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Abstract.
As of 2009, HEP-SPEC06 (HS06) is the benchmark adopted by the WLCG
community to describe the computing requirements of the LHC experiments,
to assess the computing capacity of the WLCG data centres and to procure
new hardware. In the recent years, following the evolution of CPU architec-
tures and the adoption of new programming paradigms, such as multi-threading
and vectorization, it has turned out that HS06 is less representative of the rel-
evant applications running on the WLCG infrastructure. Meanwhile, in 2017
a new SPEC generation of benchmarks for CPU intensive workloads has been
released: SPEC CPU 2017. This report summarises the findings of the HEPiX
Benchmarking Working Group in comparing SPEC CPU 2017 and other HEP
benchmarks with the typical WLCG workloads mixes.

1 Introduction

Since its foundation in 1991, the HEPiX forum brings togethers worldwide IT professionals
from the HEP laboratories and institutes [1], with the purpose of sharing experience on their
common computing challenges. In 2006 a dedicated working group, the HEPiX Benchmark-
ing Working Group (here BWG), was established to cover the CPU benchmarking topic and,
in particular, to address the identified discrepancies between the performance of the HEP
applications and SI2K [2], the standard benchmark used at the time to measure the CPU
performance. In 2009 the BWG suggested the adoption of a new HEP specific benchmark
suite, HEP-SPEC06 (HS06) [3], based on a subset of the industry standard benchmark SPEC
CPU2006 [4]. Since then HS06 has been used to describe experiment requirements, lab com-
mitments, existing compute resources and specifications to procure new hardware. Therefore
HS06 measurements of any CPU and motherboard models deployed in any WLCG [5] site
has been collected [6].

Almost ten years after the review of SI2K, in 2016 evidences of discrepancies between
HS06 and the HEP workloads were reported by some of the LHC collaborations [7]. In
addition the adoption of public and private cloud resources generated interest in a family of
benchmarks that could run much faster than HS06 while keeping adequate correlation with
the HEP workloads. This situation revived the activity of the BWG.

The next sections describe the state of the art of the BWG’s activities, the achieved results,
and the future plans.
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2 HS06 overview

HS06 is composed by the SPEC CPU2006 benchmarks based on C++ code, named cpp_all
benchmark set. This set showed a good correlation with all the major HEP experiments’ ap-
plications considered ten years ago [3]. The main explanation was that it has a mixture of
integer and floating point instructions similar to the patterns observed for the experiments’
applications. Yet some noticeable differences exists: with respect to SPEC CPU 2016 the
running mode is not one of the two proposed defaults (namely rate and speed). The HS06
running mode is an adaptation of the speed mode, modified to run on as many parallel and
independent instances as are the available threads of the CPU. For this reason it is called mul-
tiple speed. Other differences with respect to the original benchmark reside on the compiler
optimization flags, as the binaries are 32-bits.

In recent years, with the broad adoption of Intel Haswell and Broadwell CPU models, as
well with the adoption by all the LHC experiments of 64-bits compiled applications, discrep-
ancies have been highlighted between the HS06 scores and the average normalised time spent
by the applications [7]. The discrepancies being more accentuated for the LHCb simulation
applications. At the same time analysis on ATLAS and CMS WLCG jobs still proved that
simulation applications were in good agreement with HS06 within 10% of resolution [8].

Moreover, with the advent of Simultaneous MultiThreading (SMT), the WLCG sites have
configured their computing infrastructure to run a number of simultaneous applications per
physical core spanning from one to two, driven by the WLCG applications’ memory re-
quirement of at least 2 GB of memory available per processor. The BWG’s studies have
highlighted the lack of a common scaling factor across WLCG applications and HS06, when
comparing the delivered performance of a different number of simultaneously running appli-
cations (fig. 1).

Figure 1. HS06 score and typical WLCG applications’ performance reported by Alice, ATLAS, CMS,
and LHCb for three values (1, 1.6, 2) of simultaneously running applications per core. The benchmarked
platform consists of several servers with Intel Xeon E5-2630 v4 processors at GridKa Tier-1 (KIT).

