv the random measurement
error. Pseudoranges are pseudo distances between the receiver and the satellites.
The term pseudo stems from the fact that pseudoranges are computed by plain
multiplication of the speed of light c with the time passed between the time stamp
of sending ts and receiving tr the satellite signal. Pseudoranges do not account for
satellite clock biases dtc,i, ionospheric delays Ii, tropospheric delays Ti, and other
pseudorange measurement errors εpr. The geometric range ρi

2 typically a quartz oscillator
3 https://gssc.esa.int/navipedia/index.php/Precise_Time_Reference
4 RTKLIB V.2.4.3, An Open Source Program Package for GNSS Positioning, http://www.rtklib.c
om
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4 Robust Pose Estimation

Pr,i = c(tr− ts) = ρi + c(dtc(tr)−dtc,i(ts))+ Ii +Ti + εpr (4.10)

ρi = ||pppeci(tr)− pppeci
s,i (ts)|| (4.11)

represents the true physical distance between satellite and receiver antenna phase
center ppps and pppr. Rovers moving on the earth surface are subject to the earth ro-
tation. The movement of constant ECEF points towards ECI frames during a time
interval ∆ti = (tr− ts) can be, depending on the ECEF point and time ∆ti, multiple
meters. This effect is illustrated in Fig. 4.6.

x

y

ωe
eci(tr − ts)

pw(tr) ps,i
w (ts)

pw(ts), v
w(ts)z

ρi

R

ECI

ECEF(ts)
ei
w

Figure 4.6: Earth rotation correction.

Assuming constant speed of light, the earth rotation correction can be approxi-
mated, using the approximation presented by Ashby et al. [7]

pppeci
rs,i = pppeci(ts)− pppeci

s,i (ts) (4.12)

∆ti =
pppeci

rs,i

c
+

vvvecipppeci
rs,i

c2 (4.13)

where ppprs,i represents the distance vector between the satellite position ppps,i and
receiver position pppr. The equation simplifies to

vvveci = ωeeeeeci
z × pppeci (4.14)

ρi ≈ ||pppeci
rs,i||+

ωe

c
eeeeci

z (pppw(ts)× pppeci
rs,i)︸ ︷︷ ︸

earth rotation correction

= pppeci
rs,i||+

ωe

c
(yrs,ix− xrs,iy) (4.15)
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if the receiver has a fixed ECEF position or a negligible velocity within the ECEF
coordinate system. xrs,i and yrs,i are the x and y component of ppprs,i and ωe the earth’s
angular rate. The nonlinear measurement function hhh(xxx) and its Jacobi matrix HHH is

hhh(x) =


ρ1 + cdtc− cdTc,1 + I1 +T1

ρ2 + cdtc− cdTc,2 + I2 +T2
...

ρm + cdtc− cdTc,m + Im +Tm

 HHH =


−eeew

1 1

−eeew
2 1

...
...

−eeew
m 1

 (4.16)

where eeew
i is the Line-Of-Sight (LOS) vector from receiver to satellite i. Details

on computing the satellite position pppw
s,i by solving the Keppler equations5 or by

integrating differential equations6 as well as the ionospheric Ii and tropospheric
model Ti are described in detail in the appendix E.4 and E.5 of the RTKLIB manual
7. The pseudorange measurement vector is approximated using the Taylor series
expansion.
The elevation angle of satellite direction Eli, ephemeris data uncertainty σeph, PRN
code bias σbias and ionospheric and tropospheric delay uncertainty σion and σtrop
vary between satellites. To account for these varying uncertainties, an estimation
of the pseudorange uncertainty is computed in Eq. 4.17 by adding up the individual
uncertainties, which is valid for MNDs with uncorrelated uncertainties. The inverse
of these uncertainties are diagonally aligned in a weight matrix W to compute the
statistical Mahalanobis distance of each pseudorange measurement

σ
2
i = FiRi(aσ +bσ/sinEli)+σ

2
eph,i +σ

2
ion,i +σ

2
trop,i +σ

2
bias,i (4.17)

W = diag(σ−2
1 ,σ−2

2 , . . . ,σ−2
m ) (4.18)

where Fs is the satellite system error factor8, Ri the code-carrier-phase error ratio
and aσ and bσ the carrier-phase error factor. The nonlinear, weighted LSQ

xk+1 = xk +(HTWH)-1HTW (y−h(xk)) (4.19)

5 GPS and GALILEO
6 GLONASS
7 RTKLIB Manual Ver. 2.4.2
8 1.00 for GPS, GALILEO and BeiDou. 1.50 for GLONASS
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can be solved iteratively. After the solver converged to a solution, a χ2-test with
a significance level α of 0.10 % is applied on the resulting distance between pseu-
dorange measurements and the measurement function h(x). If the χ2-test fails, the
estimation is recomputed by excluding satellites using a Receiver Autonomous In-
tegrity Monitoring (RAIM) Fault Detection and Exclusion (FDE) algorithm. RAIM
FDE techniques are useful to exclude single erroneous pseudorange measurements,
but require at least six satellites and are not effective with mutliple erroneous mea-
surements.

Velocity Estimation

The computation of the velocity vector from Doppler frequency shifts is similar
to the position estimation. Henceforth, an unknown vector xxx, which contains the
rover velocity vvv and clock drift cṫc, is to be found given a measurement vector yyy
inheriting the Doppler measurements

xxx = (vvvw,cdṫc) = (vx,vy,vz, ṫc) (4.20)
yyy = (−λ1Dr,1,−λ2Dr,2, . . . ,−λmDr,m) (4.21)
yyy = h(xxx)+vvv (4.22)

where Dr,i is the Doppler frequency shift measurement of satellite i and λi the car-
rier wave length. Dr,iλi is commonly referred to as a deltarange. The measurement
function hhh(xxx) and its Jacobi matrix HHH is given by

hhh(x) =


r1 + cdṫc− cṪc,1

r2 + cdṫc− cṪc,2
...

rm + cdṫc− cṪc,m

 HHH =


−eeew

1 1

−eeew
2 1

...
...

−eeew
m 1

 (4.23)

where ri is the satellite range rate, which can be regarded as the velocity analogon
to the geometric distance ρi for distances. Deriving the correction term in Eq. 4.15
with respect to time yields

ri = eeew
i (vvv

w
i −vvvw)+

ωe

c
(ẏrs,ix+ yrs,iẋ− ẋrs,iy− xrs,iẏ)︸ ︷︷ ︸

Rotation correction

(4.24)

48



4.2 Measurement Processing and Residuals

A detailed derivation on relativistic error terms is presented by Zhang et al. [95].
All delta velocities between the satellite and rover perpendicular to their LOS-
vector have no influence on the frequency shift, thus the multiplication in Eq. 4.24
with eeew

i . The system is solved iteratively by Eq. 4.19, where the weight matrix WWW
is set to an identity matrix III.

Distance

After GNSS position pppgnss and velocity vvvgnss are estimated, the vehicle orientation
qqqgnss is derived from the velocity vector. This presumes that the vehicle move-
ment aligns with the vehicle orientation, which is valid for ground vehicles subject
to moderate lateral accelerations. As roll angles are decoupled from the veloc-
ity vector, they are set to be zero. For each pose or parameter block Pi = pppi,qqqi
with i ∈ Jgnss the Mahalanobis distance to the corresponding GNSS pose estimate
Mgnss,i with position pppgnss,i and orientation qqqgnss,i is computed

dgnss(Pi) = Ignss

 pppi− pppgnss,i

vec(qqqgnss,i ·qqqi)

 (4.25)

where qqq is the complex conjugate quaternion, which represents an inverse rotation.
vec(·) returns the imaginary part (x,y,z) of the quaternion. The GNSS information
matrix Ignss is derived from the estimated covariance in Eq. 4.17 and Eq. 4.18.

4.2.2 Odometry

Odometry estimation is the process of estimating ego-motion, or position and ori-
entation variation, of an agent during a specified time interval. Odometry estima-
tors can rely on a variety of sensors, such as cameras, dynamic sensors, GNSS
receivers, radars and lidars. Most estimators either compute pose variation by nu-
merically integrating velocities and angular rates, by aligning subsequent landmark
detections or by computing transformations between pose estimates through nu-
merical differentiation. Odometry estimates are of particular relevance for pose or
object measurements, recorded at different time steps, of moving rovers. Using the
odometry, pose estimates can be aligned to equal time stamps and fused to provide
estimates of increased accuracy. In pose graph optimization algorithms, odometry
estimates are used as constraints between pose estimates. Given the sensor setup in
Sec. 5.1 three odometer categories are presented.
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4 Robust Pose Estimation

Vehicle Models

Numerical integration of vehicle models are sensitive to scaling and bias errors,
especially for higher-order derivatives. Thus, velocity, acceleration, and angular
rate sensors need to be accurately calibrated. The sensor calibration is outlined in
Ch. 5. Two kinematic vehicle models for odometry estimation are presented in the
following.
WSSs encode wheel rotations in small increments using electric or magnetic pulses.
In the presence of WSS on all vehicle tires both the velocity v and yaw rate ψ̇ can
be estimated by comparing left and right encoder ticks or pulses

δf

δr

ሶψ

lf

lr

β

wfl wfr

wrl wrr

v

Δψr
vr

lax

Figure 4.7: Dynamic Odometry Models. The movement can be estimated from wheel ticks
(left) or steering angles (right).

v∆t =
1
4

wrrdrr +wrldrl +wfrdfr +wfldfl

nw
(4.26)

tan(∆ψr) =
sin(∆ψr)

cos(∆ψr)
≈ ∆ψf =

wfrdfr−wfldfl

lax
(4.27)

tan(∆ψf) =
sin(∆ψf)

cos(∆ψf)
≈ ∆ψ f =

wfrdfr−wflwrl

lax
(4.28)

where nw is the sensor-specific number of ticks per wheel rotation, w are the wheel
ticks during the specified time interval, d is the respective wheel diameter and lax
the axle track, displayed in Fig. 4.8. However, this WSS odometry is sensitive to
wheel slippage.
A single-track odometry, based on a kinematic single-track model, uses the velocity
estimation v together with the front steering angle δf to estimate yaw rate ψ̇ and slip
angle β
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ψ̇ =
vcosβ

lf + lr
(tanδr− tanδf) (4.29)

β = tan-1
(

lf tanδr + lr + tanδf

lf + lr

)
(4.30)

where lf and lr are the distances between front and rear axle center to the vehicle’s
center of gravity as depicted in Fig. 4.8. For front steering vehicles the rear steering
angle δr is set to zero. The derivation of the kinematic single-track model, and more
complex models, can be found in [70]. However, more complex vehicle models
were implemented but did not perform significantly better as the crucial errors are
introduced by the sensors’ accuracy.

δ

v

Equations A

ሶψ

β

∫ ψ

ሶx

ሶy

∫

∫

x

y

Equations B

Figure 4.8: Kinematic Single-Track Model Schema. Equations A: Eq. 4.29 and Eq. 4.30.
Equations B: Eq. 4.31 and Eq. 4.32.

Both odometry estimators above observe yaw rates ψ̇ from wheel ticks w or steer-
ing angles δ . However, in presence of gyroscope sensors, yaw rates may also be
measured directly. New positions ppp and orientations qqq from observed or measured
yaw angles ψ and velocities v are computed by using an Euler integration step

∆qqqi = qqq(ψ̇i∆ti) (4.31)

∆pppi =


∆xi

∆yi

∆z

=


v∆ti cos

(
ψi+ψi+1

2 +βi

)
v∆ti sin

(
ψi+ψi+1

2 +βi

)
0

 (4.32)

where qqq(ψi∆ti) is the quaternion rotation of angle ψi∆ti around the z-axis. The yaw
rate ψ̇ can be observed through the single-track model, wheel tick comparison or
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directly from gyroscope sensor readings. All yaw rate estimates can be consid-
ered uncorrelated and can be fused. For the velocity estimation v four wheel tick
estimates can be compared and fused.

Visual Odometry

Another technique to estimate the odometry during a specified time interval is vi-
sual odometry [66]. The key idea is to estimate translation and rotation between
subsequent camera images by minimizing the distance between corresponding im-
age features in the images. The monocular odometry version of the library LIB-
VISO29 is used throughout this work and is presented by Geiger et al. [37], see
Fig. 4.9. Instead of using computationally demanding Speeded Up Robust Features
features, simple blob and corner masks are employed together with nonmaximum
and nonminimum-suppression [65]. Once corresponding features are detected, a
2D Delaunay triangulation is used to establish neighborhood relations to other
features. These relations are used to remove outliers, by checking neighbors of
correspondences. For ego-motion estimation, a subset of these features, uniformly
distributed over the image domain, is selected. Using an eight-point algorithm [60]
the essential matrix, a particular case of the fundamental matrix which contains
all the epipolar geometry, is estimated. It is assumed that the camera is moving
at a known and fixed height over ground, which is a reasonable assumption for
a fixed camera setup in a passenger vehicle. Small pitch and roll angles of the
vehicle chassis towards its body have a negligible influence on the camera height
over ground. As the Eight-point algorithm is sensitive to noise, the rotation rrr and
translation ttt is estimated 50 times from 8 randomly drawn correspondences, and a
Random Sample Consensus (RANSAC) algorithm is applied to reject outliers. The
final transformation is refined by the winning RANSAC iteration.

Figure 4.9: Visual Odometry (LibViso). Feature matching of two frames while moving.
Colors encode disparities [37].

