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A UNIFORMLY EXPONENTIALLY STABLE ADI SCHEME FOR MAXWELL EQUATIONS

KONSTANTIN ZERULLA

ABSTRACT. A modified alternating direction implicit scheme for the time integration of linear isotropic Maxwell
equations with strictly positive conductivity on cuboids is constructed. A key feature of the proposed scheme is
its uniform exponential stability, being achieved by coupling the Maxwell system with an additional damped PDE
and adding artificial damping to the scheme. The implicit steps in the resulting time integrator further decouple
into essentially one-dimensional elliptic problems, requiring only linear complexity. The convergence of the scheme
to the solution of the original Maxwell system is analyzed in the abstract time-discrete setting, providing an error
bound in a space related to H 1.

1. INTRODUCTION

The Maxwell equations belong to the fundamental formulas of physics as they give account of the propagation of
electromagnetic waves in matter. In view of many applications like wave guides, the efficient and reliable numerical
solution of Maxwell equations is important.

For the time integration of linear isotropic Maxwell systems on domains with tensor structure, alternating
direction implicit (ADI) schemes are very attractive. Particular instances are the Peaceman-Rachford ADI scheme
and an ADI scheme that is energy conserving if the homogeneous Maxwell system is considered without damping,
see [33, 5]. If coupled with a finite difference grid or a discontinuous Galerkin discretization in space, these methods
have the advantage that the degrees of freedom can be arranged in such a way that essentially only tridiagonal
systems have to be solved in each step, see [23, 19]. This eventually results in linear complexity. Another valuable
property of both ADI schemes is their numerical stability. The implicit parts in both methods lead to unconditional
stability without restriction on the time step size. A recent rigorous error analysis for the mentioned ADI schemes
in the time-discrete setting is contained in [18, 9, 10, §].

Despite their favorable efficiency and stability properties, it is however not clear whether ADI schemes preserve
the decay properties of a damped Maxwell system, see the investigations in [14, 30] for other wave equations.
The goal of this paper is thus to construct a modified ADI scheme which conserves the long-time behavior of a
continuous Maxwell problem with damping.

Throughout, the focus lies on the linear isotropic Maxwell system with Ohm’s law

1
atE:gcurlH—aE in @ x [0,00),
atH:—lcurlE in @ x [0, 00),
K (1.1)
div(pH) =0 in @ x [0, 00),
Exv=0, pH-v=0 on 9Q x [0, 00),
E<0) = E07 H(O) = HO in Q7

on a cuboid Q = (aj,af) x (ay,a3) x (a3 ,a]) with perfectly conducting boundary 9Q. The arising physical
quantities are the electric field E(z,t) € R3, the magnetic field H(z,t) € R?, the conductivity o(x) > 0, the electric

Date: September 10, 2019.

2010 Mathematics Subject Classification. 35Q61, 93D99, 93B07, 47D06, 65M15.

Key words and phrases. Maxwell equations, splitting method, exponential stability, observability, error bound, divergence cleaning.
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — Project-ID 258734477 — SFB 1173.

1



2 KONSTANTIN ZERULLA

permittivity e(z) > 0, and the magnetic permeability p(z) > 0. The vector v € R3 throughout denotes the unit
outer normal vector at 9Q).
For the coefficients we assume

g,0 € Wh2(Q), peWh(Q)NW*3(Q) withe,p,0>6>0 and g—'l: =0 on 0Q), (1.2)

employing a positive constant §. The slightly stronger regularity and the homogeneous boundary conditions for
1 are needed because of technical reasons, see for instance the proof of Lemma 3.13. The initial data (Eq, Hy) is
required to be contained in Hg(curl, Q) x H(curl, Q) with

div(eEp) € L3(Q), div(uHo) =0o0n Q, pHy v =0 on dQ,

where the involved spaces are recalled in Section 2.

In this situation, system (1.1) is known to have a unique classical solution (E, H) if interpreted as an evolution
equation, see e.g. Proposition 2.3 of [9]. Regarding the long-time behavior of the solution, it is well known that
the energy

1
(ﬂwzzésm@ﬁf+um@¢ﬂd% t>0,

obeys the relation
&(t) < CeP1E(0), >0, (1.3)

for positive constants C, 3 being independent of the initial data. This means that (1.1) is exponentially stable.
For the stability result, we refer for instance to [27] in the case of smooth domains, and to [26] in the case of
C?-domains. Recently, the decay property (1.3) was established in [11] for Lipschitz domains and more general
uniformly positive definite matrix-valued coefficients ¢, u, 0 € L.

The decay property (1.3) of system (1.1) is caused by the damping term —oE corresponding to Ohm’s law. The
latter solely affects the evolution of the electric field in a direct way, but then the coupling in (1.1) transports this
effect also to the divergence-free parts of the magnetic field. It is thus essential for the exponential decay (1.3) that
the magnetic field contains no curl-free parts that would otherwise be conserved over time.

Since relation (1.3) is a significant attribute of the Maxwell system (1.1), a reasonable time integrator for
simulations over large time intervals should preserve the uniform exponential decay of the energy. The requirement
of uniformity means here that the energy’s decay rate is to be independent both of the initial data and the
chosen time step size. It is however unlikely that approximations to (1.1) obtained by the ADI schemes from [33]
and [5] share the desired uniform exponential decay property. This is due to divergence errors in the numerical
approximation of the magnetic field that cannot be controlled on large time intervals, see for instance [5] for an
investigation of divergence errors in numerical simulations. In view of the reasoning above, the damping effected
by Ohm’s law is consequently not strong enough to damp the entire electromagnetic field and cause a uniform
exponential decay of the energy of the numerical approximation.

Similar phenomena have already been discussed in the literature for other wave equations and abstract evolution
equations. Here a widely used remedy is artificial viscous damping that is included in the space or time discretization
to damp out high frequency oscillations in the numerical approximation. The latter artifacts cause a loss of
uniform exponential stability in the discrete system, meaning that the decay rate now depends on the space or
time discretization, see for example [1, 14, 28, 30]. We also refer to [34] for a survey on the strongly related
concept of observability for discretized wave equations. The paper [25] deals with the space discretization of a
linear Maxwell system on a cube. Nicaise shows here that an observability inequality for the undamped continuous
system does not uniformly hold for the space discretization.

Although the technique of artificial damping is widely successfully applied to preserve uniform exponential decay
properties, there so far seems to be no efficiency and rigorous error analysis yielding precise convergence rates for
the modified schemes. Convergence results without error estimates are for instance derived in [1, 30].

In the spirit of the above mentioned papers, we use the technique of artificial viscous damping to construct
a modification of an ADI scheme from [5]. The usual damping approaches, however, are not sufficient for the
divergence artefacts in the magnetic field approximations. Therefore, we additionally apply a mixed hyperbolic
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divergence cleaning technique, proposed for MHD equations by Dedner et al. in [7] to account for numerical
artefacts affecting the divergence constraint for H. We modify this approach to damp the spurious curl-free parts
of the magnetic field approximations already on the PDE level. To that end, we introduce an extended Maxwell
system by coupling the original differential equation for the magnetic field with a new damped differential equation
for an artificial variable.

The proposed uniformly exponentially stable ADI scheme is then formulated as a perturbed time integrator
for the enlarged Maxwell system, see (3.18). To keep the favorable linear complexity of usual ADI schemes, we
adapt the technique of artificial damping to splitting methods. More precisely, we employ for every substep in the
splitting procedure damping operators only involving the current splitting operator. In this way, the application
of the damping requires only linear computational effort, see Remark 3.17.

The exponential stability result is then stated in Theorem 3.9. The guiding principle for the corresponding proof
is to establish an observability estimate for a similar energy conserving scheme, and to compare both methods in a
final step to derive the desired energy decay. This technique has also been successfully applied in [30] for the one-
and two-dimensional wave equation. The main task thereby consists in the derivation of the uniform observability
inequality. Regarding continuous systems, microlocal analysis and the multiplier method are useful to deduce
observability, see for instance [3, 11, 27, 22, 32, 26]. Observability of discrete systems is often proved via a discrete
multiplier method or a spectral filtering technique, compare [25, 13, 14, 28, 1]. Below, we proceed with the first
technique since it fits best to our discrete scheme, and we transfer arguments from [26] to the time-discrete setting.

Although the proposed scheme approximates the enlarged Maxwell system, it in fact converges against the
solution of the original system (1.1), provided that appropriate initial data are chosen, see Theorem 6.5. This
convergence result is derived via a wellposedness argument for the extended Maxwell system and a rigorous error
analysis using techniques from [8]. In this way we show that the proposed scheme converges with order one
in H™!, roughly speaking. The order of convergence for the proposed scheme is here limited to 1, because the
Maxwell system is split into 6 subproblems, compared to the number of 2 subsystems in the standard splittings in
[8, 18, 9, 10]. The crucial property of the error statement is that it requires only regularity of the initial data but
not of the unknown solution of the continuous problem. This is achieved by means of a regularity analysis for the
enlarged Maxwell system.

Despite the abstract time-discrete setting, similar arguments are likely to yield the respective error result also
for the full discretization by the method of lines, involving for instance a discontinuous Galerkin (dG) method for
space discretization. Concerning the exponential decay result, one has to investigate whether a dG discretization
with stabilizing upwind fluxes in space, and the proposed ADI scheme in time are sufficient to preserve the uniform
exponential decay. Similar reasoning is for instance employed in [14], where a fully discrete numerical scheme with
exponentially stable approximations is derived for a one-dimensional damped wave equation.

To fix a common framework, the next section recalls basic spaces related to the linear Maxwell equations as
well as some useful notation. In Section 3 we introduce the extended Maxwell system, derive its wellposedness
as a Cauchy problem, and present the new ADI scheme as well as the uniform exponential stability result. The
succeeding Section 4 is devoted to the derivation of an observability estimate for an energy conserving scheme being
similar to the desired damped one. The actual exponential stability result is then proved in Section 5 by means of
the observability inequality. A rigorous error analysis is finally performed in Section 6.

2. ANALYTICAL PRELIMINARIES AND NOTATION

This section has auxiliary purposes, as it recalls the standard function spaces for linear Maxwell equations and
introduces our notation. The starting point are the maximal domains

2 2 2
H(cwl, Q) := {p € L*(Q)* | curlp € L*(Q)’}, @l = @l + lleurlollfs
H(div, Q) == {v € L(Q)* | dive € L*(@Q)},  [[vllFy = lI0lIF2 + [Idiv ol[72 ,
which are complete for the respective norms. The subspaces Hy(curl, Q) and Hy(div, Q) further denote the com-
pletion of the space of test functions C2°(Q)* on @ with respect to the norms |-||.., and |||y, respectively.

Concerning boundary traces in H(curl, @), Theorems 2.11 and 2.12 in Section 1.2 of [15] yield that vectors in
H(curl, @) have a well-defined tangential trace on the boundary of @, and that the tangential trace operator is
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continuous from H(curl, Q) into H~/2(dQ). The subspace Ho(curl, Q) furthermore coincides with the vectors in
H(curl, Q) having zero tangential trace on Q. Similar results are provided by Theorems 2.5 and 2.6 in Section 1.2
of [15] for the divergence. Functions in H(div, Q) have a well-defined normal trace on the boundary dQ, and the
normal trace operator is continuous from H(div, Q) into H~/2(9Q) with kernel Hy(div, Q).

The intersections

Hy(curl, div, @) := H(curl, Q) N Hy(div, Q), Hy (curl,div, Q) := Hy(curl, Q) N H(div, Q),

are valuable for decompositions of the electric and magnetic fields. Both spaces are complete with respect to the
norm

2 2 2 . 2
el = el = leurlele +[|div el ,

3

and embed continuously into H!(Q)3, meaning that there is a uniform constant Cp > 0 with

Il < Cr (leurl ol + [div |2, ) (2.1)

for all vectors ¢ € Hy(curl, div, Q) UHy (curl, div, @), see Lemmas 3.4, 3.6, and Theorems 3.7, 3.9 in Section 1.3 of
[15].

The proof of an observability estimate will heavily make use of appropriate Helmholtz decompositions. One is
established in Theorem 3.6 and Corollary 3.4 in Section 1.3 of [15], and it provides for each vector g € L?(Q)? the
orthogonal decomposition

= curl¢ + Vq (2.2)

with a function ¢ € H!(Q) unique up to a constant, and a vector ¢ € H*(Q)? satisfying div ¢ = 0, curl ¢ € Ho(div, Q)
and ¢ x v = 0 on 9Q. In the following, py and p..1 denote the orthogonal projections of a function in L?(Q)? onto
its curl-free and divergence-free part, according to (2.2).

For a normed vector space (X, ||-|| y), the space of bounded linear operators on X is denoted by #(X), and the
corresponding operator norm by H-||%(X). Let Y further be a subspace of X, and A a linear operator on X with

domain D(A). The graph norm of A is then defined via ||J:H%(A) = ||ac||§< + ||A3:H§( for x € D(A), and the part of
AinY is given by Ayy := Ay fory € D(Ay) :={y €Y | y € D(A), Ay € Y}. If X is additionally a Hilbert space
and A is densely defined, positive and selfadjoint, one can define fractional extrapolation spaces (X, (‘;‘)QER\{O} of X
with respect to A. The part of A in X2 is denoted by A, for a € R\ {0}, see Sections V.1.3 and V.1.4 in [2] and
Section 2.10 in [31] for extrapolation spaces.

Finally, spaces of partial regularity and the need for well-defined traces on parts of the boundary d@Q naturally
arise when dealing with ADI splitting schemes. The boundary is therefore subdivided into the parts

Lj={r€dQ|x; €{aj aj}},

and the corresponding trace operator trp, = tr|r, is continuously extended from H'(Q) to the space of partial
regularity D(9;) := {f € L*(Q) | 8;f € L*(Q)} for j € {1,2, 3}, see Section 2 in [9]. We will simply write v = 0 on
I'j instead of trr;v = 0 for a function v € D(J;).

Convention: Whenever a differential operator is applied to a product of two functions and parentheses are
omitted, the product rule is tacitly applied. This means for instance 9, fg = 9.(fg) = (0. f)g+ (0z9)f for functions
f,9 € H'(R).

3. CONSTRUCTION OF A UNIFORMLY EXPONENTIALLY STABLE ADI SCHEME

To stabilize system (1.1) already on the PDE level, an extended Maxwell system is introduced in this section,
and the connection to the original system (1.1) is made precise. The newly proposed ADI scheme is afterwards
constructed as a perturbed time integrator for the extended system, and the uniform exponential stability result
is stated in Theorem 3.9. This section is concluded with a detailed regularity analysis for the splitting operators
which will become crucial for the error analysis and the proof of an observability estimate.
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3.1. An extended Maxwell system
We consider the coupled linear PDE system

1
O:E = gcurIH—oE in @ x [0, 00),
8tH:—lcurlE—V <1<I>) in @ x [0, 00),
1 [
1 (3.1)
od = iz div(pH) — n® in @ x [0, 00),
Exv=0 pH-v=0 on 0Q x [0, c0),

E(0) =Eo, H(0)=Hy, @(0)=® inQ,

which we call extended or enlarged Maxwell system. The new artificial quantity ® = ®(x,t) € R acts here as a
counterpart to the electric field. The term — curl E namely influences the divergence-free parts of uH, whereas
the gradient of ifb affects the curl-free parts of H, roughly speaking. When establishing the observability of an
associated time-discrete system, the influence of the vector V(i@) is essential for a control of the curl-free parts
of H, see Lemma, 4.6.

