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Abstract: Mobile Mapping is an efficient technology to acquire spatial data of the environment.
The spatial data is fundamental for applications in crisis management, civil engineering or
autonomous driving. The extrinsic calibration of the Mobile Mapping System is a decisive factor
that affects the quality of the spatial data. Many existing extrinsic calibration approaches require
the use of artificial targets in a time-consuming calibration procedure. Moreover, they are usually
designed for a specific combination of sensors and are, thus, not universally applicable. We introduce
a novel extrinsic self-calibration algorithm, which is fully automatic and completely data-driven.
The fundamental assumption of the self-calibration is that the calibration parameters are estimated
the best when the derived point cloud represents the real physical circumstances the best. The cost
function we use to evaluate this is based on geometric features which rely on the 3D structure tensor
derived from the local neighborhood of each point. We compare different cost functions based on
geometric features and a cost function based on the Rényi quadratic entropy to evaluate the suitability
for the self-calibration. Furthermore, we perform tests of the self-calibration on synthetic and two
different real datasets. The real datasets differ in terms of the environment, the scale and the utilized
sensors. We show that the self-calibration is able to extrinsically calibrate Mobile Mapping Systems
with different combinations of mapping and pose estimation sensors such as a 2D laser scanner
to a Motion Capture System and a 3D laser scanner to a stereo camera and ORB-SLAM2. For the
first dataset, the parameters estimated by our self-calibration lead to a more accurate point cloud than
two comparative approaches. For the second dataset, which has been acquired via a vehicle-based
mobile mapping, our self-calibration achieves comparable results to a manually refined reference
calibration, while it is universally applicable and fully automated.
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1. Introduction

Mobile Mapping is an efficient technology to acquire spatial data of the environment. The spatial
data is further processed to 3D city models, building models or models of indoor environments which
are nowadays an essential data source for applications in crisis management, civil engineering or
autonomous driving. Depending on the scale of the environment, mobile platforms like airplanes,
cars, Unmanned Areal Vehicles (UAVs) or mapping backpacks are considered. The mobile platform
is typically equipped with one or more mapping sensors. A widely utilized mapping sensor is a
laser scanner, also known as Light Detection And Ranging (LiDAR) sensor, since it acquires accurate
and dense spatial data of the environment in form of a 3D point cloud.
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The quality of the 3D point cloud captured with a Mobile Mapping System (MMS) is limited
by the accuracy of the mapping sensor itself and mainly three more components: The estimation of
the pose of the MMS, the intrinsic calibration of the individual sensors and the extrinsic calibration of
the MMS.

The pose describes the position and orientation of the MMS with respect to a superordinate
coordinate frame. It is used to register a single scan to a common point cloud. The pose is estimated
in a specific frame which we call the navigation frame. The pose estimation task can be solved by
using a technology that observes the sensor system, like for example the Global Navigation Satellite
System (GNSS), or by using on-board sensors and an odometry- or Simultaneous Localization and
Mapping (SLAM)-algorithm.

The intrinsic calibration is the process of estimating the interior calibration parameters of the
individual sensors. In case of a laser scanner, these are for example a range finder offset and beam
direction influences. As the impact of the interior calibration parameters on the accuracy of the point
cloud is typically lower than the impact of the other mentioned components, the interior calibration
parameters of mapping sensors are often neglected. However, for highest accuracy requirements,
the interior calibration parameters must be taken into account.

The objective of the extrinsic calibration of a MMS is to find a rigid transformation from the
navigation frame to the frame of the mapping sensor. The extrinsic calibration is also known as
determining the relative pose between the two sensors.

For the sake of clarity, in this work we focus on estimating the extrinsic calibration parameters.
For simplicity, we will call this process the calibration from now on.

Figure 1 visualizes the effect of an inaccurate calibration on the basis of a point cloud resulting from
Mobile Mapping within an indoor scenario. Due to the use of a line scanning device as mapping sensor
and heterogeneous movements of the sensors, the points are not uniformly sampled. The point cloud
on top is generated using an insufficient calibration with an error of five degrees in the pitch angle.
This leads to a systematically distorted point cloud. In contrast, the point cloud at the bottom is
calibrated using a target calibration approach for cameras and laser scanners [1–3].

Figure 1. Point cloud as a result of a mobile mapping in an indoor environment. Due to the use of
a line scanning device and non-uniform movements of the mobile mapping platform, the points are
inhomogeneously sampled. The color of each point illustrates its height. Top: Inaccurate guess of the
extrinsic calibration parameters. Bottom: Calibrated using the Robust Automatic Detection in Laser Of
Calibration Chessboards (RADLOCC) [1–3], which is a target calibration approach for cameras and
laser scanners.

In general, the calibration approaches can be arranged into three categories: (i) Calibration
approaches which are performed in the laboratory, (ii) calibration approaches which use specific,
artificial targets and (iii) self-calibrations. Self-calibrations are the most practical and time-saving
approaches, as it is possible to calibrate the system based on the data that shall be collected anyways.
There is no need to prepare the environment before data collection, to design artificial targets or to
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use additional sensors in self-calibration processes. Moreover, self-calibrations can be more accurate
because changes of the calibration parameters during data collection can be taken into account.

In this paper, we propose a self-calibration approach which is based on geometric features.
Therefore, we also provide a brief introduction to these features.

1.1. Geometric Features

Geometric features are often used to automatically analyze 3D point clouds. The most popular task
in this context is classification [4,5], but geometric features have also been used for coarsely registering
3D point clouds [6] and retrieving objects in 3D point clouds [7]. Particularly, the geometric features
derived from eigenvalues of the 3D structure tensor have proven to be descriptive [4]. As these features
represent a specific property of the local neighborhood by a single value, they are rather intuitive.
The three features of linearity, planarity and sphericity enable for example to quickly identify the
primary dimensionality within a local neighborhood.

In this paper, we use such geometric features to evaluate the quality of a point cloud and thus to
evaluate the calibration of a MMS with a laser scanner and a pose estimation sensor.

1.2. Contributions and Structure

With this paper, we introduce a novel extrinsic self-calibration approach for Mobile Mapping
Systems. In this context, we also analyze the suitability of different cost functions for the extrinsic
self-calibration task. The MATLAB code of our self-calibration framework is publicly available
(https://github.com/markushillemann/FeatCalibr).

Our self-calibration approach combines all of the following advantages simultaneously:
(i) the estimation of all extrinsic calibration parameters between an arbitrary pose estimation sensor
and a mapping sensor, (ii) a universal solution suitable for different kinds of mapping sensors (e.g.,
2D and 3D laser scanners), (iii) no assumptions about the environment and no requirements for
artificial targets or additional sensors, (iv) a solution robust to initial calibration errors due to a
multi-scale approach.

The paper is organized as follows: Section 2 provides an overview of related work in the field of
extrinsic self-calibration of MMSs and in the field of geometric point cloud features. The methodology
of our calibration approach, which is based on a nonlinear least squares optimization of the calibration
parameters, is presented in Section 3. Section 4 describes the synthetic and real datasets and the
experiments that have been performed on these datasets. We examine if some of the potentially
usable geometric features are better suited for the use as cost function for our self-calibration than
others and compare the results to a self-calibration which uses a cost function from the literature [8].
Furthermore, we focus on questions about the applicability to different sensors and environments and
prove the suitability to real sensor data. In Section 5, we elaborate on the results of the experiments and
derive under which conditions the self-calibration achieves good results. Finally, Section 6 provides
concluding remarks as well as an outlook on future work.

2. Related Work

As the use of geometric features in terms of a self-calibration is rare, we split the related
work section. Section 2.1 presents the related work in terms of relevant calibration approaches.
These approaches usually distinguish between two types of mapping sensors: 2D and 3D laser scanners.
2D laser scanners measure the range to the illuminated surface while scanning the surface linearly.
Therefore, 2D laser scanners are also known as line laser scanners. The scanning is usually performed
sequentially, or more rarely synchronously, by utilizing linearly arranged fiber optics. An example
of a 2D laser scanner is the Hokuyo UTM-30LX-EW (Hokuyo Automatic Co., Ltd., Osaka, Japan).
3D laser scanners are in principle 2D laser scanners combined with a rotating platform for scanning
perpendicular to the previous mentioned scanning direction. An example of a 3D laser scanner is the
Velodyne HDL-64E (Velodyne Lidar, Inc., San Jose, CA 95138 USA).

https://github.com/markushillemann/FeatCalibr


Remote Sens. 2019, 11, 1955 4 of 29

The literature offers many calibration approaches which require a 3D laser scanner. As our
approach is also suited to estimate the extrinsic calibration parameters of 2D laser scanners and as this
is the more restrictive sensor, we focus this section on approaches that can handle both types of sensors.
As geometric features are a fundamental component of our calibration approach, we also present the
related work of these features in Section 2.2. Most of the previous works on geometric features are
linked to classification tasks.

