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Abstract 

The reversible and visible light induced cycloaddition of styrylpyrene has been investigated 

with regard to its formed isomeric photoproducts as well as its most efficient photochemical 

reaction conditions – i.e. trigger wavelength and number of photons required for maximum 

conversion – via a newly developed technique called Wavelength-dependent Photon Efficiency 

Analysis (WPEA). With wavelengths at 435 nm for the dimerisation and 330 nm for the disso-

ciation, the investigated cycloaddition is among the mildest of its kind. The chromophore was 

further exploited in polymer studies, on the one hand towards wavelength-orthogonal reaction 

systems to alter material properties simply by using disparate colours of light, and on the other 

hand for reprogrammable gradient materials. In particular, styrylpyrene has been successfully 

employed in reversible block-copolymer formations over several dimerisation / dissociation 

cycles demonstrating the capability of styrylpyrene for reprogrammability. A further reversible 

visible light moiety based on a pyrenyl cinnamic acid derivate was combined with o-methyl 

benzaldehyde – which reacts in an irreversible cycloaddition under irradiation with UV light – 

in one molecule. The dichromophore was employed in wavelength-orthogonal studies with 

subsequent irradiation of distinct wavelengths to pathway-independently obtain the same prod-

uct. Such a dichromophore can be further utilised as a cross-linking molecule for the generation 

of light responsive materials. Moreover, polymer strands with styrylpyrene or o-methyl ben-

zaldehyde side groups were investigated in-depth for wavelength-orthogonal systems in small 

molecule, polymer and material studies including analysis via XPS and AFM. It is demon-

strated that curing the latter with disparate colours of light induced different cross-linking re-

actions resulting in distinct material properties such as softness and adhesiveness. As a result, 

reversible visible light moieties such as styrylpyrene are suitable for reprogrammable gradient 

materials that can be combined with additional wavelength-orthogonal reactions to introduce 

further functionalisation. 
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Zusammenfassung 

Die reversible und mit sichtbarem Licht induzierte Cycloaddition von Styrylpyrene wurde mit 

Augenmerk auf die durch sie geformten isomeren Photoprodukte sowie ihre effizientesten pho-

tochemischen Reaktionsparameter detailliert untersucht. Letztere wurden durch eine neu vor-

gestellte Methode mit dem Namen „Wellenlängenabhängige Photonen Effizienz Analyse“ be-

stimmt. Hierbei wird eine Reaktion auf ihre wirkvollste Startwellenlänge sowie die Anzahl der 

benötigten Photonen für den höchstmöglichen Umsatz untersucht. Im Falle von Styrylpyrene 

waren dies 435 nm für die Dimerisation und 330 nm für die Dissoziation, womit das unter-

suchte System zu den mildesten bekannten seiner Art gehört. Auf Basis dieser Eigenschaften 

wurde der Chromophore im Folgenden in Polymerstudien verwendet. Zum einen war das Ziel 

ein wellenlängen-orthogonales Reaktionssystem zu erhalten, um Materialeigenschaften rein 

basierend auf der Wahl der Bestrahlungswellenlänge zu ändern. Andererseits wurden Möglich-

keiten erforscht wie durch photochemisch reversible Reaktionen reprogrammierbare Gradien-

tenmaterialien erhalten werden können. In einem ersten Schritt wurde Styrylpyrene erfolgreich 

verwendet, um reversible Blockcopolymere zu bilden. Durch mehrfaches Durchführen des Di-

merisations- und Dissoziationszyklus konnte bewiesen werden, dass sich Styrylpyrene sehr gut 

für reprogrammierbare Anwendungen eignet. In weiteren Studien wurde ein ähnliches, eben-

falls reversibles und mit sichtbarem Licht induziertes, System basierend auf einem Pyren-

Zimtsäurederivat zusammen mit o-Methylbenzaldehyd untersucht. o-Methylbenzaldehyd ist in 

der Lage unter Bestrahlung mit UV Licht irreversible Cycloadditionen einzugehen. Durch 

Kombination der beiden licht-reaktiven Gruppen in einem Molekül wurde ein Dichromophor 

erhalten, dem ein wellenlängen-orthogonales Verhalten nachgewiesen werden konnte. Durch 

aufeinanderfolgende Bestrahlung mit zwei verschiedenen Wellenlängen wird unabhängig vom 

Reaktionsweg das gleiche Reaktionsprodukt erhalten. Ein solcher Dichromophor ist hervorra-

gend geeignet, um als Vernetzer bei der Herstellung von licht-gesteuerten Materialien zu die-

nen. Zusätzlich wurden Polymere mit Styrylpyrene oder o-Methylenzaldehyd als Seitengrup-

pen detailliert auf ihre Eignung in wellenlängen-orthogonalen System untersucht. Neben Stu-
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dien zur Reaktivität als kleine Moleküle und Polymere in Lösung, wurden ebenfalls Material-

studien unter Verwendung von XPS und AFM durchgeführt. Aushärten des Materials durch 

verschiedene Wellenlängen induzierte eine jeweils andersartige Vernetzungsreaktionen und 

führte damit zu deutlich unterschiedlichen Materialeigenschaften, beispielsweise in den Berei-

chen Weichheit und Haftfähigkeit. Basierend auf diesen Ergebnissen konnte gezeigt werden, 

dass sich reversible, mit sichtbarem Licht induzierte Systeme wie Styrylpyrene hervorragend 

eignen um reprogrammierbare Gradientenmaterialien herzustellen die weiterhin mit wellenlän-

gen-orthogonalen Reaktionen kombiniert werden können um zusätzliche Funktionalisierung zu 

ermöglichen. 
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Introduction 

The combination of materials science with photochemistry is a promising field in contemporary 

material science. Light can be employed in a spatially resolved fashion and is therefore 

uniquely suitable for manufacturing processes that require high precision. Furthermore, light 

sources can be instantly switched on and off, allowing to – on-demand – alter and tailor material 

properties. In comparison, conventional temperature triggered reactions can only be applied to 

modify spatially non-defined areas of a material, while also requiring control over heat distri-

bution and dissipation. In addition, temperature for the initiation of reactions cannot be utilised 

on-demand, requiring heating and cooling periods. Thus, introducing photochemical reactions 

into the wide field of soft matter materials science enables highly interesting applications, e.g. 

3D printing – from the macro- to nanoscale – as well as dental composites, optics, medicine, 

and many more.1–3 

Due to the unique features of light (i.e. spatial control, on-demand triggering), it can be em-

ployed with continuously changing parameters (e.g. light intensity, irradiation time, wave-

length), while also varying which parts of a material are irradiated. Thus, one research field 

that can critically profit from photochemical reactions are gradient materials. In fact, light-

induced cross-linking can stiffen and harden a material based on the light intensity or irradiation 

time and thus cross-linking density. Therefore, by varying one of these parameters throughout 

the irradiation of a material, gradient materials can be obtained. Traditionally, mostly homog-

enous materials that are characterised by relatively uniform properties (composition, micro-

structure, etc.) are employed.4 However, modern applications usually feature heterogenous 

modes of stress or strain. As a result, gradients critically enhance the performance of a material, 

e.g. for the utilisation in flexible electronics, medical implants, or aerospace projects.4  
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Reversible [2+2] Cycloaddition
A

In-Depth Photochemical Investigations

Polymer Ligations

Vis

UV

Block-Copolymer Formation

via Polymer End Groups

C
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Figure 1. Schematic overview over the topics investigated in the present thesis: In-depth investigations of the 

reversible and visible light cycloaddition of (A) styrylpyrene (Chapter 3) for further utilisation alongside the 

chromophores (B) o-methyl benzaldehyde (Chapter 4 and 5) and a pyrenyl cinnamic acid derivate (Chapter 

5). Polymer Ligations to form (C) block-copolymers (Chapter 3) as well as networks via (D) side chain func-

tional polymer strands (Chapter 4) or (E) by employing cross-linking molecules (Chapter 5). (F) Wavelength-

orthogonal network formations enabled by the incorporation of two different chromophores into one material 

(styrylpyrene and o-methyl benzaldehyde, Chapter 4).  
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Today, transitions between areas with different flexibility are mostly implemented via sand-

wich-type gradients.5,6 However, these are beset with disadvantages, including joints in be-

tween the different layers. Therefore, a gradual change in the degree of stiffness, toughness, 

ductility, and formability of a material is desired.4 By introducing photochemical cycloaddi-

tions, such linear gradients can be achieved via variations of the light-induced cross-linking 

density. Furthermore, photochemical cycloadditions have the interesting feature of reversibil-

ity.7 Thus, in addition to being spatially resolved and on-demand, this class of photoreactions 

allows for reprogrammability. As a result, gradients can be rewritten and altered to achieve the 

best attainable result for each application. 

The photochemical system investigated in the current thesis is based on styrylpyrene (Figure 

1 A). This specific molecule can undergo a [2+2] cycloaddition within the visible light range, 

with a cycloreversion that can be triggered with UV-A light. Both wavelengths are among the 

mildest known for their respective reaction type (i.e. [2+2] cycloaddition and cycloreversion) 

and thus greatly minimise the damage dealt to the surroundings of the reaction (e.g. solvent, 

organic tissue or polymeric material) in case harsh UV-B or -C light would be employed. As a 

result, the first goal of the presented thesis was to conduct a detailed analysis of the dimerisation 

and dissociation reaction of styrylpyrene (Chapter 3), with a focus on its most suitable photo-

chemical reaction conditions (i.e. trigger-wavelength and amount of photons needed) that can 

be subsequently depicted in so called action plots (reaction yield vs. irradiation wavelength). 

These investigations were conducted using a unique tuneable laser system, featuring mono-

chromatic irradiation and thus allowing to study the reactivity of styrylpyrene at any given 

wavelength. The insights obtained from the in-depth investigations of styrylpyrene are further 

applied in polymer ligation approaches to prove the suitability of styrylpyrene for the develop-

ment of gradient materials. In detail, styrylpyrene was employed for reversible block-copoly-

mer formations (Figure 1 C, refer to Chapter 3) and as a cross-linking moiety to obtain poly-

meric networks and films (Figure 1 D and F, refer to Chapter 4), including mechanical testing 

of the latter. 

In addition to styrylpyrene, a second and similar reversible visible light responsive moiety – 

based on a cinnamic acid derivate functionalised with pyrene instead of the phenyl moiety 

(Figure 1 B, refer to Chapter 5) – as well as an irreversible chromophore, i.e. o-methyl benzal-

dehyde (Figure 1 B, refer to Chapter 4 and 5), were investigated 

Generally, the implementation of photochemical moieties into soft matter can be accomplished 

with two different strategies: cross-linking of side-functional polymer strands (Figure 1 D, re-

fer to Chapter 4) as well as the combination of polymers with a linking molecule (Figure 1 E, 
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refer to Chapter 5). Both approaches were investigated in the present thesis with a focus on 

wavelength orthogonality in which two disparate light-responsive moieties can be triggered 

independently from each other, while introducing unique properties into an irradiated material 

(Figure 1 F, refer to Chapter 4). In fact, such pathway independent irradiation systems can be 

obtained by combining the UV-responsive chromophore o-methyl benzaldehyde with one of 

the two investigated visible light chromophores, styrylpyrene (Chapter 4) or the pyrenyl cin-

namic acid derivate (Chapter 5). The wavelength-orthogonal reaction systems were investi-

gated as first steps towards gradient materials, in which both photochemical reactions would 

introduce a different set of properties into a material (i.e. stiffness, toughness, ductility, and 

formability). When irradiated with continuously changing parameters such as light intensity or 

irradiation time, a material can be obtained that features two independent lateral gradients. 

Finally, styrylpyrene was introduced into water-soluble polymers to be combined with 

styrylpyrene-functional nanocellulose fibrils for mechanical testing and gradient studies (Fig-

ure 2, refer to Chapter 6). Nanocellulose was the material of choice for this approach since it 

is one of the stiffest natural materials, able to be cast into transparent films. Continuously 

changing irradiation (intensity or time) with visible light can cross-link the styrylpyrene moie-

ties, leading to a gradient material with varying cross-link densities and, thus, a lateral change 

for example in stiffness or flexibility. In addition, employing light in the UV-A regime would 

lead to dissociation of the formed styrylpyrene dimers resulting in the starting material. There-

fore, the combination of a reversible and visible light cycloaddition with nanocellulose is an 

attractive route to transparent reprogrammable gradient materials with vast opportunities in 

modern soft matter science technology. 

Gradient Materials

Vis

UV

Figure 2. Gradually changing irradiation (intensity or time) of styrylpyrene-functional polymer 

strands (depicted as blue lines) and styrylpyrene-functional nanocellulose fibrils (depicted as 

black lines) with visible light, leads to different amounts of cross-linking and thus properties like 

toughness and stiffness. Irradiation with UV light reverts that process, resulting in a reprogram-

mable gradient material.  
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Theoretical Background 

2.1 Reprogrammable Gradient Materials 

Soft matter materials with adaptable properties are of high interest in modern research. Espe-

cially when it comes to materials that contain several different elasticities or connection points 

in between hard and soft material segments, it is important to consider the impact of stress and 

mechanical influences. By simply attaching a stiff to a more flexible material, the joint may 

face the disadvantage of a breaking point for the material that tends to fail if force is applied. 

Importantly, the bigger the difference in between the flexibility of the two materials, the sooner 

the joint will break. To prevent premature failure, inspired by nature itself (e.g. the attachment 

of ligaments to bones), gradient materials can be employed to gradually alter the degree of 

flexibility in a material.8 Despite the reduction of stress, gradient materials can be further opti-

mised with regard to toughness, stiffness, resistance against abrasion, formability, and ductil-

ity.9,10 Further advantages of gradient materials include not only a remarkable ability to hinder 

crack propagation but also to resist contact deformation and damage.5 Mechanical failure of 

both materials and structures is a major problem for the economy and environment of modern 

society. Minimisation of these problems could include tougher structural materials or damage-

reporting properties to avoid accidents or failure. 

Alleviation of stress at interfaces can be achieved via gradually changing properties in materi-

als. To-date, sandwich-type gradients are most common since they simply consist of layers 

   

Unless stated otherwise, Chapter 2.1 is based on reviews by Walther et al.11 and Ritchie et al.4 
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with different properties. Sandwich materials can be readily generated using classical engineer-

ing techniques such as stacking and fusing different materials or sequential photo cross-linking 

of subsequent layers.5,6,12 Strain can be effectively delocalised if layers with increasing stiffness 

are employed, but the materials still contain joints where the two different sandwich layers are 

fused, possibly acting as breaking points. 

A possibility for avoiding any breaking points and mismatches in heterogeneous materials is 

the use of lateral gradients, although existing approaches to this solution are much scarcer than 

sandwich-type gradients. Lateral gradients are mostly achieved using irreversible cross-linking 

reactions, since changing the cross-linking density vastly influences the mechanical stiffness. 

One approach is to mix a prepolymer with a cross-linker via two syringes and gradually adjust-

ing the mixing ratios.13,14 However, the result is highly specialised for a chosen application, and 

therefore, this approach is rather labour-intensive while not allowing for very steep gradients. 

Therefore, the goal is to obtain gradient materials that are not only more easily accessible but 

can also be erased and ultimately reprogrammed to be adaptable for complex operations on-

demand. 

Gradient materials have so far mostly been studied in 1D profiles due to the lack of adequate 

fabrication tools but also limitations in suitable analytical techniques. However, recent research 

has focussed on multidimensional and multimaterial approaches through the development of 

3D printing platforms.15 Functional gradient materials open a wide spectrum of opportunities 

with possible application in thermal barrier coatings, biomedical implants, aerospace, and op-

toelectronics. All these fields require high-performance synthetic materials and illustrate the 

importance of high failure tolerances to ensure long lifetimes. 

Recently, reprogrammable materials have been of high interest, for example due to their shape 

changing capabilities, enabling them to perform complex motions when triggered externally. 

These spontaneous changes, including folding or twisting, can be activated by various different 

stimuli such as humidity, temperature, light, or solvent and provide yet another dimension to 

the already mentioned reprogramming of a materials flexibility.16 

As a conclusion, reprogrammable gradient materials are of high interest for modern technology, 

providing highly adjustable properties that can be tailored to each specific need, on-demand 

and only by applying an external trigger such as light. However, the combination of reprogram-

mable materials and gradient materials has not yet been achieved, and therefore the goal of this 
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thesis is to investigate fundamental principles such as reversible photochemistry in small mol-

ecules and polymer networks that can provide first insights towards reprogrammable gradient 

materials. 
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2.2 Polymer Chemistry 

Improvements of functional gradients often rely on highly specialised materials that mimic 

natural and biological processes. For almost a century, researchers have been investigating ma-

terials and their respective science in the field of polymer chemistry. 

The term polymer describes a molecule that is constructed from repeating units termed mono-

mers and was mainly shaped by Staudinger in 1920. He postulated that polymers are in princi-

ple molecules of the same nature, covalently bonded together, acting as repeating units to form 

a long chain.17 A few years later, Staudinger also proposed the term macromolecule, describing 

molecules that consist of repeating units that are not necessarily equal to each other.18 Indeed, 

polymers can be categorised into natural and synthetic polymers, both playing an important 

role in our daily world.19 One of the most important natural polymers is the human DNA (de-

oxyribonucleic acid) which is constituted of nucleotides as the repeating units.20 Nevertheless, 

synthetic polymers, likewise, are essential in our everyday life and modern technology. In fact, 

there are many different types of synthetic polymers, also incorporating additives to alter their 

properties (e.g. colour, stability) even further.21–23 As a matter of fact, all polymers can usually 

be characterised by their degree of polymerisation, their molecular weight, as well as their poly-

dispersity. 

Since a polymer sample can contain disparate chains with different lengths and therefore mo-

lecular weights, two different average terms have been introduced to distinguish them: the 

number average mass Mn and the weight average mass Mw. In addition, the degree of polymer-

isation DPn expresses the number n of monomeric repeating units M0 in a polymer chain: 

𝐷𝑃𝑛 =
𝑀n

𝑀0

 

Furthermore, the polydispersity Ɖ implies molar mass distribution in a polymer sample, and 

hence its heterogeneity, by relating different average masses to each other: 

Ɖ =
𝑀w

𝑀n

 

Last but not least, polymer samples can be classified by their synthesis mechanism in chain-

growth and step-growth polymerisation. In chain-growth polymerisations, an unsaturated mon-

omer is required as well as an initiator. The latter is able to form a reactive centre that can react 

   

Unless stated otherwise, Chapter 2.2 is based on books by Stevens,24 Odian,25 and Barner-Kowollik.26 
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with one monomer transferring the reactive centre to the attached monomer which subsequently 

reacts with another unit, resulting in a growing chain. Possible reactive centres include radicals, 

ions (cations and anions) as well as coordinative systems. Step-growth polymerisation, in con-

trast, requires difunctional monomers which can undergo a reaction with each other. As a result, 

two monomers form dimers that can react to oligomers and eventually end in long polymer 

chains. Typical examples for this approach are polycondensation or polyaddition reactions.27 

Nevertheless, the latter polymerisation technique is beyond the scope of the current thesis, and 

thus will not be discussed in more detail. 

2.2.1 Free Radical Polymerisation 

The most used polymerisation technique in both industry and research is the free radical 

polymerisation (FRP).25,28 It usually features mild conditions while allowing a large range of 

different types of monomers to be polymerised.29 Furthermore, FRP requires an initiator mol-

ecule that can be split into radicals when a trigger, such as heat or light, is applied (Figure 

3).30,31 The initiator radical can subsequently attack a monomer transferring the radical to the 

latter. In the propagation step, the monomer reacts with the radical forming a growing chain, 

always containing the active centre at its end. A growing chain can be deactivated by two dif-

ferent pathways, either termination or chain transfer reactions. The termination reaction is dif-

fusion controlled. For it to occur, two radically growing chains need to encounter each other, 

Figure 3. Overview of the FRP mechanism. 
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which is much slower than the reaction between two radicals itself. In addition, the rate of 

termination is also dependent on the monomer conversion, the chain length and the tempera-

ture. As a result, polymerisations often autoaccelerate at high conversions due to an increased 

viscosity, which is limiting chain movements and thus decreasing the possibility of a termina-

tion in comparison to the propagation step (Trommsdorff-Norrish effect).32 The termination 

reaction can be subdivided into recombination – the addition of two chains to form one chain 

with double the molecular weight – and disproportionation in which a hydrogen atom is trans-

ferred from one chain to the other leaving an unsaturated double bond behind.33 The drawback 

of disproportionation is that the newly created double bond could again polymerise in the prop-

agation step as a macromonomer.34 Generally, random chain transfer reactions are mostly un-

desired side reactions since they can limit the maximum molecular weight of a polymer sample 

as well as the synthetic control.35 In detail, a growing chain can transfer its radical to another 

chain’s backbone by abstracting a hydrogen. Thus, the growing chain becomes inactive, while 

the attacked chain can now continue growth from its backbone. Chain transfer, however, can 

also occur within on chain, transferring the radical from the end of the chain towards its back-

bone, called ‘back-biting’. Both chain transfer processes can lead to the formation of branched 

polymers due to the fact that the radical is not located at the end of the chain anymore.36,37 

However, chain transfer agents can be deliberately added to a polymerisation mixture to take 

advantage of the transfer reaction and control the molecular weight. 

Even though FRP is the most frequently used polymerisation technique, it features a few sig-

nificant drawbacks that are associated with its mechanism. The end group fidelity of the ob-

tained polymer chains as well as the dispersity of the molecular weight are rather hard to con-

trol. Polymer samples obtained via this technique often feature broad molar mass distributions, 

and the lack of control can be attributed to the termination and transfer steps.38,39 In fact, several 

different polymerisation techniques have been introduced to suppress both termination as well 

as undesired transfer reactions by temporarily deactivating the radical chains, and thus disa-

bling their termination and transfer abilities. These reactions can be grouped under the name 

Reversible Deactivation Radical Polymerisation (RDRP)40 and include Reversible Addition 

Fragmentation Chain Transfer (RAFT),41 Atom Transfer Radical Polymerisation (ATRP),38 

and Nitroxide Mediated Polymerisation (NMP).42 All these polymerisation techniques embody 

narrow polydispersities, predictable molecular weights and high end-group fidelities when 

compared to FRP.43 
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2.2.2 Reversible Addition Fragmentation Chain Transfer 

Polymerisation 

RAFT was reported simultaneously but independently in Australia and France in 1989, alt-

hough in France it was initially named macromolecular design by interchange of xanthates 

(MADIX).44,45 In detail, RAFT utilises a chain transfer agent (CTA or RAFT agent) to intro-

duce an equilibrium of addition and fragmentation processes. Commonly employed CTAs are 

dithioester, dithiocarbamates and trithiocarbamates. The distinction of RAFT to any other 

RDRP technique is based on the fact that the concentration of radicals is actually not reduced 

but rather a new dormant radical is generated that exist in an equilibrium with the propagating 

chain. The advantage of not lowering the amount of radicals expresses itself in the comparable 

propagation rates for RAFT and FRP, while the rates for ATRP and NMP are drastically de-

creased.46 Due to this, only RAFT was explored as a polymerisation technique in this thesis 

and will be explained in detail in this Chapter. 

The mechanism for RAFT proceeds similarly to FRP, however after the initiation and propa-

gation steps, the growing chain takes part in a reversible chain transfer, followed by reinitiation 

and a chain equilibrium before eventually undergoing termination. The key aspect of RAFT is 

the RAFT agent (i.e. CTA). By undergoing equilibrium reactions, the CTA provides control 

over the polymerisation leading to a narrow polydispersity. Tuning the ratio of the RAFT agent 

to the monomer can allow to determine the targeted molecular weight. However, the RAFT 

agent also exhibits challenges and drawbacks, since it needs to be specifically chosen and tai-

lored for the desired monomers. In addition, RAFT agents are mostly coloured yellow or pink 

while introducing potential instability concerning the end group incorporated into the polymer 

chains. To overcome both drawbacks, the RAFT group often needs to be removed or altered 

via diverse post polymerisation functionalisation techniques.  

Specifically, the RAFT mechanism (Figure 4) begins with an initiation step, in which a radical 

is generated that can attack a monomer and start a growing chain. Subsequently, the latter reacts 

with the CTA in an equilibrium reaction, creating a dormant species, which can eventually 

release its R-group as a new reactive radical to undergo reinitiation and subsequent propaga-

tion. The newly created growing chain again undergoes a chain equilibrium reaction suppress-

ing undesired side and transfer reactions until ultimately the propagation is stopped by the ter-

mination process.  
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Figure 4. Overview of the RAFT mechanism. 



Photochemistry 

13 

2.3 Photochemistry 

Photochemistry describes the alteration of molecules - including isomerisations, bond for-

mations or physical changes such as fluorescence - under irradiation of light. Light is of high 

interest for both chemistry and materials science, since it offers reaction pathways that might 

not be thermally allowed, as well as a remote trigger for spatial control that can be switched on 

and off instantly. In addition, photochemical cycloadditions can be reversible, offering a wide 

range of possibilities for reprogrammable or self-healing properties within gradient materials. 

In 1834, Trommsdorff published the first transformation introduced directly by light irradia-

tion,47 followed by the discovery of the photodimerisation of anthracene by Fritzsche.48 More 

than thirty years later, Riiber observed that cinnamic acid is able to undergo a photocycloaddi-

tion as well,49 which led to the publication of preliminary results by Ciamician and Silber in 

the early 19th century. This seminal work described the photodimerisation of several molecules 

including cinnamic acid, stilbene, and coumarin, both in solution and solid state, introducing 

the modern era of photochemistry.50 At the same time, physicists like Planck and Einstein fo-

cused their attention on the theoretical background of photochemistry.51,52 Respectively, it was 

proven that light consists out of photons, which vary in their energy in dependence of their 

wavelength. Generally, light utilised for photochemical alterations is ranging from 200 nm 

(high energy) to 1000 nm (low energy), and divided into different sub-classes (Table 1): 

Table 1. Classes and sub-classes of light suitable for photochemical reactions including their wavelength 

ranges. 

Name Sub-Class Wavelength / nm 

Ultraviolet (UV) 

UV-C 200 - 280 nm 

UV-B 280 - 315 nm 

UV-A 315 - 380 nm 

Visible Light (Vis)  380 - 750 nm 

Infrared Light (IR)  750 - 106 nm 

 

In theory, a molecule can absorb light – in specific a photon of a suitable energy – which pro-

motes that molecule from its ground state into an electronically excited state. Since excited 

   

Unless stated otherwise, Chapter 2.3 is based on books and reviews by Atkins,53 Balzani,7 Kaur et al,1 and Frisch et al.54 
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states are of a higher energy, the molecule subsequently undergoes a deactivation process to 

the more stable ground state, either by a photochemical or a photophysical pathway. Im-

portantly, a molecule can undergo different reactions in the presence of light in comparison to 

heat as the trigger, due to the fact that a molecule’s excited state reactivity is vastly different 

than the one of ground state. 

In 1935, Jablonski published a schematic description illustrating the possible processes a mol-

ecule can undergo upon irradiation with light. A simplified version of the Jablonski diagram 

(Figure 5) depicts the ground (S0) and both first excited states, singlet (S1) and triplet (T1), of 

a molecule including the respective vibrational states (thin horizontal lines). When a photon is 

absorbed, the molecule is usually excited from one vibrational state of its ground state S0 to a 

vibrational state of its excited singlet state S1 in a way that the energy difference of these two 

vibrational states matches the energy of the absorbed photon. Next, several different deactiva-

tion processes can take place, which are in competition with each other. After vibrational re-

laxation from a higher vibrational state to the lowest vibrational state took place, one of the 

following events can occur: 

• Photophysical Deactivation 

o Non-Radiative Deactivation  

During these processes no change in energy takes place and thus, no irradiation is 

emitted, usually followed by vibrational relaxation. 

▪ Internal Conversion (IC) 

Radiationless transition from one vibrational level to another of a different 

electronic state but with the same multiplicity (e.g. S1 → S0). 
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Figure 5. Jablonski diagram showing the possible deactivation pathways after a molecule is irradiated with 

light. 
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▪ Intersystem Crossing (ISC) 

Radiationless transition from one vibrational level to another of a different 

electronic state and different multiplicity (e.g. T1 → S0).
55 ISC is a spin-

forbidden process and slower than IC, and thus only occurs when small 

energy gaps in between the singlet and triplet states are present.  

o Radiative Deactivation (Luminescence) 

▪ Fluorescence 

Deactivation from the S1 to S0 under emission of light. The transmission 

usually occurs within a radiative lifetime of 10-9 s. 

▪ Phosphorescence 

After ISC from S1 to T1, the molecule can undergo radiative deactivation 

from T1 to S0, emitting light with a radiative lifetime which is longer than 

the one for fluorescence. Phosphorescence usually has a radiative lifetime 

of about 10-5 s but can be up to several hours because the transition is for-

bidden by quantum mechanics.56 

• Photochemical Deactivation 

Photochemical processes are not shown in a Jablonski diagram and can range from 

isomerisations over bond forming processes such as cycloadditions and cyclisations to 

bond cleaving processes or decompositions (e.g. elimination reactions). 

Nevertheless, in the presented thesis, most of the photochemical processes are being discussed 

with a focus on cycloadditions in addition to isomerisation reactions. 

In general, the trans-isomer of a molecule is the thermodynamically more stable form. How-

ever, both trans → cis and cis → trans isomerisations can be achieved via irradiation with 

light. Therefore, a photochemical isomerisation system can result in an equilibrium of both 

isomers, named photostationary state, when the trans- as well as the cis-species absorb light in 

the same spectral region. Photoreactions can sometimes only arise from one of the isomers. 

However, due to the photostationary state, isomerisation can take place in advance to a photo-

reaction making it possible to start with the unreactive isomer as well as isomer mixtures.57 

2.3.1 Beer-Lambert’s Law 

When light travels through a material or solution some of the light is absorbed, and thus its 

intensity decreases. In 1729, Bouguer discovered a concept which is fundamental to quantify 

the reduction of radiation intensity, however the break-through is attributed to Lambert who 

mentioned it in his book Photometria that was published close to 30 years later. The law was 
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finalised to its currently known version by Beer58 in 1852, and relates a measured experimental 

absorbance A to the materials wavelength-dependent molar absorptivity coefficient ελ as well 

as the molar concentration c and the path length l (in cm) that the beam travels through the 

material solution: 

𝐴 = 𝜀𝜆 ∗ 𝑐 ∗ 𝑙 

In case the light beam needs to travel through several absorbing substances, their single terms 

can be co-added, resulting in the following equation: 

𝐴 = (𝜀1 ∗ 𝑐1 ∗ 𝑙) + (𝜀2 ∗ 𝑐2 ∗ 𝑙) + ⋯   

The absorbance A of a molecule cannot simply be measured, however, it is logarithmically 

related to the transmission T which is the relation of the light intensity before (I0) and after (I) 

it travelled through the absorbing material. 