The initial datum ® is assumed to belong to H!(Q), and the damping coefficient 7 = n(z) > 0 shall satisfy

n € Wh(Q) with n > 4. (3.2)

In view of the application of the gradient and divergence operators on u in (3.1), we have to impose somewhat
higher regularity assumptions in (1.2) on g than on ¢ and o. During the analysis of the splitting operators
corresponding to the gradient and divergence, we indeed need higher regularity requirements on p to control the
Hessian 0%y in L3(Q), see the proof of Lemma 3.13. Note further that the electric field and the function ® receive
a direct damping due to (1.2) and (3.2). Another crucial novelty about (3.1) with regards to (1.1) is the absence
of Gauss’ law div(pH) = 0. This represents the phenomenon that approximations to the magnetic field obtained
by the considered ADI schemes are usually not divergence-free.

Despite its different appearance, system (3.1) reduces to the original Maxwell system (1.1) if the initial data
are chosen physically reasonable, see Remark 3.6. This is significant for numerical approximations to (3.1) since
usually only approximations to (1.1) are desirable.

System (3.1) is in the following interpreted as an evolution equation on the space X = L2(Q)", being a Hilbert
space with respect to the weighted inner product

E'! E’
H'|,|H? = / (eE'-E* + pH' - H? + 01 ®?) dx,
P! o2 Q
that induces the norm ||-|| on X. Due to the assumptions (1.2) and (3.2), this norm is equivalent to the L2-norm
on (. The norm ||-|| will often be called energy. The corresponding extended Maxwell operator is defined as
E é curl H — ocE
M | HY| := —i curl E — V(ifb) , D(Meyt) := Hop(curl, Q) x Hy(curl, div, Q) x HY(Q).
0] —M% div(pH) — n®

Concerning the coefficients € and p in the regularity and boundary conditions, a remark is in order.

Remark 3.1. The function div(uH) belongs to L%(Q) if and only if divH does because of the product rule
div(pH) = (Vi) - H+ pdiv H and the assumptions (1.2) on u. A similar reasoning shows that the mapping ifb is

contained in H'(Q) if and only if ® is. Regarding the boundary condition for the magnetic field, consult Remark
3.3 in [18]. Analogous considerations also apply to the coefficient €, and will frequently be used later on. %
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Within this framework the extended system (3.1) is interpreted as the Cauchy problem

4 (E E E(0) E,
E H| = Moyt H , t=>0, H(O) = HO € D(Mext); (33)
o o o(0) o

posed on X. For the proof of the classical wellposedness of (3.3), the following density result is useful. Although
it might be well known to experts, we give a proof to make the presentation self-contained.

Lemma 3.2. The space Hp(curl, div, Q) is dense in H(curl, Q).

Proof. Tt suffices to show that every function ¢ € C*°(Q)? can be approximated by a sequence (), in C*(Q)3
satisfying ¢, - ¥ = 0 on 9Q), since the space C*(Q)3 is dense in H(curl, Q)), see Theorem 2.10 in Section 1.2 of [15].

Let i € {1,2,3} and n € N. We employ smooth cut-off functions x?, : [a; ,a;] — [0, 1] with compact support in
[a; + ﬁ, al — ﬁ], that are equal to 1 on [a; + %, a; — %] Denoting the i-th component of ¢ by ¢*, we define the
function

(@) = (X (2:) @ ()Pt x = (21,22,23) € Q.
Clearly, ¢, is again smooth and satisfies ¢, - v = 0 on 9Q. Lebesgue’s dominated convergence theorem implies the
convergence of (¢,)n to ¢ and of the functions
2
3

X3020° — X203
curlp, = [ x,,030" — X210
X2019% — X 020"
to curl ¢ in L2(Q)3 as n — co. O

The next proposition yields the classical wellposedness of (3.3) in X, and its proof employs arguments from
Proposition 3.1 in [18]. Also the undamped case o = n = 0 is considered, where the energy of the corresponding
solutions is shown to be conserved. This is in agreement with the energy conservation of (1.1) for o = 0, see
Proposition 3.5 in [18].

Proposition 3.3. Let ¢, satisfy (1.2). The following statements are true.

a) If 0 =1 =0, then Moy is skewadjoint, and generates a strongly continuous group of isometries on X.
b) Leto,n > 0 be contained in W (Q). In this case Mey is the generator of a contractive strongly continuous
semigroup on X.

In both cases (3.3) has a unique classical solution (E, H,®) € C(]0,00), D(M)) N CL([0, 00), X).

Proof. We show only the skewadjointness of Meyt in the case 0 = n = 0. Stone’s Theorem then yields the remainder
of part a). The subsequent item is deduced via perturbation theory for generators of semigroups, see Theorem
I11.2.7 in [12]. The addendum is standard semigroup theory. So, let 0 =71 = 0.

1) We split the extended Maxwell operator into

E %curlH 0 E E
M, [H| = —%LcurlE—iV@ +| =V | =M [H|+7T[H
@ —idivH —ﬁ(Vu)'H ¢ 0]

for (E,H,®) € D(Mext) := D(Mext), and set D(T) := X. The assumptions (1.2) imply that 7" is bounded and
skewadjoint. Employing perturbation theory for selfadjoint operators, it suffices to show that My is skewadjoint,
see Theorem V.4.3 in [21].

2) The operator Mcxt is clearly densely defined in X. The closedness of Mcxt can be seen by the following
reasoning. Let ((E",H",®")), in D(Mex), and (E,H,®), (E,H,®) in X with (E",H",3") — (E,H,®) and
Mext(E",H”,@”) — (E,f{, é) in X as n — oco. Recall the closedness of the operators div and curl on their
maximal domains in L2, and the continuity of the normal trace operator from H(div, Q) to H~1/2(9Q). Employing
these facts as well as the convergence of (curl H"),, to ¢E and of (— div H"),, to u®, the functions curl H and div H

belong to L2, H-v = 0 on 0Q, %curlH = E and —% divH = ®. It remains to consider the second component of
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Mt (E™, H™, ®"). Since (— curl E" — V®"),, converges in the L2-sense, the continuity of the Helmholtz-projections
implies that both sequences (curl E"),, and (V®"),, converge in L?(Q)3. The closedness of the operators V and
curl on their maximal domains, and the continuity of the tangential trace in H(curl, @) finally show that E belongs
to Ho(curl, @), @ is contained in H'(Q) and —i curl E — di) = H. As a result, M.y is closed on X.

3) Let (E', H', ®'), (E*, H?, ®2) € D(M.y). In view of the boundary conditions for the fields E*, E*, H', H?,
an integration by parts shows the identities

E! E?
M | H' |, | H? =/ ((curlH') - E? — (carl E") - H? — (V@) - H* — (divH")®?) dz
(I)l (I)2 Q

= / (H' - cwlE* —E' - crl H* 4+ @' divH? + H' - V&?) da
Q

E! E?
= - Hl ) Mext H2
ol o2

As a result, My is skewsymmetric.
4) Tt now suffices to show that I+ My has dense range to conclude the skewadjointness of Myy. Let (E, H, ®) €
C2°(Q)7, and consider the system

1 .
E+ - curlH = E, (3.4)
1 1 .
Hf —cuwlEF —V®=H, (3.5)
[ 1
1 v
5 divH =9, (3.6)

corresponding to (I + M )(E,H,®) = (E,H, ®). Inserting the first and third line into the second, the formula
pH + curl é curl H — v% divH = pH + curl E4+ V® =: h e WH*(Q)% N C(Q)? (3.7)
follows. To find a solution of (3.7), it is useful to consider the weak formulation
/Q,uH “v 4 é(curl H) - (curlv) + i(div H)(divv)dz = /th dz (3.8)

for v € Hy(curl, div, Q). The Lax-Milgram Lemma then provides a unique function H € Hp(curl, div, Q) satisfying
(3.8).

4.i) We first want to show that the function %diVH belongs to H?(Q), and we therefore modify the proof of
Theorem 1.1 in [6]. Let ¢ be a function in H?(Q) with % = 0 on 0Q. Testing (3.8) with v := V(, we infer the
equation

/ l(div H)(A¢)dx = —/ (div h — div(pH))( dz. (3.9)
QK Q
By Theorem 3.2.1.3 in [16], the Neumann problem
1
—At+ 4 =divh — div(uH) + " divH in Q,
da
a =0 on 8@7

has a unique solution 4 € H?(Q), satisfying the formula

/ AAC — ¢ dx = —/ (div h — div(uH) + %div H)( dz.
Q Q
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In view of (3.9), we consequently have derived the expression
1
(0 — =divH,A( — ()12 = 0.
i

Since the range of the operator A — I with domain {® € H*(Q) | 42 = 0 on 9Q} coincides with L?(Q) by Theorem
3.2.1.3 in [16], we infer idivH =4 € H?(Q) and dd—y(i divH) = 0 on 9Q.

4.ii) It remains to deduce that the vector %curlH belongs to Ho(curl, Q). Applying an integration by parts to
(3.8), the integral equation

1
/ —(curlH) - (curlv) dx = / (h—pH+V(LdivH)) - vda
Q¢ Q !

follows for all vectors v € Hp(curl,div, Q). This means that 1 curlH is an element of H(curl, Q). Lemma 3.2
further yields that the relation is true even for all v € H(curl @), and Lemma 2.4 in Section I of [15] implies that
1 curl H is contained in Ho(curl, Q). Thus, H solves (3.7) in L?(Q)? in strong form.

4.iii) Let finally E := EF écurlH € Hy(curl, Q) and @ := P + idivH € HY(Q). The vector (E,H,®) then

belongs to D(Mext) and solves (3.4)-(3.6). O

In general, the solutions of (3.1) do not solve the original system (1.1). For appropriate initial data, however,
the associated solutions indeed satisfy the original problem. In the following this is deduced by means of subspace
theory for semigroups. Define the space

Xaiv := {(BE,H,®) € X | div(uH) =0, H-v =0 0n 9Q, divE € L*(Q), ® = 0},

now incorporating Gauss’ law of the absence of magnetic monopoles, compare [9]. To prescribe the latter mentioned
law, and to obtain solutions of (3.1) that are more regular, we use the space

Xl = D(Mext) N Xdiv

with the norm

E 2

E 2
H =|(H + ||div(eE) |7 .
P X,

C/ p(rtene)

The space X; is complete, since Moyt is closed on X, the divergence operator is closed with its maximal domain,
¢ satisfies (1.2), and the normal trace operator is continuous on H(div,Q). The following lemma establishes
a regularity result for the space X;, being important for the regularity analysis of the solutions of (3.1), and
eventually also for (1.1).

Lemma 3.4. Let ¢, i, 0 satisfy (1.2). The space X1 embeds continuously into HY(Q)". In particular, the norms
on both spaces are equivalent.

Proof. Let (E,H,®) € X;. Since the spaces Hy(curl,div,Q) and Hr(curl,div,Q) embed into H*(Q)? and u
satisfies (1.2), the space X is a subspace of H!(Q)".

It remains to show the continuous embedding property. Precondition (1.2) is used below without further notice.
The product rule for the divergence operator and Gauss’ law imply the identities

1
divH = ——(Vyu) - H, div(¢E) = e divE + (Ve) - E,
I
resulting with Young’s inequality in the relations
. 2 1 ? . 2 ||VMH20 2
0=lldivHf, — |12 (V) B > faivHE - g (3.10)
L2

Idiv(eE)|If> = [le divE[|fz + 2(c divE, (Ve) - E)rz + [|(Ve) - Ellf,

1 . 2 2 2
25 ledivE[lr: —2[|Vellp [E[L. - (3.11)
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The desired embedding is now a consequence of (2.1), the norm equivalence of ||| and ||-||;2, and the relations
(3.10) and (3.11). O

To employ the subspace theory for semigroups on Xi, it is useful to consider the part of My in X7, denoted
by Mext,1. The latter has the domain

D(Mexs1) = D(M2

ext) nXi.
Indeed, the inclusion from left to right is clear by definition of X;. For the reverse inclusion, let (E,H,®) €
D(M2,) N X1, and put (E,H,®) := M. (E,H,®). It suffices to show that the latter function is an element of

ext

Xdiv- The product rule implies the identity
. 1
divE = ——(Ve) - crlH — (Vo) - E — 0 divE,
€

so divE is contained in L2(Q). The field H further satisfies the magnetic conditions, since ® = 0 and (E, H, &
belongs to D(Mext). The identity ® = 0 finally is a consequence of (E,H, ®) belonging to X;. Altogether, (E, H,&
is an element of X, and (E, H, ®) is contained in D(Mexy 1)-

Using Proposition 2.3 in [9], we can now show the wellposedness of (3.3) as an evolution equation on X;. In
view of Lemma 3.4, the extended system consequently has solutions within H(Q)", provided that the initial data

are chosen appropriately, see Remark 3.6.

)
)

Proposition 3.5. The part Mcxi,1 of Mext generates a Co-semigroup (etMcxt=1)t20 on X1, being the restriction of
(etMext), o to Xq. The semigroup moreover satisfies the bound HetMe"‘vl H%(Xl) < Cstaba (1 + 1) fort > 0 with a

uniform constant Cspap,1 > 0.

Proof. 1) The first goal is to show that the restriction (e!Mext1|y );>0 is a strongly continuous semigroup on X;.
Let (Eg, Ho, ®g) € D(Mext,1), and consider the extended Maxwell system (3.1). Denote further the solution of the
original system (1.1) with initial data (Eg, Hp) by (E,H). The magnetic field H then satisfies Gauss’ law for all
t > 0, and thus (E,H,0) is the unique classical solution of the extended system (3.1). Proposition 3.3 then yields
(E(t),H(t),0) = e!Mext (Eg, Hy, ®¢) for t > 0. Proposition 2.3 of [9] and (1.2) also imply that the function div(E(t))
is contained in L%(Q) for ¢t > 0. As a result, (E(t),H(t),0) is an element of X7, and the family (e!Mext),~( leaves
X7 invariant.

To show the desired strong continuity in X3, we note that (E(¢),H(¢),0) — (Eo,Ho, ®9) as ¢ — 0 in the
topology of D(Meyt) by Proposition 3.3. The statements of Proposition 2.3 in [9] provide the convergence of
div(eE(t)) to div(eEg) as t — 0 in L2(Q). Altogether, (E(t), H(t),0) — (Eo, Ho, ®¢) in X; as t — 0. This means
that (e'Mext|x, );>0 is a Co-semigroup on X; with generator Moy 1, see Subsection I1.2.3 of [12].