2.1. Extrinsic Calibration of Mobile Mapping Systems

Many previous works handle the extrinsic calibration of MMSs with specific combination
of sensors. Especially for the extrinsic calibration of MMSs with a laser scanner and a camera,
numerous approaches have been presented in literature. There are target calibrations that require
special calibration objects like triangles, folding patterns, cubes or more complex calibration objects
consisting of multiple connected planes [9–15] and widely used approaches with the need of planar
checkerboards [1–3,16–18]. The latter approaches are practical because the utilized checkerboards can
also be used to perform the intrinsic calibration of the camera. All of these methods are designed on
the idea of minimizing the distance of points to the surface of the calibration target. The calibration
parameters can be carried out based on corresponding observations of the two sensors. However,
these approaches work exclusively with the specific combination of sensors from a laser scanner and
a camera. Moreover, they require an at least partially overlapping field of view of the laser scanner
and the camera. Calibration methods which work with arbitrary pose estimation sensors and which
are independent of the position and orientation of the sensors with respect to each other are rarely
addressed in the literature.

Using GNSS/INS for pose estimation and a laser scanner as mapping sensor, it is not possible
to exploit corresponding observations. This sensor combination is typical for vehicle-based mobile
mapping. The GNSS/INS system is utilized for the registration and georeferencing of the acquired
point clouds. Using this sensor combination for a calibration is equivalent to using an arbitrary six
degrees of freedom (6-DOF) pose estimation sensor. Thus, calibration methods that are similar to the
presented method are often connected to these fields of use.

Several calibration approaches exist that consider artificial targets. These artificial targets can
be ground control points signalized with retro-reflecting material [19], reference geometries like
planar surfaces [20,21] or more special geometries like a half-circle surface [22]. The artificial targets
must either be arranged in a specific way [20], or the positions or even the 6-DOF poses have to be
provided [21]. Moreover, the artificial targets have to be identified in the point cloud which can be
time-consuming and error-prone.

Closer to our work is the rigorous approach [23]. It is, like our approach, not restricted to
GNSS/INS-derived pose but adaptable to any kind of 6-DOF pose estimation sensor. The basic
assumption of the rigorous approach is that the point cloud contains groups of points which can be
conditioned to lie on surfaces of a known form, particularly on a plane. The position and orientation
of these planes are estimated together with the rotation parameters of the extrinsic calibration and
one parameter for a constant range finder offset in a Gauss-Helmert adjustment model. The residual
function they use is, straightforwardly, formulated as the sum of the distances of each selected
point to its corresponding plane. In contrast to our approach, the translation parameters of the
extrinsic calibration are assumed to be known and must therefore be determined separately. Moreover,
the form of the surfaces has to be determined and adapted manually in the algorithm if the calibration
environment does not fit the model assumption. Finally, the identification of the points lying on the
specific surfaces is an additional, time-consuming processing step.

The quasi-rigorous approach [24] is another choice for extrinsic calibration that does not rely on
artificial targets. This approach requires laser scans and associated poses of the sensor system, as well
as initial calibration parameters. The quasi-rigorous approach uses at least two overlapping laser
scans to optimize the initial calibration parameters. Similar to the approaches described so far,
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the quasi-rigorous approach minimizes the sum of distances of a point from the first laser scan to a
corresponding plane from the second laser scan, i.e., a point-to-plane metric is used. This corresponding
plane is a triangular patch which is derived from a Triangulated Irregular Network (TIN) generation
of the second laser scan. Consequently, there is no need to use artificial targets. In contrast to the
quasi-rigorous approach, we do not use a point-to-plane metric for minimization, but geometric
3D features. Registration approaches based on Iterative Closest Point (ICP) [25,26] are known for
not being robust to initial misalignments. Applied to the calibration, this means that the initial
calibration parameters already have to be known very precisely so that the optimization converges to
the global minimum.

Recently, the quasi-rigorous approach has successfully been used for UAV-based mobile
mapping [27]. As it is important for the interpretation of the results from our real data experiments
in Section 4.2.2, we briefly summarize some details of this work: For a typical UAV-based mobile
mapping, it is possible to robustly estimate five of the six parameters of the calibration solely based on
the flight data. Therefore, the scene has to have a horizontal and vertical expansion and the scene has
to be flown over several times in different directions and altitudes. However, the vertical component
of the translation, can only be estimated using vertical control, i.e., in form of horizontal planar patches
with known altitude. For a more detailed discussion about the minimal requirements on the poses or
the environment in context of calibration, the reader is referred to the quasi-rigorous approach [27].

A self-calibration approach that has no assumptions about the environment has been presented
by [8]. Instead, a cost function which is based on the Rényi quadratic entropy (RQE) is minimized to
optimize initial calibration parameters. The cost function is defined as

fRQE = −
N

∑
i=1

N

∑
j=1

G(Xi − Xj, Σ), (1)

where Xi, Xj ∈ R3 are points of the point cloud, N is the number of points and G(µ, Σ) is a Gaussian
function with mean µ and covariance Σ. A derivation of the cost function is not repeated here and
the reader is referred to [8]. For the covariance Σ = σ2 I the authors use an isotropic kernel I and the
same variance σ2 for each dimension. This reduces the tuning parameters of the cost function to a
single parameter σ. It is suggested to choose this tuning parameter close to the expected accuracy of
a captured 3D point. The RQE can be interpreted as a measure of the “crispness” of the point cloud
and depends on pairwise point distances and a tuning parameter σ. The authors calibrate a system
consisting of three 2D laser scanners mounted on a rotating platform.

The self-calibration based on the RQE has also been used to calibrate vehicle-based MMSs [28].
In a first step, the authors extrinsically calibrate a MMS with a 3D laser scanner and a GNSS/INS unit.
In a second step, the resulting point cloud is exploited to calibrate additional 2D laser scanners. This is
done by maximizing the similarity between the point cloud resulting from the first step and the point
cloud from the 2D laser scanners. To evaluate the similarity between these two point clouds, they use
the Jensen-Rényi Divergence [29]. In essence, this is equivalent to finding the entropy contribution of
the cross-terms between the two point clouds. This approach has also been used to calibrate the Oxford
RobotCar which also includes 3D laser scanners, 2D laser scanners and a GNSS/INS unit [30].

The main advantage of the self-calibration based on the RQE [8] is that it has no assumptions
about the environment. In contrast, other approaches assume for example planes at specific positions,
the existence of surfaces of a known form or a 3D model of the environment. Consequently, it is
also more practical than the other approaches. Our self-calibration approach shares these advantages.
In contrast to the self-calibration based on the RQE, we use different cost functions for optimization and
evaluate their suitability for self-calibration. We use a neighborhood with a fixed size for calculation
of the cost function instead of taking all point pairs into account which reduces the computational
complexity. Moreover, we present results of a multi-scale approach that increases the radius of
convergence and improves the accuracy of the self-calibration.
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2.2. Geometric Features

To describe the local characteristics around a considered point Xi ∈ R3, a diversity of geometric
features may be utilized. Among these geometric features, particularly the ones derived from the 3D
structure tensor Si ∈ R3×3 are widely used. Thereby, the 3D structure tensor represents a 3D covariance
matrix calculated on the basis of the 3D coordinates of those points within the local neighborhood Ni
of Xi. The three eigenvalues of this 3D covariance matrix indicate the extent of a 3D ellipsoid along its
principal axes. Denoting the eigenvalues by λ1,i, λ2,i, λ3,i ∈ R with λ1,i ≥ λ2,i ≥ λ3,i ≥ 0, the following
structures may easily be recognized:

• A linear (1D) structure is given for λ1,i � λ2,i, λ3,i, since the respective points in the local
neighborhood are mainly spread along one principal axis.

• A planar (2D) structure is given for λ1,i, λ2,i � λ3,i, since the considered points spread within a
plane spanned by two principal axes.

• A volumetric (3D) structure is given for λ1,i ≈ λ2,i ≈ λ3,i, since the considered points are similarly
spread in all directions.

An extension of this has been presented with the analytical consideration of the eigenvalues for
describing the local point cloud characteristics with respect to a set of specific shape primitives [31].
Instead of such an analysis with respect to specified parametric models, the local structure around
Xi may also be described via geometric features derived from the eigenvalues of the 3D structure
tensor without assuming a parametric model. In this regard, geometric features that are also known as
local 3D shape features [32,33] are commonly used which are rather intuitive and represent a specific
property of the local neighborhood by a single value. Thus, these features are interpretable, but recent
investigations on the accuracy and robustness of such geometric features reveal that some of them are
more susceptible to discretization and noise whereas others are more robust [34].