𝑇 =
𝐼

𝐼0
 

=> 𝐴 = − log(𝑇) = − log (
𝐼

𝐼0
) 

As a conclusion, the intensity of light exponentially decreases with both, the concentration of 

the absorbing substance as well as the thickness of the materials as depicted in Figure 6: 

𝐼 = 𝐼0 ∗ 𝑒
−𝐴 

=> 𝐼 = 𝐼0 ∗ 𝑒
− 𝜀𝜆∗𝑐∗𝑙   

 

Figure 6. When light of the intensity I0 passes through a material or solution with the path length l, concen-

tration c, and molar absorption ελ, it is absorbed according to the Beer-Lambert law and thus reduced to the 

intensity I. 

The Beer-Lambert law is an important principle for photochemical reaction because it states 

that often only the outer layers of a solution are irradiated with light due to its exponential 

decrease in intensity. This is of experimental importance since it limits the thickness an irradi-
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ated material can possess. When working in solution, this can be overcome by stirring the so-

lution or using photo flow systems in which under circulation only a small part of the solution 

is irradiated per time interval. 

2.3.2 Franck-Condon Principle 

As indicated by the Franck-Condon principle (depicted in Figure 7), electronical transitions 

are most likely to occur between states that possess similar nuclear configurations and vibra-

tional behaviour.59,60 Since nuclei are much more massive than electrons, electronic transitions 

are much faster than nuclear motions. The nuclei can hardly respond in the respective time 

scale, and thus assumed to be at a fixed nuclear position. As a result, the vibrational level of an 

electron must be instantaneously compatible with the nuclei after excitation and, hence, the  

vibrational states of an electron before and after the transition need to overlap as much as pos-

sible (Figure 7). 

 

Figure 7. Franck Condon principle: Electronic transitions are more likely to occur in between vibrational 

states with high overlap. 
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2.3.3 Cycloadditions 

2.3.3.1 Fundamentals 

Concerted cycloaddition reactions utilise two or more double bonds, which upon reaction with 

each other form cyclic transition states through reorganisation of electrons. As a result, two 

double bonds are broken and reformed into two new σ-bonds, releasing a considerable high 

amount of energy to allow the formation of strained ring molecules. For example, two alkenes, 

which do not necessarily need to be of the same kind, can react with each other upon irradiation 

with light to form a cyclobutane-type structure. Cycloadditions have the advantage of high 

regio- and stereoselectivity providing a versatile tool in chemistry.61,62 Generally, they are char-

acterised based on the number of π-electrons involved in the reaction (e.g. [2+2], [2+4], [4+4], 

etc.) and as depicted in Figure 8 can be written as a continuous rearrangement of electrons. 

 

The possibility for a cycloaddition to occur is often correlated either with the degree of strain 

a reaction introduces into the resulting structure or by entropic restrictions. However, a closer 

look at the linear combination of atomic orbitals (LCAO) for the two participating molecules 

can give further insight into which reactions are favourable or not. In particular, if the molecule 

orbitals are properly aligned and their symmetry matches each other, a reaction is likely to take 

place. A cycloaddition occurs between the frontier molecular orbitals (FMO) of two molecules: 

the highest occupied molecular orbital (HOMO) of one starting compound and the lowest un-

occupied molecular orbital (LUMO) of the other. These two orbitals can react in two different 

ways to each other, i.e. suprafacial or antarafacial (Figure 9). Woodward and Hoffmann in-

troduced a set of rules based on the number of π-electrons involved in a photocycloaddition 

that provide an easy overview, which of the thermal photoreactions are allowed (favourable) 

or forbidden (unfavourable) due to their orbital alignment (Table 2).62,63 

Table 2. Woodward-Hoffmann rules for thermal cycloadditions63 

π-electrons supra / supra supra / antara antara / antara 

4n forbidden allowed forbidden 

4n+2 allowed forbidden allowed 

 

Figure 8. Schematic overview of cycloadditions and their nomenclature. 
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According to the Woodward-Hoffman rules, suprafacial [2+2] cycloadditions are thermally 

forbidden and an antarafacial approach is very unlikely due to a high ring strain. Nonetheless, 

[2+2] cycloadditions can still occur photochemically since under irradiation with light an elec-

tron is excited from the ground state into an excited state, from the HOMO into the LUMO 

(Figure 10). Therefore, the orbital symmetry adjusts in a way that allows the [2+2] cycloaddi-

tion. Thus, the Woodward-Hoffmann rules that would apply for photochemical reactions are 

directly opposite to the thermal rules, allowing reactions that proceed under irradiation with 

light while they would not occur with heat.64 

 

Figure 10. A Change in orbital symmetry after irradiation with light.  Orbital difference of thermal and 

photochemical cycloaddition. 

A Change in Orbital Symmetry due to Excitation

B Orbital Differences for

Thermal and Photochemical Cycloadditions

Figure 9. Pathways in which the orbitals of two molecules can partake in a cycloaddition. 
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2.3.3.2 [2+2] Cycloadditions 

Upon irradiation with light, conjugated alkene derivatives can undergo excitation from the 

ground into the excited singlet state, and after subsequent ISC into the triplet state. As already 

mentioned in the beginning of Chapter 2.3, several different processes compete during the 

following deactivation process, including radiative and non-radiative decay, 

photoisomerisation, yet also photochemical reactions (compare Jablonski diagram, Figure 5). 

In addition to these competing processes, cycloaddition reactions are limited due to their 

bimolecular nature, particularly since a succesfull reaction requires that an excited alkene 

encounters a ground state species to react with. Forming a cyclobutane structure, the parent 

conjugation of the alkene is being destroyed, therefore introducing a shift in its absorption 

spectrum towards lower wavelengths. Indeed, the complexity of photochemical systems has 

been studied in detail for the photodimerisation of coumarin by the groups of Anet,65 

Hammond,66 Schenk67 and Morrison.68,69 In 1989, Lewis proposed that coumarin could undergo 

a cycloaddition from both the excited singlet and triplet state depending on the concentration 

and polarity of the solvent.70 However, the latter has been questioned by more recent studies,71 

suggesting that the reaction generally takes place from coumarin’s excited triplet state enabling 

the enhancement of photochemical reactions and their yields though enlongation of their singlet 

state lifetimes, and thus facilitation ISC to achieve a higher population of the triplet state.70,72,73 

Due to their reversibility, cycloadditions are a highly interesting field with vast application 

opportunities in both synthetic chemistry as well as biology. Especially the ability of cycload-

dition reactions to form and break bonds on-demand is advantageous for tailoring photo-re-

sponsive materials that can be applied in medicine, materials science, consumer goods, and 

many more. In addition, the reversibility can be exploited in the field of gradient materials to 

obtain rewriteable degrees of flexibility, which is the aim of this thesis. Light as a trigger for 

reactions carries many benefits, especially since it offers the ability to remotely trigger reac-

tions in a spatially controlled manner. Due to their unique features, there was a peak of interest 

in cycloadditions in the 1960s, after the discovery that the reversibility of the pyrimidine di-

merisation plays a key role in DNA damage.67,74,75 However, only about 20 years later, the 

focus of this research field has moved from the cycloaddition mechanism to its possible appli-

cations limiting the known photoreactive systems to only few different reactions. The most 

prominent and at the same time single well studied [4+4] cycloaddition is the dimerisation of 

anthracene, while known examples for [2+2] reactions are coumarin, thymine, cinnamic acid, 

stilbene, and their derivates (Figure 11). All these examples form a cyclic structure upon irra-

diation that can be reversed to the starting materials when light of a lower wavelength is ap-

plied. Although photodimerisations have already been employed in metal complexes,76 metal 
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nanoparticles,77 metal-organic frameworks,78 and self-assembled structures of small molecules 

in biological application,79 they are still far from being universally applicable or providing 

ready access to reversible and remotely triggered ligation techniques. In theory, cycloadditions 

fuse the abilities of forming and cleaving bonds simply by switching the colour of light, but 

most so far reported systems feature limited yields or need to be conducted in specifically tai-

lored templates. To overcome these drawbacks, researcher were able to utilise triplet sensitis-

ers, complexation molecules or Lewis acids.80 However, these approaches complicate photore-

active systems and limit them to the very specific usage they were designed for. In addition, 

the reverse reaction of most known photo cycloadditions has attracted considerably less atten-

tion than its dimerisation counterpart. Often, monochromatic light with a wavelength of 

λ = 254 nm was applied without further in-depth investigation of different wavelength ranges 

that could be utilised.81 Light in these UV ranges is not only known to introduce photodamage, 

but the absorption bands of both the cycloaddition and cycloreversion can also overlap, result-

ing in the previously mentioned photostationary state. Without thorough investigation of both 

reaction pathways, the influence of the photostationary state can limit the yield of a reaction 

Figure 11. Overview over the different known reversible cycloadditions including their trigger wave-

lengths. 
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and thus its applicability. Investigation of 7-hydroxycoumarin, for example, demonstrated that 

variable degrees of cycloreversion can be achieved when applying different wavelengths.82 A 

possible limitation to the reversibility of a photo system is how the bonds of the photodimer 

are broken. This is especially important for systems that possess two orthogonal functional 

groups and are therefore unsymmetrical (e.g. cinnamic acid). If the photoreversion does not 

lead to the initial starting materials but rather symmetrical products, these might not be able to 

again undergo a cycloaddition, thus limiting the reversibility the system (refer to Figure 12).83 

To limit photodamage and ensure higher light penetration depths, the wavelengths applied for 

cycloadditions can be red-shifted. Unfortunately, a red-shifted absorption spectrum does not 

necessarily also provide a red-shifted reactivity. To-date, several strategies for bathochromic 

shifts have been developed and also successfully applied (compare Chapter 2.3.3.3). In 2008, 

the research group of Fujimoto was able to employ light at a wavelength of λ = 366 nm to cross-

link trans-3-cyanovinylcarbazole with thymine within 1 s and a yield of 97 % (Figure 13).84 

Most importantly, the cycloreversion was red-shifted to λ = 312 nm, achieving a quantitative 

reaction in only 60 s. To that date, the trigger wavelength for the cycloreversion as well as the 

reaction times and yields were unique but could only be achieved in templating DNA, facili-

tating the reaction. So far, no studies have been published, proving a successful reaction be-

tween 3-cyanovinylcarbazole and thymine in solution, without the prearranging effect of DNA. 

An even further red-shifted example is provided in the work of Claus et al. who synthesised an 

anthracene molecule functionalised with triazole, achieving trigger wavelengths of λ = 410 nm 

for the cycloaddition and λ = 360 nm for the reversion (Figure 13).85 In a similar range falls 

the reaction of styrylpyrene, undergoing the forward reaction at λ = 455 nm, while the back-

wards reaction was triggered with λ = 340 nm (Figure 13).86 Although these three examples 

have been conducted in templated environments (e.g. DNA, surface chemistry), these are prom-

ising examples for cycloadditions that take place upon irradiation with visible light and can 

Figure 12. Reaction pathways after irradiation of asymmetric alkenes with light. Depending on the sym-

metry when the reverse reaction is triggered, the cyclobutane is either transferred back to its asymmetric 

starting material or symmetric analogues that can limit the reversibility of the reaction. λ2 is higher than 

λ3, λ1 can be higher, lower or the same than λ2 and λ3. 
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serve as preliminary steps towards platform tools for forming and breaking bonds in a reversi-

ble fashion for applications in smart and responsive materials such as reprogrammable gradient 

materials. 

 

2.3.3.3 Applications for Photochemical Cycloadditions 

In general, photochemical cycloadditions have a wide range of application. Particularly due to 

their reversibility, they are highly suitable for tailored smart materials for example in medicine, 

energy defence, computing, health care, information and communication, heavy industry, and 

consumer goods.87–92 Most uniquely, they can be employed in applications, in which high pre-

cision is requisite, since they offer high spatial control. The lack of heat, the ability to undergo 

Figure 13. Examples for red-shifted [2+2] cycloadditions: trans-3-cyanovinylcarbazole, anthracene and 

styrylpyrene. All these examples use templating techniques (e.g. DNA, Surface Chemistry). 
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reactions in solid state, and the nature of photons have led researchers to consider light-driven 

reactions as green synthetic chemistry,93 making photo-responsive as well as photo-reversible 

polymeric system highly attractive. In the sections below, a few examples for the successful 

application of light-triggered reactions will be discussed. 

Light-driven cycloadditions in polymer networks have proven their applicability in photoresists 

via selective immobilisation of polymers, achieved through photo-cross-linking on various sub-

strates. Generally, photoresists (Figure 14) have emerged for semiconductor technology in 

modern society. For instance, thymine can effectively be employed in polymer chains not only 

as reversible photoresists,94–97 but also in copolymers that Waner et al. exploited for water sol-

uble photoresist coatings.98,99 By coating various substrates – including flexible plastics – with 

thymine functionalised copolymers, subsequent irradiation with UV light led to cross-linking 

and thus immobilisation for environmentally friendly ‘negative working’ photoresists.99 In a 

similar fashion, Joy et al. have been investigating coumarin as an alternative compound for 

photoresists.100 Incorporating coumarin into polyesters allowed for photo-cross-linking at the 

wavelength of λ = 350 nm. Moreover, irradiation at λ = 254 nm introduced chain de-cross-link-

ing, unfortunately photodamage via chain scission. 

In addition to photoresists, cycloadditions can be used to manufacture photoresponsive hydro-

gels. In detail, hydrogels consist of cross-linked polymer-networks that can absorb and retain 

large amounts of water. For the up-take of water, hydrophilic groups need to be introduced into 

the polymer network that can then hydrate in presence of an aqueous phase. As an example, by 

incorporating anthracene into polymer chains, Chujo et al. were able to transform the chains 

into a polymer network upon irradiation with light above 300 nm.101 Exposed to water, this 

network swelled up to 20 times the weight of the dry gel, while the degree of swelling was 

controlled via the irradiation time as well as the amount of photoresponsive anthracene groups 

per chain. Reversible hydrogels were studied by Yang et al. using thymine as the photoreactive 

moiety.102 Alternating irradiation with 365 and 240 nm could reversibly switch the hydrogel 

from solution to gel and back. 

Substrate

Coating

Photoresist

polymer

1) Photomask

2) UV irradiation

Photomask

UV irradiation

Developement

Figure 14. Schematic representation for the preparation of polymeric photoresist via selective photo-cross-

linking and thus immobilisation for semiconductor technologies. Reprinted and adapted with permission of 

Royal Society of Chemistry, from: G. Kaur, P. Johnston, K. Saito, Polym. Chem., 2014, 5, 2171–2186. Cop-

yright 2019, permission conveyed through Copyright Clearance Center, Inc. 
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When exposing a material to stress, a formation and subsequent propagation of a crack or frac-

ture can be induced. This process involves breaking chemical bonds that would need to be 

restored or replaced in a self-repairing process.103 Thus far, the most exploited techniques for 

self-healing polymers are thermally reversible Diels-Alder reactions, although the application 

of heat is spatially not restrained.104 Light offers the advantage to solely irradiate the damaged 

part of a material, reducing stress on the other parts. By introducing light-responsive moieties, 

self-curing can be induced via the formation of new chemical bonds. In fact, the polymer net-

works formed via dimerisation of photoreactive groups are most likely to break along the dy-

namic chemical bonds in between the photosensitive molecules, particularly due to the fact that 

they are weaker than normal covalent bonds. Therefore, the damaged area includes the mono-

meric form of the photoresponsive groups, facilitating the curing process. The healing process 

can be dramatically improved when the material is photochemically prepared. Prior to irradia-

tion with light to start the repairing process, the material is locally irradiated with light of a 

shorter wavelength for further de-cross-linking the material, hence the mobility of the chains is 

increased yielding in a more efficient healing.104 As an example, Zhang et al. tethered anthra-

cene as a chromophore to polyurethane networks.105 The material was fractured using either 

mechanical force or UV irradiation at λ = 254 nm. Afterwards, the material could be repaired 

not only by irradiation with 350 nm but also under exposure to sunlight (Figure 15). 

 

Figure 15. Upon irradiation with light, self-healable material through the usage of coumarin-functionalised 

polymer chain. Reprinted and adapted with permission of Royal Society of Chemistry, from: G. Kaur, P. 

Johnston, K. Saito, Polym. Chem., 2014, 5, 2171–2186. Copyright 2019, permission conveyed through Cop-

yright Clearance Center, Inc. 

Photochemically reversible reactions can be used as nanocarriers and enable the instant release 

of a molecule or drug on-demand. Micelles can be formed due to hydrophilic and hydrophobic 

phase separations forming nanoscopic supramolecular core/shell structures. Photochemistry al-

lows to stabilise these nanostructures and, compared to other methodologies, has the advantage 

to be non-toxic, economical and by-product as well as catalyst free. By integrating thymine 

into a block copolymer, Saito et al. were able to photochemically stabilise preformed micelles 

via light-triggered cross-linking.106 Subsequent testing with two different drugs demonstrated 

that the rate for their release can be controlled by the degree of thymine dimerisation through 

light. 
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Another type of nanocarriers are nanogels that are constructed from cross-linked hydrogel na-

noparticles.107 Due to their internally cross-linked structure, they are highly dispersible in aque-

ous solutions and have attracted interest as materials that can fill the size gap between polymers 

and macroscopic hydrogels.108,109 The particular size of nanogels is of significance to research-

ers because it is comparable to viruses or common biomacromolecules such as proteins, while 

having advantageous properties like swellability, large cavities for encapsulation, or inclusion 

of various different responsive groups at once. Hence, nanogels are suitable for manifold bio-

medical applications including drug delivery, diagnostics, antivirals, or embolic therapies.110 

Pioneers in the field of photoresponsive nanogels are Ji et al., mainly focusing on coumarin as 

the chromophore.111,112 

A field that with has not yet received much attention but could prove highly promising for the 

development of recyclable or light-degradable materials are linear reversible polymers. Possi-

ble synthesis routes in this field are either the polymerisation of difunctionalised monomers, 

+ ++ + +

+

+++

++++

A

B

C

Figure 16. Photo-reversible linear polymers: A Photopolymerisation of difuntionalised monomers. 

B Photopolymerisation of difunctionalised macromonomers. C Polymerisation of monomer units containg 

already dimerised chromophores. Reprinted and adapted with permission of Royal Society of Chemistry, 

from: G. Kaur, P. Johnston, K. Saito, Polym. Chem., 2014, 5, 2171–2186. Copyright 2019, permission con-

veyed through Copyright Clearance Center, Inc. 
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difunctionalised macromonomers (in detail, polymers with two chromophore end groups) or 

the synthesis of polymers that contain pre-formed cyclobutane structures in form of reversible 

dimerised photo-groups (Figure 16). However, these approaches proved to be challenging not 

only in terms of dimerisation yield, but also reversibility and molecular weight.113,114  

As shown in the current Chapter, photochemically triggered cycloadditions hold vast opportu-

nities and manifold applications. Incorporation of chromophores into polymers opens interest-

ing pathways to specifically tailored on-demand architectures and materials. 

2.3.4 Bathochromic Shifts 

Reactions that are stimulated by light most often occur in the wavelength regimes of UV light, 

which is a major disadvantage towards any application, particularly biomedical ones. The high 

energy irradiation is resulting in photodamage and many compounds, solvents, or biological 

systems are unstable when irradiated with short wavelengths.115 Furthermore, short wavelength 

irradiation is incompatible if high penetration depths into solid matter or solutions are re-

quired.116 To overcome drawbacks and limitations of UV light, current research efforts are di-

rected to shifting photoreactive systems to higher wavelengths, so reactions can be triggered 

with visible light or possibly in the near infrared range. Different strategies exist to obtain sys-

tems that can be triggered with low energy light. For instance. catalysts can be added to promote 

photochemical reaction systems, including the important example of visible light photoredox 

catalysis, allowing for trigger wavelengths above 500 nm.117–120 Additive-free photoreactions 

are still far from being accessible in these wavelength regimes, nevertheless, catalysts can in-

troduce further complications and limitations into photochemical system, especially if they 

cannot be removed from the produced material.121–123 

One additive-free approach is the utilisation of two photon absorption, which has been made 

possible by the development of high intensity laser systems. Due to the absorption of two pho-

tons and therefore energy potions, wavelengths far into the visible light and early IR regimes 

are accessible. In addition, experimental setups of two photon lasers allow for high spatial con-

trol since the reaction takes place in the laser focus (called voxel) only instead of in the complete 

light beam.124–127 However, the requirement of a specialised laser system with high intensities 

is rather limiting to the usability of two photon processes. 

A more broadly applicable strategy is the additive-free process, enabled by a bathochromic 

shift in its absorption spectrum. Elevating the trigger to a higher wavelength is often referred 

to as ‘red-shifting’ a photochemical system. Strategies that to-date have been explored for this 

concept are the expansion of the aromatic system of the photoactive moiety, exchanging carbon 
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atoms with hetero atoms (i.e. oxygen, sulphur or nitrogen) as well as the introduction of further 

electron-drawing or -pushing substitutes.128,129 Most importantly, the absorption spectrum and 

photoreactivity of a molecule do not need to align, which requires precise evaluation of a photo-

chemical system and its modification to gain information about achieved bathochromic shifts. 

The discrepancy of absorption and reactivity will be further discussed later in this Chapter as 

well as Chapter 3 of this thesis. 

Extending the conjugated system of a molecule has proven to achieve acceptable results in red-

shifting so far. Often, pyrene is utilised since it is a well-studied system featuring an absorption 

band with λmax = 340 nm reaching up to a wavelength of 350 nm.130 In addition, pyrene has 

been readily applied in photochemical system, shifting trigger wavelengths into the visible light 

range above 400 nm. Examples for successful red-shifts are shown in Figure 17 and include 

tetrazoles, which are usually triggered at wavelengths from 300 – 320 nm.131 Via attachment 

of pyrene, the trigger wavelength is shifted by 100 nm, to 410 – 420 nm, allowing pyrene aryl 

tetrazole (PAT) to readily react with nucleophiles such as double bonds or carboxylic acids.132 

Nevertheless, pyrene functionalisation is not the only known strategy to induce a bathochromic 

shift for tetrazole since functionalisation with oligothiophenes enabled a similar wavelength 

(λ = 405 nm).133 Other molecules that could be red-shifted into the visible light range through 

attachment of pyrene are phenacyl sulfides (shift from λmax = 350 nm to λ = 410 – 420 nm),134 

which can undergo a Norrish Type II rearrangement and subsequent reaction with different 

enes, and pyrenyl-2H-azirines (shift from λmax = 254 nm to λ = 410 – 420 nm),129 that enable 

reactions with electron deficient double bonds within minutes. 

Another example, in which extension of the conjugated system can induce a red-shift, is an-

thracene. Usually reversibly undergoing [4+4] cycloadditions in the UV range (dimerisation: 

λ > 300 nm, typically 365 nm; dissociation: λ < 300 nm, typically 254 nm), anthracene can be 

functionalised with a benzyl triazole moiety yielding a photochemical molecule, that can react 

upon irradiation with broad emission visible light lamps (400 – 500 nm).135 

While there are readily available examples of red-shifted reaction system, the full potential of 

photoreactive systems towards visible light has not yet been exploited. Often chromophores are 

irradiated with broad band lamps that feature a maximum at the same wavelength that repre-

sents the highest absorption of the photocompound. As already discussed above in the current 

Chapter, the absorption and photoreactivity of a molecule are not necessarily congruent, there-

fore choosing a higher trigger wavelength (although it features a lower absorption maximum) 

could already be possible without changing the molecule itself. To assess optimal conditions 
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for photo reactions, it is necessary to employ monochromatic light sources and irradiate a sam-

ple with the same number of photons at different wavelengths. Analysis of the photochemical 

yield with regard to the irradiation wavelength results in an action plot, allowing to optimise 

the efficiency for light triggered reactions in comparison to their UV/Vis spectra. Examples for 

the analysis of photochemical reactions via action plots are oxime based photoinitiators, 

o-quinodimethanes (‘photoenol’), and tetrazoles.136,137 Irradiating the oxime based photo initi-

ators with light leads to their fragmentation, allowing for a subsequent radical polymerisation. 

While the highest absorbance is around 330 nm, the highest conversion was detected at 405 nm, 

clearly showing the discrepancy of absorption spectra and reaction efficiencies. o-Methyl benz-

aldehydes proved to feature a similar but less pronounced feature, with significant tailing to 

longer wavelengths, while the amount of conversion for tetrazoles adhered closely to their ab-

sorbance with a second additional red-shifted conversion maximum. In conclusion, it is impos-

sible to reliably predict photochemical conversion solely based on UV/Vis spectra, and each 

light-induced system needs to be closely evaluated with regard to its reactivity. 

2.3.5 Wavelength-Orthogonality 

In industry, photo-cured materials are already being widely employed in applications like coat-

ings, displays or dentals materials.138–140 The advances that have already been achieved in red-

shifting photochemical reactions have opened new pathways for the control of multi-responsive 

materials that had not yet been possible. The opportunity to alter material properties by simply 

switching the colour of light is highly promising and has fuelled recent research into the matter 

of wavelength-orthogonality (λ-orthogonality). For a system to be fully λ-orthogonal, a material 

Figure 17. Examples for chromophores that were red-shifted via extension of the conjugated system. 
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needs to incorporate two or more different reactive moieties that each respond to a specific 

different wavelength. This concept has proven to be very challenging since in the past most 

chromophores reacted at the same wavelengths in the UV-A regimes and only few orthogonal 

examples are known in literature to either selectively form141 or cleave142 specific covalent 

bonds by choice of the irradiation wavelength. Even though researchers have recently been able 

to push photochemical systems into the visible light range, it has still proven difficult to achieve 

complete λ-orthogonality. Due to the fact that most visible light responsive molecules still re-

spond to light in the UV range, only a sequence-dependent reaction procedure can be estab-

lished. Specifically, the red-shifted photoreaction must be completely triggered first before the 

next chromophore can react. Commencing the irradiation with the lower wavelength would at 

least partially trigger both chromophores without featuring orthogonality (Figure 18). 

A possible approach to sequence independent λ-orthogonality is to further separate the absorp-

tion bands of the employed chromophores and thus reduce their spectral overlap (Figure 18 A). 

Aiming on improving photo switches, the group of Read de Alaniz was able to engineer various 

donor-acceptor Stenhouse products with sufficient separation of their absorption bands, allow-

ing to alter films with regard to their colour through sequence-independent cyclisations.143 Fol-

lowing a similar approach, Feringa and co-workers were able to combine a Stenhouse product 

with azobenzene.144 The resulting overlap of the absorption bands was sufficiently small to 

allow for complete sequence independency unless shorter wavelengths were utilised, partially 

triggering both reactions. A drawback to the approach of Feringa is that covalently linking the 

two chromophoric moieties led to energy transfer in between them, completely disabling the 

previously achieved orthogonality. 

An alternative strategy to the reduction of spectral overlap is the exploitation of reversible cy-

cloadditions, which have been thoroughly explored in Chapter 2.3.3.2. Through irradiation in 

lower wavelength regimes, cycloreversion is induced (Figure 18 C). Generally, this can be 

used to split bonds that have been formed under irradiation of longer wavelengths. However, 

if the cycloaddition has not been triggered before, the molecule remains inactive with short 

wavelengths, not undergoing any reactions. Fusing this inactivity with another photoreactive 

group, can allow for a wavelength-orthogonal pathway. Thus, to achieve full λ-orthogonality, 

an irreversible photoreaction with a rather low trigger wavelength can be combined with a re-

versible cycloaddition. When irradiating such a mixture with the higher of two excitation wave-

lengths, only the reversible reaction forms new bonds, while the irreversible molecule does not 

absorb any light and stays inactive. Under irradiation with the lower wavelength, however, the 

irreversible reaction is induced exclusively since the reaction of the other system is suppressed 
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due to its reversibility and triggered cycloreversion. This idea has been an underpinning con-

cept of this thesis and not yet been achieved when this research project begun. However, in-

line with the concept of this thesis, there has recently been a surge in interest in the field of full 

λ-orthogonality. Based on the results presented in Chapter 3, Frisch et al. combined styrylpy-

rene with anthracene to achieve a wavelength-orthogonal system in which not only the reac-
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Figure 18. Different pathways and strategies to λ-orthogonality: A Minimal spectral overlap allows for 

independent triggering of two different photoreactive moieties. B Due to spectral overlap, the two reactions 

only feature sequence dependent orthogonality. C Reversible photochemical reactions allow for complete 

orthogonality since the cycloreversion of reaction 2 renders the photochemical group inactive when light of 

the wavelength λ1 is used. Reprinted and adapted with permission of John Wiley and Sons, from: H. Frisch, 

D. E. Marschner, A. S. Goldmann, C. Barner-Kowollik, Angew. Chem. Int. Ed., 2018, 57, 2036–2045. Cop-

yright 2019, permission conveyed through Copyright Clearance Center, Inc. 
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tions can be triggered independently, but also subsequently without the limitation to one spe-

cific sequence.145 Indeed, when irradiating the system with 455 nm, the dimerisation of 

styrylpyrene is triggered exclusively. When irradiating with 330 nm, the styrylpyrene is sup-

pressed but anthracene dimerises. In addition, a third wavelength (λ = 410 nm) was introduced 

to trigger both cycloadditions. The third wavelength was necessary for a second subsequent 

ligation step. After dimerisation of styrylpyrene, it is not possible to use 330 nm for the second 

subsequent step since it would trigger both, the dimerisation of anthracene but also the disso-

ciation of styrylpyrene. Whereas utilising 410 nm instead, the anthracene moiety can be trig-

gered without influencing the styrylpyrene dimers. 

