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Abstract

A key goal of digital quantum computing is the simulation of fermionic systems such as molecules or
the Hubbard model. Unfortunately, for present and near-future quantum computers the use of
quantum error correction schemes is still out of reach. Hence, the finite error rate limits the use of
quantum computers to algorithms with alow number of gates. The variational Hamiltonian ansatz
(VHA) has been shown to produce the ground state in good approximation in a manageable number
of steps. Here we study explicitly the effect of gate errors on its performance. The VHA is inspired by
the adiabatic quantum evolution under the influence of a time-dependent Hamiltonian, where the—
ideally short—fixed Trotter time steps are replaced by variational parameters. The method profits
substantially from quantum variational error suppression, e.g. unitary quasi-static errors are mitigated
within the algorithm. We test the performance of the VHA when applied to the Hubbard model in the
presence of unitary control errors on quantum computers with realistic gate fidelities.

Introduction

Simulating systems of strongly correlated electrons, such as the iconic Hubbard model, is a key goal of
condensed matter physics. But important effects, such as as high- Tc superconductivity or detailed magnetic
properties still pose serious computational challenges. The hope is that digital quantum computers or quantum
simulators would bring the needed progress. The Hubbard model and spin models have been studied in several
proposals and experiments, e.g. with ultra-cold gases [1-3] and trapped ions [4—7]. These experiments can be
considered analog simulations, where the system to be studied is recreated by a well controllable artificial one.
The goal is to simulate systems which are beyond the reach of classical computations. But so far classical
simulations can match all existing fermionic analog simulators, and the experiments on the fermionic Hubbard
model—while representing impressive technological advances—are still at the proof-of-principle state. One of
the problems is that analog simulators based on fermions are limited to high temperatures as compared to the
intrinsic coupling strengths [8].

In recent years, systems with increasing numbers of high-fidelity and fully controllable Josephson qubits
have become available, and they were integrated in a single processor. This opens the perspective of simulating
the Hubbard model, e.g. its time evolution or correlation functions, using a gate-based approach [9-11]. Qubits
with fidelities at the threshold for the implementation of quantum error correction have been demonstrated
[12, 13]. However, for the near-term prospects the number of qubits required for full quantum error correction
is prohibitively large [ 14—16]. Hence, for meaningful near-term applications it is crucial to estimate the effects of
errors [17]. For certain situations, methods to verify the performance of quantum simulators with errors have
been suggested [18, 19], and some proposals for error reduction exist [20, 21].

© 2019 IOP Publishing Ltd
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For one of the important goals, the simulation of the ground state of a quantum system, it has been suggested
and demonstrated in few-qubit experiments that variational algorithms require only a relatively low number of
gates and, in addition, variational methods intrinsically suppress the impact of errors [22—24]. In general,
variational approaches apply a unitary operator to an initial state |1),) that is easy to prepare. The unitary
operator U () depends on a set of parameters 6 that is varied to minimize the energy

E(0) = (¢lUT(0)HU (0)[¢0), ()

where H is the Hamiltonian of the system of interest.

In this paper we study explicitly the effect of gate errors on a variational algorithm for finding the ground
state of the Hubbard model. We will use a specific variational ansatz, namely the variational Hamiltonian ansatz
(VHA) [25]. Itis inspired by the adiabatic ground state evolution as explained in more detail below. Specifically
we address the following questions: how close can E(8) get to the ground state energy E, of the Hamiltonian H,
and how close can U (8) |¢)g) approximate the true ground state of H, if gate errors occur during the
implementation of the unitary operator U (0).

Generally the specific nature of gate errors is not known, therefore we work with a simple but representative
model. Every gate can be interpreted as a rotation of the qubit register. In our model gate errors are modeled as
over-rotations (or under-rotations). As discussed in earlier work [17] the over-rotation angle ¢ can be related
to the minimal gate fidelity Fip, of the gate via i, = cos(8¢).” Because of the vanishing slope of the cosine at
the maximum (i.e. || = arccos(Fmin) & /2(1 — Fnin) for Fin & 1) gate fidelities need to get very close to
100% to significantly limit the magnitude of the over-rotations.

