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A B S T R A C T

At vertebrate motor endplates, the conversion of nerve impulses into muscle contraction is initiated by binding
of acetylcholine to its nicotinic receptor (nAChR) at the postsynapse. Efficiency and safety of this process are
dependent on proper localization, density, and molecular composition of the receptors. To warrant this, intricate
machineries regulating the turnover of nAChR are in place. They control and execute the processes of i) ex-
pression, ii) delivery to the postsynaptic membrane, iii) clustering at the plasma membrane, iv) endocytic re-
trieval, v) activity-dependent recycling, and vi) degradation of nAChR. Concentrating on aspects iv-vi, this re-
view addresses the current status of techniques, concepts, and open questions on endocytosis, recycling, and
degradation of nAChR. A picture is emerging, that shows connections between executing machineries and their
regulators. The first group includes the actin cytoskeleton, myosin motor proteins, Rab G-proteins, and the
autophagic cascade. The second group features protein kinases A and C, Cdk5, and CaMKII as well as other
components like the E3-ligase MuRF1 and the membrane shaping regulator, SH3GLB1. Recent studies have
started to shed light onto nerve inputs that appear to master the tuning of the postsynaptic protein trafficking
apparatus and the expression of critical components for nAChR turnover.

1. Introduction

The nAChR is the major ligand-gated ion channel at vertebrate
neuromuscular junctions (NMJ). It mediates muscle contraction via
Na+ influx upon binding of acetylcholine, released from α-moto-
neurons [1]. nAChR accumulate at specific sites of the postsynaptic
membrane and normally, nAChR clusters are organized in characteristic
patterns, that have been defined as plaque-, pretzel-, or grape-like. In
neuromuscular disorders or upon aging, nAChR levels or distribution at
the NMJ are often altered [2–4]. NMJs are formed in the unborn with a
nAChR subunit composition α2βγδ. During a perinatal period, γ-sub-
units are replaced by ε-subunits with different electrophysiological
properties. This replacement is well studied in mouse where it occurs
during the early postnatal phase [5]. A transcriptional switch from ε to
γ and vice versa is observed upon denervation and re-innervation of
NMJs, respectively [6–8]. In all these occasions, i.e. during develop-
ment and de/reinnervation cycles, also changes in nAChR lifetime
occur. While in normal adult NMJs, nAChR shows a half-life of several
days, denervation dramatically shortens this to only 1–2 days [9–14].
Such fast turnover is also typical for the early postnatal phase [15,16].

Thus, regulation of nAChR turnover appears to be of principal im-
portance in physiological and pathological processes, justifying a closer
look onto it. Over the past decades, components, machineries, and
signaling pathways involved in nAChR endocytosis, recycling, and de-
gradation have been unraveled, for which the major available literature
was summarized in this review. Agrin-induced clustering of nAChR and
factors enhancing or reducing it, were topics of recent excellent reviews
[17,18] and are not covered here. We apologize for studies that could
not be mentioned due to space restrictions.

2. Framework for nAChR turnover studies

nAChR turnover has been extensively studied in the last decades.
However, this would have been impossible without knowledge from
neighboring fields, particularly, on cell biology and technological ad-
vancements. Indeed, the work of Claude, de Duve, and Palade massively
contributed to both. Their studies laid the foundations of the secretory
pathway, which is used by nAChR, and led to several principal
methods, including electron microscopy, radioautography, pulse/chase
labeling, and cell fractionation (reviewed in [19–21]). Together with
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the introduction of α-bungarotoxin [22,23] and its derivatives (re-
viewed in [24,25]), which have served as efficient tools to identify or
isolate nAChR, the scene was set in the mid-1970s to address nAChR
trafficking. Live animal imaging [26,27] combined with radioactive or
fluorescence pulse/chase analysis and genetic or pharmacological in-
terventions were instrumental for the understanding of kinetic and
molecular aspects of nAChR turnover [10,11,28–34]. Finally, geneti-
cally encoded molecular biosensors further refined the insights into the
molecular machineries for nAChR trafficking [35–42].