Other commonly used geometric features are represented by angular characteristics [35],
point distances and height differences [36], a variety of low-level geometric 3D and 2D features [4],
and moments and height features [5]. Besides the diversity of interpretable geometric features,
there are also more sophisticated geometric features like spin image descriptors [37], 3D shape
context descriptors [7], Signature of Histograms of OrienTations (SHOT) descriptors [38,39], shape
distributions [40] or point feature histograms [41]. These are typically derived by sampling specific
properties within the local neighborhood of Xi, e.g., in form of histograms, so that the resulting feature
vectors describing the local structure are of higher dimension and single entries are hardly interpretable.

In our work, we assume that self-calibration is performed best when the derived point cloud
represents real physical circumstances the best. Such real physical circumstances in turn can be
described by interpretable geometric features with a single value. Consequently, we focus on the use
of a metric based on interpretable geometric features, also known as local 3D shape features [32,33],
to evaluate when real physical circumstances are represented the best.

3. Methodology

First, we introduce the principle of the self-calibration approach and give a general overview of
our methodology. Then, we present the relevant processing steps in more detail and explain important
design choices.

The fundamental assumption of the self-calibration is that the calibration parameters are estimated
the best when the derived point cloud represents the real physical circumstances the best and, therefore,
when the point cloud has the best quality. To evaluate the quality, we use a cost function which
is based on a geometric feature. This geometric feature relies on the 3D structure tensor derived
from the local neighborhood of each point. This means that local characteristics of the point cloud
are considered which are described by the extent of the neighborhood around each point in three
perpendicular directions. By iteratively optimizing the calibration parameters in a nonlinear least
squares optimization the cost function is minimized and thereby the point cloud quality is maximized.
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Figure 2 shows the workflow of the self-calibration and serves as a general overview of the method.
The inputs to the self-calibration are laser scans and corresponding poses of the pose estimation sensor
as well as initial calibration parameters and an initial grid size for a voxel grid filter. The basis of the
calibration is a nonlinear least squares optimization, that is represented by the box in the middle of
Figure 2. Each step inside this box is performed with each iteration of the optimization. First, the initial
point cloud is calculated with the given input data. Next, this point cloud is downsampled using
a voxel grid filter. For each point and its k nearest neighbors in the downsampled point cloud, the
value of the selected geometric feature is determined. To make the algorithm more robust to outliers,
we then filter the points based on the value of the geometric feature. Further, a cost functionR which
is based on the feature values of the remaining points is evaluated. This cost function is minimized in
a nonlinear least squares optimization. Consequently, the initial calibration parameters are optimized
such that the cost function is minimized. The optimization stops if the change of the calibration
parameters is less than a given threshold θ. To improve the calibration result and increase the radius of
convergence of the approach, we optimize recursively in multiple scales. Thus, we refine the scale
by reducing the size of the voxel grid after the optimization has stopped and perform consecutive
optimizations. We record the final calibration parameters after the optimization has run through a
specified number of scales.

final calibration 
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laser scans poses
initial voxel grid 
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initial calibration 
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Figure 2. Workflow of the self-calibration. Besides the scan points and associated poses, initial
calibration parameters and an initial voxel grid size are the inputs to a nonlinear least squares
optimization. This optimization is performed recursively with multiple scales to be robust as well
as accurate. It estimates the calibration parameters by minimizing an cost function which is based on a
selected geometric feature.
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3.1. Input and Output Parameters

As depicted in Figure 2 there are four categories of input parameters for the self-calibration approach:

1. The first category consists of a single parameter that represents the initial size a of a voxel
grid filter. The size is defined by the edge length of each voxel. Section 3.2.2 gives more details on
the downsampling.

2. The second category contains the measurements of the mapping sensor. For each timestep t the
mapping sensor measures a point or a point set mXt in the Cartesian mapping frame m. The set
of point sets for each utilized time step is the input to the self-calibration.

3. The third category contains the measurements of the pose estimation sensor, analogous to the
second category. For each timestep t the pose estimation sensor provides a 6-DOF pose w

n Mt that
is associated to a single point set. The 6-DOF pose w

n Mt represents the rigid transformation from
the navigation frame n to the world frame w. For this simplified formal description, synchronized
sensors and the interpolation of movements during the scanning are assumed.

4. The fourth category consists of the six initial calibration parameters. The initial calibration matrix
n
mC is a reparametrization of these parameters. In Section 4.1.2 we investigate how accurate the
initial calibration parameters must be for the self-calibration to be applicable.

The third category, namely the poses, can best be controlled by the operator of the MMS.
Therefore some considerations follow how the MMS should be moved so that the result of the
calibration is accurate. As mentioned, local characteristics of the neighborhood around each point are
considered to quantify the quality of the point cloud. To ensure that the effects of inaccurate calibration
parameters can be quantified with this metric, the same objects must be captured from different angles.
However, this does not mean that identical physical points must be captured from different angles.
This is one characteristic that distinguishes the presented self-calibration approach fundamentally
from procedures that minimize the difference between multiple measurements of ground control
points (like for example [19]) or that are based on the direct comparison of two point clouds (like for
example [24,27]). In principle, the 6-DOF poses should show large variations for all parameters in a
confined space to capture the same objects from different angles.

The above mentioned parameters are the input to a nonlinear least squares optimization.
This nonlinear least squared optimization iteratively optimizes the initial calibration parameters.
Thereby, the output parameters of the self-calibration approach are optimized calibration parameters
of the final calibration matrix

n
mĈ.

3.2. Optimization

As the nonlinear least squares optimization is the basis of the calibration, we describe each step in
more detail in this section.

3.2.1. Computation of the Point Cloud P

Given the point set mXt in the Cartesian mapping frame m. The points wXt in the world frame w
are then computed by following the transformation sequence:

wXt =
w
n Mt

n
mC mXt, (2)

where w
n Mt is the pose at time t and n

mC is the calibration matrix, which we assume to be constant in
the selected period of the data acquisition.

Then the point cloud P is the set of laser scans in the common world frame:

P = { wXt |t ε {1, ..., T}}, (3)

where T is the number of time steps or poses and associated laser scans.
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3.2.2. Downsampling

In principle, when working with scanning devices, the acquired point cloudP is inhomogeneously
sampled. Close regions show a higher density than far regions. Furthermore, a non-uniform movement
of the mobile mapping platform effects the homogeneity of the sampling. To overcome these effects,
it is common practice to apply a voxel grid filter fd(x, a) [5], where x is the input point cloud and a
is the edge length of each voxel. After applying the voxel grid filter, the downsampled point cloud
P ′ = fd(P , a) has a homogeneous sampling. The applied voxel grid filter fd approximates all the points
in a voxel by the centroid of these points. Thereby, the downsampled point cloud P ′ approximates the
geometry of the original point cloud P well and even small changes of the geometry are observable.
This is important for the iterative calibration approach. In contrast, the approximation of each voxel by
a random point within the voxel would be more efficient, but less accurate as small changes would not
be observable. The downsampling has two additional benefits: Firstly, it can remove small objects in
the point cloud that might disturb the calibration process. This mainly depends on the size of the used
voxels and the size of the objects. Secondly, it accelerates the calibration process, because the selected
geometric feature has to be computed for less points in coarse scales. However, the downsampling
also raises a new challenge: The number of points in the point cloud may vary at each iteration of the
least squares optimization. To be able to use a standard optimization algorithm anyway, we need a
workaround which is described in Section 3.2.4.

3.2.3. Determination of the Geometric Feature

Given the spatial 3D coordinates corresponding to all points within the local neighborhoodNi of a
considered point Xi, we calculate the 3D structure tensor and its eigenvalues (cf. Section 2.2). Thereby,
we define the neighborhood Ni as the 50 neighbor points with the smallest Euclidean distance to the
considered point Xi. The eigenvalues are used to derive a set of geometric features which comprises the
features of linearity fL,i, planarity fP,i, sphericity fS,i, omnivariance fO,i, anisotropy fA,i, eigenentropy
fE,i and change of curvature fC,i [32,33]. These geometric features are defined as follows:

fL,i(Xi,Ni) =
λ1,i − λ2,i

λ1,i
(4)

fP,i(Xi,Ni) =
λ2,i − λ3,i

λ1,i
(5)

fS,i(Xi,Ni) =
λ3,i

λ1,i
(6)

fO,i(Xi,Ni) = 3
√

λ1,iλ2,iλ3,i (7)

fA,i(Xi,Ni) =
λ1,i − λ3,i

λ1,i
(8)

fE,i(Xi,Ni) = −
3

∑
j=1

λj,i ln
(
λj,i
)

(9)

fC,i(Xi,Ni) =
λ3,i

λ1,i + λ2,i + λ3,i
(10)

For the special case λ1 = λ2 = λ3 = 0, the features linearity (4), planarity (5), sphericity (6),
anisotropy (8) and change of curvature (10) are not defined. This special case occurs when all points in
the considered point set have identical coordinates. In practice there is sensor noise that prevents this.