Below we also compare the VHA to the adiabatic state preparation based on the Trotter expansion. We find
that the VHA produces a better approximation to the ground state with far fewer steps, and therefore gates, than
adiabatic state preparation. For adiabatic state preparation, even for weak gate errors, upon increasing the
number of steps, the states created have decreasing overlap with the actual target ground state. In contrast, the
VHA achieves high overlap with the exact ground state; even with gate errors. This is due to the error mitigation
capabilities of variational approaches. For the (still small-size) Hubbard model considered as an example in the
following we find that a gate fidelity of F,;;, = 99.9% is sufficient for a meaningful simulation.

From adiabatic evolution to the VHA

The unitary operator U () of the VHA is based on the Hamiltonian itself: The different terms of H are separated
and grouped into N sub-operators Hy, ..., Hysuch that H = >N_ H,,. The unitary operator for the VHA with
nstepsis

z:

N
U@ =T I[ e+, @
a=1

k=1

where 0 collects all the variational parameters 6, . The optimization criterion is the minimization of the energy
expectation value (1) of the final state [¢f) = U (0) 1)) with respect to the n - N variation parameters 6 (the
ground state is, per definition, the state with minimal energy).

The ansatz (2) is inspired by the adiabatic time evolution under the influence of the Hamiltonian
H = H, + Vcomposed of, e.g. anon-interacting part Hy and the interaction V. If the interaction is turned on
slowly on the time scales given by the inverse energy scales of the Hamiltonian, the initial ground state |¢)) of Hy
develops adiabatically into the ground state |1),) of H. To simulate this evolution in a Trotter expansion the time
7 of the evolution is divided into a large number 7 of Trotter time steps 7/n, each shorter than the inherent time
scales, leading to

n
o rk
U = [] e e iin?, (3)
k=1

During each of the short time steps one further decomposes the Hamiltonian into sub-operators. In a simulation
using an available quantum computer the sub-operators are chosen such that the short time evolution can be
realized by the available gate operations.

The similarity between the operators (2) and (3) justifies the expectation that the VHA can produce the
evolution from a ground state [1) of the non-interacting system to the ground state |1}, of the full Hamiltonian.
In addition, by introducing variational parameters the VHA can deviate from the adiabatic path and follow,
through optimization, a more efficient one. Having a more efficient evolution via VHA allows for greatly
reducing the necessary number of steps #, as compared to the number of Trotter steps in an adiabatic evolution,

6 Note that often the square of Fy;, is called (minimal) gate fidelity. Our definition, relating Fy;, to the magnitude of 6, relates it equally to
what is known as the Bures angle, associated with the Bures metric (i.e. the over-rotation angle magnitude and the Bures angle coincide).

2



10P Publishing

Quantum Sci. Technol. 4(2019) 035005 J-M Reiner et al

Q0000

\ i \
H
\

LR

H H H H
[y [ [ [

666666
000000

N N N N N N
i i R i i i

H H H H H H

' ' ' ' ' '

0_0_0_0_-0_0

Figure 1. Sketch of the 2D Hubbard model on a square lattice. The arrows indicate the hopping terms between neighboring sites. For
the simulation we divide them into four sets: first in horizontal (solid lines) and vertical (dashed lines) directions. Then we subdivide
for each direction into even (green) and odd (orange) terms. Summing up all hopping terms for each of the four sets yields the sub-
Hamiltonians Hj, ..., Hy. Note that the hopping terms within a set commute among each other.

while still achieving high accuracy.” Moreover, by optimizing the variational parameters one also mitigates the
error introduced by faulty gates, an effect which had been termed variational error suppression.

Model Hamiltonian, its decomposition, and mapping to qubits

The model system we investigate in this paper is the Hubbard Hamiltonian of spin- L fermions

H-—tZ}(cjscj,5+cj,sc]5)+UZ T]T]“l, 4
2
with hopping amplitude t between nearest neighbors ( j, /), on-site energy U, and c](P being the annihilation
(creation) operator of a fermion on site j with spin s. In the following we consider two-dimensional square
lattices and focus on the parameter values U = 2t with repulsive on-site interaction, U > 0.

For the implementation of the variational unitary operation of equation (2) we separate the Hamiltonian
into N = 5 parts: the non-interacting part is split into four terms, Hj, ..., Hy, asillustrated by figure 1. We
distinguish between hopping terms in horizontal and vertical direction and for each direction we group even and
odd terms, i.e. every other term in each direction of the 2D system. The on-site interaction terms are collected in
Hs. Note that all terms collected within one H,, commute among each other. Hence, the execution of an
exponential e in equation (2) can be performed exactly by sequentially applying the gates that account for
the individual terms, without introducing an error associated with the Trotter expansion.

