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Abstract

Available energy from water varies widely from season to season, depending on precipita-
tion and streamflows, especially in small catchments. In addition, the reservoir operation
problem is associated with the inability of operators to formulate crisp boundary condi-
tions, due to uncertainty in knowledge. In this chapter, an approach for planning the
operation of small multipurpose reservoir systems for hydropower generation and flood
control under consideration of the stochastic nature of inflows and initial storage levels and
allowed formulation of constraints with some range of uncertainty will be presented. The
approach is based on joint chance constrained and fuzzy programming, which addresses
the problem of including risk directly in the optimization. Therefore, the stochastic nature of
inputs is incorporated directly in the model through the use of convolution of random
variables. Furthermore, probabilistic/vague constraints and preassigned tolerance levels
are used to transform the stochastic optimization problem into its deterministic equivalent.
The approach searches for a control strategy, which maximizes the benefits acquired from
hydropower generation andminimizes the economic losses incurred due to not meeting the
required reliability levels from the various purposes served by the reservoir system. Besides
the optimal reservoir release strategy, this approach also determines the optimal reliabilities
of satisfying hydropower demand and flood control storage requirements. Therefore, this
tool has some advantages in planning the operations of reservoirs in extreme hydrological
events such as floods and droughts. The system is applied to the Wuyang small hydro-
power plants cascade in the People’s Republic of China.
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1. Problem description

Operating small hydropower plant reservoirs is a very difficult task. The managers should

make future plans of releasing the water in the reservoir in order to achieve all stakeholders’

requirements under consideration of the water availability. For scheduling reservoirs using

optimization methods, information of the water coming from the catchment should be fore-

casted, the initial reservoir water levels are predefined, and the decisions are made on the

amount of water to be released. It is prevailing to use past information to deterministically

forecast the future, but this is quite erratic due the variability of climate and runoff. Supple-

mentary to this, reservoir managers as humans introduce uncertainty in the interpretation of

constraints into the reservoir operation system. This calls upon the consideration of robustness

into the optimization system. Constraints can be generally classified into two categories: (1)

physical limits and (2) operating limits. A schedule violating physical limit or constraint would

not be acceptable. However, operating limits are often introduced to enhance system security,

but do not represent physical bounds. Such operating limits can be temporarily violated to a

certain extend if necessary, and therefore, they are fuzzy in nature, and crisp treatment of them

may lead to over conservative solutions. Crisp constraints are required for the implementation

of traditional deterministic optimization models. Therefore, the goal of this work is to take into

account the hydrologic variability and allow formulation of constraints with some range of

uncertainty.

2. Introduction

Linear programming has been used to solve many real-world problems. This method

assumes that the data are definitely known, the constraints are crisp, and the objectives are

well defined and can be easily formalized. However, this is not realistic in many situations.

Imprecise and vague data make solving many optimization problems difficult. There are

different types of uncertainty: (1) uncertainty caused by scarcity of information or (2) that

the future state of the system under consideration might not be completely known. This

type of uncertainty has been handled by probability theory [1–3].

Archibald et al. [1] use inflow scenarios instead of inflow probability distributions to solve

the stochastic optimization problem. Faber and Stedinger [3] also apply this method as

well as Schwanenberg et al. [4] who applied the approach in a real-time reservoir opera-

tion setup. With streamflow probability distributions, it may take as many state variables

to represent the streamflows as there are reservoirs in the cascade. This is the case when

there is little or no correlation among concurrent reservoir inflows. This type of problem

is difficult to solve with SDP in an amount of time which is reasonable, if several

reservoirs reside on the river. It has been shown that the number of state variables in

SDP problems can be reduced by applying transformations such as principal component

analysis [5–7].
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Stochastic linear programming (SLP), in which the inflows are represented by first-order

Markov chains, has been developed for optimizing operating strategy of a reservoir [8].

Theoretically, SLP presented in Ref. [8] can be extended to any cascade of reservoirs. However,

in practice, the number of reservoirs in the cascade should be small, due to the fact that the

computation time increases exponentially with the number of projects in series, as in the case

of SDP. Birge [9] showed that a large stochastic multistage linear programming problem can be

decomposed into one-stage linear programming problems by applying the Benders’decompo-

sition. Pereira and Pinto [10] used the same method to determine monthly operating policy

over half a year for a hydropower system of 37 reservoirs in Brazil. They represented

streamflows by scenario trees with two branches in month one, four in month two, and so on.

