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Abstract. To avoid unnecessary data traffic it is sometimes
desirable to apply mean averaging kernels to mean profiles of
atmospheric state variables. Unfortunately, application of av-
eraging kernels and averaging are not commutative in cases
when averaging kernels and state variables are correlated.
That is to say, the application of individual averaging ker-
nels to individual profiles and subsequent averaging will, in
general, lead to different results than averaging of the orig-
inal profiles prior to the application of the mean averaging
kernels, unless profiles and averaging kernels are fully inde-
pendent. The resulting error, however, can be corrected by
subtraction of the covariance between the averaging kernel
and the vertical profile. Thus, it is recommended to calculate
the covariance profile along with the mean profile and the
mean averaging kernel.

1 Introduction

More often than not satellite data retrievals are constrained
because the unconstrained profile retrieval on a given alti-
tude1 grid would lead to an ill-posed inverse problem. The
constrained retrieval is more robust, but the price to pay typ-
ically is, among other effects, a certain loss in vertical res-
olution. The effect of the constraint is characterized by the
averaging kernel matrix (Rodgers, 2000).

Many applications of remotely sensed data involve com-
parison with independent model or independent measure-
ment data. If these comparison data are better resolved than
the remotely sensed data, the averaging kernel of the latter

1We use the term altitude in a generic sense, not limited to ge-
ometric altitude but for any vertical coordinate. Alternative vertical
coordinates can be, e.g., pressure or potential temperature.

has to be applied to the former to make the comparison mean-
ingful (Connor et al., 1994). Otherwise, differences caused
by the different altitude resolution would mask scientifically
significant differences. Unfortunately, for a vertical profile of
n values of an atmospheric state variable, the related averag-
ing kernel matrix is of the size n× n; that is to say, the data
traffic is dominated by the averaging kernel data while the
data product of interest, namely the profile, could be com-
municated with much less effort. Often the data users are
not interested in the individual measurements but prefer to
work, e.g., with monthly zonal mean profiles (e.g. Hegglin
and Tegtmeier, 2011). In this case, it would be convenient
if the data user could simply apply monthly zonal mean av-
eraging kernels to their better resolved monthly zonal mean
data to make them comparable to the coarser resolved zonal
monthly mean measurements. Unfortunately averaging and
application of the averaging kernel are not commutative. As
soon as the data and the averaging kernels covary, the appli-
cation of the mean averaging kernel to mean profiles gives a
different result than the application of individual averaging
kernels prior to averaging. We solve this problem by provid-
ing statistically inferred covariance terms, which can be used
to correct the related error. In the next section we describe the
theoretical framework used. As a case study, covariances ap-
plicable to trace gas profiles retrieved from MIPAS (Michel-
son Interferometer for Passive Atmospheric Sounding, Fis-
cher et al., 2008) measurements are inferred in Sect. 3. The
varying importance of the covariance effect is illustrated in
Sect. 4. Section 5 is an interlude where we investigate pitfalls
regarding the applicability of averaging kernels to compari-
son data, before a critical discussion of the applicability of
our suggested approach concludes the paper (Sect. 6).
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2 The formal concept

We borrow the formal concept of retrieval theory from
Rodgers (2000). The intended application of our study is, at
worst, moderately nonlinear retrievals. That is to say, linear
theory is assumed to be adequate for the characterization of
the retrieval in terms of error estimation, assessment of ver-
tical resolution, and so forth. Thus, we ignore all complica-
tions that may arise from nonlinearity and thus do not discuss
the retrievals in an iterative setting. Within the framework of
moderately nonlinear problems, our results are still applica-
ble to the results of iterative retrievals.

The vertical resolution of a profile of an atmospheric state
variable, e.g., temperature or the volume mixing ratio of a
trace gas, with n grid points, is usually characterized by the
averaging kernel matrix A of size n× n. Its elements are the
partial derivatives ∂x̂i

∂xj
of the estimated state variables x̂i with

respect to the true state variable xj . While the indices i and
j typically run over altitude levels of one vertical profile, the
concept as such has a much wider range of applicability, e.g.,
horizontal averaging kernels (von Clarmann et al., 2009a) or
characterization of cross-dependence of multiple species. In
this study, we restrict ourselves to averaging kernels of ver-
tical profiles of single species. For a constrained retrieval of
the type

x̂ = xa+
(

KT S−1
y K+R

)−1
KT S−1

y (y−F (xa)) , (1)

or any equivalent formulation of it, where the x̂ vector repre-
sents the estimated profile, xa is an a priori profile, K is the
Jacobian matrix ∂yi

