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1. Introduction

Over two millennia ago the Greek philosophers Leucippus of Miletus and his disciple
Democritus of Abdera founded the school of thought called atomism, which states that
all matter is composed of small and indivisible particles. Although their theory did not
survive the test of time, the conception of fundamental particles is still valid and can now
be found in the Standard Model of Particle Physics (SM). Over the last decades, the SM
developed into an incredibly successful theory which describes the fundamental building
blocks of the visible universe and three of its four known fundamental interactions. The
last missing piece predicted by the SM was discovered in 2012 with the Higgs boson [1, 2].

Although the SM is a success story, it is not able to answer the remaining open questions,
e.g. the strong CP problem, the hierarchy of the CKM matrix, the matter-antimatter
asymmetry in the universe and the dark matter content of the universe. In the search for
answers to those questions the predictions of the SM are extensively tested, searching for a
deviation that can give an indication of physics processes and matter types beyond the
ones described by the SM.

One experiment involved in this quest is the Belle experiment in Tsukuba, Japan. It
consists of the Belle detector, which is build around the interaction region of the KEKB
accelerator. KEKB is an electron-positron collider with a center-of-mass energy equal to
the mass of the Υ(4S) resonance. This bottomonium resonance decays almost exclusively
into a BB meson pair. Through studying the decays of those mesons, the prediction of the
SM for their decay modes can be tested.

One of the thousands of possible decay modes is the decay B → µνµ which is predicted
by the SM with a branching ratio of O(10−7). Due to its very small branching ratio, no
evidence for the decay could be reported by any present-day experiment. In Part I of this
thesis, I describe my search for the decay B → µνµ with the data sample of 770 million
BB meson pairs recorded by the Belle experiment: In Chapter 2 the decay B → µνµ is
discussed in the context of the SM and how the experimental signature can be modified by
physics beyond the SM. A brief overview of the Belle detector and the KEKB accelerator
is given in Chapter 3. The event reconstruction is described in Chapter 4, followed by
a validation of the reconstruction on an independent control channel in Chapter 5. The
signal extraction is explained in Chapter 6, which is followed by a study of the systematic
uncertainties in Chapter 7. Chapter 8 presents the result of the search, together with its
interpretation.
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2 1. Introduction

The semileptonic B meson decays B → Xu`ν play a major role in the search for the decay
B → µν. It is the dominant source of background and its modeling is thoroughly studied
in this thesis. The results of those studies are presented in Part II: The description of
the semileptonic b → u decays within the SM is briefly discussed in Chapter 9. The
improvement of the predictions for the decays B → ρ`ν and B → ω`ν is described
in Chapter 10. An improved model for the simulation of the B → Xu`ν decays is presented
in Chapter 11.

Chapter 12 gives a summary of the results in Part I and Part II of this thesis.



Part I.

Search for the Rare Decay
B→ µνµ

3





2. The Decay B→ µνµ

The branching ratio of the decay B → µνµ can be calculated within the Standard Model
(SM) of particle physics. It can be depicted as a Feynman diagram, which encodes the rules
on how to calculate the corresponding matrix element of the decay. The tree level Feynman
diagram is shown in Figure 2.1. The SM prediction of the branching ratio is given by [3]

B(B → `ν`)SM =
G2

FmBm
2
`

8π

(
1−

m2
`

m2
B

)2

f2
B |Vub|

2 τB, (2.1)

with the Fermi constant GF, the B meson mass mB , the lepton mass m`, the B meson decay
constant fB , the CKM matrix element Vub and the B meson lifetime τB . The numerical
values of the constants are tabulated in Table 2.1. The SM prediction using Equation (2.1)
and the numerical values of the constants in Table 2.1 are shown in Table 2.2. The
interesting properties of Equation (2.1) are discussed in the following.

Coupling Constant GF The energy scale of the process is given by the mass of the B
meson mB , which is considerably smaller then the mass of the gauge boson W which
mediates the decay. This allows the decay to be treated with the effective weak
coupling constant, Fermi’s constant GF.

Helicity Suppression The decay B → µνµ is a decay of a spin 0 particle into two spin 1/2
particles. To create a final state spin configuration with S=0, the spin configuration of
the final state particles has to be anti-parallel. The neutrino is, in good approximation,
treated as a massless particle which only appears with left-handed helicity. The
anti-lepton has a non-zero mass, which allows the anti-lepton to be created in a
"wrong" helicity state. The allowed spin configuration is shown in Figure 2.2. The

b

u

µ

νµ

W+

B+

Figure 2.1.: The tree level Feynman diagram. The B+ decay is mediated by the Standard
Model gauge boson W+ with the µ+ and the νµ in the final state.
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6 2. The Decay B → µνµ

Table 2.1.: The numerical values required to calculate the Standard Model branching ratio
from Equation (2.1).

Parameter Value Relative Uncertainty

GF 1.17 GeV−2 5.1 · 10−7 [4]
mB 5.28 GeV 2.7 · 10−5 [4]
mµ 105.65 MeV 2.3 · 10−8 [4]
fB 186 MeV 2.2 · 10−2 [5]
τB 1.64 ps 2.4 · 10−3 [4]

|Vub|exc 3.70 4.2 · 10−2 [4]
|Vub|inc 4.49 6.2 · 10−2 [4]
|Vub|avg 3.94 9.1 · 10−2 [4]

Table 2.2.: B → µνµ Standard Model branching ratios calculated with Equation (2.1) and
the numerical values listed in Table 2.1 together with the latest experimental
result.

Vub SM Prediction

Exclusive B(B → µνµ) = (3.76± 0.36) · 10−7

Inclusive B(B → µνµ) = (5.53± 0.72) · 10−7

Average B(B → µνµ) = (4.26± 0.80) · 10−7

Latest Measurement
B(B → µνµ) = (6.46± 2.71) · 10−7 @ 2.4σ [6]
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Figure 2.2.: The allowed kinematic configuration of the decay B → µνµ in the reference
frame of the parent B+ meson. The neutrino exists only as left-handed particle.
The lepton is created in the wrong helicity state. Figure adapted from [7].

suppression by the requirement of the anti-lepton to be created in the wrong helicity
state is visible in the factor m2

l . For lighter leptons the helicity suppression becomes
stronger.

Phase Space The suppression of the decay by the available phase space appears in the
phase space factor

(
1−m2

`/m
2
B
)2
, which increases the branching ratio for lighter

lepton masses or heavier parent meson masses.

Decay Constant fB The b and u quarks do not scatter in the initial state but are present
in a bound state. This bound state and the annihilation probability of the two quark
constituents is described by the decay constant fB . It cannot be calculated with
perturbation theory in the strong coupling constant αs, as the energy scale is the
mass of the B meson. However, lattice QCD simulations allow for the calculation of
the decay constant.

CKM Matrix Element |Vub| The weak coupling constant is modified by the CKM matrix
element Vub, which is further discussed in Section 2.1.

The decay is a two-body decay. Therefore the lepton momentum in the parent B reference
frame is given by a δ-peak, which is a very clean experimental signature. The momentum
of the lepton in the B reference frame is given by

p
B
l =

√
(m2

B − (m` +mν)2)(m2
B − (m` −mν)2)

2mB
. (2.2)

Which results in a muon momentum in the parent B reference frame of pB
µ = 2.639 GeV.

2.1. The CKM Matrix Element Vub

The eigenstates of the weak interaction do not coincide with the mass eigenstates of the
quark fields but are a mixture of them. This mixture is described by the CKM matrix.
The idea was first introduced by Cabibbo [8] for two quark generations and later extended
to three quark generations by Kobayashi and Maskawa [9] to generate a mechanism for
CP violation in the SM. Although the theoretical mechanism which gives rise to the CKM
matrix is well understood, there is no theoretical explanation for the numerical values of
the elements of the CKM matrix. Therefore the individual elements have to be determined
by experiments.
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Figure 2.3.: The extracted value for |Vub| for inclusive B → u`ν and exclusive B → π`ν
measurements over the last years. With the measurement of the pure leptonic
decays, an independent data point can be added to resolve the long standing
tension between the |Vub| measurements. Figure adapted from [10].

Up until now the value of |Vub| has been determined in two different ways, either by
an inclusive measurement of B → Xu`ν or an exclusive measurement of B → π`ν or
Λb → pµνµ. The determined values of |Vub| via semileptonic decays are not compatible
within their uncertainty and show a tension of approximately 3σ. The discrepancy is
unresolved up until now and should be kept in mind when the branching ratio of the
SM decay B → µνµ is predicted. The evolution of the |Vub| measurement over the last
decade in shown in Figure 2.3. Under the assumption that the leptonic decay of the B is
only governed by the SM |Vub| can be extracted from the decay B → µνµ and provide an
independent measurement to help resolve this long standing tension.

2.2. The Radiative Decay B → µνµγ

The three next-to-leading order (NLO) Feynman diagrams in the electromagnetic coupling
constant αem for the decay B → µνµ are shown in Figure 2.4. The corrections are split
into two parts called structure dependent, where the photon is radiated from a quark line,
and internal bremsstrahlung, where the photon is radiated from the lepton.

Usually, higher order diagrams are treated as corrections to the tree level process. In the
case of B → µνµ , the process B → µνµγ with high energetic photons is studied separately
by theory [11,12] and experiment [13], because by the structure dependent corrections, the
B meson can be excited into a virtual S = 1 resonance. This lifts the helicity suppression
of the decay B → µνµ , resulting in a large correction to the original branching ratio.
The processes B → µνµγ, where the photon has an energy Eγ > 300 MeV are treated as
background process to B → µνµ .
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Figure 2.4.: There exist three Feynman diagrams which contribute to the leading order
matrix element of the decay B → µνµγ. The photon can either be radiated
from one of the two initial quark lines or from the final state lepton.

Corrections arising from the internal bremsstrahlung diagram are treated by PHOTOS [14]
and are included in the simulation of the signal events. Photon corrections originating
from the initial quark lines with Eγ < 300 MeV are neglected.

A more thorough discussion of soft photon and radiative corrections can be found in [15–18].

2.3. Experimental Signature of B → µN with a Sterile Neu-
trino N

The sterile neutrino is a hypothetical particle which is a singlet under the fundamental
symmetry group SU(3)C ⊗ SU(2)L ⊗ U(1)Y of the SM. It has therefore no color charge,
no weak isospin and no weak hypercharge and does not couple to the gauge bosons of the
SM. There are two motivations to introduce the sterile neutrino: It can be used to explain
the dark matter content of the universe [19] and the smallness of the SM neutrino mass
terms [20].

The only possibility for a sterile neutrino to arise in the final state of the B → µνµ decay
as B → µN is if there exists a non-SM mediator in the decay of the B meson and the mass
of the sterile neutrino is mN < mB −mµ . The change in the experimental signature is
independent of the choice of the model which introduces a new mediator and a coupling to
the sterile neutrino. In the following I discuss the two possible changes in the experimental
signature if there is a contribution of the process B → µN .

The measured branching ratio increases in comparison to the SM, depending on the strength
of the coupling of the sterile neutrino to the new mediator and on the mass of the new
mediator particle, and is given by

B(B → µ + missing energy) = B(B → µνµ) + B(B → µN), (2.3)

where the missing energy is either given by the SM muon-neutrino or the sterile neutrino.

The B → µνµ decay is a two-body decay and has therefore a very clear signature in the
lepton spectrum in the B reference frame. This allows to search for a modification of the
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Figure 2.5.: The muon momentum in the B reference frame as a function of the mass of a
hypothetical sterile neutrino N .

b

u

µ

ν

H+

B+

Figure 2.6.: The tree level Feynman diagram. The B+ decay is mediated by the charged
Higgs boson H+ with the µ+ and the νµ in the final state.

experimental signature of the SM decay, because the momentum of the muon is directly
affected by the mass of the sterile neutrino. The lepton momentum as a function of the
sterile neutrino mass can be calculated with Equation (2.2) and is shown in Figure 2.5.

Depending on the new mediator mass, the coupling strength of the new mediator to
the sterile neutrino and the mass of the sterile neutrino, it is possible to measure either
an enhancement in the branching ratio, two distinct peaks in the lepton spectrum or a
combination of both.

2.4. Experimental Signature of a Type-II and Type-III Two
Higgs Doublet

The two Higgs doublet model (2HDM) introduces a new mediator, a charged Higgs boson
H±, which can also mediate the decay B → µνµ . The relevant Feynman diagram is shown
in Figure 2.6. The experimental signature of a type-II or type-III 2HDM is given by a
variation of the branching ratio with respect to the SM expectation. The contribution
of a charged Higgs can either be constructive or destructive, depending on the model
parameters, resulting in a variation of the measured branching ratio.
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Figure 2.7.: Modification of the expected branching ratio for (top) the type-II and (bottom)
the type-III two Higgs doublet model. Both constructive and destructive
interference is possible depending on the choice of the model parameters.

The modification of the branching ratio for a type-II 2HDM is given by [3]

B(B → µνµ) = BSM ×

∣∣∣∣∣∣1− m2
B tan2 β

m2
H+

∣∣∣∣∣∣
2

, (2.4)

where tan β = v2/v1 is the ratio of the vacuum expectation values and m
H+ the mass of

the charged Higgs boson.

The modification of the branching ratio for a type-III 2HDM is given by [21]

B(B → µνµ) = BSM ×
∣∣∣∣∣1 +

m2
B

mbm`

CR − CL
CSM

∣∣∣∣∣
2

, (2.5)

where mb is the bottom quark mass, CSM = 4GFVub/
√

2 the SM coupling and CR(L) the
Wilson coefficients encoding the new physics contribution. The new physics contribution
can also be expressed in relative terms SR(L) = CR(L)/CSM.