As written explicitly above we introduce a manageable number of five variational parameters per step and—
as the example below shows—we reach high-quality results already for 10 steps or less.

The mapping onto a qubit system is performed via the Jordan—Wigner transformation. Gates performing
on-site interaction terms are realized by ZZ-type interactions between qubits, hopping terms require XX + YY
interactions. In addition the transformation introduces Jordan—Wigner strings which are implemented by
additional chains of controlled Z gates. A precise description of the mapping and gate sequence of the algorithm
is presented in the appendix.

Error model and procedure

The goal is to prepare the ground state |¢/y) of the Hubbard model (4) on a quantum computer. We start from
the ground state |1),) of the non-interacting model (U = 0),° which—in principle—can be prepared efficiently
on a quantum computer [26], and we apply the VHA in order to evolve this state towards |¢/¢), which should be
close to the ground state |¢);5). We modeled the algorithm and the quantum gates including the gate errorsona
classical computer. For the system sizes considered, |1/) and |1)) (without errors) can also be found exactly
through classical numerical diagonalization. This allows us to test the quality of the results.

The unitary evolution is implemented by a gate-based algorithm described in more detail in the appendix.
Each gate can be written in the form e'¥4 with a real angle ¢ and an operator A composed of Pauli operators.

7 . . Ca. . .
Note that to a certain degree the ansatz also helps us to cope with the so called Trotter error, which is the error introduced by decomposing
the time evolution operator using a finite number of Trotter steps and grows as the number of steps is reduced.

8 . . .
Note that the non-interacting system has a degenerate ground state. We hand-picked the correct ground state |1)) that evolves towards
[bg) when performing the VHA or the adiabatic evolution.
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Table 1. The final state fidelity | (¢)g|1)x) | for a given initial state [1)y) in percent for different numbers of
(Trotter) steps n and different values of the average minimal gate fidelity Fonin fora 2 x 2 Hubbard system.
The left side shows the results of the adiabatic evolution, the right side of the VHA. Note the significantly better
performance of the VHA as compared to the adiabatic evolution. For the data of the rightmost column
denoted with 99.90, instead of optimizing the parameters for the faulty gates, we used the parameters as
obtained for optimizing with 100% fidelity. The comparison demonstrates the capabilities of the VHA in

mitigating the errors.
Adiab. evo.,2 x 2 VHA,2 x 2
‘Tmin [%] -Tmin [%]
100.0 99.99 99.90 100.0 99.99 99.90 99.90"
n 2 98.87 98.73 97.43 n 2 99.68 99.63 99.24 94.44
3 99.15 98.85 96.28 3 100.0 99.95 99.56 93.54
4 99.23 98.95 96.51 4 100.0 99.96 99.68 88.77
5 99.55 99.14 95.62 5 100.0 99.98 99.82 83.69

Hence, it can be interpreted as a rotation of the quantum state. We model unitary gate errors by over-rotations
8¢ (which may be positive of negative), such that the faulty gate reads e'(¥* )4, The magnitude of the random
d¢pis given by the minimal gate fidelity Fi,, where Frin = cos(6¢) [17]. Performing a sequence of gates with
random normally distributed over-rotations with zero mean and variance Var(d¢) one finds—for weak over-
rotations, i.e. fidelities close to one—an averaged minimal gate fidelity i, = 1 — Var(6p)?/2. When we
introduce gate errors in the following, we assume a certain gate fidelity Fpi, and add random over-rotations to
each gate according to the above relation. However, once the over-rotation for a specific gate is chosen, this value
is kept constant during the consecutive stages of the optimization process. This accounts for quasi-static errors,
which are considered an appropriate noise model for superconducting qubits, where the noise spectrum is
dominated by low frequencies [27].

Finally, for given gate fidelities, we measure the performance of the VHA by evaluating the final state fidelity.
This quantity is defined as the absolute value of the overlap | (1/4|¢k) | between the exactly known ground state
[1) and the final state [{x) = U (8)]1)o) of the VHA according to equation (2), after the optimization of the
parameters 6.’