9 Libvisio V.2, C++ Library for Visual Odometry, http://www.cvlibs.net/software/libviso
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4.2 Measurement Processing and Residuals

Odometry from GNSS Singals

Numerical differentiation of GNSS pose estimates can be used to compute vehicle
movements The simplest approximation of pose derivatives between two poses Pi
and Pi1 are forward differences

∆qqqi,i+1 = qqqi ·qqqi+1 (4.33)
∆pppi,i+1 = qqqi · (pppi+1− pppi) (4.34)

GNSS position and velocity estimates are subject to offset errors, which result from
imprecise ephemeris, ionospheric and tropospheric data, corrupted GNSS signals
due to multipath or other errors such as simplified models and neglecting relativistic
effects. It stands to reason that differentiation of subsequent pose estimate inherits
the advantage that constant offset errors cancel out. However, adding pose esti-
mates as vertices to the pose graph while simultaneously adding their numerical
differentiation or odometry as edges is nonoptimal as their uncertainties are highly
correlated.

Distance

Given two pose estimates Pi and Pi+1 and the odometry estimation ∆pppodo,i,i+1 and
∆qqqodo,i,i+1 in the respective time interval, the distance between the poses is

dodo(Pi,Pi+1) = Iodo

qqqi · (pppi+1− pppi)−∆pppodo,i,i+1

vec(∆qqqodo,i,i+1 ·qqqi ·qqqi+1)

 (4.35)

where Iodo is the information matrix, derived from the covariance matrix, of the
odometry estimate. As presented above, a variety of odometry estimates, both 2D
and 3D, was presented. A straightforward approach is to add a residual for each
odometry estimator. However, as all vehicle models use the velocity given by the
WSS, correlated signals are introduced, making the optimization problem nonop-
timal. Introducing only the uncorrelated orientation estimation ∆qqqodo,i,i+1 and the
position separately, avoids this problem, but increase the amount of residuals. This
increases the amount of function evaluations for each optimization step and solver
time. Alternatively, the odometry estimates are fused in advance as presented in
Sec. 4.6.
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4.2.3 Lane Marker Detection and Alignment

This section is divided into three parts. The first part will shortly outline the lane
marker detection system used herein. The second and third focus on matching the
lane marker detection on both an HD digital map that was recorded priorly, and
priorly recorded lane marker detections. Multiple pose graphs are solved simulta-
neously, each containing only a subset of residuals.

Lane Marker Detection

The lane marker detection system was implemented in a preliminary study [Int1]
and will be outlined shortly in this section to motivate the advantages and disadvan-
tages of the respective approach. The input to the lane marker detection algorithm
are gray-scale camera images, irrelevant whether from front or rear cameras. The
camera images are rectified using the camera extrinsic parameters10 and several fil-
ter masks are applied to prepare the image for the clustering step as depicted in Fig.
4.10.

(a) Median Filtering (b) Canny edge detector

(c) Intensity Average (d) Clustering

Figure 4.10: Lane Marker Detection. After image rectification and the application of vari-
ous image filters, the resulting region of interests are clustered as presented by
Harr et al. [Int1].

A median filter diminishes outlier pixels in the image to generate thoroughly filled
lane markers. A Canny edge detector [19] with an expected width between lane
marker boundaries is used to extract regions of interest in the image. Simultane-
ously, the intensity average of adjacent areas are compared to a threshold to cluster

10 See Sec. 5.1.2
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4.2 Measurement Processing and Residuals

lane markers in the image. Clusters are projected in vehicle coordinates via In-
verse Perspective Mapping on a ground plane to compute their 3D position. The
resulting clusters are checked for plausibility via fuzzy-classification. The resulting
lane marker clusters are represented by a set of lane marker elements, containing
position, orientation and width as displayed in Fig. 4.11.

w

qp

Figure 4.11: Lane Marker Representation. Each lane marker is represented by a set of
elements. Each element contains a position ppp, orientation qqq and width w.

Map Matching

Map matching refers to the task of matching recorded geographic objects or ego-
coordinates to a model or map of the real world. Following the scope of this the-
sis, the term map matching will be used to denote the alignment of detected lane
markers from a camera system, presented in Sec. 4.2.3, onto a digital map of lane
markers, presented in Sec. 5.1.3. The objective of the map matching algorithm
is to compute map-relative pose estimates that can be included in the pose graph.
Landmark detections from monochrome cameras, expressed in image coordinates,
lack the information of spatial positions. Without further processing the detections
can only be restricted to a light ray in the camera coordinate frame, as depicted in
Fig. 4.3. Various approaches exist, to overcome this issue. In presence of overlap-
ping visual ranges, stereo vision algorithms can be applied to estimate 3D positions
of image features. Although a stereo camera setup was suspended priorly, due to
cost reduction reasons, a 3D pose estimate of a lane marker can be computed by
Structure from Motion, where subsequent images are used as a virtual stereo cam-
era setup, recorded at different times. These approaches are feasible when an exact
odometry estimate is present, to precisely estimate the virtual camera alignment,
necessary to compute the essential matrix of stereo vision algorithms. Nonethe-
less, this approach is difficult to apply on highway lane marker detections as their
features are poorly conditioned in longitudinal directions, especially for solid lane
markers.
It is a reasonable assumption that all lane markers are are on a ground plane, as
highway roads have a negligible vertical curvature. Hence, light rays can be pro-
jected on a ground plane, to compute lane marker positions in the vehicle v frame,
as shown in Fig. 4.12a. However, these approaches are sensitive to imprecise esti-
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mations of the ground plane in camera coordinates. Neglecting considerable pitch
and roll angles of the icr frame towards the vehicle v frame, as depicted in Fig.
4.12b and Fig. 4.12c, yield erroneous projections of the light rays on the ground
plane.

v

cam,fcam,r

(a) Lane marker detection during no or marginal accelerations with negligible pitch angles.

v

cam,fcam,r

(b) Lane marker detection during moderate to full break application with perceptible pitch
angles.

v

cam,fcam,r

(c) Projection of lane marker detection light rays, recorded with perceptible pitch angles
(blue), on a static ground plane, assuming a zero pitch angle, results in distorted lane
marker detections (red).

Figure 4.12: Light Ray Projection on a Static Ground Plane. Neglecting perceptible pitch
angles results in distorted lane marker projections.

Fig. 4.13 shows the projection error of front and rear camera lane marker detections
on a ground plane when alternating the pitch angle of the icr frame towards the
vehicle v frame. The camera intrinsic and extrinsic parameters are taken from the
vehicle setup presented in Sec. 5.1. The projection error increases with increasing
distances of lane marker detection to the icr frame.
In absence of lane-relative or absolute pitch and roll angle estimators, lane markers
can be projected on a tilted ground plane, assuming that all markers are parallel.
Wang et al. [90] present an approach to compute parallel lines on a ground plane
by utilizing the perspective effect of parallel lines in the image domain. Though
this assumption is valid for most highway and interstate lanes, it is substantially
violated in highway intersections, exit and entry lanes, constructions zones and
whenever lanes begin or end.
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4.2 Measurement Processing and Residuals

Figure 4.13: Light Ray Projection. Light rays of detected lane markers are projected on a
ground plane. The pitch rotation of the ICR frame towards the vehicle v frame
is linearly increased from -2 deg (blue) to 2 deg (light blue).

Priorly recorded digital maps can be used to estimate lane-relative pitch and roll
angles. The presented map matching algorithm, outlined in Alg. 10, estimates the
map-relative pose as well as the pitch and roll angle of the vehicle chassis towards
the vehicle body by aligning lane marker light rays with the digital map. In the
following, all lane marker detections are represented by a set Sray of n light rays rrr

Sray = {rrrcam
1 , . . . ,rrrcam

n } (4.36)

The light rays are represented as normalized direction vectors rrrcam, f/r through the
front or rear camera frame origin. Both front and rear camera light rays are trans-
formed to UTM u-coordinates

rrri = pppu
v +qqqu

v(qqq
v
icrpppicr

cam + sqqqv
icrqqq

icr
camrrrcam

i ) (4.37)

where s is the scaling variable of the normalized light ray rrr. The only Degree Of
Freedom (DOF) for the optimization are the yaw angle in qqqu

v , the pitch and roll
angle in qqqv

icr and the x- and y- component of the vehicle position pppu
v .

Using an initial pose estimate, lane marker points mmm are sampled from the digital
map in a wide surrounding area. The map samples are equally spaced and repre-
sented by a set Smap of k points in UTM coordinates

Smap = {mmmu
1, . . . ,mmm

u
k} (4.38)

The digital map and lane marker detections are sampled equally to reduce quantiza-
tion noise. Ultimately, quantization errors from the sampling cancels out if equally
distributed. The distance of light rays to the map point cloud is computed via
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nnnd = rrr× (mmm− pppcam)×rrr (4.39)

dray(mmm,rrr) =
||rrr× (pppcam−mmm)||

||rrr||
(4.40)

where pppcam is the front or rear camera frame position, d is the distance between the
light ray rrr and digital map point mmm and nnnd the distance direction.

cam

m
m−pcam

r

nd

d

Figure 4.14: Distance Computation Between Digital Map and Lane Marker Detector.
The distance d (blue) between a lane marker detection light ray rrr j and corre-
sponding map point mmmi is shown.

For all detected lane marker rays rrr, a corresponding map marker point mmm is searched
by Nearest Neighbor Search (NNS) using the corresponding distance d and stored
in two sorted lists m̃mm and r̃rr of size l. The resulting distance of all light rays is

dmap =
1
l

l

∑
j=1
|dray(m̃mm j, r̃rr j)| (4.41)

The map-relative pose Pi can now be optimized using the distance measure dmap,
between the light rays and map points of lane markers. During the optimization
process, the sorted lists m̃mm and r̃rr need to be adjusted. The recursive process is
outlined in Alg. 9.

Algorithm 9 Light Ray Alignment

Input: P̂i, Sray, Smap
Output: Pi,opt
Search map point correspondences for all rays of Sray in Smap
while Correspondence lists m̃mm and r̃rr have changed do

Optimize Pi by minimizing Eq. 4.41
Compute distance of each ray in Sray to points in Smap using Eq. 4.40
assign new correspondences in sorted lists: r̃ and m̃
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For good initial estimates Alg. 9 converges. However, two problems arise in gen-
eral. Fig. 4.15 shows the scalar field of distances between the lane marker detec-
tions and map lane markers when shifting the vehicle position through the map. It
can be seen that there are multiple local minima present. It is evident that the pe-
riodicity of highway lane markers induces ambiguities. Initial estimates on wrong
lanes or with a longitudinal position error bigger than the respective marker pe-
riod, can lead the optimization solver to converge to another local minimum. This
holds especially for point set registration techniques, such as ICP or Robust Point
Matching. The figure also shows smaller periodic minimum, resulting from alias-
ing effects, as the sampling rate of the map and lane marker detection are finite and
equal. Especially for low-cost GNSS receivers together with digital map offsets,
an initial estimate of below half a lane width11 cannot be permanently guaranteed,
specifically in perturbed GNSS environments, such as multipath scattering. Al-
though approaches to track multiple driving lanes using multi-object Bayes filters
have been presented [31], these approaches only resolve lateral ambiguities, im-
pose the necessity of a separate module and cannot be used to resolve a broader
range of ambiguous pose estimates, e.g. from ambivalent point cloud registrations.

(a) Lane marker detections (blue) of the digital map (black) at the vehicle position (red).

(b) Distance of lane marker detections towards the map when shifting the vehicle position.

Figure 4.15: Scalar Field for Map Matching. The scalar field in (b) is created by shifting
the vehicle pose (red cross) through the map and accumulating the distance of
each lane marker point (blue) to its nearest map marker point (black).

Another problem emerges during evasive vehicle maneuvering, with high lateral
and longitudinal accelerations, resulting in perceptible pitch and roll angles, as de-
picted in Fig. 4.12. High pitch and roll angles and poor initial pose estimates lead
to assignment of lane marker rays to multiple map lane markers. The priorly pre-
sented light ray and point alignment algorithm Alg. 9 is sensitive to ambiguous

11 Approximately 1.75 m
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assignments and tends to be stuck in local minimum. Therefore, correspondences
between detected and map lane markers are selected and assessed in a prior step.
For each dashed and solid lane marker detection in the set Smarker a subset of valid
dashed and solid map lane marker candidates from Smap is assigned by projecting
the lane marker rays on a ground plane, using an initial pose estimate P̂i, and spa-
ciously selecting its closest map lane markers. Each candidate pair is aligned by
adjusting the pose estimate, as depicted in Fig. 4.16. For all remaining detected
lane markers, using the adjusted pose estimate, the distance to their nearest map
lane marker is computed. Each correspondence pair is assessed by checking how
many detected and map lane markers align well for its pose estimate. The worst
pairs are removed iteratively until all pairs are sufficiently supported by the remain-
ing pairs. This procedure can result in ambiguities if solid lanes are concealed in
multi-lane environments motivated in Fig. 1.2. The matching algorithm will then
return multiple pose estimates. It is the solvers task to select the right map match
from k valid matches.