2) In consideration of Proposition 2.3 in [9] and the contractivity of (e!Mext),~q on X, the estimates

[div(eE(t))|l> < |div(eEo) |2 + Ct[|(Eo, Ho, 0)]lp2 ,
2 2 2 2
I(E(t), H(t), Do) llp(ar..) = [|(Eo, Ho, Po)||” + ||t Myt (Eo, Ho, Do)||” < [|(Eo, Ho, Po)l|pa

ext)

follow with a uniform constant C' > 0, and yield the asserted linear growth restriction. ]
The following remark is crucial for the error analysis of the desired exponentially stable scheme.

Remark 3.6. A direct consequence of Proposition 3.5 is the following wellposedness result. Let (Eqg, Hy, ®¢) €
D(Mexy,1). System (3.1) has a unique classical solution (E, H, ®), belonging to the space C([0,0), D(Mext,1)) N
CL([0,00), X1). In view of Lemma 3.4, (E(t), H(t), ®(¢)) is an element of H!(Q)" for every ¢ > 0, and the proof of
Proposition 3.5 further reveals that the mapping (E, H) is the unique solution of the original system (1.1). ¢

3.2. Two splittings for the extended Maxwell system

To obtain a splitting for the extended Maxwell operator, the curl-operator is divided into

0 —03 o
curl= [ 05 0 —01| =% —%,
-0y O 0
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employing the two operators

0 0 O 0 05 O
(51 = 83 0 0 and 652 = 0 0 81
0 o 0 d 0 0

with their maximal domains
D) = {uc L2QF | Guc L2Q)),  je{1,2).
An important relation between %1 and %5 consists in the integration by parts rule
(Gau,v)12 = —(u, €10)L2 (3.12)
for functions u = (u;)3_; € D(%,) and v = (v;)3_; € D(%1) with
(trp,ug ) (trr,vs) = 0 = (trpguz)(trravr) = (trp, us)(trp, va),

compare Section 4.3 of [18]. Note that the corresponding traces are well-defined since both functions have the
required partial regularity by definition of D(%7) and D(%?2).
The parts associated to the original undamped Maxwell system are then contained in the two operators

0 1o 0 —2% 0
A=(26 0 0 and  B:= -3¢ 0 0], (3.13)
0 0 0 0 0 0

which are equipped with the domains
DA)={(E,H?) X | (6 1H,6E,®?)c X, Ey=00onTy E;=00nT3 E3=00nT4},
D(B) = {(B,H,®) € X | (6H,A1E,®) € X, E; =0on T3, Ex=0onTy, E3=0onI).
These operators essentially coincide with the ones in [18], and thus Lemma 4.3 from [18] immediately shows the

following statement, which is fundamental for the unconditional stability (in the numerical sense) of ADI schemes.

Lemma 3.7. The operators A and B are skewadjoint on X. In particular, the operator (I — L)™' is contractive,
and the Cayley- Transform

SA(L) = (I + %L)(I - %L)_l
is an isometry on X for T >0 and L € {A, B}.

Let i € {1,2,3}, and let e; € R? denote the i-th standard unit vector. In order to deal with the ingredients of
system (3.1) related to the new artificial quantity ®, and to preserve the linear complexity of ADI schemes, the
operator

E 0
D;|H]| = *31‘(1%@)61‘ (3.14)
® *M%ai(MHi)

with domain

D(D;) ==12(Q)° x {He L*(Q)’ | 9iH, € L*(Q), H; =0 on I} x {® € L*(Q) | 9;® € L*(Q)}
is employed. It is important to note that the boundary condition for the electric field (respectively magnetic field)
is distributed onto the domains of the operators A, B, D1, Do, D3. This is done in such a way that the imposed

partial regularity ensures that all arising traces exist.
These operators at hand, the extended Maxwell operator My is split into the sum

—0 %curl 0 —c 0 0
— 4 curl 0 V() |=[0 0 0] +A+B+Di+Ds+D;
0 —ﬁ div(p-) -7 0 0 —ng

on the intersection D(A)ND(B)ND(D1)ND(D2)ND(D3) C D(Mext). The next lemma establishes the statements
of Lemma 3.7 for the splitting operators D;, and will frequently be used in our arguments.
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Lemma 3.8. Let i € {1,2,3}. The operator D; is skewadjoint on X, and consequently the Cayley-Transform
Sr(D;) == (I+3D;)(I —5D;)~" is an isometry on X for 7> 0.

Proof. The operator D; is clearly densely defined on X. The closedness of D, further is an immediate consequence
of the closedness of the weak derivative d; with respect to its maximal domain D(8;) in L?(Q), the boundedness
of the trace operator trr, on D(9;), and the assumption (1.2) on p.

We next show that D; is skewsymmetric. Let therefore (E',H', ®1), (E*, H? ®2) € D(D;). In view of the
boundary conditions for Hl1 and Hf, an integration by parts leads to the identities

E! E?
D[ |12 ) | = - [ o(iet? + Lot et do = [ (2610,(uH?) + uH1O;(L0%) do
ol e 0 u B Q" B
E! E?
— Hl 7-Di H2 ,
ol P2

meaning that D; is skewsymmetric and in particular dissipative. 3
It remains to show that D; is extended by —D;. Let (E,H,®) € D(D;), and abbreviate (E,H, ®) :=
Dy(E,H, ®). Since D} is adjoint to D;, the formula

A ~

E E E E . )
H|,|H||=|D:|H|,|H]|]| = —/ (10; (5, @)H; + ;0 (uH;)®) dar (3.15)
P b ) P Q

follows for every vector (E,H, ®) € D(D;). Choosing E = H = 0, we conclude the relation

—/ u&-(i@)ﬂi dz = / pdd dx

Q Q

for every function ® € L2(Q) with ;® € L2(Q). The function d;(xH;) thus belongs to L2(Q), and satisfies
Hl—gai(uHi) = ® as well as pH; = 0 on I';. Take now ® = 0, E = 0, and H; =0 for j # ¢ in (3.15). In this way the
equation

—/ %8L(ILLH,)&)C1£:/ uHiI:Iidx
Q Q

is derived for all H; € L?(Q) with §;H; € L?(Q) and H; = 0 on I';. As a result, Bl(ifi)) is contained in L2(Q) and
H, = 81(%@) The assumptions (1.2) on g finally imply that (E, H,®) is an element of D(D;), and hence D is
skewadjoint. O

By means of Lemmas 3.7 and 3.8, we can introduce an important ingredient of the exponentially stable
ADI scheme, namely artificial damping. We therefore employ an operator from [14]. Let 7 € (0, %) and L €
{A, B, D1, Dy, D3}, and consider the operator I — %:L2(I - %QLQ)_l. This mapping is clearly well-defined since
the squared operator L? is negative by Lemmas 3.7 and 3.8. The same results further imply that the inverse

-3 2
V(L) := (I - A= L) ) (3.16)

is bounded on X, as the linear operator %SLz(I - T;Lz)_1 =7(—I+ (I —%ZL)"'(I + ZL)™') has norm less than
one.

The established framework now allows to formulate the following two schemes for the approximation of the
extended Maxwell system (3.1). Let n € Ny, and let 7 > 0 denote the time step size. We first consider the
undamped case, where 0 = 1 = 0 and the energy of system (3.1) is conserved. It is then natural to approximate



12 KONSTANTIN ZERULLA

the solution of (3.1) by a scheme that is also energy conserving. Beginning with initial data (Eg,Hg,fbg), the
solution (E,H, ®) of (3.1) at time ¢t = (n + 1)7 is approximated by computing

En+1 En
H*' | = 5,(D3)S, (D2)S- (D) (B)S, (4) | H | | (3.17)
(I)?—',-l q)g

where S.(L) = (I + ZL)(I — L)™' again denotes the Cayley-Transform for L € {A, B, Dy, D3, D3}, and the
subscript ¢ stresses that the conservative undamped problem is considered. For the Maxwell system (1.1), a similar
scheme was originally proposed in [5]. Here it is mainly used to deduce the uniform exponential stability of the
succeeding scheme. In view of Lemmas 3.7 and 3.8, it is clear that (3.17) defines an energy conserving method.

Consider now the damped case, i.e., let o,n € W1>°(Q) with o,7 > § > 0. Starting with an initial value
(E°, H®, @), the solution of (3.1) at time ¢ = (n 4 1)7 is approximated via

E"! e 0 0 3 E"
H'' | =] 0 I 0 H(ST(DZ-)VT(DZDST(B)VT(B)ST(A)VT(A) H" |. (3.18)
P+l 0 0 e ™) =1 "

The product sign here means that the respective operators are concatenated such that their indices decrease from
left to right. During the error analysis, we will assume that the start value (E°, H°, ®°) of (3.18) and the initial
data (Eg,Hp, ®g) of (3.1) coincide. To state the main result about uniform exponential stability of (3.18), we
define the number

Vel +20Vull 0+ =) 146

y = 252 +Cs 5

employing the Sobolev constant C's > 0 from the embedding H*(Q) < L%(Q), the Hermitian 02y of u, and the
number ¢ from (1.2).

Theorem 3.9. Let ¢, i, 0,n satisfy (1.2) and (3.2), and ¢ € (0,1) be fized. Let further (E™, H",®™) be the iterates
of (3.18) for initial data (E°, H’,®°) € L*(Q)7. There are constants K,w > 0 with

2
(10 mlls + SIVRIZ) Il = 0,

E"\ | B\ |
H" < Ke ™ || H , n € N,
o o0
for all step sizes T € (0,( - min{ﬁ—\/f,% . The numbers K,w depend only on e, p,o,m,¢ and Q.

Theorem 3.9 is proved in Section 5, and the proof is heavily based on an observability inequality, being deduced
in Section 4 for scheme (3.17).

Remark 3.10. 1) Let (EO,HO,q)O) € X;. Theorem 6.5 and Remark 3.6 on the one hand imply that the ap-
proximations (E", H", ®") converge to the solution (E,H,0) of the extended system (3.1) with (E, H) solving
the original problem (1.1). Theorem 3.9 on the other hand yields in this situation that the energy of the iterates
(E",H") decays in a uniform exponential way. As a result, Theorem 3.9 serves as the time-discrete counterpart
of the exponential stability result for (1.1). Another consequence of this theorem is the unconditional (numerical)
stability of the damped scheme (3.18) in X.

2) The restriction on the time step size is due to technical reasons. The first condition 7 < ,\{/—f arises when we
consider the splitting scheme in a subspace Y of H'(Q)7, see Subsection 3.3. The second upper bound on the time
step size is employed during the proof of the observability estimate to account for boundary terms in a discrete
analogue of integration by parts. %

3.3. Analysis of the splitting operators

The proof of an observability estimate for (3.17) requires a subspace of X consisting of H!-regular functions
with appropriate boundary conditions. In analogy to [9], the space

Y :={(E,H,®) cH(Q)" |Exv =0 H-v =0 o0n 0Q}
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is employed with the inner product

E E E E

3
H|, [H =((H],|H +Z/(a(ajE)-(ajE)+u(ajH)-(ajﬁ)+u(aj<1>)(aj<i>)) dz,
o o v ® ) =1’Q

which induces the norm ||-||,-. Note that X; is a subspace of Y, and that Y is contained in the domains of all
splitting operators. It will be crucial to ensure that the schemes (3.17) and (3.18) yield iterates within Y if the
initial data are chosen appropriately. Therefore, the parts Ay, By, and D;y of A, B, and D; in Y are considered
for i € {1,2,3}. In view of (3.13), (3.14), and (1.2), the identities

D(Ay) :={(E,H,®) € Y | &1H,%E € H'(Q)*, (61H) x v =0, (%E) - v = 0 on 9Q},
D(By) = {(E,H,®) € Y | &H,5.E € H(Q)?, (6,2H) x v =0, (AE) -v =0 on 9Q},
D(D;y) = {(E,H,®) €Y | 9;H; € H(Q), 9:® € H(Q), 0;® =0 on I';}

Q
Q

readily follow. The operators Ay and By are essentially analyzed by Eilinghoff and Schnaubelt in [9], and their
Proposition 3.6 yields the following crucial result.

Lemma 3.11. Let L € {£A,+B}. The part Ly of L in'Y has (ky,o0) in its resolvent set, generates a strongly
continuous semigroup, and (I — 7L)™ |y coincides with (I — T7Ly)~t. The latter operator satisfies the estimate

1 1
< — T € (0, —).

-1
17 = 7Ly) ~1—Try’ Ky

BY)

There moreover is a constant 19 € (0, ﬁ), depending only on Ky, such that the corresponding Cayley-Transform
S-(Ly) can be bounded by

18- (L)l vy € €7, 7€ (0,70]

The major goal of this subsection now consists in the deduction of Lemma 3.11 for the remaining splitting
operators. This will mainly be done in the next three lemmas by transferring the arguments of the proofs for
Lemmas 3.3-3.5 in [9] to the mappings D;.

Lemma 3.12. Leti € {1,2,3}. The operator D,y is closed and densely defined in'Y .

Proof. The operator D;y is closed in Y as the part of a closed operator. It remains to approximate a fixed vector
(E,H,®) € Y by a sequence in D(D; y). Since only the components H; and ® need to be considered, we first look
for functions H} in H'(Q) with §;H} € H'(Q) and H} = 0 on I';, that converge to H; in H'(Q). The arguments
in part 2 of Lemma 3.3 in [9] provide such functions. Adapting part 3 of the proof for Lemma 3.3 in [9], we further
obtain mappings ®" in H'(Q) with 9;®" € HY(Q), 9;®™ = 0 on I';, and ®" — & in H*(Q). Let finally H} := H;
and E" := E for n € N and j € {1,2,3} \ {i}. Employing (1.2), (E",H",®"),, is the desired approximating
sequence in D(D; y). O

The higher regularity assumption (1.2) for u is also essential in the proof of the next lemma.
Lemma 3.13. Let i € {1,2,3}. The operator £D;y — ry I is dissipative in X.

Proof. We only consider the operator D; y. Let (E,H,®) € D(D; y). In view of the boundary conditions for H,,
Lemma 2.1 in [9] shows that 9;H; = 0 on I'; for j # i. Employing now also the boundary condition 6;® = 0 on I';
in an integration by parts, the identities

Q Q
are derived for j € {1,2,3}. Since D; is skewadjoint on X, we further conclude

E E

3
® i) oe
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:—Z/ ((0;0:%)0;H,; + (0;0,H,); ®) dx—l—Z/ U (0,0)0;H; + U2 (0;H;)0;®) d

UH;0,P — 2(0;u) ’“H 0,;®) dx (3.19)

—Z/Q (1(0;0: )P0, H; + (9%
j=1

The above calculation implies that the first integral on the right hand side of (3.19) vanishes. By means of the
assumption (1.2) on p, the second integral and the last expression in the third integral are also easily estimated
from above by the norm of (E,H,®) in Y. For the two remaining terms in the third integral, we use Sobolev’s
embedding H(Q) < L5(Q) with constant Cs > 0. Applying also Holder’s inequality, the estimates

Zj’aa>wﬂdx<gﬂ¥wm+ NP W : AT

2

E
2
(Nl + 2wl ) 2 |

CS 203 5 o

Y

are obtained. Recall that 92y denotes the Hessian of p. Treating the last remaining term in the same way, we

altogether arrive at the desired relation
2

E E E
Di H , H SKJY H
o)/ \o/), o/,

Lemma 3.14. Leti € {1,2,3}. The operator (1 + ky)I £ D;y has dense range in Y.