VHA versus adiabatic evolution

We first study the quality of the VHA, equation (2), in comparison to the adiabatic evolution, equation (3). In
both cases we start from the same initial state |1),). For the comparison, the same number of steps # (steps of the
VHA or Trotter steps) and the same gate sequence is used (with appropriately different parameters).

For low n, the gate sequence introduces an error while implementing the exponential e =17 for the adiabatic
evolution, since the summands of Hy do not commute. But for the comparison with the VHA at equal gate count
we did not introduce finer Trotter time steps. On the other hand, the time 7 in the adiabatic evolution was
optimized for the given number of Trotter steps n.

Table 1 shows the results for a two-dimensional Hubbard lattice with 2 x 2 sites. We present the final state
fidelity | (1/g|¢)) | in percent after performing, on one hand, the adiabatic evolution and, on the other hand, the
VHA for different numbers of (Trotter) steps n and different averaged minimal gate fidelities F,,. The
algorithm we used requires 20 two-qubit gates per (Trotter) step, i.e. in total we perform from 40 to 100 two-
qubit gates.

Even for perfect gate fidelities of 100% the adiabatic evolution does not improve the state fidelity
significantly if we increase n. (Note that the initial state fidelity | (¢/y|t)o) | = 98.87% is already high due to the
small system size; no improvement could be achieved for n = 2.) For alower gate fidelity of 99.99% the adiabatic
evolution barely increases the final state fidelity above 99%. For still lower gate fidelity of 99.9% the adiabatic
evolution fails to improve the final overlap altogether. This was to be expected from the results of our previous
work [17], where we provided estimates for the maximum number of gates that can be handled for a given gate
fidelity in a quantum simulation with fixed parameters. Indeed for a gate fidelity of 99.9% the gate count for the
adiabatic evolution exceeds this limit.

On the other hand, we observe significantly better performance for the VHA. For perfect gates two steps give
already a very high final state fidelity; only three steps are necessary to achieve essentially a perfect result (an error
of about 102 was observed, which is within numerical inaccuracies). Even with gate errors present we achieve

? Note that frequently the square of the overlap is denoted as state fidelity. We chose it such that it is consistent with our definition of the gate
fidelity.
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Table 2. Again the final state fidelity | (1)4|¢)) | in percent for different values
of nand Fryin, this time for the variational Hamiltonian ansatzina3 x 2
anda3 x 3system.

VHA,3 x 2

?min [%]

100.00 99.999 99.990 99.900 99.500

n 4 99.65 99.58 99.34 97.93 94.86
99.81 99.85 99.74 98.24 97.26
8 99.98 99.91 99.61 98.98 96.12
10 100.0 99.95 99.82 98.83 97.78
VHA,3 x 3
?min [%]

100.00 99.999 99.990 99.900 99.500

n 4 99.10 98.97 98.23 95.60 86.24
99.59 99.46 99.27 95.55 90.06

99.93 99.74 99.01 97.35 90.14

10 99.97 99.89 99.77 98.04 90.69

high final state fidelities. The numbers clearly show that introducing more steps helps suppressing the quasi-
static errors considered here.

The rightmost column, labeled by 99.90%, illustrates the error mitigation provided by the VHA. For the data
in this column we took the optimized parameters for perfect gates and used them in the evolution according to
equation (2) with faulty gates with Fpi, = 99.9% without any further optimization. This procedure does not
take advantage of the potential of the VHA for error mitigation. The low performance of this method illustrates
the power of variational error suppression.

The set of gate errors are chosen random but fixed (static) for both methods. However, in different runs they
are chosen independent corresponding to the given gate fidelities. The results of table 1 are averaged over many
runs with different sets of errors. We can add that the error suppression of the VHA also reduces the standard
deviation of the results for different error sets significantly. For the adiabatic evolution and lower gate fidelities
we needed of the order of 10° runs in order to reach the shown accuracy of the average. The VHA, on the other
hand, needs only a low number of runs for larger 1, even for low gate fidelities, to achieve the same accuracy, and
even a single run is already quite reliable.'’