Hitherto it has proven impossible to determine photochemical wavelength-dependent reactivi-

ties by simply investigating absorption spectra, considering they represent only the ground state 

of a molecule. Unfortunately, light triggered reactions are much more sophisticated since they 

involve excited states and it remains unknown how efficiently a reaction is triggered per photon 

until a photochemical system is specifically analysed in light of these parameters. Therefore, 

there are indeed a few examples of λ-orthogonal systems that could be triggered independently 

although they also feature a high spectral overlap. In the field of protection group chemistry, 

various different dimethylaminocoumarin-based labile moieties were used, which feature sig-

nificantly different extinction coefficients.146 In fact, the protection group with the smaller ex-

tinction coefficient proved to react much faster. The crucial factor making orthogonal reactions 

with a spectral overlap possible, is the quantum yield: 

𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝑦𝑖𝑒𝑙𝑑 =
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑟𝑒𝑎𝑐𝑡𝑒𝑑

𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑
 

In another attempt, two photon absorption was used to cleave photolabile groups selectively.147 

However, if a certain dose of photons was exceeded both reactions took place simultaneously, 

losing the selectivity of the system. As a result, it is important to not only examine the absorp-

tion spectrum of a compound but also its quantum yield or reactivity at a given wavelength.148 

Therefore, monochromatic light sources are necessary to explore specific single wavelengths 

and to obtain action plots for the photo reactivity of a molecule (compare Chapter 2.3.4). Such 

a tuneable laser system was used in this work and is further described in Chapter 2.4.1. Em-

ploying this laser, our group was able to screen photoreactions for their efficiency at given 

wavelengths, providing insights into the conversion of photoreactive groups in dependence of 

the utilised wavelength and number of photons a sample was irradiated with.134 Such assess-

ments showed that absorption spectra indeed do not necessarily correlate with the reaction ef-

ficiency at a specific wavelength.137 Thus, to achieve perfect photochemical control it is not 



Photochemistry 

33 

only necessary to be able to control spectral overlaps and triggering wavelengths but to thor-

oughly investigate photochemical system with regard to their action plots. 

2.3.6 Photoenol Chemistry 

Since [4 + 2] cycloadditions are favourable in the suprafacial mode with respect to their orbitals 

symmetry and because they result in six-membered rings that do not have the disadvantage of 

ring strain, they are the most common concerted pericyclic reactions. In 1928, [4 + 2] cycload-

ditions have been discovered and described in detail by Diels and Alder and are therefore re-

ferred to as Diels-Alder reactions.62,149 

One particular example for [4+2] cycloadditions is the reaction of photochemically activated 

o-methyl benzaldehydes (o-MBA), which was pioneered by Tchir and Porter.150 The cycload-

dition is a photoinduced reaction, although [4+2] cycloadditions with light are forbidden ac-

cording to Woodward and Hoffmann. However, under excitation with light, o-MBA itself is 

not undergoing the cycloaddition, but rather an enolization product, which can be readily 

trapped by electron poor dienophiles (refer to Figure 19). Due to the light induced enolisation 

process, the molecule is often referred to as ‘photoenol’ allowing photochemically triggered 

access to [4+2] cycloadditions, without the need for elevated temperatures.150,151 

Figure 19. Mechanism of the photoenol cycloaddition.151 
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In detail, under irradiation with light, o-MBA is excited and subsequently proceeds in an H-

abstraction. The thus obtained intermediate can either undergo a rearrangement or a rotation 

step. In case the rotation takes place, the molecule quickly reverts back to the initial o-MBA 

molecule. However, when rearrangement takes place, the activated photoenol structure is ob-

tained that can procced in two different reactions. In the case that two photoenol structures 

encounter each other, self-dimerisation takes places (refer to Figure 20). In presence of dieno-

philes such as fumarates or maleimides, the more dominant reaction pathway is a Diels-Alder 

reaction between the two different species (activated photoenol and dienophile). However, the 

lifetime of the activated structure is highly dependent on the reaction temperature, enabling 

control over the different reaction pathways. Especially in absence of other dienophiles, the 

fact that the activated photoenol is more stable at the lower temperature ranges is facilitating 

the dimerisation reaction. The latter can proceed as both, a [4+2] and a [4+4] cycloaddition 

leading to a complicated mixture of several photoproducts (for details and structures refer to 

Figure 20 and Figure 21).152,153 Due to the versatility of the photoenol reaction and its trigger 

wavelength in the UV-C regime, it was chosen for the wavelength-orthogonal approaches in 

this thesis. Both, the reaction with dienophiles as well as the additive-free self-dimerisation 

were utilised towards cross-linked networks applicable in gradient materials. 

Figure 20. Possible Pathways for the photoenol self-dimerisation. The reaction can proceed either via 

[4+4] or [4+2] cycloaddition. The former can only yield in two different isomers, either head-to-head or head-to-

tail, while the latter can form eight different structure depending on which double bond in the photoenol is taking the 

reaction part of the dienophile (refer to Figure 21).153 
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Figure 21. Isomers formed during the light induced [4+2] self-dimerisation of photoenol.153
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2.4 Laser Systems 

The word LASER describes both a physical effect as well a device able to generate laser beams 

and is an acronym for Light Amplification by Stimulated Emission of Radiation. The first ex-

perimental laser device was demonstrated by Maiman in 1960 and is based on a microwave 

amplifier – maser - that was developed by Townes.154,155 The basic concept of stimulated emis-

sion was indeed already described by Einstein in 1905, who used it to explain Planck’s law. In 

contrast to common light sources, laser beams are highly directional, monochromatic, coherent 

and polarised.156 

Stimulated emission can occur for atoms that possess an electron in an excited state. When this 

atom encounters a photon, the excited state can be stimulated to revert back to the ground state 

via emission of a photon of the same wavelength. Overall, one photon is introduced into the 

system and two identical photons are obtained in this process called gain in laser physics. Both 

of these photons can anew trigger stimulated emission. Thus, the more photons are present in 

a system, the more likely this process, which is the fundamental principle for a laser to work. 

However, to allow stimulated emission, the population of metastable excited states needs to be 

higher than the one of the ground states which is usually not the case. Therefore, a population 

inversion is required, e.g. by employing intense flashes of light to achieve excitation into the 

metastable state in a process called pumping.53 

 

Figure 22. Schematic diagram of a laser device. 

A laser utilises the stimulated emission to combine emitted light of several atoms and achieve 

a planar light wave. Another advantage of lasers over common light sources is that they can 

produce light pulses that can be very short or feature a high energy output. Generally, a laser is 
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Unless stated otherwise, Chapter 2.4 is based on books by Atkins,53 and Eichler.156 
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built of three main components, i.e. pump source, laser medium and optical resonator (Figure 

22).156 

The pump source can be either optical, electrical or chemical and supplies energy to the laser 

medium in which the light amplification is occurring. The optical resonator consists out of two 

parallel mirrors that reflect the photons back and forth through the laser medium, in which the 

light is amplified each time. One of these mirrors if a high reflector mirror that reflects 100 % 

of the light, and the other mirror is a output coupler that is transparent to allow a small amount 

of light – the laser beam – to exit the laser medium.156 

2.4.1 Tuneable Laser Systems 

In general, laser devices have a fixed wavelength. However, specific construction of the laser 

setup allows for tuneable laser systems in which the output wavelength is adjustable. Tuneable 

systems can be achieved from both, a single laser source or the combination of two sources and 

they are mostly based on dye lasers or optical parametric oscillators (OPO).157,158 The differ-

ence is that dye lasers are primary lasers that can be continuously pumped, while OPOs are 

secondary lasers that require a coherent pump source. To achieve tuneability over a wide range 

of wavelengths, OPOs base the optical gain on parametric amplification via oscillation pump-

pulses in a non-linear crystal utilising three photon processes. In the latter, a pump photon is 

converted into two photons with different energies: a ‘signal’ photon and an ‘idler’ photon 

(Esignal > Eidler). The conversion depends on phase-matching conditions, while the energy needs 

to be conserved: 

𝐸𝑝𝑢𝑚𝑝 = 𝐸𝑠𝑖𝑔𝑛𝑎𝑙 + 𝐸𝑖𝑑𝑙𝑒𝑟 

In the tuneable system employed in the current thesis (Figure 23), a Nd:YAG laser was com-

bined with an OPO. As a result, the laser is tuneable from 270 – 670 nm providing a mono-

chromatic light source not only in the visible light but also the UV light range. 

Diodes

Nd:YAG OPO
1064 nm

Q-Switch

BBO BBO BBO

532 nm

1064 nm

410 - 670 nm

2ω

532 nm

3ω

355 nm

Attenuator

Laser

Beam

SFG /

SHG

Wavelength Ranges: 1. OPO 410 – 670 nm

2. SFG 295 – 410 nm

3. SHG 270 – 310 nm

Figure 23. Schematic setup of the employed tuneable laser device. 
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The laser medium in the employed laser is based on a transparent yttrium aluminium garnet 

crystal (YAG, Y3Al5O12) that contains neodymium3+ ions (Nd). Coherent pumping of the 

Nd:YAG laser with diodes produces pulses that are delayed and shortened by a Q-switch ena-

bling an extremely high peak power. The emitted laser beam features a wavelength of 1064 nm 

at a frequency of 100 Hz and a pulse-length from 5 to 7 ns. To achieve tuneability, the laser 

beam is frequency doubled (2ω, λ = 532 nm) and subsequently frequency-tripled (3ω, 

λ = 355 nm) using non-linear β-barium-borate (BBO) crystals. Since the OPO is pumped with 

the 3ω wavelength, the other two wavelengths are reflected and thus blocked out of the laser 

beam using mirrors. The OPO has an output range from 410 – 670 nm and, due to non-linear 

processes, cannot be tuned into the UV range. This wavelength regime is obtained via an addi-

tional non-linear BBO crystal that allows either frequency-doubling (second harmonic genera-

tion, SHG) or -mixing ( sum frequency generation, SFG) processes. For the frequency mixing, 

the previously reflected 1064 nm laser beam is reintroduced into the system. The last part of 

the laser setup is an attenuator which amplifies the laser beam while also separating the two 

regions (UV and Vis light) from each other. 
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Styrylpyrene 

Photochemistry offers vast opportunities in modern technology. Features such as unprece-

dented temporal and spatial control have inspired researchers for decades to investigate light 

induced reactions and their possible applications. From medicine to highly specialised materi-

als, photochemical reactions provide an attractive toolbox that has already shown its utility 

without having yet reached its full potential. An especially interesting feature of light induced 

reactions is their control over chemical selectivity via wavelength and intensity. Smart materi-

als in particular can benefit from light induced alterations, due to their precision and even more 

appealing, reversibility. Using light to create and break bonds on-demand provides access to 

reprogrammable features by simply choosing disparate colours of light. Material scientists are 

often inspired by nature with its unprecedented levels of precision and control. An important 

topic in the field of materials science are gradient materials since they allow to greatly enhance 

the performance of a material with regard to flexibility, ductility or strength by connecting 

different material areas to each other via a gradual change instead of fusing two vastly different 

materials, introducing a breaking point with high materials strain or stress. However, especially 

in gradient materials, modern technology is still far from the ideals of perfect precision and 

control mainly due to technical limitations in synthesis and analytics. Most often, sandwich-

type structures are employed even though they can still contain undesired breaking points. A 

more promising approach for stress reduction is the use of lateral gradient materials, especially 

if they feature reversibility and hence reprogrammability. Understanding the basic principles 

   

The results and graphs in Chapter 3 are reprinted and adapted with permission from: 

D. E. Marschner, H. Frisch, J. T. Offenloch, B. T. Tuten, C. R. Becer, A. Walther, A. S. Goldmann, P. Tzvetkova, C. 

Barner-Kowollik, Macromolecules, 2018, 51, 3802–3807. Copyright 2018 American Chemical Society 
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underpinning photochemical systems is critical to achieve perfect control and, therefore, a main 

motivation of the current thesis. Particularly, photochemical cycloadditions hold significant 

potential to be employed in reversible systems. However, most known photochemical systems 

are triggered with UV light, which can damage the surrounding material, solvent or even the 

chromophore itself, making molecules that can react upon visible light highly attractive. One 

of the few examples for visible light chromophores is styrylpyrene with its reversible photo-

chemical [2+2] cycloaddition, which possesses unique wavelengths to initiate bond forming 

and cleaving processes but had not been thoroughly investigated in the past. Thus, the present 

Chapter will provide an in-depth analysis of styrylpyrene and its applicability in polymer and 

materials science. 
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3.1 History 

 

Figure 24. Dimerisation (λ = 405 nm) and dissociation (λ ≤ 366 nm) of styrylpyrene as described by Ko-

valenko et al. in 1980. 

The [2+2] cycloaddition of styrylpyrene with visible light (Figure 24) was first incidentally 

observed by Kovalenko et al. in 1980, who investigated its isomerisation behaviour.159,160 Sur-

prisingly, and despite its unique features, the dimerisation reaction was no topic of further re-

search until its rediscovery by Doi et al. more than 30 years later.86 Via the exchange of one 

phenyl ring with pyrene, the conjugated system of styrylpyrene is extended and the trigger 

wavelengths for both, the cycloaddition and cycloreversion significantly red-shifted in com-

parison to stilbene. In their study, Doi et al. incorporated styrylpyrene into DNA strands as 

cross-linking sites, allowing dimerisation in the presence of visible light at λ = 455 nm (stil-

bene: > 300 nm) and subsequent dissociation upon irradiation with 340 nm (stilbene: 

< 260 nm). Especially the cycloreversion wavelength is of interest since it allows to break 

bonds with UV-A light instead of the common UV-C light at λ = 254 nm, which is employed 

for most other reversible systems. The red-shift of close to 100 nm enables access to repro-

grammable materials without the high amount of damage that is introduced to biological tissue, 

materials, solvents and chromophores when using short wavelengths. However, currently, such 

drastic changes in trigger wavelengths have only been possible through templating environ-

ments including DNA, while in free solution, these reactions are often suppressed. Most im-

portantly, investigations into the possible isomeric structures produced during the photoreac-

tion, or the most suitable irradiation conditions, have not been conducted. Therefore, funda-

mental reactivity studies of styrylpyrene are subject of the current Chapter, possibly paving the 

way to new reprogrammable gradient materials. 
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3.2 Stereochemistry 

Prior to the detailed wavelength-dependent investigations of trans-(p-hydroxy)styrylpyrene 

(StyP, 1), it was necessary to establish which photoproducts are formed during irradiation of 1. 

Therefore, a solution of StyP in acetonitrile was irradiated with an LED lamp (λmax = 444 nm, 

a complete emission spectrum can be found in Figure 65) under inert atmosphere and thor-

oughly investigated via 1H-NMR spectroscopy. Careful separation of the photoproducts via 

preparative thin layer chromatography (TLC) led to five distinguishable species. Further char-

acterisation revealed that only three of these are derived from photoproducts, while one species 

represents the starting materials trans-StyP, and the last belongs to its cis-isomer. The cis-struc-

ture is obtained via photodimerisation that can be triggered over a wide range of wavelengths, 

however, utilisation of irradiation at λ = 254 nm only introduces the isomerisation reaction 

without the formation of the three photo dimers (Figure 25). Characterisation of cis-1 via 1H-

NMR reveals distinct new resonances that can be associated with the olefin proton of styrylpy-

rene (δ = 7.20 ppm). 

   

The NMR analysis for the different photoproducts described in Chapter 3.2 was conducted in cooperation with Dr. P. 

Tzvetkova from the group of Prof. Dr. B. Luy at the KIT. 
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Figure 25. Enlarged 1H-NMR (400 MHz, CD3CN) spectra showing the isomerisation of StyP 1 under irra-

diation with UV-C light (λmax = 254 nm; solvent: deuterated acetonitrile) showing distinct new resonances 

for the cis-isomer of 1 including one representing a proton of the double bond (resonance 17, 7.20 ppm, 

J = 12.1 Hz). For a complete spectrum refer to Appendix Figure 94. Copyright 2018 American Chemical 

Society. 
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After the assignment of two photoproduct species to trans- and cis-StyP, three spectra (Figure 

26) needed to be further analysed and related to their respective dimer structures. However, 

from a theoretical standpoint, there are twelve different pathways for the dimerisation of 1 

according to which isomer the reaction proceeds from as well as constitutional isomerism. Two 

of these twelve isomers are stereochemically the same, resulting in eleven possible cyclobutane 

configurations (Figure 27). Thus, for the assignment of the obtained three products, all theo-

retically possible structures (2a – l, Table 7 on page 146) were systematically listed and named 

according to: 

1. Stereoisomerism (trans / cis) 

a. of the excited molecule that is attacking 

b. the molecule in the ground state. 

2. Constitutional isomerism (head-to-tail (ht) or head-to-head (hh)) 

3. The position of the functional group of the ground state molecule in relation to the 

pyrenyl group of the excited molecule after addition (anti / syn). 
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Figure 26. Enlarged 1H-NMR (600 MHz, CD3CN) spectra showing the three different and separated photo-

products (PP I - III) that are obtained under irradiation of 1 (λmax = 444 nm, in deuterated acetonitrile), 

including enlarged spectra showing the distinct peak pattern for the cyclobutane resonances (red boxes). 

For complete spectra refer to Appendix Section Styrylpyrene. Copyright 2018 American Chemical Society. 



Styrylpyrene 

44 

 

Figure 27. Theoretically possible products obtained via the cycloaddition of styrylpyrene 1 (a more detailed 

description can be found in Table 7 on page 146, *stereochemically identical but possible via different di-

merisation approaches). Copyright 2018 American Chemical Society. 

Close examination of the 1H-NMR spectra for the three unknown photoproducts (PP I – III) 

reveals two distinct coupling patterns for the cyclobutane ring protons (Figure 26). These are 

derived from different spatial orientations of the proton atoms along the ring and the influence 

of the phenyl and the pyrene substituents on them. The distinct coupling patterns are either an 

unresolved second order multiplet structure (PP I and PP III) or a doublet of doublets (dd, 

J = 10.2 Hz and 7.5 Hz, PP II). Due to the similarity of the eleven different photo dimers, all 

of the model structures needed to be evaluated including an energy optimisation step (molecular 

mechanics force field MMFF946 from the software package Avogadro). The following struc-

tures feature the lowest energies and are most likely to occur (a complete lists can be found in 

Table 7): 

1. tt-ht-a 2a (692.69 kJ mol-1) 

2. tt-hh-s 2d (+2.5 kJ mol-1 difference) 

3. tt-hh-a 2c (+19.6 kJ mol-1) 

4. tc-ht-s 2f (+26.3 kJ mol-1) 

5. tc-hh-s 2h (+49.2 kJ mol-1) 

6. tt-ht-s 2b (+55.5 kJ mol-1) 
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Due to their symmetry, the cycloadducts can be categorised into four main groups: First, two 

fully symmetric photoproducts with alternating top and down orientation of the cyclobutane 

protons (tt-ht-a 2a and tt-hh-a 2c), which are both among the lowest energy products. In addi-

tion, such an alternating pattern causes a doublet peak pattern as observed in PP II. Next, prod-

ucts obtained via cis-cis dimerisation with all protons being above the cyclobutane ring (cc-ht-

s 2j and cc-hh-s 2l). However, structures 2j and 2l do not fit any of the observed peak patterns 

and are energetically unfavoured. In addition, structures that are characterised by three protons 

pointing to one plane of the ring (tc-ht-a 2e, tc-ht-s 2f, tc-hh-a 2g, and tc-hh-s 2h), which, 

however, also do not fit the recorded peak patterns although their energies are more favourable. 

Last, two neighbouring protons – one next to a pyrene group, the other to a phenyl group – both 

pointing into the same direction (tt-ht-s 2b*, tt-hh-s 2d, cc-ht-a 2i*, and cc-hh-a 2k; *2b and 

2i are stereochemically identical). Such a constellation, in which a phenyl neighboured proton 

has two pyrene protons on both sides but facing to different orientations (syn and anti), leads 

to multiplet patterns that inherit strong second order artefacts due to coupling constants that 

have high values yet different orientations, observable for PP I and PP II. 

As a result, symmetrical considerations narrow the possible dimerisation products to two pos-

sibilities (2a and 2c) for PP II in addition to three remaining structures (2b, 2d, and 2k) for 

PP I and PP III. Further differentiation can only be derived via in-depth analysis of 1H- and 

13C-NMR spectra, detailed resonance assignments as well as elaborate evaluation of proton 

proximities via the nuclear Overhauser effect (NOE). Important are the presence of shielding 

and deshielding effects on the chemical shift values for 1H and 13C measurements of the pho-

toproducts when compared to the starting materials trans-styrylpyrene (refer to Appendix Sec-

tion Styrylpyrene). Due to influences of the ring currents of the phenyl and pyrenyl group, the 

chemical shifts in the 13C spectra vary in the range from + 6.76 to – 6.87 ppm. The deshielding 

and shielding effects of the pyrenyl and phenyl carbon chemical shift values in combination 

with their 3D arrangement in geometry optimised structures allows for the final product assign-

ments. The presence of a NOE in between H-15 and H-18 (refer to Appendix Section Styrylpy-

rene) can only occur for the structure tt-ht-a 2a, which can therefore be assigned to PP II. 

Although the structures for PP I and III (2b, 2d, and 2k) feature different constellations for the 

bulky pyrene substituents, 13C chemical shifts and peak pattern are virtually the same, not al-

lowing an unambiguous assignment. However, investigation of the proton proximities that can 

be observed via NOE signals provide the missing details resulting in the final correlation: the 

observed NOE signals (H-18 and H-15, H-8 and H-15, H-8 and H-20/H-24, refer to Appendix 

Section Styrylpyrene) cannot derive from cc-hh-a 2k. As a result, two structures remain (2b, 

2d) that are characterised by different arrangement of the pyrene rings to each other. If the latter 
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are substituent to neighbouring carbon atoms, NOE in between H-8 and H-18 cannot be present, 

while H-8 and H-15 occurs (refer to Appendix Section Styrylpyrene). Thus, PP I can readily 

be assigned to tt-hh-s 2d and consequently PP II to tt-ht-s 2b. In addition, final in-depth com-

parison with the calculated energy models and all observed NOE proximities verify the assign-

ments. Most interestingly, all resulting structures favour trans-trans cycloadditions, aligned 

with findings by Fujimoto et al. for the photochemical reaction in between 3-cyanovinylcarba-

zol and thymine, noting that cycloadditions occur from trans-isomers, while their cis-counter-

parts remains inactive.57 
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Figure 28. Enlarged 1H-NMR spectrum (600 MHz, CD3CN) of the cyclobutane resonances for the photo-

products PP I, PP II, and PP III as well as their assigned structures. Copyright 2018 American Chemical 

Society. 
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3.3 Wavelength-dependent Photon Efficiency  

Analysis 

After having successfully determined which photoproducts are generated during irradiation of 

styrylpyrene 1, comprehensive analyses of the photochemical reaction in relation to wavelength 

and efficiency were conducted. Quantitative investigations for both the cycloaddition and cy-

cloreversion as well as the overlap of both reaction channels are necessary to utilise the light 

induced reaction for further applications. Obtaining detailed information about the most suita-

ble wavelengths for photochemical reactions requires monochromatic light sources such as a 

tuneable laser system (refer to Chapters 2.4.1 and 8.2.4). As a result, action plots of detailed 

wavelength screenings can be acquired as has been pioneered in our group for irreversible re-

action systems (i.e. tetrazole and o-methyl benzadehydes,136 pyreneacyl sulfides,134 or photoin-

itiators137). In the current thesis, the wavelength screenings were further developed into a novel 

concept named Wavelength-dependent Photon Efficiency Analysis (WPEA) in which the pho-

toreactivity of styrylpyrene in solution was mapped to identify its optimal reaction conditions. 

Most importantly, WPEA does not only include a detailed wavelength screening action plot but 

is combined with photon kinetics, analysing the number of photons necessary to obtain maxi-

mum conversion. 

In specific, for the wavelength screening, styrylpyrene is irradiated at different wavelengths, 

however, with a constant photon count. The reaction conversion of each photoexperiment, de-

termined via 1H-NMR analysis, is plotted in an action plot in relation to the reaction wave-

length, resulting in a graph that clearly depicts the most effective wavelength for irradiation 

and allows for comparison with the absorption spectrum of the chromophore. The ideal reaction 

wavelength is subsequently used to obtain photon kinetics, irradiating samples with varying 

numbers of photons. By plotting the reaction conversion vs. the number of photons, an action 

plot is obtained, indicating the number of photons necessary to obtain the highest possible con-

version. Combining wavelength screening and photon kinetics in our novel analysis concept 

WPEA allows to determine the ideal parameters for a photo reaction that can subsequently be 

employed in polymer chemistry or materials science. 

In addition to the wavelength screening, the reaction of 1 was investigated for its reactivity with 

and without the presence of oxygen as well as effects from the laser settings on the samples. 

The present thesis utilised a tuneable laser setup, operating in a pulsed mode with adjustable 

intensities in order to calculate how many photons reach the samples at a specific wavelength 
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per laser pulse (refer to Chapter 8.2.4). As a result, every single irradiation experiment can be 

designed in multiple ways with regard to the ratio of intensity and number of pulses shot at a 

sample. Yet, the overall number of photons deposited into the sample remains identical. Hence, 

when increasing the number of pulses, the energy per pulse needs to be decreased to keep the 

number of photons constant. To rule out that the energy per pulse has an impact on the reactivity 

of styrylpyrene, a set of different experiments was conducted featuring different pulse energies 

but the same number of photons. The dimerisation conversions were plotted, compared to each 

other (Figure 29 A) and are within experimental error identical. Therefore, the energy per pulse 

can be neglected. Kovalenko et al. stated in their study that the dimerisation of StyP can be 

conducted under both, inert as well as atmospheric conditions.159 Consequently, in two sets of 

experiments, styrylpyrene samples were irradiated with identical parameters and conditions but 

one sample under argon atmosphere and the other in presence of oxygen (Figure 29 B). The 

results showed that it is indeed possible to dimerise styrylpyrene under atmospheric conditions. 
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Figure 29. Investigation of the dimerisation of styrylpyrene 1 (10 mM, deuterated acetonitrile, 242 µmol 

photons) in relation to A the energy per pulse (purple: 120 000 pulses, green: 360 000 pulses) and B the 

impact of oxygen in the reaction mixture (purple: argon, green: oxygen) as determined via 1H-NMR analysis. 

Copyright 2018 American Chemical Society. 
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However, the reaction proceeds considerably slower when oxygen is present in the reaction 

mixture during irradiation.  

Having investigated its stereochemistry and surrounding parameters (i.e. pulse energy and at-

mosphere), 1 was irradiated in deuterated acetonitrile (concentration = 10 mM) at a constant 

number of photons (242 µmol) with a monochromatic laser at wavelengths from 310 - 470 nm. 

Each sample was subsequently analysed via NMR to quantify the amount of the five assigned 

species that are present after irradiation. Next, the yield of each photoproduct (2a, 2b and 2d) 

was plotted against the respective irradiation wavelength (Figure 30). The thereby obtained 

three action plots feature traces of similar shapes, however, the amount of 2a was half of 2b 

and 2d for each measured data point. Nevertheless, the similar overall reaction behaviour could 

be due to the fact that all photochemical products are formed from the same trans-styrylpyrene 

1, while the differences in amount might be associated with sterical considerations.  

For further insights, and to obtain the final action plot, the individual graphs were combined 

into one trace depicting the overall reaction yield by irradiation wavelength. As shown in Fig-

ure 31 A (squares), the most suitable wavelength to induce the dimerisation of StyP 1 is at 

λ = 435 nm, for which the highest yield (83 %) at 242 µmol photons is achieved. Comparing 

the wavelength screening with the UV/Vis spectrum of styrylpyrene confirmed that both traces 

are not necessarily congruent to each other. Thus, assuming the photoreactivity of a molecule 

is near impossible (refer to Chapter 2.3.4). Indeed, the highest reactivity for 1 has been ob-

served at a red-shift of close to 60 nm when compared to the point of highest absorbance at 

λmax = 375 nm. In addition, the absorbance of styrylpyrene at its most effective trigger wave-

length is rather low (ε = 388 L mol-1 cm-1). Likely explanations for this wavelength shift are on 

the one hand, the penetration depth of photons, which can travel a longer pathways at lower 

extinctions, hence exciting more molecules (Chapter 2.3.1 Beer-Lambert’s Law) and on the 

other hand – as the UV/Vis spectra only represent molecules in their ground state – the maxi-

mum absorption does not necessarily represent the most effective transitions. Another reason 
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Figure 30. Wavelength screening for the conversion of 1 (10 mM, deuterated acetonitrile) into the three 

different photoproducts (2a, 2b, 2d) upon irradiation with 242 µmol as determined via 1H-NMR analysis. 

Copyright 2018 American Chemical Society. 
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for the red-shifted reactivity may be due to the reversible nature of StyP. Both excitation ranges 

for the cycloaddition and cycloreversion are likely to overlap to some extent, and hence the 

reactions compete, eventually leading to photostationary states. Since the reverse photochemi-

cal reaction proceeds at shorter wavelengths, the overlap should decrease towards longer wave-

lengths, allowing the dimerisation reaction to proceed more efficiently. However, inde-

pendently of the fact if the discrepancy in between absorption and reactivity is caused by a 

combination of the above mentioned reasons (i.e. penetration depth, nature of absorbance spec-

tra, competing reactions) or just one, the result is that the most suitable conditions of a photo-

chemical reaction are impossible to predict without an elaborate analysis as conducted herein. 

After the successful wavelength screening for styrylpyrene 1, the maximum conversion needed 

to be determined. Therefore, photon kinetics via irradiation of StyP at the same conditions as 

the previous set of samples (solvent: deuterated acetonitrile, concentration: 10 mM) yet with 

the fixed wavelength of λ = 435 nm at varying numbers of photons were conducted. The photon 

kinetics were carried out with close to 2000 µmol photons to determine from which point on 

the reaction reaches a plateau or complete conversion (Figure 31 B). As a result, the dimerisa-

tion of 1 can proceed to a yield of around 95 % (for 2a, 2b, and 2d combined), while the re-

maining 5 % consist of a mixture of the cis- and trans-isomer of StyP 1. 

With the dimerisation reaction fully examined, the dissociation reaction was investigated fol-

lowing the same analytical concept. First, the samples were irradiated with 483 µmol of pho-

tons at a wavelength of 435 nm to achieve maximum dimerisation and subsequently submitted 

to photochemical dissociation experiments, either a wavelength screening or the subsequent 

photon kinetics (Figure 32). The former was performed at the same conditions as previously 
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Figure 31. WPEA for the photochemical reaction of styrylpyrene 1 (1 mM, deuterated acetonitrile) consisting 

of (A) the wavelength screening of the dimerisation yield (squares) at a constant number of photons (242 µmol) 

in comparison with the absorbance of 1 ( solid line) and (B) photon kinetics at the most efficient wavelength of 

λ = 435 nm. Yields are resulting from 1H-NMR analysis subsequent to irradiation. Copyright 2018 American 

Chemical Society. 
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for the dimerisation with regard to solvent, concentration and number of photons (242 µmol), 

yet at wavelengths below λ = 435 nm (420 – 310 nm). Intriguingly, the dissociation reaction 

does not compete with the dimerisation at wavelengths above 400 nm, which – as mentioned 

above – can be one of the reasons why the cycloaddition is most effective at λ = 435 nm. The 

cycloreversion is triggered starting from around 390 nm with 11 % conversion to the mono-

meric forms while it proceeds most efficient at λ = 330 nm (Figure 32 A). Comparing the di-

merisation and dissociation reactions, it is notable that both reactions have their maximum con-

version at a wavelength which does not trigger the opposite reaction, providing excellent wave-

length orthogonality between both processes. At the time these results were published, the con-

ditions for the styrylpyrene system were the mildest in literature, providing excellent opportu-

nities to reversibly alter material properties. 