The modification of the branching ratio by both models is shown in Figure 2.7 for the
absolute branching ratio and the relative change to the SM.





3. The Belle Experiment

The Belle Experiment is an asymmetric beam-energy electron-positron collider experiment
designed to run with a center-of-mass energy of the Υ(4S)-resonance mass. Its name-giving
part, the Belle detector, is constructed around the interaction region to measure the
properties of the decay products that arise during an electron-positron interaction. In
Section 3.1 I discuss the Υ(4S)-resonance and why it is interesting to use it in an experiment.
I continue with an overview of the KEKB accelerator facility in Section 3.2 and close this
chapter with Section 3.3 where an overview of the Belle detector is presented.

3.1. The Υ(4S)-Resonance
The Υ(nS)-resonances are spin-excited bound states of a bb-quark pair and can, as in our
case, be created via the annihilation of an e+e−-pair. Figure 3.1 shows the cross-section
of the Υ(nS)-resonances, measured by the CLEO collaboration [22]. The resonance of
interest for this work is the Υ(4S)-resonance, which has a mass of mΥ(4S) = 10.58 GeV
and can be created using an electron-positron collision with a center-of-mass energy of√
s

e+e−
= mΥ(4S) .

With its mass, it is just heavy enough to decay into a BB-meson pair via the strong force.
This decay occurs in more than 96% of the cases [4]. Decays via the strong force into
states with lighter mesons are suppressed by the OZI-rule. Decays into lighter mesons
via the weak or electromagnetic force are suppressed because their associated coupling
constants are small compared to the strong coupling constant. The Feynman diagram of
the production and decay of the Υ(4S) is shown in Figure 3.2.

The energy gap between the mass of the Υ(4S) and the mass of the two B mesons is
small enough that no additional particles can be produced during the hadronization of
the b quarks in the decay of the Υ(4S). In the center-of-mass system of the Υ(4S) the
two B mesons are produced back-to-back with a momentum of pB ≈ 332 MeV, which
means that the B’s are almost at rest. This kinematic property is exclusive for the Υ(4S)-
resonance. If the Υ(4S)-resonance is produced via the annihilation of an electron-positron
pair, the environment in which the B decays can be studied is very clean because there is
no underlying event or pile-up in the detector. The initial state is known and each final
state particle in the detector can be assigned to the process under investigation.

The outcome of an e+e− collision is not always given by the creation of the Υ(4S) resonance.
Non-resonant final states are also produced. In the context of this thesis those processes

13



14 3. The Belle Experiment

Figure 3.1.: The scan of the first Υ-resonances by the Cleo Collaboration [22]. The non-
resonant contribution to the spectrum is almost constant over the scanned
mass range, with the resonances on top. The first three resonances are very
narrow, because they can only decay via three gluons, which is suppressed
by the OZI-rule. For the Υ(4S) resonance and the resonances above, the
kinematic threshold for the BB-pair production is passed, which results in
shorter lifetimes of the resonances.

Figure 3.2.: The Feynman diagram of the production and decay of the Υ(4S). The e+e−

pair annihilates into a virtual photon, which in turn creates a bb pair. This
bb pair is a bound state with a fixed set of quantum numbers, here the Υ(4S).
The Υ(4S) decays via the strong force producing a BB-meson pair.
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are solely background. They are the so-called continuum backgrounds e+e− → qq , QED
e+e− → ``(γ), and two-photon e+e− → ``f f events, with q ∈ {u,d, s, c}, ` ∈ {e, µ, τ } and
f ∈ {q, `}.

3.2. The KEKB Accelerator Facility
The KEKB accelerator facility was developed to collide electrons and positrons with a
center-of-mass energy corresponding to the mass of the Υ(nS)-resonances and to provide
optimal conditions for the measurement of physical quantities of interest with the Belle
detector. A schematic overview of the installation is shown in Figure 3.3. In the following
I illustrate the individual components of the facility, always referring to the conditions
for operating at the Υ(4S)-resonance. A detailed technical description of the individual
components can be found in [23].

The two main components of the facility are the high-energy storage ring (HER) and the
low-energy storage ring (LER), which have a circumference of 3 km. The HER stores an
electron beam of I = 1.64 A with an energy of 8.0 GeV, while the LER stores a positron
beam of I = 1.19 A with an energy of 3.5 GeV. Each beam consists of 1584 individual
bunches. The two separate storage rings cross at the interaction point (IP), where the two
beams are brought to collision. The created state, resonant or non-resonant, experiences a
Lorentz boost βγ = 0.425 in forward direction due to the asymmetry of the beam energies.

Filling the two storage rings with electrons and positrons and accelerating them to the
required energies would require an interruption of operation. Instead, the two storage rings
are continuously injected with an 8.0 GeV electron and a 3.5 GeV positron beam from the
injector line to allow an uninterrupted data acquisition with the Belle detector.

The injector line is a linear accelerator1 (LINAC). It is filled with electrons by an electron
gun. To generate positrons, the electron beam is targeted at a tungsten plate with an energy
of 3.7 GeV. The electrons and captured positrons are then accelerated to the required
energy, separated and injected in the respective storage rings.

With the outlined configuration KEKB achieved a peak instantaneous luminosity of
L = 2.11 · 1034 cm−2s−1, which is up-to-date the world’s highest luminosity machine. With
the Υ(4S) production cross-section of σΥ(4S) = 1.2 nb this results in 25 Υ(4S) events every
second.

3.3. The Belle Detector
The design of the Belle detector follows the typical structure of a general purpose 4π
detector used in high-energy physics and consists of several sub-detector systems. A strong
emphasis was put into the vertex resolution, the identification of charged final state particles
and the detection of photons. A detailed description of the Belle detector can be found
in [24]. A side view of the Belle detector is shown in Figure 3.4. The individual sub-detector
systems are listed in the following with a brief description of their design and purpose.

1Technically, the LINAC consists of two linear accelerators connected by a 180 deg bending magnet. The
"J" topology is required because the compound is too small.
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Figure 3.3.: A schematic overview of the KEKB accelerator facility. Electrons are injected
into the LINAC and accelerated. Positrons are generated with the electron
beam and a tungsten target. The electrons and positrons are accelerated to
the nominal energies of the HER and LER and injected into the storage rings.
The pre-accelerating LINAC allows to continuously inject beam bunches into
the two storage rings. The two beams are brought to collision in Tsukuba Hall,
where the Belle detector is located. Figure taken from [23].
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Figure 3.4.: Side view of the Belle detector. The individual sub-detectors are briefly
explained in the text. Figure taken from [24].
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Interaction region
In the interaction region, the material of the beam pipe is changed from aluminum to
beryllium. This reduces the impact of multiple scattering onto the particle trajectories
originating inside the beam pipe. The radius of the beam pipe at the interaction
point is reduced, which allows for a close positioning of the silicon vertex detector to
the interaction region.

Extreme forward calorimeter
The extreme forward calorimeter (EFC) covers a polar angle of θ ∈ [6.4, 11.5] deg
in forward direction and θ ∈ [163.3, 171.2] deg in backward direction. Apart from
providing a coverage outside of the coverage of the other sub-detector systems it is
also instrumented as beam monitor. Due to its positioning, the EFC is exposed to
a higher dose of radiation. The EFC consists of radiation hard bismuth germanate
(Bi4Ge3O12) crystals to ensure a long lifetime of the detector system.

Silicon vertex detector
Two different designs of the silicon vertex detector (SVD) were deployed over Belle’s
lifetime. The first version covers a polar angle of θ ∈ [23, 140] deg with three layers of
double-sided silicon strips, whereas the second version covers an increased polar angle
of θ ∈ [17, 150] deg and has an additional layer of double-sided silicon strips. The
silicon vertex detector is used to improve the resolution of the impact parameters and
to reconstruct low momentum tracks which do not reach the central drift chamber.

Central drift chamber
The central drift chamber (CDC) is designed to precisely measure the momentum of
tracks. It consists of 50 layers of sense wires which are grouped into stereo and axial
layers. Together with the cathode strip wires, the CDC consists of 8400 individual
drift cells. The CDC is filled with a 50:50 mixture of helium and ethane. The
CDC covers a polar angle of θ ∈ [17, 150] deg. In combination with the time-of-flight
counter and the aerogel Cherenkov counter it also provides particle identification via
the measurement of dE/dx.

Aerogel Cherenkov counter
The aerogel Cherenkov counter (ACC) is dedicated to the discrimination between high
energetic charged pions and kaons. The detector is based on the Cherenkov effect,
which is the effect that charged particles traversing a medium with a velocity higher
than the speed of light in the medium emit light. The refractive indices n ≈ 1.02 of
the aerogel are chosen such that pions in a momentum range of p ∈ [1.2, 3.5]GeV
emit light, whereas kaons in the same momentum range do not.

Time-of-flight counter
The time-of-flight detector (TOF) is also dedicated to the discrimination between
charged pions and kaons and of scintillations counters. The discrimination is based on
the measurement of the collision time and the scintillation signal. As particles with
different masses have different velocities, the flight-time together with the momentum
provided by the CDC can be used to deduce the mass of the particle. It allows to
discriminate between kaons and pions with a momentum up to 1.2 GeV.
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Table 3.1.: Summary of the integrated luminosity recorded at each resonance by the Belle
experiment. The table is adapted from [3].

Resonance Luminosity fb−1

On-resonance Off-resonance

Υ(5S) 121.4 1.7
Υ(4S) 711.0 89.4
Υ(3S) 2.9 0.2
Υ(2S) 24.9 1.7
Υ(1S) 5.7 1.8

Scan > Υ(4S) - 27.6

Electromagnetic calorimeter
The electromagnetic calorimeter (ECL) consists of 8736 individual thallium-doped
cesium iodide (CsI) crystals with two attached silicon photo diodes. The ECL
is able to measure photon energies down to 50 MeV and plays an important role
to discriminate electron tracks from other hadron tracks by measuring the energy
deposition. The ECL covers a polar angle of θ ∈ [17, 150] deg.

Solenoid
The superconducting solenoid covers a cylindric volume with a diameter of 3.4 m and
length of 4.4 m. It provides a constant 1.5 T magnetic field parallel to the beam axis
within this volume. The iron structure of the Belle detector is utilized as return yoke
for the magnetic field and absorber material for the KLM.

K0
L and muon detection system

The return yoke and support structure of the Belle detector is instrumented with
15 layers of resistive plate counters to form the K0

L and muon detection system
(KLM). With approximately 4 hadronic interaction lengths the K0

L’s create a hadronic
shower in the sub-detector. However, due to the structure of hadronic showers,
no measurement of the energy is possible. The information is solely used to veto
K0

L particles. Muon also reach the sub-detector, which can be used, together with
the other particle identification systems, to discriminate between muons and other
charged particles. The KLM covers a polar angle of θ ∈ [20, 155] deg.

3.4. Recorded Data Set
During its ten-year run time, the Belle detector recorded a data sample of L ≈ 1 ab−1. The
largest fraction of the data sample was recorded on the Υ(4S) resonance, but data on the
Υ(1S), Υ(2S), Υ(3S) and Υ(5S) were also recorded. In addition, a smaller data sample was
taken below the energy of each resonance to study the non-resonant contributions at the
energy near the resonances. The size of the individual data samples is shown in Table 3.1.

In addition to the recorded data set, the Belle experiment also provides a large sample of
simulated events of different categories. The simulated data samples are described in the
context of the signal extraction in Chapter 6.





4. Signal Reconstruction and Selection

In this chapter I describe how the event reconstruction and selection is performed to
retrieve the data sample used for the signal extraction. In Section 4.1 I discuss the event
reconstruction with an emphasis on how the inclusive tag is reconstructed, calibrated and
optimized. The classifier used for signal selection relies on a properly modeled input space
of variables. In Section 4.2 I discuss the input space, how I improved the MC description
for it, and the output of the classifier.

4.1. Event Reconstruction

To consider an event a possible signal event the following conditions have to be met: At least
one charged track has to originate from the interaction region with the impact parameters
dr < 0.5 cm and |dz| < 2.0 cm, where dr is the distance in the r − φ plane and dz the
distance in z direction from the reconstructed interaction point. The track is required to
have a center-of-mass1 momentum p∗µ > 2.2 GeV and a muon identification of µ-ID > 0.9.
Multiple candidates per event do not occur. Events not fulfilling those criteria are rejected.

The theoretical value of the muon momentum in the parent B reference frame pB
µ =

2.639 GeV is given by two-body decay kinematics. The decay of the Υ(4S) does not provide
the two B mesons at absolute rest, but with a momentum of p∗B = 332 MeV. The muon
momentum in the center-of-mass frame is therefore a convolution of the B momentum
distribution in the center-of-mass frame and the muon momentum in the B reference
frame. To achieve a sharper signal distribution the muon candidate can be boosted into the
reference frame of its mother particle by different tagging methods, which are explained in
the following. In this reference frame, the lepton momentum is theoretically a delta-peak,
but smeared out by the reconstruction resolution. The difference in signal shapes between
the center-of-mass and B reference frame is shown in Figure 4.1.

There are different methods available for reconstructing the companion B meson to the
signal Bsig, namely hadronic, semileptonic and inclusive tagging. The hadronic and
semileptonic tagging algorithms exclusively reconstruct the companion B meson in specified
decay channels. In comparison, the inclusive tagging does not impose any constraint on
the decay channel of the companion B meson.

1The center-of-mass reference frame is the rest frame of the Υ(4S). Variables in the center-of-mass reference
frame are always denoted with a *.

21
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Figure 4.1.: The reconstructed muon momentum in the center-of-mass reference frame p∗µ
and the parent B reference frame pB

µ using the reconstructed momentum of
the companion B meson with inclusive tagging.