Their method is known as stochastic dual dynamic programming (SDDP).

Linear programming (LP) has been applied to solve implicit stochastic optimization prob-

lems. In this case, implicit states that a deterministic problem is solved several times, each

time with a different streamflow scenario. To obtain a closed-loop solution, the results

achieved from the optimizations are fed to a regression model. This method was also applied

by Karamouz et al. [11] to determine a reservoir operating strategy. However, Seifi and Hipel

[12] showed that there is no guarantee that the strategy determined will be feasible and

efficient enough.

Chance constrained programming (CP) is often applied in reservoir management to reduce the

risk of violating the boundary conditions, for example, water level and discharge. But it was

shown by Loucks and Dorfman [13] that CP models are very conservative and generate

operating policies that exceed the desired reliability levels. However, to solve this problem,

Simonovic and Marino [14] developed in their paper a two-step method to determine the best

reliability levels. The reliability levels are set in step 1, while the optimal open-loop strategy for

operation of the reservoirs is determined in step 2 with linear programming (LP). However,

Strycharczyk and Stedinger [15] mentioned in their paper one of the problems with this

method that the reservoir discharge in period t is constant, although the problem is stochastic.

In stochastic reservoir management, the content of the reservoir is a random variable since it is

fed by a streamflow, which is random. The content of the reservoir at start of period t can take

any value between the dead water level and the maximum reservoir volume. The optimal

reservoir release for a certain period is a function of the reservoir content. Therefore, the open-

loop operating strategy described in Ref. [14] not quite acceptable for listing as a stochastic

reservoir management problem.

However, CP is applicable to stochastic reservoir management if there is “enough” observed

data, so that probability distribution function can be formulated. In some cases, information is

deposited in form of expert knowledge. This requires the introduction of the fuzzy model.

Bellman and Zadeh [16] introduced the notion of a fuzzy decision making. Recently, a large

number of papers have been devoted to the application of fuzzy linear programming (FLP) in

modeling and solving problems of real life. Further, Zimmermann [17] and Tanaka et al. [18]

applied fuzzy optimization to LP problems with multiple conflicting objectives. Zhang et al.

[19] formulated a FLP problem as a four-term objective constrained optimization problem,

where the cost coefficients were not crisp.
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3. Methodology

3.1. Dealing with uncertainty

Hydrologic processes are random, and thus, the uncertainty as a result of variability may be

appropriately quantified using the probabilistic approach. Unfortunately, this approach may

lead to unreliable results due to its sole dependency on amount of the available data, the choice

of the applied PDFs, inability to deal with knowledge, and human bias. Hence, other methods

should be applied in these cases, where the probabilistic approach is partly applicable. The

fuzzy method has proven to be very applicable to map systems, which are uncertain and/or

include vague expert knowledge. According to the previous information, it is clear that the

two methods can produce promising results if they are applied in conjunction. In this chapter,

the power of these two approaches is integrated together as illustrated in Figure 1.

Figure 1. Approach to dealing with different types of uncertainty.
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In the first stage, a deterministic optimization of the reservoir cascade is formulated to under-

stand the system. The deterministic formulation is extended in two ways in the second stage

depending on the data availability to consider random variables, for example, variability in the

inflows and demand. An extension with chance constraints is applied if data are available as

option one, an approach that has been extensively used in water resources [20]. In case of

historical data scarcity, option 2 applies, whereby the variable resources are considered fuzzy.

In addition, in the third stage, the problem will be addressed using a fuzzy optimization

approach to include vagueness in the constraints.

3.2. Mathematical formulation

3.2.1. Stage one: understanding the system using a deterministic approach

In Figure 2, a flux diagram of a cascade composed of several reservoirs is shown. The deter-

ministic modeling technique enables us to describe all water fluxes as shown in Figure 3

during every simulation stage.

Note that for each month the storage is calculated for each reservoir taking the difference of

total inflows and total outflows. Total outflow is equal to the summation of discharged and

spilled water, which is the release of the dam and will flow through to a downstream dam.