To determine the calibration parameters, we minimize an cost function which is based on a
selected feature. Selecting the feature of linearity, for example, would lead to the assumption that the
calibration is estimated best, if linear structures in the point cloud are the sharpest. This would be a
restricted assumption because usually linear structures are not predominant in point clouds.
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In man-made environments, planar structures like the ground, the ceiling, walls, tables, etc.
arise more prevalent. Thus, the feature of planarity would be a more obvious choice. Maximizing the
planarity in a point cloud is a similar basic assumption as minimizing the distance of points to their
corresponding, detected or estimated planes (cf. Section 2.1).

If continuous surfaces in the point cloud, like lines, planes, cylinders, etc. shall be exploited,
the change of curvature, namely the variation of a point along the surface normal [42], may be chosen.
So in this case, the assumption would be that the calibration is estimated best when the change of
curvature over the whole scene is the smallest. For example, if lines in the point cloud are sharp and
points corresponding to a plane have small perpendicular distances to this plane.

However, choosing features like sphericity, omnivariance or eigenentropy is the most generic.
By minimizing these features, the sharpness of the cloud is maximized. In contrast to all existing
calibration approaches mentioned in Section 2.1 except for the self-calibration based on the RQE [8,28]
and the quasi-rigorous approach [24], this approach does not assume the existence of geometries with
a specific, predefined form. In other words, selecting one of these features does not imply model
assumptions about the environment.

In Section 5.1, we discuss the question of which feature is best suited for the self-calibration in
more detail based on simulations (cf. Section 4.1.1) and experiments on real data (cf. Section 4.2.1).

3.2.4. Computation of the Cost Function and Parameter Estimation

As mentioned above, we aim to maximize the point cloud quality, by minimizing a cost function
R which is based on the selected geometric feature. Because some geometric features should have
large values for the point cloud to be accurate, and others small values, the cost functionR depends
on the feature selection. In case of the features of sphericity, omnivariance, eigenentropy and change
of curvature small values lead to a more accurate point cloud, while in case of the features of linearity,
planarity and anisotropy large values lead to a better quality of the point cloud. For unification, we
redefine the geometric features as follows:

gL,i(Xi,Ni) = 1− fL,i(Xi,Ni) (11)

gP,i(Xi,Ni) = 1− fP,i(Xi,Ni) (12)

gS,i(Xi,Ni) = fS,i(Xi,Ni) (13)

gO,i(Xi,Ni) = fO,i(Xi,Ni) (14)

gA,i(Xi,Ni) = 1− fA,i(Xi,Ni) (15)

gE,i(Xi,Ni) = fE,i(Xi,Ni) (16)

gC,i(Xi,Ni) = fC,i(Xi,Ni), (17)

where gF,i(Xi,Ni) ε [0, 1] is the redefined geometric feature with F ε {L, P, S, O, A, E, C}. As
1− fA,i(Xi,Ni) is the same as fS(Xi,Ni), we ignore the feature of anisotropy in the following.

To summarize the processing steps explained so far, the calculation of the cost function to be
minimized is described in the following. Given the measured points mXt in the Cartesian mapping
frame m, the poses w

n Mt and the initial calibration matrix n
mC, the point cloud P is determined by

inserting Equation (2) in (3):

P = { w
n Mt

n
mC mXt | t ε {1, ..., T}}. (18)

The calibration matrix n
mC is a reparametrization of the six calibration parameters which are optimized.

Then, the downsampled point cloud
P ′ = fd(P , a) (19)
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is calculated. Consequently, the cost function to be minimized is

R =
N′

∑
i=1

(gF,i(Xi,Ni))
2, with Xi ε P ′, (20)

where gF,i(Xi,Ni) is the value of the selected, redefined geometric feature and N′ is the number of
points in the downsampled point cloud P ′.

As mentioned in Section 3.2.2, we need a workaround to ensure that the number of considered
points is the same for each iteration of the optimization algorithm. Therefore, we sort the points
by their feature value and use a subset with the lower ζ percent of the values. We choose a smaller
subset for the first scale (ζ0), because the number of points in the point cloud may vary strongly at the
beginning of the optimization, depending on the initial calibration. Usually, the point cloud which
results from a low-quality calibration is less compact than from the optimal calibration. This results
in a considerably higher number of points in the downsampled point cloud, due to the equidistant
nature of the voxel grid filter.

Sorting the points and rejecting potential outliers has another advantage over random rejections
for some of the features: It makes the algorithm more robust to environments that do not perfectly
fit the assumptions about spatial surface characteristics that some of the features imply. A real
environment does not exclusively consist of e.g., planar objects. There is vegetation outdoors and
there are houseplants indoors which can lead to large values for the selected redefined feature. So,
the calibration methodology has to be robust to scattering objects in the point cloud. In unfavorable
situations, the remaining points still contain scattering objects with large feature values. To estimate
the parameters robustly anyway, we use an M-estimator [43] in an iteratively re-weighted least squares
optimization to down-weight the points with large feature values. We choose the Huber-estimator

ρk(x) =

{
1
2 x2 for x < k

k(|x| − 1
2 k) otherwise

, (21)

where k is the tuning constant [43].
Thus, the final cost function for the optimization becomes

R =
L

∑
i=1

ρk(gF,i(Xi,Ni)), with Xi ε P ′, (22)

where L = dζMe is the number of points in the subset with ζ = ζ0 for the first scale and Xi ε P ′ is a
point in the transformed, downsampled point cloud P ′ (c.f. Equations (18)–(20)). However, using the
cost function in Equation (20) for the subset of points should be sufficiently robust in most cases.

This cost function is minimized in order to estimate the six parameters of the calibration,
which represent the translation and the rotation between the sensors. As we want to express the rotation
with the minimal number of parameters, we choose the axis-angle representation as parametrization
of the rotational part of the calibration. In contrast to Euler and quaternion representations,
this parametrization is well-suited for unconstrained optimization algorithms. The derivatives needed
by the optimization are determined numerically by using the difference quotient. For this purpose,
the cost function has to be evaluated at least once for each parameter to be estimated. This is the
most time-consuming processing step depending on the number of points N in the point cloud.
The iteratively re-weighted least squares optimization should stop as soon as the parameters no longer
change significantly. Thus, a threshold on the change of parameters is applied.

3.3. Multi-Scale Approach

The sampling of the point cloud has a large impact on the accuracy and robustness of the
calibration (cf. Section 4.1.3). If the sampling is very fine and the initial calibration parameters
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are inaccurate, the optimization likely converges to a local minimum. If the sampling is coarse,
the calibration is more robust, but less accurate. Thus, we decided to choose a multi-scale approach.

We define the scale of the point cloud by the size of the voxel grid, which is used for downsampling.
Every time the optimization has converged to a solution, we refine the scale of the point cloud by
reducing the size of the voxel grid filter. Through the successive refinement of the point cloud,
the optimization takes smaller and smaller areas into account because the geometric features are
determined based on a fixed number of neighbors for each scale. For coarse samplings, the optimization
roughly minimizes the feature value determined at large-scale structures like the ground and walls.
For finer scales, it minimizes the feature value at even smaller structures. Hence, we can achieve the
robustness of a coarse scale and the accuracy of a fine scale. The calibration finally ends after a fixed
number of scales.

4. Experiments

In Section 4.1 the synthetic datasets and the experiments performed on these datasets are
introduced. These experiments focus on analyzing how suitable the different cost functions are
for the self-calibration task, how accurate the initial parameters have to be known and how the
multi-scale approach performs in comparison with the approach that uses a single scale. Subsequently,
Section 4.2 describes the real datasets and the experiments with the calibration performed on these data.
These experiments show the applicability of the calibration to real data and different sensor setups.

Additionally, for each dataset, we compare the results of our self-calibration approach to the
self-calibration based on the RQE. Therefore, we use our workflow and exchange the cost function by
the cost function based on Equation (1). The main difference to the cost function presented by [8] is
that we use a neighborhood Ni for each point in the cloud instead of evaluating the distances from
every point to every other point in the point cloud. This is conform to a suggestion of [8] and can be
justified by the fact that large distances have a very small impact on the cost function. Due to the use of
neighborhoods, the impact of the tuning constant σ decreases. However, to take the tuning parameter
σ into account, we always test different σ values from optimistic guesses of the point accuracy up to
pessimistic guesses and show the best calibration results.