These methods have a trade-off between decreasing information of the companion B due less
stringent constraints on the reconstructed decay and increasing efficiency. The interplay
between those tagging methods is illustrated in Figure 4.2. In the full Belle data set,
only around 350 signal events are expected. This requires a high reconstruction efficiency.
Therefore, for this analysis, the inclusive tagging is chosen due to the absolute requirement
of efficiency in the reconstruction.

The hadronic and semileptonic tagging algorithms are explained in [25,26]. In the following
I will go into the details on how an efficient inclusive tag is reconstructed, with whose
4-momentum the lepton momentum in the parent B frame will be calculated.

Inclusive tagging does not impose any specific decay chains of the companion B meson.
All leftover tracks are treated under the pion mass hypothesis and all clusters in the
electromagnetic calorimeter are treated as photons. To reconstruct the B tag candidate,
simply all four-vectors of the pion tracks and photon clusters are combined, except for what
is used to reconstruct the signal side. The leftover tracks and clusters in the detector after
selecting the tracks and clusters required to reconstruct the signal side are the so-called rest
of event (ROE). To improve this inclusive reconstruction, some selections can be performed
on the ROE to avoid e.g. double counting from curling tracks or using calorimeter clusters
as photons although there is an associated track.

K0
S candidates are used if they survive the multivariate classification methods from [27].

All tracks originating from a K0
S candidate are not used for further selection.

Tracks with a transverse momentum pt < 275 MeV do not leave the CDC but curl back
into the detector. To avoid double counting of those tracks they are combined to form a
V0 candidate. When they originate from a common vertex and their track parameters
indicate that their momenta are back-to-back, the higher energetic track is kept and the
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Figure 4.2.: Illustration of the interplay between the different tagging methods. The trade-
off is always between information/purity and efficiency. This originates from
the constraints on the reconstructed B mesons, e.g. for the hadronic and
semileptonic tag candidate a specific decay has to be reconstructed, whereas
the inclusive tag candidate is constructed without any requirement on the
specific decay. For this analysis, the most important key performance indicator
of the tagging variant is efficiency. Figure taken from [25].

lower energetic track is rejected.

Photons are reconstructed from calorimeter clusters where no charged track is located in
the proximity.

Particle candidates surviving this selection are used to form a Btag candidate.

4.1.1. Inclusive Btag Reconstruction

After cleansing the ROE from beam remnants and reconstruction artifacts, the remaining
tracks and neutral clusters are combined to the inclusive Btag candidate. Its four-vector in
the center-of-mass frame is given by

pµcms =
(√

p2
cms +m2

B
pcms

)
, (4.1)

with pcms =
∑

pi ∀p ∈ ROE. The momentum magnitude of the four-vector is constrained
by the kinematics of the two-body decay Υ(4S) → B+B−. This information is used to
fix the magnitude of the momentum component p to the value of 332 MeV, which yields
a much better momentum resolution compared to the reconstructed magnitude of the
momentum from the sum of all ROE tracks and clusters. Thus only the direction of the
inclusive Btag is determined from the reconstructed tracks and clusters.

To further improve the resolution of the inclusive tag candidate, the error of the momentum
distribution is studied. There is no information available on the specific decay mode of
the tag-side B when using this inclusive approach. Therefore, no information is available
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on an event by event basis if any tracks or clusters are missed during the reconstruction
or a neutrino is present. However, it is possible to infer information from the statistical
distributions of the reconstructed and generated kinematic values. That is when it is likely
that a particle was missed. This can be used to improve the resolution of the inclusively
reconstructed momentum using a calibration function, what is discussed in the following
section.

4.1.2. Btag Calibration and Optimization

The dominant uncertainty in the inclusive tag reconstruction originates from the fact that
the events are boosted in forward direction (pz > 0) and it is likely that charged and
neutral particles in forward direction are outside of the Belle detector acceptance. This is
reflected by a large bias towards negative pz, which can be seen in Figure 4.3 (top row).

Another source for wrongly reconstructed inclusive tags are due to neutrinos being present
in the ROE. Neutrinos can not be reconstructed and therefore the fraction of the total
reconstructed momentum in the ROE is lost, leading to a biased direction of the inclusive
tag momentum vector.

The distribution of the MC truth pMC
z in bins of the reconstructed prec

z distribution is
shown in Figure 4.4. A clear trend is visible that if the B has a momentum in the forward
direction the reconstruction bias becomes larger on average. To correct for this behavior, a
calibration function f = f(prec

z ) is used which maps the reconstructed prec
z momentum onto

the mean of the MC truth pMC
z distribution. To create a smooth calibration function, a

smoothed spline fit is performed on the extracted means per reconstructed prec
z bin. The

functional dependency is shown in Figure 4.5.

After reconstructing the inclusive tag momentum, this calibration is applied as

pcor
z = f(prec

z ),

prec
t =

√
p2 − (pcor

z )2,
(4.2)

to reconstruct the Btag 3-momentum. All other kinematic variables can be corrected using
these new momentum components. The momentum magnitude p and the azimuth angle φ
are agnostic with respect to the calibration. A summary of the kinematic variables of the
MC truth, reconstructed, and calibrated inclusive Btag including the residuum distributions
is shown in Figure 4.3.

After the calibration is applied, the magnitude of the error vector

D =
∣∣∣prec − pMC

∣∣∣ (4.3)

can be calculated. For perfectly reconstructed tag candidates the error is expected to be
D = 0 GeV. Therefore, it is desired that the mean of the distribution should also converge
to zero. The parameter ξ is introduced to modify the momentum magnitude

D =
∣∣∣ξprec − pMC

∣∣∣ (4.4)
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Figure 4.3.: Kinematic variables of the inclusive tag four-vector extracted from the sim-
ulation, reconstructed, and after the calibration is applied applied (Left).
Residuum distributions (Right) calculated from the distributions shown on the
left. Note that the calibration function only corrects pz and with it pt and the
polar angle Θ. The magnitude and the azimuth angle remain the same.
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Figure 4.4.: The individual bins used to create the correction function for pz. A clear trend
of the reconstruction bias is visible. The MC truth distribution skews with
increasing reconstruction bias. For a perfect reconstruction of the inclusive tag,
the orange distribution would be located in the window of the reconstructed
pz bin.
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Figure 4.5.: The calibration function of the inclusive tag vector determined on signal MC.
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Figure 4.6.: The average error vector for the reconstructed inclusive tag momentum. The
gray distribution is without the calibration function applied, the blue distribu-
tion with the calibration function applied and the red distribution after the
absolute momentum has been corrected with ξ = 0.577 to minimize the mean
of the error vector distribution.
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Figure 4.7.: The signal variable after boosting with an uncalibrated inclusive tag vector
(gray), with the calibration function applied (blue), and with the average error
vector minimized (red).

and is optimized so that the mean of the distribution becomes minimal. The minimum mean
is found for ξ = 0.577. The distribution of D is shown for reconstructed and calibrated,
with and without optimized ξ, inclusive tags in Figure 4.6.

The effects of the different stages of the inclusive Btag candidate reconstruction on the
lepton momentum in the Bsig rest frame are shown in Figure 4.7. The calibration improves
the resolution of the lepton momentum per reconstructed pz bin whereas the optimization
of ξ modifies the distribution such that the mean error becomes minimal.

With the four-vector of the tag side B meson known, the lepton candidate can be boosted
into the center-of-mass frame of the signal side B meson. This yields the lepton momentum
pB
µ and the angle between the lepton momentum in the Bsig frame and the momentum of

the Bsig in the center-of-mass frame cos ΘBµ .

4.2. The Signal Selection Classifier

The signal selection is based on a multivariate classification which includes a data vs. MC
reweighting to improve the description of the continuum components in the data. Boosted
decision trees [28] are chosen as the multivariate method used in the following.

4.2.1. Input Variables

The input space for the multivariate method is given two types of variables: Variables
describing the topology of the decay and variables calculated on the rest of event (ROE).
The difference in event topology between the resonant production of the Υ(4S) and the
non-resonant production is illustrated in Figure 4.8.
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Figure 4.8.: The difference in event topology for resonant and non-resonant interactions in
the center-of-mass reference frame. (left) Continuum event. (right) Υ(4S) event.
In the case of a continuum event, the momenta are distributed back-to-back,
whereas in the case of the Υ(4S) event the B mesons, created in the decay of
the Υ(4S), are almost at rest. The momenta of the B meson decay products
are isotropically distributed. The difference in these two event topologies can
be quantified with e.g. the Cleo Cones. Figure adapted from [29].

There are several concepts to quantify the difference in the event shape of continuum events
and Υ(4S) decays, which can be used for a topological discrimination of the two. They are
discussed in [3] and briefly summarized in the following. Each event consists of a set of N
particles with momenta pi, with i ∈ {1, 2, . . . , N}.

Thrust
The thrust T is defined as as

T =
∑N
i=1 |T · pi|∑N
i=1 |pi|

, (4.5)

with the thrust axis T, which is defined as the unit vector along which the projection of
all momenta is maximal. The thrust takes values between 1/2 and 1 with a continuum
event corresponding to T → 1 and an Υ(4S) event corresponding to T → 1/2.

cos θB
The angle between the momentum of the reconstructed B meson and the beam
axis is cos θB and 1− cos2 θB distributed. This distribution originates from the spin
1→ 0 0 decay of the Υ(4S). For continuum events, the distribution is flat, because
the B-candidate is created from random combinations of tracks.

Cleo Cones
The Cleo Cones are defined along the thrust axis with opening angles of Θ ∈
[θ, θ + 10] deg. The value of Cleo Cone i is the total momentum flow of all particles
within given cone i. For continuum events the momentum flow is clustered in the
Cleo Cones with small opening angles.

Fox Wolfram Moments
The Fox Wolfram moments describe the phase-space distribution of energy and
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momenta in an event. The k-th Fox Wolfram moment is defined as

Hk =
N∑
i,j

|pi|
∣∣pj∣∣Pk(cos θij), (4.6)

where θij is the angle between pi and pj and Pk is the k-th order Legendre polynomial.
The reduced Fox-Wolfram moments are given by Rk = Hk

H0
.

Super Fox Wolfram Moments The Super Fox Wolfram moments are calculated by modi-
fying Equation (4.6). Instead of summing over all detected particles, the moments
are calculated with respect to the particles belonging to the reconstructed B meson
(labeled s) and the rest of event (labeled o). The possible combinations are Rook , Rsok
and Rssk . From the possible combinations only those are used which are uncorre-
lated to the beam constrained mass mbc, the missing energy ∆E and possible other
variables of interest.

In theory the rest of event should form a B meson. Therefore, the reconstructed invariant
mass should peak at the nominal B mass as well as the reconstructed missing energies
should be zero. Usually the beam constrained mass and the beam constrained missing
energy are used:

∆ÊROE

The normalized missing energy is calculated with respect to the beam energy
∆ÊROE = (EB − E∗)/E∗, with E∗ = Ebeam/2. If no neutrino is in the ROE,
no missing energy is expected.

m̂ROE
bc

The beam constrained mass of the B mesons is calculated with respect to the beam
energy and the reconstructed momentum in the center-of-mass system m̂ROE

bc =√
(E∗2 − p2

B)/E∗2, with E∗ = Ebeam/2. The beam constrained mass has a better
resolution compared to the invariant mass of the reconstructed B meson, because the
beam energy is known precisely.

The variables have been normalized to the beam energy. This allows to use the same
variables for off- and on-resonance data and MC.

Additionally, two counting variables are deployed in the training:

nROE
tracks

The number of tracks in the rest of event nROE
tracks is the sum over all tracks surviving

the selection cuts.

nLeptons
The number of leptons in the event nLeptons is given by the number of tracks with an
associated muon or electron identification value above 0.9.

4.2.2. MVA-Training
Loose selection cuts were performed to reduce the data sample without signal loss before
the training. No useful information can be extracted from regions of the input space where
only background is present. The applied cuts are tabulated in Table 4.1.
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Table 4.1.: Loose selection cuts on the reconstructed data sample before the training of
the multivariate classifier. The cuts are chosen to suppress background while
retaining approximately 100% signal efficiency.

Description Selection Cut

Number of tracks in the ROE nROE
tracks > 2

Normalized beam-constrained mass m̂ROE
bc > 0.964

Normalized missing energy −0.5 < ∆ÊROE < 0.1
Number of leptons in the event nLeptons < 3

Reduced second Fox-Wolfram moment R2 < 0.5

The classifier method uses a high dimensional input space to discriminate between signal
and background events. Mis-modeling of this input space can lead to large discrepancies in
performance when applied to data or MC. To improve the description of the continuum
component in the MC an additional classifier was trained following the idea from [30].
Using the provided MC samples and the signal free off-resonance data sample, a classifier
is trained to discriminate between data and MC events using the input variables to the
classifier and the lepton momentum. If the MC is well modeled, the classifier will not be
able to discriminate between both, however if there are discrepancies the classifier will
learn them. The classifier output can be transformed to reweight the MC events to cancel
the shape differences between data and MC using. The weights are defined as

w = p

1− p, (4.7)

where p ∈ [0, 1] is the classifier output and w is the weight assigned to the MC. Classifier
outputs p → 0 and p → 1 indicate large discrepancies resulting in a weight w → ∞. In
comparison, a classifier output of p = 0.5 indicates no difference between data and MC.
The associated weight for this case is w = 1, which shows that the actual MC does properly
describe the data and does not need to be modified. With this method it is also possible
to retrieve the proper normalization of the continuum contribution from the off-resonance
data sample. A distribution of weights is shown in Figure 4.9.