Total inflow is equal to the summation of the released flow from an upstream reservoir and

intermediate flows.

The storage equation is defined in a loop, where the storage at the end of time step “k” is

dependent on the storage at the end of time step “k-1L” the inflow during time step “kL” and

the turbine and spilled flow during “kL” This is written in the following format:

Ski ¼ Sk�1
i þ Iki þQk�1

i�1 þ SPk�1
i�1 �Qk

i � SPk
i (1)

for k = 1, …, N and i = 1, …, M, Si
0 is given, Qi

0 = 0 and SPi
0 = 0

Figure 2. Representation of a cascade with M reservoirs.
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where Si
k is reservoir storage volume of reservoir i at the end of period k, Ii

k is intermediate

flow (inflow to the reservoir i during period k, apart from the release from an upstream

reservoir). Accordingly, it can be seen in Figure 3 that every stage is composed of three

decision nodes. Therefore, to completely determine a given stage, a set of M equations is

sufficient:

S11 ¼ S01 þ I11 �Q1
1 � SP1

1

S12 ¼ S02 þ I12 þQ1
1 þ SP1

1 �Q1
2 � SP1

2

S13 ¼ S03 þ I13 þQ1
2 þ SP1

2 �Q1
3 � SP1

3

⋯

SN1 ¼ SN�1
1 þ IN1 �QN

1 � SPN
1

SN2 ¼ SN�1
2 þ IN2 þQN�1

1 þ SPN�1
1 �QN

2 � SPN
2

SN3 ¼ SN�1
3 þ IN3 þQN�1

2 þ SPN�1
2 �QN

3 � SPN
3

(2)

Figure 3. Water fluxes in a N time period.
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Parameters determined in these equations must be within real system design ranges. This

means that each variable should respect the following constraints:

Si ≤ S
k
i ≤Si

Q
i
≤Qk

i ≤Qi

SPk
i ≥ 0

S0i ≤S
N
i

, k ¼ 1,…,N and i ¼ 1,…,M (3)

where Si and Si are lower and upper bounds of stored water of reservoir i, Q
i
and Qi are

discharged water lower and upper bounds of reservoir i. Even though the volume is not forced

to follow a certain reference, the last constraint ensures that the final volume of the reservoir is

not below the initial value [21].

Equation systems (1) to (2) are sufficient to linearly describe the operational strategy of any

cascade system with M projects. However, this problem can be simplified further by consider-

ing that every branch is represented by one state variable. This suggests a transformation of

variable that still represents water fluxes dynamics. The next set of Eqs. (4)–(6) shows how to

attain this for the first stage for a three-reservoir system, for example:

zð1Þ ¼ S01 þ I11 � zðM�N þ 1Þ � zð2�M�N þ 1Þ (4)

zð2Þ ¼ S02 þ I12 þ zðM �N þ 1Þ þ zð2 �M �N þ 1Þ

�zðM �N þ 2Þ � zð2 �M �N þ 2Þ
(5)

zð3Þ ¼ S03 þ I13 þ zðM �N þ 2Þ þ zð2 �M �N þ 2Þ

�zðM �N þ 3Þ � zð2 �M �N þ 3Þ
(6)

Eqs. (7), (8), and (9) are the equivalent for all remaining decision points:

zðjÞ ¼ zðj� iÞ þ Iki � zðM �N þ jÞ � zð2 �M �N þ jÞ (7)

zðjþ 1Þ ¼ zðjþ 1� iÞ þ Ik2 þ zðM �N þ j� 1Þ þ zð2 �M �N þ j� 1Þ

�zðM �N þ jÞ � zð2 �M �N þ jÞ
(8)

zðjþ 2Þ ¼ zðjþ 2� iÞ þ Ik3 þ zðM �N þ j� 1Þ þ zð2 �M �N þ j� 1Þ

�zðM �N þ jÞ � zð2 �M �N þ jÞ:
(9)

The initial volume (Si
0) in each reservoir i and its inflows (Ii

k) are known, and together they

build the initial data set for this problem. In order to apply these data, in an iterative optimi-

zation algorithm, they are represented in vector form as follows:
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B ¼

S01 þ I11

S02 þ I12

S03 þ I13

⋮

IN1

IN2

IN3

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(10)