Having established the most efficient cycloreversion wavelength, photon kinetics were carried 

out to investigate the extent of the reversibility of styrylpyrene. As shown in Figure 32 B, the 

dissociation reaction (of 2a, 2b and 2d) seems to possess approximately the same speed as the 

dimerisation reaction, leading to a photostationary state with a maximum dissociation yield of 

85 % under irradiation with close to 500 µmol of photons. 

In conclusion, styrylpyrene was thoroughly examined as a model molecule applying the novel 

analysis concept WPEA to determine its most suitable reaction conditions. While the dimeri-

sation reaction proceeds most efficiently at λ = 435 nm with around 500 µmol of photons, the 

dissociation reaction should be triggered at a wavelength of 330 nm using approximately the 

same number of photons. Furthermore, inert conditions are the most suitable for the reaction of 
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Figure 32. WPEA for the dimerisation (blue) and dissociation (red) of styrylpyrene 1 (1 mM, deuterated 

acetonitrile) consisting of (A) the wavelength screening of the dimerisation/dissociation yield (squares) at a 

constant number of photons (242 µmol) in comparison with the absorbance of 1 (blue solid line) and the 

photoproduct mixture (red solid line), and (B) photon kinetics at the most efficient wavelengths of λ = 435 nm 

(blue squares) and λ = 330 nm (red squares). Yields are resulting from 1H-NMR analysis subsequent to ir-

radiation. Copyright 2018 American Chemical Society. 
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styrylpyrene 1, whereas the reaction can also proceed under atmospheric conditions, albeit at a 

slower rate. 
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3.4 Application and Outlook 

 

Figure 33. Concept of block-copolymer formation via reversible photochemical ligation. 

Having successfully conducted the WPEA for styrylpyrene as a model molecule in solution, 

the optimal reaction conditions were applied to a photochemical and reversible polymer liga-

tion system (Figure 33). For first polymer-based tests, a polymer with styrylpyrene as an end 

group was chosen in order to allow for in-depth analysis in a well-defined system. In detail, 

PEG-amine was coupled with StyP 1 in an amidation reaction to yield 3 and subsequently irra-

diated with visible and UV light in an alternating fashion to reversibly achieve a covalent block-

copolymer ligation (Figure 34). The irradiation parameters were based on the previously de-

termined conditions, i.e. irradiation at λ = 435 nm (visible) or λ = 330 nm (UV) with 483 µmol 

of photons (polymer concentration: 10 mM). The results of the polymer ligation were in excel-

lent agreement with the previously studied model molecule and limited by a photostationary 

state with a minimal amount (ca. 6 %) of non-ligated polymer 3 remaining. In addition, small 

traces of non-ligated PEG-amine could have been present as it has been reported in literature 

for other polymer studies.161 In addition, similar to 1 in solution, the dissociation of the thus 

formed block-copolymer could not be reverted back completely. Overall, three consecutive 

cycles of subsequent dimerisation and dissociation were conducted and only small amounts of 

photodamage could be detected, possibly because of asymmetric cleavage, unreactive amounts 
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Figure 34. Reversible polymer ligation via alternating irradiation of styrylpyrene-functional PEG (10 mM) 

with visible light (λ = 435 nm, 483 µmol photons) and UV light (λ = 330 nm, 483 µmol photons) as well as 

subsequent analysis via PSS THF SEC (RI detector). Copyright 2018 American Chemical Society. 
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of the cis-isomer of styrylpyrene or intramolecular rearrangements (Figure 35). The latter 

would occur as a cyclisation reaction from the cis-isomer to form a larger conjugated system 

as is known in literature for the similar structure motive stilbene.162 Since the employment and 

availability of tuneable monochromatic light systems, such as the current tuneable laser system, 

is limited to few research groups, the polymer ligation was also tested with commonly available 

light sources (λmax = 313 nm / 441 nm) emitting at wavelengths close to the ideal WPEA pa-

rameters. As shown in Figure 36 , the results for irradiation with broad band lamps are in 

excellent agreement with the ligation under laser irradiation. 

In conclusion, in-depth investigations of styrylpyrene 1 have been conducted giving detailed 

insights into its photochemical behaviour and most efficient light-induced reaction conditions. 

The results have been successfully applied to a polymer ligation system including the use of 

readily available light sources proving the versatility of styrylpyrene as a reversible platform 

Figure 35. Reaction cycles conducted for the reversible photochemical polymer ligation of 3. Copyright 

2018 American Chemical Society. 
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Figure 36. Irradiation of styrylpyrene-functional PEG (11.3 mg in 0.5 mL DMAc) with common light 

sources: The dimerisation was conducted at λmax = 441 nm (11 h) and the dissociation at λmax = 313 nm 

(11 h), as evidenced via DMAc SEC (RI detector). Copyright 2018 American Chemical Society. 
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with potential for applications in the fields of molecular biology, self-healing or reprogramma-

ble materials, as well as orthogonal photoresists. 

In fact, in parallel to the work published with the results of the current Chapter as well as using 

these findings as a base for further investigations, several different studies have been published 

so far and will be shortly described in the following paragraphs to highlight the versatility of 

styrylpyrene. 

Simultaneously – but independently – to the investigations of Chapter 3, the group of Forsythe 

investigated the suitability of styrylpyrene for reversible and cytocompatible hydrogels.161 

Tethering styrylpyrene to a PEG-amine, they achieved reversible block-copolymer formation 

under irradiation (λ = 340 nm / 400-500 nm) in water for six irradiation cycles with minimal 

photobleaching or photochemical oxidation. By exchanging the linear PEG with a 4-arm PEG, 

they were able to synthesise photolabile hydrogels that proved to be fully soluble in water and 

could be cross-linked before being analysed via rheology. As expected, the gelation of the 

styrylpyrene films can be tuned by simply changing the intensity of the light used for irradia-

tion. In a first attempt, they used the reversibility of the styrylpyrene system to irradiate a frac-

tured hydrogel with UV and subsequently visible light, allowing for self-healing of the dam-

aged material. However, irradiation with only UV or visible light did not induce healing, sug-

gesting that the material needs to be further de-cross-linked to achieve better mobility for the 

styrylpyrene groups before self-healing can be conducted. In addition, styrylpyrene materials 

proved to be nontoxic and suitable for cell loading in materials engineering. 

In another study from our group conducted by Frisch et al., styrylpyrene was employed for the 

formation of single chain nanoparticles.163 Coupling 1 to a methacrylate to obtain a monomer 

that could be copolymerised with methyl methacrylate via RAFT, the resulting polymers could 

be intramolecularly folded not only upon irradiation with visible (λ = 445 nm), but also ambient 

light. Overall, the reactivity of StyP was significantly enhanced in comparison to the small 

molecule study presented in the current thesis. The improvements in reaction rate and wave-

lengths can be attributed to the macromolecular confinement and preorganisation, hence, the 

high local concentrations and proximities of styrylpyrene molecules. 

In addition, Frisch et al. further utilised the reversible dimerisation reaction of styrylpyrene in 

combination with the [4+4] cycloaddition of anthracenes to obtain a wavelength-orthogonal 

system simply by irradiation with three different wavelengths 

(λ = 330 nm / 410 nm / 455 nm).164 Furthermore, styrylpyrene can be triggered not only by em-

ploying light sources such as LEDs and lasers but also through chemiluminescence as shown 

in a recent study from Kockler et al. by employing the same reaction mixture that is used in 

common glow sticks to emit light and act as a trigger for the dimerisation of 1.165 
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Due to the versatility of styrylpyrene and its unique trigger wavelengths for the dimerisation as 

well as dissociation reaction, and having established that 1 can react in materials as well, StyP 

was part of further investigations that were conducted in the course of this thesis. Overall, the 

system was investigated as a platform technology towards reprogrammable gradient materials 

that can be triggered in a wavelength-orthogonal fashion. The dimerisation reaction of styrylpy-

rene for network formations can be exploited to cross-link samples using two main approaches 

(Figure 37): 

1. Side-functional polymer chains 

By introducing styrylpyrene as a side group in polymer chains, these can be cross-

linked upon irradiation with light. While this approach has the advantage of only re-

quiring one type of polymer without the addition of other moieties, it may be difficult 

to introduce the styrylpyrene as a polymer side-group. 

2. Multifunctional cross-linking molecules 

Styrylpyrene can be employed as a cross-linker molecule that photochemically reacts 

with functional polymer chains. To achieve such a system, it is necessary to have a 

mixture of polymer and cross-linker, however, this strategy allows for simpler polymer 

synthesis in combination with the possibility to readily alter the cross-linking molecule, 

for example by going from a linear di-functional chain to star-shaped molecules. In 

addition, the small molecule can contain more than one chromophore to introduce fur-

ther functionalities. 

Importantly, both approaches allow for ready access to alter the cross-linking density of the 

synthesised materials simply by changing the irradiation time or intensity as well as the density 

of functional groups. In the course of this thesis both strategies have been investigated within 

Chapter 4 focusing on approach 1, while Chapter 5 further exploits the applicability of path-

way 2. 
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Figure 37. Overview over the two approaches that allow for reversible network formation. 
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Styrylpyrene meets  

o-Methyl Benzaldehyde 

4.1 The Challenge of Wavelength-Orthogonality 

In materials science, curing processes initiated by light come with vast benefits, such as high 

spatial precision (e.g. for 3D printing) or the ability to instantly start and stop processes, simply 

by turning the light source on or off. Indeed, in modern technology, photocuring is a funda-

mental part for applications including automotive coatings, high-performance dental materials, 

or display technologies.138–140 However, most known photoreactions require trigger wave-

lengths in the UV light regime, possibly introducing degradation and damage into the irradiated 

material (refer to Chapter 2.3). Thus, bathochromic shifts have been thoroughly investigated to 

push the required activation wavelengths into the realm of visible light and potentially towards 

IR irradiation. Such red-shifts have already been successfully applied for example for photoin-

itiators,166 with styrylpyrene representing a reversible photochemical reaction system that em-

ploys irradiation in the mildest known wavelength regimes. However, for the generation of 

light-adaptive materials it is necessary to thoroughly investigate and understand photochemical 

 

  

The investigations in Chapter 4 have been conducted in a cooperation between D. E. Marschner (small molecule study 

and photochemical investigations), S. Bialas (QUT, resist design and cross-linking) and L. Michalek (QUT, AFM / XPS 

measurements). For completeness, selected data produced by Bialas and Michalek are included here. More detailed in-

formation can be found in their respective theses. The results and graphs in Chapter 4 are reprinted and adapted with 

permission from: 

D. E. Marschner,# S. Bialas,# L. Michalek,# T. Krappitz, M. Wegener, J. Blinco, E. Blasco, H. Frisch, C. Barner‐Kowollik, 

Adv. Mater., 2019, 1807288. Copyright 2019 John Wiley and Sons 

# These authors contributed equally. 
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systems. As demonstrated in the previous Chapter, the UV/Vis spectrum of a chromophore 

does not need to be congruent with its photo reactivity, hence, styrylpyrene has been thoroughly 

investigated due to its most ideal reaction parameters. Furthermore, materials that can respond 

independently to two different colours of light have recently been of particular interest, since 

they allow for two different processes to occur, e.g. separate network formation and function-

alisation steps. As discussed in Chapter 2.3.5, it is highly challenging to achieve such photo-

responsive systems, due to the absorption overlap of most known chromophores. As a result, 

in a mixture that features two different chromophores, irradiation with high-energy light will 

induce both reactions, preventing the material to be fully λ-orthogonal. To achieve completely 

separate bond forming processes, a new concept introduced by our group was proposed, com-

bining an irreversible photochemical reaction in the regime of UV light with a reversible and 

red-shifted cycloaddition.54 Consequently, the two chromophores can be triggered inde-

pendently from each other. Under irradiation with visible light, only the cycloaddition will be 

active. However, upon high-energy light, the latter is supressed, since the cycloreversion is 

triggered, and only the irreversible reaction proceeds. Such an approach was adopted in the 

context of the current thesis, since it allows to employ the thoroughly investigated styrylpyrene 

system and benefit from its mild reaction conditions. In addition, the in Chapter 4 discussed 

network formations represent the next steps towards reprogrammable gradients materials via 

the use of side-functional polymers (Approach 1, refer to Figure 37). Particularly the reversible 

ligation of block-copolymers via styrylpyrene end-groups has already successfully been 

proven, making StyP highly interesting for materials science (refer to Chapter 3.4). 

In order to investigate the concept of λ-orthogonality in a dual photoresist, two different chro-

mophores were combined. In specific, o-methyl benzaldehyde (o-MBA) on the one hand, as a 

UV-triggered species and styrylpyrene on the other – featuring a dimerisation in the visible 

light range – while remaining inactive at high-energy irradiation. The orthogonality of the two 

moieties to each other was investigated as model molecules and polymers in solution, as well 

as spin-coated films, including in-depth analysis via NMR, LC-MS, XPS and AFM. 
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4.2 Proving the Concept – Small Molecule Study 

Based on the WPEA conducted in Chapter 3.3, the most effective trigger wavelengths of 

styrylpyrene are at 435 nm (dimerisation) and 330 nm (dissociation). Hence, combination with 

another chromophore that undergoes a reaction at the shorter wavelength only, results in a dual 

photo resist featuring complete λ-orthogonality. Indeed, the photoenol precursor species methyl 

4-((2-formyl-3-methylphenoxy)methyl)benzoate (o-MBA, 4) represents a highly suitable 

counterpart to StyP 1. Investigation of its action plot, previously recorded by our group,136 con-

firmed that 4 is most effectively reacting at 330 nm – the wavelength regime that renders 1 

inactive – while featuring no reactivity at 435 nm – which represents ideal dimerisation param-

eters for styrylpyrene (Figure 38). Nonetheless, it is required to study the reactivities of both 

chromophores, 1 and 4, together to eliminate the possibility that the presence of one chromo-

phore affects the other.  

 

Initially, the reaction of o-MBA was anticipated to proceed with tetraethylene glycol 

difumarate (TGD, 5, Figure 39) since photoenol species are known to readily undergo cycload-

dition reactions with dienes such as fumarates and maleimides (for further details on the pho-

toenol reactivity refer to Chapter 2.3.6). However, the addition of TGD introduces another type 

of double bond into the reaction mixture, and it was unclear if cross-reactions in between the 

three molecules (StyP 1, o-MBA 4, TGD 5) might occur. Therefore, the reactivity of the pho-

tochemically reactive moieties in one pot was investigated. First of all, the dimerisation behav-

iour of styrylpyrene in presence of the double bonds of 5 was assessed (Appendix Figure 130). 
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Under irradiation with light at 435 nm, in excellent agreement with the results of Chapter 3, 1 

dimerised into the three expected photoproducts (2a, 2b, 2d) in addition to isomerisation to its 

cis-structure. Most importantly, no cross-reactivity with 5, which proved to be completely un-

reactive, was detected. 

 

Although no cross-reaction should be expected when a mixture of StyP and TGD is irradiated 

in the UV range, a test reaction was conducted with light at λ = 330 nm. On one hand, the 

styrylpyrene dimerisation should be supressed, on the other hand, TGD is not known to undergo 

any cyclisation reactions on its own. As a result, only the isomerisation of 1 was detectable 

when analysed via NMR, which confirmed these assumptions (Appendix Figure 131). 

Furthermore, to achieve an orthogonal system, it is important to ensure that the only chromo-

phore active at visible light irradiation is styrylpyrene 1. As described in the beginning of the 

current Chapter, separate analysis of the photochemical reactions of 1 and 4 in actions plots 

revealed that o-MBA 4 has entirely no absorptivity at wavelengths above λ = 410 nm (Figure 

38). However, a short irradiation experiment of a mixture of 4 and 5 was conducted to experi-

mentally prove and support the respective findings. Due to the lack of absorptivity at 435 nm, 

irradiation of the two chromophores o-MBA and TGD at this wavelength induced no change 

in the measured 1H-NMR spectra, proving both compounds to be unreactive in the visible light 

regime (Appendix Figure 132). 

The reaction of o-MBA with fumarates has been previously reported in the literature, which 

was in agreement with conducted irradiation tests of a mixture of 4 and 5 at λ = 330 nm.152,167 

Analysis via NMR reveals that a highly complex mixture of several different photoproducts 

between o-MBA and TGD was formed, while complete conversion was achieved when em-

ploying 483 µmol of photons. The latter is indicated by the disappearance of the resonances 

that are derived from the methyl and aldehyde groups of o-MBA (resonance 1 and 2 in Figure 

40) in the respective NMR spectra. In addition, a small excess of TGD that was left in the 

Figure 39. Photochemical reaction of o-MBA 4 with TGD 5 when irradiated with light in the UV-A range. 
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mixture underwent photoisomerisation from its trans- to the cis-isomer (resonance 4 and 5 in 

Figure 40). 

 

Figure 40. Reaction of o-MBA with TGD when irradiated in deuterated acetonitrile with a wavelength at 

330 nm with 483 µmol of photons. Analysis via 1H-NMR (400 MHz, CD3CN). The disappearance of the res-

onances 1 (aldehyde) and 2 (methyl) of the o-MBA species 4 proved its complete conversion. 

Having established that no cross-reactions take place in between StyP 1 and TGD 5, as well as 

the inactivity of the cycloaddition of o-MBA 4 with TGD 5 in the visible light range, the com-

plete wavelength-orthogonal system (1, 4, and 5) was subsequently investigated. Upon visible 

light (λ = 435 nm), 1 underwent dimerisation revealing new resonances (in between 4 and 

6 ppm) in the 1H-NMR spectra (Appendix Figure 132 and Figure 134) featuring the same peak 

pattern already described in the stereochemical investigation for styrylpyrene in solution (refer 

to Chapter 3.2). However, irradiation within the UV light range (λmax = 330 nm) did not lead to 

the expected results (Appendix Figure 135). Due to the absence of the respective cyclobutane 

peak pattern (2a, 2b, 2d), styrylpyrene did not undergo dimerisation. However, the magnetic 

resonances of TGD remained as well, while o-MBA was completely consumed, proven by the 
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absence of the magnetic resonances for the aldehyde and methyl group of o-MBA in the NMR 

spectrum (Appendix  Figure 135). Hence, 4 underwent a cycloaddition with itself instead of 

reacting with 5. While both reactions have been reported in literature, previous studies revealed 

that the self-dimerisation of 4 is suppressed in the presence of a dienes such as 5.152,153,167 The 

inactivity of TDG in the irradiated reaction mixture appears to be derived from the presence of 

styrylpyrene, however, no similar findings have been reported by other groups and the reason 

remained unknown. 

Nevertheless, the mixture was considered as wavelength-orthogonal, since visible light only 

triggered the styrylpyrene cycloaddition, while o-MBA completely dimerised with itself upon 

irradiation with UV-A without the need for TGD. Indeed, the removal of 5 from the reaction 

mixture could be of benefit for materials science, particularly due to the fact that the employed 

polymers only need to include two functional groups instead of three, vastly facilitating their 

synthesis. Thus, reaction mixtures of 1 and 4 were thoroughly studied next. To efficiently prove 
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the λ-orthogonality of the latter, sulfolane was added to the samples since it can act as a refer-

ence during NMR analysis. Irradiation of 1 (1.13 eq.) and 4 (1.00 eq.) in an approximately 

equimolar ratio (in 0.4 mL CD3CN; ca. 5.00 mM each) with light at the wavelength of 435 nm 

(1.93 mmol photons) led to the dimerisation of StyP. In agreement with the previously con-

ducted studies (Chapter 0), 1H-NMR measurements (Figure 41) confirmed the formation of 

the three photoproducts 2a, 2b and 2d as well as cis-StyP, while leaving only 15 % of the 

starting material behind (integrals in comparison to the reference sulfolane: before irradiation: 

225, after irradiation: 34 (trans-1) and 17 (cis-1)). In addition, o-MBA remained inactive when 

compared to the amount of the reference sulfolane (Figure 41, resonances 1 and 2) 

Irradiating a similar sample (1.00 eq. 1, 1.00 eq. 4, 0.4 mL CD3CN, ca. 5.00 mM each, with 

sulfolane as a reference) with UV-A light at a wavelength of 330 nm (0.97 mmol of photons), 

the self-dimerisation behaviour of o-MBA was explored (Figure 42). While the latter results 

in a highly complex mixture that was thoroughly characterised by Krappitz et al. (for more 

details refer to Chapter 2.3.6),153 analysis via 1H-NMR showed almost complete consumption 

(98 %) of 4. The conversion of 4 was determined via comparison of the methyl (2) and aldehyde 
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(1) resonances when integrated against the reference sulfolane before irradiation (aldehyde 

1: 50; methyl 2: 150) and after irradiation (1: 1, 2: 3). In contrast, 1 underwent isomerisation 

only, with the integral of both structures, trans- and cis-1 combined, representing the same 

value after irradiation (trans: 77, cis: 23) as before (starting material trans-1: 100). Thus, no 

dimerisation of StyP took place, successfully proving the wavelength-orthogonality of the em-

ployed two chromophores. 

The main photoproduct produced during irradiation of 1 and 4 with 330 nm was isolated and is 

formed in a [4+4] cycloaddition of two light-activated o-MBA species (for the structure refer 

to Figure 42, a detailed NMR spectrum can be found in the Appendix Figure 137). Unfortu-

nately, the product mixture obtained during irradiation with UV-A light proved to be extremely 

complex, with structures too similar to each other to be separated and quantities smaller than 
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the amount necessary for analysis via NMR spectroscopy. Therefore, additional characterisa-

tion techniques were carried out to further proof the wavelength selectivity of the different 

cycloadditions. The at 330 nm irradiated samples were subjected to LC-MS measurements and 

investigated to prove that no cross-reaction in between StyP and o-MBA occurred (Figure 43). 

Therefore, the LC traces of the irradiation mixture were compared to LC traces of untreated 

samples containing only StyP or o-MBA respectively, as well as samples of StyP after irradia-

tion with 435 nm, and the isolated o-MBA dimer after irradiation with 330 nm. The LC of 1 

and 4 after irradiation with 330 nm showed no peaks at the retention time for the StyP dimers 

(8.8 and 8.9 min) but small amounts of cis-1 (8.0 min) and the remaining starting material 

trans-1 (7.7 min). In addition, peaks representing the [4+4]-dimer (3.9 min) and the monomeric 

form (5.6 min) of o-MBA could be detected. For the remaining unassigned peaks, a closer look 

into the respective mass spectra indicated that no peaks were present that can be associated 

with a cross-reaction product of 1 and 4 (refer to Appendix). 

In conclusion, detailed NMR and LC-MS studies revealed the complete wavelength orthogo-

nality of StyP 1 and o-MBA 4 to each other, under irradiation in the visible and UV-A light 

ranges. Without a heterogenous dimerisation reaction taking place, the chromophore mixture 

proved highly suitable for altering and adapting the properties of a material, simply by choosing 

in between two different colours of light. To further establish the concept and investigate the 

vast possibilities enabled by such a λ-orthogonal approach, polymer as well as material studies 

were carried out as described in the following Chapter. 
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4.3 From Molecules to Materials 

Utilising light in materials science, especially for photocuring of polymer strands in photore-

sists, has already been successfully applied since decades. However only after the macromo-

lecular hypothesis from Hermann Staudinger in the 1920s that macromolecules are constituted 

out of covalently bonded monomer units and the further understanding of linear macromolec-

ular chain structures, further insights into the complex network forming processes were made 

possible.17,168 To-date, photocuring is used for advanced coatings, display technologies or high-

performance dental materials and, thus represent an industrial standard process.138–140 Light has 

the advantage of being spatially controlled, while it can be switched on and off on-demand. 

However, most known photochemical systems feature low trigger wavelengths, hence, high 

energy light, which can introduce damage to the irradiated material. As a result, researchers 

have focused much attention to the field of red-shifted photochemical reaction system, since 

they not only reduce damage dealt to a material but also allow for greater penetration depths. 

Combining such red-shifted systems with a wavelength-orthogonal approach allows to fabri-

cate two different sets of properties (e.g. stiffness, cross-link density, swell-ability) into one 

material simply by changing the colour of light. Such a use of two different wavelengths to 

independently access disparate materials is pioneered within this thesis, employing the already 

Resist A + B

Material B Material A

330 nm 435 nm

P2

P2F

P1

P1F

Figure 44. Concept of a wavelength-orthogonal system by implementing to different chromophores that 

can be cured under irradiation with disparate colours of light and result in two different materials. Below, 

the structures of the investigated polymer strands are shown. Copyright 2019 John Wiley and Sons. 
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investigated system of styrylpyrene 1 and o-MBA 4, as they have been proven highly suitable 

for wavelength-orthogonal approaches (refer to Chapter 4.2). Therefore, the moieties 1 and 4 

have been incorporated into polymer strands in order to, first, investigate their ability to cross-

link in solution, and second, cast them into a resists, irradiate them with disparate colours of 

light leading to different properties, and as a result obtain a λ-orthogonal multimaterial resist 

(Figure 44). 

For the polymer cross-linking studies, o-MBA and StyP were tethered as side groups onto the 

polymeric backbone of poly(methyl methacrylate) (PMMA, refer to Figure 44). As a result, 

two different polymer samples were synthesised: PMMA containing approximately 23 mol% 

o-MBA units (P1) as well as PMMA with a close to identical amount of StyP (21 mol%, P2). 

To thoroughly investigate the reactivity of both polymers and support the results presented in 

Chapter 4.2, the polymers should not only be investigated with regard of material properties 

but also to enforce that no cross-reactivity is taking place. Hence, respective fluorine tagged 

counterparts to P1 and P2, i.e. P1F and P2F were synthesised (Figure 44). This approach 

685690695

0

2x103

4x103

6x103

8x103

1x104

C
P

S

Binding energy / eV

685690695

0

2x103

4x103

6x103

8x103

1x104

C
P

S

Binding energy / eV

685690695

0

2x103

4x103

6x103

8x103

1x104

C
P

S

Binding energy / eV

685690695

0

2x103

4x103

6x103

8x103

1x104

C
P

S

Binding energy / eV

P1 networkP1/P2F P2F networkP1/P2F

P1F networkP1F/P2 P2 networkP1F/P2

A

C

B

D

330 nm

330 nm 435 nm

Figure 45. XPS F 1s measurements of P1 + P2F irradiated with A 330 nm or B 435 nm and P1F + P2 

irradiated at C 330 nm or D 435 nm. The blue dashed line represents a fitted function corresponding to 

the fluorine signals from the tagged-polymer present in the sample (P1F or P2F). The red dashed line 

matches the fluorine signal of the vial caps used during the irradiation experiments (PTFE). Copyright 

2019 John Wiley and Sons. 
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allows for the analysis of cured photoresists via X-ray photoelectron spectrometric (XPS) anal-

ysis to illustrate which samples contain fluorine after being irradiated and thoroughly washed 

with chloroform (CH3Cl). In total, four irradiation experiments in solution (DMF) were carried 

out under irradiation with visible (435 nm) or UV (330 nm) light to obtain either the respective 

fluorine-tagged or fluorine-free photoresists, subsequently followed by analysis via XPS (Fig-

ure 45). 

The XPS analysis demonstrated that under irradiation with UV-A light (330 nm), only the 

o-MBA moiety undergoes cycloaddition, resulting in a fluorine signal in case P1F (Figure 45 

C) is being used, while no peaks are visible for P1 (Figure 45 A). Similar results could be 

achieved when visible light (435 nm) was employed to trigger the dimerisation of StyP. Irradi-

ating a mixture of P1 and P2F (Figure 45 B) led to a distinct fluorine peak in addition to the 

signal that was present in all spectra (fitted function with the red dotted line, Figure 45) and 

could be assigned to the vial caps used during irradiation (PTFE169). However, for the sample 

containing P1F and P2 (Figure 45 D), a small fluorine signal appeared although it has been 

proven already in the model study (refer to Chapter 4.2) that o-MBA is completely inactive 

under irradiation with visible light. Therefore, the fluorine signal is representing the P1F that 

could not be removed completely from the irradiated samples due to its entanglement in the 

formed StyP network. In conclusion, the polymer strands could be successfully cured in a wave-

length-orthogonal fashion using two colours of light. The combination of o-MBA 4 and StyP 

Figure 46. Schematic representation of the spatially resolved photocuring process resulting in two different 

distinct areas. Half of the photomask was blocked for each irradiation procedure (illustrated by the grey 

areas in the photomask). Subsequently, the film was post cured via washing with CHCl3. Below, light micros-

copy images are showing the spin-coated film before and after irradiation as well as post-curing, clearly 

highlighting the differences between the irradiated areas (wrinkled areas: o-MBA 4, smooth areas: StyP 1). 

Copyright 2019 John Wiley and Sons. 
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1 as a platform technology can enable the selective spatially resolved photocuring of disparate 

materials that inherit different properties from one single photoresist, as depicted in the follow-

ing paragraphs. 

In order to obtain resists of P1 and P2, binary mixtures of the two polymers were spin-coated 

into films of close to 700 nm thickness. Irradiation of these took place from the bottom with a 

circular monochromatic laser beam (diameter: ca. 6 mm) using either 330 or 435 nm as the 

curing wavelength. Applying a shadow mask, the films were employed in a spatially resolved 

fashion. To compare the properties of the irradiated materials, one resist was cured with both 

wavelengths, while blocking one half of the photomask for each wavelength (Figure 46). Al-

ready light microscopy images visually revealed that two different materials were obtained via 

treatment with light while postcuring via washing with chloroform made these differences even 

more obvious (Figure 46, a supplementing movie of the photocuring can be found online§). As 

a result, the network that was based on the dimerisation of StyP 1 upon irradiation with visible 

light formed a smooth homogenous layer, while the o-MBA based material developed wrinkles 

that were also noticeable via atomic force microscopy (AFM). AFM topographical images 

showed distinct step profiles with sharp edges (ca. 10 µm in size) in between irradiated and 

 

  

§ A timelapse video of the postcuring process can be found in the following publication with Advanced Materials: 

D. E. Marschner,# S. Bialas,# L. Michalek,# T. Krappitz, M. Wegener, J. Blinco, E. Blasco, H. Frisch and C. Barner‐

Kowollik, Adv. Mater., 2019, 1807288. Copyright 2019 John Wiley and Sons 

# These authors contributed equally. 

Figure 47. AFM topographical images of the step profile and border in between the substrate and photore-

sists, including a microscopy image of the developed photoresist to highlight the location where the respective 

AFM measurements were conducted. Copyright 2019 John Wiley and Sons. 
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non-irradiated areas (Figure 47), demonstrating the spatial resolved curing ability of the mate-

rial. Furthermore, the mechanical properties of both the photocured resists were investigated 

with regard of their Young’s moduli and adhesion energies (AFM, PinPoint Nanomechanical 

Mode). The results showed that the polymer with o-MBA (E  = 0.77 ± 0.07 GPa and 

Wadh = 58.2 ± 9.4 aJ), cured in the UV-A range, led to a softer and less adhesive material than 

its StyP (visible light) containing counterpart (E = 2.20 ± 0.42 GPa and Wadh = 99.2 ± 11.6 aJ), 

further explaining the wrinkles in the remaining films. 