The effect of the reweighter is shown in Figure 4.10 for three exemplary input variables
variables and the classifier output. The systematic uncertainty originating from the
reweighting is discussed in Section 7.2.
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Figure 4.9.: Weights determined vs the lepton momentum. The weights are determined by
a training with a MC sample size five times the integrated luminosity of the
data sample. This allows to get the overall normalization for the full continuum
MC sample and the shape correction from the training.
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Figure 4.10.: The effect of the data-MC reweighting for three exemplary variables. (left)
Before the reweighting is applied and (right) after the reweighting is applied.
The improvement ensures that the training of the multivariate classifier is
performed on a sample which reflects the true data distribution. The effect is
particularly visible in the classifier output (bottom row). The signal shape is
only shown for illustrative purpose.





5. Control Channel B→ D[→ Kπ]π

The decay channel B+ → D0[→ K+π−]π+ and its charge conjugate is used as control
channel for this analysis. It has a branching ratio of B(B+ → D0[→ K+π−]π+) = 1.82·10−4,
a pure hadronic final state and can be used to mimic the signal decay if the D0 is removed.
This allows to validate the consistency of the inclusive tag as well as the resolution of the
muon momentum and the efficiency of the signal selection classifier.

The pure hadronic nature of the decay allows for very stringent cuts on the kinematic
variables of the involved particles, which allows for a control sample with high purity. In
this chapter, the π+ is referred to as the signal track candidate. The selection cuts used to
reconstruct the control channel are tabulated in Table 5.1. The variables used are:

dr, dz The impact parameters of the signal track candidate with respect to the recon-
structed interaction point.

p∗ The signal track momentum in the center-of-mass frame.

PK/π The Kaon over Pion probability, which is calculated from the Likelihood ratio
LK/Lπ provided by the particle identification detectors.

Pπ/K = 1− PK/π .

Table 5.1.: Selection cuts on the candidates used in the control channel reconstruction.
The semantics of x : Y is given by particle x and x′ are used to reconstruct the
intermediate particle Y .

Variable π+ : D0 K− : D0 D0 : B− π+ : B+ B+

dr / (cm) < 0.5 < 0.5 - < 0.5 -
|dz| / (cm) < 2.0 < 2.0 - < 2.0 -
p∗ / (GeV) > 0.3 > 0.3 - > 2.1 -

PK/π - > 0.6 - - -
Pπ/K > 0.6 - - > 0.6 -

|dM| / (GeV) - - < 0.05 - < 0.05
|∆E| / (GeV) - - - - < 0.2
mbc / (GeV) - - - - > 5.2

35
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Table 5.2.: The momentum resolution determined on data and MC for different observables.
No significant difference can be found between the determined resolutions.

Variable µ± σµ / (GeV) σ ± σσ / (GeV) Median / (GeV)

MC ∆pB
π 0.0119± 0.0004 0.1108± 0.0003 0.0025

Data ∆pB
π 0.0123± 0.0004 0.1113± 0.0003 0.0033

dM The D0 and B+ mesons are reconstructed from their respective daughter particles. The
mass difference dM is given by the reconstructed invariant mass from the daughter
particles to the nominal masses of the mesons.

∆E The missing energy is calculated with respect to the beam energy ∆E = EB − E
∗,

with E∗ = Ebeam/2. As the decay does not include any neutrinos in the final state,
no missing energy is expected.

mbc The beam constrained mass of the B mesons is calculated with respect to the
beam energy and the reconstructed momentum in the center-of-mass system mbc =√
E∗2 − p∗2B , with E∗ = Ebeam/2. The beam constrained mass has a better resolution

compared to the invariant mass of the reconstructed B meson, because the beam
energy is known precisely.

5.1. Inclusive Tag Reconstruction

The calibration of the inclusive tag momentum described in Section 4.1 depends on
parameters extracted from the simulation. To validate that this information does not affect
the reconstruction by introducing e.g. a bias, the calibration method is validated using the
control channel.

The decay of the Υ(4S)→ BB is a two body decay and therefore the momenta are back-
to-back in the Υ(4S) reference frame. In Figure 5.1 the distribution of the reconstructed
angle cos ΘBB between the Btag and Bsig is shown. As expected, the distribution peaks at
180 deg but the Btag is reconstructed with an error on the direction of the momentum up
to 180 deg with respect to its companion Bsig momentum.

By using a decay with a full hadronic signal side, two methods are available to reconstruct
the boost vector to boost the signal candidate into the Bsig reference frame:

Inclusive tag-side reconstruction via using the inclusively reconstructed Btag candidate.
The boost vector into the Bsig reference frame is determined from the reconstructed
four-vector of the Btag.

Exclusive signal-side reconstruction where the the boost vector into the Bsig reference
frame is determined from the reconstructed four-vector of the Bsig candidate.

The second method allows for a very precise reconstruction of the Bsig momentum. The
resolution of the reconstructed Pion momentum is shown in Figure 5.2 for simulated and
reconstructed events and is tabulated in Table 5.2. No significant differences are observed.
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Figure 5.1.: The reconstructed angle between the Btag momentum and the Bsig momentum
in the center-of-mass reference frame. The angle cos ΘBB is expected to be
180 deg. From the distribution it is visible that the tag momentum is properly
reconstructed in most cases, but that the error of the Btag momentum direction
can be up to 180 deg with respect to the Bsig momentum.

In addition, the angle between the reconstructed candidate momentum and the Bsig
momentum can be validated. This is shown in Figure 5.3 and no significant difference
between the data and MC is observed.

5.2. Classifier Output
The response of the classifier described in Section 4.2 can also be validated with the control
channel. The topology of the control channel decay and the signal decay are exactly the
same when the D meson is treated as a neutrino and removed from the classifier input.
The difference is only given by the smaller track momentum of the pion in comparison to
the muon in the signal decay B → µνµ . The classifier response of the control channel is
shown in Figure 5.4.

In the relevant region of the classifier output used for the signal extraction, the efficiency
of the classifier can be determined on reconstructed and simulated events. The determined
efficiencies agree within their statistical uncertainties. The efficiencies are summarized
in Table 5.3 in the categories defined in Section 6.6.
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Figure 5.2.: The reconstructed Pion momentum in the signal B frame. The top figure uses
the boost vector retrieved from the inclusively reconstructed tag side and the
middle figure uses the boost vector retrieved from the exclusively reconstructed
signal side. The residuum between both methods is shown in the lower figure.
This also allows to determine the momentum resolution purely on data.
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Figure 5.3.: The reconstructed angle between the Pion momentum in the Bsig frame and
the momentum vector of the Bsig in the center-of-mass frame cos ΘBπ .
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Figure 5.4.: The classifier output determined on the control sample.

Table 5.3.: MVA efficiency on control channel. For categorization of the regions see Sec-
tion 6.6. The efficiencies on data and MC are compatible within their uncer-
tainties.

Type Category I-IV Category I+II Category III+IV

εData 0.0296± 0.0006 0.0047± 0.0003 0.0239± 0.0006
εMC 0.0303± 0.0006 0.0051± 0.0003 0.0252± 0.0006





6. Signal Extraction

The extraction of the number of signal events on the data sample is performed using
the method of maximum Likelihood on binned data. The Likelihood function describes
the agreement between the measured data and the underlying model as a function of
model parameters. Minimizing the negative Likelihood function with respect to the model
parameters allows one to estimate their values.

Due to the lack of analytical descriptions of the background components, a template fit is
performed. The template PDF’s are generated from simulated events with a granularity of
50 MeV bins of the reconstructed lepton momentum in the Bsig reference frame pB

µ .

The composition of the individual templates is explained in the following. The templates are
shown in Figure 6.1 in four different signal categories, which are introduced in Section 6.6.

Signal: The signal template is generated from a dedicated MC sample of 2 · 105 events.

Continuum: The continuum template consists of three individual components which are
composed of: 6 times the integrated luminosity of e+e− → qq processes, 5 times the
integrated luminosity of e+e− → `` processes and 5 times the integrated luminosity
of e+e− → ff̄f ′f̄ ′ processes. The combined template is dominated by processes with
quarks in the final state.

b → c: This sample consists of 10 times the integrated luminosity and mainly composed
of B → D(∗)`ν decays.

b → u: This template consists of 10 times the integrated luminosity. The construction of
this MC sample is explained in detail in Chapter 11.

B → µνγ : This template is generated from a dedicated MC sample of 107 events. The
branching ratio is set to match the latest measurement by the Belle Collaboration [13].
The normalization is fixed in the fit but the template is allowed to vary within its
measured uncertainties.

Rare: The template consists of 50 times the integrated luminosity of rare processes, such as
flavour changing neutral current decays with b → s transitions, which are suppressed
in the SM. The normalization is held fixed in the fit but the template is allowed to
vary within its statistical and systematic uncertainties.

41
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The Likelihood over all signal categories is constructed as

L(ν) =
bins∏
i

P(ni|νi(θ))×
templates∏

k

N (θk|0,Σk), (6.1)

with P denoting the Poisson distribution, ni the number of measured data events in bin i,
and νi the total number of expected events in bin i. Further, N is the multivariate normal
distribution with zero mean and the correlation matrix Σk of the statistical and systematic
uncertainties for template k. The multivariate normal distribution imposes Gaussian
constraints on the nuisance parameters with the correlations and uncertainties between the
lepton momentum bins.

The number of expected events νi in a given bin i is

νi =
templates∑

k

fikηk, (6.2)

where ηk is the total number of events from template k and fik is the fraction of events of
in bin i in template k. This fraction is given by

fik = ηik(1 + θikεik)∑bins
j ηjk(1 + θjkεjk)

, (6.3)

where ηik is the number of expected events from template k in bin i, εik is the relative
uncertainty of template k in bin i and θik is a nuisance parameter which allows the fit to
pull on the respective uncertainty. Expressing the fraction of events including the nuisance
parameters ensures that the overall normalization of the template is not affected by the
pull on the systematic uncertainties.

The Likelihood depends on the 6 expectation values νi of the signal and background
templates and additional 528 nuisance parameters θi with Gaussian constraints, which
parametrize the systematic and statistical uncertainties of the fit templates. The expectation
values of the rare and B → µνγ contributions are fixed, but the introduced nuisance
parameters parametrize their uncertainties. The minimization of the Likelihood is performed
using Sequential Least Squares Programming [31].

6.1. Goodness of Fit
The goodness of fit of a statistical model is a measure of how well the theoretical model
is describing the measured data by summarizing the discrepancies between theoretical
expected and measured values. In regression analyses a common measure for goodness-of-fit
is the χ2 per degree of freedom of the fit. In the fit model described above, it is given by

χ2/dof =
bins∑
i

(ni − νi)
2

σ2
i

/dof, (6.4)

where ni is the number of observed events in bin i, νi is the number of expected events
in bin i and σi is the uncertainty of bin i. The degrees of freedom dof are given by the
number of bins minus the number of unconstrained parameters in the fit.
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The probability to observe a χ2 value as large or larger than χ2
fit is given by the p-value:

p =
∫ ∞
χ

2
fit

χ2(x|k)dx, (6.5)

where χ2(x|k) is the χ2 distribution with k number of degrees of freedom.

6.2. Significance
To reject the background-only hypothesis and to report evidence or discovery of the signal
decay, the significance of the fit has to be determined. The most powerful test statistic
λ(ν) to reject a null hypothesis H0 with respect to an alternative hypothesis H1 is given
by the Neyman-Pearson lemma [32]

λ(ν) = L(µ1)
L(µ0) , (6.6)

with the parameters µi of model i, where µ1 ∈ H1 and µ0 ∈ H0. In the asymptotic limit,
where the sample size n approaches infinity, the test statistic

qµ = −2 lnλ(µ) (6.7)

follows a χ2 distribution where the difference in dimensionality between H1 and H0 defines
the degrees k of freedom of the distribution [33]. For the following discussion, the difference
of dimensionality is one, as the alternative hypothesis has one additional parameter given
by the signal yield. With the underlying distribution of the test statistic the p-value can
be calculated as

p =
∫ ∞
λ

obs
χ2(x|k = 1)dx, (6.8)

which is translated into the number of standard deviations σ via

p
!= 1−

∫ σ

−σ
N (x|0, 1)dx. (6.9)

The measured branching ratio has to be between 0 and 1 to bear any physical meaning.
To make a statement about the significance of a positive physical signal, the test statistic
λ(ν) can be modified [34] to:

q̃0(µ) =
{
−2 lnλ(µ) µ ≥ 0
0 µ < 0,

(6.10)

with the distribution of the test statistic q̃0 being

f(q̃0) = 1
2δ(q̃0) + 1

2χ
2(q̃0|k = 1). (6.11)

The p-value can again be calculated then by integrating over the underlying distribution of
the test statistic

p =
∫ ∞
q̃
obs
0

f(q̃0)dq̃0. (6.12)

The two different test statistics answer two different statistical questions:
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λ(µ) gives the probability to observe a positive or negative measurement as extreme
or more extreme as the observation under the assumption of the background only
hypothesis H0.

q̃0(µ) gives the probability to observe a positive measurement as extreme or more extreme
as the observation under the assumption of the background-only hypothesis H0.

Thus, λ(µ) provides a two-sided confidence interval whereas q̃0(µ) states a one-sided
confidence interval. The convention for evidence or discovery is the rejection of the
background-only hypothesis with 3σ or 5σ respectively.

6.3. Likelihood-Profile
The uncertainty on the extracted parameter of interest can be determined in two ways.
Either the Hessian matrix is calculated at the point where the Likelihood is minimized or
the Likelihood is profiled in the neighborhood of the minimum. Using the Hessian, one
obtains the uncertainties in the Gaussian approximation, while with profiling the Likelihood
on can extract asymmetric confidence intervals. All Likelihoods appearing in this thesis are
well described by a parabola for which the Gaussian approximation holds with excellent
precision.