Consequently, equations are represented in matrices form; therefore, A represents equality

constraints for state variables, and finally, Z is the vector of variables:

A ¼

1 0 0

0 1 0

0 0 1

…

0 0 0

0 0 0

0 0 0

⋮ ⋱ ⋮

0 0 0

0 0 0

0 0 0

⋯

1 0 0

�1 1 0

0 �1 1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; Z ¼

zð1Þ

zð2Þ

zð3Þ

⋮

zðNm � 2Þ

zðNm � 1Þ

zðNmÞ

(11)

The problem formulation is completed by designing the optimization criteria (objective func-

tion). The objective function for hydropower energy maximization can be expressed as a

product of the head for hydropower generation and the release. Therefore, nonlinear program-

ming (NLP) may be considered for solving this problem. However, this research takes a

different approach by applying linear programming to the linear operation model.

Theoretically, hydropower capacity of a storage plant installed at a reservoir can be expressed

as

P ¼ ηρgQðtÞHnðtÞ ¼ γQðtÞHnðtÞ (12)

where ηρg, γ can be a constant value, η is the overall, ρ is the water density, and g is the gravity

acceleration;Q(t) is the release for the power generation of at time tL and the net headHn(t) can

then be written as

HnðtÞ ¼ HðtÞ �HtailðtÞ �HlossðtÞ (13)

where H(t) denotes reservoir water level, Htail(t) is the water level of the downstream, and

Hloss(t) denotes the head loss at a given instant t. If Htail(t) and Hloss(t) are negligible in

comparison with H(t), the approximation Hn(t) ≅ H(t) is applied, and the objective function

for maximizing hydropower energy can be formulated as
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E ¼ γ

X

N

k¼1

QðkÞHðkÞ ¼ γ Q �H (14)

where k is the discrete time and Q(k) and H(k) are the releases for hydropower generation

and reservoir water level at time k. N is the total time. Eq. (14) is the nonlinear product of

the vectors Q and H. However, in this paper, a linear function is used based on the fact

that Eq. (15) is maximized by maximizing each member of Q[Q(1), Q(2), … , Q(J)] and

H[H(1), H(2),… , H(N)].

Q �H ¼ Qð1ÞHð1Þ þQð2ÞHð2Þ þ⋯þQðNÞHðNÞ (15)

In turn, the nonlinear Eq. (14) can be replaced by the linear Eq. (16) as an objective function Z

for maximizing hydropower energy. Eq. (16) linearly sums up each element of Q and H.

max
Q,H

wH

X

N

k¼1

HðkÞ þ wQ

X

N

k¼1

QðkÞ (16)

where wH and wQ are penalty factors on water level and the releases, respectively. Eq. (17) can

replace Eq. (16) due to the fact that H(j) is directly proportional to S(j), that is, wH can be

substituted by wS as:

max
Q, S

X

M

i¼1

�

wS

X

N

k¼1

QðkÞ þ wQ

X

N

k¼1

SðkÞ
�

(17)

Eq. (17) is the linear combination of reservoir storage S(j) and release Q(j), and it can be

represented as an alternative objective function for maximizing hydropower energy.

Subject to

A � Z ¼ B

Si ≤ S
k
i ≤Si

Q
i
≤Qk

i ≤Qi

SPk
i ≥ 0

S0i ≤S
N
i

(18)

The constraints are linear, the state equation is linear, and the objective function is chosen in

linear form. The optimal solution can be obtained using various software tools readily avail-

able. Time lag or routing of flows between reservoirs is neglected in this formulation, which is

reasonable for monthly time steps. Rainfall and net losses due to seepage, evaporation, and

other reservoir losses are subtracted directly from the river inflows.
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After formulating the problem deterministically, stage 2 follows which considers the uncer-

tainty in the available resources. As shown in Figure 2, stage 2 is performed in two options

according to the quantifiability of the available data.

3.2.2. Consideration of resources uncertainty by a probabilistic approach

To deal with LP under uncertainty, the chance constrained programming was introduced by

Charnes and Cooper [22]. It extends the LP to enable the violation of the constraints to a certain

extend. The reliability α ∈ [0, 1] of not violating a constraint is specified by the decision maker,

and thus, it allows for decision maker to directly control the level of risk he/she finds

acceptable.