4.1. Synthetic Data

To generate the synthetic data, we use ROS (http://www.ros.org/) (Robot Operating System) and
Gazebo (http://gazebosim.org/). With this software it is possible to simulate arbitrary environments,
sensors, sensor configurations and trajectories. Our synthetic application area is a closed room with
an extent of 10 m× 10 m× 5 m. We simulate a 2D laser scanner just like the Hokuyo UTM-30LX-EW,
as this is one of the most frequently used mapping sensors for reconstruction tasks in small-scale
environments. This laser scanner has a field-of-view of 270◦, scans 1080 points per line and captures
data in ranges from 10 cm up to 30 m. The range measurements are simulated without noise for
this analysis. The laser scanner is rigidly mounted on a carrier platform. This platform moves to
random poses inside of the simulated environment in order to scan the surroundings from different
positions and view angles. With this setup, we simulate ten different mobile mappings of the synthetic
environment. Each of these mobile mappings is represented by 100 system poses and associated scan
lines. Before extrinsically calibrating the MMS, we falsify the true calibration parameters by 5◦ for
each angle (initial rotation parameters) and 5 cm in each direction (initial translation parameters).
As we know the exact parameters of the calibration on simulated data, we show directly the deviations
from the ground truth. For convenience, we present the results of the calibrations using the following
metrics based on the L2-norm || · ||2:

Translation error: ∆d = ||t̂− t̃||2, (23)

Rotation error: ∆r = ||r̂− r̃||2, (24)

http://www.ros.org/
http://gazebosim.org/
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where t̂ =
(

t̂x t̂y t̂z

)T
is the estimated and t̃ =

(
t̃x t̃y t̃z

)
the true translation vector and

r̂ =
(

φ̂ θ̂ ψ̂
)T

is the estimated and r̃ =
(

φ̃ θ̃ ψ̃
)

the true rotation vector. So, ∆d is the deviation
of estimated and true distance between the laser scanner and the navigation frame and ∆r is the
deviation of estimated and true rotation.

4.1.1. Suitability of the Cost Functions

To find out which cost function is best suited for self-calibration, we perform calibrations with
each cost function for all ten mobile mappings. Additionally to the presented geometric features,
we compare the results to the self-calibration based on the RQE. Figure 3 shows the results of the
calibrations in terms of translation and rotation errors.

The calibration based on the feature of linearity results in parameters, which are very close to the
initial calibration parameters. The corresponding errors are significantly larger than the errors of the
calibrations and are not shown for display reasons. The calibrations based on the remaining features
result in smaller translation and rotation errors compared to the calibration based on RQE. For the
features of omnivariance and eigenentropy, the median error is the smallest. To test the suitability of the
cost functions under realistic conditions with sensor noise, we compare the results of the calibrations
based on the different geometric features again with one of the real datasets in Section 4.2.1.

fRQE gP gS gO gE gC
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fRQE gP gS gO gE gC

0.0
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2.0

∆
r/
◦

(b)

Figure 3. Calibration results depending on the fRQE and the features of planarity (gP), sphericity (gS),
omnivariance (gO), eigenentropy (gE) and change of curvature (gC). (a) shows the translation error,
(b) the rotation error. The feature of linearity has turned out to be unsuitable for the calibration
approach and is not shown for display reasons. The features of omnivariance and eigenentropy clearly
outperform fRQE and all other features.

4.1.2. Radius of Convergence

Each optimization needs reliable initial calibration parameters to converge to the global minimum.
An important question for an operator is if it is necessary to measure the initial calibration parameters
beforehand with additional sensors or if a rough guess might be accurate enough. In order to estimate
the radius of convergence, simulations are carried out with varying initial calibration parameters.

Figure 4 shows the calibration error plotted against the error of the initial calibration parameters.
Figure 4a shows the results for a simulated initial translation error ∆d0. For initial translation errors
up to 2.2 m the final calibration error is clearly below 1 mm and 0.01◦. This means that even
with a deviation of two meters from the true distance of the sensors, the calibration is still able
to converge close to the global optimum. For larger initial translation errors, the final calibration error
considerably increases.



Remote Sens. 2019, 11, 1955 14 of 29

For the results in Figure 4b, an initial rotation error from one to 40◦ is simulated. The rotation
error of the calibrations is below 0.01◦ for initial rotation errors up to 30◦. The translation error up
to this mark is below 1 mm. For worse initial rotation parameters, the rotation error clearly grows,
since the optimization is then no longer able to find the global minimum. The translation error is small
for this simulation, as the initial translation has not been falsified.
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Figure 4. Required accuracy of the initial calibration parameters ((a): Initial translation, (b): Initial
rotation). Up to an initial translation error of 2.2m or an initial rotation error of 31◦ the results are in the
range of sub-millimeters and sub-degrees. More inaccurate values for the initial calibration parameters
mean that the optimization no longer converges to the global minimum and the errors clearly grow.

4.1.3. Single-Scale vs. Multi-Scale

In order to support the statements from Section 3.3, we compare the calibration results based on
different scales (see Figure 5) in terms of robustness against initial calibration errors. As mentioned
before, the optimization needs good initial calibration parameters to converge to the global minimum.
An important question to an operator might be if it is necessary to measure the calibration parameters
beforehand with additional sensors or if a rough guess might be accurate enough. In order to estimate
the radius of convergence, simulations were carried out with varying initial calibration translation
errors ∆d0 and varying initial rotation errors ∆r0. Since the feature of omnivariance achieved the best
calibration results, this investigation was carried out with this feature.

The coarse-scale and the fine-scale approach do not refine the scale iteratively, but use one fixed
scale. The fine scale provides a close to the original but still homogeneous sampling of the point cloud.
The multi-scale approach starts with the coarse scale and refines it to the fine scale in two iterations.

For this analysis, we add Gaussian noise to the ranges and to the poses, as we want to test the
robustness of the single-scale approaches and the multi-scale approach under more realistic conditions.
With a Visual-Inertial SLAM and the laser scanner used in the experiments in mind, we add a noise
of 2 cm and 0.1◦ to the poses and a noise of 3 cm to the ranges. However, adding Gaussian noise
to all sensor measurements is still a simplification of the reality. For convenience, we only show
the translation error for varying initial translation errors and the rotation error for varying initial
rotation errors.
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Figure 5. Single-scale vs. multi-scale calibration. (a) shows the translation error after performing the
calibration depending on the initial translation error. (b) shows the rotation error after performing
the calibration depending on the initial rotation error. The coarse-scale approach is more robust to
large initial calibration errors than the fine-scale approach. However, the fine-scale approach is more
accurate for small initial calibration errors. The multi-scale approach combines the advantages of both
single-scale approaches.

The experiments show that the coarse-scale approach is less accurate than the fine-scale approach
for small initial calibration errors. However, for large initial calibration errors, it achieves better results
compared to the fine-scale approach. The multi-scale approach always achieves the best results.

4.2. Real Data

To test our calibration approach on real data, we use two datasets with different characteristics.
The first one is a self-collected dataset, where a hand-held 2D laser scanner is moved in a small-scale
indoor laboratory environment. A Motion Capture System (MCS) records the poses. We refer to
this dataset as the small-scale indoor dataset. The second dataset is a part of the well-known,
publicly available (http://www.cvlibs.net/datasets/kitti/eval_odometry.php) KITTI dataset [44].
This dataset is a large-scale outdoor vehicle-based mobile mapping dataset. It consists of the data of a
GNSS/INS unit, a 3D laser scanner and a stereo camera system captured in different environments.

Please note, that we use the same parameters for each dataset. Only the amount of data (poses
and scan points) was adjusted for each dataset, in order to limit the runtime of the calibration.

4.2.1. Small-Scale Indoor Dataset

The mapping sensor used for this real-data experiment is the 2D laser scanner Hokuyo
UTM-30LX-EW with the same specifications as described in Section 4.1. The range measurement
accuracy of this laser scanner is specified with ±30 mm for ranges up to 10 m and ±50 mm for
ranges from 10 m to 30 m. The poses are determined with the MCS Optitrack Prime 17 W. The MCS
tracks the positions of retro-reflective markers by triangulation with sub-millimeter accuracy. If at
least three markers are connected rigidly, it is possible to determine the 6-DOF pose of this set of
markers which is also called a rigid body. So, the objective of the calibration in this case is to find the

http://www.cvlibs.net/datasets/kitti/eval_odometry.php
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transformation between the mapping frame and the frame of the rigid body which is rigidly attached
to the laser scanner.

The environment used for the self-calibration is a laboratory with dimensions of 8 m× 5 m×
2.5 m. The room contains objects like cupboards, desks, chairs and monitors. The captured data
consists of 2618 different poses and their corresponding scan lines, which results in a point cloud with
2.8 million points.