∂xj
, T indicates a transposed matrix, Sy is

the measurement error covariance matrix, R is a regulariza-
tion matrix, F is the radiative transfer function, and y is the
vector of measurements (von Clarmann et al., 2003a, build-
ing largely upon Rodgers, 2000). The related averaging ker-
nel matrix is

A=
(

KT S−1
y K+R

)−1
KT S−1

y K. (2)

The state dependence of the averaging kernel is largely due to
the state dependence of the Jacobian K. With the averaging
kernel matrix introduced above, and using the linearization

y−F(xa)≈K(x− xa), (3)

Eq. (1) can be rewritten as

x̂ = (I−A)xa+Ax. (4)

The most common application of the averaging kernel matrix
is the degradation of highly resolved vertical profiles to make
them comparable to poorer-resolved profiles by application
of the averaging kernel matrix of the poorer-resolved profile
to the high-resolved profile (Connor et al., 1994):

xdegraded = (I−A)xa+Axhighly resolved, (5)

where A and xa refer to the poorer-resolved profile. It goes
without saying that the high-resolved profile has to be resam-
pled on the grid on which the application of the averaging
kernel is performed, and, if applicable, transformed to the
same units (volume mixing ratio, number density, etc.).

Sometimes a priori profiles are used that are all zero,
e.g., for most gas profiles retrieved from MIPAS (von Clar-
mann et al., 2009b). This is often appropriate if a smoothing
regularization (Steck and von Clarmann, 2001, building on
Tikhonov, 1963) is used instead of an inverse a priori covari-
ance matrix as suggested by Rodgers (1976, 2000). For these
applications, Eq. (5) reduces to

xdegraded = Axhighly resolved. (6)

The same is true if for all retrievals the same altitude-
constant prior is used in combination with an averaging ker-
nel with unity row sums associated with purely smoothing
constraints.

Using

cov(a,x)= 〈Ax〉− 〈A〉〈x〉, (7)

calculation of, e.g., zonal averages over L profiles renders2

〈x̂〉 = 〈(I−A)xa+Ax〉

= 〈xa〉− 〈A〉〈xa〉−

cov(A,xa)+〈A〉〈x〉+ cov(A,x), (8)

where

cov(A,x)=
1
L

L∑
l=1

(Al −〈A〉)(xl −〈x〉). (9)

cov(A,xa) can be treated in an analogue way.
Often these correlations are close to zero, e.g., in the case

of almost linear radiative transfer. In this case, Eq. (8) re-
duces structurally to Eq. (4) and can be reinterpreted in the
sense of Eq. (5), applied to mean averaging kernels and pro-
files, as

〈xdegraded〉 = (I−〈A〉)〈xa〉+ 〈A〉〈xhighly resolved〉. (10)

For all other cases, i.e., when the covariance terms
cov(A,xa) and cov(A,x) are nonzero, the respective addi-
tive corrections are necessary.

For a retrieval with xa = 0 (or xa constant with altitude
and a purely smoothing constraint), Eq. (8) simplifies to

〈x̂〉 = 〈Ax〉

= 〈A〉〈x〉+ cov(A,x). (11)

2Here a caveat is in order. The average of profiles which are “op-
timal” in the sense of maximum a posteriori information and where
the a priori information is the same for all averaged profiles is not
the optimal average. This is because the weight of the a priori infor-
mation will be too large in the average. A more thorough discussion
of this issue, however, is beyond the scope of this paper.
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cov(A,x) can be approximated by cov(A, x̂), which can eas-
ily be evaluated statistically from the available results and
distributed to the data user along with the mean averaging
kernel 〈A〉 and the mean profile 〈x〉 and used to correct pro-
files of averaged comparison data. All this is valid only with
some qualification. Related problems will be discussed in
Sect. 6.