In conclusion, by combining StyP 1 and o-MBA 4 into a PMMA film, a multimaterial resist 

was obtained. Wavelength-orthogonal photocuring with two different colours of light led to 

different materials with disparate properties in a spatially resolved fashion. The presented re-

sults are highly interesting for the further processing of gradient materials while the incorpora-

tion of 1 can also allow for reprogrammability. Thus, in further studies, the reversibility of StyP 

in such a multimaterial resist needs to be investigated via subsequent irradiation with visible 

and UV light over several different lifecycles. In addition, the photoresists should be cured 

employing light gradients, however monochromatic irradiation with a continuously changing 

intensity has not yet been possible with the herein employed tuneable laser setup. Regardless, 

the wavelength orthogonal photocuring already proved to be successful paving the way to dis-

parate material properties and thus allowing to alter materials properties in a spatially resolved 

fashion. 
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Polychromophores 

For the realisation of materials, which can be altered by light, utilising more than one chromo-

phore enables vast possibilities to induce different changes (e.g. in flexibility, solubility, etc.) 

or reactions (i.e. cross-linking, de-cross-linking, folding, etc.) simply by using disparate wave-

length regimes. To introduce these chromophores into one system, various strategies are avail-

able (compare Chapter 3.4 and Figure 37). For instance, the chromophores can be introduced 

into the polymer chains as side groups, either via pre- or post-functionalisation (Figure 37, 

Approach 1). However, both of these functionalisation strategies entail distinct disadvantages 

and advantages. Monomers that are functionalised prior to the polymerisation step can not only 

be synthetically challenging to access, but their comonomers as well as initiators also need to 

be carefully selected to ensure a polymerisation that leads to samples with controlled molecular 

weights and weight distributions. For post-functionalisation, the polymerisation needs to be 

conducted including a monomer with a functional group that can actively take place in subse-

quent reactions, while not affecting the polymer formation. Most importantly, it is analytically 

difficult to determine the amount of post-functionalised groups and thus the amount of the 

chromophore. As a result, in both approaches, the reaction conditions and polymers require to 

be specifically selected and tested for every introduced chromophore instead of providing a 

readily accessible platform tool. In contrast, by introducing the chromophores with a cross-

linking molecule instead of polymer chain side groups, aforementioned disadvantages can be 
   

The results presented in Chapter 5 were obtained in a cooperation between C. O. Franck (Master Student, synthesis) and 

D. E. Marschner (in-depth photochemical investigations). The results and graphs in Chapter 5 are reprinted and adapted 

with permission from: 

D. E. Marschner,# C. O. Franck,# D. Abt, H. Mutlu, C. Barner‐Kowollik, Chem. Commun., 2019, 55, 9877-9890. Pub-

lished by The Royal Society of Chemistry. 

# These authors contributed equally. 
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overcome (Figure 37, Approach 2). In addition, these small molecules can be designed in man-

ifold ways, enabling the possibility to introduce various different chromophores at once, for 

example by employing star-shaped molecules with distinctive light-responsive moieties at each 

chain end. The approach of cross-linking molecules as additives was tested in the following 

Chapters in a model study and preliminary polymer tests that provide highly promising results. 

To allow for comprehensive investigations of a molecule combining several different light-

responsive moieties, a di-functional molecule was chosen, since it allows to perform in-depth 

analytical characterisation, as well as the demonstration of the underlying concept of a dichro-

mophoric molecule that can proceed in two site-specific and wavelength-orthogonal cycload-

ditions. In further research, the di-linker can be expanded to a molecule featuring multiple dif-

ferent light-responsive groups, e.g. by utilising a star-shaped linker, yielding a polychromo-

phore able to respond to several different light-regimes. 

In the di-linker approach that was investigated in the current thesis, o-MBA 4 was selected as 

one of the chromophores since it can undergo a cycloaddition in the UV-A regime to react with 

electron-deficient double bonds (e.g. maleimides, fumarates). Further, 4 is known to self-di-

merise, however, in the presence of maleimides it has proven to preferably react with the 

diene.152,170 Furthermore, o-MBA (λ = 310 - 350 nm) already proved its suitability for λ-orthog-

onal reactions, for example in combination with tetrazoles170 (λ = 270-310 nm, sequence-de-

pendent) or styrylpyrene 1 (compare Chapter 4, sequence-independent). The o-MBA was com-

bined with a cinnamic acid derivate able to undergo reversible cycloaddition. However, to 

achieve sufficient separation of the absorption bands, the phenyl ring of cinnamic acid was 

substituted with pyrene (pyrenyl cinnamic acid, PCA 6, refer to Figure 48), to achieve a red-

shift into the visible light range (compare Chapter 2.3.4). Finally, 4 and 6 were combined into 

one molecule using a linear linking molecule (molecules 7 and 8, Figure 48), resulting in a 

dichromophore. The latter was investigated regarding its reactivity upon irradiation with visible 

and UV light. Most importantly, a reaction cycle should be possible with subsequent irradiation 

in both light regimes leading to the same final product, regardless in which sequence the dif-

ferent irradiation wavelengths have been used (Figure 48). 



 

75 

 

Figure 48. Reaction overview for the wavelength-orthogonal reaction cycle of a dichromophore (7 or 8) 

featuring two different light-responsive moieties (o-MBA 4 and PCA 6), which can take part in site specific 

cycloaddition reactions. Published in 2019 by The Royal Society of Chemistry. 
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5.1 Model Studies 

To achieve a reversible and visible light triggered dimerisation system, a cinnamic acid derivate 

was functionalised with pyrene. In order to determine the reactivity of the double bond in prox-

imity of a pyrene and an ester group, a model compound end-capped with a butanol chain (9) 

was synthesised allowing to explore the reactivity of the alkene moiety – especially in the UV 

range – without the effect of the o-MBA group 4 that will be part of the final dichromophore 

(7 / 8). Pyrene functionalisation of the cinnamic acid led to a shift in absorbance of close to 

100 nm, from λmax = 272 nm (cinnamic acid) to λmax = 370 nm (9, compare Figure 49). Thus, 9 

(10 mM in DCM-d2) was irradiated with visible light (λmax = 416 nm, 1 h) to trigger the dimer-

isation of the double bond and subsequently with UV light (λmax = 314 nm, 1 h) to revert the 

formed dimers back to the starting material. Following the light treatment, the samples were 

analysed via NMR as well as UV/Vis spectroscopy to confirm successful reactions. The NMR 

spectrum after visible light irradiation (Figure 50 t1) clearly indicates the formation of mag-

netic resonances for the cycloadducts in the range between 3.5 and 6.0 ppm (red box), thus 

confirming that 9 is able to undergo cycloaddition in the visible light range (79 % conversion, 

according to 1H-NMR). Similarly to styrylpyrene, several different stereoisomers are being 

formed, resulting in different chemical resonances (for the detailed resonance assignments refer 

to Appendix Figure 149). Along dimerisation – analogue to styrylpyrene – isomerisation of 

the starting trans-9 to its respective cis-structure took place (δ = 6.36 ppm). Upon subsequent 

irradiation with UV light (Figure 50 t2), the cycloadducts dissociated to their monomer form 
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Figure 49. UV/Vis spectrum of 9 (in DCM). Published in 2019 by The Royal Society of Chemistry. 
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9, yielding a mixture of both cis- and trans-isomer, while leaving only traces of dimer behind 

(3 %, according to 1H-NMR). 

When analysing the visible light dimerisation of 9 via UV/Vis spectroscopy, the absorption 

bands at 370 and 410 nm decrease, while new absorption bands at 333 and 348 nm arise (Fig-

ure 51). Such observations are in agreement with published studies (e.g. for styrylpyrene160) 

since the fully conjugated and planar system of 9 – consisting of the double bond, the pyrene, 

and the ester bond – that is responsible for the red-shifted absorption is removed during the 

cycloaddition. Thus, the absorption of the dimer molecules is shifted to lower wavelengths. 

Subsequent irradiation of the cycloadducts with UV light (λmax = 314 nm), however, did not 

result in the expected absorbance spectrum (Figure 51 t2). According to the previous NMR 

studies, the cycloadducts almost completely disappeared under irradiation with UV light. 

Therefore, the spectrum t1 in Figure 51 was expected to revert back to a spectrum similar in 

shape to t0. The measurements after UV irradiation (t2, Figure 51) displayed a new unknown 
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Figure 50. Proton NMR (400 MHz, DCM-d2) of 9 before irradiation (t0, green line), after irradiation with 

visible light (λmax = 416 nm, t1, blue line), and subsequent UV light irradiation (λmax = 314 nm, t2, orange 

line) including an enlarged version which is highlighting the crucial magnetic resonances representing the 

cycloproducts. Published in 2019 by The Royal Society of Chemistry. 
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absorbance spectrum, featuring absorbance bands at λmax = 333, 349, 370 and 401 nm. Thus, in 

addition to NMR and UV/Vis spectroscopy, samples of 9 before irradiation (t0), after irradia-

tion with visible light (t1), as well as after irradiation with visible and subsequently UV light 

(t2) were investigated via GC-MS to detect mass fragments that are smaller than the mass of 9 

(refer to Appendix Figure 150 - Figure 152). Such fragments may hint to photodamage to the 

sample during irradiation. However, no smaller mass values were observed, hence, the samples 

are not prone to light-induced damage.  

To further investigate the absorption pattern of t2 (Figure 51), experiments with different irra-

diation times were carried out and analysed via UV/Vis spectroscopy to observe the change of 

the traces from the starting material to the point of maximum conversion. Figure 52 shows that 

the latter is reached after approximately 1 h for each, visible light and subsequent UV light 

irradiation. Especially when analysing the dissociation reaction (Figure 52 B), it is apparent 

that the t2 absorption pattern (Figure 51) is most likely not derived from a new species present 

in the solution but rather a mixture of monomer and dimer. This is supported by the fact that 

the absorption maxima are at similar wavelengths in all measured spectra (refer to Figure 51 

and Figure 52). Thus, adding the absorption traces of monomer and dimer together would re-

sult in the pattern observed in t2 (Figure 51). In literature, conversion of photoreactions is often 
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Figure 51. UV/Vis spectrum (DCM-d2) of 9 before irradiation (t0, green line), after irradiation with visible 

light (λmax = 416 nm, t1, blue line), and subsequent UV light irradiation (λmax = 314 nm, t2, orange line). 

Published in 2019 by The Royal Society of Chemistry. 
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determined via UV/Vis spectra by following the absorbance at one given maximum.171 Irradi-

ation of 9 with visible light for 1 h, led to a conversion of 86 %. Subsequent irradiation with 

UV light led to dissociation to trans- and cis-9 (70 % conversion), while leaving approximately 

30 % of the dimer structures behind (determined with the absorption band at λmax = 372 nm). 

However, in the present case, determination of the conversion from UV/Vis spectra is highly 

challenging due to the fact that all absorbance bands are overlaying and thus contain not only 

one species. Especially the calculation of the conversion after irradiation with UV light is in-

accurate since the absorption traces of the dimer structures are too close to the monomer ab-

sorption bands and thus overlay. In addition, the absorption spectrum of the cis-structure re-

mains completely unknown and thus cannot be factored in. Therefore, to fully understand the 

detected pattern, all structures present after irradiation would need to be separated (e.g. via 

quantitative thin layer chromatography) and characterised. However, separation has proven 

challenging and has not yet been accomplished. It is also critical to ensure that the samples are 

not exposed to light before analysis can be conducted. In conclusion, the absorption pattern 

observed in Figure 51 t2 is most likely derived from small amounts of dimers left after irradi-

ation with UV light, while the actual percentages can only be determined via 1H-NMR spectra 

(approximately 3 % of dimer) and not UV/Vis spectroscopy. 

Overall, the reactivity of 9 is comparable to the already investigated styrylpyrene (refer to 

Chapter 3) with a dimerisation reaction that takes place in the visible light range and a dissoci-

ation reaction under irradiation with UV light. Therefore, PCA is highly suitable to be com-

bined with other light-responsive moieties into polychromophores, as will be explored in the 

following chapters. 
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irradiation with visible light (416 nm) as well as (B) irradiation with visible light (416 nm) for 60 min 
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5.2   Dichromophores 

With the alkene reactivity of PCA 6 upon irradiation fully explored, it was combined in a di-

chromophore with o-MBA 4 via the linear 1,3-propandiol to yield 7. Despite thorough investi-

gation of the o-MBA moiety with different lamps and irradiation times, a quantitative [4+2] 

cycloaddition with N-ethyl maleimide (Et-Mal) could not be achieved, although the reaction is 

known to undergo complete conversion in short reaction times.172 The inability to reach full 

conversion strongly suggests inhibiting effects due to the close proximity of the two reactive 

sites, likely caused by steric hindrance (especially considering the bulky pyrene unit) or pro-

hibitive electronic effects (e.g. FRET effect or depletion processes).173–175 Therefore, 

1,10-decandiol was introduced as a spacer in between the PCA and the o-MBA moieties result-

ing in compound 8. In contrast to 7, irradiation of 8 with UV light (λmax = 314 nm) in the pres-

ence of Et-Mal and subsequent analysis via NMR showed complete conversion of the o-MBA 

functionality (Figure 53), indicated by the disappearance of the aldehyde (43, 10.7 ppm) and 

methyl resonances (44, 2.6 ppm). 
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Next, PCA 6 was irradiated with visible (λmax = 416 nm) and UV light (λmax = 314 nm) to in-

vestigate if its reversible dimerisation, when incorporated into 8, resembles that of the o-MBA-

free 9. Upon exposure to light at λmax = 416 nm, 8 dimerised, which could be proven via the 

formation of distinct cyclobutane resonances (Figure 54) in the respective NMR measurements 

as well as via UV/Vis spectroscopy in which the absorption bands at 371 and 402 nm, repre-

senting the fully conjugated PCA system, disappeared (Figure 54). In addition to dimerisation, 

trans- to cis-isomerisation took place (Figure 54). Subsequent treatment of the photoproducts 

with light in the UV range (λmax = 314 nm) could prove the reversibility of the cycloadducts, 
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Figure 54. 1H-NMR (400 MHz, deuterated DCM) and UV/Vis spectrum of 8 (10 mM, DCM-d2) before ir-

radiation (t0), after irradiation with visible light (t1, λmax = 416 nm, 5 h), and subsequent irradiation with 
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indicated by the disappearance of their magnetic resonances when analysed via NMR (Figure 

54) as well as the reappearance of the UV/Vis absorption bands representing 8. 

Since both light-responsive moieties (4 and 6) and their reactions ([4+2] and [2+2] cycloaddi-

tion) had been proven suitable for a wavelength orthogonal dichromophore, both pathways of 

the complete and sequence-independent reaction cycle (compare Figure 48 on page 75) of 8 – 

in presence of Et-Mal – with  subsequent irradiation in both wavelength regimes were investi-

gated. Ideally, the photochemical cycloadditions should lead to the same product, inde-

pendently if a sample is irradiated with UV followed by visible light or in an inverse succession. 

As shown in Figure 55, UV/Vis spectroscopy of 8 and Et-Mal (10 mM each, DCM-d2) showed 

similar results to the previous model studies and test experiments. Initial irradiation with UV 

light (λmax = 314 nm, 3 h) led to the complete reaction of o-MBA with Et-Mal (proven by 

1H-NMR, Appendix Figure 153). However, small amounts of the already discussed absorption 

pattern, which might be derived from a mixture of both monomer and dimer structures, with 

bands at λ = 333, 349, 370 and 401 nm were observed (Figure 55). The generation of small 

amounts of dimer might be due to the broad emission spectrum of the employed lamp, reaching 

into wavelength ranges up to almost 400 nm. To avoid such behaviour, narrowly distributed 
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Figure 55. UV/Vis spectrum of 8 in the presence of Et-Mal (10 mM each, DCM-d2) before irradiation (t0), 

after irradiation with UV light (t1, λmax = 314 nm, 3 h), and subsequent irradiation with visible light (t1, 

λmax = 416 nm, 5 h). Published in 2019 by The Royal Society of Chemistry. 



  Dichromophores 

83 

light sources (such as LEDs) should be employed in future studies. Subsequent irradiation in 

the visible light regime (λmax = 416 nm) induced dimerisation of the double bond, indicated by 

the decrease of the absorbance bands at λ = 370 and 410 nm (as well as 1H-NMR, Appendix 

Figure 154). 

As expected, Et-Mal did not interfere with the reaction of 8 upon visible light irradiation 

(λmax = 416 nm, 5 h). Both UV/Vis (Figure 56) and NMR (Appendix Figure 155) measure-

ments showed the successful formation of the PCA cycloadducts. However, subsequent irradi-

ation with UV light (λmax = 314 nm, 3 h) did not only induce the [4+2] cycloaddition of o-MBA, 

but also the cycloreversion of the previously formed photoproducts. Both absorbance spectra 

(Figure 56) and 1H-NMR analysis (Appendix Figure 155) proved that the two reactions pro-

ceed, and while the UV/Vis spectrum featured the newly observed pattern with four major 

absorption bands, NMR spectroscopy revealed that the transition from the cyclobutane-like 

structures towards the double bond occurred with almost full conversion. While this was not 

the anticipated reaction route, it does not interfere with the orthogonal nature of the system 
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Figure 56. UV/Vis spectrum of 8 in the presence of Et-Mal (10 mM each, DCM-d2) before irradiation (t0), 

after irradiation with visible light (t1, λmax = 416 nm, 5 h), and subsequent irradiation with UV light (t1, 

λmax = 314 nm, 3 h). Upon irradiation with UV light, not only the [4+2] cycloaddition of the o-MBA moiety 

took place, but also dissociation of the previously via the double bond of PCA formed photodimers. Pub-

lished in 2019 by The Royal Society of Chemistry. 
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since an additional irradiation step in the visible light regime could again trigger the dimerisa-

tion reaction of PCA (compare Figure 57). As a result, both chromophores can undergo a pho-

tochemical cycloaddition through subsequent irradiation steps allowing 8 to act as a dichromo-

phore towards a linking molecule in materials science. The successful conversion of both light-

responsive moieties was established by NMR as well as UV/Vis spectroscopy with the model 

molecule Et-Mal. In additional studies, the latter can be substituted by more complex polymer 

chains, feature the diene either as a functional side or end group. To further establish the con-

cept of polychromophores, preliminary polymer tests with 8 in presence of a commercially 

available PEG, which featured maleimide as an end group, were conducted and will be dis-

cussed in the following Chapter. 

 

 

UV Vis

UV

UV Vis

Figure 57. Complete reaction cycle of 8 when irradiated with two disparate wavelengths, visible and UV 

light, in a subsequent fashion. The reaction pathways were proven via 1H-NMR as well as UV/Vis spec-

troscopy. The fact, that UV irradiation did trigger both, the cycloaddition of one functionality (yellow) as 

well as the dissociation of the other moiety (red) does not introduce a disadvantage for the proposed system, 

since – due to the reversibility of the visible light system (red) – an additional step results can again trigger 

the dimerisation to obtain the final product. 
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5.3 Preliminary Polymer Studies 

Due to the fact that the dichromophore studies, described in the previous Chapter, had been 

successful, the employed Et-Mal was substituted with an end-functional polymer to explore 

first steps towards network formations. Specifically, the reactivity of 8 was tested in the pres-

ence of PEG with maleimide as an end group (mPEG-Mal). Experiments were conducted in a 

similar fashion than with Et-Mal to investigate the occurring reactions in both wavelength re-

gimes (visible and UV light). Analysis via UV/Vis spectroscopy (Figure 58) depicted similar 

results, as already discussed in Chapter 5.2, with the o-MBA moiety completely undergoing a 

[4+2] cycloaddition under irradiation with UV light (λmax = 314 nm, Figure 58 B t1), while 

subsequent utilisation of visible light (λmax = 416 nm, Figure 58 B t2) led to the dimerisation 

of the PCA double bond. When irradiating 8 in the presence of mPEG-Mal with light in reverse 

order (λmax = 416 nm and subsequent λmax = 314 nm), first the dimerisation of the PCA func-

tionality was triggered and subsequently its dissociation alongside the cycloaddition of the 

o-MBA side (Figure 58 A). In both cases, UV irradiation led to similar absorption patterns, 

encountered with the model compounds. In addition to UV/Vis spectroscopy, the samples were 

analysed via SEC. However, while the SEC traces depicted the anticipated changes (Figure 
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Figure 58. UV/Vis spectra of 8 in presence of mPEG-Mal: (A) before irradiation (t0), after irradiation 

with visible light (t1, λmax = 416 nm, 5 h), and subsequent irradiation with UV light (t1, λmax = 314 nm, 

3 h). (B) before irradiation (t0), after irradiation with UV light (t1, λmax = 314 nm, 3 h), and subsequent 

irradiation with visible light (t1, λmax = 416 nm, 5 h). Published in 2019 by The Royal Society of Chemis-

try. 
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59), they also featured unknown shoulders to higher molecular weights. In detail, irradiation 

with visible light (blue trace, Figure 59 A) introduced dimerisation of 8 with a new peak arising 

at around 1100 g mol-1 (A). In addition, there is a small shoulder towards higher molecular 

weights (D) that remained unknown. Subsequent irradiation with UV light (orange trace) led 

to a small shift of the starting material mPEG-Mal (B) to peak C caused by the reaction of the 

polymer with 8. Such findings confirm that the cycloreversion is taking place alongside the 

[4+2] cycloaddition of the o-MBA unit. However, in these preliminary studies, no full conver-

sion was reached, due to presence of peak E that represents the adduct of mPEG-Mal with the 

8-dimer. An additional shoulder could be found at even higher molecular weights (F) including 

some tailing that could not be explained within the time frame of the current thesis. 

Irradiating 8 in presence of mPEG-Mal in reverse order (UV and subsequently visible light), 

similar results were obtained (Figure 59 B). The starting material B slightly shifted to peak C 

under treatment with λmax = 314 nm, while also undergoing the [2+2] cycloaddition of the di-

merisation of the PCA unit. Subsequent utilisation of visible light significantly increased the 

amount of peak E, successfully indicating the dimerisation reaction. However, upon irradiation 

with both wavelengths a high molecular weight shoulder (F) was formed. 

To further investigate the shoulders and tailing observed in the SEC traces, all photochemical 

experiments conducted in Chapter 5.1 and 5.2 were submitted to SEC analysis and thoroughly 
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Figure 59. THF-SEC measurements of 8 in the presence of mPEG-Mal: (A) before irradiation (t0), after 

irradiation with visible light (t1, λmax = 416 nm, 5 h), and subsequent irradiation with UV light (t1, 

λmax = 314 nm, 3 h). (B) before irradiation (t0), after irradiation with UV light (t1, λmax = 314 nm, 3 h), and 

subsequent irradiation with visible light (t1, λmax = 416 nm, 5 h). Published in 2019 by The Royal Society of 
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investigated. The unknown shoulder towards higher molecular weights was present in all meas-

ured spectra. Since similar results were found when irradiation 8 with Et-Mal (Appendix Fig-

ure 156), the mPEG-Mal could not be responsible for the unexpected behaviour. Furthermore, 

the unidentified peaks were also present in SEC chromatograms of previously irradiated 8 in 

absence of Et-Mal (Appendix Figure 157) as well as photochemical experiments with 9 (Ap-

pendix Figure 158), which did not feature a o-MBA moiety. Hence, both functional groups, 

Et-Mal and o-MBA, cannot be the reason for the unexpected behaviour during SEC measure-

ments. For further clarification, only pyrene without any functional groups was irradiated with 

both wavelengths (λmax = 314 and λmax = 416 nm) and analysed via NMR and SEC. Unfortu-

nately, the molecules 9 and especially pyrene feature low molecular weights that were overlay-

ing with the SEC systems peaks, making the analysis challenging. Nonetheless, irradiated py-

rene samples show unknown shoulders and tailing in SEC chromatograms (red boxes, Appen-

dix Figure 159), while there are no visible changes in the NMR spectra (Appendix Figure 

160). As a result, the shoulders observed in all SEC measurements are very likely due to the 

pyrene moiety present in the molecules 8 and 9 and possibly caused by pyrene-pyrene stacking. 

However, there is no literature available clarifying the effect of stacking on SEC measurements 

and thus, these assumptions would need to be confirmed in further studies. 

Nonetheless, it could be shown that the shoulder is not arising from side reactions that could 

interfere with the presented wavelength-orthogonal system presented in this study. The prelim-

inary polymer studies could already show promising results for further investigations not only 

with maleimide as a polymer end group but in a further step towards wavelength-orthogonal 

materials with maleimide side functionalities along a polymer backbone. 

Overall, the wavelength-orthogonality was proven for the first irradiation step for the dichro-

mophore presented in the current thesis. An additional second step might not be orthogonal 

anymore, however, due to the reversibility of the PCA moiety, subsequent irradiation leads to 

the same final product and, thus does not pose any challenge to the dichromophore. Therefore, 

PCA and o-MBA could be readily employed in studies towards cross-linking molecules in net-

works. In future studies, the end-functional mPEG-Mal can be exchanged with side-functional 

polymer strands to be cast into films and cured upon irradiation with light. Further expanding 

the concept, the linear alkyl-chain used a linker in between PCA and o-MBA can be exchanged 

with different molecules, e.g. star-shaped structures to obtain multifunctional polychromo-

phores, while investigating photochemically reactive functional groups that can be employed 

alongside the PCA and o-MBA. Such polychromophores would allow to generate materials 
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that can be cured in a wavelength-orthogonal fashion, to obtain disparate materials simply by 

choice of the employed wavelength. 
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Towards  

Reversible Gradient  

Nanocellulose Materials 

Gradient materials are a highly interesting class of materials, since they enable stress delocali-

sation, while concomitantly their mechanical properties such as stiffness or toughness can be 

finely adjusted. In addition, such materials can provide more resistant joints in a material that 

features regions of high elasticity and high stiffness. If gradients would feature reversibility, it 

would allow the material to be reprogrammable and therefore perform complex operations on-

demand. As described in Chapter 2.1, the most common type of gradients are sandwich type 

gradients. However, these feature disadvantages such as breaking points in between each layer 

type. A more favourable gradient type are lateral gradients that continuously change from stiff 

to flexible. Photochemistry holds vast promise towards rewriteable lateral gradient materials. 

On the one hand, due to its reversible cycloadditions and one the other hand, due to its spatially 

resolved nature, allowing to control which parts of a material should be cross-linked to a further 

extent and thus, feature a higher stiffness. Especially styrylpyrene could pave the way towards 

reprogrammable gradients since its trigger wavelengths are among the mildest known, allowing 

its reversibility to be used without introducing damage to the material itself or its surroundings 

(e.g. solvent, non-functionalised material, human tissue). In the previous Chapters, styrylpy-

rene has already been investigated with regard to reversibility and its applicability in materials. 

The reversible chromophore can not only be triggered over several lifetimes (Chapter 3.4) but 
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also be incorporated into synthetic polymer strands and cross-linked in a spatially resolved and 

wavelength-orthogonal fashion (Chapter 4.3). 

While synthetic polymer strands can be used in many different industry fields such as automo-

tive coatings, dental applications, or in computer science, they are often rather limited in more 

biologically oriented areas. To achieve compatibility with the latter, nanopapers and nanocom-

posites formed with sustainable cellulose nanofibrils (CNF) can be used. CNFs are typically 

isolated from wood and are well-defined bionanoparticles.103,176 Featuring a highly crystalline 

character, the nanofibrils are also a desirable material, since cellulose is one of the stiffest nat-

ural materials. As a result, CNFs open promising pathways towards sustainable and high-per-

formance soft matter materials. 

Combining CNFs with the reversible photochemistry of styrylpyrene allows to introduce not 

only spatially resolved lateral gradients but also reprogrammability. Hence, to achieve such 

properties, the expertise of the group of Prof. Andreas Walther (Albert-Ludwigs-University 

Freiburg) – and his PhD student Daniel Hönders – on the topic of nanocellulose was combined 

with our expertise in photochemistry, in particular styrylpyrene, obtained throughout the cur-

rent thesis. 

The overall strategy followed in this cooperation was to cast modified CNFs together with 

functionalised polymers into films that can subsequently be irradiated to achieve cross-linking 

CNF

Polymer

Film Casting

435 nm

330 mn

Reversible

2D Patterning

with Photomask

Styrylpyrene

Figure 60. After casting CNF and a water-soluble polymer, both functionalised with styrylpyrene 1, into a 

film, the latter can be employed in a reversible 2D patterning step to obtain a material with a lateral gradient. 

The cross-link density, and therefore stiffness of the material, is dependent on the light intensity and time the 

film is irradiated with. 
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(Figure 60). The latter was achieved via styrylpyrene groups incorporated into both, CNF and 

polymer, to allow for a light-induced cycloaddition for gradient materials or patterned films. 

Due to the reversible nature of the chromophore, the obtained materials could be rewritten 

simply through irradiation with different wavelengths. 

Cellulose is usually handled in water and, thus, the in Chapter 4.3 employed polymer samples 

were unsuitable for this project. To obtain water-solubility, a StyP-Monomer (StyP-O-MA, 10), 

synthesised from StyP 1, hydroxyethylmethacrylate (HEMA), and 5-bromovaleric acid, was 

copolymerised with triethylene glycol methyl ether methacrylate (mTEGMA) since the latter 

is known to feature a good solubility in water (Figure 61). Due to its versatility and control 

over the resulting dispersity and molecular weight, RAFT was chosen as the polymerisation 

technique (refer to Chapter 2.2.2). The reaction was conducted in toluene with 2-cyano-2-pro-

pyl dodecyl trithiocarbonate (CPDT) as CTA and azobisisobutyronitrile (AIBN) as the initiator. 