The deterministic reservoir model developed previously will be transformed here in the prob-

abilistic form to deal with some uncertain inputs. The transformation to stochastic optimiza-

tion is done through the introduction of an additional probabilistic constraint, which is shown

below

Pf~S
k

i ≤ Si, targetg ≥∝, k ¼ 1,…,N and i ¼ 1,…,M (19)

where ~Sik is the random equivalent of Si
k, the storage at the end of period k, Si, target is the

known decision maker specified target storage level of the reservoir, and α is the decision

maker specified reliability of not violating constraint Eq. (19). It takes values between 0 and 1.

This formulation is the realistic representation of the cascade control problem since in practice,

bounds on storage are often violated by expansion of the conservation pool into the flood

control pool. Adopting chance constraints simplifies the stochastic problem to deterministic.

The random variables Ĩi
k and ~Si0 are additive in consecutive periods, which makes the appli-

cation of the convolution method feasible, whether they are linearly correlated or not [23]. The

following procedure is used to do the transformation of the stochastic constraint.

Step 1. Eq. (1) is substituted into Eq. (19) to form:

Pf~S
k

i ¼ Sk�1
i þ ~IikþQk

i�1 þ SPk
i�1 �Qk

i � SPk
i ≤Si, targetg ≥∝ (20)

where Ĩi
k is the random equivalent of Ii

k, the inflow during k = 1,…, N and i = 1,…, M.

Step 2. A deterministic equivalent of the Eq. (20) is found by inversion and rearrangement

leading to:

Si, target � Sk�1
i þ ~IikþQk

i�1 þ SPk
i�1 �Qk

i � SPk
i ≤ F

�1
xk
i
ð1� ∝Þ (21)

where for k = 1, …, N and i = 1, …, M, F�1
xk
i
ð1� ∝Þ is the inverse value of the cumulative

distribution function of the convoluted Ĩi
k, evaluated at (1-α). Henceforth, it will be replaced

by xk,1�αi .

Step 3. The expression for two deterministic chance constraint time steps is given below,

for k = 1 and i = 1,…, M,
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P ~S
1

i ≤ Si, target

n o

≥∝

P ~S
0

i þ
~Ii1þQ1

i�1 þ SP1
i�1 �Q1

i � SP1
i ≤ Si, target

n o

≥∝

P ~I
1

i ≤Q
1
i þ SP1

i þ Si, target � ~Si0�Q1
i�1 � SP1

i�1

n o

≥∝

x1,1�αi ≥Q1
i þ SP1

i þ Si, target � ~S
0

i �Q1
i�1 � SP1

i�1

(22)

for k = 2 and i = 1,…, M,

P ~S
2

i ≤Si, target

n o

≥∝

PfS1i þ
~I
2

i þQ2
i�1 þ SP2

i�1 �Q2
i � SP2

i ≤Si, targetg ≥∝
(23)

Substituting for Si
1

P
ð~S

0

i þ
~I
1

i þQ1
i�1 þ SP1

i�1 �Q1
i � SP1

i Þ

þ~I
2

i þQ2
i�1 þ SP2

i�1 �Q2
i � SP2

i ≤Si, target

8

<

:

9

=

;

≥∝

P
~I
1

i þ
~I
2

i ≤Q
1
i þ SP1

i �Q1
i�1 � SP1

i�1

�Q2
i�1 � SP2

i�1 þQ2
i þ SP2

i þ Si, target � ~S
0

i

8

<

:

9

=

;

≥∝

x2,1�αi ≥Q1
i þ SP1

i �Q1
i�1 � SP1

i�1 �Q2
i�1

�SP2
i�1 þQ2

i þ SP2
i þ Si, target � ~S

0

i

(24)

Eq. (21) can thus be expressed in final simplified chance constraint deterministic form as:

Si, target � ~Si0þ
X

N

k¼1

ðQk
i þ SPk

i Þ �
X

N

k¼1

ðQk
i�1 þ SPk

i�1Þ ≤ x
k,1�α
i (25)

for k = 1,…, N and i = 1,…, M.

It is important to note that the random variables inflow and initial storage are summed here.