3. Endocytosis

Reduced nAChR lifetime and binding of 125I-bungarotoxin at NMJs
from myasthenic patients delivered first hints on the regulation of
nAChR density at NMJs [43,44]. Ultrastructural analysis of muscles
labeled with 125I-bungarotoxin [45] or peroxidase-conjugated α-bun-
garotoxin [46–48] confirmed the localization of nAChR in endo/lyso-
somal vesicles. It has remained unclear, which type of endocytosis is
used by nAChR. Work from C2C12 cells suggested that it occurs via
lipid raft-mediated processes [49,50]. Conversely, crosslinking experi-
ments in frog muscle cell cultures pointed to clathrin- and caveolin-
dependent pathways [51]. Anyhow, live-imaging of mouse muscles
upon injection with fluorescent α-bungarotoxin yielded small steady-
state numbers of nAChR-positive endocytic vesicles, typically below 10
per NMJ [41,42]. Overexpression of Rab5 or its hyperactive mutants
increased this number, suggesting that Rab5 is involved in nAChR en-
docytosis. This assumption was corroborated by the finding of puncta
double-positive for Rab5-GFP and α-bungarotoxin as well as co-pre-
cipitation of Rab5 with α-bungarotoxin-biotin labeled preparations
[41].

4. Recycling

Starting in 2005, a series of reports on nAChR trafficking used an
elegant fluorescence-based pulse/chase-like labeling assay
[28,29,31–33,52]. These combined injection of α-bungarotoxin-biotin
at one time point (here referred to as “pulse”) with a sequence of im-
mediate and later injections (“chase”) of streptavidin-species marked
with different fluorophores. Subsequent microscopy revealed that sur-
face-exposed nAChR labeled by injection of α-bungarotoxin-biotin plus
streptavidin-dye would (i) remain α-bungarotoxin-biotin positive un-
less degraded, (ii) lose their fluorescence tag upon endocytosis, and (iii)
expose a free streptavidin-binding site upon recycling. One insight from
these studies was that ˜25% of nAChR undergo recycling within four
days [28]. Notably, this was subject to extensive regulation. In parti-
cular, antagonistic functions of PKC on the one hand and PKA and
CaMKII on the other hand were described [29,33,53]. While activation
of PKC or inhibition of PKA or CaMKII led to enhanced removal of re-
cycled nAChR [29,33], the opposite was true upon inhibition of PKC
and activation of PKA [33] (Fig. 1). A modified pulse/chase-like pro-
tocol with two different fluorescent α-bungarotoxin species injected at
ten days interval combined with imaging of genetically encoded bio-
sensors and pharmacological modulation revealed further details on the
underlying recycling machinery and the regulatory mechanisms of PKA
[35,36,54]. These reports suggested that nAChR-containing recycling
vesicles profit from PKA activation only in close vicinity to the post-
synapse, likely, because exclusively there the necessary cAMP micro-
domain for activating PKA was present [35]. Rapsyn was described as
an anchoring protein (AKAP) linking PKA to nAChR-recycling vesicles
[36]. Capturing of recycling vesicles in the postsynaptic cAMP micro-
domain needed a dense subsynaptic actin meshwork and the motor
protein, myosin Va [35,54] (Fig. 1). In mouse, subsynaptic enrichment
of myosin Va and PKA-dependent nAChR recycling were found to de-
velop during the early postnatal phase [16], which is characterized by
synaptic pruning [55] and maturation [56,57], and the γ-to-ε switch
[5]. A sequential recruitment of main recycling apparatus components