From the initial round of discussions and results, two aspects became evident, both re-
quiring the adoption of new tools. Firstly it was necessary to extend the studies to the CPU
microinstructions, in order to compare at a fine-grained level the difference between the HEP
workloads and HS06 (see Sec. 2.1). Second there was a need to perform the benchmark stud-
ies in a more reproducible manner, to avoid some of the common pitfalls that are also faced
by other communities [9] (see Sec. 2.2).
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2.1 Trident analysis

The Trident tool [10] collects and analyses hardware and software counters while a given
workload is running. It leverages the performance monitoring unit (PMUs) of modern pro-
cessors to quantify the usage of the processing units, memory and IO subsystems.

Trident enables the unveiling of differences between the HEP workloads and HS06. For
example Trident can show the classification of notional execution slots between used slots and
unused slots, i.e. when execution opportunity is lost. Losses can happen within the front-end
or back-end portion of the instruction pipeline due to availability or limits in resources, such
instruction decodes latency or throughput, execution port availability and latency of memory
access. In addition a loss may be classified as bad speculation when due to branch prediction.

Figure 2 shows this comparison between HS06 and the ATLAS digitization and recon-
struction sequence. In the case of HS06, the transitions of patterns correspond to the transition
between two cpp_all benchmarks running in that particular phase of the suite (fig. 2(a)). Sim-
ilar remarks apply to the ATLAS case (fig. 2(b)). Differences are also found in the amount of
memory transactions and bandwidth usage. A detailed report about the Trident tool and the
peculiarities of the HEP workloads is available [11].

(a)

(b)

Figure 2. Fraction of micro-operations per cycle that are usefully executed (retiring) or lost due to
reasons belonging to the front-end or the back-end portion of the instruction pipeline or lost due to bad
spaculation. Two different applications are compared: the HS06 suite (a) and the ATLAS digitization
and reconstruction workloads (b).
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2.2 Benchmarking suite

One of the efforts of the BWG has been to improve the measurement’s reproducibility and
to simplify the process of running benchmarks and collecting results. This goal has been
achieved by developing a toolkit, named CERN benchmark suite [12], that allows to plug-in
any desired benchmark and to run a configurable sequence of benchmarks on a given comput-
ing resource. The current list of supported benchmarks includes HS06, SPEC CPU 2017 [13],
KV [14], Dirac Benchmark 2012 (DB12) [15] and Whetstone benchmark (WSN) [16] . An-
other benefit of the suite is the unified report generated after it runs. The report, in JSON
format, consists of a metadata section, with information about the server benchmarked, the
running conditions, and of a data section with a hierarchical structure of benchmark results
(fig. 3).

The suite is used at CERN for continuously benchmarking each CPU model running in
the production infrastructure. It has speedup the measurement collection and analysis pro-
cess. This is typically useful when prompt and accurate measurements are expected as, for
example, the performance assessment for the mitigation measures related to the Spectre [17],
Meltdown [18] and Foreshadow [19] vulnerabilities. The benchmarking suite is also dis-
tributed via docker containers to even simplify further installation and running processes.
Recently it has been used by other site managers in WLCG.

Figure 3. Structure of the profile report produced by the Benchmarking suite, here in the case of SPEC
CPU 2017 (SC17).

3 Fast benchmarks

Fast benchmarks require a few minutes to run instead of the several hours required by HS06.
They are useful when the environment dynamic and the relatively short availability of com-
puting resources make a long-running benchmark as HS06 impractical. Fast benchmarks are
useful to estimate the delivered performance in commercial cloud and HPC opportunistic
resources, and are helpful to forecast the duration of a given grid job in a WLCG worker
node.
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Among several applications studied by the BWG, the ATLAS KV and the DB12 are ap-
preciated by the WLCG collaborations. KV tends to agree well with ATLAS and CMS sim-
ulation workloads, DB12 (and the variant DB16) is in agreement with the Alice and LHCb
job performance when DB12 runs inside the job. More discrepancies are seen when the
DB12 measurement is performed following the same procedure as other benchmarks, i.e.
when running as many parallel copies as there are hardware threads [20]. Evidence has been
collected that shows short benchmarks are not robust enough to replace long-running bench-
marks when the scope of the measurement is to evaluate effects of the branch misprediction
rate or the kernel patches for the Meltdown and Spectre vulnerabilities.