When profiling the Likelihood for a parameter, e.g. νsig, the parameter is varied and the
Likelihood is maximized for all other parameters given this fixed value of νsig. This procedure
yields the Likelihood profile containing both statistical and systematic uncertainties. To
measure the influence of systematic uncertainties on the final result, the Likelihood profile
can be performed fixing the nuisance parameters at their best fit values at the maximum
of the Likelihood. It is convenient to use

Λ(ν) = −2 lnL(ν)− 2 lnLmin, (6.13)

to illustrate the Likelihood profile. The Likelihood profile for the extracted signal on
an Asimov data set with an assumed branching ratio of 4.26 · 10−7 for the signal decay
B → µνµ is shown in Figure 6.2.

6.4. Toy-Experiments and Linearity Test
Toy experiments are a method to test the fit for stability and bias. Toy samples are
generated by sampling from a Poisson distribution P for each bin with the expectation
value given by the MC expectation. The fit is then performed on this toy sample and the
parameter of interest is extracted. The pull distribution of the extracted parameter, which
is defined as

Pull = νfit − νexpected

σν
, (6.14)

should follow a standard normal distribution. If the distribution has a mean µ 6= 0 the
parameter extraction is biased. If the distribution has a standard deviation σ 6= 1 the
extracted uncertainty on the parameter is under- or overestimated. The toy study for
the signal extraction assuming a SM branching ratio of 4.26 · 10−7 for the signal decay
B → µνµ is shown in Figure 6.3.
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events. The fit yields an unbiased result over a large range of injected signal
events.

This procedure can be used to perform a so-called linearity test. It is used to check that
the fit is not biased when the parameter of interest deviates strongly from the original
expectation. The parameter of interest is scaled to different values and the toy experiments
are repeated in the same way with the exception that the original expectation of the
parameter is rescaled accordingly. The linearity test for the signal extraction on an Asimov
data set is shown in Figure 6.4.

6.5. Determination of Upper Limit
If the significance of the observed signal is below 3σ, an upper limit on the branching ratio
is determined.

The Bayesian upper limit is determined by integrating the properly normalized Likelihood
function from 0 to x, where x is given by the value when the integral is equal to the desired
confidence level. In the approximation of Gaussian uncertainties, the Likelihood function
can be written as a Gauss function with the mean equal to the best fit value and the
standard deviation equal to the uncertainty determined from the Hesse matrix. For the
90% confidence level, with the prior that the branching ratio is positive, the upper limit x
is then calculated as

0.9 =
∫ x
0 G(x′|µobs, σobs)dx

′∫∞
0 G(x′|µobs, σobs)dx

′ (6.15)

The Frequentist upper limit is determined by finding x′ such that

0.9 =
∫ ∞
µobs

G(x′|µA, σA)dx′, (6.16)
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Figure 6.5.: The distributions of Cout and cos ΘBµ . The distributions are split into separate
samples to maximize the Likelihood ratio LS+B

LB
when the signal extraction is

performed on an Asimov data sample.

with the mean µA and the standard deviation σA, which can be determined on Asimov
data sets. The upper limit is thus determined by finding the expected number of events
µA, for which the integral in Equation (6.16) is equal to the confidence level.

The two different limits provide two different statements about the observed result. The
Bayesian statement is: Given the observed data and the assumption that there exists a
signal, the true signal yield is below the stated upper limit with a probability of at least 0.9.
The Frequentist statement is: If the signal yield would have been larger than the stated
upper limit, then the process would have been observed with a probability of at least 0.9.

6.6. Categorization
The signal extraction was performed in four different mutual exclusive categories. A grid
search was performed to search for an optimal split of the signal in the following variables:
The classifier output Cout, which was introduced in Section 4.2.2, and the angle between
the momentum of the Bsig and the muon cos ΘBµ , which was introduced in Section 4.1.2.
Figure 6.5 shows the variables Cout and cos ΘBµ before the categorization.

For each tuple of possible cut values, the Likelihood ratio LS+B
LB

is determined neglecting
systematic uncertainties. The chosen categorization, which was found by maximizing the
Likelihood ratio, is given in Table 6.1.

In principle, the grid search can be performed including systematic uncertainties when
calculating the Likelihood ratio. However, for each point in the parameter space, the
systematic uncertainties would have to be determined anew, resulting in a computationally
costly problem. The dominating uncertainty on the final signal extraction originates from
the limited number of recorded events. This indicates that omitting the systematics in this
optimization has only a small effect on the overall result.

6.7. Validation
The fit is performed on different control data samples to validate the signal extraction.
The test for closure is performed on an Asimov data sample where the measured data
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Table 6.1.: Definition of the four individual categories used for the signal extraction and
the two individual categories used in the control region of the classifier sideband.
The categories are mutually exclusive.

Category Classifier Output Angle

Signal Region
I 0.98 < Cout < 1.00 −0.133 < cos ΘBµ < 1.000
II 0.98 < Cout < 1.00 −1.000 < cos ΘBµ < −0.133
III 0.93 < Cout < 0.98 0.044 < cos ΘBµ < 1.000
IV 0.93 < Cout < 0.98 −1.000 < cos ΘBµ < 0.044

Classifier Sideband Control Region
I 0.90 < Cout < 0.93 0.000 < cos ΘBµ < 1.000
II 0.90 < Cout < 0.93 −1.000 < cos ΘBµ < 0.000

is the MC expectation (Section 6.7.1). To validate the proper description of especially
the B → Xu`ν and continuum background components the fit is performed in a control
region of the classifier output Cout ∈ [0.90, 0.93], which is enriched by both backgrounds
(Section 6.7.2). To check the background description before un-blinding the signal region,
the fit was performed in the final selected data sample with the signal region still blinded
(Section 6.7.3).

6.7.1. Fit on Asimov Data
The Asimov data points correspond to the sum of the individual expectation of all templates
in a given bin in each of the categories defined in Table 6.1. The sum of expectation values
is rounded to the nearest integer number, because the Poisson distribution is discrete and
no well defined analytical continuation for the Poisson distribution is existent. This has a
minor effect, but has to be kept in mind when the results are used for closure tests.

The fit result on the Asimov data sample is shown in Figure 6.6. To test the stability
of the minimization of the Likelihood function the fit was several times initialized with
different starting values. For reasonable starting values, the minimizer always drops into
the minimum of the negative log-Likelihood. The goodness-of-fit χ2/dof = 1.3/84 confirms
this result. A χ2 = 0 is expected when the Asimov data and MC distributions match
perfectly, but due to the rounding errors mentioned above a slight discrepancy is found.

In Figure 6.7 the Likelihood profiles and toy experiments for the the fitted expectation
values are shown. The Likelihood profiles are stable and the determined uncertainty
extracted from the Hessian is a good approximation of the uncertainty extracted from
the Likelihood profile. The toy experiments validate that the fitted number of events for
each template, especially the signal yield νsig, can be extracted without bias and with a
correctly estimated uncertainty.

The fit does not pull on the nuisance parameters, with exception of the high energy
momentum part of the continuum template, as is shown in Figure 6.8. This pull is expected
due to the rounding to integer values, which has a large effect when the number of events
in a bin are small.
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Figure 6.6.: Post-fit distributions after fitting the templates to the Asimov data sample.

The expected median sensitivity determined on the Asimov data sample is:

• Two-sided with the test statistic from Equation (6.7):

– 2.1σ with statistical and systematic uncertainties

– 2.4σ with only statistical uncertainties

• One-sided with the test statistic from Equation (6.10):

– 2.4σ with statistical and systematic uncertainties

– 2.6σ with only statistical uncertainties

6.7.2. Fit on Classifier Sideband Data

The region Cout ∈ [0.90, 0.93] of the classifier output was defined as a control sample for
the background models. The sample was split in the angular variable cos ΘBµ > 0 and
cos ΘBµ < 0. The expected amount of signal events in this control region is small with
νsig

MC = 15. The region can be used to test the signal extraction for closure and to validate
the background model.

The fit result on the classifier sideband data is shown on Figure 6.9. The signal yield is
negative but compatible with zero. The goodness-of-fit is χ2/dof = 30.4/40. This indicates
that the data is well described by the underlying templates. The Likelihood profiles of the
extracted expectation values are shown in Figure 6.10.
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Figure 6.7.: Likelihood profiles and toy experiment results for the extracted parameters on
the Asimov data sample.
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Figure 6.8.: Nuisance parameters after the fit on the Asimov data sample. The error
bars show the pre-fit uncertainty associated to the nuisance parameters, the
underlying yellow bar shows the post-fit uncertainty on the nuisance parameter.
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Figure 6.9.: Post-fit distributions after fitting the templates to the classifier sideband data
sample.

The pulls on the nuisance parameter are all within one standard deviation, which shows
that the fit templates can describe the data adequately.

6.7.3. Fit on Momentum Sideband Data

The momentum sideband is defined in the final categories given in Table 6.1 with the
region of pB

µ ∈ [2.5, 2.85] GeV blinded. The signal template and the corresponding nuisance
parameters are fixed to zero for this fit. The fit result is shown in Figure 6.12 with the
associated Likelihood profiles of the extracted parameters in Figure 6.13. The goodness-of-
fit is χ2/dof = 60.7/48. The pull on the nuisance parameters is well-behaved, as is shown
in Figure 6.14.

As an additional cross-check the inclusive branching ratio of B → Xu`ν is extracted
on the momentum sideband data. The extracted branching ratio is B(B → Xu`ν) =
(1.86 ± 0.07) · 10−3. It is compatible with the branching ratio which was used to create
the template and with the latest measurement of the BaBar collaboration [35] B(B →
Xu`ν) = (1.665± 0.087+0.103

−0.094) · 10−3, which also extracted the inclusive branching ratio at
the kinematic endpoint of the spectrum.
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Figure 6.11.: Nuisance parameters after the fit on the classifier sideband data sample. The
error bars show the pre-fit uncertainty associated to the nuisance parameters,
the underlying yellow bar shows the post-fit uncertainty on the nuisance
parameter.



56 6. Signal Extraction

2.2 2.4 2.6 2.8 3.0 3.2
pB / (GeV)

0

50

100

150

En
tri

es
 / 

(0
.0

50
 G

eV
)

Category I
Continuum
b c
Rare
B
b u
Signal
sys. unc.
Data

2.2 2.4 2.6 2.8 3.0 3.2
pB / (GeV)

0

50

100

150

200

250
En

tri
es

 / 
(0

.0
50

 G
eV

)

Category II
Continuum
b c
Rare
B
b u
Signal
sys. unc.
Data

2.2 2.4 2.6 2.8 3.0 3.2
pB / (GeV)

0

200

400

600

En
tri

es
 / 

(0
.0

50
 G

eV
)

Category III
Continuum
b c
Rare
B
b u
Signal
sys. unc.
Data

2.2 2.4 2.6 2.8 3.0 3.2
pB / (GeV)

0

200

400

600

800

1000

En
tri

es
 / 

(0
.0

50
 G

eV
)

Category IV
Continuum
b c
Rare
B
b u
Signal
sys. unc.
Data

Figure 6.12.: Post-fit distributions after fitting the templates to the momentum sideband
data sample.
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data sample.
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Figure 6.14.: Nuisance parameters after the fit on the momentum sideband data sample.
The error bars show the pre-fit uncertainty associated to the nuisance parame-
ters, the underlying yellow bar shows the post-fit uncertainty on the nuisance
parameter. The nuisance parameters with a post-fit uncertainty of zero are
fixed to zero in the fit.



7. Systematics

In this chapter the uncertainties associated with each template are discussed and the
construction of the respective covariance matrices is described.

In general, the uncertainty is determined for each template separately in each bin and in
each category and a vector σ = (σI , σII , σIII , σIV ) including the systematic uncertainties
of all bins in all categories is constructed. From this, the covariance matrix is built, either
as a diagonal matrix for uncorrelated uncertainties between each bin C = diag

(
σ2
)
or as

fully correlated matrix for correlated uncertainties between bins C = σ ⊗ σ.

7.1. Limited MC Statistics
A common systematic uncertainty for all templates is the uncertainty due to the limited
MC statistics. The assigned error in each bin is σi =

∑
w2, where w are the weights

assigned to the template, and treated as uncorrelated. The covariance matrices are given
by Ck = diag

(
σ2

k

)
. The uncertainty is displayed in Figure 6.1 for all templates.

7.2. Continuum Template
The data-MC reweighting is sensitive to the limited statistics of the off-resonance data
sample. The effect of this on the weights assigned by the classifier is determined by
bootstrapping, which is done in the following way: 50 new same size samples are generated
by sampling with replacement from the original off-resonance data sample and the training
was repeated. The error in each bin is assigned as the standard deviation of entries
σ(N1, N2, ...N50), where Nk =

∑
w is the number of events for the kth training and w

are the assigned weights. The errors are treated as uncorrelated as their origin lies in
the statistical uncertainty of the off-resonance data. The covariance matrix is given by
Cqq̄ = diag

(
σ2

k

)
. The continuum template and its uncertainty are shown in Figure 7.1.

7.3. b → c Template
The b → c template consists of two major contributions on which the systematic uncer-
tainties are determined, namely the semileptonic decays B → D(∗)`ν. The branching ratio
of the two contributions is varied individually and assigned as a systematic uncertainty.
The branching ratios are listed in Table 7.1.
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Figure 7.1.: The systematic uncertainty assigned to the continuum template. The origin
of the error is the limited off-resonance data sample used for the data-MC
reweighting.
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Table 7.1.: Corrected branching ratios with the uncertainties from which the systematic
uncertainties for the different templates are derived.