As it is not possible to provide exact ground truth for the calibration task, we compare our
self-calibration qualitatively to a target calibration (TC). This TC is based on the unified intrinsic and
extrinsic calibration of a MMS with a multi-camera-system and a laser scanner (UCalMiCel) [18].
The TC is a two-step approach. The first step is based on RADLOCC [1–3] and estimates the
transformation between the laser scanner and the camera. The second step is based on accurate
measurements of the MCS and determines the transformation between the camera and the rigid body
which is rigidly mounted to the camera. For more details about the TC, the reader is referred to
the work of [18]. However, since the target calibration is two-step, it has more potential sources of
error compared to our self-calibration which directly determines the transformation between the laser
scanner and the rigid body. As mentioned, the results are additionally compared to the self-calibration
based on RQE.

Concerning the initial calibration parameters, we use the parameters which are estimated
by the TC and falsify these parameters about 5◦ for each rotation parameter and 5 cm for each
translation parameter.

As mentioned in Section 2.2, some of the features are more robust to discretization and noise
than others [34]. Therefore, we additionally verify the simulation results by comparing the various
features also on real data. Figures 6 and 7 depict all resulting point clouds. The point clouds in
the left column are computed with the parameters resulting from the target calibration. For better
comparability these point clouds are colorized based on the feature values used for the associated
self-calibrations. This means that the point clouds in the left column do not differ apart from their
color display. The point clouds in the right column show the results of the self-calibrations colored by
means of the respective feature. All feature values have been scaled to values between zero and one.

Figure 6d,f show that the parameters estimated by the self-calibration based on the features
of linearity and planarity are inaccurate. For these cases, the optimization converges to a local
minimum. In all other cases, the point clouds look basically similar to the target calibration, which
means that self-calibration is possible with these features. Furthermore, all point clouds resulting
from the self-calibrations except for the one in Figure 6b look more compact and sharper than the
point cloud based on the TC. This can be seen especially at the top right and bottom left corners of
the room. The geometry of the point clouds which result from the calibrations based on the features
of omnivariance and eigenentropy look even sharper. However, it is hard to rank the results of the
different features based on visual inspection. Thus, we use two additional quantitative metrics to
judge the performance of the features.

Firstly, we compare the feature values computed on the point clouds. Table 1 shows the medians
of the feature values computed based on the point clouds resulting from different calibrations.
Except for the median of feature of linearity, the medians of the feature values are the smallest for the
self-calibration based on omnivariance. Furthermore, all self-calibrations except for the calibrations
based on linearity and planarity lead to lower values of all features compared to the target calibration
and the calibration based on RQE. This supports the visual impression of Figures 6 and 7.

Secondly, we evaluate the calibration results with a further metric which is independent of the
geometric features. For this, we consider the mean distances of points to corresponding planes which
are fitted to different planar regions of the point clouds. In other words, we evaluate the average
thickness of planar structures in the point cloud. We use six planar structures, one on the floor (Plane 1),
one on the ceiling (Plane 2) and one at each wall of the room (Planes 3–6). For this purpose, we define
regions of interest for the planar structures, fit planes to the points in these regions of interest and
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compute the mean point-to-plane distances. Table 2 shows these mean point-to-plane distances. Again,
all self-calibrations except for gL and gP achieve better results as the TC and the calibration based on
RQE. For five of the six planes, gO achieves the lowest mean point-to-plane distances.

(a) Target-Calibration, fRQE (b) Self-Calibration, fRQE

(c) Target-Calibration, gL (d) Self-Calibration, gL

(e) Target-Calibration, gP (f) Self-Calibration, gP

(g) Target-Calibration, gS (h) Self-Calibration, gS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6. Real data results on the small-scale indoor dataset. The self-calibration based on the RQE
achieves comparable results to the TC. The self-calibrations based on the features of linearity gL and
planarity gP failed. The self-calibration based on the feature of sphericity gS, however, results in a
sharper point cloud than the target calibration.
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(a) Target Calibration, gO (b) Self-Calibration, gO

(c) Target Calibration, gE (d) Self-Calibration, gE

(e) Target-Calibration, gC (f) Self-Calibration, gC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 7. Real data results on the small-scale indoor dataset. The self-calibrations based on the features
of omnivariance gO, eigenentropy gE and change of curvature gC lead to sharper point clouds compared
to the target calibration.

Table 1. Comparison of the median of the RQE (med(RQE)) and the redefined features (med(gL), ...,
med(gC)) for different calibration approaches. TC is the target calibration based on RADLOCC. RQE is
the self-calibration based on the RQE. gL, ..., gC are the self-calibrations based on the corresponding
feature. Lower feature values are better. The lowest feature value in each column is marked in bold.
X: Calibration failed. The calibration based on the RQE leads to slightly higher values than the TC.
The self-calibrations based on gS, gO, gE and gC outperform the TC and the calibration based on RQE.
Omnivariance gO achieves the best results.

Approach med( fRQE) med(gL) med(gP) med(gS) med(gO) med(gE) med(gC)

TC 0.161 0.842 0.389 0.215 0.275 0.734 0.106

fRQE 0.205 0.845 0.450 0.268 0.288 0.787 0.129

gL X X X X X X X
gP X X X X X X X
gS 0.092 0.826 0.281 0.087 0.217 0.546 0.047
gO 0.082 0.830 0.264 0.072 0.205 0.514 0.039
gE 0.088 0.828 0.271 0.079 0.211 0.529 0.042
gC 0.095 0.826 0.283 0.090 0.220 0.552 0.048
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Table 2. Mean point-to-plane distances for different parts of the point cloud (in mm). X: Calibration
failed. The smallest point-to-plane distance in each column is marked in bold. Again, all
self-calibrations except for gL and gP achieve better results than the TC and the calibration based
on RQE. For five of the six planes, the omnivariance gO achieves the lowest mean distances.

Approach Plane 1 Plane 2 Plane 3 Plane 4 Plane 5 Plane 6

TC 14.1 21.7 13.6 15.1 14.5 22.8

fRQE 14.3 33.0 17.0 25.0 28.4 26.3

gL X X X X X X
gP X X X X X X
gS 7.1 11.4 9.5 7.5 9.9 6.7
gO 6.3 8.3 7.7 7.4 10.7 6.6
gE 10.2 8.3 8.1 9.3 10.1 8.0
gC 8.6 11.2 7.8 7.9 11.6 9.7

Finally, Figure 8 shows the calibration results of the TC, the results of the self-calibration based on
the RQE and the self-calibration based on the feature of omnivariance for the small-scale indoor dataset.
The parameters are separated into their single components instead of using the L2-norm, to visualize
whether the precision varies significantly. Figure 8a–c show the translation parameters, Figure 8d–f
show the rotation errors. For the TC, only a single set of parameters is available without information
about the precision. The medians of multiple calibrations based on the RQE and also based on the
feature of omnivariance differ significantly from the results of the target calibration. The precision of
the results based on the feature omnivariance, is higher than the precision of the calibration based
on RQE for each parameter. The self-calibration based on the feature of omnivariance estimates each
parameter with a precision of a few millimeters and millidegrees, respectively.
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Figure 8. Calibration results of the different approaches for the small-scale indoor dataset. (a–c) show
the translation parameters, (d–f) show the rotation parameters. For the TC, only a single set of
parameters is available without information about the precision. The medians of multiple calibrations
differ significantly from the results of the target-calibration. The self-calibration based on omnivariance
gO estimates all parameters with higher precision compared to the calibration based on RQE.
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4.2.2. Large-Scale Outdoor Dataset

This experiment shows the calibration results on a part of the publicly available KITTI dataset [44].
The KITTI dataset is a large-scale outdoor vehicle-based mobile mapping dataset. The dataset includes
the data of a GNSS/INS unit, a 3D laser scanner and a stereo camera system.

To test the calibration approach with a more inaccurate pose estimation sensor compared to
the highly accurate MCS which is used for the small-scale indoor dataset, we use the images of the
stereo camera system in a visual SLAM framework instead of the highly accurate GNSS/INS unit
for this analysis. The visual SLAM framework we use is called ORB-SLAM2 [45]. Thus, in this case,
the extrinsic calibration aims to determine the transformation between a 3D laser scanner and a stereo
camera system.

The purpose of this experiment is to evaluate the robustness of the proposed extrinsic
self-calibration approach in terms of different environments and sensors. The environment mainly
differs from the environment in the small-scale indoor data set by larger dimensions of the point cloud,
a larger number of points and a larger percentage of vegetation. The sensors differ from those used
in the small-scale indoor data set in terms of the operating principle of the pose estimation sensor,
the number of scanned lines per rotation of the laser scanner, and the accuracies of both sensors.

The laser scanner is a Velodyne HDL-64E. It has a measurement range of 120 m and a range
measurement accuracy of 5 cm (1σ). It has a vertical field of view of 26.8◦ and a horizontal field of view
of 360◦. The vertical angular resolution is 0.4◦ and the horizontal angular resolution is 0.09◦. The laser
scanner measures up to approximately one million points per second.