Proof. 1) We only treat the case ¢ = 1. It again suffices to consider only the operator (1 + ky)I — D1y, and to
show that its range contains the domain D(D; y ). For that purpose, let (E H,®) € D(D;y). The goal is to find
a function (E,H,®) € D(D,y) with ((1+ ky)I — D1y )(E, H,®) = (E, H, ®), meaning

(14 ky)E =E,

(1 + ij)Hj = Hj fOI’j S {2,3},

1 .
(1+ ky)Hy +81(;¢’) = H;, (3.20)
1 “
(14 ry)® + Eal(qu) = .
Formally plugging the fourth line into the third leads to the identity
1 1 1 - 1 1.
Hy — o0 (5 0iH) = - ou(Ed) = i,
1 (11 ry)? 1(,u3 \uHy) 1+ ry 1 1+ iy )2 l(H ) 1
being equivalent to the relation
1 1 5
il e )Zale = hy, (3.21)
where H; := uH;i, and the operator 97 wi=0 381 is equipped with the domain
(5‘1#) = {u e L3(Q) | du,&uc L3(Q), u=0onT}. (3.22)

Note that the function h; belongs to HY(Q) since (E, H,®) is contained in D(D1,y). The domain
D(0y) == {u e L?(Q) | dyu € L*(Q), u=0on Ty}

will also be employed.
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2) The left hand side of (3.21) is associated with the operator
1 1
Liw:=—w— ——=0? w
' po (L my)2 00
As in the proof of Lemma 4. 3 in [18], the Lax-Milgram Lemma yields a unique function w € D(Ly) satisfying Liw =
hi. We now choose E = 1+H L E H, = iHl = iw, H; = 1+H H for j € {2,3} and ® := 1er( — M—lgal(,uﬂl)).
It only remains to show that the vector (E,H, ®) belongs to D(Dl’y), i.e., that 9;H; and 0;® are elements of
Hl(Q) and 81(13 =0on Fl.
Let k € {2,3} and ¢ € H%(Q). The assumption (1.2) on p implies that 97w belongs to L?(Q), and thus
5%#5;610 = 5‘;68127#10 — 01 (5‘k#—13,)5'1w is an element of H™1(Q). The same is true for the distribution 9;0zw. The
relation Liw = h; and integration by parts thus imply the equations

<%8kw — m[ﬂ)iﬁkw,@}[ﬁmg = —/Q (wak(% ) + (1+Hy)2 (31w)8k( 61@))

w e D(D?,) = D(L).

= /Q(hlakgo + (1—‘,—& )2 (81 ;,L )akQO + w@ak + (1_;'_M )2 (81w)ak( 81410))
_ /Q (h10hp + ey (910) (910)Oh & + wipdy L) da

:/Q(@khl)<P—(8k Jwe da + 7137 (01((Ok 35 )01w), ©)p(6y)- x Doy ) -

Since H2(Q) is dense in D(d;), w satisfies the formula
1 1 1 1

—Ohw — ———=0% 0w = Ophy — (Op—)w + ————
L k (1+ ky )2 1,uY% k11 (kﬂ) (1+ ry )2
in D(01)*. The function w is next approximated by regularized functions.” The mappings h; and p are first
extended to functions hy € HY(R?) and i € WH°(R?) by means of Stein’s extension operator. The extensions are
then restricted to [a;,a]] x R? =: ). We further generalize L; to functions on @ by defining the operator

1 1

B R T W e
The Lax-Milgram Lemma now yields a unique map w € Z?(El) with L@ = hy. By uniqueness, W|g coincides
with w. To transfer the arguments leading to (3.23) also to @), we consider the domains
D(9y) :={u e L2(Q) | iu € L3(Q), u =0 on {aF} x R?},
D) ={uel?Q) | huel’(@)},  ke{2,3}.
for the partial derivative operators 9; and J. We then derive as in (3.23) the formula

1 1 1 ~ 1 1 1 ~
—h) — —m O — v = — — )W -_ — D =: .24
ﬂakw i+ /ﬁ:y)2al e 010k = Oxhy (akﬂ)w + TETE 01 (0% 3 YO x(h1) (3.24)

81(6]@%)8110 = X(hl) (323)

1

alﬁalg, g €D(Ly) = {ueL?Q) | du,d?u € LA(Q), u=0on {aF} x R%}.

in D(él)* .
The next step is to mollify w. Let pf : R — [0,1] be the smooth standard mollifier with support in [-+, 1] that

acts on x, and denote the corresponding convolution operator by MF for n € N, i.e., M¥ f := pk « f for f € L2 (Q)
The convolution operator with respect to p¥(—) is called M* . In view of the equation

<M7I«ffa S0>D(51)*xp(51) ={/ Mﬁn@>D(51)*xD(51)a fe D(él)v

and the inclusion M* (D(;)) C D(d,), the operator M¥ can be extended in a continuous way to the space D(d;)*
via

(M f, ) D61y xp(@y) = (s _n@D(al)*XD(al), feD@)",p D),

We here close a gap in the proof of Lemma 3.5 in [9].
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with ||Mkf||D(61 < | fllp@,)- for f € D(d1)*, compare the proof of Lemma 4.1 in [29]. Standard mollifier theory
further yields the convergence result

‘<M7]7,€f - f7 SO>D(51)* XD((§1)

and thus M*f — f weakly* in D(d;)* for f € D(9;)*. Define now 1, := MFw for n € N. The functions @, and
O, then belong to D(il) by construction. Note further that @, — @ in L2(Q) by classical mollifier theory.
We will next show that (0w, ), has a weak limit in D(d;). A computation first reveals the identities

ilakﬁ]n = %CrthT’f’uN} - 1+K ) 81 8kM 61w
= (éakMku? - M’“(%é)kw)) + My (2060 — 7rmye
+ (H,W)z (M ( 5 0 010) — 331@1\/[5(517«0))
=€ln + €2.n + €3,n- (326)

_ ‘(f, M0 = ©)pia,yexpiy| = 0, 1 — o0, (3.25)

81 818kw)

The summands e;,, and ez, converge to zero in D(d;)* as n — o0 by Theorem C.14 in [4]. In consideration of
(3.24) and (3.25), the second summand e , tends weakly” in D(91)* to x(h1). In the following we extrapolate L;.
Since L is the associated operator to the bilinear form
= 1 1 1
2
D(@l) — R, (wl, wg) — (ﬁwh wg)Lz(Q) + m(ﬁﬁlwl,ﬁlwg)p(@),
which is closed, symmetric, positive definite and densely defined on L2 (Q)z, Theorem VI.2.7 in [21] shows that L
is selfadjoint on L2(Q)). Theorem VI.2.23 in [21] further yields the identity D((:)l) = D(E1/2) Denote by L2(Q),
for ¢ € Q\ {0} the fractional extrapolation space with respect to L;, and let (L;)~1 be the bounded inverse of the
extrapolation operator (L1)_1 : L2(Q) — L2(Q)_;. Employing the isomorphies

D) = D(LY*)* 2 L3Q)_1 )0,

see Theorem 1.4.12 in [2], we infer that (L;)~1 : D(d;)* — D(;) is bounded. The functions dy1, hence converge
weakly in D(d;) to (L1)"1(x(h1)) =: v as n — oo. This in particular implies weak convergence in D(d;)*. By
definition of w,,, however, (Oxwy, ), also has the weak limit dxw in D(gk)*. By uniqueness, 0w coincides with v
and belongs to D(d,).

Recalling the choice Hy = iw = (% W)|g, both functions H; and 9;H; are contained in H'(Q), and H; = 0 on
Fl.

3) The results of Step 2) show that & =

the relations

(@ — ﬁal(qu)) belongs to H'(Q), and system (3.20) leads to

1+Iiy

1 1 1. 1 . 1
61;(1’ = 1 n Koy (81;@ — 81561,UH1) = H1 - (1 + I*iy)Hl S Hl(Q), 81;@ =0 on Fl.
Altogether, (E,H, ®) is an element of D(D;.y) and satisfies ((1+ xy)I — Dyy)(E, H, ®) = (E, H, ). O

The succeeding corollary is a conclusion of Lemmas 3.12-3.14, and is crucial for the stability of the schemes
(3.17) and (3.18) in Y.

Corollary 3.15. Leti € {1,2,3}. The resolvent (I+7D;y)~':Y — D(D;y) exists, coincides with the restriction
of (I £7D;)~t to Y, and is bounded by
1

s

for T € (0, i) There further is a constant T9 € (0, ﬁ) with

1S (Dix )l sy < €7

for T € (0,79).
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Proof. Lemmas 3.12-3.14 at hand, the same arguments as in the proof for Proposition 3.6 in [9] imply the asserted
statements. ]

We can choose the same constant 75 in Lemma 3.11 and Corollary 3.15. To conclude that the iterates of the
damped scheme (3.18) stay in Y if the starting value is chosen within Y, it remains to show that the damping
operators from (3.16) restrict to operators on Y.

Lemma 3.16. Let 7 € (0, min{1, ;/—f}) and L € {A, B, Dy, Do, D3}. The operator V(L) leaves Y invariant.

Proof. 1t suffices to consider the case L = A since all others can be treated in a similar fashion. Employing the
identities
3

7_2 7_2 + 7_3

2
(7T a2 T a1y o T a2y 2\—1
Vi) = (- Tt - Ty = - T - T
/72 & 73 V72 L 73
— (I + Ayt TTMA)”(I — TAYI - TTMA)* (3.27)
on X and Lemma 3.11, the inclusion V;(A4)(Y) C Y directly follows. O

Besides its uniform exponential stability and convergence with order 1, see Theorems 3.9 and 6.5, the proposed
ADI scheme (3.18) has only linear complexity. The next remark deals with this issue.

Remark 3.17. We here deduce that essentially only one-dimensional elliptic problems have to be solved implicitly
in each iteration of (3.18). Formula (3.27) already leads to the representation

E"T! e 0 0 3
a = o0 1 o H((1+gpl.)z(Hi@Di)flg,@Di)fl)(Hgg)z
ortl 0 0 e ™) i=1
E’I’L
I+ BTN - YT BY N 4 A+ T AN - YT AL [ HY |, neN,
q)n

of scheme (3.18). The main effort in the evaluation of (3.18) consequently consists in the implicit steps due
to the involved resolvent operators. Since it is well known that the application of the resolvents of A and B
leads to essentially one-dimensional problems, see [24, 33, 18, 9], we deal only with the operator (I + AD;)~! for
AE (i)

Similar to [9], we restrict ourselves to the case of initial data (EO,HO,(I>O) € Y. Lemmas 3.11 and 3.16, and
Corollary 3.15 then show that all iterates of (3.18) remain in Y. In particular, the resolvent operator is applied to
a vector (E,H,®) €Y. Let (E,H,®) := (I + AD;)"'(E,H,®) € D(D; y). The definition of D; then leads to the
system

E=E,
H,=H; forjec{2,3},
- 1~
H, — \0;(~®) = Hy,
o)
- A -
P — Eﬁl(qu) = o.

In view of the above regularity considerations, the last identity can be inserted into the third to obtain the
formula

- 1 . 1
H1 — )\Qal(ﬁalqu) = H1 + )\81(;@)

As a result, a sole one-dimensional elliptic problem has to be solved for the evaluation of (I +AD;)~!, and all other
calculations can be done explicit. O
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4. A UNIFORM OBSERVABILITY INEQUALITY

This section is devoted to the derivation of an internal observability estimate for the conserving scheme (3.17).
Ideas from [26] for the continuous setting will be employed, and the most important ingredient of our arguments
is a discrete version of the multiplier method. Before we state the observability inequality, however, we divide the
scheme (3.17) into appropriate substeps and derive useful difference equations.

4.1. Difference equations for the conserving scheme
Let n € Ng, i € {1,2,3}, and 7 € (O,min{%7 T\/E}) We divide the scheme (3.17) into the substeps

E! E7\ (E;? Ep\ (ER E; 2
HY =1 -ZA) " (HL|; [HP? =T +34) (HM | |HY? =T -%B)"" | H? |; (4.1)
Pt 7 P2 Pt n3 P2

4 3 3421 2424 4424 3421
E? EZ E? + z' E? + zv E? + zv E? + z,
H | = +3B) [HM |, (B3| =1 - 3D) | H22T20 | | B2 | = (T + 5Dy) | HEA T
q)n,4 (bn,B (b'ri,3+2i (I)n,2+2i (I)n,4+2i (I)n,3+2i

to derive crucial relations between the succeeding iterates (E”, HZ, ®”) and (E"™', H'™' ®7+1). From now on we
assume in this section that the initial data (E2, HY, ®9) belongs to Y, and the next remark recalls the resulting
consequences of this assumption.

Remark 4.1. Lemma 3.11 and Corollary 3.15 imply that all intermediate steps and the next iterate of (3.17) remain
in Y. The substeps with odd index are even contained in the respective domain D(Ay ), D(By ), or D(D;y) for
i € {1,2, 3}, respectively.

The remark is crucial for the proof of the observability inequality for (3.17), since it enables integration by
parts with vanishing boundary integrals, roughly speaking. The stated regularity facts also justify the following
calculations in L2,

Denoting the I-th component of the vector H?’3+2i by HZ’IH% and the [-th standard unit vector by e;, the
identities

1
BB (E By - B Lo
n,2 n _ n,l n,2 n _ 1 n,1
H? +H" | =2 (@ |, H'? —H! | =7 | 16EM |, (4.2)
q)n,2 + o (I)n,l (I)n,2 —_pn 0
c c c c c
4 n,2 1 n,3
En,4 + En,2 En,3 En, _ E s 7(52H s
c c c c c £ c
H+H | =2 (HY?, H' —H? | = -7 | 2GE |, (4.3)
q)n,4 + (I)n,Q (bn,B @n,él _ (I)n,Z 0
c c c c c
En,4+2i + En,2+2i En,3+2i En,4+2i _ En,2+2i 0
c c c c c .
HOA2 2| g [ et HA 2 {2t | = | 0i( 00 ey (4.4)
. . . . . %
(b?,4+2z 4 q)?,2+21 (I)?,3+2'L @274+21 _ (1)2,24»27, ﬁaz(‘uHZ,f-‘r 1)

immediately follow from (4.1). The relations (4.1)-(4.4) and EZ™ = E* then lead to the difference equations

L - Ep) = LB B + LER? - B = - LGHD 4 L Hy!

= —1GH? + L6 GE” + 16H)? — L6 LGE!, (4.5)
THYT -HY) = LHT =P+ LHP - HP?) + L(H - HY)
1dn,5
al ,fq)? 7 3 1
= — [ 22,207 | - LGEN + LHED (4.6)

1 Hn,9
83ﬁ¢c
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a 1 (bn 5
,u,
= — | 02,007 | - LGEN? + SO LIGH + LGEN — L6 aHD (4.7)
a (I)n .9

Another consequence of (4.1)—(4.4) and E"T' = E™* are the identities
2B+ EY) = 5 (B + YY) — (B - BY) = EP® - S6GH - ZaHY,
S H) = LI DY) 4 (D ) - L (HD )

(91 (I)nS
__T (9 (I)n7 +Hn,2_L<gEn,3_L<gEn,l (48)
’ (9 (I>n9 ¢ 2p V1 e 2p P28c - .