Algorithm 10 Map Matching

Input: P̂i, Slane, Smap
Output: Pi
Project detected lane markers Slane on a ground plane using P̂i
Tolerantly search lane marker pairs in Smap
repeat

for all candidate pairs do
Update Pi by aligning candidate pair
Update remaining markers Slane using Pi
Search new map pairs for remaining markers
Sum up error of remaining marker pair distances

if highest candidate pair error exceeds threshold then
remove candidate

until no candidate removed
repeat

align all candidates pairs using Eq. 9
if highest alignment error of candidate exceeds threshold then

remove candidate
until No candidate removed
Check solutions
if All solutions valid then

Return solutions
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A

B C

(a) For each detected lane marker (blue) from the lane marker perception (black) map cor-
respondences (A, B, C) are computed using NNS.

A

B

C

(b) The selected marker (blue) is aligned with its map correspondences (A, B, C) and cross-
validated using the remaining detected markers. For each remaining markers the small-
est distance to their next map lane marker is computed. A is a nonvalid match, as it is
supported by two markers (black) but rejected by four markers (red), while B and C are
valid matches.

Figure 4.16: Exclusion of False Lane Marker Detections.

Distance

It is possible to directly input the solver pose estimate as P̂i in Alg. 10 and return the
distance of detected lane marker light rays to the digital map samples. However, the
evaluation of Alg. 10 is computationally demanding and has to be evaluated several
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times, for each incremental pose update by the optimizer. Thus, the Mahalanobis
distance

dmap,k(Pi) = Imap

 pppi− pppmap,i,k

vec(qqqmap,i,k ·qqqi)

 (4.42)

to the aligned pose estimates will be computed instead. Imap is the 3x3 information
matrix for the map matching error. k denotes the map match if the marker pair
assignment is ambiguous. The return value of the residual for multiple map matches
is presented in Sec. 4.3.

Lane Marker Matching

Since digital map content can be obsolete or erroneous due to construction work,
it is necessary to provide a map-independent pose estimate as a fall-back solution.
Multiple pose graphs will be solved simultaneously to provide fallback solutions.
When digital maps are permanently corrupted, lane-relative pose estimates can help
the lateral and longitudinal controller to perform inferior maneuvering task, such as
lane centering or emergency stops. To estimate lane-relative poses robustly, subse-
quent lane marker detections need to be aligned. The lane-relative pose estimation
from these aligned detections is presented in Sec. 4.5.
Aligning light rays of subsequent lane marker detections is similar to the priorly
presented alignment of map lane markers with lane marker detections but has two
essential differences. First, computing the distance between two subsequent sets
of light rays is not feasible as the residual is zero when subsequent camera origins
overlap, resulting in a zero movement. Second, finding correspondences between
subsequent detections is a lot easier. It is sufficient to estimate incremental pose
delta ∆Pi,i+1 to assign subsequent marker pairs, removing the necessity of global
pose estimates, which are more inaccurate and often subject to offset errors. An
initial pose delta is estimated by the presented odometry estimation and is within a
few centimeters. Marker pairs can be robustly assigned by NNS, and do not need to
be cross-validated with other pairs. Therefore, ambiguities do not have to be taken
into account.
The alignment of subsequent rays is impractical as the error is zero when camera
origins overlap. Hence, the light rays of both images Sray,i and Sray,i+1 are projected
on a rotated ground plane, using their body to chassis rotation qqqv

icr,i and qqqv
icr,i+1. This

results in two sets of 3D points Sray,p,i and Sray,p,i+1. Lane markers, displayed in
Fig. 4.11, are recorded with equal sample rates. Therefore the assignment of dashed
marker sampling points can be done directly. For partially detected and solid lane
markers the projected light rays are assigned using their distance. The assigned
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rays are stored in two sorted lists S̃ray,i and S̃ray,i+1 of size l. The optimization
algorithm that aligns subsequent markers, is outlined in Alg. 11.

Algorithm 11 Lane Error Residual

Input: ∆P̂i,i+1, q̂qqv
icr,i, q̂qqv

icr,i+1, Sray,i, Sray,i+1
Output: ∆Plane,i,i+1, qqqv

icr,i, qqqv
icr,i+1

while optimality conditions not reached do
Adjust ∆Pi,i+1, qqqv

icr,i and qqqv
icr,i+1

Project Sray,i on a rotated ground plane using ∆Pi,i+1 and qqqv
icr,i

Project Sray,i+1 on a rotated ground plane using qqqv
icr,i

Assign projected points within corresponding lane markers
Compute distance between assigned points

return optimized ∆Plane,i,i+1, qqqv
icr,i, qqqv

icr,i+1

The optimized rotation quaternions qqqv
icr,i and qqqv

icr,i+1 and the delta position ∆Plane,i,i+1
describes the transformation between two lane marker detections. Thus, the resid-
ual from the alignment of subsequent lane markers is represented as an edge in the
pose graph, similar to Eq. 4.35

∆Plane,i,i+1 = {ppplane,i,i+1,qqqlane,i,i+1} (4.43)

dlane(Pi,Pi+1) = Ilane

qqqi · (pppi+1− pppi)− ppplane,i,i+1

vec(qqqlane,i,i+1 ·qqqi ·qqqi+1)

 (4.44)

Where Ilane is the information matrix for the pose error for subsequent lane marker
alignments.

4.3 Loss Functions

Nonlinear Least Squares problems are sensitive to measurement outliers. Due to the
quadratic error term, outliers tend to significantly shift the solution from the true
value. Thus it is feasible to implement a composition of the residual with a loss
function ρ , to delimit the influence of outliers. The most common loss functions
are
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Huber : ρ(s) =

{
s s≤ 1
2
√
(s)−1 s > 1

(4.45)

Cauchy : ρ(s) = log(1+ s) (4.46)
Acrtan : ρ(s) = arctan(s) (4.47)

Another loss function is presented by Suenderhauf et al. [79], where the optimiza-
tion solver can switch off constraints. A switching variable, subject to optimization,
is introduced that allows to linearly decrease the constraint cost while simultane-
ously increasing a constant penalty. If constraint costs exceed a penalty value, the
solver will eventually turn off the constraint. A similar effect can be achieved by
applying a switch loss function

Switch : ρ(s) =

{
s s≤ a
a s > a

(4.48)

where a is a tuning parameter, which can be chosen using a χ2-value if the re-
spective variable is normally distributed. Applying the switch loss function has a
similar effect than rejecting new measurements using NIS-testing [4].
Fig. 4.17 displays the loss functions. When applied on a quadratic residual, the
Huber loss is convex as its slope is monotonously increasing. Cauchy and arc-
tan loss functions are strictly quasi-convex. For the GNSS and odometry residual
the Cauchy loss will be applied as it showed efficient containment of outlier im-
pact. The switch loss function is quasi-convex, but not strictly, and has no distinct
derivative at a.
When ambiguous measurements are present, adding the distances to all measure-
ments will shift the optimal solution to a point that may not be conform with any
measurement, as depicted in Fig. 4.18.
In presence of ambiguous map matches, the distance of pose Pi, which is subject to
optimization, to its nearest map match Mmap,i,k will be returned, which has similar
properties than the switch loss. Fig. 4.18 depicts the residual when applying a
trivial loss function on the pose distance. The presented residual function is not
convex. Theoretically, it cannot be assured that the optimization solver converges to
the global minimum. However, all local minima are global minima. Furthermore, it
will be assumed that ambiguous matches are not constantly present and the solver
will eventually select those matches that are sufficiently supported by prior and
posterior matches connected through odometry constraints.
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Figure 4.17: Loss Functions. The left image displays the loss functions, while the right
image depicts the loss function of a squared input, to display the convexity of a
quadratic error term.
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Figure 4.18: Loss Function for Ambiguous Measurements. The map matching loss func-
tion (black) for a pose estimate Pi returns the distance to the nearest match
Mmap,i (blue, dashed). The blue vertical line depicts the minimal distance to
all three matches.

4.4 Constraints and Parameterizations

Constraints and parameterizations assist the optimization solver in finding valid
solutions and are more convenient than checking the optimization solution in a
subsequent validation step. Setting entire parameter blocks constant and adding
parameterizations can further increase the optimization speed.
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Quaternion Parameterization

All orientations are represented by unit quaternions due to their compact storage,
efficient composition and stable spherical interpolation, for details see Sec. 2.1.1.
Quaternions can be computed from a rotation axis uuu and rotation angle α , as de-
picted in Eq. 2.7. As the rotation axis uuu is normalized, the quaternion has three
DOF, which is apparent as a 4D quaternion represents a 3D orientation. Thus,
its four values cannot be altered independently by the optimization solver. Thus,
a parameterization is needed for each quaternion parameter block. Although it is
possible to add a parameter constraint within each quaternion, to fulfill the proper-
ties in Eq. 2.7, it is more efficient to restrict the quaternion update12. The idea is
to only allow orthogonal updates to quaternions. Let ∆uuu be the update quaternion’s
Euler axis and |∆uuu| the corresponding total rotation angle. An update quaternion
∆qqq is defined, using Eq. 2.7, by

∆qqq =

 cos(|∆uuu|)
sin(|∆uuu|) ∆uuu

|∆uuu|

 (4.49)

The updated quaternion q̃qq is computed via the Hamilton product

q̃qq = ∆qqq⊗qqq (4.50)

Constraints

A 3D representation is used throughout this work, to represent vehicle position and
orientation. However, to decrease the optimization problem complexity and in-
crease the solver speed, positions and orientations will be restricted to a 2D space.
Given most in-series sensor setups, especially the one used throughout this work in
Sec. 5.1, it is hard to estimate global pitch and roll angles as they can neither be
observed directly nor decoupled stably from vehicle to chassis rotations. Although
this is a strong assumption for missilery or aerial rovers, restricting the position
and orientation of a terrestrial rover, or passenger cars in particular, to a 2D space
introduces negligible errors.
The z-component of all global positions pppi in the set of poses Pmap and Pgnss are
set to zero and kept constant during the optimization process. Similarly, all global
orientations qqqi, of both sets, will only allow nonzero yaw angles, by keeping the
quaternion rotation vector uuu to the unit z-axis vector. This is achieved by setting qx
and qy to zero and keeping them constant throughout the optimization.
For the vehicle chassis to body rotation qqqv

icr,i for poses in the set Pmap, the yaw

12 For details refer to the CERES13 manual
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angle will be set to zero and kept constant, as the damping system between the
vehicle chassis towards its body does only allow negligible yaw angles. This is
implemented by setting qz to zero, keeping the rotation vector in the (x,y)-plane.
The pitch and roll angle of qqqv

icr,i, estimated by aligning lane markers with the map,
is constrained to be within −5 deg to 5 deg.

4.5 Lane-Relative Pose Estimation

Estimating lane-relative poses from previously aligned lane marker detection can
be used to provide fall-back pose estimates. These fall-back estimates are of ut-
most importance during permanent corruption of map-relative pose estimates due
to invalid digital map contents or poor initials. The lateral and longitudinal con-
troller can then perform degraded maneuvering, such as lane centering or emer-
gency stops, to keep the vehicle in a safe operation state or require a hand-over
request to the vehicle passengers.
Given a point cloud of priorly aligned lane marker detections in UTM coordinates,
the objective is to estimate lane-relative vehicle poses. Initially, the respective point
cloud is converted into v coordinates and distant points are removed.
The initial step is to cluster the lane marker point cloud to separate lane markers.
Distinctively separated dashed and solid lane markers can be clustered by basic
NNS algorithms. However, in presence of false positives as well as when lines split
or merge, NNS algorithms are deficient.
Bo et al. [14] presented an approach that robustly handles clustering with inter-
sections. A Delaunay triangulation, where long edges are removed, is used to
generate the α-shape of the point cloud. The α-shape is thinned until only a skele-
ton representation remains. The resulting skeleton is cleaned to remove spurious
tails and merge crossing necks similar to [64]. The cleaned skeleton is converted
in a weighted graph and its remaining vertices are connected by examining turning
angle and curve energy between vertices. Once the graph segments are connected,
the initial data points are assigned to its nearest segment. The clustering procedure
is depicted in Fig. 4.19.
Third-order polynomials are fitted through segmented point clouds by ridge re-
gression. Lane markers are connected, by examining their polynomial representa-
tion and the RMSE between lane markers, to estimate lane boundaries. Points of
connected lane markers are assigned to the corresponding lane boundary. Again,
third-order polynomials are fitted through the points, to estimate the lane boundary
shape, using ridge regression. By taking lane boundary polynomials instead of sin-
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and its associating data points S. For further processing, we
generate a back-white image I for S by filling each triangle in T
with black color. Refer to Fig. 2 for the pipeline of curve
components recognition.

The threshold ρ is important for accurate separation of data
points. If ρ is too large, over segmentation might happen; if ρ is too
small, originally disjoint curves might be recognized as a single

curve. Both cases should be carefully avoided. Clearly, the selection
of ρ should depend on the sampling density of data points.

3.2. Curve segment reconstruction

The next step deals with each component T to achieve
disjoint curves. This task is non-trivial due to the noise near

Fig. 4. Defining cost value for graph edges. (a) Turning angle of two edges in sequence. (b) A complete graph is added for each intersection vertex. The cost value
of an connection edge is defined by a weighted combination of turning angle and curve energy.

Fig. 5. Some drawing lines are shown together with curvature histograms.

Fig. 6. Algorithm for curve extraction. (a) is a subgraph corresponding to a cross region. In (b), one path with minimal energy is found which is denoted by dashed
line. After removing those nodes in the extracted path and dangling edges, we get a remaining graph in (c).