Decay Branching Ratio

b → c Template
B+ → D0`+ν (2.29± 0.08)% [36]
B0 → D−`+ν (2.13± 0.07)% [36]
B+ → D0∗`+ν (5.25± 0.11)% [36]
B0 → D−∗`+ν (4.88± 0.10)% [36]

Rare Template
B+ → K0π+ (2.37± 0.08) · 10−5 [4]

B → µνµγ Template
B → µνµγ 1.0+1.4

−1.0 ± 0.4 [10]

b → u Template
B+ → π0`+ν (7.8± 0.27) · 10−5 [4]
B+ → ω`+ν (1.19± 0.09) · 10−4 [4]
B+ → ρ`+ν (1.58± 0.11) · 10−4 [4]
B0 → π−`+ν (1.50± 0.06) · 10−4 [4]
B0 → ρ`+ν (2.94± 0.21) · 10−4 [4]

B → u`ν inclusive (2.13± 0.31) · 10−3 [4]

A second source of systematic uncertainty originates from the uncertainty from the form
factor model with which the MC is created. The CLN model is reweighted to the more recent
BGL parametrization. The model parameters and their uncertainties are taken from [37–40].
For each individual template contribution, the covariance matrix is diagonalized and varied
in sequence by each eigenvalue. For each eigenvalue a covariance matrix is determined,
where the uncertainty in each bin is assigned by σi = Nvariation − Ncentral. The total
covariance matrix for the model uncertainties is then given by the sum of the individual
contributions C =

∑eigenvalues
i σi ⊗ σi. The b → c template and its uncertainty are shown

in Figure 7.2.

7.4. Rare Decay Template
The rare template is dominated by B → K0

Lπ decays. The template is varied by the
uncertainty of the measured branching ratio of this decays and the systematic uncertainty
is assigned accordingly. The branching ratio is listed in Table 7.1. The rare template and
its uncertainty are shown in Figure 7.3.

7.5. B → µνµγ

The decay B → µνγ is treated as background to the signal decay (see Section 2.2). The
background is fixed to the latest Belle measurement [13] B(B → µνγ) = (1.0±1.2±0.4)·10−6
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Figure 7.2.: The systematic uncertainty assigned to the b → c template. The uncertain-
ties originate from the uncertainty on the branching ratios and the model
uncertainties of the dominant contributions in the template.
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Figure 7.3.: Systematic errors on the rare template. The uncertainties originate from
the uncertainty on the branching ratios of the dominant contributions in the
template.
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Figure 7.4.: Systematic errors on the B → µνγ template. The uncertainties originate from
the uncertainty on the measured branching ratio.

and an uncertainty corresponding to the uncertainty on the measurement is applied. The
B → µνγ template and its uncertainty are shown in Figure 7.4.

7.6. b → u Template
The b → u template consists of four major contributions on which the systematic uncer-
tainties are determined. The individual components are discussed in detail in Part II of
this thesis. The b → u template is modeled as the sum of the resonant decays B → π`ν,
B → ρ`ν, B → ω`ν and the non-resonant decay B → Xu`ν. The resonant and non-resonant
contributions are combined using a Hybrid model. To properly estimate the correlations
when varying the branching ratios, the Hybrid model weights were generated anew for each
variation of branching ratios of the resonant decays. The uncertainty is determined for
each resonant variation individually and summed up. The error on the branching ratio is
treated as fully correlated for each individual component. The branching ratios are listed
in Table 7.1.

A second source of systematic uncertainty originates from the uncertainty onto the model
parameters with which the MC is created. For the B → π`ν and the B → Xu`ν templates,
the model parameters and uncertainties are taken from [36]. For the B → ρ`ν and
B → ω`ν templates, new world averages of the form factors were obtained, what is
discussed in Chapter 10. For each individual template contribution, the covariance matrix
is diagonalized and varied in sequence by each eigenvalue. For each eigenvalue a covariance
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Figure 7.5.: Systematic errors on the b → u template. The uncertainties originate from
the uncertainties on the branching ratios and the model uncertainties of the
exclusive and inclusive theory predictions.

matrix is determined, where the uncertainty in each bin is assigned by σi = Nvariation −
Ncentral. The total covariance matrix for the model uncertainties is then given by the
sum of the individual contributions C =

∑eigenvalues
i σi ⊗ σi. The b → u template and its

uncertainty is shown in Figure 7.5.

7.7. Signal Template
Three different systematic uncertainties are assigned to the signal template. Each of the
following sources of systematic uncertainty is treated as fully correlated and the covariance
matrix is constructed as Csig =

∑
i σi ⊗ σi.

Lepton Identification The systematic uncertainty on the lepton identification was studied
in [41]. The efficiency correction is applied and a systematic uncertainty of 1.959%,
1.871%, 2.067% and 2.055% is assigned to the signal template in categories I-IV.

Track Reconstruction Efficiency The systematic uncertainty on the tracking efficiency
was studied in [42]. Bases on this study, a systematic uncertainty of 0.34% is assigned
to the signal template in each category.

Number of BB Events The number of BB events in the full Belle data set is NBB =
(771.6 ± 10.6) · 106. The systematic uncertainty on the signal template σBB is
determined by varying the template in respect to the uncertainty on NBB .
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Figure 7.6.: Systematic errors on the signal template. The uncertainties originate from
the uncertainties on the number of BB pairs, the tracking efficiency and the
lepton identification.

The signal template and its systematic uncertainty is shown in Figure 7.6.



8. Measurement on Data and its
Interpretation

The fit was performed on the full Belle data sample, resulting in a branching ratio of

B(B → µνµ) = (5.297± 2.169) · 10−7. (8.1)

The pre-fit and post-fit distribution are shown in Figure 8.1 and Figure 8.2 respectively.
The agreement between the model and the data in terms of the goodness-of-fit is χ2/dof =
96.9/84 before the data is fitted and χ2/dof = 58.8/84 after the Likelihood fit is performed.
The Likelihood profiles are shown in Figure 8.3 and the pulls on the nuisance parameters
in Figure 8.4.

The observed sensitivity of the fit is:

• Two-sided with the test statistic from Equation (6.7):

– 2.53σ with statistical and systematic uncertainties

– 3.05σ with only statistical uncertainties

• One-sided with the test statistic from Equation (6.10):

– 2.75σ with statistical and systematic uncertainties

– 3.11σ with only statistical uncertainties

The observed sensitivity is not high enough to claim evidence for the decay, therefore an
upper limit is determined and listed together with the SM prediction in Table 8.1. The
construction of the Frequentist and Bayesian upper limit is shown in Figure 8.5.

Under the assumption that the decay is only governed by the SM W± gauge boson exchange,
the value of |Vub| can be extracted. It is found to be |Vub| = (4.37+0.82

−1.01) · 10−3. The value

Table 8.1.: Determined upper limit of B → µνµ .

B(B → µνµ)

Standard Model B = 4.26 · 10−7

Frequentist Upper Limit B < 8.64 · 10−7 @ 90% CL
Bayesian Upper Limit B < 8.86 · 10−7 @ 90% CL
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Figure 8.1.: Pre-fit distributions before fitting the templates to the data sample.
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Figure 8.2.: Post-fit distributions after fitting the templates to the data sample.
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Figure 8.3.: Likelihood profiles for the extracted parameters on the data sample.

of |Vub| is shown together with the time evolution of |Vub| from semileptonic B decays
in Figure 8.6. The uncertainty on the extracted value of |Vub| is too large to resolve the
discrepancy between inclusive and exclusive measurements of |Vub|.

8.1. Exclusion Limits for Sterile Neutrinos
The scan for the decay B → µN with a massive sterile neutrino in the final state was
performed by repeating the fit described in Chapter 6 with an additional template containing
the B → µN decay. The scan was performed twice, once with the assumption that the
decay B → µνµ exists with a branching ratio of the SM expectation and once with a
branching ratio of zero. The best fit Likelihood values as a function of the sterile neutrino
mass are shown in Figure 8.7. The one sided p-value of the best fit, calculated with the
test statistic given in Equation (6.10), as a function of sterile neutrino mass is shown
in Figure 8.8.
No significant excess is found in the scan with the SM decay B → µνµ being present. The
most significant excess has a significance of approximately 1.4σ. Without the SM decay
included, the best fit point is found at a neutrino mass of mN ≈ 0.8 GeV with a significance
of approximately 3.1σ.

8.2. Exclusion Limits for Two Higgs-Doublet Models
The measured branching ratios of the leptonic decays can be used to determine exclusion
limits for the type-II and type-III Higgs doublet models. The measured branching ratios
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Figure 8.4.: Nuisance parameters after the fit on the data sample. The error bars show
the pre-fit uncertainty associated to the nuisance parameters, the underlying
yellow bar shows the post-fit uncertainty on the nuisance parameter.
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Figure 8.5.: The construction of the Frequentist (top) and Bayesian (bottom) upper limit.
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Figure 8.7.: The Likelihood value of the best-fit for different sterile neutrino masses. Al-
though the Likelihood improves for non-zero sterile neutrino masses, no signifi-
cant deviation from the null hypothesis can be found.
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Figure 8.8.: The one-sided local p-value of the fit for different sterile neutrino masses.
With the SM decay B → µνµ present, no significant contribution of the decay
B → µνµ can be found. Without the SM decay, the most significant result is
found at a sterile neutrino mass mN ≈ 0.8 GeV. The result for mN = 0 GeV
is equal to the result of the search for the final state with a standard model
neutrino.
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Figure 8.9.: χ2 functions for the (left) type-II and (right) type-III two Higgs doublet model
from which the exclusion limits on the parameter space of the individual models
are extracted.

are
B(B → µνµ) = (5.297± 2.169) · 10−7,

B(B → τ ντ ) = (1.09± 0.25) · 10−4,
(8.2)

where the measurement of B → τ ντ is taken from [4]. To calculate the exclusion limits, a
χ2-function is constructed as

χ2 =

(
Bmeasured − Btheory

)2

σ2
measured + σ2

theory
. (8.3)

The theory prediction is given by either the type-II (Equation (2.4)) or type-III (Equa-
tion (2.5)) two Higgs doublet model. The χ2 is shown in Figure 8.9 for both models. The
extracted exclusion limits from the χ2 functions are shown in Figure 8.10 for the type-II
and Figure 8.11 for the type-III two Higgs doublet model.
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Figure 8.10.: Exclusion limits for the type-II two Higgs doublet model. The measured
branching ratio of B → µνµ does not exclude a new region of the parameter
space, due to the larger uncertainty on the measured branching ratio. The
bottom right plot also shows the exclusion from b → sγ measurements [43].
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Figure 8.11.: Exclusion limits for the type-III two Higgs doublet model. Although the mea-
surement of B → µνµ has a larger uncertainty, it does provide more stringent
exclusion limits due to the dependency of the new physics contribution on
the inverse of the lepton mass. The axes are scaled differently for illustrative
purpose.
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9. The Decay B→ Xu`ν

The B meson, being the lightest meson containing a b quark, can only decay via the weak
interaction. In the following I discuss the semileptonic decay B → Xu`ν, where the final
state consists of a hadronic (Xu) and a leptonic (`ν) system.

At the energy scale of the B meson mass the propagator term of the virtual W± boson
can be integrated out and the weak interaction is described by the effective coupling GF
together with the corresponding CKM matrix elements. However, at this energy scale
the bound state of the two quarks, of which the B meson is composed, is described by
non-perturbative QCD. In case the virtual W± boson decays into a lepton and neutrino
pair there exists no strong interaction between the decay products of the W± and the
hadronic system Xu. Therefore it is possible to factorize the strong and weak interaction
contributions and treat them separately.

The effective Standard Model (SM) Lagrangian describing these decays is given by

Leff = −4GF√
2
Vub(uγµPLb)(νγµPL`) + h.c., (9.1)

with Fermi’s constant GF, the CKM matrix element Vub and the projection operator
PL = (1− γ5)/2. The decay B → π`ν is shown at parton level and as an effective diagram
in Figure 9.1.

b u

d d

ν

`+

W+

B0 π−

(a) Parton level Feynman diagram.

B0 ν

`+

π−

(b) Effective Feynman diagram.

Figure 9.1.: One possible parton level Feynman diagram (a) and the effective Feynman
diagram (b). In the effective Feynman diagram, the propagator of the W is
integrated out, i.e. the weak interaction is point-like, and the gluon interactions
are described by the blob.
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Two different questions can be answered when the Lagrangian is studied. Either the
exclusive decay rate of one specific resonant hadronic final state or the total inclusive rate,
including all hadronic final states, can be calculated.

In Section 9.1 I briefly review the inclusive description of the decay. In Section 9.2 I discuss
the exclusive decays.

9.1. Inclusive Predictions

This section summarizes the more extensive review found in [4].

The calculation of the inclusive B → Xu`ν decays is based on the Heavy Quark Expansion
(HQE). In this treatment, a non-perturbative distribution function occurs, the so-called
shape-function, which has an unknown form. The contribution of the shape function is
especially relevant in the kinematic endpoint of the lepton energy spectrum.

The single shape function occurring in the leading order calculation can be measured from
B → Xsγ decays [44, 45]. This is possible, because the leading order shape function is
universal for all heavy-to-light quark transitions. At subleading order additional shape
functions appear and no trivial relations between different decays of the B meson are
possible [46]. The theoretical description of the shape-functions is also non-trivial and
different calculations are available [47–49].