Inserting these formulas into (4.5) and (4.7), and using the splitting relation curl = % — %2, we have thus derived
the fundamental difference equations

81%<I>?>5
LEM —E)) = £ cwl(H ™ + HY) + £ curl 82%(1)2‘7 — LG GE + L6 L6 E”, (4.9)
o
8 (I)" ,5
THIT -HY) = -5 cwll(EN + EY) + L6t GH — TE e H — | 02 #<I>" . (4.10)
o

These identities correspond to a perturbed discrete version of the homogeneous extended Maxwell equations. In
view of (4.10), it is useful to have yet another representation of the last expression on the right hand side. From
(4.4) the auxiliary relations

207° = &0 + ot = 2070 4 L0y uHY,
2077 = 18 4 P10 = 296 ach s
2079 = o 4 @18 = 2005 — Lo uHY = 2000 — 20,y — T 05 HL

follow, and we conclude the result

O Lo O 501 Y
8 #(I)n T — V(ﬁ@?’ﬁ) + % _82 382NHZ27 X (4.11)
3 #(I)Zg —283 3(92/LH 83 %33HH

The last formula means that the vector (81#1)?’5,82ﬁ¢2’7,83ﬁ<1>?’9) is the gradient of a function plus some
higher order error term. This observation is important when dealing with orthogonality properties of certain
Helmholtz decompositions.

It remains to deduce a difference equation for ®7. We first note the identities H']' = HI'P, HY = H224 ,

H”+1 HZ’;, HZ?? = Hg’gl, and obtain from (4.2)-(4.4) the supplementary relations o
2HLY = HY o+ H' = HO o+ (HY - HD) o+ (HY - HE))
=H' + HL, - Z(GE) + Z(GE! ),
2Hy = H' + H, — Z(GEN )y + Z(GED),,
2H.y = Hif' + HY; — Z(GE)s + Z(GEN)s.

Together with the formulas on the right hand side of (4.2)-(4.4) and in particular the relation ®** = &7, we thus
infer the remaining difference equation

L@t — o) = —LoyHY — LoyuH]Y — L osuHY
= — 5 div(p(HT + HY)) + 555 divAED® — T divGE]D,
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corresponding to a perturbed discrete version of the differential equation for ® in (3.1). It is further equivalent to
the crucial divergence identity

sz div(p(HT + HY)) = 200 — 0F) + 55 divEED’ — 575 divGED. (4.12)
The substeps from (4.1) at hand, we can now state the uniform interior observability inequality.

Theorem 4.2. Let e, u satisfy (1.2), 7 € (0, mm{H ,31}) be fized, and (EF, H*, ®F) be the iterates of (3.17) with
initial data (E°, H”,®°) € Y and step size T € (0,7]. There is a constant C, > 0 with

2 2
N—-1 E’;’S Ek1
/(5|EO| + plH°? +,u|<1>0|2)dx<CTZ/ (|EF)? + |®F?) dao + C,pr® BlHS|| +|4 H“
k=0 0 0
N-1 3 0 ‘ 2
+C Y S D | BT (4.13)
k=0 i=1 Ph-3+2i

Here, N := max{m € N | m7 < 97}, and the constant C, depends only on e, u, 7 and Q.

Apart from the artificial variable ®, the interior observability estimate (4.13) is a time-discrete counterpart to
Lemma 3.1 in [26]. The additional higher order terms on the right hand side are to stabilize the estimate in the
spirit of [25].

The proof of Theorem 4.2 will be concluded in Subsection 4.4. Here it is crucial to have appropriate Helmholtz
decompositions for the electric and magnetic fields. According to (2.2), the latter can be represented as

,uH’; = curl J* + V¥, k €N, (4.14)
with ¢* € HY(Q), and J* € HY(Q)? satisfying divJ* = 0, J* xv = 0 on Q, and curl J* € Hy(div, Q). Regarding the

electric field, the next lemma establishes a different decomposition imposing boundary conditions on the curl-free
part. The corresponding proof is inspired by Lemma 3.1 in [26].

Lemma 4.3. Let k € N. There is a unique function ¥* € Hy/(curl,div,Q) with divy)* € HA(Q), curly* €
Hy(curl, div, @), and

EE’g = curl curl ¥ — V div ¢*.
Proof. The Lax-Milgram Lemma yields a unique function 1* € Hy (curl, div, Q) with
/ (curlyp®) - (curl ) + (divp®)(divep) de = / eEF .y da
Q Q

for all ¢ € Hy(curl,div, Q). Theorem 1.1 in [6] then implies that the function div¢* belongs to H}(Q), and an
integration by parts consequently leads to the identity

/(Cur11/)k)~(cur1w) dx:/(sE’§+Vdivwk)~1/)dx.
Q Q

Testing the last formula with functions v € H}(Q)? shows that the function curly* is an element of H(curl, Q),
and that the asserted representation is true. The boundary condition for curl* is due to Remark 2.5 in Section I
of [15]. O

It is crucial that the above decomposition of the electric field is orthogonal in the L2-sense.
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4.2. An estimate for the divergence-free part of the magnetic field approximations

Let 7 € (0, mln{ ot 1}) be fixed, and « : [0,97] — [0, 1] be a smooth function that is supported in [§7, 27, and
satisfies &« = 1 on [37’ 67]. We recall the number N = max{m € N | m7 < 97} from Theorem 4.2. The assumptions

on « then imply the identities
a(0)=a((N-1)1)=a(N7)=0 (4.15)
for all T € (0,7].

This subsection, being the first part of the proof for Theorem 4.2, is devoted to the following inequality for the
divergence-free part of the magnetic field approximation.

Lemma 4.4. Let ¢, satisfy (1.2), 7 € (0,7], and (E°, H,®°) € Y be the initial data for (3.17). There is a
constant C. = Ce(e, p, 7, Q) > 0 with

N N-1
a(’”)/ HY - peun (pH) dz < : Z leurl J*|1F2 + Ce Y (I B2 7= + [EX
k=0 Q 16 lulloo k=1 k=1
N-1 Ek 0|2 Ek 3\ |I° 3 0 ?
+OCT2Z< A H“ +||B H“ +Y |\ Di | HYAH )
k=0 i=1 Ph3+20
Proof. In view of the boundary condition J* x v = 0 on 8Q, an integration by parts and (4.15) lead to the identities
N N-1
Za(lm’)/ H" . curl 3% dz = Z a(kr)(/ %curl(HiC +HMY IR de — / %curl(H’jJrl —HY . J* dx).
k=0 Q k=0 Q@ Q
Plugging in (4.9)-(4.10) and integrating again by parts, the formula
N
Za(k'r) / HY . curl J* dz
k=0 Q
N-1 Lok
af (/ (BF L — Elz)'JkdlL'*%/ 02 M(I’]” -curl J* dz
k=0 Q A M(I)lcc 9

—/ Lewrl(HI —HEY) - 3P da — g/ L@GES) - (613%) — L@ EL) - (4:3") dx)
Q Q

follows. Note that the integration by parts rule (3.12) is here valid due to the boundary conditions for J*
Summation by parts and the choice of a next yield the equation

N
ZO[(]CT)/ HY - curl J* dz (4.16)
k=0 Q
N-1 N-1
=— Z / cEF . %(oz(k‘T)J]C —af(k—1)7)I* 1 Z a(kT) / curl A —HY) . JF da
k=1"@Q k=0
N_ o u(bk5 N-1
-z Z (k1) / Mqﬂf T el de — 20 af / GE;) - (613°) = LGE?) - (63°) de
k=0 Q \os <I>’~c 9 k=0

The four expressions on the rlght hand side are estimated in the subsequent steps.
(i) A simple algebraic manipulation of the first term on the right hand side of (4.16) shows the relation
N-1

N-1
EF - L(akr)I* — a((k — D)7)I* Y de = EF - L(a(kr) — a((k — 1)) I dz
S [ Bl et —a( - vm 3 ,;/QE“(() (k= 1)7)

k=1
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- EF - L(J* — 3 YHa((k — 1)7) dz. 4.17
+k§/@€”( Ja((k — 1)7) (4.17)

To obtain an appropriate estimate for the first term on the right hand side of (4.17), we fix a number v > 0 that

we determine at the end of the proof. Since divJ* = 0, an application of inequality (2.1) to J* then leads to the
relations

N-1 N-1
kookT) —a((k—1)7) k 2 2 k
> [ et : e < 37 (GRS + 2 o2 el IEE )
k=1"@Q k=1
N-1
C k 2 2 k
< 3 (G llewt ¥R+ 4 o'l el IBER). (418)
k=1

We next deal with the second expression on the right hand side of (4.17), and obtain with (4.10) and (4.14) the
difference equation
al lq)k—l,S
I Cc
Lowl(@*F - I + 1V (¢F - F ) = —Lewl(E + BTN — p | 920 @5 T | - 26 L HET
aglq)kfl,i)
1 c
+3GiGHT.
By means of the orthogonal projection pey onto the divergence-free part, we infer
81l¢,k—1,5
7 (&
Leurl(I* =31 = —Lewl(B] + BE ") — peunie | 25 @517 | = Zpeun(G1 i€ HE T — Gl aHET).

The Helmholtz-decomposition (2.2) further yields functions @51, ¢5~! € Hy (curl, div, Q) with

81%(]}’5—1’5
vk—1 1 k—1,1 1 k—1,3 vk—1 __ 1 Hk—1,7
curl ©1 = Pcurl ((gl gCKl HC - (52 E%QHC )7 curl Yo = Pcurl b 82 ﬁq)c )
831(1)k71’9
woc

(4.19)

and consequently Theorem 2.9 in Section I of [15] states the existence of a function n*~! € H}(Q) with
O R o e - I Ui (4.20)

This relation in particular implies that the function V7*~! belongs to H'(Q)? with V1*~! x v = 0 on 9Q, meaning
V¥~ is orthogonal to the space curl(H(curl, Q)). Let ¢, be given by Lemma 4.3. Since divJ* = 0, we moreover

conclude that the expression fQ (V divyk). %(Jk — J*71) dx vanishes. Altogether, Lemma 4.3 and (4.20) imply the
identities

N-1 N-1
a((k=1)r) [ eBE- LI =3 de =Y a((k—1)7) [ (curleurlp¥) - L(I* — I 1) de
L) Xt
N-1
= 2 ol ”T)(/Q(C“HC“W“) H(BE+ B da o+ 5 /Q<cur1cmwk> P e
k=1
+ /Q(curl curl k) - k=1 dx). (4.21)

Since the decomposition in Lemma 4.3 is orthogonal and 0 < a < 1, the first summand on the right hand side
of (4.21) is bounded according to the relation

N-1

Z a((k—1)7) /Q(curlcurl YF) - %(Elj +EF Y dz

k=1

(4.22)

2
L2’

N-1

k

< el Y |E
k=1
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Considering the choice of gpk !in (4.19) and Lemma 4.3, twice integrating by parts transforms the second
expression on the right hand side of (4.21) into the form

N-1 N-1
3 al(k — 1)7’)/ (curl curl %) - gF =1 dz = z al(k—1)7) / (curl %) - (‘Klicélef*l’l— ‘52%%2H§71’3) dz
k=1 Q k=1 Q

N1

T
2 Oé
k=1

@\

((Gacurlg?) - L HETM — (% curlyb) - LgHET) da

Formula (3.12) is here applicable since the vectors (%‘51H’§_1’1, i%E’g‘Ll,o) and (%%QHIZ_L?), i‘flElj_l’?’, 0) be-
long to Y by Remark 4.1. Lemma 4.3 and (2.1) consequently cause the estimate

N-1
z al(k—1)T curl curl %) - 1x
> alk 1))/@( lowl ¥4) - 51 d

k 2 k-1,
< Z (2SF llel% IBEIZ: + Zl16HE |7

+ 2 GH ). (4.23)

Concerning the third term on the right hand side of (4.21), an integration by parts, (4.19), (4.11) and Lemma
4.3 establish the representation

N-1 N-1
Z al(k — 1)7')/ (curl curl F) - b1 da = Z al(k—1)7) </ (curl ¢¥) - (MV%(P’;_LG) dz (4.24)
k=1 Q k=1 Q
81 81/¢Hk 1,5
+%/(curl¢k)~u —82 382MH12217 dx).
@ —20, dag,qu BT — 05k OspuHL S

To estimate the right hand side of (4.24), we recall the boundary condition for curl¢* due to Lemma 4.3, and
the relations (0) = 0 and ®*~1.6 = k-1 ﬁalquzEm from (4.15) and (4.2)-(4.4). An integration by parts and
(2.1) now yield the inequalities

N-1
Z a((k — 1)7‘)/ (curl curl %) - gh=1 da
k=1 Q@

o 1

al(k—1)7) ( ‘/ (curl ) - %(V,u)CI)’C“_l’G dz| + 3 / (curl ") - % —3§MH§§1’7 dz
k=2 Q Q —26382MH’;;1’7 — aguHing
(Tu alMle 11 ?
+ 3 /(curl¢k)~ (T)azuH’jg” da )
¢ ~2( )M — ()05

MZ

<

198l [ A/ —
(50 IEBE 3 + a0k 3 + TR oy i

k

Il
N

4+ /(a%(curw )i) — Oy, dz
Q

2 .
—20,pHEL T — O3pHL Y

\%
—|—9||cur11/)k||i2+7'2” I’L”oo ZHa Hk 13+21|| 2)
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N-—-1
N Vil oo i
< 3 (Colmti + e gy, 4 2 S ot 104 ), (4.25)
k=2

i=1

employing the two positive numbers

A Villoo V)2 v

] 54 06 66

Summing up, (4.21)-(4.23) and (4.25) bound the second expression on the right hand side of (4.17) by the
inequality

+9), = Vil 55

N—

Z /eEk L -3 Nde| <
Q

N-1

(CTHEk”L? + S (IGHE 2 + |G HE M 2.)
k=1

S el INgls k)2 ), (4.26)
i=1

with Cp := |||, + 2% ||8||io + C7. Combining (4.17), (4.18) and (4.26), the estimate

3 / B L(a(kn)I* — a((k — 1)1)I* ) de

< (%chﬂﬁlliz + (1o l% llell%, + Cr)IBEIE: + 5 (I6HE 2|2 + |6 HE ™ 22)

+ O SO R, 4 L5 @412 (4.27)

1=1

directly follows.
(ii) We next deal with the second summand on the right hand side of (4.16). Employing the boundary condition
J¥xv=0on 0@ in an integration by parts, and plugging in (4.6), the relations

N-1 N-1 01 q’k >
Z a(lm’)/ %curl(HfH— HY) . J" dz| = z Z a(kT)/ [— D2y <I>k T+ i‘ﬁgE’j’l - %L‘glEf,’?’} -curl J¥ dz
1 Q k=1 Q 03 <I>k 9
N-1
(Brlleurl F412 + 22 SN0 O s 4 (GBS + [GEE ) (429)
k=1 =1

are derived.
(iii) Applying (2.1) for J*, the two remaining expressions on the right hand side of (4.16) are bounded according
to

N1 0 H<I)k5 N-
z of / Mq»“ curl J¥dz| + T Z / GEY) - (€13%) — LGOEL?) - (43%) de
k=1 Q@ \ s <I>k9 k=
N-1
< (167 ZIIa LoBA22, + (1 + ) llowrl I*|F2 + 555 = (|GES |22 + |6 EY 3IILz)) (4.29)
k=1

The desired estimate is now a consequence of (4.16), (4.27)-(4.29), and the choice v < (16(3Cr+4)||pllso) ™! O
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4.3. An inequality involving the curl-free part of the magnetic field approximations

The goal of this subsection is to establish an estimate for the gradient part of the magnetic field approximations
from (3.17) which is similar to Lemma 4.4. The first step is to deduce a slight modification of a result in [16]
which is well known to experts and of auxiliary character for our purposes. The lemma uses for a convenient
representation of the gradient part of the magnetic field approximations.