was found during recovery from Notexin treatment and their enrich-
ment was reduced in dystrophic mdx mice [37], which are known to
exhibit increased nAChR turnover and reduced receptor lifetime
[37,58]. Imaging of muscles injected with fluorescent α-bungarotoxin
and transfected with GFP-fusion proteins showed extensive colocaliza-
tion of nAChR-positive vesicles with Rab5-GFP, Rab4-GFP, and Rab11-
GFP [42]. Notably, the distribution of these components was not uni-
form. While colocalization of α-bungarotoxin puncta with the recycling
markers Rab4-GFP and Rab11-GFP occurred mostly in close vicinity to
the NMJ, Rab5-GFP and α-bungarotoxin double-positive puncta were
also found at larger distance from the NMJ [42]. This suggests that
nAChR endocytosis and recycling might occur at different sites. Pre-
ferential insertion of novel nAChR at rims of synaptic gutters was de-
monstrated by sequential labeling with differently colored α-bungar-
otoxin species [13,54] and with knock-in mice expressing nAChRγ-GFP
[15,59]. Of note, nAChR recycling could not be observed in cultured
myotubes made of C2C12 cells or primary myoblasts [60].

5. Degradation

As aforementioned, nAChR lifetime is affected by different patho/
physiological conditions and muscle activity. Upon denervation, mus-
cular dystrophy, myasthenia, or other atrophic situations, nAChR half-
life can decrease from several days to one day or less [10,14,44,58]. At
these occasions, nAChR subunit composition often switches from ε to γ,
and nAChR gene expression is upregulated and less restricted to NMJ
[6–8,43,61–63]. Thus, upon atrophy, comparably large amounts of
nAChR are turned over. Likely, under such circumstances, recycling is
being suppressed while receptor degradation is enhanced. A fasting-
atrophy model in combination with live-imaging of muscles injected
with fluorescent α-bungarotoxin and GFP-fusion proteins showed ex-
tensive colocalization of endocytosed nAChR with the autophagosomal
components, LC3 and p62/SQSTM1, as well as with the E3-ligase,
MuRF1 [39]. This suggested an involvement of ubiquitylation and se-
lective autophagy in nAChR degradation (Fig. 1). Aberrant NMJ mor-
phology, nAChR turnover, and increased nAChR vesicle numbers in
autophagy-defective ATG7-knock out mice [64] and another study that
used a mouse model of myasthenia gravis [50] corroborated the hy-
pothesis of the crucial role of autophagy in nAChR turnover. In muscles
from wildtype mice injected with fluorescent α-bungarotoxin and
transfected with GFP-LC3 and RFP-labeled proteins, the autophago-
somal and membrane shaping regulator, SH3GLB1 (aka Bif-1 or en-
dophilin B1), colocalized with endocytosed nAChR and LC3, suggesting
its role in nAChR degradation [38,39]. Upon denervation, the ratio of
non-phosphorylated to phosphorylated SH3GLB1 increased together
with the amounts of Rab5 and LC3 [41]. Furthermore, the number of
endocytic nAChR was modulated by overexpression of phosphomutants
of SH3GLB1. Since these also altered the expression of RN-tre and
Rabex-1, inhibitors and activators, respectively, of Rab5, SH3GLB1 was
proposed to control progression of nAChR-containing endosomes to
autophagic degradation [41]. A dominant-negative mutant of Cdk5
abutted denervation-induced increase in nAChR vesicles and phos-
phorylation of SH3GLB1 [41]. Since Cdk5 is upregulated upon de-
nervation [65] and generally affects nAChR stability [66–68], this could
link NMJ activity status to a recycling / degradation switch for in-
coming nAChR vesicles (Fig. 1).