For the time interval k = 1, the sum is ~Ii1þ
~Si0, for k = 2 it is ~Si0þ

~Ii1þ
~Ii2,…, and for k = N it is

~Si0þ
~Ii1þ

~Ii2þ⋯þ ~IN . In the two-step algorithm developed by Simonovic to determine the

best reliability levels for chance constraints, reliability levels are set in the first step, while the

optimal open-loop reservoir operating strategy is determined by linear programming in step 2

[14]. This operating strategy sets the discharge from reservoir i in period t equal to xt
i. The

discharges xt
i (for all i and t) are then used to transform the probabilistic constraints into

deterministic ones. Strycharczyk and Stedinger [15] in their paper stressed out the problem

with Simonovic and Marino [14] method that the discharge from a given reservoir i in a given

period t is a constant, although the problem is stochastic. In stochastic reservoir management,

the content of the reservoir is a random variable since it is fed by a streamflow, which is

random. The content of the reservoir at start of period t can take any value between the dead

water level and the maximum reservoir volume. The optimal reservoir release for a certain

period is a function of the reservoir content. Therefore, the open-loop operating strategy
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described in Ref. [14] is not quite acceptable for listing as a stochastic reservoir management

problem. Therefore, in this paper we consider the initial reservoir storage level as a random

variable also.

The random variables inflow and initial storage have known marginal probability distribution

functions (PDF), f(Ik) and f(S0, i), respectively, as a result of fitting a distribution to available

historical data. However, the distributions of the sums have to be found. This is accomplished

through a step-by-step iterative convolution method:

For k = 1, iterative convolution is used to reduce the two random variables Ĩi
k and ~Si0 appearing

in the equation of state to a single random variable. The new random variable is obtained as

the sum of the random inflow and the random initial storage. Since their probability density

functions are known, that of the new variable is obtained by convolution, which is expressed in

discrete form by

PfS ¼ rg ¼
X

i�j¼r

pIip
S
j (26)

where rmin ≤ r ≤ rmax, pi
I is the probability distribution of inflow, pJ

S is the probability distribu-

tion of the initial storage. The summation is carried out over the variable I, and hence,

expression (26) yields:

PfS ¼ rg ¼
Xb

i¼a

PI
iP

S
i�r: (27)

The magnitudes of rmin and rmax are found from rmin = imin - jmax = a - d and rmax = imax - jmin = b - c

under the constraints a ≤ i ≤ b and c ≤ j ≤ d.

From k = 2 to k =N, the recursive equation for convolution can be expressed in genral form as in

[24] as follows:

prðkÞ ¼
X

i�j¼r

Pfik ¼ igpjðk� 1Þ (28)

rmin ≤ r ≤ rmax (29)

where rmin = imin + jmin, rmax = imax + jmax, under the constraints: a ≤ i ≤ b and c ≤ j ≤ d.

The problem formulation becomes similar to linear formulation in the deterministic approach;

Eq. (6) with the addition of the deterministic chance constraint and Eq. (25) can be solved with

the same linear programming approach as the deterministic model formulation.

3.2.3. Stage two and three: consideration of resources and technical uncertainty using a fuzzy approach

If in stage 2 historical data are scarce, we can apply a fuzzy approach for both resources and

technical uncertainty. The reservoir operation optimization model formulation will be

expanded to utilize the fuzzy linear optimization approach, and in doing so, it will depart
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from the classical assumptions that all coefficients of the constraints need to be crisp numbers

[25]. In the present section, a FLP formulation based on the work of [25] and further by Tanaka

et al. [18] that considers both technological coefficients and resources characterized by uncer-

tainty is presented in brief as follows:

The fuzzy version of the traditional linear programming optimization problem presented in

Eq. (29) is:

cx ≤ z0

Ax ≤ b

x ≥ 0

(30)

The manager’s targets and system boundaries are the inequalities in the fuzzy system. The

equation expressed that the manager’s targets can be lower than his/her desired level z0. The

same applies to the boundaries that they should be in the tolerance level b. The importance of

targets and the constraints is set at the same level. For fully symmetric objective and con-

straints, Zimmermann [26] formulated the problem in simplified form as follows:

Bx ≤ d

x ≥ 0
(31)

where B ¼
c
A

� �

, d ¼
z0
b

� �

.

The following expression for the (monotonically decreasing) linear membership function was

proposed by Zimmerman for the jth fuzzy inequality (Bx)j ≤ dj.