To conduct mechanical testing and compare the effect of the amount of StyP per chain, two 

different samples should be synthesised: a polymer with a low molecular weight and a low 

amount of the chromophore vs. a high-molecular weight sample with a higher amount of 

styrylpyrene. In addition, sufficient amounts of approximately 3 g per sample were required to 

be able to perform all cross-linking experiments with one polymer batch. 

 

Small-scale polymerisation tests revealed that the polymerisation of both monomers was fea-

sible at 70 °C for 24 h, with a targeted amount of 6.9 mol-% styrylpyrene(68.3 eq. 

mTEGMA : 5.00 eq. StyP-O-MA). Scale-up with a factor of 10 resulted in 2.73 g of a polymer 

Figure 61. Synthesis of the styrylpyrene monomer StyP-O-MA 10, and its copolymerisation with mTEGMA 

to yield the polymers P3 and P4. 
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P3 with a molecular weight of 15 000 g mol-1 (Ɖ = 1.3) and around 5.4 mol-% of styrylpyrene, 

which represents approximately three light-responsive units per chain (Figure 62). 

To synthesise a sample that not only features a higher molecular weight but also more chromo-

phore molecules per chain, the amount of mTEGMA was doubled (136 eq) while styrylpyrene 

was multiplied by four (20 eq.). The obtained polymer (P4, 3.39 g) featured a molecular weight 

of 29 000 g mol-1 (Ɖ = 1.3) with approximately 12.0 mol-% of styrylpyrene and thus, 13 units 

per polymer strand (Figure 62). 

Both polymers (P3 and P4) were soluble in water up to at least 2 wt-%, while short irradiation 

experiments of P3 could visually reveal that the sample cross-links into a film when utilising 

visible light (Appendix Figure 161). However, P3 and P4 were very sticky and viscous sam-

ples, which made their handling rather difficult. Due to the limited amount of the samples, no 

further irradiation experiments were conducted before sending the samples to Daniel Hönders 

in Freiburg. 

In accordance with the project plan in Figure 60, the styrylpyrene-containing polymers should 

be cast into films together with nanocellulose fibrils carrying the same chromophore 1. Specif-

ically, nanocellulose is oxidised using TEMPO, transforming its hydroxy into carboxyl groups. 

Subsequently, the carboxy-functional nanocellulose can react with amines to form amide 

bonds. Therefore, styrylpyrene was functionalised with Boc-TOTA using N-hydroxysuccin-

imid to form an active ester as an intermediate (Figure 63). The successful formation of the 

product was evidenced via 1H-NMR (Figure 63). A diamine TEG derivate was selected to not 

only improve the water-solubility when compared to a comparable alkyl derivate but also to 

avoid ester bonds in the final molecule since they are prone to degradation in aqueous basic 

conditions, which are necessary for the nanocellulose functionalisation. Since one of the two 

amine groups of TOTA is protected with a Boc group, difunctionalisation with StyP can be 

100 1000 10000 100000 1000000

Mn = 15 000 g mol
-1

Ð = 1.3

M / g mol
-1

P3
2.73 g

5.4 mol-% StyP

3 StyP / Chain

100 1000 10000 100000 1000000

P4
3.39 g
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Figure 62. THF-SEC measurements (RI detector) of the polymers P3 and P4. 
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avoided and purification via column chromatography is facilitated when comparing the Boc 

protected amine to a free amine group. In addition, the Boc protection group can be readily 

removed via acidic treatment. Functionalisation of the nanocellulose fibrils was successfully 

conducted by Daniel Hönders and further results as well as experimental descriptions can be 

found in his thesis, with a short overview given in the following section. 

The obtained styrylpyrene-CNF (COOH / StyP / DMTMM = 1 /3 /3, refer to Chapter 8 ‘Ex-

perimental Part’) were too hydrophobic and could not be employed in a stable dispersion. Thus, 

the respective films were brittle, prone to breakage upon handling and visibly inhomogeneous. 

A possible solution to this problem is to reduce the degree of styrylpyrene functionalisation 

(e.g. COOH / StyP / DMTMM = 1 /1 /1) or possibly substituting the styrylpyrene in a second 

position to attach an additional hydrophilic group. However, on the one hand, altering the elec-

tronic system of styrylpyrene via attachment of another functional group would possibly also 

Figure 63. Synthesis and 1H-NMR spectrum (DMSO-d6) of the styrylpyrene-functional amine. 
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alter the photochemical reactivity of styrylpyrene, rendering it impossible to predict if the light-

induced cycloaddition would still proceed upon irradiation with visible light. On the other hand, 

reducing the amount of styrylpyrene per CNF by the factor of three might decrease the cross-

linking performance of the CNFs. 

Overall, the styrylpyrene-functional polymer strands as well as the final styrylpyrene-contain-

ing nanocellulose fibrils should be cast into films and subsequently investigated in photochem-

ical experiments. Irradiation with visible light introduces intramolecular cross-linking of the 

styrylpyrene units to form a network between polymer and nanocellulose fibrils. The films will 

be characterised via mechanical tests to observe the changes introduced during irradiation. In 

addition, treatment with UV light results in dissociation of the styrylpyrene dimers and thus, to 

de-cross-linking of the previous films. The cross- and de-cross-linking should be conducted in 

various subsequent experiments to observe the behaviour of the material over several lifecycles 

and towards reprogrammability. In addition, irradiation with variation of the irradiation inten-

sities, for example by employing a photomask that is gradually changing from transparent to 

opaque, introduces different cross-linking densities. The resulting materials should be gradu-

ally changing from flexible to stiff and thus inherit a lateral linear gradient, which should be 

confirmed via mechanical testing, e.g. digital image correlation (DIC) or atomic force micros-

copy (AFM). 

Due to the fact that no stable styrylpyrene-CNF dispersion for film casting could be achieved 

yet, irradiation and mechanical tests were conducted on films consisting of styrylpyrene-func-

tional polymers with unfunctionalised CNFs (50 / 50 wt-%). The films with a thickness of close 

to 20 µm have been irradiated with 430 nm for 30 minutes. Mechanical testing (i.e. tensile tests) 

could reveal changes before (solid line) and after irradiation (dotted line), with the latter being 

stiffer, proving the successful cross-linking of the films via the dimerisation of styrylpyrene 

(Figure 64 A). In addition, the fluorescence of the films visibly changed during the irradiation 

procedure (Figure 64 B), which is caused by the cycloaddition of StyP 1 and has been described 

in literature already.86 For comparison, the polymer samples were cast into films of close to 

20 µm thickness without CNFs. However, due to the high viscosity and stickiness of the poly-

mer samples, the films stuck to the glass surfaces they were cast onto and could not be removed. 

Therefore, a petri dish made from PET was designed and is currently being manufactured. In 

addition, UV irradiation tests have not yet been conducted with the irradiated polymer / CNF 

films. 
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Figure 64.: (A) Mechanical testing and (B) macroscopically observed fluorescence of films containing CNF 

and styrylpyrene-functional polymers (P3, P4) before and after irradiation with λmax = 430 nm for 30 min. 

In conclusion, several styrylpyrene-functional polymers as well as a styrylpyrene-amine mole-

cule were synthesised. Functionalisation of nanocelluloses acid groups with the styrylpyrene-

amine results in light responsive fibrils that – combined with the styrylpyrene-functional poly-

mers – will be subjected to irradiation experiments and mechanical tests towards reprogram-

mable gradient materials. However, the so far obtained styrylpyrene-CNFs did not yield any 

stable dispersions suitable for film casting yet. Several different approaches – such as reducing 

the amount of styrylpyrene per CNF – are available to overcome these problems. As described 

in Chapters 3 and 4, styrylpyrene has already been shown to not only form and break bonds on-

demand once but also over several dimerisation / dissociation cycles. Thus, 1 is highly suitable 

for application in reprogrammable materials. In addition, polymer ligations to form either 

block-copolymers or networks were successfully conducted, and first mechanical tests showed 

improved performance for irradiated films of styrylpyrene-polymers mixed with CNF. With 

these first successful steps already taken, styrylpyrene is highly promising for gradient materi-

als that can be reprogrammed on demand. The next steps for the investigation of reprogram-

mable gradient materials with styrylpyrene-functional polymers and CNFs are optimising the 

functionalisation of the CNFs with 1 to obtain a stable dispersion suitable for film casting, as 

well as casting films of polymers P3 and P4 utilising the newly design PET petri dish to com-

pare the obtained films with the already obtained results presented in Figure 64. Finally, the 

styrylpyrene polymers and styrylpyrene CNFs will be cast into films and mechanically tested, 

before irradiation and after irradiation with visible light, expecting the films to feature a higher 

stiffness and strength when treated with visible light. Mechanical testing can be conducted via 

tensile tests, subjecting a sample to controlled tension until failure, or dynamic mechanical tests 

(DMA), in which a sinusoidal stress is applied to a material while measuring the introduced 
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strain. Subsequently to curing with visible light, the films will be irradiated with UV light to 

obtain the starting material that should be more flexible due to a lower cross-link density. Over-

all, several different irradiation cycles will be conducted to prove the reversibility of the 

styrylpyrene-containing material and, thus, its suitability for reprogrammable materials. Most 

importantly, films will be irradiated while employing 2D patterning photomasks to obtain ma-

terials that feature lateral linear gradients in flexibility and strength towards reprogrammable 

gradient materials. 
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Conclusion and Outlook 

In the present thesis, reversible photochemical cycloadditions were explored to obtain funda-

mental insights into the precise wavelengths required to trigger their reactions and develop 

strategies for their implementation in potential reprogrammable gradient materials. In particu-

lar, the cycloaddition and -reversion of the red-shifted chromophore styrylpyrene (StyP) were 

investigated. Detailed analysis of the dimerisation reaction of StyP upon irradiation with visible 

light above 400 nm revealed that – starting from the trans-structure of StyP – isomerisation as 

well as dimerisation takes place. The light-induced [2+2] cycloaddition generates three iso-

meric cyclobutane structures that are all derived from two trans-molecules that react with each 

other and lead to final photoproducts with different orientations for the pyrene and phenyl sys-

tems. 

Based on the structural assignments with 1H-NMR spectroscopy, detailed photochemical in-

vestigations via a newly developed procedure, i.e. Wavelength-dependent Photon Efficiency 

Analysis (WPEA), were conducted. Specifically, irradiating a sample with different wave-

lengths, but constant parameters such as concentration and number of photons, yields an action 

plot depicting the conversion of a chromophore per wavelength. Based on this action plot, the 

efficiency of the light-induced reaction can be compared to the absorbance spectrum of the 

molecule, while also revealing information about the most suitable wavelength to trigger the 

cycloaddition. In a following step, a further action plot is obtained at the latter wavelength 

while varying the number of photons the sample is irradiated with. As a result, the reaction 

conversion can be plotted vs. the number of photons required to obtain maximum conversion. 
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In the current thesis, StyP was explored via WPEA revealing that the most suitable conditions 

for its dimerisation and dissociation are λ = 435 nm and λ = 330 nm respectively, while maxi-

mum conversion is obtained at approximately 500 µmol photons. In comparison to its absorb-

ance spectrum, the most suitable trigger wavelength of StyP is shifted by approximately 60 nm 

to higher wavelengths, allowing the visible light cycloaddition to be triggered with wavelengths 

that are among the mildest known for reversible cycloadditions. 

Moreover, the reaction of StyP was successfully employed in a block copolymer ligation. Irra-

diation with visible light induced the cycloaddition, forming a block copolymer from two 

styrylpyrene end-capped polymer strands. The cycloreversion back to the starting materials 

was achieved by irradiation with UV light. Several dimerisation / dissociation cycles were con-

ducted successfully proving the suitability of the chromophore for reprogrammable materials. 

Next, to generate reprogrammable gradient materials, it is essential to introduce the reversible 

photo responsive moieties into polymeric networks, which can be achieved by several routes, 

such as the implementation of the chromophores as side groups into polymer chains or as cross-

linking additives that can react with the polymer strands to form the network. Both strategies 

were investigated in the process of the current thesis, while a second chromophore was added 

to achieve a wavelength-orthogonal system. The advantages of such a system are that one ma-

terial can be cured with disparate wavelengths to obtain two distinct sets of properties (e.g. with 

regard to stiffness or strength), and that two different reactions can be induced subsequently to 

each other (e.g. network formation and subsequent network functionalisation). 

In the studies towards networks via cross-linking molecules, a visible light responsive, reversi-

ble pyrenyl cinnamic acid (PCA) derivate was linked to an o-methyl benzaldehyde (o-MBA) 

moiety that can undergo an irreversible cycloaddition with maleimides when irradiated with 

UV light. The resulting dichromophore was tested with regard to its dimerisation in the visible 

light range as well as the cross-reaction of PCA with Et-Mal when irradiated with UV-light. 

Both reactions were conducted successfully and independently from each other without any 

cross-reactions between the two different chromophores. In addition, both reactions can be 

triggered subsequently to each other and sequence-independent to finally obtain the same prod-

uct in which both light-responsive moieties underwent their respective light-triggered cycload-

dition. Indeed, preliminary polymer studies with a maleimide functional PEG already indicated 

the high suitability of the investigated dichromophore towards reprogrammable and gradient 

materials. 
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Furthermore, the second approach towards reprogrammable gradient materials was investi-

gated, in which side chain-functional polymers can form a network. Therefore, polymer chains 

were decorated with StyP or o-MBA as the side chain functionality. The combination of the 

two chromophores was tested with regard to cross-reactions via both, small molecules and pol-

ymers in solution and it was successfully proven that no reaction takes place and thus, the 

combination of StyP and o-MBA is uniquely suitable for wavelength-orthogonal systems. To 

further investigate the latter, polymers functionalised with StyP or o-MBA were cast into films 

and irradiated with disparate wavelengths. As a result, two different distinctive materials were 

obtained that were already visually different after irradiation. Post developing introduced wrin-

kles into the material cross-linked via o-MBA (cured with UV-A light), while areas that were 

cross-linked utilising the dimerisation of StyP (cured with visible light) remained smooth. In 

addition, mechanical testing via AFM showed that the material cured with visible light is stiffer 

and more adhesive than the material cured with UV-A light.  

In conclusion, the investigations showed that StyP as a reversible visible light chromophore 

can be combined with the UV-light triggered o-MBA dimerisation to obtain a fully wavelength-

orthogonal material. Combined with the reversibility of StyP – investigated in the previous 

polymer ligation studies – StyP proved to be highly suitable towards reprogrammable material 

design. 

In additional studies, StyP was introduced into water-soluble polymer strands (via copolymer-

isation with a TEG monomer) to be combined with StyP-functional nanocellulose fibrils. Me-

chanical testing of the StyP polymers revealed that irradiation with visible light led to a stiffer 

material. In on-going studies – conducted by Daniel Hönders, the cooperation partner of this 

project at the University of Freiburg – the polymers are currently investigated towards their 

reversibility under irradiation with UV-A light. In addition, the polymers will be combined 

with the nanocellulose fibrils and cast into films to compare the differences in mechanical prop-

erties to the pure polymer films. Subsequently, the materials will be investigated in studies 

towards gradient materials that – due to the reversibility of StyP – will inherit reprogrammable 

properties as well. In conclusion, the already obtained results throughout the current thesis 

show the high suitability of StyP for such reprogrammable gradient materials. 

To finally obtain reprogrammable gradient materials, the polymer films that have been em-

ployed in the current thesis need to be investigated separately for both, reprogrammability as 

well as properties such as toughness and flexibility with gradients. Therefore, styrylpyrene 

films need to be cured in a spatially resolved fashion (by employing shadow masks) with visible 

light to trigger the cycloaddition. After analysis of these cross-linked areas – for example via 
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AFM – the film needs to be irradiated with UV-A light to achieve de-cross-linking. These two 

irradiation procedures should be repeated several times, on the one hand employing the same 

shadow mask to rule out that photodamage is introduced to the material through repeated light-

treatment, and on the other hand with different photomasks to prove that the material can be 

reprogrammed to specific distinct patterns. In addition, the styrylpyrene materials need to be 

irradiated employing light gradients. To achieve such an irradiation procedure either photo 

masks can be used that gradually change from transparent to opaque or the irradiation source 

can be moved while either changing the light intensity or irradiation time. The thus obtained 

materials need to be mechanically tested for differences, e.g. in flexibility / stiffness or adhe-

siveness. After having successfully proved the suitability of styrylpyrene for both, reprogram-

mable and gradient materials, the two features need to be combined. In specific, styrylpyrene 

gradient materials should be generated and subsequent to curing de-cross-linked to obtain the 

starting material, while repeating these curing / de-cross-linking processes over several irradi-

ation cycles. Combining such a reprogrammable gradient material with a second wavelength-

orthogonal reaction, would lead to a highly light-responsive material. 
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Experimental Part 

8.1 Analytical Instrumentation and Methods 

8.1.1 Nuclear Magnetic Resonance Spectroscopy (NMR) 

NMR spectra were recorded using one of the following setups. Measurements were conducted 

in deuterated solvents and the δ-scale was normalized relative to the respective solvent signals 

for 1H spectra and 13C spectra. The annotation of the signals is based on HSQC and COSY 

experiments. Abbreviations for the multiplicity of the respective signals are: singlet (s), doublet 

(d), doublet of the doublet (dd), triplet (t), quartet (q), quintet (qu), multiplet (m). 

400 MHz NMR Spectrometer at KIT 

NMR spectra were recorded on a Bruker Ascend 400 instrument, performing at 400 MHz and 

a temperature of 298 K. 

600 MHz NMR Spectrometer at KIT 

The NMR data analysed for the detailed structure assignments in Chapter 3was obtained with 

the following parameters: 

The NMR spectra were recorded on Bruker Avance III 600 MHz spectrometer with a 5 mm 

CPTCI inversely detected 1H, 13C, 15N triple resonance cryogenically cooled probe head with 

an actively shielded z-gradient. The spectrometer frequencies are 599.70 MHz for proton and 

150.79 MHz carbon. The temperature is controlled with the Bruker VT-unit and set to 27° C. 

The following standard Bruker library experiments are used: proton 1D experiment (zg), COSY 
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(cosygpmfqf), TOSY (dipsi2etgpsi), NOESY (noesygpphzs), decoupled HSQC (hsqce-

detgpsisp2.2) and HMBC (hmbcetgpl2nd). The 1D 13C experiments are recorded with a modi-

fied pulse sequence with broadband excitation pulse177 and spin state selective version of 

HSQC-TOCSY experiment is performed.178 The 1D experiments are recorded with 32k (1H) 

and 132k (13C) points in the full spectral widths of 14 ppm and 230 ppm. The homonuclear 2D 

experiments are recorded with 8k or 16k points in the direct dimension leading to spectral res-

olution of 1 Hz or 0.5 Hz; and 512 increments in the indirect dimension and 16 Hz resolution. 

The decoupled HSQC experiments are recorded with 2k direct points and 4 Hz resolution, while 

all other heteronuclear experiments contain 16k direct points and 0.5 Hz resolution; and 640 

increments in the indirect dimension leading to resolution of 38 Hz. All 2D matrices are twice 

zero filled and linear prediction in the indirect dimension is performed. 

600 MHz NMR spectrometer at QUT 

NMR spectra were recorded on a Bruker System 600 Ascend LH, equipped with an ONP-Probe 

(5 mm) with z-gradient (1H: 600 MHz, 13C: 151 MHz,) at a temperature of 298 K. 

8.1.2 Size Exclusion Chromatography (SEC) 

If not specified otherwise SEC measurements were performed using the Agilent SEC setup. 

Agilent SEC at KIT 

SEC was performed on an Agilent 1200 system, consisting of an autosampler, a Plgel 5 μm 

bead-size guard column (50 × 7.5 mm), one Plgel 5 μm Mixed E column (300 × 7.5 mm), three 

Plgel 5 μm Mixed C columns (300 × 7.5 mm), a differential refractive index detector and a UV 

detector, using THF as eluent at 35 °C with a flow rate of 1 mL min-1. The SEC system was 

calibrated using linear poly(styrene) standards ranging from 370 to 2.5 × 106 g mol-1 or 

poly(methyl methacrylate) standards ranging from 800 to 2.2 × 106 g mol-1. Typically, 100 μL 

of a 2.0 mg mL-1 polymer solution was injected into the columns. 

Tosoh SEC at KIT (Soft Matter Synthesis Laboratory) 

SEC was performed on a TOSOH Eco-SEC HLC-8320 SEC System, consisting of an au-

tosampler, a SDV 5 μm bead-size guard column (50 × 8 mm, PSS) followed by three SDV 

5 μm columns (300 × 7.5 mm, subsequently 100 Å, 1000 Å and 105 Å pore size, PSS), and a 

Waters 2487 dual wavelength absorbance detector (analysis at 254 nm) in series with a refrac-

tive index detector using tetrahydrofuran (THF) as the eluent at 30 °C with a flow rate of 

1 mL min-1. The SEC system was calibrated using linear polystyrene standards ranging from 

266 to 2.52×106 g mol-1. 
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PSS SEC at QUT 

SEC was performed on a PSS SECurity2 system consisting of a PSS SECurity Degasser, PSS 

SECurity TCC6000 Column Oven (60 °C), PSS GRAM Column Set (8x 150 mm 10 µm Pre-

column, 8 x 300 mm 10 µm Analytical Columns, 1000 Å, 1000 Å and 30 Å) and an Agilent 

1260 Infinity Isocratic Pump, Agilent 1260 Infinity Standard Autosampler, Agilent 1260 Infin-

ity Diode Array and Multiple Wavelength Detector (A: 254 nm, B: 360 nm), Agilent 1260 In-

finity Refractive Index Detector (35 °C). HPLC grade DMAc, 0.01 M LiBr, is used as eluent 

at a flow rate of 1 mL min-1. Narrow disperse linear poly(styrene) (Mn = 266 g mol-1 to 

2.52 × 106 g mol-1) and poly(methyl methacrylate) (Mn = 202 g mol-1 to 2.2 × 106 g mol-1) 

standards (PSS ReadyCal) were used as calibrants. All samples were passed over 0.22 µm 

PTFE membrane filters. Molecular weight and dispersity analysis were performed in PSS 

WinGPC UniChrom software (version 8.2). 

DMAc SEC at QUT 

The SEC measurements were conducted on a PSS SECurity2 system consisting of a PSS SE-

Curity Degasser, PSS SECurity TCC6000 Column Oven (60 °C), PSS GRAM Column Set 

(8x150 mm 10 µm Precolumn, 8x300 mm 10 µm Analytical Columns, 1000 Å, 1000 Å and 

30 Å) and an Agilent 1260 Infinity Isocratic Pump, Agilent 1260 Infinity Standard Au-

tosampler, Agilent 1260 Infinity Diode Array and Multiple Wavelength Detector (A: 254 nm, 

B: 360 nm), Agilent 1260 Infinity Refractive Index Detector (35 °C). HPLC grade DMAc, 

0.01 M LiBr, is used as eluent at a flow rate of 1 mL·min-1. Narrow disperse linear poly(sty-

rene) (Mn: 266 g·mol-1 to 2.52×106 g·mol-1) and poly(methyl methacrylate) (Mn: 202 g·mol-1 

to 2.2×106 g·mol-1) standards (PSS ReadyCal) were used as calibrants. All samples were passed 

over 0.22 µm PTFE membrane filters. Molecular weight and dispersity analysis were per-

formed in PSS WinGPC UniChrom software (version 8.2). 

8.1.3 Electrospray Ionisation - Mass Spectrometry (ESI-MS) 

ESI-MS at KIT 

Mass spectra were recorded on a Q Exactive (Orbitrap) mass spectrometer (Thermo Fisher 

Scientific, San Jose, CA, USA) equipped with an HESI II probe. The instrument was calibrated 

in the m / z range 74 - 1822 using premixed calibration solutions (Thermo Scientific). A con-

stant spray voltage of 4.7 kV and a dimensionless sheath gas of 5 were applied. The capillary 

temperature and the S-lens RF level were set to 320 °C and 62.0, respectively. The samples 
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were dissolved with a concentration of 0.05 mg mL-1 in a mixture of THF and MeOH (3:2) 

containing 100 μmol of sodium trifluoroacetate and infused with a flow of 5 μL min-1. 

ESI-MS at QUT 

Spectra were recorded on a Q Exactive Plus (Orbitrap) mass spectrometer (Thermo Fisher Sci-

entific, San Jose, CA, USA) equipped with an HESI II probe. The instrument was calibrated in 

the m/z range 74 - 1822 using premixed calibration solutions (Thermo Scientific) and for the 

high mass mode in the m/z range of 600 - 8000 using ammonium hexafluorophosphate solu-

tion. A constant spray voltage of 3.5 kV, a dimensionless sheath gas and a dimensionless aux-

iliary gas flow rate of 5 and 3 were applied, respectively. The capillary temperature was set to 

320 °C, the S-lens RF level was set to 62, and the aux gas heater temperature was set to 50 °C. 

The sample was injected using a syringe pump with a constant flow rate of 5 µL min-1. 

8.1.4 Gas Chromatography-Mass Spectroscopy (GC-MS) 

GC-MS (EI) chromatograms were recorded by using a Varian 431-GC instrument with a capil-

lary column FactorFourTM VF-5ms (30 m × 0.25 mm × 0.25 μm), and a Varian210-MS detec-

tor. Scans were performed from 40 to 650 m/z at rate of 1.0 scans s-1. Measurements were per-

formed in the split–split mode (split ratio 50:1) using helium as carrier gas (flow rate 

1.0 mL × min-1). The oven temperature program was: initial temperature 95 °C, hold for 1 min, 

ramp at 15 °C min-1 to 200 °C, hold for 2 min, ramp at 15 °C min-1 to 325 °C, hold for 5 min. 

The injector’s transfer line temperature was set to 250 °C. 

8.1.5 UV/Vis Spectroscopy 

UV/Vis Spectrometer at KIT 

UV/Vis spectra were recorded on a Cary 100 UV-Visible Spectrophotometer (Agilent Tech-

nologies, USA) equipped with a tungsten halogen light source (190 to 900 nm, accuracy +/-

2 nm) and a R928 PMT detector. The samples were measured in StarnaGmbH quartz high pre-

cision cell cuvettes at ambient temperature and baseline corrected with respect to pure solvent. 

Spectra can be collected between 200 and 800 nm. 

UV/Vis Spectrometer at QUT 

UV/Vis spectra were recorded on a Shimadzu UV-2700 spectrophotometer equipped with a 

CPS-100 electronic temperature control cell positioner. The samples were measured in Hellma 

Analytics quartz high precision cell cuvettes at ambient temperature and baseline corrected 

with respect to pure solvent. Spectra can be collected between 200 and 800 nm. 
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8.1.6 Mechanical Testing 

Tensile tests: Tensile mechanical properties of the materials were characterised using a Deben 

Minitester equipped with a 20 N load cell. The tensile test was performed at a controlled rela-

tive humidity of 50 % at 23 °C. Rectangular specimen strips of 12.5 mm in length, 2 mm in 

width, and a thickness in the range of 20-30 µm were tested at a strain rate of 0.1 mm min-1 and 

a gauge length of 10 mm. 7 specimens were tested for each sample. 
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8.2 Light Sources and Irradiation Setups 

8.2.1 LED and UV Lamps 

 

Figure 65. Emission spectrum of the Avonec actinic blue 3 W LED setup for irradiation with λmax = 444 nm. 

 

Figure 66. Emission spectrum of the Luzchem LZC-LBL LED for irradiation with λmax = 441 nm. 

350 400 450 500 550

N
o

rm
a

lis
e

d
 E

m
is

s
io

n

Wavelength / nm

 
max

 = 444 nm Avonec 440 - 450 nm 

actinic blue 3 W LED

350 400 450 500 550

N
o

rm
a

lis
e

d
 E

m
is

s
io

n

Wavelength / nm

 
max

 = 441 nm Blue LED



Light Sources and Irradiation Setups 

107 

 

Figure 67. Emission spectrum of the Luzchem LZC-UVB lamp for irradiation with λmax = 313 nm. 

8.2.2 UV Light Photoreactor 

 

Figure 68. Photoreactor used for irradiation with broad band UV lights. The setup can be equipped with 

up to five lamps and features a rotating support for the vial holder. 
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Figure 69. Emission spectrum for the Cosmedico Arimed B6 that can be used with the UV photoreactor for 

irradiation with λmax = 314 nm. 

8.2.3 Visible Light Photoreactor 

 

Figure 70. Photoreactor used for irradiation with LEDs in the visible light range. 
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Figure 71. Emission spectrum of the Avonec actinic blue 3 W LED used with the visible light photoreactor 

for irradiation with λmax = 416 nm. 

8.2.4 Innolas Tuneable Laser System 

An Innolas Tuneable Laser System SpitLight 600 OPO was applied as a light source. An optical 

parametric oscillator (OPO) was pumped with a diode pumped Nd:YAG laser (repetition rate 

100 Hz). The energy of the laser pulses was downregulated by an attenuator (polarizer). The 

beam is redirected into the vertical cylindrical hole of a custom-made sample holder, which 

contains the samples during the experiments (Figure 72). These glass vials are crimped 0.7 mL 

vials by LLG Labware, Lab Logistic Group GmbH (Art. Nr. 4-008202). The energy of the 

incident laser pulses was measured by an Energy Max PC power meter (Coherent) directly 

above the sample holder. Prism and sample holder are positioned in a way that the complete 

diameter of the hole of the sample holder is covered by the incident laser beam. 
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Figure 72. Experimental setup for the tuneable laser experiments. The energy output is regulated with the 

attenuator and controlled with the energy meter (setup without sample). Measurement of energy and irradi-

ation of samples cannot be carried out simultaneously. An individual setting of the attenuator is necessary 

before each irradiation experiment. 

Control over the Incident Number of Photons in a Tuneable Laser Experiment 

The number of photons np ([np] = mol) that a monochromatic laser pulse contains can be cal-

culated by application of the Planck-Einstein relation from the energy of the pulse Epulse, the 

incident wavelength λ, Planck’s constant h and the speed of light c. 

𝑛p =
𝐸pulse   𝜆

h   c  NA

 

If the absorption of the glass vial and the extent of reflection and scattering at the vial at the 

respectively relevant wavelength is known, a target energy value can be calculated that must 

be reached during the above described measurement to guarantee that the desired number of 

photons penetrates the sample solution during the subsequent irradiation. The wavelength de-

pendent transmittance of the glass vials was determined experimentally using the above setup. 

Three glass vials were randomly selected as calibration vials. For varying wavelengths and in 

each case at a constant power output of the laser the energy was measured both with and without 

the calibration vials fitted into the sample holder. The top parts of these vials were cut off to 

minimize errors in the procedure, since only the bottom and sides of the glass vials would 

contribute significantly to the reduction of the photon flux that enters the solution. 