6. Regulatory signaling pathways

Muscle denervation by severing peripheral nerves, saturating doses
of α-bungarotoxin, or botulinus toxins, increases nAChR turnover and
reduces receptor lifetime [11,13,14,58,69–72]. Since electrical muscle
stimulation could largely rescue the kinetic rundown of nAChR stability
[72], motor innervation appears to be crucial for receptor stabilization.
Which neuronal molecules mediate modulation of nAChR turnover is
still elusive, but they might act by metabotropic activity at the
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postsynapse, involving the formation of cAMP [58,73]. By activating
PKA, cAMP might stimulate nAChR recycling [33,35]. A candidate
metabotropic neuropeptide, that could be released from motoneurons is
α-calcitonin gene related peptide (CGRP) [74,75]. This was found to
stimulate cAMP production [76] in a postsynaptic PKA type-I specific
microdomain [35], nAChR expression [77], nAChR phosphorylation
[78], and NMJ strength [79]. A single injection of CGRP in mouse
muscle corrected denervation-induced NMJ fragmentation [35]. An-
other potential activator of the postsynaptic cAMP-PKA axis might be
sympathetic co-innervation of NMJs [40]. In contrast to motor term-
inals, which at the light microscopic level are matching the distribution
of postsynaptic nAChR, sympathetic endings were mostly found at the
rims of nAChR cluster bands, at least in mouse hindlimb muscles
[40,80]. These would be close to the zone of preferential integration of
new nAChR (Fig. 1). As demonstrated by live-imaging of hindleg
muscles injected with fluorescent α-bungarotoxin and transfected with
fluorescent biosensors, stimulation of sympathetic ganglia led to im-
mediate rise of postsynaptic cAMP levels, activation of β2-adrenergic
receptors (ADRB2), and nuclear import of the transcriptional coacti-
vator, PGC1α [40]. Local chemical sympathectomy led to massive
muscle atrophy as well as functional rundown, simplification, and
shrinkage of NMJ [40]. Simultaneous systemic treatment of mice with

the sympathicomimetic, clenbuterol, reversed most of these effects
[40]. Recently, the findings of a functional sympathetic innervation of
NMJ were further supported by other studies [81–84]. In particular,
Rodrigues and colleagues addressed effects of surgical sympathectomy
on nAChR turnover [83]. There, membrane-bound nAChR was reduced
while MuRF1 levels were increased. Furthermore, sympathectomy ac-
tivated a Hdac4 – myogenin – MuRF1 regulation axis, likely mediated
by reduced ADRB2 and Gαi2 activity [83] (Fig. 1).

7. Conclusions

A picture emerges that can integrate most findings into a common
regulatory scheme (Fig. 1). In some aspects, our understanding of the
processes underlying nAChR turnover appears to be rather complete
and interactions between the different executing and regulatory mole-
cules are worked out in some detail. But still, large gaps of knowledge
can be noted. For example, it has remained elusive, which are the
targets of PKA for nAChR recycling and of the ubiquitination machinery
for nAChR degradation. Although it is likely, that this is one or more of
the nAChR subunits, formal proof is missing. With respect to the pri-
mary signals modulating the decision between endocytosis, recycling,
and degradation, it is uncertain, if different triggers mediate a

Fig. 1. Hypothetical schematic life cycle of nAChR at the vertebrate motor endplate.
Upon biosynthesis and glycosylation in ER and Golgi apparatus, nAChR gets escorted by rapsyn to the sarcolemma. Juxtaposed to the motoneuron terminal, nAChR
clustering uses the agrin/MuSK/Lrp4 complex. Eventually, nAChR is endocytosed and recycled using cooperative function of myosin Va, PKA type I, and rapsyn, or
degraded via MuRF1-dependent selective autophagy. Selection between these options involves CaMKII and PKC. SH3GLB1 might control progression of nAChR-
containing vesicles towards autophagic degradation via Rab5 activation. Functional interaction between sympathetic neurons and the NMJ link between sympathetic
signaling and nAChR turnover regulation via a Gαi2-Hdac4-myogenin-MuRF1 axis. Whether other components of the NMJ like terminal Schwann cells (tSC) play a
role in nAChR turnover, is still unclear.
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simultaneous regulation, if they are all used throughout the lifespan or
just under certain circumstances, and how much also other cell types
than motoneuron, sympathetic neuron, and muscle cell are part of the
regulatory scheme.
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