Scaling up

Next we extend the analysis of the VHA to larger systems. Table 2 shows the final state fidelity | (15|1¢) | for
various step numbers 1 and gate fidelities F,i,, now for the VHA appliedtoa3 x 2anda3 x 3 Hubbard
model. Here we show the results obtained for a single realization of the gate errors for each gate fidelity and step
number. Statistical fluctuations are reduced due to the large number of gates per step. Averaging would
introduce only small differences to the data presented. It can be ignored, especially for n > 6 where the
variational error suppression is strong. For the 3 x 2and 3 x 3 systems the algorithm requires 44 and 81 two-
qubit gates per iteration step, respectively, i.e. overall up to 810 two-qubit gates were applied to the initial state.

We find again that the VHA produces very high final state fidelities. However, we also notice how high gate
fidelities are necessary for a good performance of the algorithm. For a gate fidelity of Fpin < 99.9% which
should be accessible in the next few years, we did not reach final state fidelities above 99%.

Further investigations showed that the limited final state fidelities are not necessarily a flaw of the VHA itself
but rather of the required optimization. For increasing system size we found the results to be more and more
sensitive to the choice of start parameters for the optimization problem. This suggests that the optimizer does
not find the global optimum for the parameters but gets trapped in local extrema. The data of table 2 were
obtained with a rather limited set of start parameters (see the appendix for further details).

This also alleviates the optimization overhead of the VHA; the algorithm has to be reinitiated hundreds of times in order to optimize the
variational parameters.
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Table 3. The final state fidelities in percent after rerunning the VHA with
improved sets of start parameters for some of the values for F,;, and n
covered in table 2. One can notice a significant improvement of the final

state fidelity.
Improved start parameters
VHA,3 x 2 VHA,3 x 3
?min [%] ?min [%]
99.90 99.50 99.90 99.50
n 6 98.91 97.26 n 6 96.76 90.81
8 99.31 98.65 8 98.02 94.18
10 99.52 98.91 10 98.91 92.55

To substantiate this conclusion we performed the VHA for some values of Fpin < 99.9% and 1 > 6,
exploring a larger set of start parameters (see the appendix for more information). Table 3 displays the final state
fidelityof the3 x 2and3 X 3 systems for the optimized start parameters, showing a significant improvement
of the final state fidelity over the results of table 2. We emphasize that this was not because of a favorable set of
random gate errors; once better start parameters were found the results are changing little with varying the gate

errors.
Another measure of the performance of VHA is to look at the value of the ground state energy. For the 3 x 3
Hubbard model with U = 2t > 0 the exact valueis E, = — 9.67 t. For the chosen initial state the state fidelity is

already 96.18%, but the expectation value of the Hamiltonian is only (1o|H|1g) = —9.29 ¢. After 10 steps of the
VHA for a gate fidelity of 99.90% the final state fidelity has improved close to 99%, and the expectation value of
the Hamiltonian reaches (¢¢|H|¢r) = —9.60 .

Conclusion

In this paper we studied in detail the quantum simulation of Hubbard models of small size and with a specific
type of gate errors, but our analysis still allows drawing several conclusions:

(i) The VHA produces the ground state wave function of the Hubbard model in good approximation with a
number of steps which is much lower than the number of Trotter steps needed in an adiabatic approach.

(i) The effects of (static) gate errors are strongly mitigated by the variational methods.

(iii) For the considered system size, gate fidelities of the order of 99.9%,which should be within reach for state-
of-the-art digital quantum computers, allow preparation of the ground state with a final state fidelity
above 99%.

(iv) This performance can be reached with alow number of variational parameters per step (5 in our case for the
2D Hubbard model).

Itis clear that introducing more variational parameters, up to one parameter per gate, would enhance the
variational error suppression of quasi-static errors. Eventually it leads to approaches like the variational
quantum eigensolver [24]. However, introducing more parameters poses a challenge to the classical
optimization routines. We found that even for our small set of parameters, the emerging optimization problem
poses a substantial obstacle, since with growing system size the gradients with respect to the variation of the
parameters decrease [28]. The difficulties with the optimization algorithms appear a stronger limitation of the
performance of variational algorithms than a limited set of variational parameters.

Better optimization algorithms could help with further issues. One could consider non-static portions of
gate errors and statistical measurement errors. Such fluctuating errors are difficult to manage for optimizers,
particularly for gradient based optimization protocols. We also noted the need for a good choice of the initial set
of variational parameters, as well as of the initial state. The latter could be obtained, e.g. from mean field theory.
Finally more advanced quantum gate sequences implementing the terms of the Hamiltonian can lower the gate
countand reduce the impact of gate errors. We applied up to 810 two-qubit gates in our examples of rather small
systems. Algorithms with superior scaling behavior for Hubbard models [11, 29] should be considered to
improve the performance of the VHA for larger systems.