Fig. 7. The pipeline of data points segmentation and curve extraction. (a) A point cloud. The intersection regions are identified using intersection vertices of the
skeleton. (b) A graph is created from the skeleton where intersection vertex of valence n is replaced by a complete graph Kn. (c) Our curve extraction algorithm
gives the segmentation of the skeleton. (d) The grouping of data points using the skeleton segmentation results. (e) Fitting B-spine curves.
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Figure 4.19: Clustering of Detected Lane Marker Point Clouds. The images show the
data point segmentation pipeline presented by Bo et al. [14]. Point clouds (a)
are converted to a skeleton representation (b) which is segmented (c). These
segmented skeletons are used to cluster the point clouds (d) and to fit B-splines
(e).

gle lane marker polynomials, increases the robustness and accuracy of lane-relative
pose estimation.
The distance to lane boundaries is approximated, by sampling from the respective
polynomial from the minimal to the maximal x value of the assigned points and
computing the distance to these samples. The closest left and right lane bound-
ary is chosen by using their approximated distance, the intersection at the y-axis
and validating the distance between the lane boundaries to be conform within the
highway guideline.
The intersection of both lane boundary normals with the other lane boundary is
computed. The mean of the resulting pair of points and orientations are computed
to approximate the lane center. Based on these estimations, the lateral distance and
orientation of the vehicle pose towards the estimated lane center is computed. The
lane-relative pose estimation procedure is outlined in Fig. 4.20.

4.6 Integrity Monitoring

Monitoring the integrity and accuracy of sensor data is of key importance for data
fusion techniques to provide faultless estimates. Especially when vital systems rely
on the integrity of these estimates. For safe maneuvering of autonomous vehicles,
it is of utmost importance for the vehicle controller to perceive robust and accurate
pose estimates. However, in real-world applications sensors can be temporarily
disturbed, leading to imprecise or corrupted estimates. Thus, it is important to
further provide information about the pose estimate accuracy and integrity to help
the controller decide when to switch to fall-back solutions. Fall-back pose esti-
mations, such as lane-relative pose estimates instead of global pose estimates, can
significantly help the controller to return to safe driving conditions, such as lane
centering for hand-over requests or emergency stops.
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(a) Clustering of marker point clouds (b) Ridge Regression in clusters

(c) Merging lane markers (d) Lane Center Estimation

Figure 4.20: Lane-Relative Pose Estimation. a) Priorly aligned lane marker detections
are clustered using [14]. b) Third-order polynomials are fitted through these
clusters using ridge regression. c) Lane Boundaries are estimated by comparing
polynomials of all lane markers. d) The left and right lane boundaries are used
to estimate the lane center and lane-relative pose.

This chapter will present a generic approach to estimate the accuracy of odometry
and pose estimates. To decrease the computational load and algorithm complexity,
it will be assumed that all sensor measurements are normally distributed and the
sensor accuracy will be represented by covariance matrices. In a preliminary study
a χ2 test has been used to support this assumption given the vehicle’s sensor mea-
surements compared to a ground truth system with negligible uncertainty. Further
limitations, such as the amount of required estimates, depending on the correlation
between estimates, will be discussed.
Based on these covariance matrices, outliers in odometry estimates are rejected
using a χ2-test. The remaining estimates will be fused using the composite proba-
bility of MND as presented in Sec. 2.2.2. The resulting robust odometry estimate
will be used to assess the optimized poses of the pose graph optimization. A variety
of pose graphs are solved simultaneously, each with a different subset of sensors,
to provide fall-back solutions.

4.6.1 Covariance Estimation

This section focuses on estimating uncertainties of odometry and pose estimates
presented in Sec. 4.2. It will be assumed that all estimates are normally distributed.
MNDs are represented by a mean vector µµµ and covariance matrix ΣΣΣ, as presented
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in Eq. 2.23. Given the samples xxxi of MNDs, the mean vector and covariance matrix
is computed with

µ̃µµ =
1
n

n

∑
i=1

xxxi (4.51)

Σ̃ΣΣ =
1
n

n

∑
i=1

(xxxi−µµµ)(xxxi−µµµ)T (4.52)

=
1

n+1

n

∑
i=1

(xxxi− µ̃µµ)(xxxi− µ̃µµ)T (4.53)

The estimated mean µ̃µµ follows a Student’s t-distribution around the true mean µµµ .
For an infinite amount of samples n→ ∞ the estimated mean converges to the true
mean µ̃µµ → µµµ . Eq. 4.52 uses the true mean µµµ to estimate the covariance matrix.
However, the true mean is usually unknown and approximating the true mean us-
ing a high-precision ground truth is infeasible. Eq. 4.53 computes the covariance
matrix from an estimated mean µ̃µµ . Using an estimated mean instead of the true
mean increases the covariance matrix, as the true mean has the smallest distance
normally distributed samples. The term (n+1) accounts for the inaccuracy of µ̃µµ .
The major problem that arises when estimating the uncertainty of pose or odometry
estimates is that the mean is time-dependent µµµ(t), see Fig. 4.21.

Covariance Estimation of Time-Dependent Estimates

µµµ(t1) µµµ(t2) µµµ(t3) µµµ(t4)µ̃µµ

xxx(t1)

xxx(t2)

xxx(t3)

xxx(t4)
UTM

Figure 4.21: Covariance Estimation with Moving Mean. The rover’s true movement is
depicted by µµµ(t). To estimate the covariance using Eq. 4.53 the estimates xxx(ti)
need to be subtracted from the corresponding µµµ(ti), which is usually unknown.
Assuming a constant mean and using Eq. 4.51 results in an estimate µ̃µµ .

Estimating µµµ(t) is the core objective of localization problems. Filtering techniques
aim to resolve this problem. However, these filters postulate knowledge about the
covariance matrices. This causality dilemma can be resolved by priorly estimating
the sensor uncertainty using a ground truth sensor that provides precise estimates of
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µµµ(t) and neglecting the ground truth uncertainty. However, this procedure results
in a conservative estimation, is time consuming, expensive, and prone to alignment
errors when mounting the sensor. For some sensors, such as GNSS receivers, the
uncertainty can be approximated using Dilution Of Precision (DOP) [56] values.
DOP values assess the geometrical positions of observed satellites, which largely
influence the condition number of the weighted LSQ in Eq. 4.19. Although DOP
values help to increase the accuracy of filter algorithms [92], this technique cannot
be applied to other sensors.

In presence of multiple sensors, the sensor uncertainties can be computed without
knowing the true, time-dependent mean µµµ(t). Assuming MNDs for all sensor esti-
mates and given Eq. 2.25, it follows that the difference between sensor estimates,
depicted in Fig. 4.22, is normally distributed around a zero mean. The covariance
matrix ΣΣΣAB between sensor A and B can thus be estimated by

Σ̃ΣΣAB =
1
n

n

∑
i=1

(xxxAB,i−µAB,i)(xxxAB,i−µAB,i)
T =

1
n

n

∑
i=1

(xxxAB,i)(xxxAB,i)
T (4.54)

xxxAB(t1)

xxxAC(t1)

xxxBC(t1)

xxxA(t1)

xxxB(t1)

xxxC(t1)

xxxA(t2)xxxB(t2)

xxxC(t2)

µµµ(t1)
µµµ(t2)

UTM/v

Figure 4.22: Covariance Estimation Using Multiple Estimates. Given multiple sensors
(A, B, C) and their samples xxxA(t), xxxB(t), and xxxC(t), the sensor covariance matrix
can be derived from deltas between sensor estimates xxxAB(t), xxxAC(t), and xxxBC(t)
without knowing the true mean µµµ(t).

Given Eq. 2.26 and assuming that sensors A and B are uncorrelated, the covariance
matrix computed in Eq. 4.54 is the sum of sensor covariance matrices ΣΣΣA and ΣΣΣB

ΣΣΣAB =ΣΣΣA +ΣΣΣB (4.55)

For k uncorrelated sensor estimates, denoted by the letters A-Y, where Y denotes
an arbitrary letter, there are k(k− 1)/2 possible combinations similar to Eq. 4.55.
This results in a linear system of equations
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Σ̂ΣΣAB

Σ̂ΣΣAC
...

Σ̂ΣΣAY

Σ̂ΣΣBC
...
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Σ̂ΣΣA
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Σ̂ΣΣY
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ΣΣΣS

(4.56)

where Σ̂ΣΣ denotes the column vector of the upper triangular matrix of Σ̃ΣΣ∈Rm×m with
size j = (m(m−1)/2). I j is the identity matrix of ∈ R j× j. Eq. 4.56 can be solved
for k = 3 and is overdetermined for k > 3. The covariance matrices are computed
by solving the overdetermined system

ΣΣΣS = (AAAT
ΣAAAΣ)

-1AAAT
ΣΣΣΣ∆ (4.57)

The computational complexity to solve Eq. 4.57 is constant in time and covariance
matrices in Eq. 4.54 can be updated recursively. Thus the overall computational
complexity to estimate covariance matrices does not increase with the number of
samples.

Correlated Estimates

Sensor estimates can be correlated, due to the sensor subset or algorithms used to
compute estimates. Without loss of generality, if sensor A and B are correlated,
given Eq. 2.26, the first line of Eq. 4.56 is modified


Σ̂ΣΣcorr

...

Σ̂ΣΣXY


︸ ︷︷ ︸

ΣΣΣ∆

=


III j 2III j III j 0 0 · · ·
...

...
...

...
... · · ·

0 0 · · · 0 III j III j


︸ ︷︷ ︸

AAAΣ



Σ̂ΣΣA

Σ̂ΣΣAB,corr

Σ̂ΣΣB
...

Σ̂ΣΣY


︸ ︷︷ ︸

ΣΣΣS

(4.58)
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where Σ̂ΣΣAB,corr represents the correlation matrix between sensors A and B. For kcorr
correlations between sensors combinations, the number of unknowns is increased
by kcorr. Eq. 4.58 can be solved if

k(k−1)
2

≥ k+ kcorr (4.59)

Covariance Estimation of Pose and Odometry Estimates

A necessary condition to solve Eq. 4.56 is that at least three uncorrelated estimates
are provided. However, most localization sensor setups, including the setup used
herein, do not provide three or more uncorrelated pose estimators. To overcome
this issue, pose and odometry estimates are used to estimate covariance matrices
by embedding the delta pose of subsequent pose estimates in Eq. 4.56. Fig. 4.23a
depicts the creation of odometry sample deltas used to estimate their covariance
matrices. Pose estimates can also be included, depicted in Fig. 4.23b.

∆qAB,i:i+1
∆pAB,i:i+1

PA,i:i+1

PB,i:i+1 PC,i:i+1

vi,Pi

(a) The delta position ∆p and delta orientation ∆q between odometry estimates PA, PB,
and PC are used to compute the estimators’ A, B, and C covariance matrix.

∆qAB,i:i+1
∆pAB,i:i+1

PA,i:i+1

PB,i:i+1 Pi+1

vi,Pi

(b) The pose estimate Pi+1 is transformed in the prior estimate’s Pi coordinates and com-
pared to other odometers.

Figure 4.23: Samples for Covariance Estimation.

However, while odometry estimates are represented in the vehicle v frame, pose
deltas need to be converted from a global coordinate frame to the v frame. This
conversion add the pose’s Pi rotation uncertainty upon the estimate Pi+1. For sim-
plicity and as these rotation uncertainties are significantly smaller than position
uncertainties this effect can be neglected.
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Estimating the pose estimator’s covariance matrix by computing delta poses, re-
moves static offsets of the estimator, depicted in Fig. 4.23b. Offsets occur in GNSS
pose estimates due to imprecise ephemeris data, ionospheric and tropospheric de-
lays or in digital maps due to plate tectonics. This seems like a drawback but is
actually a desirable feature when estimating global or map-relative poses. For ex-
ample the accuracy of a map-matching algorithm does not depend on the static off-
set of the map itself, as long as the pose priors are sufficiently well for the matcher
to converge. Although, to fuse pose estimates of various pose estimators with dif-
fering offsets, these offsets need to be known or estimated to prevent systematic
errors in pose estimates.
This concludes the covariance estimation algorithms. It is assumed that the covari-
ance and correlation matrices are not time-dependent. Although this assumption is
not optimal for some sensors, it is an acceptable approximation. Modeling time-
dependent effects such as daytime, weather and environmental conditions and how
they influence the estimate’s uncertainty is extremely complex and not feasible for
the presented setup.

4.6.2 Robust Odometry Estimation

To decrease the amount of graph vertices, the odometry estimates presented in Sec.
4.2.2 are fused, resulting in a robust odometry estimation. As motivated in Sec. 4.4
the localization problem will be solved in a 2D space. Therefore, the z-component
pz of the position and the quaternion parts qx and qy for 3D odometry estimates will
be set to zero. The covariance matrix ΣΣΣA of the odometry estimator A, and for the
other estimator correspondingly, will be represented by

ΣΣΣA =


σ2

x σxy 0

σyx σ2
y 0

0 0 σ2
ψ

 ΣΣΣp,A =

σ2
x σxy

σyx σ2
y


Fig. 4.24 shows the utilized models and sensors used for the robust odometry es-
timation. Before fusing odometry estimates their covariance matrices need to be
computed. Depicted in Fig. 4.23a, covariance matrices of odometry estimates
can be calculated by computing the respective difference during a specified time
interval and solving Eq. 4.56. For delta orientation or yaw rate uncertainty esti-
mation the single-track model, the WSS odometry, the GNSS odometry, the visual
odometry, and the gyroscope are used. Delta position covariance matrices of the
odometry estimators are computed using delta poses of the single-track model, the
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Pose delta estimates

Robust Odometry

Gyro

Single-Track 
Odometry

Visual 
Odometry

WSS 
Odometry Δ𝐩R, Δ𝐪𝑅 , 𝚺𝑅

Δψ, Δ𝐩

Δ𝐩, Δ𝐪
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Δψ, Δ𝐩

Odometry
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GNSS 
Odometry

Δ𝐩, Δ𝐪
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4 x WSS

GNSS

Gyro

Camera
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Figure 4.24: Robust Odometry Estimation. Given position and orientation deltas and their
uncertainties a robust position delta dpppr and orientation delta dqqqr is computed.
The utilized sensor are depicted as blue boxes.