Each single camera of the stereo camera system has a 1/2” CCD sensor without color filters,
1.4 megapixel, a pixel size of 3.75 µm and a global shutter. For the pose estimation by ORB-SLAM2 on
the KITTI dataset, we assume a translation accuracy of 1.15% and a rotation accuracy of 0.0027◦ [46].

We use the first of 22 sequences of the KITTI dataset. In order to accelerate the calibration process,
we use a subset of this sequence and randomly downsample the laser scanner points. However,
to ensure an accurate pose-estimation of ORB-SLAM2, we wait for the first loop closure. Consequently,
we use every third of the first 1650 poses and associated laser scans.

We compare the estimated parameters against the parameters of the reference calibration (RC),
which is provided with the dataset. We falsify the values of the RC about 5◦ for each rotation
angle and 5 cm for each translation parameter and use these values as initial calibration parameters.
We compare the RC qualitatively and quantitatively with the optimized parameters after performing
the self-calibration.

The RC is a two-step semi-automatic procedure. In the first step, coarse calibration parameters
are determined based on the automatic single-shot calibration of range and camera sensors utilizing
checkerboards [47]. Their algorithm proceeds a segmentation to identify the checkerboard planes in
the data of the range sensor. In the following, transformation hypotheses are generated by random
plane associations. The best hypotheses are then refined and verified. A final non-maxima suppression
step determines all acceptable solutions. In the second step, the result of this automatic calibration is
refined manually. Therefore, the number of disparity outliers is minimized jointly with the reprojection
error of manually selected correspondences [44].

The accuracy of the calibration results of the automatic step is given in [47]. The median
rotation error without Gaussian noise is given with approximately 10◦ with a 25th percentile of
approximately 1◦ and a 75th percentile of approximately 18◦. The median translation accuracy is
given with approximately 0.2 m, the 25th percentile with a few centimeters and the 75th percentile
with approximately 0.5 m. The accuracy of the manually refined calibration (after the second step) is
not mentioned.

Figure 9 shows the point clouds associated with this experiment. The color of each point represents
its height. Figure 9a,c,e show an overview of the point clouds computed with the parameters of the RC,
the self-calibration based on the RQE and the self-calibration based on the feature of omnivariance,
respectively. Figure 9b,d,f show detailed top views of these point clouds.
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(a) Slant view, RC (b) Top view, RC

(c) Slant view, fRQE (d) Top view, fRQE

(e) Slant view, gO (f) Top view, gO

Figure 9. Results on the publicly available KITTI dataset [44]. The color of each point depicts its height.
Both calibrations improved the initial calibration parameters such that objects and basic structures
are identifiable in the point clouds. Moreover, the RC and the calibration based on the feature of
omnivariance lead to very similar point clouds. The calibration based on the fRQE, however, results in
a more noisy point cloud, which can be seen especially at the vertical walls and at artifacts next to the
two cars on the right.



Remote Sens. 2019, 11, 1955 22 of 29

Both calibrations improved the initial calibration parameters significantly such that objects and
basic structures are identifiable in the point clouds. The RC and the calibration based on the feature of
omnivariance lead to very similar point clouds. They only differ in details but quality differences are
difficult to verify based on visual inspection. The calibration based on the fRQE, however, results in a
more noisy point cloud, which can be seen especially at the vertical walls and the artifacts next to the
two cars on the right.

Table 3 shows mean point-to-plane distances for different parts of the point cloud in analogy
to Section 4.2.1. Planes 1–3 are excerpts from the street level at different positions, Planes 4–6 are
excerpts from walls of different buildings. RC is the calibration performed by [44] including the manual
refinement. fRQE is the self-calibration based on the RQE and gO is our self-calibration based on the
feature of omnivariance. The differences between the mean point-to-plane distances are in the range
of a few centimeters for most planes. However, for three out of six planes the RC achieves the best
results. For the other three planes the self-calibration based on the feature of omnivariance achieves
the best results. This supports the visual impressions of Figure 9 that the results of the RC and gO are
of similar quality whereas the quality of fRQE is lower.

Finally, Figure 10 shows the results of the RC, the self-calibration based on the RQE and our
self-calibration based on the the feature omnivariance for the large-scale outdoor dataset. Figure 10a–c
show the translation parameters and Figure 10d–f shows the rotation parameters. The calibration
parameters must be interpreted with respect to the orientation of the navigation frame and the
mapping frame. For the large-scale outdoor dataset, the X-axis of the navigation frame points to
the right, the Y-axis to the bottom and the Z-axis to the front. For the mapping frame, the X-axis points
to the left, the Y-axis to the top and the Z-axis to the front.

RC fRQE gO

−0.4

−0.2

0.0

0.2

0.4

X
/m

(a)

RC fRQE gO

−20

−10

0

Y
/m

(b)

RC fRQE gO

0.0

0.5

1.0

Z
/m

(c)

RC fRQE gO

68

69

70

71

Φ
/
◦

(d)

RC fRQE gO

−70

−68

Θ
/
◦

(e)

RC fRQE gO

66

68

70

72

Ψ
/
◦

(f)

Figure 10. Calibration results of the reference calibration (RC), the self-calibration based on the RQE
and our self-calibration based on the the feature of omnivariance for the large-scale outdoor dataset.
(a–c) show the translation parameters, (d–f) show the rotation parameters. The estimation of the
vertical component Y of the translation fails for the self-calibration based on RQE. The estimation
of the calibration parameters is more precise for the self-calibration based on the omnivariance gO,
however, Φ and Ψ is estimated with a larger deviation from the reference calibration.



Remote Sens. 2019, 11, 1955 23 of 29

Table 3. Mean point-to-plane distances for different parts of the point cloud of the large-scale outdoor
dataset (in cm). The smallest point-to-plane distance in each column is marked in bold. For three out of
six planes the RC achieves the best results. For the other three planes the self-calibration based on the
feature of omnivariance achieves the best results.

Approach Plane 1 Plane 2 Plane 3 Plane 4 Plane 5 Plane 6

RC 5.4 3.0 5.4 8.3 8.2 16.4
fRQE 11.4 10.3 7.9 8.6 10.0 23.1
gO 5.0 4.5 4.1 8.7 9.4 13.3

The estimation of the vertical component Y of the translation fails for the self-calibration based on
RQE as the error is about 10 m for this parameter. Nevertheless, objects like cars are identifiable in the
resulting point cloud shown in Figure 9d. The reason is that a calibration error of−10 m for the vertical
component causes the entire point cloud to be shifted 10 m upwards without affecting the position of
one point relative to another. This point is discussed in more detail in Section 5.4.1. The estimation of
the translation parameters is more precise as well as more accurate for the calibration based on the
feature of omnivariance.

The result of the rotation parameters is more precise for the self-calibration based on the
omnivariance, however, Φ and Ψ are estimated with a larger deviation from the reference calibration.
As the self-calibration approach based on the RQE is not precise, a single calibration is likely to be
less accurate than the result shown in Figure 10. However, the median of multiple calibrations shows
errors of less than 1◦ for all rotation parameters.

5. Discussion

In the following, we discuss the results of each performed experiment in detail. First, we discuss
the results of the investigations concerning the different cost functions, the radius of convergence,
and the multi-scale approach. Subsequently, we discuss the experiments with real data in more detail.

5.1. Suitability of the Cost Function

The experiments in Section 4 have shown that it is possible to optimize initial calibration
parameters with the self-calibration approach and most investigated cost functions. The cost functions
based on linearity and planarity have proven to be unsuitable for the self-calibration. However, some of
the cost functions lead to significantly better results than others. The experiments show that the cost
functions based on the features omnivariance and eigenentropy outperform the other cost functions
including the one based on the RQE. These results could be shown for synthetic as well as for real data.

When comparing Equations (4)–(10), it is noticeable that, in contrast to all other features,
no quotient is formed from the eigenvalues for the features omnivariance and eigenentropy.
In these cases, no ratio between multiple eigenvalues is taken into account. Instead, the omnivariance
becomes small if at least one of the three eigenvalues is small. This ensures that linear and planar
structures in the point cloud as well as isolated points lead to small values of the omnivariance.
Moreover, a point that belongs to two perpendicular planes like the edge of a room also leads to a small
value of the omnivariance. In contrast, structures which cause all three eigenvalues to be considerably
larger than zero result in large values of the omnivariance. So disordered structures which result
for example from wrong calibrations or from vegetation are penalized. The eigenentropy behaves
similar to the omnivariance. However, structures that deviate from an ideal linear or planar structure
are penalized more severely. So the feature eigenentropy is supposed to be less suited to calibrate
inaccurate sensors with noisy measurements. The omnivariance and the eigenentropy lead to a more
generic approach compared to other features and are, thus, supposed to be suitable for more kinds of
environments. This is supposed to be the reason that these features are more suitable for self-calibration.
Hence, it means that the only restriction is that the environment should not predominantly consist of
regions where each eigenvalue of the structure tensor is large like for vegetation. In this case, the cost
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function is supposed to have a small gradient such that the optimization likely converges to a local
minimum. Another reason might be, that the features omnivariance and eigenentropy have proven to
be robust to noise, whereas the features linearity and planarity are very sensitive to noise [34].