4 SPEC CPU 2017

The SPEC CPU 2017 (SC17) [13] benchmark suite has been released on June 2017 by the
SPEC organisation, and introduced this new suite as the replacement of SPEC CPU 2006.
SC17 is larger and has a more complex codebase, with respect to its predecessor. It is shaped
for multi-core and multi-threads applications. SC17 includes 43 individual benchmarks or-
ganised into four suites, obtained combining integer and floating point applications with two
distinct running modes, speed and rate.

As done for HS06 ten years ago, the BWG is performing a detailed investigation of SC17,
starting from the comparison with HS06. For this purpose only comparable configurations
have been considered. The benchmarks under examination have been restricted to the C++ 1,
and the selected running mode is rate, but with a number of spawn copies fixed to one.
In order to mimic the multiple speed running mode of HS06, parallel copies of SC17 are
spawned by an orchestrator script. These choices [21] allow to have the largest overlap with
the application area of the HS06 benchmarks. For the same reasons the HS06 compiler
optimisation flags are retained 2.

On this basis, the first objective has been to quantify how much SC17 differs from HS06
on the same hardware. Next objective has been to evaluate if all the individual benchmarks
in the SC17 are independent or if, on the contrary, a subset of the benchmarks can be used to
build a representative benchmark mix.

The measurements have been performed on several servers, covering seven different Intel
CPU models, from four different product families (Ivy Bridge, Haswell, Broadwell, Skylake),
and two AMD models (Opteron and Ryzen). The SMT was enabled in all the servers, and
the tests have been performed to profile the full physical node. Virtual Machines of different
CPU size have been used, running synchronously the benchmarks, so that the server load
would be analogous to what is achieved running on a physical server with either the SMT
enabled or disabled.

The following benchmarks have been collected for each server: SC17 and HS06 compiled
at 64 bits, as well as HS06 compiled at 32 bits, as this the standard benchmark for WLCG.

A high linear correlation (0.975) between SC17 and HS06 has been found (fig. 4), with
a scale factor of 0.12 to convert the HS0664bits score to the SC17 score. The residual ra-
tio of the linear fit shows that the extrapolation is within 5% of the measured value, i.e.
| SC17extrapolated

SC17measured
− 1| < 5%.

This result highlights that the adopted SC17 benchmark set, pure_rate_cpp, does not
provide more information than HS06, at least for the range of CPU models currently adopted

1A dedicated benchmark set has been defined (pure_rate_cpp), consisting of the following benchmarks:
508.namd_r, 510.parest_r, 511.povray_r, 520.omnetpp_r, 523.xalancbmk_r, 526.blender_r, 531.deepsjeng_r,
541.leela_r.

2gcc compiler flags: -O3 -fPIC -pthread
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Figure 4. SC17 score vs HS0664bits score, both normalised to the core count. The error bars represent
the 5% and 95% of the distribution for each given CPU model and VM core count. The marker size is
proportional to the amount of data collected.

in WLCG. Therefore different scaling factors with respect to the HEP workloads are not
expected. We stress here that the initial focus has been on running conditions that remain
similar to HS06 and to the current HEP workloads.

The second objective has been to evaluate if all the individual benchmarks in the SC17
pure_rate_cpp are independent, or if there is at least one subset of this set that is as well rep-
resentative of the performance of the full set. All the combinations of the eight benchmarks
have been built, for a total of

∑7
k=1

(
8
k

)
= 254 combinations.