WSS odometry, the visual odometry and the GNSS odometry. For both the orienta-
tion and position uncertainty estimates it is assumed that WSS odometry estimates
and single-track odometry estimates are correlated as these estimates use the WSS.
Their correlation matrices are also estimated.
Once the odometry covariance matrices are computed the odometry estimates can
be fused. Before fusing estimates of the respective odometer, outliers are rejected
using a χ2-test on the Mahalanobis distance of the estimate toward the other esti-
mates

χ
2
odo,p ≥

1
n−1

n

∑
j 6=i

(∆pppi−∆ppp j)
T
ΣΣΣ

-1
p, j(∆pppi−∆ppp j) (4.60)

χ
2
odo,ψ ≥

1
n−1

n

∑
j 6=i

σ
−2
ψ, j(∆ψi−∆ψ j)

2 (4.61)

where n is total number of odometry estimators, ∆pppi and ∆ψi the delta position and
orientation estimate of the odometry estimator and ΣΣΣp,i and σψ, j their uncertain-
ties respectively. If Eq. 4.60 is violated, the delta pose estimate is rejected, see
Fig. 4.25. This procedure is done correspondingly for delta orientations. All valid
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position and orientation delta estimates are fused using composite probabilities of
MNDs presented in Sec. 2.2.2. The robust odometry algorithm is outlined in Alg.
12.

∆pppA,ΣA

∆pppB,ΣB

∆pppC,ΣC ∆pppD,ΣD

∆pppR,ΣR

vi,Pi

Figure 4.25: Odometry Fusion. The robust delta position estimate ∆pppR (blue) results from
fusing the delta position estimates ∆pppA to pppD using their covariance matrices
ΣΣΣA to ΣΣΣD. Outliers (red) are rejected by comparing the Mahalanobis distance to
other estimates and a χ2 test.

Algorithm 12 Robust Odometry Estimation

Input: ∆pppA-∆pppY , ∆ψA-∆ψY , ΣΣΣA-ΣΣΣY
Output: ∆pppR, ∆qqqR, ΣΣΣR
Compute χ2

j for all delta positions ∆ppp using Eq. 4.60
while Highest max j (χ

2
j )> χ2

odo do
Remove delta position with highest χ2

Recompute Eq. 4.60 for remaining pose deltas
Fuse remaining pose deltas to pppR
Compute χ2

j for all delta orientations ∆ψ using Eq. 4.61
while Highest max j (χ

2
j )> χ2

odo do
Remove delta orientation with highest χ2

Recompute Eq. 4.61 for remaining orientation deltas
Fuse remaining orientation deltas and convert to quaternion qqqR

4.6.3 Integrity Monitoring of Pose Estimates

Although large efforts are conducted to ensure reliability of sensor measurements
and system state estimations, reliability of all vehicle sensors and algorithms is
costly and may even be infeasible for some sensors or algorithms. A practica-
ble approach to overcome this issue is to constantly monitor the integrity between
sensor estimates to assess their functionality and provide, if single sensors are per-
manently corrupted, fall-back estimates. This section will present an approach to
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4.6 Integrity Monitoring

monitoring the integrity of pose estimators and optimized pose estimates, given the
priorly estimated covariance matrices.

Assessing both sensor pose estimates and optimized poses is indispensable to en-
sure the integrity of pose estimates and solver convergence. Assuming that the
orientation error of the pose estimate Pi is within a few degrees so that the small
angle approximation (linearity)

sinα ≈ α (4.62)

holds and both the pose estimate Pi and robust odometry estimate PR,i:i+1 are un-
biased estimators, the covariance matrix ΣΣΣPR between the difference of subsequent
sensor pose estimates Pi and Pi+1 towards the robust odometry estimate PR,i:i+1

dp,euler = pppv
i+1− (pppv

i +qqqv
i · pppv

R,i:i+1) (4.63)

can be directly computed from dp,euler (see Sec. 4.6.1). The Mahalanobis distance
between subsequent pose estimates and the robust odometry estimate can then be
computed

d2
p = (pppv

i+1− pppv
i −qqqv

i · pppv
R,i:i+1)

T
ΣΣΣ

-1
p,PR(ppp

v
i+1− pppv

i −qqqv
i · pppv

R,i:i+1) (4.64)

d2
r = (ψv

i+1−ψ
v
i −ψ

v
R,i:i+1)σ

−2
ψ,PR(ψ

v
i+1−ψ

v
i −ψ

v
R,i:i+1) (4.65)

The squared position distance d2
p and rotation distance d2

r is compared to a χ2-
threshold to monitor the sensor integrity. This procedure is performed for all pose
estimators presented in Sec. 4.2:

• GNSS pose estimates

• Map matching pose estimates

• Lane marker matching delta pose estimates

Furthermore, three pose graphs are solved simultaneously to increase the robust-
ness and accuracy of the pose estimators. Each pose graph inherits a subset of sen-
sors as listed in Tab. 4.1. Although, fusing GNSS pose estimates and map matches
is nonoptimal due to systematic offsets between the digital map and GNSS pose
estimates, GNSS delta poses can be included directly in the robust odometry es-
timation as the offset cancels out. Note that the GNSS pose graph uses a robust
odometry estimation without GNSS delta poses. Similarly, fusing subsequent lane
matches and map matches is nonoptimal as these estimates are highly correlated.
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4 Robust Pose Estimation

(a) The Mahalanobis distance within pose estimates (black) is computed to assess the sen-
sor integrity.

(b) The Mahalanobis distance of optimized pose estimates (blue) towards sensor pose esti-
mates (black) is computed to assess the optimization solution.

Figure 4.26: Integrity Monitoring of Poses. The sensor pose estimates and the optimized
pose estimates are monitored to ensure that both the sensor estimates are of
integrity and the optimization solver converged.

GNSS Map Lane Marker Odometry

GNSS pose graph x x

map-relative pose graph x x

lane-relative pose graph x x

Table 4.1: List of Pose Graphs.

The GNSS pose graph is used to initialize the map matcher. While the map-relative
pose graph computes the map-relative pose estimates. If permanent corruptions of
map matches or digital map content are detected, the controller may fall back to the
lane-relative pose estimate provided by the lane-relative pose graph.
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Figure 4.27: Integrity Monitoring Scheme.

4.7 Optimization Properties and Pose Update

Optimization Properties

The presented optimization problem is a constrained nonlinear LSQ problem with a
finite dimensional and continuous parameter space and thus belongs to the category
of Nonlinear Programming.
All parameter constraints, presented in Sec. 4.4, are equality constraints, except
for the inequality constraint of the total pitch and roll angle of qqqv

icr. However, the
vehicle chassis to body rotation qqqv

icr will be optimized, as outlined in the light ray
alignment algorithm Alg. 9, for each single-shot lane detection separately, either
on a prior lane detection or the digital map, depending whether the digital map
is utilized or not. The distance to the aligned pose will be included in the pose
graph using Eq. 4.42 or Eq. 4.44 respectively. Therefore, the pose estimation
optimization problem in Eq. 4.3 is an equality constrained problem. This has the
benefit that there is no need to tracking a working set of active constraints, as active-
set or interior-point methods do, and the method of Lagrangian multipliers can be
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4 Robust Pose Estimation

applied.
All presented pose distances compute the Mahalanobis distance of the pose or
odometry estimates and are convex functions. However, for the loss functions, only
the Huber loss is convex. Cauchy and arctan loss are strictly quasi-convex.The
loss function for ambiguous map matches, depicted in Fig. 4.18, is not convex.
Therefore, it cannot be guaranteed that the solver converges to the global optimum,
except when map matching ambiguities are absent or can be resolved before the
optimization progress starts. The derivative for the optimization solver will be
computed by using AD. Compared to numerical differentiation, AD has the benefit
of computing exact derivatives, see Sec. 2.3.3. Another advantage of AD is that
the computation of the objective using dual numbers is faster than reevaluating the
objective function to approximate derivatives, as used by numerical differentiation.
A Levenberg-Marquardt (LM) algorithm is used to solve the presented optimization
problem. Similarly to Gauss-Newton methods, the LM algorithm estimates the
Hessian matrix, which saves a significant amount of computational time. As the
LM algorithm uses the same Hessian approximation as Gauss-Newton methods,
they locally behave similar. However, LM uses a trust-region algorithm instead of
a line-search algorithm internally, making it more robust against rank-deficient or
nearly rank-deficient Jacobians. Thus, the LM algorithm finds a solution in many
cases, even when further away from the local minimum as Gauss-Newton methods.
More details on LM algorithms and numerical optimization can be found in the
work of Wright and Nocedal [94].

Pose Update

Camera and GNSS pose estimates can be attained with more or less constant fre-
quencies. However, these frequencies are not sufficiently high for lateral and longi-
tudinal vehicle control algorithms, which need pose updates at constant frequencies
of 20 - 100 Hz, depending on the controller. Furthermore, camera and GNSS pose
estimates may be invalid or unavailable during short time intervals.
While the application of optimization techniques increases robustness and accu-
racy of pose estimates, the optimization solver time highly depends on the quality
of initial estimates and nonlinearity of the optimization problem. Therefore, the
optimization solver either consumes varying amounts of time or must be aborted
before reaching a convergence criteria such as a minimal parameter step size. Nei-
ther of these properties are desirable for vehicle controllers.
Given a set of poses P , the k-th latest optimized pose Popt with its time stamp topt
will be updated using the robust odometry estimates until the current system time
tcurr as depicted in Fig. 4.5. Choosing k is a trade-off between the amount of un-
certainty thate the odometry estimate introduces versus the increase of accuracy of

80



4.7 Optimization Properties and Pose Update

an optimized pose with prior and posterior pose estimates. The pose update algo-
rithm is outlined in Alg. 13. To ensure constant pose updates at high frequencies,
the optimization algorithm Alg. 14 is performed on a parallel thread towards the
optimization solver.

Popt,2 +∆PPopt,3 Popt,1Popt,2 P

Figure 4.28: Vehicle Pose Update for the Controller. The k-th latest pose Popt,2 (k = 2),
of optimized poses (blue) is updated by ∆P from the odometer to provide the
current pose estimate (black). There might be more recent poses, which have
not been optimized yet (red).

Algorithm 13 Pose Update Thread

Input: P , odometry estimates, digital map
Output: Pcurr
Get the k-latest optimized pose and associated time stamp from P
Update the optimized pose to the current time stamp using the odometry
Estimate the covariance and publish the pose Pcurr
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4 Robust Pose Estimation

Algorithm 14 Map-relative Pose Graph Optimization Thread

Input: sensor data cache, digital map
Output: P , estimated covariances, aggregated map
if new lane marker detections available then

Add a new pose to Pmap and remove or fix obsolete poses
Compute odometry constraints to prior, valid pose from Pmap
if initialization complete then

Initialize pose estimate with prior pose + odometry
else

Initialize pose estimate using GNSS estimate
Add odometry error term and constraints
Perform map matching and ray alignment algorithms
if New match conform with prior matches then

Estimate covariance of matches
Add error term to pose graph problem

else
Reject match

Optimize the pose graph
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5 Experimental Evaluation

To evaluate the presented algorithms in real-world scenarios, a test vehicle was
built up and equipped with additional sensors, depicted in Fig. 5.1. A Differential
GPS (DGPS) reference station and a high-precision aided INS is used to evaluate
the presented algorithms quantitatively. For the evaluation multiple datasets were
recorded, both on the OTC test track1 and public highway track, Frankfurt, Ger-
many. The datasets cover low- and high-dynamic scenarios as well as perturbed
scenarios with traffic and differing weather conditions. The datasets are stored as
ROS2 bagfiles and contain raw camera images, CAN data, and raw pseudorange
data.

5.1 Pose Estimation Setup

A 4WD Opel Insignia3 was chosen as sensor platform. A fundamental requirement
was to use a near-series, cost-efficient sensor setup. Fig. 5.1 shows the main com-
ponents of the test vehicle displayed in blue. The sensor positions can be found in
Appx. A.1.

5.1.1 Vehicle Sensor Setup

The test vehicle has three dynamic sensors available at 100 Hz on the CAN bus.

• Steering Angle Sensor (SAS)

• Four Wheel Speed Sensors (WSSs)

• 2D Inertial Measurement Unit (IMU)

The sensor specifications are included in Appx. A.2. The SAS measures both
steering angle and angle gradient of the steering wheel. The WSSs are mounted at
each wheel and are equipped with magnetic encoders. 48 pulses are equivalent to
a full wheel rotation. The IMU has a 2D accelerometer in x- and y- direction and a

1 Opel Test Center (OTC), Dudenhofen, Germany
2 ROS Kinetic Kame, Robot Operating System, http://www.ros.org
3 Insignia MY16, Opel Automobile GmbH
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5 Experimental Evaluation

(a) Test vehicle (b) Front camera setup

(c) GNSS antennas (d) Rear camera setup

Figure 5.1: Additional Sensors. The sensor suite was extended by a front and rear camera
and a low-cost GNSS receiver as well as a high-precision aided INS as ground-
truth.

gyroscope in z-direction measures the yaw rate.