Compared to the cost function based on the feature of omnivariance, the cost function based
on the RQE leads to less accurate and less precise results. The cost function based on the RQE
represents the sum over the weighted exponentiated distances between all possible points in the
specified neighborhood [8]. Smaller distances are weighted higher. The distances are computed
along the coordinate axis. The cost is therefore not only dependent on the extent of the considered
points, but also on the orientation of the points with respect to the coordinate axes. The omnivariance
essentially represents the volume of the 3D ellipsoid around the considered points oriented along
its principal axes, since the eigenvalues can be interpreted as the extent of the 3D ellipsoid along the
principal axes. Consequently, the extent is not determined along the coordinate axes, but along the
principal axes of the considered points. This cost function is therefore independent of the orientation
of the considered points with respect to the coordinate axes.

5.2. Radius of Convergence

Figure 4 shows that radius of convergence of the self-calibration is with more than 2 m and 30◦

impressively large. Consequently, the approach is robust against large initial translation and rotation
errors. It is therefore sufficient in most cases to roughly estimate the initial translation and initial
rotation parameters. Although the distortion of the point cloud increases for large initial calibration
errors, the experiments show that approximating the angles between the sensors, measuring it with
simple instruments or using the design drawings is accurate enough for the optimization to converge
to the global minimum. It is also possible to compute the initial point cloud with Equation (2), tune the
parameters manually until basic structures are identifiable and perform the optimization afterwards to
obtain accurate calibration parameters.

5.3. Single-Scale vs. Multi-Scale

Figure 5a shows, that the fine-scale approach is robust to initial translation errors and achieves
accurate results. However, for large initial translation errors, the estimation of the translation
parameters fails. The coarse-scale approach is more robust to initial translation errors, but not as
accurate as the fine-scale approach. The multi-scale approach achieves the most accurate results and is
robust concerning the tested initial translation errors.

In contrast, Figure 5b shows that the fine-scale approach is not very robust to initial rotation
errors. The calibration achieves less accurate results than the coarse-scale approach for initial rotation
errors of more than 3◦ in this simulation. Even if the exact numbers of this investigation refer only
to the given sensor noise, Figure 5b shows that the coarse-scale approach achieves better calibration
results from a certain size of initial rotation error. The multi-scale approach also achieves the most
accurate results for the tested initial rotation errors.

The coarse-scale approach is more robust to large initial calibration errors than the fine-scale
approach. However, the fine-scale approach, is more accurate for small initial calibration errors.
The multi-scale approach combines the advantages of both approaches, which means it is robust
as well as accurate, i.e., if the initial rotation parameters are not known in advance, the multi-scale
approach should be chosen. The only disadvantage of the multi-scale approach is an increased runtime.
However, as the calibration is usually not time-critical, the self-calibration should be performed with
multiple scales.

5.4. Real data

The real-data experiments show that the self-calibration is in principle applicable to different
scenarios such as different sensor combinations (2D laser scanner + MCS and 3D laser scanner + a stereo
camera together with ORB-SLAM2) and different environments (small-scale indoor and large-scale
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outdoor). The experiments with real data also show that the self-calibration approach is sufficiently
robust against objects with high scattering characteristics like vegetation. This robustness is achieved
by filtering or down-weighting the residuals that have large values.

5.4.1. Small-Scale Indoor Dataset

The sensor setup used for the small-scale indoor dataset is the most challenging for calibration.
In contrast to 3D laser scanners, where two different 3D scans can be registered using well-known
techniques like the ICP algorithm, the registration of lines of a 2D laser scanner in 3D is not possible
solely based on the scanning data. Thus, a wide range of approaches is not applicable. However,
we can compare our results to a state-of-the-art target calibration, which is based on RADLOCC and
described in more detail by [18]. However, this target calibration can not be seen as ground truth as its
result has proven to be less accurate than some of the self-calibrations.

Figures 6–8 and Tables 1 and 2 show, that the parameters estimated by our self-calibration lead
to a sharper point cloud than the parameters that are estimated by the target calibration. However,
this is not a proof of outperforming the reference calibration in general. In contrast to the target
calibration, our self-calibration is universally applicable, completely data-driven, and does not require
a calibration target.

In comparison to the self-calibration based on the RQE, the self-calibration based on the feature of
omnivariance leads to a sharper point cloud as well. This can be seen particularly at the qualitative
comparison of Figures 6f and 7b and the quantitative comparison in Table 2.

5.4.2. Large-Scale Outdoor Dataset

For the vehicle-based large-scale outdoor dataset, the result of our self-calibration is very similar to
the reference calibration. However, neither the qualitative evaluation which is based on the appearance
of the point cloud nor the quantitative evaluations are sufficient to assess which calibration is better.
Anyway, the experiment with this dataset has proven the applicability of our self-calibration to
vehicle-based mobile mapping with a 3D laser scanner and a stereo camera together with ORB-SLAM2
for pose estimation. Although the characteristics of the environment and the sensors are very different
from the small-scale indoor dataset, the self-calibration improves the initial calibration parameters.
The experiment thus shows the robustness of the self-calibration against these factors. In particular,
the experiment also shows the suitability for a pose estimation approach that utilizes on-board sensors.
However, systematic errors in pose estimation may have a negative impact on self-calibrations in
general and should therefore be reduced to a minimum. The more inaccurate pose estimation and
measurements of the laser scanner are supposed to be the main reasons that the results for the
large-scale outdoor dataset are not as accurate as for the small-scale indoor dataset.

Compared to the automatic single-shot calibration of range and camera sensors [47] that was
performed as the first step of the reference calibration of this dataset, our self-calibration is more
accurate. The translation parameters are estimated with comparable precision. However, the estimation
of the rotation parameters, is with approximately a factor of 10 much more accurate for our approach.
One reason for this might be that our approach makes use of the stereo camera system, whereas the
reference calibration is based on the measurements of a single camera. Another reason might be that
our approach uses much more observations due to the nature of a self-calibration approach. Compared
to the second step of the reference calibration, namely after manual refinement, the quality of our
self-calibration is comparable.

The self-calibration based on the RQE again leads to less precise results compared to the
self-calibration based on the feature of omnivariance. However, using the medians of multiple
calibrations leads to point clouds with acceptable quality for most use cases.
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6. Conclusions and Outlook

In this article, we propose a novel self-calibration approach for extrinsic calibration of Mobile
Mapping Systems that include a mapping sensor and any kind of pose estimation sensor. Since it
is a self-calibration, there is no need to involve calibration targets or manipulate the environment.
Therefore, it can be performed based on the data that shall be collected for the 3D mobile mapping task.
The approach uses geometric features that are computed based on the local neighborhood around each
point of the cloud.

The experiments with synthetic data as well as with two different real datasets show the
applicability to several sensor combinations in different environments. The investigations of the
suitability of different cost functions demonstrate that the cost function based on the feature of
omnivariance lead to more accurate results than the other investigated cost functions, including the
cost function based on the Rényi quadratic entropy [8]. The self-calibration approach based on this
feature has no assumptions about the environment. Coarse initial calibration parameters are assumed
to be known. However, as the experiments with synthetic data show, the initial calibration parameters
only need to be known approximately and can be roughly guessed in many cases, since the radius
of convergence of the self-calibration is impressively large. Further, the experiments show that the
use of a multi-scale approach considerably improves the calibration results. In contrast to single-scale
approaches, the multi-scale approach is more robust as well as more accurate.

For all experiments with real sensor data, the accuracy of the calibration is about 1◦ for the
rotation parameters. The accuracy of the translation parameters depends on the utilized sensors.
For accurate sensors like in the small-scale indoor dataset, the accuracy of the translation is in the
range of a few millimeters.

Future work focuses on the impact of different environments on the self-calibration. Further, it is
theoretically possible to extend the presented self-calibration approach so that intrinsic parameters
like a range offset of a laser scanner are estimated together with the extrinsic parameters.

In the current implementation, each point of the point cloud is used multiple times due to the
neighborhood search. This is a disadvantage in terms of computational performance. In principle,
there is potential here to make the approach more efficient. This could allow to use the basic ideas of
our approach for on-line self-calibrations.
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