μj

�

ðBxÞj

�

¼

1 if ðBxÞj < dj

1�
�

ðBxÞj � dj

�

=pj if dj ≤ ðBxÞj ≤ dj þ pj

0 if ðBxÞj ≥ bj þ pj

8

>

>

>

<

>

>

>

:

(32)

where dj and pj are the desired level and the tolerance for violation of the jth inequality,

respectively. A jth membership function value of 1 denotes that the targets and constraints are

fully satisfied. Violating the constraint outside the tolerance band, pj gives a membership value

of 0 and in-between values are linear. The membership function of the fuzzy set “decision” of

model in Eq. (6) including the linear membership functions is shown below. The problem of

finding the maximum decision is to choose x* such that

μDðx
�Þ ¼ max

x ≥ 0
min

j¼0,…,m
μj

�

ðBxÞj

�n o

: (33)

In other words, the problem is to find the x* ≥ 0 which maximizes the minimum member-

ship function value. This value satisfies the fuzzy inequalities, (Bx)j ≤ dj with the degree of

x* [18].
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Substituting the expression (31) for linear membership function into Eq. (32) yields

μDðx
�Þ ¼ max

x ≥ 0
min

i¼0,…,m
1þ

dj

pj
�
ðBxÞj

pj

( )

: (34)

The fuzzy set for decision can be transformed to an equivalent conventional linear program-

ming problem by introducing the auxiliary variable λ:

Maximize λ (35)

subject to λ ≤ 1þ
dj
pj
�

ðBxÞj
pj

x ≥ 0

It should be emphasized that the above formulation is for aminimization of the objective function

and less than constraints and thus should be modified appropriately for other conditions.

Using the fuzzy optimization approach just described, and using the deterministic model

given by Eq. (6) with modification for considering linear membership function for “greater

than” constraints, the fuzzy formulation becomes:

Maximize λ (36)

Subject to

ðBxÞj

pi
þ ≤ 1þ

dj

pj
i ¼ 0,…, 36 (37)

ðBxÞj

pi
� ≤

dj

pj
i ¼ 37,…, 60 (38)

x ≥ 0

Expanding by substituting for (Bx)j

XM

i¼1

�

wS

XN

k¼1
QðkÞ þ wQ

XN

k¼1
SðkÞ

�

pj
þ ≤ 1þ

dj

pj
j ¼ 0 (39)

all other constraints for k = 1, …, N and i = 1, …, M

Ski � Sk�1
i þQk

i þ SPk
i �Qk

i�1 � SPk
i�1

pj
þ ≤ 1þ

dj

pj

j ¼ 1,…,M �N

(40)
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Ski
pj

þ ≤ 1þ
dj

pj
, j ¼ M �N þ 1,…, 2 �M �N (41)

Qk
i

pj
þ ≤ 1þ

dj

pj
, j ¼ 2 �M �N þ 1,…, 3 �M �N (42)

Ski
pj

� ≥
dj

pj
, j ¼ 3 �M �N þ 1,…, 4 �M �N (43)

Ski � Sk�1
i þQk

i þ SPk
i �Qk

i�1 � SPk
i�1

pj
� ≥

dj

pj
, j ¼ 4 �M �N þ 1,…, 5 �M �N (44)

Qk
i ≥ 0 (45)

SPk
i ≥ 0 (46)

4. Numerical example

The following demonstrates the application of the methodology for a reservoir cascade com-

posed of three projects. All stages will be shown, from deterministic to its modification for the

implementation of the probabilistic and fuzzy domains.

4.1. Case study

The reservoir cascade optimization case study is the Wuyang cascade system in the People’s

Republic of China. An optimization problem is formulated for 12-month time period (k = 12) as

discussed in preceding sections and solved using data provided from the Institute of Hydrau-

lic and Water Research. The available data are listed in Table 1. It is from 1953 to 2009 and

includes the constraints in storage capacity and the stream flows.