For a retrieval with constant climatological xa for the en-
tire sample of profiles we get

〈x̂〉 = 〈(I−A)xa+Ax〉

= xa−〈A〉xa+

+〈A〉〈x〉+ cov(A,x). (12)

For a retrieval where an individual prior xa is used for each
profile retrieval; i.e., a prior that represents the best avail-
able information on the current state not in a climatological
sense, but, e.g., from independent measurements specific to
each measurement of the ensemble, it may also be adequate
to assume

cov(A,x)≈ cov(A,xa), (13)

i.e., that the prior information is a good representation of the
true atmospheric state and variability. In this case the correc-
tion by the covariance terms becomes approximately obso-
lete because

〈(I−A)xa+Ax〉 =

〈xa〉− 〈A〉〈xa〉− cov(A,xa)

+〈A〉〈x〉+ cov(A,x)≈

〈xa〉− 〈A〉〈xa〉− cov(A,xa)+

〈A〉〈x〉+ cov(A,xa)=

〈xa〉− 〈A〉〈xa〉+ 〈A〉〈x〉. (14)

For retrievals performed in the log space, all this becomes
slightly more complicated (e.g., Stiller et al., 2012). Equa-
tion (5) then reads

xdegraded = exp
(
(I−A) lnxa+A lnxhighly resolved

)
, (15)

where A is ln x̂i

lnxj
. For log retrievals there is no obvious way to

correct for the averaging artifacts as long as the averaging is
performed linearly in the volume mixing ratio space. Since
averaging of logarithmic retrievals in the logarithmic domain
has its own problems (Funke and von Clarmann, 2012), we
do not pursue this option any further.

The issues discussed in this section have to be considered
if mean averaging kernels are to be applied to mean profiles
in the spirit of Eq. (5), in order to make mean profiles of
different sources comparable.

3 Covariances

The covariances between the averaging kernel matrices and
the state vectors are calculated as

cov(A,x)=

1
L

(
L∑

l=1
(Al −〈A〉)(xl −〈x〉)

)
=

1
L

(
L∑

l=1
Alxl −

1
L

L∑
l=1

Al

L∑
l=1

xl

)
, (16)

where L denotes the sample size; we divide by L instead of
L− 1 because the latter would entail an inconsistency with
Eq. (8) and Eqs. (11–14). The formulation in the lowermost
line of Eq. (16) is computationally more efficient. For our
case study, averaging kernel matrices and state vectors re-
trieved from limb emission spectra measured by the MIPAS
are used. The general processing scheme is described by
von Clarmann et al. (2003b, 2009b). We study covariances
for MIPAS O3 and hydrogen cyanide (HCN) profiles (Laeng
et al., 2018 and Glatthor et al., 2015, respectively).

To illustrate the relevance of the correction terms, we also
present the normalized covariance term r̃ for each profile el-
ement:

r̃n = cov(A,x)n/(〈A〉〈x〉)n, (17)

where index n runs over the profile elements. The˜symbol
is used to avoid confusion with the product moment correla-
tion coefficient established by Pearson (1895), for which r is
often used as a symbol and is widely used for normalization
of covariances but causes confusion when applied to corre-
lations of matrices with vectors. For simplicity, we still call
the normalized covariance “correlation”; however, we do this
without claiming equivalence with its scalar counterpart.

4 Results

Case studies have been performed using ozone and HCN
vertical profiles retrieved from MIPAS measurements of
9 February 2009. The test data set consists of 1385 geoloca-
tions. This day was characterized by a significantly disturbed
Arctic vortex. Figure 1 shows the covariances between the
profiles and the averaging kernel matrices of ozone globally
(solid black line) and for various latitude bands of differ-
ent sizes (dashed and dotted lines). In general the values are
largest at the extreme ends of the profiles, where the effect of
the constraint on the retrieved profile is typically largest.

These results suggest that for MIPAS ozone in the middle
and upper stratosphere the effect studied here can be safely
ignored. Problems are limited to the upper troposphere, lower
stratosphere and the mesosphere. The relevance of this effect
can be judged better on the basis of the correlation profiles
(Fig. 2). From 20 to about 60 km the effect is negligibly small
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Figure 1. Covariance of the averaging kernel and ozone mixing ra-
tio for various latitude bands. The solid black line refers to global
data. The dashed lines refer to 30◦ latitude bands, and the dotted
lines refer to 10◦ latitude bands.