The triple differential decay rate for inclusive semileptonic decays is given by

d3Γ
dq2dEldmX

= G2
F |Vub|

2

16π2

(
mB − P+

)(
(P− − Pl)(mB − P− + Pl − P+)F1

+ (mB − P−)(P− + P+)F2

+ (P− − Pl)(Pl − P+)F3
) (9.2)

with Pl = mB − 2El and P± = EX ∓ |pX |, where mB is the mass of the B meson, El the
energy of the lepton, EX the energy of the hadronic system, and pX the total 3-momentum
of the hadronic system. The Fi are the structure functions of the B meson, which include
the aforementioned shape functions ad perturbative corrections in the strong coupling
constant.

The modeling of inclusive final state does not include any knowledge of resonances. A
point-wise evaluation of Equation (9.2) therefore fails to predict the resonant structure
in the hadronic invariant mass spectrum. To make sound predictions, the phase space
is analyzed such that the resonances are integrated out. The prediction of such partial
branching fractions can then be compared to the experiment.

The problem that the inclusive predictions can not predict the resonant structures in the
hadronic invariant mass spectrum appears again in the context of event generators and is
discussed in Chapter 11.
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9.2. Exclusive Predictions
For resonant final states the hadronic matrix element for the b → u transition can be
written as 〈

M(pM )
∣∣∣uγµPLb

∣∣∣B(pB)
〉

=
∑

Tµi Fi(q
2), (9.3)

where q = pB − pM is the four-momentum transfer in the decay and M denotes any light
final state meson (I will discuss M ∈ {π, ρ, ω}). Further, the Ti denote tensorial structures
of the involved 4-momenta and polarizations in case of vector boson final states, and the
Fi form factors. The sum runs over all allowed1 tensorial structures. The B0 → π−`+ν
matrix element is shown as Feynman diagram in Figure 9.1b. In the diagram the arms are
described by the tensorial structures Ti and the blob is described by the form factors Fi.
The form factors Fi present in the equation above can not be calculated with perturbation
theory in the strong coupling constant and have to be determined using non-perturbative
methods.
The hadronic matrix element for the B → π`ν decay is given by [50]〈

π(pπ )
∣∣∣uγµPLb

∣∣∣B(pB)
〉

= Tµ1 f+(q2) + Tµ2 f0(q2),

with Tµ1 =
(

(pB + pπ )µ −
m2

B −m
2
π

q2 qµ
)
,

Tµ2 =
(
m2

B −m
2
π

q2 qµ
)
.

(9.4)

The matrix element for the B → ρ`ν (B → ω`ν) decay is given by [50]〈
V (p, η)

∣∣∣uγµPLb
∣∣∣B(pB)

〉
= Pµ1 F1 + Pµ2 F2 + Pµ3 F3 + Pµ4 F4,

with Pµ1 = 2εµαβγη
∗αpβqγ ,

Pµ2 = i
(
(m2

B −m
2
V )η∗µ)− (η∗q)(p+ pB)µ

)
,

Pµ3 = i(η∗q)
(
qµ − q2

m2
B −m

2
V

(p+ pB)µ
)
,

Pµ4 = i(η∗q)qµ,

(9.5)

with the polarization vector η∗µ and the Levi-Civita tensor εµαβγ . The difference occurs
due to that the ρ and ω are S = 1 states, what results in more tensorial structures
in Equation (9.3). From these matrix elements, the differential decay rates for B →M`ν
transitions can be derived. Is is convenient to express the differential decays rates with the
form factors in the helicity basis. The transformation is described in [50, Appendix D.1].

9.2.1. The B → π`ν Decay in the SM
The differential decay rate as a function of q2 for B → π`ν decays is given by

dΓ
dq2 = G2

F|Vub|
2

192π3m3
B
q2
√
λ(q2)

(
1−

m2
`

q2

)2 [(
1 +

m2
`

2q2

)
H2

0 (q2) + 3
2
m2
`

q2 H
2
t (q2)

]
, (9.6)

1The Ti have to respect Lorentz invariance, and e.g. Ward gauge choices can reduce the number of terms
further.
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Figure 9.2.: Result for the combined fit of the LCSR predictions, LQCD predictions, BaBar
measurements and Belle measurements. Taken from [36, p.102ff.].

with the helicity amplitudes

H0(q2) =

√
λ(q2)√
q2

f+(q2), and Ht(q
2) =

m2
B −m

2
π√

q2
f0(q2), (9.7)

and the Kaellen function λ(q2) =
((
mB +mM )2 − q2

)) ((
mB −mM )2 − q2

))
, where mM

is the mass of the final state meson. For ` = e, µ the zero mass approximation m` = 0
yields

dΓ
dq2 = G2

F|Vub|
2

192π3m3
B
q2
√
λ(q2)H2

0 (q2), (9.8)

which has excellent accuracy in all practical applications. Using Equation (9.8) one can
combine the theory predictions with the experimental measurements. The result of such a
combination is given in [36, p.102ff.] and shown in Figure 9.2. The resulting central values of
the expansion parameters and their covariance matrix can also be taken from [36, p.102ff.].

9.2.2. The B → ρ/ω`ν Decays in the SM

The same discussion as above can be applied to B → V `ν (V = ω, ρ) decays. However,
due to the vector structure of the meson, there are in general four helicity amplitudes
describing the differential rate

dΓ
dq2 = |Vub|

G2
F

192π3m3
B
q2
√
λ(q2)

(
1−

m2
`

q2

)2

×
[(

1 + m2
l

2q2

)(
H2

+(q2)2 +H2
−(q2) +H2

0 (q2)
)

+ 3m2
l

2q2 H
2
s (q2)

]
,

(9.9)



9.2. Exclusive Predictions 83

with the helicity amplitudes

H±(q2) =
√
λ(q2) V (q2)

mB +mV
± (mB +mV )A1(q2),

H0(q2) =
8mBmV√

q2
A12(q2),

Hs(q
2) =

√
λ(q2)√
q2

A0(q2).

(9.10)

For ` = e, µ the zero mass approximation m` = 0 yields

dΓ
dq2 = Vub

G2
F

192π3m3
B
q2
√
λ(q2)

[
H2

+(q2) +H2
−(q2) +H2

0 (q2)
]
, (9.11)

which again holds with excellent precision. Using Equation (9.11) one can again combine the
theory prediction from light-cone sum rules (LCSR) with the experimental measurements.
However, such a combination was not done before. In Chapter 10 I describe the fitting
procedure I used for the combination of theory and experiment.

9.2.3. BCL Form Factors

The Bourrely-Caprini-Lellouch (BCL) expansion [51] is one possible Ansatz to describe the
form factors in a model-independent way. It is based on a fast converging series expansion
where q2 is mapped to

z(q2, t0) =

√
t+ − q

2 −
√
t+ − t0√

t+ − q
2 +

√
t+ − t0

, (9.12)

with t+ = (mB +mM )2 and t0 = (mB +mM )(√mB −
√
mM )2. The B → π form factors

can be expanded as

f+(z) = 1
1− q2/m2

B∗

Nz−1∑
n=0

b+n

(
zn − (−1)n−Nz n

Nz
zNz

)
,

f0(z) =
Nz−1∑
n=0

b0nz
n,

(9.13)

with the expansion coefficients b+/0n and the first pole in the spectrum mB∗ . The B → ρ
(B → ω) form factors can be expanded as

Fi(q
2) = Pi(q

2)
∑
k

αik
(
z(q2)− z(0)

)k
, (9.14)

with the expansion coefficients αik and the poles Pi(q
2) = (1 − q2/m2

R)−1. The mass of
the resonance mR in the pole factor is given by the first contributing resonance in the
spectrum [50, Table 3].
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Figure 9.3.: The impact of the wrongly implemented SLPole form factor f+ on the form
factor itself (left) and on the differential decay rate (right). The red dotted
curve shows the prediction of the implemented model, the grey dashed curve
shows the prediction of the model, when the model parameters are fitted to
the prediction of the BCL model, and the blue curve shows the prediction of
the BCL model with the model uncertainty of ±1σ.

Non-perturbative calculations give predictions for the differential decay rates, which can
be mapped onto the BCL series expansion parameters. Predictions are available for
B → π transitions using light-cone sum rules (LCSR) [52], B → π transitions using
lattice QCD (LQCD) [5] and B → ρ/ω transitions using LCSR [50]. There are no LQCD
predictions available for the B → ρ/ω transition. The light-cone expansion is limited to
q2 ≈ O(mBΛQCD). Therefore, the LCSR predictions have to be treated cautiously for
q2 > 14 GeV, where their predictive power comes solely from extrapolating from the low
momentum transfer regime.

9.2.4. BCL Form Factors in EvtGen

The version of the event generator EvtGen [53] used by Belle does not provide the BCL
parametrization. The only available model for the B →M`ν, M ∈ {π, ρ, ω} decays is the
SLPole model [54]. The form factor f+ is given by

f+(q2) = f+(0)
1− a(q2/m2

B) + b(q2/m2
B)2 , q2 < 14 GeV2,

f+(q2) = c

1− q2/m2
B∗
, q2 > 14 GeV2.

(9.15)

The parameters of the model are chosen such that the predictions in the individual q2

ranges have a continuous transition at q2 = 14 GeV2. In the implementation of the form
factor model in EvtGen, the second equation was omitted and thus the first equation was
used over the whole q2 range. The impact of this is illustrated in Figure 9.3, where it is
clearly visible that for high q2 values, the prediction of the model fails to reproduce the
correct spectrum.

To use the BCL parametrization, the data simulated with the SLPole model is reweighted
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using

w(q2) = ΓSLPole
ΓBCL

dΓBCL(q2)
dΓSLPole(q

2)
, (9.16)

with dΓ being the prediction of the differential decay rate via either model. The problem
which arises using this equation is the following. The high q2 phase space is sparsely
populated using the SLPole model as is. To cover the high q2 phase space during event
generation, the SLPole model parameters are fitted to match the BCL prediction. This is
illustrated in Figure 9.3. The simulated data using the modified SLPole can then be safely
reweighted using Equation (9.16).

For the Belle II experiment, the BCL form factors have been implemented and are provided
within the Belle II Analysis Software Framework (basf2) together with the improved
coefficients determined in Chapter 10.





10. Improvement of the B→ ρ`ν and
B→ ω`ν Form Factors

In this chapter I present the improvement of the form factors for the B → ρ`ν and B → ω`ν
decays. The general fitting procedure is described in Section 10.1, where I first explain
the extraction of the BCL expansion coefficients and second the average of the measured
spectra by Belle and BaBar. The measurements of the differential branching ratios are
taken from [55–57]. The results of the fits are discussed in Section 10.2.

10.1. Fitting Procedure

I use a χ2 based optimization procedure to fit the BCL expansion coefficients to the
measured differential decay spectra and to create an average of the different measured
differential decay rates. The used χ2 functions are inspired by the B → π`ν fits in [36]
and explained in the following subsections for each problem separately. In all cases the
covariance matrix of the optimized result is determined by calculating the Hesse matrix at
the minimum of the χ2 function.

The BaBar measurement has assumed isospin symmetry to average the measured charged
and neutral decay modes.

∆B(B+ → ρ0`+ν)
∆q2 =

τ
B0

2τ
B+

∆B(B0 → ρ−`+ν)
∆q2 . (10.1)

To take the full systematic correlation of the Belle measurements into account, the mea-
surement vector and its covariance matrix are constructed in the following way:

xBelle = (xCharged,xNeutral),

CBelle =
(

Cstat
charged 0

0 Cstat
neutral

)
+

sources∑
s

cs ⊗ cs, with cs = σsx
Belle,

(10.2)

where x is the measured spectrum, C the covariance matrix and σs the relative systematic
uncertainty.
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Figure 10.1.: Result of the BCL coefficient fit to the LCSR predictions and the latest Belle
and BaBar measurements for the B → ρ`ν (a) and B → ω`ν (b) final state.
The blue curve shows the LCSR predictions, the orange curve the prediction
of the differential rate after the fit. The data points reflect the measurements
of (a) B+ → ρ0`ν and (b) B+ → ω(3π)`ν by Belle.

10.1.1. BCL Coefficient Fit

In order to enhance the precision of the LCSR prediction over the full q2 range I performed
a binned χ2 fit. The χ2 function is a function of Vub and the LCSR expansion coefficients
a and has the form

χ2(Vub,a) = χ2
LCSR(a) + χ2

Data(Vub,a),
χ2

LCSR(a) = ∆aTC−1
LCSR∆a,

χ2
Data(Vub,a) =

Exp∑
∆yTC−1

meas∆y,

(10.3)

with ∆a = (aLCSR − a) and ∆y =
(

∆Bmeas
∆q2

)
−
(

∆B(Vub,a)
∆q2

)
.

The theoretical prediction for the expansion coefficients aLCSR and their covariance matrix
CLCSR are taken from [50].

The result of the fit is shown in Figure 10.1a (Figure 10.1b) for the B → ρ`ν (B → ω`ν)
decay and tabulated in Table 10.1.

10.1.2. Legacy Spectrum

The B → ρ`ν measurements of Belle and BaBar have a compatible binning, which allows
to create an averaged differential spectrum of the decay.

The average of the Belle and BaBar measurements is done using a χ2 function of the form

χ2(xa) =
∑
m

∆yTmC−1
m ∆ym, with m ∈ {Belle, BaBar},

∆ym =

xm1 − (
∑N
i x

a
i )/N

...

 , (10.4)
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Table 10.1.: Tabulated results of the BCL coefficient fit.