The measured energy per pulse without a calibration vial in the sample holder is denoted as E0 

and the measured energy per pulse with a calibration vial in the sample holder as En. The trans-

mittance was calculated as the ratio of En to E0. The average transmittance over the measure-

ments of the three vials (Tλ) was plotted together with the respective error (compare Figure 74 

and Figure 75). 
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𝑇λ =
𝐸n
𝐸0

 

The target energy per pulse E0 can be calculated directly from the wavelength λ, the number of 

pulses 𝑘, the transmittance of the glass vial at the respective wavelength 𝑇λ and the desired total 

photon count 𝑛p. 

𝐸0 =
𝑛p NA h c

𝑘 𝑇λ 𝜆
 

By controlling the target E0 at the respective wavelength, the number of photons that penetrate 

each sample solution of one set of experiments as described in the following subsections was 

guaranteed to be identical despite irradiation at different wavelengths. 

Procedure for the Transmittance of the Glass Vials 

The transmittance of the glass vials that were used for photoreactions with the tuneable laser 

system was determined as follows. Measurement of the energy of laser pulses at a constant 

energy output was carried out directly above the sample holder first without a glass vial in the 

sample holder and subsequently with an empty glass vial in the sample holder. The headspace 

section of the glass vials was removed for these measurements to detect only the absorbance of 

the bottom of the vial (Figure 73). The described procedure was performed for three individual 

glass vials to account for variabilities between the vials. The obtained averaged values are listed 

in Table 3 (KIT) and Table 4 (QUT). 

 

Figure 73. Left: uncrimped vial; right: vial after removal of the headspace section. 
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Data for the Transmittance of the Glass Vials at KIT 

Table 3. Transmittance of the glass vials used for the laser experiments. These values were measured with 

the tuneable laser setup and vials at KIT. 

KIT Setup 

λ / nm Tλ / % Mean Deviation / % 

285 13.2 0.2 

295 19.7 0.6 

305 30.3 0.5 

315 37.7 1 

325 45.6 0.5 

335 47.5 1 

345 51.1 0.6 

355 56.3 1.2 

365 58.9 0.8 

375 61 0.9 

385 62.9 0.9 

395 60.4 0.9 

405 64.5 1.6 

415 60.4 1.1 

425 62.1 0.9 

435 65.1 0.3 

445 65.9 1.2 

455 66.3 1.2 

465 67.7 3.1 

475 68.8 3.0 

485 65.6 3.2 

495 65.9 4.0 
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The data was subsequently fitted to obtain values for the wavelengths that have not been meas-

ured during the calibration process (compare Figure 74). 

 

Figure 74. Calibration of the glass vial transmittance including a fit to obtain the values that were not de-

termined experimentally. This calibration was done for the laser setup and Glass vials at KIT. 

Data for the Transmittance of the Glass Vials at QUT 

Table 4. Transmittance of the glass vials used for the laser experiments. These values were measured with 
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QUT Setup 

λ / nm Tλ / % Mean Deviation / % 

285 13.3 1.3 

295 28.2 2.6 

305 33.0 3.2 

315 43.9 4.3 

325 49.1 2.7 

335 55.1 3.5 

345 55.7 2.4 

355 57.5 3.3 

365 60.3 4.3 

375 61.0 3.6 

385 61.1 3.2 

395 62.8 3.6 

405 62.4 4.6 

Model ExpGro3

Equation y = A1*exp(x/t1) + A2*exp(x/t2) + A3*exp(x/t3) + y0
Plot B
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415 64.8 1.9 

425 65.0 2.6 

435 67.5 2.0 

445 65.9 3.0 

455 64.5 2.4 

465 67.7 3.1 

475 68.8 3.0 

485 65.6 3.2 

495 65.9 4.0 

 

The data was subsequently fitted to obtain values for the wavelengths that have not been meas-

ured during the calibration process (compare Figure 75). 

 

Figure 75. Calibration of the glass vial transmittance including a fit to obtain the values that were not de-

termined experimentally. This calibration was done for the laser setup and Glass vials at QUT. 
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sity of the beam was monitored and adjusted with the built-in polarizer (attenuator). A calcu-

lated target energy value was set, which enables the irradiation with the desired number of 

photons during the irradiation time. 
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8.3 Synthetic Protocols 

8.3.1 Hydroxy-styrylpyrene (StyP, 1) 

 

Hydroxy-styrylpyrene was synthesized following a similar reaction procedure published pre-

viously in the literature.86 

4-Acetoxystyrene (0.54 mL, 0.58 g, 3.56 mmol, 1.00 eq.), 1-bromopyrene (1.00 g, 3.56 mmol, 

1.00 eq.), palladium(II) acetate (8.00 mg, 35.6 µmol, 0.01 eq.), triphenylphosphine (18.7 mg, 

71.1 µmol, 0.02 eq.) and triethylamine (0.73 mL, 1.00 g, 9.88 mmol, 2.78 eq.) were dissolved 

in DMF (19.8 mL), degassed with nitrogen for 20 minutes and heated to 100 °C. After stirring 

for 1 day, the solvents were removed under reduced pressure. The obtained solid was dissolved 

in ethyl acetate (ca. 100 mL), subsequently washed with water (3 x 50 mL) and brine (50 mL), 

dried over MgSO4, filtered and evaporated under reduced pressure. 

To obtain the final hydroxy-structure the crude product was deprotected via suspension with 

NaHCO3 (0.79 g, 9.44 mmol, 3.00 eq.) in a mixture of ethanol (100 mL) and water (25 mL) 

under reflux for 3 hours. The mixture was precipitated into a mixture of 1M HCl (100 mL) and 

ice water (300 mL), filtered, washed with water and purified using a flash chromatography 

system (cyclohexane / ethyl acetate from 9 : 1 to 8 : 2) to obtain 0.50 g of the product (yield 

41 %) as a yellow powder. 

1H-NMR (400 MHz, Acetonitrile-d3) δ / ppm = 8.60 (d, J = 9.3 Hz, 1H, 8), 8.38 (d, J = 8.1 Hz, 

1H, 15), 8.25 - 8.20 (m, 3H, 1,3,16), 8.17 (d, J = 9.3 Hz, 1H, 7), 8.11 (d, J = 16.1 Hz, 1H, 18), 

8.10 (s, 2H, 12,13), 8.03 (t, J = 7.7 Hz, 1H, 2), 7.66 - 7.62 (m, 2H, 20,24), 7.39 (d, J = 16.1 Hz, 

1H, 17), 7.1 - 7.2 (bs, 1H, 25), 6.93 - 6.88 (m, 2H, 21,23). 
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Figure 76.1H-NMR (400 MHz, deuterated acetonitrile) of hydroxy-styrylpyrene (StyP 1). 

8.3.2 Carboxy-styrylpyrene (StyP-COOH) 
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into water and after filtering freeze-dried. The desired product carboxy-styrylpyrene was ob-

tained as a yellow powder (2.95 g, 82 % yield). 

1H-NMR (600 MHz, DMSO-d6): δ / ppm =  8.80 (d, J = 9.3 Hz, 1H, 8), 8.57 - 8.52 (m, 2H, 

15,18), 8.34 - 8.26 (m, 4H, 1,3,7,16), 8.19 (s, 2H, 12,13), 8.09 (t, J = 7.6 Hz, 1H, 2), 8.04 - 7.97 

(m, 4H, 20,12,23,24), 7.63 (d, J = 16.1 Hz, 1H, 17). 

 

 

Figure 77. 1H-NMR (600 MHz, deuterated DMSO) of carboxy-styrylpyrene (StyP-COOH). 
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8.3.3 mPEG-amine (mPEG-NH2) 

 

mPEG amine was synthesized from hydroxy-PEG monomethyl ether (mPEG-OH) according 

to a two-step literature procedure.179 

The experimental procedure described for the preparation of 2-octylamine180 was adapted to 

polymers. Diisopropyl azodicarboxylate (DIAD; 2.95 mL, 3.03 g, 0.015 mol, 3.00 eq.) was 

added dropwise to a solution of mPEG-OH (average Mn = 1900 g mol-1, 10 g, 0.005 mol, 

1.00 eq.), phthalimide (2.21 g, 0.015 mol, 3.00 eq.) and triphenylphosphine (3.93 g, 0.015 mol, 

3.00 eq) in tetrahydrofuran (17 mL) at ambient temperature. The solution was stirred at ambient 

temperature for 5 days. The solvent was removed under reduced pressure. Afterwards, the 

product was dissolved in water. The solid was removed by filtration and the aqueous solution 

was washed with diethyl ether. Water was removed under reduced pressure and the oily product 

was dried at 40 °C under high vacuum. The yields were quantitative. 

Phthalimido-PEG (10.0 g, 0.005 mol, 1.00 eq.) in ethanol (100 mL) were treated with an aque-

ous solution of hydrazine monohydrate (65%; 2.5 g, 0.05 mol, 10.0 eq.) under reflux for 3 - 4 

h. Concentrated hydrochloric acid was added to the cold solution up to pH 2 - 3 and afterwards 

the solvents removed until only little amounts were left that could be precipitated into cold 

diethyl ether. The obtained product was then analysed via NMR, ESI-MS and SEC (DMAc). 

1H-NMR (600 MHz, DMSO-d6): δ / ppm = 3.51 (m, b), 3.24 (s, 3H, a), 2.77 (t, J = 5.6 Hz, 2H, 

c). 
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Figure 78. 1H-NMR (600 MHz, deuterated DMSO) of mPEG-NH2. 

 

Figure 79. DMAc SEC (RI detector) measurement of mPEG-NH2. 
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Figure 80. ESI-MS measurement of mPEG-NH2. 

Table 5. Peak assignment of the ESI-MS data of the synthesized mPEG-NH2 showing the structures as-

signed in Figure 80, the experimental as well as theoretical m / z values and the resolution. 

Structure Resolution m / z (exp) m / z (theo) ∆ m / z 

mPEG-NH2 + H+ 54806 1616.9924 1616.9932 0.0008 

mPEG-NH2 + Na+ 51606 1638.9733 1638.9752 0.0019 
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8.3.4 mPEG-styrylpyrene (mPEG-StyP, 3) 

 

To a solution of carboxy-styrylpyrene (0.11 g, 316 µmol, 3.00 eq.), mPEG-amine (average 

Mn = 1900 g mol-1, 0.20 g, 105 µmol, 1.00 eq.) and triethylamine (63.9 mg, 632 µmol, 

6.00 eq.) in dry DMF, HBTU (0.24 g, 632 µmol, 6 eq.) was added and the mixture stirred at 

ambient temperature for 20 hours. Afterwards the solvents were removed under reduced pres-

sure (60 °C), the remainder suspended in ethyl acetate for 1 h and the non-dissolvable solid 

filtered off. After removing ethyl acetate, the remaining solid was suspended in water, the re-

maining solid filtered off and after adding saturated aqueous sodium chloride solution, the wa-

ter containing layer extracted with dichloromethane until the organic layer stayed clear instead 

of changing its colour to yellow. The combined organic layers were dried over magnesium 

sulfate, filtered, the mixture concentrated until only little dichloromethane was left and precip-

itated into cold diethyl ether. 

The pure polymer was obtained as a yellowish powder (99.5 mg, 42 % yield) and analysed via 

NMR, ESI-MS and SEC (DMAc). 

1H-NMR (600 MHz, DMSO-d6): δ / ppm = 8.82 (d, J = 9.4 Hz, 1H, 8), 8.59 - 8.49 (m, 2H, 

15,18), 8.36 - 8.26 (m, 4H, 1,3,7,16), 8.20 (s, 2H, 12,13), 8.09 (t, J = 7.6 Hz, 1H, 2), 7.99 - 7.92 

(m, 4H, 20,21,23,24), 7.62 (d, J - 16.0 Hz, 1H, 17), 3.60 - 3.40 (m, polymer backbone), 3.23 

(s, 3H, -OMe), 3.11 - 3.03 (m, 4H, -(CH2)2-NH-). 
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Figure 81. 1H-NMR (600 MHz, deuterated DMSO) of mPEG-StyP 3. 

 

Figure 82. DMAc SEC (RI detector) measurement of mPEG-StyP. 
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Figure 83. ESI-MS measurement of mPEG-StyP. 

Table 6. Peak assignment of the ESI-MS data of the synthesized mPEG-NH2 showing the structures as-

signed in Figure 83, the experimental as well as theoretical m / z values and the resolution. 
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2-Hydroxy-6-methylbenzaldehyde was synthesised in a two-step procedure according to liter-

ature181–183. 

The synthesis of methyl 4-((2-formyl-3-methylphenoxy)methyl)benzoate was slightly adapted 

from  a previously published reaction procedure:183  

In a round bottom flask 2-hydroxy-6-methylbenzaldehyde (0.25 g, 1.83 mmol, 1.00 eq.) and 

methyl 4-(bromomethyl) benzoate (0.46 g, 2.02 mmol, 1.10 eq.) were dissolved in acetone 

(12 mL). K2CO3 (0.38 g, 2.75 mmol, 1.50 eq.) and 18-crown-6 (9.70 mg, 36.7 µmol, 0.02 eq.) 

were added to the solution. The resulting dark brown suspension was stirred overnight at 40°C. 

The undissolved K2CO3 was filtered off and the solvent was evaporated. The residue was dis-

solved in DCM / H2O (400 mL, 1 : 1), the phases were separated, and the aqueous layer was 

extracted with DCM (2 x 40 mL). The combined organic layers were dried over MgSO4 and 

the solvent was removed under reduced pressure. The product was purified by recrystallization 

from cyclohexane / ethyl acetate (7 : 1) to obtain 0.40 g (yield: 63.6%) of the white product. 

1H-NMR (400 MHz, Acetonitrile-d3) δ / ppm = 10.69 (s, 1H, 2), 8.02 (d, J = 8.4 Hz, 2H, 

12,13), 7.59 (d, J = 8.7 Hz, 2H, 11,14), 7.42 (t, J = 8.2 Hz, 1H, 6), 7.02 (d, J = 8.4 Hz, 1H, 7), 

6.88 (d, J = 7.6 Hz, 1H, 5), 5.28 (s, 2H, 9), 3.87 (s, 3H, 18), 2.52 (s, 3H, 1). 

 

Figure 84. 1H-NMR (400 MHz, deuterated acetonitrile) of o-MBA 4. 
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8.3.6 Tetrathylene glycol difumarate (TGD, 5) 

 

Tetraethylene glycol (2.63 g, 13.5 mmol, 1.00 eq.), mono-ethyl fumarate (4.48 g, 31.1 mmol, 

2.30 eq.), 4-dimethylaminopyridine (DMAP, 0.50 g, 4.06 mmol, 0.30 eq.), and EDC*HCl 

(7.77 g, 40.6 mmol, 3.00 eq.) were dissolved in dry DMF. Next, water (ca. 100 mL) and DCM 

(ca. 100 mL) were added to the reaction mixture. The layers were separated, the organic layer 

washed with water (2 x 100 mL), dried over MgSO4, filter and the solvents removed under 

reduced pressure. The crude product was purified via flash chromatography (cyclohex-

ane / ethyl acetate) to obtain 3.16 g of TGD (yield: 52.4 %). 

1H-NMR (400 MHz, Acetonitrile-d3) δ / ppm= 6.79 (s, 4H, 3), 4.31 - 4.27 (m, 4H, 4), 4.22 (q, 

J = 7.1 Hz, 4H, 2), 3.71 - 3.66 (m, 2H, 5), 3.60 - 3.53 (m, 8H, 6), 1.27 (t, J = 7.1 Hz, 6H, 1).

 

Figure 85. 1H-NMR (400 MHz, deuterated acetonitrile) spectrum of TGD, 5). 
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8.3.7  (E)-3-(pyren-1-yl)acrylic acid 

 

(E)-3-(pyren-1-yl)acrylic acid was synthesized according to a literature procedure (949 mg, 

3.49 mmol, 73.0 % yield).184 

1H-NMR (400 MHz, DMSO-d6) δ / ppm = 12.61 (s, 1H), 8.71 (d, J = 15.7 Hz, 1H), 8.56 - 8.08 

(m, 9H), 6.84 (d, J - 15.7 Hz, 1H).  

13C-NMR (101 MHz, DMSO-d6) δ / ppm = 167.81, 141.16 - 120.39 (m). 

8.3.8 Butyl (E)-3-(pyren-1-yl)acrylate (9) 

 

500 mg (E)-3-(pyren-1-yl)acrylic acid (1.84 mmol, 1.00 eq.) was suspended in anhydrous 

DCM (15 mL) in a flame-dried flask equipped with a reflux condenser. 1.33 mL SOCl2 (2.18 

g, 18.4 mmol, 10.0 eq.) were added to the suspension and the mixture was heated to 65 °C for 

90 min. Excess SOCl2 and the solvent were evaporated under reduced pressure. The remaining 

solid was dissolved in anhydrous DCM (15 mL) and 255 μL NEt3 (185.8 mg, 1.84 mmol, 1.00 

eq.) were added. A solution of 185 μL 1-butanol (149.7 mg, 2.02 mmol, 1.10 eq.) in 10 mL 

anhydrous DCM was added dropwise to the stirred mixture at ambient temperature. After stir-

ring for 18 h, the reaction was quenched by carefully adding ice-cold water. DCM (100 mL) 

was added and the phases were separated. The aqueous phase was extracted with DCM (3 × 50 

mL) and the combined organic phases were dried over Na2SO4. The solvents were evaporated, 

and the crude product was recrystallised in EtOH to yield a yellow solid (497 mg, 1.71 mmol, 

93.1 %). 

1H-NMR (400 MHz, CDCl3) δ / ppm = 8.83 (d, J = 15.7 Hz, 1H, 1), 8.48 (d, J = 9.3 Hz, 1H, 

16), 8.31 - 7.99 (m, 8H, 2-15,17), 6.72 (d, J = 15.7 Hz, 1H, 18), 4.31 (t, J = 6.7 Hz, 2H, 20), 

1.84 - 1.70 (m, 2H, 21), 1.57 - 1.43 (m, 2H, 22), 1.02 (t, J = 7.4 Hz, 3H, 23).  

13C NMR (101 MHz, CDCl3): δ (ppm) = 167.70, 143.61 – 117.58 (m), 65.04, 31.34, 19.75, 

14.28. 
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Figure 86. 1H-NMR (400 MHz, deuterated chloroform) of 9. 

8.3.9 3-Hydroxypropyl (E)-3-(pyren-1-yl)acrylate via SOCl2-

mediated chlorination 

 

1.00 g (E)-3-(pyren-1-yl)acrylic acid (3.67 mmol, 1.00 eq.) were suspended in anhydrous DCM 

(30 mL). 2.66 mL SOCl2 (4.37 g, 36.7 mmol, 10.0 eq.) were added and the mixture was heated 

to 75 °C for 90 min. The solvent and excess SOCl2 were removed under reduced pressure and 

the remains were dissolved in dry DCM (30 mL) and added dropwise to a solution of 1.33 mL 

1,3-propandiol (1.40 g, 18.4 mmol, 5.00 eq.) as well as 510 μL NEt3 (372 mg, 3.68 mmol, 1.00 

eq.) in 15 mL dry DCM. The mixture was stirred for three days at ambient temperature. The 

reaction was quenched by adding water (50 mL) and was diluted with DCM (100 mL). The 

aqueous phase was extracted with DCM (3 × 50 mL). The combined organic phases were dried 

over Na2SO4 and all volatiles were evaporated under reduced pressure. The pure product was 

received as orange solid (1.21 g, 3.66 mmol, 99.5 %).  
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1H-NMR (400 MHz, DMSO-d6): δ / ppm = 8.74 (d, J = 15.7 Hz, 1H), 8.54 (dd, J = 8.8, 2.9 Hz, 

2H), 8.40 - 8.07 (m, 7H), 6.92 (d, J = 15.7 Hz, 1H), 4.61 (t, J = 5.2 Hz, 1H), 4.31 (t, J = 6.6 Hz, 

2H), 3.58 (td, J = 6.2, 5.0 Hz, 2H), 1.88 (q, J = 6.4 Hz, 2H). 

13C-NMR (101 MHz, DMSO-d6): δ / ppm = 166.32, 142.14 - 118.29 (m), 61.66, 57.33, 31.66. 

8.3.10 (E)-3-((3-(pyren-1-yl)acryloyl)oxy)propyl 4- ((2-formyl-

3-methylphenoxy)methyl)benzoate (7) 

 

491 mg 4-((2-formyl-3-methylphenoxy)methyl)benzoic acid (1.82 mmol, 1.20 eq.), 868 mg 

EDC∙HCl (4.54 mmol, 3.00 eq.) and 92.0 mg DMAP (0.75 mmol, 0.50 eq.) were dissolved in 

anhydrous DCM (30 mL) under argon atmosphere and cooled to 0 °C. A solution of 500 mg 3-

hydroxypropyl (E)-3-(pyren-1-yl)acrylate (1.51 mmol, 1.00 eq.) in anhydrous DCM (30 mL) 

was added dropwise and the reaction mixture was allowed to reach ambient temperature. After 

stirring for 18 h, the reaction was quenched by adding water (50 mL) and diluted with DCM 

(50 mL). The phases were separated, and the organic phase was washed twice with saturated 

sodium bicarbonate solution (50 mL), 1 M HCl (50 mL) and water (100 mL). The organic phase 

was dried over Na2SO4 and all volatiles were evaporated under reduced pressure. The crude 

product was purified by column chromatography using a mixture of cyclohexane/DCM as elu-

ent (1:1, 𝑅𝑓 = 0.19). The product 7 was received as yellow solid (451 mg, 0.77 mmol, 51 %).  

1H-NMR (400 MHz, DMF-d7): δ / ppm = 10.64 (d, J = 0.6 Hz, 1H), 8.82 (d, J = 15.7 Hz, 1H), 

8.60 - 8.03 (m, 11H), 7.66 (d, J = 8.3 Hz, 2H), 7.45 (t, 1H), 7.06 (d, J = 8.4 Hz, 1H), 6.92 - 6.86 

(m, 2H), 5.24 (s, 2H), 4.59 (t, J = 6.2 Hz, 2H), 4.53 (t, J = 6.3 Hz, 2H), 2.51 (s, 3H), 2.37 - 2.26 

(m, 2H).  

13C-NMR (101 MHz, DMF-d7): δ / ppm = 191.68, 166.80, 166.10, 144.61 - 119.02 (m), 

111.40, 69.83, 62.52, 61.99, 28.48, 20.87. 

8.3.11 10-hydroxydecyl (E)-3-(pyren-1-yl)acrylate 
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500 mg (E)-3-(pyren-1-yl)acrylic acid (1.84 mmol, 1.00 eq.) were suspended in anhydrous 

DCM (15 mL). 1.33 mL SOCl2 (2.19 g, 18.4 mmol, 10.0 eq.) were added and the mixture was 

heated to 75 °C for 90 min. The solvent and excess SOCl2 were removed under reduced pres-

sure and the remains were dissolved in dry THF (25 mL) and added dropwise to a solution of 

1.60 g 1,10-decandiol (9.18 mmol, 5.00 eq.) as well as 205 μL NEt3 (185 mg, 3.68 mmol, 1.00 

eq.) in 30 mL dry THF. The reaction mixture was stirred at ambient temperature for four days. 

The reaction mixture was filtered and quenched by adding water. The aqueous phase was ex-

tracted with DCM (3 × 100 mL). The organic phase was dried over Na2SO4 and all volatiles 

were evaporated subsequently. The residue was purified by column chromatography (cyclo-

hexane/ethyl acetate, 2:1, 𝑅𝑓 = 0.41). The product was received as yellow solid (508 mg, 1.19 

mmol, 64.6 %).  

1H-NMR (400 MHz, CDCl3) δ / ppm = 8.83 (d, J = 15.7 Hz, 1H), 8.48 (d, J = 9.3 Hz, 1H), 

8.33 - 7.98 (m, 8H), 6.71 (d, J = 15.8 Hz, 1H), 4.30 (t, J = 6.7 Hz, 2H), 3.63 (t, J = 6.6 Hz, 2H), 

1.78 (qu, J = 8.0, 6.5 Hz, 2H), 1.57 (qu, J = 6.8 Hz, 2H), 1.50 - 1.24 (m, 12H).  

13C-NMR (101 MHz, CDCl3) δ / ppm = 167.70, 141.76, 134.01 - 119.58 (m), 65.32, 63.52, 

33.26, 30.04 - 29.70 (m), 29.26, 26.49, 26.19. 

8.3.12 E)-10-((3-(pyren-1-yl)acryloyl)oxy)decyl 4- ((2-formyl-3-

methylphenoxy)methyl)benzoate (8) 

 

227 mg 4-((2-formyl-3-methylphenoxy)methyl)benzoic acid (0.84 mmol, 1.20 eq.), 410 mg 

EDC∙HCl (2.10 mmol, 3.00 eq.) and 43.0 mg DMAP (0.75 mmol, 0.50 eq.) were dissolved in 

anhydrous DCM (20 mL) under argon atmosphere and cooled to 0 °C. A solution of 300 mg 

10-hydroxydecyl (E)-3-(pyren-1-yl)acrylate (0.70 mmol, 1.00 eq.) in anhydrous DCM (150 

mL) was added dropwise and the reaction mixture was allowed to reach ambient temperature. 

After stirring for 18 h, the reaction was quenched by adding water (50 mL) and diluted with 

DCM (50 mL). The mixture was diluted with DCM (100 mL) and the phases were separated. 

The organic phase was washed with a saturated sodium bicarbonate solution as well as brine 

and all solvents were evaporated under reduced pressure. The residue was purified by column 
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chromatography (cyclohexane/ethyl acetate, 3:1, 𝑅𝑓 = 0.55). The product was obtained as yel-

low solid (325 mg, 0.48 mmol, 68.2 %).  

1H-NMR (400 MHz, CDCl3) δ = ppm = 10.74 (s, 1H,44), 8.83 (d, J = 15.7 Hz, 1H, 1), 8.48 

(d, J = 9.3 Hz, 1H,16), 8.29 - 7.99 (m, 11H, 2-15,17,38,40), 7.49 - 7.45 (m, 2H, 32,34), 7.33 (t, 

J = 8.0 Hz, 1H, 39), 6.83 - 6.80 (m, 2H, 31,35), 6.71 (d, J = 15.8 Hz, 1H, 18), 5.18 (s, 2H, 36), 

4.31 (dt, J = 9.8, 6.7 Hz, 4H, 2029), 2.58 (s, 3H, 43), 1.77 (ddd, J = 8.4, 6.5, 1.9 Hz, 4H, 21,28), 

1.50 - 1.30 (m, 12H, 22-27).  

13C-NMR (101 MHz, CDCl3) δ / ppm = 192.12, 167.36, 166.40, 162.03, 142.42, 141.43, 

136.29 - 109.28 (m), 70.05, 65.38, 65.00, 29.74 - 29.32 (m), 28.91 (d, J = 9.2 Hz), 26.18, 21.62. 

 

Figure 87. 1H-NMR (400 MHz, deuterated chloroform) of 8. 

8.3.13 Styrylpyrene Monomer (StyP-O-MA, 10) 
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Styrylpyrene (0.65 g, 2.04 mmol, 1.00 eq.), 2-(methacryloyloxy)ethyl 5-bromopentanoate 

(1.07 g, 3.66 mmol, 1.8 eq.) and Cs2CO3 (1.19 g, 3.66 mmol, 1.8 eq.) were suspended in ace-

tonitrile and degassed with nitrogen for 20 min. The reaction mixture was heated to 45° C for 

24h until full conversion of styrylpyrene was reached according to 1H-NMR (solvent: CDCl3). 

The reaction mixture was filtered over cotton (in a pipette) and directly precipitated out of cold 

methanol (ca. 150 mL). After leaving it in the fridge for 1 h, the precipitate was collected via 

filtration (Millipore) followed by washing with cold methanol and dried under reduced pressure 

to obtain the pure product (0.46 g, yield: 42 %). 

1H-NMR (400 MHz, Chloroform-d) δ = 8.50 (d, J = 9.3 Hz, 1H, 8), 8.31 (d, J = 8.1 Hz, 1H, 

15), 8.20 – 7.97 (m, 8H, 1,3,16,7,18,12,13,2), 7.62 (d, J = 8.8 Hz, 2H, 20,24), 7.31 (d, J = 

16.0 Hz, 1H, 17), 6.98 – 6.93 (m, 2H, 21,23), 6.16 – 6.13 (m, 1H, 34), 5.62 – 5.58 (m, 1H, 34), 

4.40 – 4.34 (m, 4H, 30,31), 4.06 – 4.01 (m, 2H, 25), 2.50 – 2.42 (m, 2H, 28), 1.96 (dd, J = 1.6, 

1.0 Hz, 3H, 33), 1.90 – 1.85 (m, 4H, 26,27). 

 

Figure 88.1H-NMR (400 MHz, deuterated chloroform) of StyP-O-MA 10. 
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8.3.14 Styrylpyrene-mTEGMA Copolymers 

 

8.3.14.1 P3 

mTEGMA (2.98 g, 12.8 mmol, 68,3 eq.), StyP-O-MA (0.50 g, 939 µmol, 5.00 eq.), 2-cyano-

2-propyl dodecyl trithiocarbonate (CPDT, 64.9 mg, 188 µmol, 1.00 eq.) and azobisisobutyroni-

trile (AIBN, 3.08 mg, 18.8 µmol, 0.10 eq.) were dissolved in toluene. After degassing with 

nitrogen for 10 min while in an ice bath, the polymerisation was conducted for 24 h at 70 °C 

and subsequently precipitated in cold diethyl ether. After centrifuging (10 min, 5000 RPM) the 

solvent was removed, the precipitate dissolved in little THF and precipitated again in cold di-

ethyl ether. The whole process was repeated twice to obtain the final polymer that was analysed 

via NMR and SEC measurements. 

 

Figure 89. 1H-NMR (400 MHz, deuterated dichloromethane) of the polymer P3. 
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Figure 90. THF SEC (RI detector) chromatogram of the polymer P3. 

8.3.14.2 P4 

mTEGMA (2.98 g, 12.8 mmol, 136.6 eq.), StyP-O-MA (1.00 g, 1.88 mmol, 20.00 eq.), 2-cy-

ano-2-propyl dodecyl trithiocarbonate (CPDT, 93.9 mg, 188 µmol, 1.00 eq.) and azobisisobu-

tyronitrile (AIBN, 1.54 mg, 9.39 µmol, 0.10 eq.) were dissolved in toluene. After degassing 

with nitrogen for 10 min while in an ice bath, the polymerisation was conducted for 24 h at 

70 °C and subsequently precipitated in cold diethyl ether. After centrifuging (10 min, 

5000 RPM) the solvent was removed, the precipitate dissolved in little THF and precipitated 

again in cold diethyl ether. The whole process was repeated twice to obtain the final polymer 

that was analysed via NMR and SEC measurements. 
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Figure 91. 1H-NMR (400 MHz, deuterated chloroform) of the polymer P4. 