Figure 2. Correlation of the averaging kernel and ozone mixing ra-
tio for various latitude bands.

for all latitude bands investigated in this case study. Only at
the uppermost and lowermost altitudes does the effect be-
come relevant. The large effects at lower altitudes are simply
caused by normalization of the original covariances by low
ozone mixing ratios.

To study HCN is particularly interesting in the tropical up-
per troposphere and lower stratosphere. This is because HCN
has tropospheric sources and its pathway into the strato-
sphere is a particular research issue. The covariance effects
can exceed 10 % (dashed violet and yellow lines) and thus
need to be considered when mean profiles are used for quan-
titative analysis and mean averaging kernels are applied.

These case studies are not meant to be representative for
other gases or other instruments. Instead, they are shown to
give an idea of the order of magnitude this kind of effect
can reach. Unless cov(A,x) can be shown to be small, we
recommend using this covariance term for an additive cor-
rection when mean averaging kernels are applied to averaged
comparison data.

Figure 3. As in Fig 1 but for HCN.

Figure 4. As in Fig 2 but for HCN.

5 An important side remark

The issue of the limited applicability of averaging kernels
to independent comparison data deserves awareness. When
averaging kernels of a measurement are applied to better re-
solved comparison data, it is almost always tacitly assumed
that the atmospheric state represented by the measurement is
the same as that of the comparison data and thus that the av-
eraging kernel of the measurement can be safely applied to
the comparison data. However, since averaging kernels are in
general state dependent, a caveat is in order.

Application of the formalism of Connor et al. (1994) (our
Eq. 5) has its own specific problems, which fully apply to
our proposed scheme. The application of the averaging ker-
nel matrix of a poorly resolved profile xcoarse to a better re-
solved profile xfine is only adequate if both data sets describe
approximately the same atmospheric state, i.e., if the one pro-
file is in the linear domain of the other. That is to say, if the
same Jacobians apply to both profiles. Otherwise it would
be necessary to construct an averaging kernel using the Ja-
cobian K evaluated for the atmospheric state represented by
the profile xfine but with the measurement covariance ma-
trix Sy and the regularization matrix R corresponding to the
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retrieval producing xcoarse. Within linear theory, the state de-
pendence of the Jacobian K, and as a result the state depen-
dence of the averaging kernel matrix A is often ignored. To
do so is justifiable as long as the profiles to be intercompared
are sufficiently similar. In this case the comparison will show
reasonable agreement.

If, in turn, the profiles are very different, two components
contribute to the disagreement seen after application of the
Connor method: first, the genuine difference of the profiles
and, second, any artifact caused by the inadequate averaging
kernels. Thus, in the logic of a testing scheme, good apparent
agreement hints further at genuine good agreement because
it is extremely unlikely that genuine differences that could
survive the application of the Connor method with the correct
averaging kernel are “convolved away”,3 with the averaging
kernel evaluated for the wrong atmosphere.

6 Discussion and conclusion

We have identified the following problem: that it is not gen-
erally allowable to apply mean averaging kernels to mean at-
mospheric profiles in situations where the averaging kernels
and the profiles covary. The relevance of this effect, how-
ever, depends on the instrument, species, latitude band and
the altitude under investigation. To solve this problem, we
have proposed a statistical correction scheme that involves
the covariance between the averaging kernel and the profile.
With this correction in place, the scheme suggested by Con-
nor et al. (1994) to make better resolved vertical profiles of
atmospheric state variables comparable to coarser resolved
ones can also be applied to averaged profiles.

For data producers who distribute, in addition to their orig-
inal retrievals, zonal mean data or similar data products, we
recommend the following: along with the generation of zonal
mean data and averaging kernels, the correlation profiles
should be calculated. Compared to averaging kernels and
covariance matrices they need negligible storage and cause
negligible data traffic. In cases when zonal mean data have
already been generated but mean covariance matrices and co-
variance profiles are not available, the huge input/output load
associated with reading all individual averaging kernels may
be prohibitive. In these cases one might consider estimating
the mean averaging kernel and the covariance profile on the
basis of a limited random sample out of the measurements
that went into the zonal mean.

Data availability. MIPAS data used in this study are available on-
line at https://doi.org/10.5445/IR/1000098437 (Glatthor and von
Clarmann, 2019).

3We put this term in quotes to highlight that this method is,
mathematically speaking, not a convolution. It is not even a numer-
ical approximation of a convolution.
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