Parameter B → ρ`ν B → ω`ν

Vub (3.326± 0.318) · 10−3 (3.194± 0.374) · 10−3

a1
0 −0.861± 0.188 −0.963± 0.284
a2

0 1.444± 1.023 1.849± 1.199
a0

1 0.266± 0.025 0.242± 0.031
a1

1 0.378± 0.134 0.269± 0.217
a2

1 0.165± 0.407 −0.039± 0.549
a0

12 0.291± 0.031 0.250± 0.038
a1

12 0.718± 0.167 0.517± 0.239
a2

12 0.384± 0.700 −0.045± 0.957
v0 0.331± 0.030 0.304± 0.038
v1 −0.876± 0.177 −0.920± 0.266
v2 1.907± 0.936 1.901± 1.183
t01 0.274± 0.025 0.251± 0.031
t11 −0.755± 0.139 −0.784± 0.205
t21 1.525± 0.755 1.578± 0.957
t12 0.456± 0.129 0.344± 0.208
t22 0.591± 0.464 0.347± 0.551
t023 0.739± 0.072 0.646± 0.088
t123 1.831± 0.396 1.357± 0.581
t223 2.912± 1.786 2.000± 2.174
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Figure 10.2.: The averaged B → ρ`ν (a) and B → ω`ν (b) spectra on top of the latest
Belle and BaBar measurements. The isospin transformation is applied to the
B0 → V −`+ν measurements. The black data points represent the "Legacy
Spectra".

where Cm is the covariance of the measurement and xmi the measured differential branching
ratio in bin i. Further xa denotes the averaged spectrum and N the number of bins used
to map to a measured bin. The binning of the average vector is chosen to match the
most granular spectrum. The averaged spectrum with the used measurements is shown
in Figure 10.2a and tabulated in Table 10.2.

The B → ω`ν measurements of Belle and BaBar do not have a compatible binning. To
create an average of the spectrum, the result of Section 10.1.1 is used as model to split the
individual bins where necessary. To match the average bin onto a measurement without
matching bin borders, the average bin xai is split in the following way:

xai (left) = Ileft/I(1 + Θjεj,1), (10.5)
xai (right) = Iright/I(1−Θjεj,2), (10.6)

where Ileft (Iright) is the area under the model function for the required bin borders,
I = Ileft + Iright the area under the model function of the bin, ε the uncertainty of the
integration given by the model uncertainty and Θ the nuisance parameter for the model
dependence. The splitting has to be done for two bins. The result should not depend on
the nuisance parameters. The averaged spectrum with the used measurements is shown
in Figure 10.2b and tabulated in Table 10.2. The result is indeed almost independent
of the nuisance parameters, which can be see in the correlation matrix of the fit shown
in Figure 10.3.

10.2. Results
The fit of the BCL expansion coefficients to the LCSR predictions and the data allows
for an improved prediction of the differential rate of B → V , V = {ρ, ω} transitions. The
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Figure 10.3.: Correlation matrix of the B → ω`ν spectrum average fit. The diagonal
components are set to 0. The intervals correspond to the q2 bins, the Θ’s
to the nuisance parameters. The correlation matrix shows that the result is
almost independent of the assumed model of the differential decay rate.

Table 10.2.: Tabulated results of the legacy spectra.

B → ρ`ν

q2 bin (GeV) ∆B/∆q2 · 106

[0, 2] 5.386± 1.636
[2, 4] 7.007± 1.573
[4, 6] 8.647± 1.740
[6, 8] 10.367± 1.798
[8, 10] 7.740± 1.481
[10, 12] 10.728± 1.757
[12, 14] 11.215± 1.775
[14, 16] 10.931± 1.724
[16, 18] 8.753± 1.576
[18, 20] 7.254± 1.407

[20, 20.3] 1.768± 0.953

B → ω`ν

q2 bin (GeV) ∆B/∆q2 · 106

[0, 4] 3.765± 1.134
[4, 8] 4.540± 0.870
[8, 10] 7.345± 1.400
[10, 12] 8.565± 1.475

[12, 20.2] 5.527± 0.986

Nuisance parameters

Θ0 −0.011± 1.000
Θ1 0.001± 1.000
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Figure 10.4.: The differential rates of B → V transitions before and after the fit is performed.
On the left (a) for the ρ in the final state and on the right (b) for the ω(3π)
in the final state. The dotted blue and purple lines show the prefit rates,
the solid orange and green lines show the postfit rates. The error band
corresponds to the 1σ interval.

uncertainty was reduced by a factor of ≈ 2.5 over the whole q2 range. The result is illustrated
in Figure 10.4. It allows for a significant reduction of the systematic uncertainties in
measurements where these transitions are part of the background composition. Additionally,
a "legacy spectrum" was created for each final state which allows for easy comparison with
future measurements of the differential decay rates, e.g. at Belle II.

Usually, the value of |Vub| for B → V transitions is only extracted at low q2 values, due to the
fact that the LCSR prediction are only valid for low q2. Here, the value of |Vub| was extracted
during the fit over the whole q2 range and was found to be |Vub|ρ = (3.326± 0.318) · 10−3

and |Vub|ω = (3.194 ± 0.374) · 10−3. The result is compatible with the exclusive |Vub|π
measurement from B → π`ν decays. The comparison to the current PDG world averages
is shown in Figure 10.5.

By integrating the differential rates given in Equation (9.11) and Equation (9.9) over the
allowed kinematic range in q2, predictions for R(ρ) and R(ω) can be obtained:

R(V ) = B(B → V τ ν)
B(B → V `ν) =

∫ q2
max

m
2
V

dq2dB(B → V τ ν)/dq2

∫ q2
max

0 dq2B(B → V `ν)/dq2
, (10.7)

with q2
max = m2

B +m2
V − 2mB +mV and the zero mass approximation for the light leptons.

The physical constants Vub and GF cancel in this ratio. Using the improved BCL coefficients
from Table 10.1 the following predictions for the SM values are obtained:

R(ρ) = 0.536± 0.009,
R(ω) = 0.546± 0.015.

(10.8)

In the same manner, but with the lower bound for both integrals in Equation (10.7) chosen
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Figure 10.5.: The values of |Vub| extracted from the fit compared to the current world
averages. The combined result is a weighted mean of the two measurements.
The exclusive PDG value comes from B → π`ν measurements.

to be the τ mass squared m2
τ , the ratios are:

Rr(ρ) = 0.571± 0.007,
Rr(ω) = 0.577± 0.013.

(10.9)

In comparison to the prediction from LCSR alone, the uncertainties are reduced by 10-20%,
when the form factors are extracted over the whole q2 range and used to calculate the ratio.





11. B→ Xu`ν Hybrid MC

As discussed in Chapter 9, the decay B → Xu`ν is treated depending if one is interested in
an exclusive resonant final state or the inclusive rate, including all possible resonant and
non-resonant final states. The predicted inclusive rate includes the rates of the resonant
contributions, but the resonant structure in the hadronic invariant mass spectrum is lost.

To simulate a data sample which properly reflects the predictions of the rates and the
resonant structures in the hadronic invariant mass spectrum mX , the lepton energy El,
and the momentum transfer q2, the inclusive and exclusive predictions have to be properly
combined.

For the search for the decay B → µνµ , described in Part I, the modeling of the endpoint of
the El spectrum has to be well described. This is where the light resonances contribute the
most. In Section 11.2 I discuss briefly the model previously used by the Belle experiment
and discuss the need for an alternative model for the endpoint of the lepton momentum
spectrum of the B → Xu`ν decays. In Section 11.1 I discuss the Hybrid model and compare
the two different models. The principle behind each model is to fix the resonant rates and
to modify the inclusive rate. This is achieved by "subtracting" the resonances from the
inclusive rate. This subtracting is done heuristically.

11.1. Hybrid Model Design
The Hybrid model originates from the CLEO experiment [58] and is also used by BaBar.

The inclusive distribution described by Equation (9.2) is split into the bins

mX = [0.00, 1.40, 1.60, 1.80, 2.00, 2.50, 3.00, 3.50],
q2 = [0.00, 2.50, 5.00, 7.50, 10.0, 12.5, 15.0, 20.0, 25.0],

EB
l = [0.00, 0.50, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 3.00].

(11.1)

The bins are theoretically motivated. The inclusive predictions are only reliable in bins
with the resonances integrated out. Therefore the Hybrid model is based on the given bins.
The event generator does however perform a point-wise evaluation of the decay rate. For
the creation of the Hybrid model, this is ignored and the aforementioned bins are used.

The idea of the Hybrid method is to subtract, in each bin, from the inclusive prediction
the partial rates of the resonant contributions. The remainder then only predicts the decay
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Table 11.1.: Branching ratios and models of B → Xu`ν, ` = e, µ decays. The given
branching ratios and models are used to create the Hybrid Model. Values
taken from [4].

→ π`ν → η`ν → η′`ν → ω`ν → ρ`ν → u`ν incl.

B+ 7.8 · 10−5 3.9 · 10−5 2.3 · 10−5 1.19 · 10−4 1.58 · 10−4 2.2 · 10−3

B0 1.5 · 10−4 - - - 2.94 · 10−4 2.0 · 10−3

Model BCL ISGW2 ISGW2 BCL BCL DFN

rate of the non-resonant final states. The resonant predictions are then added using the
exclusive predictions.

The Hybrid model predicts a total number of events in a given bin i by

Hi = Ri + ωiIi, (11.2)

where theHi is the total number of events in bin i, Ri is the number of resonant contributions,
Ii the number of events contributed by the inclusive distribution, and ωi = (Ii −Ri)/Ii the
weight assigned to the inclusive prediction such that Hi = Ii.

In Table 11.1, the branching ratios for the resonant and inclusive B → Xu`ν decays are
tabulated, together with the decay model which was used to simulate each individual
contribution.

The resulting distribution of the Hybrid model is shown in Figure 11.1.

11.2. Comparison to Belle’s Model
In the B → Xu`ν model previously used by the Belle experiment, the subtraction is
done by adjusting the normalization and the moments of the inclusive distribution. The
resulting distribution for the semileptonic b → u decay of a charged B+ meson is shown
in Figure 11.2.

The difference in the reconstructed endpoint of the lepton momentum spectrum in the
context of the analysis described in Part I is shown in Figure 11.3. Belle’s model estimates
much less events in the kinematic endpoint. The impact of this is shown in Figure 11.4, where
Belle’s model drastically underestimates the contribution from semileptonic B → Xu`ν
decays.
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Figure 11.1.: This figure show the projections of the triple differential decay rate for inclusive
B → Xu`ν decays for charged (left) and mixed (right) B mesons. The vertical
gray lines indicate the chosen binning for calculating the Hybrid weights.
The red histograms show the full inclusive prediction, the gray histograms
show the inclusive predictions after application of the Hybrid weights and the
blue histograms show the full Hybrid model which consists of the reweighted
inclusive component and the resonant contributions.



98 11. B → Xu `ν Hybrid MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
mX / (GeV)

0

2

4

6

No
rm

al
ize

d 
En

tri
es

 / 
(0

.0
35

 G
eV

) 1e 1 B + X0l
Belle's Model
Hybrid Model
Total Inclusive
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Figure 11.4.: Comparison of Belle’s B → Xu`ν model to the newly deployed Hybrid model
at the kinematic endpoint of the lepton momentum spectrum (the green
template in all plots). The figures show the distributions of the individual MC
components and data before any fit on the data is performed. Belle’s model
(left) does underestimate the rate at the kinematic endpoint in comparison
to the Hybrid model (right). For a discussion of the categorization and the
individual templates see Chapter 6.





12. Summary

In this thesis, the search for the rare decay B → µν in the full data sample recorded by
the Belle experiment was presented. The branching ratio was found to be

B(B → µνµ) = (5.297± 2.169) · 10−7.

with a significance of 2.75σ including statistical and systematic uncertainties and 3.11σ
including only statistical uncertainties. It is the most precise measurement of this decay to
date, improving the previous result of the Belle collaboration [6] by 0.3σ. The significance
of the observed signal is not high enough to claim evidence for the decay, therefore the upper
limit for the branching ratio was determined in the Frequentist and Bayesian interpretation:

Frequentist :B(B → µνµ) < 8.64 · 10−7 @ 90% CL,

Bayesian :B(B → µνµ) < 8.86 · 10−7 @ 90% CL.

The measured branching ratio was also interpreted in the context of a type-II and type-III
two Higgs doublet model and exclusion limits for the parameters of those models were
determined. Additionally, a search for a sterile neutrino in the same final state was
performed by scanning the measured muon momentum spectrum. No significant excess for
a sterile neutrino over the background only hypothesis was found.

The prediction of the differential decay rate of the B → ρ`ν and B → ω`ν was improved
by extracting the expansion coefficients of the form factor model from previously measured
q2 spectra of Belle and BaBar. This reduces the uncertainty on the prediction of the
differential decay rate by a factor of 2 for the whole q2 range.

With the improved determination of the form factors the prediction for the ratio of
semitauonic to semileptonic b → u decays R(V ) = B(B→V τ ν)

B(B→V `ν) , where V ∈ {ρ, ω}, could be
improved by 10%:

R(ρ) = 0.536± 0.009,
R(ω) = 0.546± 0.015.

A new model for the simulation of B → Xu`ν decays was introduced to the Belle and
Belle II collaborations. This was essential for a correct background modeling for the search
for the B → µνµ decays. The new model will also impact other measurements, such as the
ongoing inclusive measurement of the B → Xu`ν branching ratio.
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102 12. Summary

The SM parameter |Vub| was extracted from the measured branching ratio of the B → µνµ
decay:

|Vub|B→µνµ = (4.37+0.82
−1.01) · 10−3.

Additionally, |Vub| was also extracted in the fit of the form factor expansion coefficients for
the B → ρ`ν and B → ω`ν decays. The extracted values are:

|Vub|B→ρ`ν = (3.33± 0.32) · 10−3,

|Vub|B→ω`ν = (3.19± 0.37) · 10−3.
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