Lemma 4.5. Let g € L2(Q) with fQ qdz = 0. The constrained boundary value problem

Aw =gq in Q,
ow
= 0 on 0Q), (4.30)

/wd:z:z()7
Q

has a unique solution w € H*(Q). There further is a uniform constant Cg = Ca(Q) > 0 with ||w|/y < Cq |lqll;2-

Proof. Denote the mean of a function v € H'(Q) on @ by [v], and consider the Hilbert space V := {w €
HY(Q) | [w] = 0}, equipped with the H!-norm. The Lax-Milgram Lemma and the generalized Poincaré inequality

provide a unique function w € V with
/ (Vw) - (Vv)dx = —/ qudx
Q Q

for all v € V.. Since [¢] = 0 by assumption, a computation yields the formula

/ (Vw) - (Vv)dx = / (Vw) - V(v —[v])dz = —/ g(v—[v])de = —/ qudx

Q Q Q Q

for every function v belonging to H!(Q). As a result, w is the unique solution of (4.30), and Theorem 3.2.1.3 of
[16] implies that w is an element of H?(Q).

It remains to deduce the asserted estimate, what will be done by means of arguments from the proofs for
Theorems 3.1.2.1 and 3.2.1.3 in [16]. Let m € N. Lemma 2.3.2 in [20] provides a convex set Q,,, C R® with a
C%-boundary 9Q,, containing @ and satisfying dist(0Q, 0Q,,) < % The function v := w then also solves the
problem

0
—Av4+v=—q4+w=:f inQ, a—vzo on 0Q).
v
This problem is again uniquely solvable by Theorem 3.2.1.3 in [16]. Let further f denote the trivial extension of f

to R3. We consider for m € N the problem

At v = 0 Qu, %o 0 on 9Qu,
v

possessing a unique solution v,, € H*(Qy,) with [Jvp, ln2(g,,) < \/éHfHLZ(Qm) = V6| fllL2(q), see Theorem 3.1.2.3 in
[16]. The proof of Theorem 3.2.1.3 in [16] further yields a subsequence (still denoted by (vy,)m) With v, |g = v =w
weakly in H?(Q) as m — oo. We hence conclude the estimates

VBl 2 liminf vz o) > o) (431)
An integration by parts further reveals the relations
/ Vw|® dz = —/ (Aw)wdz = —/ qudz < g2 Jw|le - (4.32)
Q Q Q
The asserted estimate now is a direct consequence of (4.31), (4.32) and the generalized Poincaré inequality. |

The next lemma provides a relation involving the curl-free part of the magnetic field approximations obtained
via (3.17). For the statement of the lemma, recall the orthogonal projection py associated to the Helmholtz
decomposition (2.2), the fixed maximal step size 7, and the cut-off function « from Subsection 4.2.
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Lemma 4.6. Let ¢, 1 satisfy (1.2), 7 € (0,%], and the initial data (E°, H*, ®°) for (3.17) belong to Y. There is a
uniform constant Cy = Cy (g, pu, 7, Q) > 0 with

N
Z (kT /Hk “pv ( qu
k=0

N-1

=1 Z lpw (HE)IIE= + Cv Y (I1REIIE- + | E132)

k=1

N-1 EF? ? E3 2 0 :
+Oe > (A | 4| B HS ||+ || D | BT :
k=1 0 0 = o3 +2i

Proof. Relation (4.15) will again be employed several times without further notice. Applying the Helmholtz de-
composition (2.2), the magnetic field approximation is represented by means of the formula

H = curlJ* + V", (4.33)

where the function ¢* € H!(Q) without loss of generality satisfies /. 0 G"dxz = 0. As before, the field J ¥ belongs to
HY(Q)? with divJ" =0, curl J* € Hy(div, Q) and J* x v = 0 on 9Q.
Employing first the boundary condition ng -v =0 on JQ in an integration by parts, the identities
N N

alkr) [ poliHl) - Hde =3 alkr) [ pHE - pe(HY) ds
k=0 Q k=0 Q
N—-1
== (atrr) /Q Ldiv(u(HY + HY) da + akr) /Q LHE - HY) -V do)
k=0

are derived. Formulas (4.12) and (4.6) further yield the representation
N—1

N —
a(kT)/ H) - py (pH}) do = (a(m)/ (k- 9k)g dx”a(m/ div(61Ep° — GEN)G" do
k=0 Q k=0 Q Q
aliq)ko
+ Lo (kT)/ w 32 (I)k7 ~V(jkdx+ga(k7)/(CcflE’C“"?’—%QE’j*l).V(jkdx).
@\ <1>’<9 @
u

Remark 4.1 shows that the vectors (%‘51H]§’1, ﬁ‘ggElj"l, 0) and (2 L, 3 1 6511«3’;73, 0) belong to Y, and an integra-
tion by parts for the second term on the right hand side of the last relatlon thus leads to the equation

_ 1 q)k 5
N N—-1 . l»b
Oz(k’T)/ H; - py(uHY) dz = ) (a(k:T)/ L (R — F)g da + T (m)/ | dor <I>’” Vi da
k=0 Q k=0 Q Q 05 q)k9
+ Ta(kT)/ (GLEF? — 6EFY) . v* dx). (4.34)
Q

The right hand side of (4.34) is treated in the following two steps.
i) Concerning the first expression on the right hand side of (4.34), a summation by parts leads to the result

N-1 N-1 b k1
> ol / @ B de =~y /Q ot AU =0T g -1 T o (435)
k=1

=0

-

As in the proof of Lemma 4.4, we fix a number v > 0 that will be determined later. Since ¢* is chosen to have
zero mean, the generalized Poincaré estimate provides the bound

Z/ 2@1@04]” ((k’ ))~kdx

<Z(vcp||u|| 1932 + Hlle I IBE2)  (4.36)
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for the first term on the right hand side of (4.35), where C'p > 0 is a uniform constant from the Poincaré inequality
on Q.
We next estimate the second summand on the right hand side of (4.35). Applying the orthogonal projection py
0 (4.10), we first infer with (4.33) and (4.11) the formula

a1 13 alMH
V(@@ - ") = —viekt — 7py —82 82MH — py(z; curl(BET 4+ EY))
—205 3(92,U,H1227 O3 ?83/LHZ§
+3pv(HGIGH — G la ). (4.37)

Lemma 4.5 further yields the unique solution n* € H2(Q) of (4.30) with right hand side ¢ := /LQCD’C“fﬁ fQ ok da.
The vanishing mean of §° consequently leads to the identity

N-1 ~k_ ~k—1 N-1 ~ ~k—1
a((k—1)r 2k T gy — a((k—1)r1 A kiqu. 4.38
> al 7 | et > al ) | = (4.39)

In view of the boundary condition %—f =0 on JQ and (4.37), an integration by parts on the right hand side of
(4.38) thus shows the equation

-1

Z / 2@k£dx: > (a((k—l)ﬂ/@(vnk%(Vi@’jI*G)dx

k=1 Q k=1
0 ;3 opH
+ Sa((k - 1)7’)/ (Vnk) - —0y 2 i ﬁzqu L7 dx
Q —233 82,qu L7 33 ag/LHk 1.9

+al(k—1)7) /Q(vnk) ik curl(BF + EE ) do

— Za((k - 1)7)/ (V") - (GieHT T - ta T dx). (4.39)
Q
All terms on the right hand side are next integrated by parts, employing that %i; = 0 and Ef xv=0=
(& HY) x v = (é%ngf‘s) x v on 0Q), see Remark 4.1. In particular, formula (3.12) applies for the fourth integral
on the right hand side of (4.39). Using the identity ®*=1.6 = @k-1 — ﬁ@lqujEL‘f’, we eventually arrive at the
inequality

N-1 q,k - q,k 1 N N-1
S k= 1)7) [ et anl < SRR + 3 CLlI0bIRs + I ) (4.40)
k=1 k=1 k=1

2

—1

k,34-21 2 k,3 k,1
+ > (G ZnauHc,i N+ F(IGHE 2 + [GHE ),
1

>
Il

where C,, = C,, (1) > 0 is a constant. By means of the inequality

Z(I)k 1 Q(I)lcf dy

el < 206 | ul %12 e,

L2

see Lemma 4.5, we infer from (4.35), (4.36) and (4.40) the estimate

In* |2 < Ce

N-1

S a(kn) / B (@A g do
Q

k=0

N-1 =
. - , k
< 3 (3OrMI VIR + Gl + Gl @b=) + 3 3L
k=1 =
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2

-1
+> (cur Zua pHES 2, 4 (|6

1 i=1

B+ |GHE ), (441)

x~
Il

where the number C‘M > 0 only depends on p and Q. We have thus bounded the first term on the right hand side
of (4.34).

(ii) Applying Young’s inequality and the relation «(0) = 0 to the two remaining expressions in (4.34) leads to
the result

k5
N—1 51#‘I>

Z 72—(1(]{37')(/@/,& 82#@57 qudx+2/(<€1Ef’3 _(ngf,l) V(jk dl’)

— 1pk.9 Q
k=0 O3 IL(DC

2

2
<3 (Ve + ”“”°°ZH 030kt + (GBS + 4B
k=1

Choosing finally v < §(16( <2 ||u||% +5))7!, we infer from (4.34), (4.41) and (4.42) the asserted estimate. O

2 )). (4.42)

4.4. Conclusion of the observability inequality

Lemmas 4.4 and 4.6 now directly lead to the asserted observability estimate for scheme (3.17). It is crucial for
the following proof that (3.17) is energy conserving.

Proof of Theorem 4.2. We first take the sum of the estimates from Lemmas 4.4 and 4.6. Using p > §, it follows

N N-1 N-1
1
Soath) | pmtfar< o3 [ u|H’:.2dx+<oc+cv><z<|E’z||iz + [ 5)
k=1

k=0 k=1
N-1 ER? ? EF® * 0 ?
+TQZ< Al +|BBHM)| +D || D B )) (4.43)
k=0 0 0 i=1 Ph3+2i

Employing on the other hand that @ = 1 on [37,67] and that (3.17) is energy conserving, we deduce the relations

¥

Z/ (u[HE2 4+ [BEP + oty do <4 3 /mH’f 2 4 e[BE + pu|0F?) do
Sk
<4Z( /u|H’“| dx—i—/ 5\E’Z|2+u|@l§|2dx). (4.44)
Q

Plugging (4.43) into (4.44) and rearranging terms, we obtain the result

N
Z/ PP + el Bl P4pl 9E) d < 8(Ce + Ov + [lell ZHEk”L2 +8(Ce + Oy + llulloe) DIRENT  (4.45)
k=1 k=1
N-1 E&? ’ EF3 o 0 ?
+8(Ce+Co)T* Y ( HE ||+ BB ||+ || D | HES )
k=0 0 0 i=1 (bk 3421

Energy conservation also yields

N
1
Ol o) e = ST (B B 4 gl
k=1

The relation N7 > 87 and (4.45) then imply asserted observability estimate (4.13). O
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5. EXPONENTIAL STABILITY OF THE DAMPED SCHEME

In three steps we deduce the uniform exponential stability of scheme (3.18) from the observability inequality for

(3.17). A formula describing the dissipation of the energy

is derived in Subsection 5.1 for the iterates of (3.18).

Differences between certain substeps of the damped and undamped schemes are afterwards estimated in Subsection
5.2. The exponential stability, see Theorem 3.9, is finally proved in Subsection 5.3 by combining Theorem 4.2 with

the results of Subsections 5.1 and 5.2. A similar strategy
equation in [30].

5.1. An energy identity for the damped ADI sch

has already been used for the one-dimensional wave

eme

As in (4.1) we first introduce a convenient substep formalism for the damped scheme. Let n € Ny, ¢ € {1,2, 3},

# € (0, min{%, ;/—E

E™L E" E™2
H™! | =V, (4) [H"|; H™? | = (I -
q)n,l on (I)n,Q
En,4 En,3 En,5
H" | :==V,(B) [H"? | ; H" | .= (I -
(I)n,él (I)n,?) ‘I)”’5

En,4+31‘ En,3+3i En,5+3i

HA3 | = V(D) 33 ; H5 3| = (I -

(I)n,4+3i (I)n,3+3i (Dn,5+3i

En,6+3i En,5+3i

Hn,6+3i = (I + %Dz) Hn,5+3i

q)n,6+3i (I)n,5+3i

}) fixed, 7 € (0,7], and take initial data (E°, H, ®°) € Y. Define then the substeps

En,l En,3 En,Q
A -1 n,l . n,3 ,_ TA n,2 | .
s () (B ) = ga) (B2
(I)n,l q)n,b’ q)n,Q
En,4 En,ﬁ En,5
%B)_l Hn,4 : Hn,6 = (I—|— %B) Hn,5 :
(I)n,4 <I)"’6 (I)n,S
En,4+31'
%Di)_l Hn,4+31’ :
(I)n,4+3i
(5.1)

As in Remark 4.1, we conclude from Lemmas 3.11 and 3.16, Corollary 3.15, and the assumptions (1.2) and (3.2),

that all substeps and the next iterate of (3.18) remain in Y.
the proof for Theorem 3.9.