6
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k-1 ® PN

Figure Al. A t gate implementingan XX + YYinteraction between qubits jand k is nested between controlled Z gates. The CZ gates
introduce a Jordan—Wigner string such that the gate sequence implements a fermionic hopping term between the orbitals j and k.

Appendix

A.1. Gate sequence
For illustration we show the gate sequence producing the unitary transformation e
different H,,, 1ntr0duced in the main text, contain either hopping terms —t (c o+ c !

i6kHa from equation (2). The

sGj,s) Or on-site
interactions Uc] 1616, l ;.- Weassume that the hardware of the quantum computer allows for ZZ-like and

XX + YYmteractlon and, for simplicity, unrestricted connectivity between the qubits. The terms summarized
in each of the H,, commute among each other making their ordering irrelevant.

For the following discussion it is convenient to absorb the spin index in a consecutive numbering of the
latticesitesvia (j, T ) — jand (j, | ) — j + M where Mis the total number of sites. With this notation the
Jordan—Wigner transformation becomes ¢; = H{;l (—=o7) oy which involves the Jordan—Wigner
string [1]_ 1 (—o7).

The on-site terms now read Ua o a] + MOj + m-Inthevariational approach the gate el0U% 070 1+ u0j + m
needs to be implemented with some parameter 6, which embodies a ZZ interaction (up to some single-qubit
phases). To account for the gate errors we add an over-rotation 66 to the parameter, the size of which depends on
the assumed gate fidelity.

The hopping terms (where, say, j < j') transform to —t(ch-*o]? H _ +1 (—07) + h.c.). Wedo not assume the
hardware to allow for more than two-qubit interactions. A hopping term, can be modeled by the XX + YY
interaction, i.e. e 1% (7} jtoio; ), which we denote as t gate. Again, gate errors lead to an over-rotation 86 to be
added to the parameter . Residual Jordan—Wigner strings can then be implemented by sandwiching the t gate
with controlled Z gates (C Z) as displayed to figure A1. The CZ gate has again ZZ-like interaction, and we
implement it as €™ 7779 for the control qubit j and the target qubit j'. Over-rotations are introduced as an
addition ¢ to the angle .

A.2. Choice of start parameters

When using the VHA, in order to minimize the energy according to equation (1), one has to start with an initial
guess for the parameters 6. In tables 1 and 2 for each value of n and Fy;,, we tried three different sets of start
parameters, motivated by some physical reasoning:

1. Since the VHA is inspired by the adiabatic evolution one of our choices of parameters 6, ; from equation (2)
was to mimic the adiabatic evolution. We set 6, ; = % fora € {1,...,4} (i.e. the hopping elements) and
O = %% (i.e. the interaction terms), with t being the hopping energy of the Hamiltonian (4). This
represents the adiabatic evolution (3) duringtime 7 = ;

2. We chose a parameter set where not only the interaction but also the hopping is turned on gradually, i.e.
Onx = s% forall o

3. We noticed that the optimized parameters of the VHA usually do not resemble an adiabatic path or show
steady growth, rather they are more evenly distributed. Hence, we chose a set where 6, = %% forall . This

set represents a Trotter expansion with 7 steps for a time evolution for the duration 7 = %

For all choices of initial parameters, after the optimization the final values were vastly different. We conclude
that for the larger systems one often gets stuck in a local optimum. For this reason, we tried further sets of initial
parameters with results shown in table 3.

Firstly, we added initial parameters recreating an adiabatic evolution similar to point 1 described above, but
forr = % Secondly, we chose an even distribution, similar to point 3, but with 6, , = % where we varied

7
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r € {0.1,0.2,...,1.0}. (Wenoticed that usually the magnitude of the final parameters were between zero and
N%.) These additional start parameters improved the data of table 2 towards the results of table 3.

A deeper understanding how to deterministically find suitable initial parameters should be acquired.
However, this is out of the scope of this work. For this paper the tested parameter sets already helped to show the
capabilities of the VHA, achieving remarkable results in the considered small systems.
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