For each combination the SC17 score has been re-evaluated using only the individual
scores of that combination. This has been possible thanks to the benchmark suite that stores

(a) (b)

Figure 5. Residual ratio ∆score
SC17score

with respect to the original SC17 pure_rate_cpp for each of the subsets
built from the eight pure_rate_cpp benchmarks’ scores (a) and for only the subsets compatible with the
original SC17 within three sigmas (b). Error bars represent the full range [min,max]. The x value is the
subset identifier.
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the individual results of each benchmark and thread. From the sample of new scores the
weighted average and standard deviation have been determined for each given CPU model
and running condition. Afterword the residual ratio ∆score

SC17score
with respect to the initial SC17

pure_rate_cpp has been computed. The new scores have a residual ratio that span from less
than 1% to more than 50% (fig. 5). Therefore it is possible to identify more than one subset
being well in agreement with the original SC17 score, using just two or three benchmarks
(fig. 5(b)). As an example, the subset 508.namd_r, 510.parest_r, 531.deepsjeng_r is com-
patible with the original SC17, being the residual ratio within the range [-0.035, 0.017] with
average of −0.001 ± 0.005.

Having shown that the individual SC17 pure_rate_cpp benchmarks are not fully inde-
pendent, it is possible to use one of those subsets of benchmarks that give the same score
ratio, and consequently it is possible to reduce the running time of the suite without loosing
in sensitivity. The current running time is on average 2.5 hours/iteration, and scale inversely
with the score of a given CPU model. The next phase of the study will evaluate how each of
those subsets correlates with the typical HEP job mix.

5 Requirements for a benchmark suite

The software and computing challenges for the HEP field, in particular due to the HL-LHC
program [22], have implications on the benchmarking side. The selection of future CPU
benchmarks shall take into account the foreseen evolution of the experiment software in order
to better use the CPU resources. This implies that new HEP applications could and should
in the future perform differently in distinct CPU models with respect to the past applications,
and consequently should break the current linearity with HS06.

In this scenario, instead of looking for a third party benchmark suite that must represent
the HEP applications, a suite of benchmarks built from the HEP applications themselves can
represent the appropriate solution to guarantee the required correlation with the performance
of the applications’ mix running in WLCG.

In order to build such suite, some requirements need to be fulfilled. First of all the suite
should be easy to run, stable and accessible also by professionals external to the WLCG
collaborations, such as hardware vendors and site procurement teams. This implies that no
assumption should be made on the remote accessibility of the input data and the condition
databases. In addition the long-term support of the suite is required, including its evolution to
cope with major changes in the experiments’ software. Conditions such as strict version con-
trol, tamper-proof repository, checksums and clear license statement should be guaranteed.
This is feasible with the technologies and software practise already adopted, for example
with cvmfs for library access, containers for isolation of a workload, and with continuous in-
tegration procedures. But it is only possible if the WLCG community ensures the long term
support.

6 Conclusions

HS06 is a decade old suite used to benchmark CPU resources for WLCG. Its adoption spans
from the hardware vendors, to the site managers, funding agencies and software experts. It is
stable, reproducible, accurate, however it is reaching the end of its life. Initial hints of lack of
correlations with the HEP applications have been collected. Looking for suitable alternatives
the HEPiX Benchmarking Working Group has evaluated SPEC CPU 2017 and a number of
fast benchmarks.

The studies done so far do not show major advantage in adopting SPEC CPU 2017 with
respect to HS06. Indeed the suite of C++ benchmarks reports scores highly correlated with
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the HS06 scores. Fast benchmarks can play a role in cloud contexts, where re-benchmarking
is required, but the current proposed fast benchmarks cannot replace the accuracy of HS06,
in particular in the procurement and accounting tasks.

A suite based on the workloads that HEP experiments run can be an alternative to indus-
trial standard benchmarks. The adoption by the experiments of modern software development
techniques simplifies the ability to package, distribute and maintain a field specific benchmark
suite. The HEPiX Benchmarking Working Group is actively working to make this possible.
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