Reservoir 1 Reservoir 2 Reservoir 3

Maximum reservoir capacity (m3) 1.373E8 6.572E8 7.1E7

Dead or minimum reservoir storage, Smin (m
3) 500000.0 727000.0 792000.0

Sill of dam elevation operator goal storage, Starget (m
3) 1.012E8 4.872E8 5.34E7

Initial storage, S0 (m
3) 5.12E7 1.206E8 4.48E7

Maximum possible release for non-flooding condition, Rmax (m
3/s) 50 50 50

Table 1. Hydropower projects data.
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5. Results

The cumulative distribution values for f(Ik) and f(S0, i), obtained by the summation of PDFs

with reliability tolerance of 0.9, are shown in Figure 4.

It is also considered that the water managers wanted some flexibility in the constraint to

account for the uncertainty in knowledge, which is not available with the sharp constraint

requirements of the deterministic model. Further, the water managers assessed that the

annual maximum acceptable storage to mitigate damage due to flood should not exceed

Sflood. The managers formulated there constraints according to their experience and com-

fort. Therefore, the FLP approach was chosen to facilitate this insight, and LB and UB of dj
and pj were determined.

The results in Figure 5–Figure 7 include a series of release rules for operating period of

the 12 months that reservoir operators can follow in order to fulfill the defined objective.

In stage 1, using the deterministic optimization approach and substituting the given data, the

above problem with 144 balance equations and 145 constraints becomes readily solvable using

linear programming. The optimal solution is shown in Figure 5.

In stage 2, the probabilistic optimization approach was applied. Firstly, a PDF was selected

from experiments and experience from the structure of the stream flows. Stream flows are

positive, and there variance changes proportionally to their mean, which is characteristic of

lognormal functions. α was set to 0.9, and the addition of the stream flows and possible initial

water levels was determined using a convolution process as described previously in this

chapter. Once the convolution process is complete and inflow convoluted values

Figure 4. Probability distribution functions of the sum of and .
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Figure 5. Results of the deterministic method (objective function Z = 0.3857 m3).

Figure 6. Chance constrained method (objective function Z = 1.4643 m3).
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corresponding to the reliability index selected are found, the problem was solved using linear

optimization as in the case of the deterministic formulation. The optimal solution is shown in

Figure 6 for reliability level α = 0.9.

In the final stage, using fuzzy optimization approach, the values of the tolerance interval dj and

spread of tolerance pj are substituted into the constraints and the problem is solved using a

linear programming solver. The resulting λ = 0.0626 with corresponding storage and release is

shown in Figure 7.

6. Discussion

It could be seen that the problem could be solved by all the three methods with different

results. However, the linear approach uses water spillage to achieve optimal solution. The

chance constraint method offers a way to include reliability in formation of the optimization

problem. The requirements of the water managers to have some flexibility in the constraint to

account for the uncertainty in knowledge could be realized satisfactory with the fuzzy

method.

Figure 7. Fuzzy chance constrained method (Z = 4.4515 m3).
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7. Conclusions

Crisp-defined boundaries do not often resemble real-life situations. It is a fact that uncertainty

in decision-making processes occurs at every stage. Therefore, it is necessary to understand

uncertainties, which in consequence require understanding of their sources. In water resource

management (WRM), uncertainty can be put into two categories: (1) uncertainty due to inher-

ent variability in hydrology and uncertainty contributed by scarcity of data and knowledge.

The transformation of deterministic problems into the probabilistic and fuzzy domains was

presented in this paper. The fuzzy approach integrates the managers indirectly into the opti-

mization process through their expert information. As shown in this chapter, the probabilistic

method is very good in dealing with quantifiable uncertainty. However, its robustness to

handle different sources of uncertainties is not sufficient to justify its use under all circum-

stances. Caution must be taken, pending on the level of precision desired the stochastic or even

the deterministic approach may be the better alternative. But the probabilistic approach can be

implemented only if uncertainties are quantifiable and sufficient historical data are available.

The holic view of integrating the two approaches gives good opportunities to solve problems

of reservoir optimization in case of vast data availability, data scarcity, and availability of

information from expert knowledge and experience, which cannot be quantified. To show the

robustness of the approaches, they were applied to a real case of the Wuyang river cascade in

PR China. Here, these data are scarce, and most of the decisions are made subjectively. The

obtained results are quite promising. In further sensitivity tests performed (not part of this

paper), it could be shown that the combination of the CP and the FLP method is very robust to

changes in stream flows, initial reservoir levels, and formulated targets.
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