To find a useful identity for the energy of the iterates
crucial. The last intermediate step for instance satisfies the

All substeps with counter index being a multiple of 3 fulfill

eroEnJrl

Hn+1
eTn(I)n+1

This observation will become important at the end of
of (3.18), relations between the substeps in (5.1) are

formula

En,15
Hn,15
(I)n,lf)

the identity

)

ke {1,2,3,4,5},

En,Bk’ En,3k—2
Hn,3k — Hn,Sk—Q
(pn,Bk @n,3k72

since the Cayley-Transform S, (L) is an isometry for L € {A, B, D1, D2, D3}. We also define

51 E’I’L,l

v n,l _ 2 42y—1 n,1

(i)n,l @n,l
E"74+3i FrA+3i
v n,44+3i | . 2 H2\—1 n,44-3i
H = (I - FDj) H _
Pra+3i At

S n,4

E E™

v n,4 = (I— %B2)71 Hn,4 ,
(i)n,él (I)n’4

(5.2)
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Employing the skewadjointness of the operators A, B, D1, Do, and D3, we arrive at the energy identity

En+1 2 En 2
H" ! —[[H"
(I)n—i-l on
) L n,4+3i\ |12
3 7_3 En,5+3z 2 7_6 E + 4
_(627—0 _ 1)H\/gEn+1||i2 _ (e2rn _ 1)||\/ﬁq)n+1||i2 _ Z (2 D; o3 + E Dz2 E[n,4+31 )
i=1 PHn:5+31 Hra+3i
, gy |2 2\ |2 ; "4\ |2 g |12
T T
_ 2( B Hn,5 + A Hn,2 ) _ 16( 32 I:In,4 + A2 Iv_In,l ) (53)
n,5 n,2 v o
) ) (I)n,4 (Dn,l

In consideration of the structural similarity between the expressions on the right hand side of (5.3) and (4.13),
we choose for both schemes (3.17) and (3.18) the same initial data (E°, H”, ®°) € Y. The triangle inequality and
(4.13) yield

[ B B + ) do
Q

N
<2C,7 Y (IBH2: + |@F 2. + B — BY[2: + [oF — ok,

k=1

No1 k2 2 EF2 _ Ei;,1 2 k5 2 EFS _ Elcc,?) 2
+2C0,7 Y [ A{HER2 | +|A B2 -ER | +||B(H || +|[B [ HM - HES

k=0 (I)k,Q (I)k,Q _ (bk’l (I)k,5 @k,S _ (I)k’?’

C C
No1 EF5+3i 2 EF5+3 _ pk3+2i 2
. . c .

+ 200,]_3 Z Z D Hk75+31 + ||D; Hk,5+3z _ chc73+2z (54)

=0 i1 Hh-5+3i P53 _ (I)Icc,3+2i

where N = max{k € N | N7 < 97}. The goal of the following subsection is to control the arising difference
expressions by means of terms in (5.3).

5.2. Comparison of the damped and undamped schemes
We first denote the differences between the iterates of (3.17) and (3.18) by

Ek’,A Ek _ Ek
‘I)k,A q)k _ (I)kc

for k € N. The next lemma deals with the difference terms in (5.4) involving only substeps of both schemes. These
can essentially be estimated by means of summands arising on the right hand side of (5.3), and the energy of the
vectors (EF2 HFA @R2) Recall for the statement Definition (5.2). We denote D_; := A and Dy := B to obtain
a compact representation.

Lemma 5.1. Let k € Ng, i € {0,...,3}, and 7 € (0,7]. The estimates

2 2

B2 _ phl . Ek»l B2 A
C+54) (B2 -m ||| < || g || Al B2 )| saen|( B2 )] 655)
q)k72 _ (I)Icc,l i)k’l (I)Ic,2 (I)k’A
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2

o B . 2 v k4431 o 2
Ek,?#»dz. _ Elcc,3+21‘ 7.6 Ek o Ek’?+37'.
(1+5Dy) | B e | | < T lip2 | getssi | |8 D (gt
PROTBI _ phat2i Hhoats Ph-5+3i

ER2+3i _ gk 142 2

+(147) | (L +§Dimy) | HM240 gt (5.6)
Pr-2+3i _ k142

are valid.

Proof. Since both inequalities can be proved in essentially the same way, we show only the first one. Definitions
(5.1) and (4.1) on the one hand lead to the formula

ER2 _ gkl ERL ERA
c
H? CHE | = (1= 3 A) T A - )7 (B (- 547 (B (5.7)
(I)k’2 _ (blg,l (I)k,l (Dk,A
On the other hand, Lemma 3.7 implies the identity
ERL ERA ERL ERA
<T43A2(I _ TATZA2)—1 HF | | gRA ) _ —<T3/2A(I _ %A)—l HEL ,%/ZA(I _ %A)_l HEA )
(I)k,l (I)k’A (I)k,l q)k,A
Applying now (I 4 $A) to (5.7), Lemma 3.7 and (5.2) yield the inequality
. k1 2
ER2 _ Elz,l 2 6 B ER2 2 _ ERA 2
(I 4 %A) Hk,2 _ ng,l < T A2 I:Ik,l + 7_3 A Hk,2 + E TA(I _ %A)fl Hk’A
(I)k,2 _ (I)Icc,l (i)k’l (I)k,2 (I)k,A
ERA 2
+ | [ =
q)k,A
The first asserted estimate now follows from the identity 7A(I — ZA)~! =2((I — FA)~' —1I). O

It will be useful to have a slightly weaker version of the inequalities stated in Lemma 5.1.

Remark 5.2. Employing Lemma 3.7, we can weaken the first relation in Lemma 5.1, obtaining the estimate

2 . k1 2 2 2
) ER2 _ E’j’l 6 B EF2 ERA
_ A Hk,Q _ H/cii,l S o A2 I\_/Ik:,l + 7_3 A Hk,2 + (1 + ,7_) Hk,A
4 (I,k,Q _ ‘I)k’l 16 0 (I,k,Q (I)k’A
Analogous modifications are also valid for the remaining estimates in Lemma 5.1. O

Lemma 5.1 now leads to a bound for the energy of the differences (Ek’A, Hk’A, @A) by a employing a discrete
integral over (5.3).

Lemma 5.3. The estimate

EFLA 2 B 2 P! 2
Hk+1,A < CAeﬁ(k—H)‘r HO _ Hk+1
Pr+1L.A O Pht1

is true with a constant Can = Ca(e,u,0,m) >0 for all =1 <k < N —1 and 7 € (0,7].
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Proof. Since both schemes start from the same initial field, the estimate is clear for K = —1. So we assume k > 0.
Similar to the proof of Lemma 5.1, (4.1) and (5.1) yield the representation
k+1,A - k,14 k,14 E,9
E"t e —1 0 0 E E"'" - EF
Hk+1,A — 0 0 0 (I + %Dg) Hk,14 + (I + %DS) Hk,14 o HICC,Q
(I)k+1,A 0 0 e ™ —1 @k,14 ‘I)k’14 _ (blCC,Q
e —1 0 0 e 0 0 EF! ERM _ BRSO
=l o 0o o0 0 1 0| [®E| 445Dy [E - HE
0 0 e ™ —1 0 0 e™ Hr+1 Pro14 _ ko

Set Cyyy := max{||o|| . , 7]l }- In view of the inequality [[e™™¢ — 1||ec < 7||€||oo for € € {o,n}, we thus infer the

relations
2

EEHLAN |2 EF |1 EF1 _ RO
HH A || <2702 2% |10 + (@ +7)||(I+5Ds) | HYM — HE?
Pr+1LA P+l k14 _ k.9
C
Lemma 5.1, , and the assumption 7 < 1 now imply the estimates
EEHLAN |2 EF 2 5 4mi s AT 2 EF5+30\ |2
i
HALA < QTanezcm, 0 n Z 2 D2 ﬂk,4+3i 4ot-ig3 || p, | grotsi
cI)k+1,A (I)k+1 (i)k’4+3i (I)k,5+3i
Ek,4 Ek’s 2 Ek,l 2
+ 7_6 B2 I\_/Ik,4 + 167_3 B Hk’,5 + 27_6 A2 I:Ik’,l
Gra k5 Gl
EF2 2 ERA 2
+320° A [H? |+ +7)° | | B
k-2 PkoA
EF\ |12 EFLN |12 ERA 2
<Ca HY ||| —|[H" +e57 || [ HFA
(I)k (I)k-‘rl ‘I)k’A
with a constant Ca = Cal(e,p,0,n) > 0 being independent of k& and 7. In presence of the initial choice
(E%2 H"? ®%2) = 0, we conclude by induction the relation
EFTLA 2 X 104 2 Eitl 2
HAHLA < Opebk+DT Z H N mi 7
(I)k?Jrl,A =0 qﬂ (I)j+1
yielding the assertion. ([l

5.3. Demonstration of the exponential stability for the damped scheme

The observability estimate from Theorem 4.2, the energy identity (5.3) and the estimates from Lemmas 5.1 and
5.3 at hand, we are now in the position to conclude Theorem 3.9.

Proof of Theorem 3.9. Let + = { max{3, g}, and N := max{k € N | k7 < 97}. The initial data (E°, H°, ®°) for
scheme (3.18) is for the time being assumed to belong to Y. The proof mainly consists in estimating all terms on
the right hand side of (5.4). The difference expressions are first treated, and it suffices to consider only the last
two summands, since all others can be handled with similar arguments. In the following, C' > 0 denotes a constant
that is allowed to change from line to line, but depends solely on ¢, u, 0,7 and Q. We first weaken (5.6) for i = 3 in
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the spirit of Remark 5.2, and insert all other estimates from Lemma 5.1 recursively into each other. Since 7 < 1,
we obtain the relations

EF 14 _ Elz,g ) Ekvli” 2 Elo14 2 R _ Elzj 2
Dy [ g1 ng,g < C<T7 D? ﬂk,m 44| Dy [ R4 47 ||+ 2Dy) HE chc,7 )
(I)k,14 _ @164:,9 (i)k’l?’ (I)k,14 q)k,ll _ (DICC,?
, . ko, d+3i Eho3 |2 Ek,zl It
< [Z <T7 D? I:Ik,4+3i + 4D, [ ghots ) 17| B2 I:Ik’4 L AB | g

i=1 Gk A+3i oF,5+30 G k5

Ek’,l 2 Ek’2 2 Ek’A 2
+ 77 || A2 IiIk’l + 74| A [ g2 +7| g~2 ] . (5.8)

é)]%l (I)k:,Q (I)k7A

Similar reasoning shows that all other difference terms on the right hand side of (5.4) are bounded from above
by the right hand side of (5.8) if the number C is appropriately modified. As a result, we infer in view of (5.4),
(5.3), the relation N7 < 97, and Lemma 5.3 the inequalities

O\ |2 N1 E* 2 ERt1 2 N1 O\ |2 EF1 2
H° <C H ||| - || & +Cre™™ Y H° H: !
(I)O k=0 (I)k (I)kJrl k=1 (I)O (I)kJrl
E° 2 EN 2
< Cped H° gy 7
0 N
where the last estimate is equivalent to
EV |I° E%\ |
1
V|| < (1 - 754) HO ||| . (5.9)
N Creddr O

In view of Lemmas 3.11 and 3.16, Corollary 3.15, and the assumptions (1.2) and (3.2), we can iterate the entire
argument, and infer with the same constant C' as in (5.9) the relations

2 2 2

EmN . | /E E°
HmN S <1 _ f) HO — efwmé" HO
emN Credt? PO PO

with w = %ln(%) > 0 for all m € N. The asserted exponential decay for starting values in Y can now

be concluded by means of standard arguments. The same decay rate, however, is also true for initial data in
X = L3*(Q)7, employing the density of Y in X. O

6. ERROR ANALYSIS

The purpose of this section is to establish a rigorous error result in the dual space Y* of Y for scheme (3.18)
in the abstract time-discrete setting. We therefore show the stability of (3.18) in Y, and employ the regularity
statements derived in Section 3. The final error result is then deduced by estimating the local error in Lemma 6.4
and controlling the error propagation in the proof of Theorem 6.5.
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6.1. Stability of the damped scheme
Let L € {Ay,By,D1y,Dsy,D3y}. Lemma 3.11 and Corollary 3.15 estimate the Cayley-Transform by
18- (L)l ggyy <€, 7€ (0,70, (6.1)

where 79 > 0 is a constant depending only on ky. In view of (1.2) and (3.2), the operator associated to the last
substep satisfies the relation

e 0 0 B
0 I 0 <e%s. 7 >0, (6.2)
0 0 e ™

2(Y)
with a uniform constant Cs = Cg(o,n) > 0. The next lemma also bounds the operator V(L) from (3.16) in Y.
Additional estimates are moreover given which prove to be useful when deriving bounds for the local error.
Lemma 6.1. Let L € {Ay,By,D1y,D2y,Dsy}. The operator V (L) is well-defined in'Y for all T € (0, é)
There moreover is a constant 7 € (0, min{}, i ) with

1
<3, el < —=
BY) #Y) = 1-3r

7.2 7_2
LI - =1t
4 ( 4 )

for all 7 € (0,7p).
Proof. Lemma 3.11 and Corollary 3.15 yield that the mapping (I — 72L?)~! is bounded on Y, and satisfies the

inequality

) 1
I =L o < T2

for 7 € (0, é) There in particular is a number 7 € (0, min{%, i ), depending only on ky, such that the estimate
HU>h§Lﬂ*ﬂ@()gzmvaﬂnTe(Qﬁ»'HwﬂnmﬂaéL%Ifghﬂyi:»qufféL%*lmmmmwa@
Y

2 2
LA - L)

) < 3. Since 7y < ¢, the operator V(L) is consequently well-defined and bounded on Y,
satisfying the relations
1 1
<
—1-37
B(Y)

for all 7 € (0, 7). O

Ve (Dl = ||(7 = FL2T = F L™

We conclude this subsection with the unconditional stability of (3.18) in Y.

Proposition 6.2. Let ¢, u, 0,7 satisfy (1.2) and (3.2), and let T > 0. There are constants Cspap, 7o > 0 with

E" E°
Hn S eCstabT HO
o /||, o0 /||,

for all (EO, HO7<I>0) €Y, 7€ (0,7) and n € N with nt <T. Here, Csap, 7o > 0 depend only on e, u,0,m and Q.

Proof. Set Ty := min{7g, 7o} € (0, %) with 79 from Lemma 3.11 and Corollary 3.15, and 7 from Lemma 6.1. Denote

also N := max{k € N | k7 < T}. The estimates (6.1), (6.2), and Lemma 6.1 imply the bound

E" E’
n c 1 15 N 0 -
H < (eT S———e “YT) H , T € (0,7).
o (1 - 37—)5 o0
Y Y
Choose C = ﬁ > 0, then ﬁ < " for 7 € (0,7)). Since N7 < T, the asserted estimate is valid for

Cstab i= és +5C + 15ky. O
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6.2. Auxiliary constructions

Take 7 € (0,7) with 7y from Proposition 6.2. We first expand the substeps of the scheme (3.18) to obtain a
convenient representation of the local error. Let L € {Ay, By, D1y, Day,Dsy}. Employing the supplementary
operators

i = T3 T —1\n .
VT( )(L) = Z(TLz(I - TLz) 1) ’ te {132}a
the operator V; (L) from (3.16) can be expressed via the formula
Vo(L) = (LA = L)) = T+ V(L) = T+ L3I - L) + VA (L). (6.3)
n=0

Lemma 6.1 further yields the relations

IVOD s <67, VL) s < 1872 (6.4)
By means of the mappings
V(L) if j =k =0,
FY(j,k.L) = V(L) if j =k >0, (6.5)

3j . 7.2 i . .
UL - L) if <k

for j < k € {0,1,2}, we can rewrite (6.3) in the convenient way
V(0,0,L) ZFV],ICL ke {0,1,2}.