The setup was extended by a front and rear camera as well as a low-cost GNSS
receiver.

• Front and rear 2.8 MP, 12-bit monochrome camera4

• low-cost GNSS evaluation kit5

The EVK-M8T utilizes a nonpublic EKF internally. Thus, estimated poses can only
be incorporated via covariance intersection [25], as correlations between pose esti-
mates are unknown. This is a conservative and nonoptimal approach. Thus, multi-

4 FL3-GE-28S4M-C, Point Grey Research (now: FLIR Integrated Imaging Solutions Inc.)
5 EVK-M8T, u-Blox Holding AG
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5.1 Pose Estimation Setup

GNSS raw measurement data, broadcast navigation data subframes, and SBAS sta-
tus data6 are processed in the SPP algorithm as presented in Sec. 4.2.1 to receive
uncorrelated pose and velocity estimates.

5.1.2 Vehicle Sensor Calibration

Sensor calibration algorithms include estimation of time delays, sensor alignment
or rigid transformation, and sensor error model parameters, such as offset and scal-
ing parameters. This section briefly outlines the utilized sensor calibration algo-
rithms. A more detailed description was presented in [Int2].

Time Delay Estimation between Sensors

The ability to obtain precise time stamps of measurements is important for fusing
time-dependent sensor data. Dynamic sensor data, available on the CAN bus, have
negligible or no preprocessing time. For the given setup time delays are below
2 ms per specification sheet. However, image processing and GNSS pseudo- and
deltarange calculus impose increased computational burden. Thus, it is necessary
to compute the time delay of the GNSS, map-relative and lane-relative pose esti-
mates with respect to the dynamic sensor data.
The time delay of pose estimators towards dynamic sensor data is computed by
cross-correlating their time-series data, as presented by Carter et al. [20]. Peaks in
the resulting correlation graph indicate time delays. In this approach, delta orien-
tations of the GNSS, lane-relative, and map-relative orientation estimates and the
visual odometry’s angular rotation are correlated with the mean IMU yaw rate in re-
specting time intervals. Sensor clock drifts and jitter, comprised by more elaborate
temporal synchronization methods [93], have negligible influence, as all measure-
ments are time-stamped by a central unit and it is assumed that each sensor provides
measurements with an approximately constant time delay.

Camera Calibration

The front and rear camera’s intrinsic and extrinsic parameters are estimated using
an approach presented by Strauss et al. [78]. Multiple calibration patterns are
detected by the camera setup and the association problem is solved over time using
a sparse nonlinear LSQ solver. The main challenge, that this approach solves, is
that cameras with nonoverlapping field of views can be calibrated.

6 UBX-RXM-RAWX, UBX-RXM-SFRBX, UBX-NAV-SBAS
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IMU Offset and Scale Estimation

The in-series vehicle dynamic sensors are mounted in well-known positions with
negligible time delay. However, these sensors suffer from offset and scaling errors.
Offset and scaling errors can be directly estimated using recursive linear regression.
Delta velocities and delta orientations of the GNSS receiver are used to estimate the
offset and scale of both the accelerometer and gyroscope of the IMU as presented
in [Int2].

SAS Offset and Scale Estimation

The steering angle ratio and offset between the steering wheel and the steer angle
of the front wheels is calibrated using recursive linear regression. The recursive al-
gorithm estimates the ratio and offset by minimizing the difference between GNSS
delta orientations and the yaw rate estimation of the kinematic single-track model
presented in Eq. 4.29, with a small angle approximation tan(δ f ) = δ f for the steer-
ing angle.

Wheel Diameter Estimation

The path estimation computed from GNSS position signals are used to estimate
wheel diameters. However, distances between normally distributed position signals
are larger than the true traveled path due to sensor noise. This effect is compensated
by approximating the integration of Maxwell Boltzmann distributions as presented
in [Int2].

5.1.3 Digital Map and Testing Grounds

Two test tracks were selected both for this thesis and in the project Ko-HAF. The
first test track is a nonpublic highway test track used to investigate the algorithm
performance under critical maneuvers. The second test track is a public highway
used to test the presented algorithms under real-world perturbations. For both test
tracks a high-precision digital map7 was recorded priorly. Fig. 5.2 shows the
mapped test tracks. The maps are stored in the OpenDRIVE file format [34].

Opel Testcenter

The OTC test track is located on the Opel Test Center8 and is used for preliminary
testing and validation. It covers a 2 km straight highway test track and a return

7 The digital map has been recorded in the course of the project Ko-HAF.
8 Opel Test Center, Dudenhofen, Germany

86



5.1 Pose Estimation Setup

track. The track can be divided in three parts. The entry party covers three lanes
and a slip road. The middle part covers three normal lanes and the exit part an
additional exit lane. A more detailed view of the map can be found in Appx. A.4.
A preceding banked turn permits entering the highway track at high velocities.
Additionally this test track is equipped with a DGPS system, presented in detail
in Sec. 5.1.4, used to validate the pose accuracy quantitatively together with a
validation system in the test vehicle.

(a) OTC test track [39] (b) Public highway track [40]

Figure 5.2: Bird View of the Digital Map. The OTC test track (a) covers approximately
2 km of highway roads. The public highway track (b) covers highway road A3,
A5, A661 and federal highway B45 with approximately 140 km.

Public Highways

The public highway track covers 140 km of highway roads, including roads be-
tween Frankfurter, Bad Homburger, and Offenbacher Cross (A3, A5, A661, B45)
and is displayed in Fig. 5.2b. These roads were selected as they cover some of the
most complex highway roads with multi-lane environments, various interchange
types, and tunnels. This test set is used to test the presented algorithm’s robustness
towards traffic, tunnels, washed-out lane markers, interchanges and GNSS multi-
path scattering. However, for this track a close DGPS reference station is missing.
Receiving DGPS correction data via mobile network from reference stations fur-
ther away, significantly reduces their accuracy9. Thus the pose estimates on this
track will be evaluated qualitatively.

9 approximately 1 cm in accuracy loss per km distance from the reference station
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5.1.4 Ground Truth

To assess the accuracy of pose estimates, a ground truth that provides high-precision
pose estimates is needed. Fig. 5.3 displays the ground truth system located at the
OTC test track.
A DGPS reference station, receives GNSS signals via a Geodetic antenna10. A
multi-channel, multi-frequency OEM GNSS receiver11 computes the GNSS cor-
rection data from these signals and distributes the resulting Radio Technical Com-
mission for Maritime Services (RTCM)-3.0 correction messages12 via Networked
Transport of RTCM via Internet Protocol (NTRIP) protocol over the Ethernet in-
terface. The NTRIP casting is performed by a high-performance NTRIP broad-
caster13. Two transmitting stations, located at the middle and southern part of the
OTC test track, receive these messages and transmit them on a 433.50 MHz carrier
wave using a high-frequency narrow band radio modem14.
The test vehicle receives these messages using a second radio modem and for-
wards them to a high-precision aided INS15, which directly process the RTCM-3.0
messages. An INS consist of a computing unit and an IMU and estimates orien-
tation, velocity, and position, given a prior, by solving navigation equations, such
as the Strapdown algorithm [85]. These estimates drift over time due to errors in
the IMU’s gyroscope and accelerometer. Aided INSs limit these drifts by adding
additional sensors that observe these states directly and fuse their estimates. The
ADMA consists of an INS with a high-precision 3D accelerometer and gyroscope
and a DGPS receiver. Internally, an EKF is used to filter the data. Its geodetic
antenna is displayed in Fig. 5.1c.

5.1.5 Software Framework and Computing Units

The algorithms presented in Ch. 4 were implemented in the general-purpose pro-
gramming language C++ under Ubuntu. C++ was selected as it is one of the most
developed programming languages. It provides high-performance object code,
highly developed libraries and source code, several programming paradigms, and
direct access to hardware resources while simultaneously ensuring high portabil-
ity. Some additional tools for post processing, visualization, and configuration are
implemented in Python and Java.

10 Zephyr II, Trimble Inc.
11 BX982, Trimble Inc.
12 RTCM-3.0 Messages: 1004, 1005(9), 1008(9), 1012
13 Ntrip Caster, Alberding GmbH
14 Satelline-EASy 869, SATEL
15 ADMA-G Entry Level, GeneSys Electronik GmbH
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Figure 5.3: Ground Truth System Overview. DGPS reference station (A). GNSS antenna
(B). Trimble GNSS receiver (C). NTRIP caster (D). Transmitting stations (E).
Radio modem (F). Test vehicle (G). ADMA (H).

Software Framework

ROS is used as a software framework. An intensive study on ROS as a software
framework for automated driving is presented by Hellmund et al. [46]. It was
found that ROS is a modular and extensible framework with low overhead, sup-
ports fault-tolerant development and provides a rich ecosystem of supporting tools.
Furthermore, latency and jitter of data signals in ROS were investigated. ROS was
found to be a strong framework for developing and prototyping purposes, although
it has some flaws regarding real-time performance and guaranteed message trans-
mission. However, these flaws are addressed in the new ROS version 2.0.

Optimization Framework

The pose graph is modeled and solved using CERES, an open source C++ library
which has been extensively tested by Google. It is actively maintained by its com-
munity, well documented, portable, and has been extremely optimized towards
computational time. CERES was found to yield a higher solution quality com-
pared to other solvers, such as HBN or MinPack. It further provides a variety of
optimization solvers, linear solvers, loss functions and supports AD.

Computation Units

It is infeasible to guarantee hard real-time properties of the presented approach,
especially since Ubuntu is used as an operating system. However, for live demon-
strations the computational time is of utmost importance. Thus, the CPU usage
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Figure 5.4: Visualization in Rviz. Detected lane markers (blue) are aligned with the digital
map (white) by optimizing the ray distance towards map samples. Prior opti-
mized poses (blue path) and odometry estimates are used to estimate the most
recent pose (coordinate frame).

and the computational time of solving the optimization problem will be constantly
monitored and evaluated in Sec. 5.3.4. The computational time depends on the
computing unit. For runtime evaluations the algorithms are run on a mid range
Dell M4800. The test vehicle is equipped with a superior computation unit. The
hardware details are listed in Appx. A.3.

5.2 Test Sets

To evaluate the presented approach 15 datasets were recorded on the OTC test
track. The dataset bulk was chosen to cover the vehicle’s full dynamic range from
lane keeping at moderate accelerations to full brake appliance and evasion. The
sets were recorded over a time span of approximately one year and cover different
weather conditions, such as cloudy, sunny, and rainy weather.
The OTC test track has been chosen to evaluate the approach as some scenarios,
such as full brake application and evasion, imposes sincere hazards on public roads.
Additionally, the OTC test track has a ground truth to evaluate the position and
orientation accuracy quantitatively. Moreover, similar testing conditions can be
assured, to depict the filter susceptibility to weather conditions, velocities, and dif-
fering dynamic maneuvers. Last but not least, the repeatability rate to continuously
improve the algorithms is much higher on a test track than on public roads with
alternating traffic load. Additionally, two sets are added to qualitatively investigate
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the filter performance in multi-lane environments and by driving multiple loops in
a cloverleaf interchange.

Dataset Representation

Each dataset is described by the lateral vehicle position, absolute velocity, and lat-
eral and longitudinal acceleration. The time-series plots are condensed to violin
plots as depicted in Fig. 5.5. Violin plots can be interpreted as vertical, symmetric
histogram plots of time-series data. The violin plot’s vertical axis denotes the abso-
lute value while the horizontal axis describes the value’s occurrence. Thus, violin
plots can be interpreted as value distributions. Fig. 5.12 shows the time-series and
violin plots of dataset C where the vehicle performs lane changes in a sinusoidal
manner at a constant velocity. During the last section the vehicle performs a lane
change on the exit lane and reduces its velocity.
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Figure 5.5: Dataset Representation Plots. The vehicle position, velocity, and acceleration
timeseries plots (left) are converted to violin plots (right) to qualitatively describe
the test set. Violin plots are vertical histograms and visualize the rate of occu-
rance.

91



5 Experimental Evaluation

All datasets are separated in four groups described in the following. Violin plots
of dataset samples of each group are depicted in Fig. 5.6. All violin plots of the
datasets can be found in Appx. A.5. 5.7
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Figure 5.6: Dataset Examples. Depicted are position, velocity, and acceleration violin plots
of a sample set of each dataset group. All violin plots are included in the ap-
pendix Appx.A.5.
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Dataset Group A

The initial group of datasets covers four full drives on the OTC test track. In dataset
A and dataset B the lane is kept at a mean velocity of 29.26 m/s and 20.81 m/s
respectively. In dataset C and dataset D 8 to 12 lane changes are performed with
moderate lateral and longitudinal accelerations at a vehicle velocity of 30.09 m/s
and 28.45 m/s. The purpose of these sets is to investigate the performance in typical
highway driving scenarios.

Dataset Group B

The second group of datasets covers more dynamic driving maneuvers, which are
more demanding for pose estimators as nonzero pitch and roll angles occur. In
dataset E and dataset F 23 to 26 lane changes are performed by following a sinu-
soidal path. The lateral accelerations are between −4.76 m/s2 and 3.97 m/s2. The
lateral position violin plots of this group show that for all sets the vehicle is con-
stantly changing lanes as the lateral positions vary significantly. While dataset E
and dataset F are used to investigate the influence of nonzero roll angles, dataset G
and dataset H are used to investigate the influence of nonzero pitch angles. For the
latter two sets only 4 to 10 lane changes are conducted at perceptible longitudinal
accelerations.