 

Figure 92. THF SEC (RI detector) chromatogram of the polymer P4. 
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8.3.15 Boc Protected Styrylpyrene-amine (StyP-TOTA-Boc) 

 

StyP-COOH (1.00 g, 2.87 mmol, 1.00 eq.), N-hydroxysuccinimid (NHS, 0.73 g, 6.31 mmol, 

2.20 eq.) and N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC*HCl, 

1.21 g, 6.13 mmol, 2.20 eq.) were stirred in DCM (30 mL) at 30 °C for 4 h. The NHS activated 

ester was obtained via filtration (1.03 g, yield: 80.5 %). 

In a second step, the NHS ester (1.03 g, 2.31 mmol, 1.00 eq.) was dispersed in DCM (13 mL) 

before addition of N,N’-diisopropylamine (DIPEA, 29.8 mg, 231 µmol, 0.10 eq.) and N-Boc-

4,7,10-trioxa-1,13-tridecanediamine (Boc-TOTA, 1.01 g, 3.46 mmol, 1.50 eq.). The reaction 

mixture was stirred at 30 °C for 24 h and turned clear over time. After washing with water 

(4 x 50 mL), brine (50 mL), drying over MgSO4 and removing the solvents under reduced pres-

sure, the pure product was obtained (1.43 g, yield: 99.6 %). 

1H-NMR (400 MHz, DMSO-d6) δ = 8.86 – 7.55 (m, 16H, Pyrene,1), 6.75 (t, J = 4.9 Hz, 1H, 

7), 3.59 – 3.30 (m, 14H, 2,4), 2.97 (q, J = 6.6 Hz, 2H, 6), 1.80 (p, J = 6.6 Hz, 2H, 3), 1.60 (p, J 

= 6.6 Hz, 2H, 5), 1.36 (s, 9H, 8). 
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Figure 93. 1H-NMR (400 MHz, deuterated DMSO) of the boc protected styrylpyrene amine. 

8.3.16 Decoration of TEMPO-oxidized cellulose nanofibrils 

(CNF) with tetrazole-NH2 in dispersion 

The following procedure was performed by Daniel Hönders at the University of Freiburg: 

The oxidation of bleached Kraft pulp by TEMPO/NaOCl/NaClO2 system under neutral condi-

tions was performed according to literature by PTS Hagenau (Dresden, Germany).185 The re-

sulting content of carboxyl groups is 0.94 mmol g-1 and the degree of polymerization (DPv) is 

650. A 1.3 wt-% suspension of TEMPO oxidized Kraft pulp was set to pH = 9 with NaOH and 

fibrillated by repeated shear cycles in a microfluidizer (Microfluidics corp. MRT CR5, 

4 x 1000 bar). For decoration of CNF in dispersion, the gel-like CNF (1 wt-% in water) was 

diluted to 0.1 wt% in a solvent mixture of water and DMSO (800 mL, final w/w was 1/4) and 

vigorously stirred to obtain a clear homogeneous dispersion. Styrylpyrene-NH2 (0.85 g, 2.26 

mmol, 3 eq.) was dissolved in DMSO and added to the dispersion and next DMTMM (0.74 g, 

2.26 mmol, 3 eq.) dissolved in water was added dropwise. The reaction mixture was stirred at 

ambient conditions for 24 h. Afterwards the dispersion was washed multiple times with DMSO 

and water by centrifugation to remove unreacted and adsorbed reactants. The final concentrated 

CNF-StyP was stored as aqueous dispersion in the fridge and under light protection until used. 
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Appendix 

Styrylpyrene 

 

Figure 94. 1H-NMR (400 MHz, CD3CN) spectra showing the isomerisation of StyP 1 under irradiation with 

UV-C light (λmax = 254 nm; solvent: deuterated acetonitrile) showing distinct new resonances for the cis-

isomer of 1 including one representing a proton of the double bond (peak 17, 7.20 ppm, J = 12.1 Hz). 
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Structures of Possible Photoproducts 

Table 7. Structures of possible photoproducts including their molecule number (2a – 2l), the characteristics 

determining their nomenclature, abbreviations and energies obtained after geometry optimization with 

MMFF94 force field. The difference in the energy with respect to the lowest energy structure is given in 

brackets. 

Label Molecule 
Characteris-

tics 

Abbrevia-

tion 

Energy* 

[kJ mol-1] 

2a 

 

trans + trans 

head-to-tail 

anti 

tt-ht-a 
692.69 

(0) 

2b* 

 

trans + trans 

head-to-tail 

syn 

tt-ht-s 
748.17 

(+55.48) 

2c 

 

trans + trans 

head-to-head 

anti 

tt-hh-a 
712.28 

(+19.60) 

2d 

 

trans + trans 

head-to-head 

syn 

tt-hh-s 
695.17 

(+2.48) 

2e 

 

trans +cis 

head-to-tail 

anti 

tc-ht-a 
973.36 

(+280.67) 
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2f 

 

trans +cis 

head-to-tail 

syn 

tc-ht-s 
718.97 

(+26.28) 

2g 

 

trans + cis 

head-to-head 

anti 

tc-hh-a 
782.83 

(+90.14) 

2h 

 

trans + cis 

head-to-head 

syn 

tc-hh-s 
741.90 

(+49.21) 

2i* 

 

cis + cis 

head-to-tail 

anti 

cc-ht-a 
748.17 

(+55.48) 

2j 

 

cis + cis 

head-to-tail 

syn 

cc-ht-s 
871.63 

(+178.94) 

2k 

 

cis + cis 

head-to-head 

anti 

cc-hh-a 
755.17 

(+62.48) 
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2l 

 

cis + cis 

head-to-head 

syn 

cc-hh-s 
768.11 

(+75.42) 

* identical from a stereochemistry point of view, formally product of different cycloaddition 

approaches. 
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Detailed NMR Analysis of the Photoproducts PP I – III 

 

Figure 95. Labelling of the hydroxy-styrylpyrene 1 molecule for detailed NMR assignments. 

Table 8. 1H-NMR chemical shifts for starting material StyP 1 as well as the three photoproducts PP I – III, 

generated upon irradiation with visible light. The scalar couplings are given in Hz in brackets. The asterisk 

marks overlapping signals where multiplicity and/or scalar couplings could not be evaluated. 

Assignment Starting Structure PP I PP II PP III 

 trans-StyP 1 tt-ht-s 2d tt-ht-a 2a tt-ht-s 2b 

1 8.25 * 
8.12 dd 

(7.2, 0.99) 

8.21 d 

(7.1) 
8.03 d* 

2 
8.05 t 

(7.6) 

7.87 t 

(7.4) 

8.03 t 

(7.6) 

7.86 t 

(7.6) 

3 8.25 * 
7.9 dd 

(7.7, 1.2) 

8.24 d 

(7.3) 
8.02 d* 

7 
8.20 d 

(9.2) 

7.49 d 

(9.4) 

8.17 d 

(9.3) 

7.94 d 

(9.3) 

8 
8.62 d 

(9.3) 

7.86 d 

(9.5) 

8.57 d 

(9.2) 

8.61 d 

(9.3) 

12 8.12 * 
8.11 d 

(8.9) 

8.08 d 

(8.9) 

7.83 d 

(8.9) 

13 8.12 * 
8.05 d 

(9.0) 

8.06 d 

(9.0) 

7.87 d 

(8.9) 

15 
8.40 d 

(8.1) 

8.72 d 

(8.1) 

8.42 d 

(7.9) 

8.15 d 

(8.1) 

16 8.24 * 
8.39 d 

(8.1) 

8.24 d 

(7.9) 

7.92 d 

(8.1) 

17 
7.40 d 

(16.1) 
4.87 - 

5.51 dd 

(10.2, 7.5) 
5.85 - 

18 
8.13 d 

(16.2) 
4.24 - 

5.32 dd 

(10.2, 7.5) 
4.96 - 
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20 / 24 
7.64 d 

(8.6) 

7.38 d 

(8.6) 

7.18 d 

(8.7) 

7.29 d 

(8.6) 

21 / 23 
6.60 d 

(8.6) 

6.76 d 

(8.6) 

6.27 d 

(8.7) 

6.69 d 

(8.6) 

25 7.21 s 6.82 s 6.39 s 6.73 s 

 

Table 9. 13C-NMR chemical shifts for starting material StyP 1 as well as the three photoproducts PP I – III, 

generated upon irradiation with visible light. The shifts marked with an asterisk are interchangeable, while 

the ones indicated with a hash where observed in HMBC spectra only and could be assigned ambiguously. 

Assignment 
Starting  

Structure 

Product I 

(PP I) 

Product II 

(PP II) 

Product III 

(PP III) 

 trans-StyP 1 tt-ht-s 2d tt-ht-a 2a tt-ht-s 2b 

1 126.00 * 126.35 126.38 126.23 

2 127.32 127.41 127.52 127.34 

3 126.26 * 125.9 126.27 126.03 

4 125.69 125.69 131.86 # 125.51 

5 132.04 132.75 132.96 # 131.89 

6 132.61 125.85 132.72 132.48 

7 128.39 127.9 128.12 128.02 

8 124.3 124.6 125.78 125.35 

9 129.03 131.87 132.22 130.32 

10 12k5.86 130.64 130.66 # 125.51 

11 131.53 131.35 131.30 # 130.82 

12 128.05 * 128.81 128.83 128.53 

13 128.50 * 128.28 128.11 128.00 

14 133.57 137.42 136.34 136.72 

15 124.44 126.26 126.45 126.48 

16 126.34 126.86 126.01 125.69 

17 132.80 51.84 47.01 46.01 

18 123.44 52.92 48.00 48.94 
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19 130.84 134.95 133.40 133.55 

20 / 24 129.33 129.97 130.85 131.01 

21 / 23 116.62 116.68 115.57 116.16 

22 158.11 157.25 156.32 156.58 
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Figure 96. 1H spectrum of the starting material trans-hydroxy-styrylpyrene 1. 

 

Figure 97. 13C spectrum of the starting material trans-hydroxy-styrylpyrene 1. 
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Figure 98. NOESY measurement of the starting material trans-hydroxy-styrylpyrene 1. 

 

Figure 99. COSY measurement of the starting material trans-hydroxy-styrylpyrene 1. 
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Figure 100. HSQC-TOCSY measurement of the starting material trans-hydroxy-styrylpyrene 1. 

 

Figure 101. Decoupled HSQC measurement of the starting material trans-hydroxy-styrylpyrene 1. 
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Figure 102. HMBC measurement of the starting material trans-hydroxy-styrylpyrene 1. 
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Figure 103. 1H Spectrum of Product I (tt-ht-s 2d). 

 

Figure 104. 13C Spectrum of Product I (tt-ht-s 2d). 
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Figure 105. NOESY measurement of Product I (tt-ht-s 2d). 

 

Figure 106. TOCSY measurement of Product I (tt-ht-s 2d). 



Appendix 

158 

 

Figure 107. HSQC-TOCSY measurement of Product I (tt-ht-s 2d). 

 

Figure 108. Enlarged view of the HSQC-TOCSY measurement of Product I (tt-ht-s 2d). 
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Figure 109. Decoupled HSQC measurement of Product I (tt-ht-s 2d). 

 

Figure 110. HMBC measurement of Product I (tt-ht-s 2d). 
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Figure 111. Enlarged view of the HMBC measurement of Product I (tt-ht-s 2d). 
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Figure 112. 1H spectrum of Product II (tt-ht-a 2a). 

 

Figure 113. 13C spectrum of Product II (tt-ht-a 2a). 
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Figure 114. NOESY measurement of Product II (tt-ht-a 2a). 

 

Figure 115. TOCSY measurement of Product II (tt-ht-a 2a). 
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Figure 116. HSQC-TOCSY measurement of Product II (tt-ht-a 2a). 

 

Figure 117. Enlarged view of the HSQC-TOCSY measurement of Product II (tt-ht-a 2a). 
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Figure 118. Decoupled HSQC measurement of Product II (tt-ht-a 2a). 

 

Figure 119. HMBC measurement of Product II (tt-ht-a 2a). 
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Figure 120. Enlarged view of the HMBC measurement of Product II (tt-ht-a 2a). 
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Figure 121. 1H spectrum of Product III (tt-ht-s 2b). 

 

Figure 122. 13C spectrum of Product III (tt-ht-s 2b). 
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Figure 123. NOESY measurement of Product III (tt-ht-s 2b). 

 

Figure 124. TOCSY measurement of Product III (tt-ht-s 2b). 
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Figure 125. HSQC-TOCSY measurement of Product III (tt-ht-s 2b). 

 

Figure 126. Zoomed version of the HSQC-TOCSY measurement of Product III (tt-ht-s 2b). 
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Figure 127. Decoupled HSQC measurement of Product III (tt-ht-s 2b). 

 

Figure 128. HMBC measurement of Product III (tt-ht-s 2b). 
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Figure 129. Enlarged view of the HMBC measurement of Product III (tt-ht-s 2b). 
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NOE data:  

◼ Product I (tt-ht-s 2d): H-18 with H-17, H-20/24 and H-15, H-17 with H-18, H-20/24, H-8 

and H-15, H-21/23 with H-25 and H-20/24, H-20/24 with H-18, H-17, H-21/23, weak H-8 

and weak H-15, H-7 with H-8, H-8 with H-17, weak H-20/24, H-7 and weak H-15, H-2 

with H-1 and H-2, H-3 with H-2, H-13 with H-12, H-12 with H-13 and H-16, H-1 with H-

13 and H-2, H-16 with H-12 and H-15, H-15 with H-18, H-17, H-20/24, H-16 and H-8. 

◼ Product II (tt-ht-a 2a): H-18 with H-17, H-20/24, H-15 and H-8, H-17 with H-18, H-20/24, 

H-15 and H-8, H-21/23 with –H-20/24, H-25 with H-21/23, H-20/24 with H-17, H-18, 

weak H-7, weak H-16 or H-3, H-15 and H-8, H-2 with H-1 and H-3, H-13 with H-1, H-12 

with H-16, H-7 with H-3 and H-8, H-3 and H-16 (as overlapping resonance) with H-2, H-

12, H-13, H-7 and H-15. 

◼ Product III (tt-ht-s 2b): H-18 with H-17, H20/24, H-15 and weak wit H-8, H-17 with H-18, 

H-20/24, weak H-15, strong H-8, H-21/23 with H-20/24, H-20/24 with H-18, H-17, H-

21/23 and weak H-15, H-12 with H-16, H-2 with H-1 and H-3, H-13 with H-1, H-16 with 

H-15 and H-12, H-7 with H-3 and H-8, H-3 with H-7 and H-2, H-1 with H-13 and H-2, H-

15 with H-18, weak H-17, H-16 and weak H-20/24, H-8 with H-17, weak H-18, weak H-

20/24 and H-7.  

◼ trans-Hydroxy-styrylpyrene (trans-StyP-OH 1): H-21/23 with H25 and H-20/24, H-17 

with H20/24 and H-15, H20/24 with H-21/23, H-17 and H-18, H-2 with H-1 or H-3, H-12 

or H-13 with H-16, H-18 with H-20/24, H-8 and very weak with H-15, H-7 with H-1 or H-

3 and H-8, H-16 with H-12 or H-13 and H-15, H-1 or H-3 with H-2 and H-12 or H-13, H-

15 with H-16 and H-17, H-8 with H-18 and H-7. 
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Table 10. Differences of the 1H chemical shifts in ppm between the starting hydroxy-styrylpyrene 1, indicated 

with start and each of the three photoproducts, marked as Product I (PP I, tt-ht-a 2a), Product II (PP II, tt-

ht-a 2a) and Product III (PP III, tt-ht-s 2b). 

Assignment Δstart-PP I ΔPP I-PP II ΔPP I-PP III Δstart-PP II ΔPP III-PP II Δstart-PP III 

1 0.13 -0.09 0.09 0.04 -0.18 0.22 

2 0.18 -0.16 0.01 0.02 -0.17 0.19 

3 0.35 -0.34 -0.12 0.01 -0.22 0.23 

7 0.71 -0.68 -0.45 0.03 -0.23 0.26 

8 0.94 -0.89 -0.93 0.05 0.04 0.01 

12 0.01 0.03 0.28 0.04 -0.25 0.29 

13 0.07 -0.01 0.18 0.06 -0.19 0.25 

15 -0.32 0.30 0.57 -0.02 -0.27 0.25 

16 -0.15 0.15 0.47 0.00 -0.32 0.32 

17 2.53 -0.64 -0.98 1.89 0.34 1.55 

18 3.89 -1.08 -0.72 2.81 -0.36 3.17 

20 / 24 0.26 0.20 0.09 0.46 0.11 0.35 

21 / 23 -0.16 0.49 0.07 0.33 0.42 -0.09 

25 0.39 0.43 0.09 0.82 0.34 0.48 
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Table 11. Differences of the 13C chemical shifts in ppm between the starting hydroxy-styrylpyrene 1, indicated 

with start and each of the three photoproducts, marked as Product I (PP I, tt-ht-a 2a), Product II (PP II, tt-

ht-a 2a) and Product III (PP III, tt-ht-s 2b). 

Assignment Δstart-PP I ΔPP I-PP II ΔPP I-PP III Δstart-PP II ΔPP III-PP II Δstart-PP III 

1 -0.35 -0.03 0.12 -0.38 -0.15 -0.23 

2 -1.14 -0.11 0.07 -1.25 -0.18 -1.07 

3 1.42 -0.37 -0.13 1.05 -0.24 1.29 

4 0.00 -6.17 0.18 -6.17 -6.35 0.18 

5 -0.71 -0.21 0.86 -0.92 -1.07 0.15 

6 6.76 -6.87 -6.63 -0.11 -0.24 0.13 

7 0.49 -0.22 -0.12 0.27 -0.1 0.37 

8 -0.30 -1.18 -0.75 -1.48 -0.43 -1.05 

9 -2.84 -0.35 1.55 -3.19 -1.9 -1.29 

10 -4.78 -0.02 5.13 -4.80 -5.15 0.35 

11 0.18 0.05 0.53 0.23 -0.48 0.71 

12 -3.76 -0.02 0.28 -3.78 -0.3 -3.48 

13 0.22 0.17 0.28 0.39 -0.11 0.50 

14 -3.85 1.08 0.70 -2.77 0.38 -3.15 

15 -1.82 -0.19 -0.22 -2.01 0.03 -2.04 

16 -0.52 0.85 1.17 0.33 -0.32 0.65 

17 80.96 4.83 5.83 85.79 -1.00 86.79 

18 70.52 4.92 3.98 75.44 0.94 74.5 

19 -4.11 1.55 1.40 -2.56 0.15 -2.71 

20 / 24 -0.64 -0.88 -1.04 -1.52 0.16 -1.68 

21 / 23 -0.06 1.11 0.52 1.05 0.59 0.46 

22 0.86 0.93 0.67 1.79 0.26 1.53 

 



Appendix 

174 

Styrylpyrene meets o-Methyl Benzaldehyde 

Detailed NMR Analysis 

 

Figure 130. 1H-NMR spectrum after irradiation of StyP 1 (5.00 mM) in presence of TGD 5 (2.50 mM, solvent: 

CD3CN) at a wavelength of 435 nm (483 µmol photons). As expected, 1 underwent dimerisation – proven by 

the formation of the respective cyclobutane-photoproducts (red) – as  well as isomerisation while 5 remained 

inactive. 
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Figure 131. 1H-NMR spectrum after irradiation of StyP 1 (5.00 mM) in presence of TGD 5 (2.50 mM, solvent: 

CD3CN) at a wavelength of 330 nm (483 µmol of photons). As expected, the only reaction taking place was 

the photochemically triggered isomerisation of 1. 
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Figure 132. 1H-NMR spectrum after irradiation of o-MBA 4 (5.00 mM) in presence of TGD 5 (2.50 mM, 

solvent: CD3CN) at a wavelength of 435 nm (483 µmol of photons). As expected, no photochemical reaction 

took place, proving the inactivity of both chromophores in the visible light range. 
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Figure 133. 1H-NMR spectra of a mixture of StyP 1 (5.00 mM), o-MBA 4 (5.00 mM), and TGD 5 (2.50 mM, 

solvent: CD3CN) before irradiation. 
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Figure 134. 1H-NMR spectrum after irradiation of a mixture of StyP 1 (5.00 mM), o-MBA 4 (5.00 mM), and 

TGD 5 (2.50 mM, solvent: CD3CN) with visible light (435 nm, 483 µmol photons). As expected, three 

styrylpyrene photoproducts were formed (marked in red). In addition, o-MBA 4 (compare magnetic reso-

nance i close to 11 ppm) and TGD 5 (compare magnetic resonance a close to 1.00 ppm) remained intact. 
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Figure 135. 1H-NMR spectra before and after irradiation of a mixture of StyP 1, o-MBA 4, and TGD 5 with 

UV light (330 nm, 483 µmol photons). While the magnetic resonances for the methyl and aldehyde group of 

o-MBA disappeared (red boxes), TGD stayed intact (blue labelled magnetic resonances). In conclusion, 

o-MBA dimerised with itself instead of reacting with TGD. 
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Figure 136. 1H-NMR spectrum after irradiation of StyP 1 (5.00 mM) and o-MBA 4 (5.00 mM, solvent: 

CD3CN) at a wavelength of 435 nm (483 µmol photons). As expected, 1 underwent dimerisation – proven by 

the formation of the respective cyclobutane-photoproducts (red) – as  well as isomerisation while 4 remained 

inactive. 
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Figure 137. Main product formed via a [4+4] cycloaddition during irradiation of o-MBA 4 with UV-A light 

(330 nm). 
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Liquid Chromatography Mass Spectroscopy (LC-MS) Meas-

urements 

 

Figure 138. Theoretical m / z values that should be observed if a cross product of o-MBA with StyP is formed. 

Composition m / z

C41H32O5 604.2250

C41H32O5 +H+ 605.2323

C41H32O5 +NH4
+ 622.2588

C41H32O5 +Na+ 627.2142

C41H32O5 +K+ 643,1881
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Figure 139. Overview over the possible mass fragments for o-MBA dimers. 
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Figure 140. LC-trace (254 nm detector wavelength) and accumulated mass-spectra of the o-MBA and StyP 

mixture irradiated with 330 nm. 

Table 12. Fragments found in Figure 140. 

Symbol m/zexp m/ztheo Δ 

[PE2 -CO2CH2 -CH2 +Na]+ 519.1806 519.1778 0.0028 

[PE2 -CO2CH2 +Na]+ 533.1963 533.1935 0.0028 

[PE2 +Na]+ 591.1994 591.1989 0.0005 
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Figure 141. LC-trace (254 nm detector wavelength) and accumulated mass-spectra of the o-MBA and StyP 

mixture irradiated with 330 nm. 

Table 13. Fragments found in Figure 141. 

Symbol m/zexp m/ztheo Δ 

[PE2 -C11H10O4 +Na]+ 385.1439 385.1413 0.0026 

[PE2 -CO2CH2 -CH2 +Na]+ 519.1806 519.1778 0.0028 

[PE2 -CO2CH2 +Na]+ 533.1963 533.1935 0.0028 

[PE2 +NH4]+ 586.2440 586.2435 0.0005 

[PE2 +Na]+ 591.1994 591.1989 0.0005 
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Figure 142. LC-trace (254 nm detector wavelength) and accumulated mass-spectra of the o-MBA and StyP 

mixture irradiated with 330 nm. 

Table 14. Fragments found in Figure 142. 

Symbol m/zexp m/ztheo Δ 

[PE -C=O +H]+ 257.1177 257.1172 0.0005 

[PE +Na]+ 307.0945 307.0941 0.0004 

[PE2 +Na]+ 591.1995 591.1989 0.0006 
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Figure 143. LC-trace (254 nm detector wavelength) and accumulated mass-spectra of the o-MBA and StyP 

mixture irradiated with 330 nm. 

Table 15. Fragments found in Figure 143. 

Symbol m/zexp m/ztheo Δ 

[PE2 -C11H10O4 +Na]+ 385.1439 385.1413 0.0026 

[PE2 -CO2CH2 -CH2 +Na]+ 519.1805 519.1778 0.0027 

[PE2 -CO2CH2 +Na]+ 533.1961 533.1935 0.0026 

[PE2 +Na]+ 591.1995 591.1989 0.0006 

[2PE2 +Na]+ 1159.4088 1159.4086 0.0002 
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Figure 144. LC-trace (254 nm detector wavelength) and accumulated mass-spectra of the o-MBA and StyP 

mixture irradiated with 330 nm. 

Table 16. Fragments found in Figure 144. 

Symbol m/zexp m/ztheo Δ 

[PE2 +Na]+ 589.1838 589.1833 0.0005 

[2PE2 +Na]+ 1155.3781 1155.3720 0.0061 
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Figure 145. LC-trace (254 nm detector wavelength) and accumulated mass-spectra of the o-MBA and StyP 

mixture irradiated with 330 nm. 

Table 17. Fragments found in Figure 145. 

Symbol m/zexp m/ztheo Δ 

[PE2 +Na]+ 589.184 589.1833 0.0007 

[2PE2 +Na]+ 1155.3782 1155.3720 0.0062 
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Figure 146. LC-trace (254 nm detector wavelength) and accumulated mass-spectra of the o-MBA and StyP 

mixture irradiated with 330 nm. 

Table 18. Fragments found in Figure 146. 

Symbol m/zexp m/ztheo Δ 

StyP 320.1198 320.1201 0.0003 

[PE2 -CO2CH2 -CH2 +Na]+ 519.1802 519.1778 0.0024 

[PE2 +Na]+ 591.1991 591.1989 0.0002 

[2PE2 +Na]+ 1159.4077 1159.4086 0.0009 
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Figure 147. LC-trace (254 nm detector wavelength) and accumulated mass-spectra of the o-MBA and StyP 

mixture irradiated with 330 nm. 

Table 19. Fragments found in Figure 147. 

Symbol m/zexp m/ztheo Δ 

[PE2 +Na]+ 589.1835 589.1833 0.0002 

[PE2 +K]+ 605.1574 605.1573 0.0001 

[2PE2 +Na]+ 1155.377 1155.3720 0.0050 
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Figure 148. LC-trace (254 nm detector wavelength) and accumulated mass-spectra of the o-MBA and StyP 

mixture irradiated with 330 nm. 

Table 20. Fragments found in Figure 148. 

Symbol m/zexp m/ztheo Δ 

[PE2 +Na]+ 589.1827 589.1833 0.0006 

[2PE2 +Na]+ 1157.3913 1155.372 2.0193 
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Polychromophores 

 

 

Figure 149. Comparison of proton NMR spectra of 1 (black) and 1 after irradiation for 1 h (red), both in DMF-d7. The 

red curve indicates visible light-induced formation of two different cyclobutane-dimers of 9. 
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Figure 150. GC-MS measurement of 9 before irradiation. 

 

Figure 151. GC-MS of 9 after irradiation with visible light (λmax = 416 nm). No photodamage is observed 

during this reaction since no new peaks are arising in the gas chromatogram or the mass spectrum in com-

parison with Figure 150. 
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Figure 152. GC-MS of 9 after irradiation with visible light (λmax = 416 nm) und subsequent irradiation with 

UV light (λmax = 314 nm). No photodamage is observed during this reaction, since no new peaks are arising 

in the gas chromatogram or the mass spectrum in comparison with Figure 150 and Figure 151. 
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Figure 153. Proton NMR (recorded in deuterated dichloromethane, 400 MHz) of 8 before irradiation (t0) 

and after irradiation with UV light (λmax = 314 nm, t1). The disappearance of the magnetic resonances a and 

m proves the complete consumption of the o-MBA group 
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Figure 154. 1H-NMR (recorded in deuterated dichloromethane, 400 MHz) of 8 before irradiation (t0), after 

irradiation with UV light (λmax = 314 nm, t1), and subsequent visible light irradiation (λmax =614 nm, t2). 
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Figure 155. 1H-NMR (recorded in deuterated dichloromethane) of 8 before irradiation (t0), after irradiation 

with visible light (λmax = 416 nm, t1), and subsequent UV light irradiation (λmax = 314 nm, t2). Upon irradi-

ation not only the [4+2] cycloaddition of o-MBA occurs but the unexpectedly the in the first step formed 

cyclobutane structure also dissociated back to the double bond of PCA. 
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Figure 156. SEC traces (RI detector, with THF as the eluent) of 8 with Et-Mal: A) before irradiation (t0), 

after irradiation with visible light (t1), and subsequent UV light irradiation (t2). B) before irradiation (t0), 

after irradiation with UV light (t1) and subsequent visible light irradiation (t2). 

 

Figure 157. SEC traces (RI detector, with THF as the eluent) of 8: before irradiation and after irradiation 

with visible light (A) or UV light (B). 



Appendix 

200 

 

Figure 158. SEC traces (RI detector, with THF as the eluent) of 9: before irradiation and after irradiation 

with visible light (A) or UV light (B). Measured on a Tosoh SEC system. 

 

Figure 159. SEC traces (RI detector, with THF as the eluent) of pyrene: before irradiation and after irradi-

ation with visible light (A) or UV light (B). Measured on a Tosoh SEC system. 
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Figure 160. Proton NMR (recorded in deuterated dichloromethane, 400 MHz) of pyrene before irradiation 

(middle) and after irradiation with visible light (top) or UV light (bottom). 
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Towards Reversible Nanocellulose Materials 

 

Figure 161. (1)Non-irradiated reference. (2) Irradiation styrylpyrene-polymer (P3) film at 410 – 420 nm 

for 4 h. Subsequent addition of water dissolved the reference 1 while 2 remained solid, successfully proving 

the cross-linking upon irradiation. 
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List of Investigated Chemical Compounds 

Number 
Name  

(Abbreviation) 
Structure 

1 
trans-(p-Hydroxy-

styrylpyrene (StyP) 
 

2 
Styrylpyrene Di-

mers 
refer to Table 7 on page 146 

3 mPEG-StyP 

 

4 
ortho-Methyl Ben-

zaldehyde (o-MBA) 

 

5 

Tetraethylene Gly-

col Difumarate 

(TGD)  

6 

Pyrenyl Cinnamic 

Acid Derivate 

(PCA)  

7  

 

8  

 

9  

 

10 StyP-O-MA 
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P1 / P1F  

  

P2 / P2F  

  

P3 / P4  
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