The Cayley-Transform S, (L) can be expanded in a similar way. Defining

S.(L) if j=k=0,
F(j,k, L) := { (I + S, (L)LF if j =k >0, (6.6)
L if j <k,

for j <k € {0,1,2}, the formula
k
F(0,0,L) =Y F(j kL)
=0

is valid on D(L*) for k € {0,1,2}, see Section 4.1 of [8]. To obtain also useful representations for the semigroup
(etMext.1), 5 and the last substep of (3.18), we make in the following use of auxiliary operators that have already
been employed in [17, 18, 9, 10, 8]. Let L be the generator of a strongly continuous semigroup (et” )i>0 on X7, and
set

@
e

~ 1 j—1 ~
¢](L) ::/O (]CJ_ 1) e(l C de J € N7 ¢O(L) =

Note that these operators are bounded on X;, and that the vector ¢;(L)z belongs to D(L) for j € N, z € X;. An
integration by parts further yields the important recursion formula

Lo (L) = ¢;(L) — ;.I, j € No. (6.7)

Choosing L = TMext,1, Proposition 3.5 implies the estimate

2C(staub,l

;i (6.8)

5 (T Mexe, 1)l g x,) <
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Selecting
B —oc 0 0
L=Kgq:=| 0 0 0],
0 0 —n

relation (6.7) leads to the identities
e =T+ TKqp1(TKa) = 1 + 7Kg+ 7°Kj 2 (TKy).

They are equivalent to the equation

k
Fo(0,0)=> F7(j,k),  ke{0,1,2},
j=0
with
emKa if j=k=0,
Fo(j,k) =< T1K}¢;(TKy) ifj=Fk>0, (6.9)
K if j <k,

for j < ke {0,1,2}.

6.3. Convergence result for the damped ADI scheme

To estimate the local error of (3.18) in Y*, extrapolation of operators to X is employed. We therefore collect
associated facts in the following remark which will be employed in the subsequent proofs without further notice.

Remark 6.3. Let L € {Mex, A, B, D1, Do, D3}, and denote the extrapolation space of X with respect to L by
XL, Proposition 2.10.2 in [31] yields X%, = D(L*)*, and the inclusion of Y in D(L) = D(L*) by definition of
Y thus implies X%, C Y*. There is also a useful relation between the extrapolation operator L_; and the bidual
operator (L*)* of L. In view of the continuity of (L*)* : X — X%, and the identity

(L), y)y-xy = (La,y),  yeY, ze€D(L),

we infer that (L*)* is the unique continuous extension of L to X, see Proposition 2.10.3 in [31]. As a result, the
crucial relations

<L71xay>Y*><Y = <(L*)*xvy>Y*><Y = (va*y)v T € X7 ye Y.
are obtained. There is also need to extend some bounded operators from X to Y*. Let P € #(X) with an adjoint
operator P* leaving Y invariant. By setting P := (P*|y)*, we obtain the unique continuous extension of P to Y*.
This extension in particular satisfies the identity
<P2ay>Y*XY: <Z7P*y>Y*XY7 ZeY*a yEY»
see Proposition 2.9.3 in [31]. Lemmas 3.11 and 3.16, and Corollary 3.15 show that this extension procedure works
for the considered Cayley-Transforms, the operators FV (j, k, L) and F(j, k) for j < k € {1,2}. O

We are now in the position to estimate the local error of (3.18) in Y* by adapting arguments from the proof of
Theorem 4.1 in [8] to the current scheme. The solution of the continuous problem (3.1) at time ¢ > 0 with initial

datum (Eg, Hy, ®¢) is in the following abbreviated by v(t). The corresponding approximation at n7 by scheme
(3.18) is denoted by v™.

Lemma 6.4. Let €, p, 0,1 satisfy (1.2) and (3.2). The local error satisfies the estimate
|(v! = o(1),9)| < CioeT?[[0(0) | x, llylly

for all y € Y, initial data v(0) = v° € X1 and 7 € (0,7%). Cloc and 7y are two positive constants depending only
on €, ft, 0,1, Q.
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Proof. Throughout the proof, the constant C' depends only on ¢, u, 0,1, @, and is allowed to change from line to
line. We moreover employ (1.2) and (3.2) without further notice. Let 7y be the constant from Proposition 6.2, and
denote by S(7) the mapping that maps the input of (3.18) onto its output. Employing (6.7) for L = TMext,1, the
local error has the representation

Ul — 1}(’7') = (S(T) — eTMEXt’l)’UO == (S(T) - I - TMext - TQMextflMext,1¢2(TMext,l))UO7 (610)
where Mexi—1 denotes the extrapolation of Mey to X. Estimate (6.8) then implies for the last term on the right
hand side of (6.10) the relations

|<7_2Mext—1Mext,l¢2(TMext,l)voay>Y*><Y| = |(7—2Mext¢2(7_Mext,l) Mxty)| S CT2||UO||X1||y||Y~ (611)

The remaining three summands on the right hand side of (6.10) are now expanded in terms of the supplementary
operators from Subsection 6.2. Product signs thereby in the following mean that the respective operators are
concatenated in such a way that the index decreases from left to right. On the one hand, we obtain the formula

1 5 3 I+1
Ot TMea® =Y > (62— i) ][] (F(ml, 2> i, Di)FY (0, 2,Dz>)F(j2, 2—j1,B)
k=0 j1+-+je=k i=1 =1 i=1
-FY(0,2, B)F(j1,2, A)FV (0,2, A)°. (6.12)

Plugging the representation formulas for the splitting steps from Subsection 6.2 into the definition of S(7), we
on the other hand derive the identities

2 2
T’ =>"3" F(0,0) H (0,0,D;)FY (0,0, D)) F(0,0, B)FY (0,0, B)F (j1,2, A)FY (11,2, A)v"
j1=071=0 =1
2 2—j1 2 2—7r 3
=33 3> Fo0,0)[] (F(0,0, D)FY (0,0, D)) Fja,2 — j1, B)FY (r2,2 — r1, B)F (ji1, 2, A)
=1

71=0j2=07r1=0r2=0

'FV(Tl,Q,A)UO

2 2 5 3 +1 1+1
=> > > > Fg(j672_2ji)H(F(j2+l72_ZjiaDl)FV(7‘2+la2_ZTiaDl))
k=0 j1+-+je=k s=0r1+--+rs=s i=1 =1 =1 i=1

'F(j272—jl,B)FV(T272—T17B)F(j172,A)FV(T1,2,A)’UO

in Y*. For summands with & = 2, we will implicitly assume the following. If necessary, one of the splitting operators
is extrapolated to X, and the following operators in the concatenation (which are automatically bounded on X)
are extrapolated to Y*. In view of (6.12), the formula

2 2 5
(S(T) = I — T Mg )0° = ( Z +Z Z Z Z )F”(j6,2—2ji)

Jit+je=2 k=0 ji+-+je=k s=1ri+Fr5=s

ri+--+r5=0
3 +1 +1
H( J2+17 ZJ’MDI T2+l72_Z’riuDl)>F(j272_jlvB)
=1 =1
-FV(rg,2 — 11, B) (]1, 2, A)FY (11,2, A)° (6.13)

now follows on Y*. The formal expression with five summation symbols means that both summation procedures
are done separately, and the results are added afterwards. The remainder of the proof consists of estimates for
the summands on the right hand side of (6.13) in Y*. For convenience, the terms are sorted in the following eight
groups.

(i) Let k = 2, s = 0, and let exactly one of the numbers ji, ..., je be different from zero. The summand in (6.13)
for jo =2 is F7(2,2)0° = 72 K2¢o(7K )0, and it satisfies the relations

[(F7 (2,200, gy v | = [(F7(2,2)0%, )| < O [lvollx, ylly -
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compare (6.9). The associated expression for j5 = 2 is given by F°(0,0)F (2,2, D3)v°. By means of Lemmas 3.7
and 3.8, as well as (6.6) and (6.9), we here derive the estimate
2
.
[(F7(0,0)F(2,2, D3)0®, y)yv | = - (T + Sr(D3))Dav°, Dage™ y)| < C72||v°|x, |yl -
All remaining cases in this index category can be treated in a similar way, additionally employing Lemma 3.11
and Corollary 3.15.
(ii) Let kK = 2, s = 0, and let exactly two indices j;, and j;, equal one. The first representative choice is
js = j¢ = 1 with the corresponding term F°(1,1)F(1,2, D3)v°. The latter satisfies the inequality

[(F7(1,1)F(1,2, D3)v°, y)y-xy | = 7% [(Kadr (1Ka) D3’ y)| < CT2)|10°x, [lylly

see (6.6) and (6.9). The second instance is j; = js = 1, leading to the summand F7(0,0)F (1,1, D3)F(1,2, Dy)0°.
Applying Lemma 3.8, (6.6) and (6.9), we here derive the bound

2
-
[(F7(0,0)F(1,1,D3)F (1,2, D2)v°, y)y«xy| = 5 |((I + S7(D3))D2v°, Dse™ )| < CT2[0°| x, [lylly -

All other index configurations in this group are tackled in the same way, using Corollary 3.15.

(iii) Assume £ = 0 and s = 1. It here suffices to consider only the sample summand FY (1,2, D3)v° being
associated to 5 = 1. In view of (6.5), Lemma 3.8, and the identity ZD3(I — ZD3)~* = —I+ (I — ZDs)~ ', we infer
the relations

2 _ T —
[(FY (1,2, D3)v%,y)yxy | = 5 [(EDs(I = §D3) """, (I = §D3) "' Day)| < C72|[v° | x, [lylly-
(iv) Let kK =0 and s = 2. In consideration of Lemma 6.1 and (6.5), it is enough to deal with the configurations
r4 =75 = 1, respectively r5 = 2. The first one leads to the summand FV (1,1, D3)FV (1,2, D3)v°. Applying (6.4),
Lemma 3.8 and Corollary 3.15, the estimate
[(FY(1,1,D3)FY (1,2, Da)v’, y)y= xv |

3 2 —
(VO (D3)DF(T 5 D3) ™10, )

_
=3

(5D2(I = 5D2) "%, Da(I — 5D2) 'V (D3)"y)

< Cr?°llx, Ilylly

is derived. The second instance 5 = 2 directs to the vector FV (2,2, D3)v°, which satisfies due to (6.4) the relations
[(FY (2,2, D)0, gy | = [(VO (D3)e0, )] < Cr2 10, Nyl -

(v) The case k = 1 = s can be treated similar to the first configuration in (iv) by means of Lemmas 3.7, 3.8,
3.11 and 6.1, and Corollary 3.15. We in this way arrive at the same kind of estimates.

(vi) Let k =1 and s = 2. In view of (6.5), (6.6) and (6.9), it suffices to consider the choice j5 = 1, combined
with the cases 75 = 2 and 74 = 75 = 1. The first configuration results in the expression F (1,2, D3)FV (2,2, D3)v° =
TD3V-,—(2)(D3)’UO which is of order 72 in Y* due to (6.4). The second sample then corresponds to the vector
F(1,2,D3)FV (1,1, D3)FY (1,2, D3)v?, which satisfies the relations

2 2
[(F(1,2, D3)FY (1,1, D3) FY (1,2, Do)v°, y)y =y | = 7° ‘(D3VT(1)(D3)%D§(I — D3 y)
< OT?[V°x, ylly

employing (6.4) and Corollary 3.15.

(vii) For the case k = 2 and s = 1, we distinguish between the subclass of summands where exactly one index j;
is equal to 2, and the subclass where two indices j;, and j;, are equal to 1. The two configurations (jg = 2,75 = 1)
and (j5 = 2,75 = 1) are representative for the first subclass. We consequently consider here F7(2,2)FV (1,2, D3)v°
and F7(0,0)F (2,2, D3)FV (1,2, D3)vY, which can be estimated by means of Lemmas 3.11 and 6.1, Corollary 3.15,
and the same arguments as in part (i). Concerning the second subclass, Lemma 3.11 and Corollary 3.15 imply
that it is enough to deal with the two combinations j5 = j¢ = 1 = r5, and j4 = j5 = 1 = r5, meaning the vectors
Fo(1,1)F(1,2,D3)FY (1,2, D3)v° and F°(0,0)F(1,1,D3)FY (1,2, D3)F (1,2, D3)v°. Employing Lemma 6.1, the
reasoning of part (ii) also here shows uniform estimates with order 72 in Y*.
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(viii) The remaining case k = 2 = s reduces in view of Lemma 6.1 and (6.4) to the parts (i) and (ii). We thus
derive for the terms in this index category the same type of estimate as before.
The case distinction (i)-(viii) and the assumption 7 < 1 altogether imply the bound

[((S(7) = T = TMexe)v", )| < CT2I10°) | x, ylly - (6.14)
The asserted estimate for the local error is now a consequence of (6.10), (6.11) and (6.14). O

The desired convergence result for the exponentially stable ADI scheme (3.18) against the solution of the
continuous system (3.1), respectively (1.1), is now a direct consequence of Lemmas 6.1 and 6.4, employing the
principle of Lady Windermere’s fan. This standard technique has also been employed in [8].

Theorem 6.5. Let e, p,0,n satisfy (1.2) and (3.2), and let T > 0. The global error estimate
(0" —v(n7),y)| < OT(L+ T) T {[v(0)||x, lylly .  yeY,

is valid for the iterates v™ of (3.18) with initial data v(0) = v° € X1, 7 € (0,%), and n € N with nt < T. The
numbers C, Csan, To > 0 depend only on e, u,0,n and Q.

Proof. Let 7 € (0,7%) with 7y from Proposition 6.2. The operator S(7) again denotes the mapping associated to
one step of (3.18). The error at time n7 then has the representation
n—1
en = 0" —v(nt) = S(1)"° — enTMext1y)0 = Z S(r)™(S(r) — eTMC"“)e("flfm)TM”‘“vO,
m=0
applying Lady Windermere’s fan. This in particular means
n—1
(en, y) _ Z ((S(T) _ eTMexc,l)e(nflfm)TMext,l,l)O’ (S(T)m)*y> )
m=0
The local error result from Lemma 6.4 now applies in view of the skewadjointness of the operators A, B, D, Ds,
and D3, Lemmas 3.11 and 3.16, Corollary 3.15, and Proposition 3.5. Consequently, the inequality

n—1
(ens )] < Clocr® 3 [Jelmtommbtesnnt]| i ((r)™) ylly
m=0 .

follows with the constant Cioc = Cloc(g, 1, 0,1, Q) from Lemma 6.4. The stability results from Propositions 3.5
and 6.2 finally yield the desired estimates

n—1
|(€ns9)] < Cotab,1Clocme =T (14+T) Y [0, [9lly < Cotabi CroeTT(1 + T)e® |00 x, [[ylly

m=0

with Cstab,1, Cstab being the stability constants from Propositions 3.5 and 6.2. O

I am grateful to my advisor Roland Schnaubelt for valuable discussions and remarks concerning this article and my ongoing
research. Further, I want to thank Jonas Kohler for helpful conversations providing more insights into ADI schemes.
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