Dataset Group C

The third group of datasets covers highly dynamic scenarios where both high lateral
and longitudinal accelerations are applied. These sets represent evasive maneuvers
in critical situations. Lateral accelerations from −4.53 m/s2 to 4.01 m/s2 and lon-
gitudinal accelerations from −9.33 m/s2 to 3.99 m/s2 were applied. These sets are
very demanding for pose estimators as nonzero pitch and roll angles are constantly
present. Furthermore, the assumption of linear models is violated and fluctuating
velocities intensify interpolation or synchronization errors.

Dataset Group D

The last group of datasets covers additional scenarios that are very demanding for
visual pose estimators. Dataset M is recorded during rainy weather with significant
surface reflections on the road, which is caused by a perfectly flat test track with no
lateral curvature, as it is mandatory for public highways. In dataset N an emergency
stop maneuver on the marginal strip is performed. These maneuvers are performed
when hand-over requests to the driver cannot be successfully completed. Dataset
O covers the 3 km long four- and five-lane environment on the public, German
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(a) Dataset L: Subsequent image overlay visualizes the pitch angle

(b) Dataset M: Rain (c) Dataset C: Dazzling sunlight

(d) Dataset O: Five-lane environment (e) Dataset O: Small bridges

(f) Dataset P: Highway interchange (g) Dataset P: Highway interchange

Figure 5.7: Dataset Sample Images.

highway A3. Dataset P covers a 4 km drive through six quaters of the cloverleaf
interchange Aschaffenburger Cross. The last two sets were recorded in absence of
DGPS correction data.
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5.3 Experimental Results and Evaluation

This section focuses on the pose estimation results of the presented algorithms.
An EKF and PF approach were implemented for the given setup and presented
in [Int1]. Their performance was found to be inferior compared to the presented
approach [Int3] and will not be consulted for an extensive study.

The algorithms were applied on the datasets described previously. The pose error
is computed by calculating the difference to the ground truth system presented in
Sec. 5.1.4. It was assumed that the ADMA has negligible noise. The covariance
estimation algorithms are investigated in a simulation run and the computed covari-
ance matrices eigenvalues are compared to the standard deviation of the lateral and
longitudinal position and orientation errors. Last but not least, the approach will be
evaluated qualitatively in demanding scenarios on the public highway track where
both camera and GNSS estimates are significantly perturbed and the integrity mon-
itoring system will be investigated in these scenarios.

5.3.1 Pose Estimation

Due to high velocities in longitudinal direction, small velocities in lateral direction,
and since the lane marker matching problem is well-conditioned in lateral but ill-
conditioned in longitudinal direction, the lateral and longitudinal uncertainty differ
significantly. Thus, the position error is split in a longitudinal and lateral part. The
longitudinal position error is computed by projecting the pose estimate and ground
truth on the reference line of the digital map. The lateral position is computed by
the distance to the reference line, respectively.
It was found that the absolute UTM position error is similar to the longitudinal
position error, as the latter is significantly higher than the respective lateral error.
Thus, in the following only the lateral position and total UTM will be displayed.
Although DGPS is available at the OTC test track, a small position offset16 between
the ADMA and the digital map is frequently present, thus the ADMA trajectory and
the optimized pose trajectory are aligned in a 20 s sliding window. The orientation
error is computed by comparing the yaw angle of the pose estimate and ADMA
quaternion directly.

16 within 20 cm
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5 Experimental Evaluation

Pose Estimation Results Representation

Similar to the datasets, the pose estimation results are described by violin plots. The
time-series and violin plots of the lateral position, UTM position, and orientation
error for the errors on dataset J are qualitatively displayed in Fig. 5.8.
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Figure 5.8: Dataset Pose Estimation Plots for Dataset J. The lateral position, UTM ori-
entation, and UTM position error timeseries plots (left) are converted into violin
plots (right) to visualize errors rate of occurance.
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5.3 Experimental Results and Evaluation

The pose estimation results are separated according to the dataset groups. Violin
plots of pose estimation results of each dataset group are depicted in Fig. 5.9. All
violin plots of the datasets can be found in Appx. A.6.
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Figure 5.9: Dataset Example Results. Depicted are the pose estimation error violin plots
on a sample set of each dataset group. All violin error plots are included in the
appendix Appx.A.6. .

Dataset Group A

The position estimation STD of the dataset group A is approximately 10 cm and
the yaw orientation STD is below 0.20 deg with a maximal orientation error below
0.80 deg for all sets. Although the maximal position error is below 35 cm for three
sets, the maximal position error in dataset A is 58.37 cm. All lateral position and
orientation values are listed in tables in Appx. A.7.
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5 Experimental Evaluation

Dataset Group B

Although the pose estimation accuracy is slightly increased in the dataset group
B compared to the prior set, there is no considerable outlier in the both the lateral
position and orientation estimate. The lateral position STD is below 13 cm with a
maximum error below 39 cm and the orientation STD is approximately 0.40 deg or
below with a maximum error below 1.10 deg.

Dataset Group C

Although the position and orientation STD in the dataset group C are below 13 cm
and 0.35 deg, similar to the dataset group B, the maximum errors are a significantly
increased, with a maximum lateral position error of approximately 60 cm in dataset
I and a maximal orientation error of approximately 1.90 deg in dataset L. However,
as the dataset covers highly dynamic scenarios with full brake applications, errors
also arise due to imprecise time stamping and interpolating errors that are prone to
rapid changes in the observed quantities.

Dataset Group D

Visual pose estimators are susceptible to viewing conditions. However, heavy rain
in dataset M does not significantly downgrade the pose estimation accuracy. The
set has a maximum lateral error of 31.59 cm and STD of 11.18 cm and a maxi-
mum orientation error of 0.87 deg. The accuracy of the pose estimates during the
emergency stop, are inferior compared to the prior sets. A lateral error STD of
20.64 cm with a maximal value of 50.75 cm was computed. Dataset O and dataset
P were recorded in absence of DGPS correction data. It was found that the ADMA
suffers from significant offset errors when projected on the map during test drives.
However, to perform a qualitative analysis, the ADMA pose estimates were aligned
with the optimized poses before computing the error. For dataset O a lateral po-
sition error STD of 12.69 cm with a maximum value of 45.64 cm was computed.
The orientation estimate had a maximum error of 0.38 deg. For dataset P an ori-
entation STD of 0.84 deg with a maximum error of 2.98 deg was computed. As
the cloverleaf interchange is represented by a magnitude of reference lines and the
ADMA is susceptible to multipath scattering, a distinct projection on the reference
line is impeded and the UTM position error is computed. A UTM position STD of
68.85 cm 541.85 cm was computed.

The presented approach showed a good overall performance on the datasets. Even
though a 2D map is used and high lateral and longitudinal accelerations are applied
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5.3 Experimental Results and Evaluation

together with differing weather conditions. However, although the STD in the lat-
eral position in dataset A, dataset I, and dataset O is within reasonable limits, the
maximum error is above the tolerable range for vehicle maneuvering. As indicated
by the lateral error violin plots of the respective sets in Appx. A.6, the maximum
occurred during a very short time period. If malfunctioning of the map-relative
pose estimator is detected, presented in the following section, the localization mod-
ule may temporarily switch to a lane-relative pose estimation module or any other
localization module that is present.

5.3.2 Covariance Estimation

To evaluate the covariance estimation algorithm in simulation, samples from four
MNDs, depicted in Fig. 5.10 as black ellipses, represent the sensor measurements
and are added upon another MND representing the vehicle movement. By compar-
ing differences of the resulting samples in each step, as presented in Fig. 4.22, the
covariance matrices were estimated using Eq. 4.56. Additionally, another MND
is added upon two sensor MNDs to simulate the correlation between two sensors.
With increasing number of samples, the sensor covariance estimation converges
without knowing the underlying vehicle movement MND. Fig. 4.22 shows the
convergence of the covariance matrix estimates, visualized as gray and blue ellipes,
with increasing number of samples.
The simulation results showed that the presented algorithms are able to robustly
estimate covariance matrices of MNDs. To evaluate the covariance estimation on
real-world data, the algorithm is executed on the pose estimates of the map match-
ing algorithm during a sliding window of 2 s and compared to the pose error pre-
sented in Sec. 5.3.1 for all sets. The results are listed in Tab. 5.1.
It can be seen that the lateral position uncertainty of the map matches are about
twice as high as the filtered result. However, the rotation uncertainty is approx-
imately equal. This inconsistency stems from the fact that map matches on the
wrong lane introduce a significant lateral error while the orientation error is neg-
ligible. The effect can be directly seen in the time-series of the uncertainty esti-
mation in Fig. 5.12 for dataset A. Feeding back the outlier classification of pose
estimates after the optimization process can make the uncertainty estimator more
stable against these ambiguities.

5.3.3 Integrity Monitoring

Once sensor uncertainties are estimated and pose estimates are optimized, it is nec-
essary to assess the solution. Therefore, the Mahalanobis distances of graph edges
are evaluated to compute an estimate of the localization module’s performance.
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(a) 8 samples (b) 16 samples (c) 32 samples (d) 64 samples

(e) 128 samples (f) 256 samples (g) 512 samples (h) 1024 samples

Figure 5.10: Covariance Estimation. The vehicle movement is simulated by drawing sam-
ples from a MND. Sensor estimates are simulated by adding additional noise,
from MND (black) with correlations. The covariance matrices (gray and blue)
are estimated given only the sensor estimates. With increasing samples the co-
variance matrix estimates become more accurate.
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Figure 5.11: Uncertainty Estimation Time-Series for Dataset A. While the yaw angle
uncertainty estimation is robust, the lateral uncertainty estimation of the map
matching algorithm is susceptible to map matches on wrong lanes.

Fig. 5.12 shows the lateral or UTM error and the integrity value for three scenarios
with varying complexity. While the integrity is high for the low-dynamic dataset
A recorded on the OTC test track, the integrity noticeably decreased for dataset
O, which was recorded on a five-lane environment of the A3. For the cloverleaf
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E T E T

Dataset A 22.72 cm 10.04 cm 0.24 deg 0.18 deg

Dataset B 16.19 cm 8.58 cm 0.23 deg 0.23 deg

Dataset C 16.96 cm 7.00 cm 0.23 deg 0.23 deg

Dataset D 16.53 cm 7.71 cm 0.20 deg 0.23 deg

Dataset E 13.16 cm 8.73 cm 0.21 deg 0.40 deg

Dataset F 15.27 cm 12.76 cm 0.34 deg 0.45 deg

Dataset G 24.66 cm 7.10 cm 0.24 deg 0.30 deg

Dataset H 18.02 cm 5.87 cm 0.19 deg 0.33 deg

Dataset I 26.74 cm 12.35 cm 0.34 deg 0.37 deg

Dataset J 11.96 cm 11.65 cm 0.21 deg 0.36 deg

Dataset K 19.64 cm 10.55 cm 0.27 deg 0.29 deg

Dataset L 24.95 cm 8.38 cm 0.20 deg 0.29 deg

Dataset M 44.08 cm 11.18 cm 0.52 deg 0.34 deg

Dataset N 59.71 cm 20.64 cm 0.42 deg 0.35 deg

Dataset O 44.12 cm 12.69 cm 0.24 deg 0.18 deg

Dataset P 69.45 cm 68.85 cm 0.76 deg 0.56 deg

Table 5.1: Covariance Estimation Results. The table depicts the lateral position (left) and
orientation (right) uncertainty estimations (E) of the map matching algorithm
and the computed STD of the optimized pose error towards the ADMA (E). For
dataset P the UTM position error is displayed.

intersection in dataset P the localization module is temporarily disturbed and the
integrity is significantly decreased. The undergrade crossings of the intersections
at approximately 27 s, 83 s, 150 s, and 210 s can be clearly seen in the integrity time
plot. Fig. 5.13 shows the integrity UTM-heatmap for these datasets. While the
integrity value is high for dataset A and dataset O, it is significantly decreased
for the undergrade crossings in dataset P. From Fig. 5.7f and 5.7g it can be seen
that lane markers are hard to observe. Additionally, GNSS signals are highly per-
turbed due to multipath scattering on the undergrade’s surface. Ultimately, these
disruptive factors lead to solver divergence at the first undergrade passing. How-
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ever, the integrity monitoring system is able to detect the inconsistency between
map matches and odometry estimates, denoted by blue pose estimates.
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(a) Dataset A on the OTC test track
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(b) Dataset O on a five-lane environment of the A3.
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(c) Dataset P on the cloverleaf highway intersection Aschaffenburger Cross

Figure 5.12: Integrity Monitoring Time-Series. Intensified complexity of the scenario
can be directly seen in the integrity value. For dataset P the total UTM error is
shown instead of the lateral error. Note that the vertical axis of the integrity has
a negative sign to be consistent with the relationship of low residuals and high
integrity.

5.3.4 Runtime Evaluation

Guaranteeing hard real-time capabilities and estimating a maximal upper compu-
tation time for the presented algorithm is out of the scope of this thesis due the
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(a) Dataset A (b) Dataset O (c) Dataset P

Figure 5.13: Integrity Monitoring UTM-Heatmap. The integrity value is encoded in the
pose estimate’s color. Black denotes a high integrity value of 0.00 and blue
denotes a low integrity value of −1.00 and below. It can be seen that the pose
estimation has a low integrity in the cloverleaf intersection during undergrade
crossings.

complexity of the utilized libraries running on Ubuntu17. However, as the approach
was a key module of the automated driving functions, presented publicly during the
two-day Ko-HAF final event, computational time is of utmost importance.
To quantify the computational burden of the algorithms, both the CPU usage of the
respective ROS node and the optimization solver time were constantly monitored.
Fig. 5.14 shows the solver time and CPU usage. The test vehicle was equipped with
a superior computation unit. Details on the computing unit’s hardware are included
in Appx. A.3. The solver is triggered at 30 Hz and solves the optimization problem
whenever new measurements are available. Pose estimates are provided at 50 Hz
using priorly optimized pose estimates and odometry estimates.
The dataset has a negligible influence on the computational burden of the presented
approach. Thus, an extensive evaluation and discussion of the solver time and CPU
usage on all test sets is dispensed. Instead, a sample time-series plot of a reference
set is used to quantify the computational time. Fig. 5.14 shows the initialization
phase of the pose graph optimization. During the first few seconds the solver time
an CPU usage is relatively small. As the amount of available pose estimates from
the camera and GNSS receiver increases, the solver time increases likewise. The

17 The used Ubuntu version cannot guarantee hard real-time performance
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Figure 5.14: Runtime Evaluation. Top: The black line shows the raw solver time in ms and
the blue line the mean solver time [window size = 21] of all three pose graph
optimizations. Bottom: CPU Usage of the whole pose graph optimization ROS-
node at 100 % playback speed is shown. 12.5 % is equal to one of eight logical
CPU cores of an i7-4810MQ.

time plot is shifted, so that t = 0 denotes the time when enough pose estimates are
present so that the solver drops old poses. At this point, solver time and CPU usage
stagnate.
The solver time for all three pose graph optimizations has a mean of 14.48 ms and
STD of 6.68 ms. The maximal computation time is 65.69 ms. The solver is run on
a separate thread. Thus, frequent odometry pose updates can still be provided at
50 Hz, but their accuracy is inferior with increasing time since the last successful
solver iteration. The CPU usage, of the respective ROS-node process, has a mean
of 11.54 % and STD of 3.58 %. The maximal value of the CPU usage is 15.00 %.
This includes the measurement handling, map matching, covariance estimation,
integrity monitoring, and other algorithms that are necessary to solve the pose graph
problem. 100 % represents eight logical or four physical CPU cores of the Dell
M4800.
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5.3 Experimental Results and Evaluation

Figure 5.15: Ko-HAF Final Demonstration. The image shows the test vehicle (gray) and
two additional vehicles (white), to simulate traffic, after picking up participants
at the Ko-HAF final event.
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6 Summary, Conclusion and Outlook

A novel approach for fail-safe vehicle pose estimation in sparse lane-level high-
way maps through pose graph optimization was presented. The proposed set of
algorithms rely on a monochrome front and rear camera, a low-cost GNSS receiver
and in-series vehicle dynamic sensors. A graph with pose estimates as vertices and
odometry estimates as graph edges is used to represent the optimization problem.
To ensure constant computation time only the latest pose and odometry estimates
are included in the graph.
The GNSS residual is calculated using the Mahalanobis distance to SPP pose es-
timates from pseudo- and deltaranges. The map matching residual is computed by
aligning light rays from the lane marker detection module with the digital map and
returning one or several, if the matching is ambiguous, pose estimates. Aligning
light rays with lane-level maps instead of projecting these rays on a static ground
plane and aligning the resulting point clouds, is especially advantageous under
high pitch and roll angles of the vehicle body towards the chassis. Several odom-
etry estimates are checked for consistency and fused in advance to derive a robust
odometry estimate that is used to link pose estimates in the pose graph.
To increase the robustness of the optimization solver towards measurement outliers
and map matching ambiguities, a set of loss functions are applied on the residuals.
Multiple pose graphs, each with a subset of sensors, are solved to provide map
matching initialization as well as map-relative and lane-relative pose estimates.
To weight residuals in the optimization problem, the pose and odometry estima-
tors’ covariance matrices are computed by comparing pose deltas and odometry
estimates, without the necessity of a high-precision reference station or extensive
calibration procedures. The optimization residuals and the estimators covariance
matrices are processed in an integrity module to compute the consistency of the
pose estimation result.

The presented algorithms were investigated on a test vehicle, equipped with an
additional front and rear monochrome camera, a computing unit and a low-cost
GNSS receiver. Furthermore, the vehicle was equipped with a high-precision aided
INS for validation purposes. The algorithms were investigated quantitatively on
the OTC test track, where a DGPS reference system is available, and qualitatively
on public highways around Frankfurt, Germany.
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6 Summary, Conclusion and Outlook

On the test track a lateral accuracy STD of below 13 cm was achieved, even for
highly dynamic scenarios, such as full brake application and evasive vehicle ma-
neuvering at velocities up to 140 km/h. Although the pose estimation algorithms
provide accurate estimates in real-world scenarios with multiple lanes, it was found
that the estimators accuracy is highly degraded in demanding scenarios, such as
undergrade crossings of cloverleaf intersections, were both lane marker detections
and GNSS pose estimates are highly corrupted. However, the integrity monitoring
system is able to robustly detect the inconsistency in perturbed situations and thus
a fail-safe pose estimation can be guaranteed.
The optimization problem can be solved with a mean computation time of 6.68 ms
on a Dell M4800, beside other tasks such as image processing. The presented ap-
proach was demonstrated during the public Ko-HAF final event.

cam,fcam,r

Figure 6.1: Extending the Approach to 3D Structures. Edges and corners of 3D infras-
tructure, such as tunnels, buildings and guardrails, can be efficiently represented
in digital maps by parametric curves. Using these features, the presented ap-
proach can be further robustified and improved.

The presented pose graph optimization technique was found superior compared to
an EKF and PF implementation [Int3], as parameter constraints, outlier rejections
through loss functions and ambiguities selection can be embedded in the optimiza-
tion problem directly. Although it is possible to intercept outliers in EKFs or PFs
by applying a χ2-Test on the innovation step size and resolve ambiguities through
iteratively solving the EKF or PF equations throughout a specified time interval,
while gating various ambiguous solutions, the optimization approach is much more
intuitive and less error-prone.
It is advised to extend the sensor setup as long tunnels and undergrade crossings
in cloverleaf intersections can temporarily disturb both camera and GNSS pose
estimates which can lead to solver divergence. Pose estimates based on Lidar, ul-
trasound or radar sensors are suggested, as these sensors are readily available in
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6 Summary, Conclusion and Outlook

in-series vehicles. The presented approach can be flexibly extended to additional
pose and odometry estimators. The integrity monitoring system can be used to
weight the pose estimates from different sensors to guarantee robust and fail-safe
pose estimates. Furthermore, the utilized dense HD maps with lane markers can
be enhanced to infrastructure edges, represented by splines that aid both the visual
and lidar localization techniques as depicted in Fig. 6.1.
To delimit the computational complexity of the optimization problem, the odom-
etry estimates were priorly fused. If computational time is negligible or if few
odometry estimates are available and their integrity cannot be assured, raw odome-
try estimates can be incorporated in the pose graph optimization directly to monitor
their integrity as well.
Multipath scattering was rejected using an RAIM algorithm. However, it is ben-
eficial to directly include pseudo- and deltarange measurements in the pose graph
optimization directly to dissolve ambiguities, or to support the pose estimation in
concealed areas with less than four satellites as tightly-coupled aided INSs do.
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A.1 Sensor Positions
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Figure A.1: Schematic Overview of Sensor Positions. Front camera (A), rear camera (B),
ADMA (C), IMU (D), SAS (E), and WSS (F). The absolute position values are
listed in Tab.A.1

A B C D

x 2492 mm −637 mm 110 mm 2384 mm

y −266 mm −35 mm −40 mm −11 mm

Table A.1: Sensor Positions. Front camera (A), rear camera (B), ADMA (C), and IMU (D)
in vehicle coordinates (DIN ISO 8855)
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A.2 In-Series Sensors
Steering Angle Sensor

• Data: Angle and angle velocity of the steering column

• Rate: 100 Hz

• Range: ± 740 deg

• Resolution: 0.10 deg

• Error (maximum): ± 2.00 deg offset, ± 4.00 deg scale

Wheel Speed Sensor

• Data: Cyclic pulse counter

• Rate: 100 Hz

• Range: −512 to 511 ticks

• Resolution: 48 ticks per wheel rotation

2D Accelerometer

• Data: Lateral and longitudinal acceleration

• Rate: 100 Hz

• Range: ± 14.28 m/s

• Resolution: 0.05 m/s

• Error (maximum): ± 1 m/s offset, ± 5.50 % scale

1D Gyroscope

• Data: Yaw rate

• Rate: 100 Hz

• Range: ± 100 deg/s

• Resolution: 0.10 deg/s

• Error (maximum): ± 2.50 deg offset, ± 4 % scale
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A.3 Computation Units

Self-configured vehicle computer

• CPU: 2 x Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60 GHz

Physical cores: 8 (2 logical cores per physical)

Clock: 1199.96 MHz

Cache size : 20480 kB

• GPU: GeForce GTX 980

Core clock: 1126 MHz

Memory: 4096 MB

Memory clock: 1752.50 MHz

• RAM: 8 x Samsung M393A1G40DB0-CPB 8GB

Size: 8192 MB

Speed: 2133 MHz

Type: DDR4

Dell M4800 workstation, Dell Technologies Inc.

• CPU: Intel(R) Core(TM) i7-4810MQ CPU @ 2.80 GHz

Physical cores: 4 (2 logical cores per physical)

Clock: 1223.12 MHz

Cache size : 6144 kB

• GPU: Nvidia Quadro K2100M

Core clock: 654 MHz

Memory: 2048 MB

Memory clock: 1500 MHz

• RAM: 4 x Samsung M471B1G73QH0-YK0

Size: 8192 MB

Speed: 1600 MHz

Type: DDR3

114



A.4 Highway Test Track

A.4 Highway Test Track

Figure A.2: Opel Testcenter - Highway Test Track. Displayed in Rviz.

(a) Access

(b) Part of the middle section

(c) Exit

Figure A.3: Opel Testcenter - Highway Test Track (Detailed). Displayed are three parts of
the OTC test track on the Opel Test Center in Rviz.
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A.5 Datasets
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Figure A.4: Dataset Group AViolin Plots.
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Dataset Group B
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Figure A.5: Dataset Group BViolin Plots.
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Dataset Group C
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Figure A.6: Dataset Group CViolin Plots.
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Figure A.7: Dataset Group DViolin Plots.
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A.6 Pose Estimation Results

Dataset Group A Results
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Figure A.8: Dataset Group A Violin Plots - Filter Results. .

120



A.6 Pose Estimation Results

Dataset Group B Results
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Figure A.9: Dataset Group B Violin Plots - Filter Results. .
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Dataset Group C Results
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Figure A.10: Dataset Group C Violin Plots - Filter Results. .
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Dataset Group D Results
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Figure A.11: Dataset Group D Violin Plots - Filter Results. The errors in Dataset O and
Dataset P are computed in absence of DGPS correction data since the sets were
recorded on the public highway track. To compensate map or GNSS offset er-
rors, the ADMA pose estimates were priorly aligned with the optimized poses.
These error plots are colored gray. For Dataset P the lateral error cannot be
computed precisely as the cloverleaf intersection is represented by a multitude
of reference lines..
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A Appendix

A.7 Pose Estimation Results (Tables)

Dataset A Dataset B Dataset C Dataset D

Lateral Position STD 10.04 cm 8.58 cm 7.00 cm 7.71 cm

Lateral Position Max. 58.37 cm 34.09 cm 21.91 cm 34.95 cm

Orientation STD 0.18 deg 0.23 deg 0.23 deg 0.23 deg

Orientation Max. 0.53 deg 0.79 deg 0.94 deg 0.59 deg

Table A.2: Dataset Group A Results.

Dataset E Dataset F Dataset G Dataset H

Lateral Position STD 8.73 cm 12.76 cm 7.10 cm 5.87 cm

Lateral Position Max. 29.74 cm 33.30 cm 38.49 cm 24.47 cm

Orientation STD 0.40 deg 0.45 deg 0.30 deg 0.33 deg

Orientation Max. 1.25 deg 1.16 deg 0.81 deg 1.08 deg

Table A.3: Dataset Group B Results.

Dataset I Dataset J Dataset K Dataset L

Lateral Position STD 12.35 cm 11.65 cm 10.55 cm 8.38 cm

Lateral Position Max. 60.23 cm 35.15 cm 46.40 cm 48.71 cm

Orientation STD 0.37 deg 0.36 deg 0.29 deg 0.29 deg

Orientation Max. 1.58 deg 1.15 deg 0.87 deg 2.15 deg

Table A.4: Dataset Group C Results.
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A.7 Pose Estimation Results (Tables)

Dataset M Dataset N Dataset O Dataset P

Lateral Position STD 11.18 cm 20.64 cm 12.69 cm -

Lateral Position Max. 31.59 cm 50.75 cm 45.64 cm -

Orientation STD 0.34 deg 0.35 deg 0.18 deg 0.56 deg

Orientation Max. 0.87 deg 1.23 deg 0.65 deg 2.88 deg

Table A.5: Dataset Group D Results.
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